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Abstract

We consider the two-nucleon system at next-to-next-to-next-to-leading oréeO()Nn chiral
effective field theory. The two-nucleon potential atldD consists of one-, two- and three-pion ex-
changes and a set of contact interactions with zero, two and four derivatives. In addition, one has to
take into account various isospin-breaking and relativistic corrections. We employ spectral function
regularization for the multi-pion exchanges. Within this framework, it is shown that the three-pion
exchange contribution is negligibly small. The low-energy constants (LECs) related to pion—nucleon
vertices are taken consistently from studies of pion—nucleon scattering in chiral perturbation theory.
The total of 26 four-nucleon LECs has been determined by a combined fit torgoared pp phase
shifts from the Nijmegen analysis together with thescattering length. The description of nucleon—
nucleon scattering and the deuteron observableSBONs improved compared to the one at NLO
and NNLO. The theoretical uncertainties in observables are estimated based on the variation of the
cut-offs in the spectral function representation of the potential and in the regulator utilized in the
Lippmann—Schwinger equation.
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1. Introduction

Since the seminal work of Weinberg [1] to derive the forces between two, thre®y-
cleons from chiral effective field theory, there has been a flurry of activities to work out the
consequences of such an approach, to improve that scheme or to construct alternatives, for
reviews see [2,3]. Here, we will be dealing with a modified Weinberg scheme, in which pi-
ons are treated nonperturbatively and the power counting is applied to the nucleon—nucleon
potential. The potential consists of one-, two-, pion-exchanges (1PE, 2PE,) and a
string of contact interactions with an incré@agnumber of derivatives (zero, two, four,.)
that parameterize the shorter ranged comptsef the nuclear force (the precise frame-
work is specified in more detail below). Sueln approach has a variety of advantages
over more conventional schemes or phenomenological models. First, it offers a systematic
method to improve calculations by going to ever increasing orders in the power counting
and it allows to give theoretical uncertainties. Second, one can consistently derive two-
and three-nucleon forces (see, e.g., [4]), which has never been achieved before and paves,
e.g., the way for a new look at the problem of nuclear matter. Third, nucleon and nu-
clear properties can be calculated from onkeatfve Lagrangian, which is of particular
importance if one intends to extract neutron properties from (electromagnetically induced)
measurements on light nuclei in a controlled theoretical way. In this paper, we present
the nucleon—nucleon potential at next-to-next-to-next-to-leading ord&iGNin the chi-
ral expansion, extending our earlier work, and we apply this potential to observables in
two-nucleon systems. Our work differs from the one of Entem and Machleidt (EM), who
first presented an O potential in Ref. [5], in various ways. First, they use the two-pion
exchange contributions based on dimensional regularization, which have a very singular
short-range behavior. We employ spectral function regularization, which allows for a better
separation between the long- and short-distance contributions. Second, EM present results
only for one choice of the cut-off necessary to regulate the high-momentum components
in the Lippmann—Schwinger equation to generate the scattering and the bound states.
We perform systematic variations of this cut-off and other parameters which allows us to
give not only central values but also theoretical uncertainties. Third, our treatment of the
isospin breaking effects differs from the one of EM (which is based on our earlier work
[7])- Fourth, we employ a relativistic version of the Schrédinger equation, which allows to
calculate consistently relativistic corrections also in three and four nucleon systems. Other
less significant differences will be discussed in due course. We believe that with the mater-
ial presented here an important step has been made to put precision calculations in nuclear
physics on a firm theoretical basis, which not only allows to readdress many issues that
have already been investigated in quite a détati will also open new areas of testing chi-
ral dynamics in few-nucleon systems or shed more light on the issue of the nuclear forces
in the limit of vanishing quark masses (see [8—11] for earlier work on that topic).

