Single π^0 Electroproduction in the Resonance Region with CLAS

Kyungseon Joo
University of Connecticut
For the CLAS Collaboration

N* 2009
Beijing, China
April 19, 2009
Electromagnetic Excitation of N*

- Allows to address the central question: What are the relevant degrees-of-freedom at varying distance scale?
Electromagnetic Excitation of N*’s

The experimental N* Program has two major components:

1) Accurate measurements of transition form factors \((A_{3/2}, A_{1/2}, S_{1/2}) \) of known states as photon virtuality \((Q^2) \) to probe their internal structure and confining mechanism.

2) Search for undiscovered new baryon states.

Both parts of the program are being pursued in various decay channels, e.g. \(N\pi, p\eta, p\pi^+\pi^- , K\Lambda, K\Sigma, p\omega, pp^0 \) using cross sections and polarization observables.
SU(6)xO(3) Classification of Low Lying N*
Transition Form Factors of Low Lying N^* States

$p\pi^0$ channel is important to study:

The $\gamma^*N\Delta(1232)$ Quadrupole Transition

N^* Transition Form Factors in the 2nd Resonance Region -
“Roper” $P_{11}(1440)$, $S_{11}(1535)$, $D_{13}(1520)$
The $\gamma^*N\Delta(1232)$ Quadrupole Transition

SU(6): $E_{1+} = S_{1+} = 0$

<table>
<thead>
<tr>
<th></th>
<th>E/M</th>
<th>S/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>pion cloud</td>
<td>~0.03</td>
<td>-0.1</td>
</tr>
<tr>
<td>one-gluon exch.</td>
<td>~0.01</td>
<td></td>
</tr>
<tr>
<td>pQCD</td>
<td>+1 const.</td>
<td></td>
</tr>
</tbody>
</table>

Shape at low Q^2

E/M < 0

E/M > 0

pQCD limit

pQCD limit
$\gamma^* N\Delta$ Multipole Ratios R_{EM}, R_{SM} before JLab

$R_{EM} = \frac{E_{1+}}{M_{1+}}$

$R_{SM} = \frac{S_{1+}}{M_{1+}}$

Sign @ $Q^2 > 0$?

Q^2 dependence?
\(\gamma^* N\Delta\) Multipole Ratios \(R_{EM}, R_{SM}\) with JLab

- \(R_{EM} = -2\) to \(-4\%\) at \(0 \leq Q^2 \leq 6\) GeV\(^2\).

- \(R_{SM} < 0\), increasing in magnitude.

- \(R_{EM} < 0\) favors oblate shape of \(\Delta(1232)\).

- Pion contributions needed to explain shape, magnitude.

- No trend towards asymptotic behavior \(R_{EM} \to 100\%\).
<table>
<thead>
<tr>
<th>Resonance</th>
<th>Description</th>
</tr>
</thead>
</table>
| $P_{11}(1440)$ | Poorly understood in nrCQMs. Other models:
 - Hybrid baryon with gluonic excitation $|q^3G>$
 - Quark core with large meson cloud $|q^3m>$
 - Nucleon-sigma molecule $|N\sigma>$
 - Dynamically generated resonance |
| $S_{11}(1535)$ | Hard form factor (slow fall off with Q^2)
 Not a quark resonance, but $K\Sigma$ dynamical system? |
| $D_{13}(1520)$ | Change of helicity structure with increasing Q^2 from $\lambda=3/2$ dominance to $\lambda=1/2$ dominance, predicted in nrCQMs, pQCD. |
Roper $P_{11}(1440)$ Helicity amplitudes

2. Capstick, PRD51 (1995) 3598
5. Aznauryan, PRC76 (2007) 025212

I. G. Aznauryan et al. (CLAS), arXiv:080447 [nucl-ex]
Transverse amplitudes for $\gamma^* p \rightarrow D_{13}(1520)$
CLAS Single Pion Electro-production Data

Data in the $\Delta(1232)$ region up to $W = 1.4$ GeV

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Collaboration</th>
<th>Year</th>
<th>Reaction</th>
<th>Q^2 Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>JLab/Hall C</td>
<td>Frolov</td>
<td>1999</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 2.5 - 4.3$ GeV2</td>
</tr>
<tr>
<td>Bates</td>
<td>Mertz et al.</td>
<td>2001</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 0.127$ GeV2</td>
</tr>
<tr>
<td>Mainz</td>
<td>Pospischil et al.</td>
<td>2001</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 0.127$ GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Joo et al.</td>
<td>2002</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 0.4 - 1.8$ GeV2</td>
</tr>
<tr>
<td>Bonn</td>
<td>Bantes, Gothe</td>
<td>2002</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 0.6$ GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Egiyan et al.</td>
<td>2006</td>
<td>$n\pi^+$</td>
<td>$Q^2 = 0.3 - 0.6$ GeV2</td>
</tr>
<tr>
<td>Mainz</td>
<td>Elsner et al. / Stave et al.</td>
<td>2006</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 0.05 - 0.2$ GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Ungaro et al.</td>
<td>2006</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 3.0 - 6.0$ GeV2</td>
</tr>
<tr>
<td>JLab/Hall A</td>
<td>Kelly et al.</td>
<td>2007</td>
<td>$p\pi^0$</td>
<td>$Q^2 = 1.0$ GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Park et al.</td>
<td>2008</td>
<td>$n\pi^+$</td>
<td>$Q^2 = 3.0 - 6.0$ GeV2</td>
</tr>
</tbody>
</table>
CLAS Single Pion Electro-production Data

