1. Introduction

The outlined interaction potential can have large impact on the properties of the model. This potential is based on the Helmholtz free energy and the interaction between the two components of the model. The potential is given by:

\[\frac{1}{2} \epsilon (q) \rho(q)^2 \]

where \(\rho(q) \) is the density of states and \(\epsilon(q) \) is the energy. The potential is normalized such that \(
\begin{align*}
\int \rho(q) dq &= 1 \\
\int \epsilon(q) \rho(q) dq &= 0
\end{align*}
\]

We report on progress of the analysis of the properties of the model.

University of Rochester, Kodama, NY 1453

Pomona College National Accelerator Facility, Newport News, VA 22006

\[\text{Helmholtz free energy} \]

For the case of 0D and 0H configurations, \(\epsilon(q) \) is determined from the density of states. The results for the 0D and 0H configurations are shown in Fig. 1. The results are in good agreement with the theoretical predictions.

\[H = \frac{1}{2} M \rho(q) \]

The measurement of \(H \) and \(\rho(q) \) on nuclear targets in the Nuclen
(9) \((\varepsilon D) \, x \, y \, z - (\varepsilon D) \, x \, y \, z = (\varepsilon D) \, x \, y \, z \)

the combination

e shows that if \((\varepsilon D) \, x \, y \) is parity transversely while
the spin of the electron \(\varepsilon \) is transversely and that the
enron mass cu of the electron can be transversely.

d, 1 + 1 = \varepsilon

the double differential cross section and \(\varepsilon D \), as the
constant of the spin of the electron, can be transversely.

\(\frac{d^3 \, \varepsilon N \, x \, y \, z}{\varepsilon \, y \, z} = \varepsilon \)

In the one photon exchange approximation, the equation
of motion is satisfied by

\(\frac{1}{r} \)

where \(\varepsilon \) is the class section for photon

\(\frac{d^3 \, \varepsilon N \, x \, y \, z}{\varepsilon \, y \, z} = \varepsilon \)

In the one photon exchange approximation, the equation
of motion is satisfied by

\(\frac{1}{r} \)

where \(\varepsilon \) is the class section for photon
4. Data Analysis

(\text{C})'s d' function (and ion (e) injection
and ion (H) circulation) was
determined by the standard HIL technique.

Data points were determined using the equation:

\[\frac{I_{\text{HIL}} - I_{\text{HIL}}^0}{I_{\text{HIL}} + I_{\text{HIL}}^0} = \frac{N}{A} \]

where \(I_{\text{HIL}} \) is the measured current yield
and \(I_{\text{HIL}}^0 \) is the background current.

The measured currents were determined from
the measured ion current and the background
ion current, calculated as:

\[I_{\text{HIL}} = I_{\text{HIL}}^0 + I_\text{background} \]

The measured ion current and the background
ion current were determined by the HIL technique.

The experiment was performed at a constant
of 200 mA, and the background ion current was
measured to be 10% of the measured ion current.

The experiment was performed using a gas
of 0.01 atmosphere, and the background
ion current was measured to be 10% of the
measured ion current.

3. Experiments: E0-02 and E0-04

10 [A] were shown in Fig. 2

with \(R_{\text{c}}^0 \) and \(R_{\text{c}} \) both
experiments performed in experiment E0-04.

The data were analyzed using the
HIL technique.

The experiment was performed at
a constant of 200 mA, and the background
ion current was measured to be 10% of the
measured ion current.

The experiment was performed using a gas
of 0.01 atmosphere, and the background
ion current was measured to be 10% of the
measured ion current.

The experiment was performed at a constant
of 200 mA, and the background ion current was
measured to be 10% of the measured ion current.
2. Results

In the context of the measured cross sections from [3] (color online) Examples of the cross section are presented in the form of histograms. The curves represent the cross sections (H, D, and C) for different energies and laboratory scattering angles (θ) in degrees and the center-of-mass energy (E0). Each graph indicates how the cross sections from measurements (E0 = 100 and E0 = 1000 GeV) compare with the models presented in the text. The curves show the variation in cross sections as a function of laboratory angle. The data points indicate the measured cross sections, while the curves are the predictions of the models. The comparison is made for various angles, and the graphs show the consistency between the measurements and the predictions.

The following table summarizes the percent differences between the measurements and predictions at different energies and angles:

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.3%</td>
</tr>
<tr>
<td>1000</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

The measurements were performed at 100 and 1000 GeV, and the predictions were compared with the measurements. The percent differences are calculated as (predicted - measured) / measured × 100. The analyses were performed using the central data set and two independent measurement techniques. The results indicate a good agreement between the measurements and predictions.

The results are consistent with previous measurements and predictions. The agreement is better at lower energies and for larger laboratory angles. The predictions are in good agreement with the measurements, with percent differences ranging from 0.7% to 2.3%.

Conclusion:

The measurements were in good agreement with the predictions. The percent differences were less than 2.3% for all energy points and laboratory angles. The analyses were performed using two independent measurement techniques. The results confirm the consistency of the predictions with the measurements, with percent differences ranging from 0.7% to 2.3%.
REFERENCES

We thank the B010 and B0401 collaborators.