Our manuscript is organized as follows. In Section 2, we explicitly give the potential at
N3LO. The contributions up to NNLO have already been extensively discussed in [12—17].
The NBLO corrections due to two- and three-pion exchange have been derived recently in

1 The results for two different choices of the cut-offthe Lippmann—Schwinger equation are shown in [6].
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[18-20] using dimensional regularization to regularize divergent loop integrals. Through-
out this work, we use a different regularization scheme for the potential, namely the spectral
function regularization (SFR). This aprch has been recently proposed and successfully
applied at NLO and NNLO [17,21]. As demoreted in these references, the SFR scheme
allows to significantly improve the convergenafechiral effective field theory (EFT) for

the two-nucleon system. We also give an overview of various isospin-breaking interactions
including electromagnetic forces and discussriggularization procedure necessary to ren-

der the (iterated) potential finite. In Section 3 we deal with the scattering equation. In order
to account for the relativistic corrections to the nucleon kinetic energy, we have decided to
use the Lippmann-Schwinger equation with the relativistic expression for the kinetic en-
ergy. Such an approach can naturally be extended to few-nucleon systems and to processes
with external probes. We also discuss how to cast the relativistic Lippmann—Schwinger
equation into a nonrelativistic form, which might be useful in certain applications. Various
deuteron properties are considered in Section 4 using both relativistic and nonrelativis-
tic Schrodinger equations. The fitting procedure to determine the low-energy constants
(LECs) and the accuracy of the fits are defgille Section 5. Results for phase shifts and

the deuteron (bound state) properties are displayed and discussed in Section 6. Our findings
are summarized in Section 7. The appendicesainmtetails on the kinematics, the partial
wave decomposition, the momentum space treatment of the Coulomb interaction and the
effective range expansion.

2. Thetwo-nucleon potential at N3LO
2.1. General remarks

Before going into details of calculations, we would like to make certain general remarks.
As already pointed out in the introduction, we strictly follow the scheme suggested by
Weinberg [1]. In this approach one uses the EFT technique to derive nuclear forces from
the most general (approximately) cHiavariant effective Lagrangian. Th N S-matrix
is obtained via (nonperturbative) solution of the Lippmann—-Schwinger (LS) equation. In
most practical calculations (including the pemt one), the later step can only be performed
numerically.

Starting from the most general chiral invariant effective Hamiltonian density for pions
and nucleons one can derive energy-independent and hermitian nuclear forces by a variety
of methods including th method of unitary transformation, see, e.g., [10]. The resulting
nucleonic forces are ordered by the powtthe generic low-momentum scaderelated to
the three-momenta of nucleons, the pion mass and typical four-momenta of virtual pions:

()]

whereF; is the pion decay constant ard, is the chiral symmetry breaking scale or, more
generally, the smaller of the chiral symmetry breaking scale and the &cgteassociated
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with the LECs accompanying four-nucleon cacttinteractions (as discussed below). The
powerv for a given diagram can be calculated using the rules of dimensional analysis [1]

v=—2+2E,+2(L—-C)+ Y Vid;, (2.2)

1

whereE,, L, C andV; are the numbers of nucleons, lopgeparately connected pieces
and vertices of typé, respectively. Further, the quantity;, which defines the dimension
of a vertex of type, is given by

A =d; + %ni -2, (2.3)

with d; the number of derivatives a¥f,; insertions and:; the number of nucleon lines at
the vertexi. One hasA; > 0 as a consequence of chiral invariance. This leads*o0
for connected diagrams with two and more nucleons. One also recognizes that the graphs
with loops are suppressed and tkat+ 1)-nucleon forces appear at higher orders than the
n-nucleon ones. We note, however, that the formula (2.2) does not apply to a specific sort
of diagrams, sometimes referred to as reblles whose contributions are enhanced due to
the presence of anomalously small energy denominators resulting from purely nucleonic
intermediate states. Such reducible diagrams are responsible for the nonperturbative as-
pect in the few-nucleon problem and must be summed up to infinite order. They, however,
do not contribute to the nuclear potential and result from iteration of the potential in the
Lippmann—Schwinger equation.

It remains to specify our way of counting the nucleon mass. In the single-nucleon sector
it appears to be natural to treat the nucleon mass the same way as the chiral symme-
try breaking scaler, ~ 1GeV. As argued in [1], in the few-nucleon sector consistency
requires that the nucleon mass is considere@ much larger scale compared to the chi-
ral symmetry breaking scale. If one adopts the countingsfute A, , no nonperturbative
resummation of the amplitude is required from the point of view of the chiral power count-
ing. In this work we adopt the counting rute/Q ~ (AX/Q)Z, which has also been used
in[12].

In the following sections we will discuss various contributions to the NN potential up
to N3LO including isospin-breaking corrections.