Data up to the 3rd resonance region up to $W = 1.7$ GeV

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Collaboration</th>
<th>Year</th>
<th>Mode</th>
<th>Q^2 Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>JLab/CLAS</td>
<td>Joo et al. (A_e only)</td>
<td>2003</td>
<td>$p\pi^0$</td>
<td>$0.4 - 0.65$ GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Joo et al. (A_e only)</td>
<td>2004</td>
<td>$n\pi^+$</td>
<td>$0.4 - 0.65$ GeV2</td>
</tr>
<tr>
<td>JLab/Hall A</td>
<td>Laveissiere et al.</td>
<td>2004</td>
<td>$p\pi^0$</td>
<td>1.0 GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Egiyan et al.</td>
<td>2006</td>
<td>$n\pi^+$</td>
<td>$0.3 - 0.6$ GeV2</td>
</tr>
<tr>
<td>JLab/CLAS</td>
<td>Park et al.</td>
<td>2008</td>
<td>$n\pi^+$</td>
<td>$1.7 - 4.5$ GeV2</td>
</tr>
</tbody>
</table>
CLAS Single π^0 Electro-production Data Analysis

- **E1E:**
 - Beam Energy: 1 GeV and 2 GeV
 - Low Q^2 up to 1.5 GeV, and W up to 1.7 GeV

- **E1-6:**
 - Beam Energy: 5.75 GeV
 - Low Q^2, up to 4.5 GeV and W up to 2.0 GeV

- Beam polarization: $\sim 70 – 80 \%$

- Target: Liquid Hydrogen
CEBAF at Jefferson Lab

- $E_{\text{max}} \approx 6 \text{ GeV}$
- $I_{\text{max}} \approx 200 \mu \text{A}$
- Duty Factor $\approx 100\%$
- $\sigma_{E/E} \approx 2.5 \times 10^{-5}$
- Beam $P \approx 80\%$
- $E_{\gamma_p}(\text{tagged}) \approx 0.8 - 5.5 \text{ GeV}$
CEBAF Large Acceptance Spectrometer (CLAS)

- Six identical sectors
- 5 T toroidal B-field
- $\Delta \theta = 15-140$ degrees
- $\Delta \varphi = 0-50$ degrees
- $\Delta p/p = 10^{-2}-10^{-3}$
Electron PID

- Number of photo-electrons ($nphe$) in the Čerenkov detector
- EC Threshold
- EC Sampling Fraction
- Track Coordinates in the EC plane
- Minimum Ionizing Particles rejection
- Electromagnetic Shower Shape
Electron PID

10 \times \text{Number of photo-electrons}

- cc / no cc: 58.7% → no cuts
- nphe cut / cc: 57.8% → calorimeter cuts
- calorimeter / cc: 51.0% → calorimeter negative cuts
- nphe ≥ 0 / calorimeter: 53.6% → all cuts applied
- all cuts / cc: 27.3% → all cuts applied
Proton PID

Use TOF timing and DC momentum of positive tracks

\[\beta \text{ versus } p \text{ for positives} \]
π^0 selection

$e + p \rightarrow e' + p + X$ on $\Delta(1232)$ resonance region from 5.7 GeV

M_X^2 from $e + p \rightarrow e' + p + X$ on $\Delta(1232)$ resonance region from 2.0 GeV
\(\pi^0 \) selection (E1-6)

\[M_X^2 \text{ from } e + p \rightarrow e' + p + X \]
for \(1.1 < W < 2.0 \text{ GeV} \)

Currently working on bench-mark studies on \(\Delta(1232) \) region
with/without tagging \(\pi^0 \)
Typical $ep \rightarrow e'p\pi^0$ cross sections vs $\cos \theta^*$ and ϕ^*

$Q^2 = 0.2 \text{ GeV}^2$ $W=1.22 \text{ GeV}$

![Graph showing cross sections vs. cos \(\theta^* \) and \(\phi^* \)]
π⁺ electroproduction at $Q^2=0.20$ GeV2 using CLAS
Differential Cross section from 2.0 GeV

$0.6 < Q^2 < 0.7, 1.3 < W < 1.35$
Legendre Moment

\[\sigma_T + \varepsilon \sigma_L = \sum_{i=0}^{i=2} A_i P_i (\cos \theta) \]

\[0.6 < Q^2 < 0.7 \]

Very preliminary
E1+/M1+ and S1+/M1+

CLAS e1e UIM Fit

- $p\pi^0$ only
- $n\pi^+$ only
- $p\pi^0$ and $n\pi^+$

E_{t+} / M_{t+} (%)

S_{t+} / M_{t+} (%)

Q^2 (GeV2)
*NΔ Multipole Ratios R_{EM}, R_{SM} with JLab

- R_{EM} = -2 to -4% at $0 \leq Q^2 \leq 6$ GeV2.
- R_{SM} < 0, increasing in magnitude.
- R_{EM} < 0 favors oblate shape of Δ(1232).
- Pion contributions needed to explain shape, magnitude.
- No trend towards asymptotic behavior $R_{EM} \rightarrow 100\%$.
Roper $P_{11}(1440)$ Helicity amplitudes

I. G. Aznauryan et al. (CLAS), arXiv:080447 [nucl-ex]
Transverse amplitudes for $\gamma^* p \rightarrow D_{13}(1520)$
CLAS12 - Detector
Projections for N* Transition Amplitudes @ 12 GeV

Prove the transition from effective degrees of freedom, e.g. constituent quarks, to elementary quarks, with characteristic Q^2 dependence.
Summary

- Single π^0 electro-production analysis is under way for low and high Q^2 range up to 2.0 GeV in W.

- Able to perform combined analysis with $n\pi^+$ and two pion channels.

- $p\pi^0$ channel is an important part of 12 GeV N^* program with CLAS12.

- Current $p\pi^0$ analysis measuring all final states will provide an important step for 12 GeV N^* program.