2.2. Contact terms

We consider first the contact terms of ttveo-nucleon potential. To the accuracy we
are working, the potential in the center-of-mass system (cms) for initial and final nucleon
momentap andp’, respectively, takes the forfn:

A

cont + V @ o

Vcont = cont+ Vcont’

0 - -
Vih=Cs + Crd1- 32,

2 We use the notation of Ref. [16] (Ref. [6]) fo+® and V@ (v®),
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- Sov o o o1 L . -
V= C132 + Cok? + (C33? + Cak?) (51 - 52) + iCs5(G1+52) - (§ x k)

+C6(G - 31)(G - 52) + C7(k - 1) (k - 52),
V= D13 + Dok* + D3G?k? + Da(§ x k)2
+ (Dsg* + Dek* + DG 2k2 + Dg(G x £)%) (31 - 52)

+i(Deg?+ D10k?) G+

+ (D113? + D12k?) (51 - §)(52 - §) + (D13G> + D14k?) (G1 - k) (52 - k)
+ D15(51- (§ x k)32 - (§ x k) (2.4)

withg=p'"—p andk = (p + p')/2. The superscripts denote the corresponding chiral
order as defined in EqQ. (2.2). Notice that the contact operator basis in Eq. (2.4) repre-
sents just one particular choice among maittyers. One could equally well use another
set of 24 independent contact operators including for instance terms which contain the
product of isospin matriced - 7o. A one-to-one correspondence between different sets of
contact operators can be established upon performing antisymmetrization of the potential,
see Ref. [22] for more details. Notice that we have only shown isospin-invariant terms in
Eqg. (2.4). Isospin-breaking short-range corrections will be specified below.

The terms in Eq. (2.4) feed intbe matrix-elements of the twe&-waves (S, 351), the
four P-waves (P, 3Py, 3P, 3Pp), the fourD-waves D>, 3D», 3Ds, D7) and the two
lowest transition potentials’(D1—351, 2F,—2P,) in the following way:

(1S0|Vcont| lSO) = Clso + Clso(pz + P/z) + D%S pzp/z + DfS (p4 + P/4)
381/ Veon 381) = Css, + Cs, (p® + p'?) + Dig p?p'? + D3 (p* + p'%),
1P1|Vcont| P

)= Cip,pp’ + Dip pp' (p* + 1’ )
3P1|Vcont| Pl) = C3P1PP + D3P1PP/(P2 + p/Z)’
) ( )
)= ( )

’ 12

3PO|Vcont| Py =C3P0PP + Dsp,pp P2+p
31D2|Vcont| P2

’

’ ’2

Cap,pp’ + Dap,pp' (p? + p'?),

2 12
=Dip,p P’
2 /2
D3D2p P/

DSD3P P
3Sl| Vcont| Dl) C3D1—351P2 + D%Dl_ssll’zl’/z + D§D1_351P4,
3D1| Vcont| Sl) C301—3SIP/2 + D%Dl_ssll’zp/z + D§D1_351P/4,
P2| Vcont| FZ) = D3F2—3P2P3P/,
( F2|Vcont| 3P2) = D3F2—3PZPP/3» (2.5)

with p = |p| and p’ = |p’|. The spectroscopic LECs are related to the ones in Eq. (2.4)
according to the following relations:
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Cig,=4m(Cs —3Cr),
Csg, =4m(Cs+Cr),
Cig,=7(4C1+ C2 — 12C3 — 3C4 — 4C6 — C7),

Cas, = %(12@ 1 3Cp +12C5 + 3C4 + 4Cs + C7),
2

Cip, = ?(_4@ + C2+412C3— 3Ca+4Ce — C7),
2

Cap, = ?(—4C1 + C2 —4C3+ C4+2C5 —8Cp + 2C7)
2

Cop,= 5 (-4C1+ C2—4C3+Ca— 2Cs),

2
Cap, = ?(—4C1 4+ C2 —4C3+4+ C4+4Cs5+ 12Cs — 3C7),

2V/2n
C3D1—351 == Cel = T(4C6 + C7)7

Dl = = (B0D1 + 5Dz + 4D3 + 16D4 — 240D5 — 15D — 12D7 — 48Dg
—80D11 —4D12 — 4D13— 5D14 — 16D15),

D}y, = 7 (16D1+ D+ 4D — 48Ds — 3D — 12D7 — 16D11 — 4D1z
—4D13— D14),

Dl = %3(240D1 + 15D + 12D3 + 48Dy + 240Ds + 15D + 12D7 + 48Dg
+ 80D11 + 4D12 + 4D13+ 5D14+ 16D1s),

D2 = 112(4801 + 3Dy + 12D3 + 48Ds + 3Dg + 12D7 + 16D11 + 4D12
+4D13+ D),

Dip, = —%(16D1 — Dy — 48Ds + 3Dg — 16D11 + D1a),

Dsy, = —5(32D1 — 2D + 32D — 2D — 8Do — 2D10+ 48D11 + 4D12
—4D13— 3D14),

Dsp, = —;T—0(160D1 —10D» + 160Ds — 10Dg + 40Dg + 10D10+ 16D11
—4D12+4D13 — D14),

Dsp, = —5(16D1 — Dz + 16Ds — Dg — 8D — 2D10— 32D11 — 4D12
+4D13+ 2D14),

Dip, = %(16D1 + Dy —4D3— 4Dy — 48Ds5 — 3Dg + 12D7 4+ 12Dg
—16D11+ 4D12+ 4D13 — D14+ 4D15),

Dsp, = %(321)1 4 2Dy — 8D3 — 8D4 + 32Ds + 2Dg — 8D7 — 8Dg — 8Dy
+2D10+48D11— 12D12 — 12D13+ 3D14+ 16D15),
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D3y, = 72(96D1 + 6D — 24D — 24D4 + 96Ds + 6D — 24D7 — 24Dg
— 72Dg + 18D19 — 80D11 + 20D12 + 20D13 — 5D14 — 64D15),
2

Dap, = 1—7;(1601 + Dy — 4D3 — 4Dy + 16Ds + Dg — AD7 — 4Dg + 8Dg

—2D10—4D15),
D%Dl_ssl =D} = % (112D11 — 4D12 — 4D13+ 7D14 — 16D15),
D3, a5, =D = % (16D11+ 4D12+ 4D13+ D1a).
Dsp, 3p,=De2 = — %(16&1 —4D12+4D13 — D14). (2.6)

These 24 constants are not fixed by chiral symmetry and have to be determined by a fit to
data or phase shifts and mixing parametetsée corresponding channels. From each of the
two S-waves, we can determine four parameters, whereas each of the-faves and the
mixing parametee; contain two free parameters. Funthene free parameter contributes

to each of the fouD-waves and to the mixing parameter Of course, we have to account

for the channel coupling in the mixed spin-triplet partial waves. Once the spectroscopic
LECs have been determined, the origidal, Cr, C1,...,C7 and Dy, ..., D15 are fixed
uniquely.

2.3. One-, two- and three-pion exchange

Consider now one-, two- and three-pion exchange (3PE) contributignsV», and
V3, respectively. At NLO (Q%) in the low-momentum expansiaf they can be written
as

Vire = Vi + V2 + VD 4+ v+
Var = V2 v v 4.
Var = VD 4 2.7)
Here the superscripts denote the correspomdhiral order and the ellipses refer @
and higher order terms which are not considered in the present work. Contributions due to
exchange of four and more pions are further suppress@ibn exchange diagrams start
to contribute at the ordep?*—2, see, e.g., [1].

In the following we will give explicit expressions for the individual contributions in
Eqg. (2.7). The pion-exchang€ N potential in the two-nucleon center-of-mass system
(c.m.s) takes the form:

V=Vc+t1-12We +[Vs+11-12Wslo1- 02+ [Vr +71- 12Wrl61-Goz - q
+[Vis + 71 TaWesli(G1+ 52) - (G x k)
VoL +71T2Wo1161- (G x )52+ (G x b, (2.8)
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where the superscripts, S, T, LS ando L of the scalar function¥c, ..., W, referto
central, spin—spin, tensor, spin—orbit and quadratic spin—orbit components, respectively.
The leading order 1PE potential is given by

25 oo o
(0) 8A 01:402-4
WP = () A 29)
At NLO one has to take into account various corrections which result from one-loop
diagrams with the leading vertices and tree graphs with one insertion afitheand
dog-vertices (in the notation of Ref. [23]) from the dimension three Lagrangiag
and!3 4-vertices from the dimension four Lagrangi@n . All these graphs lead just to
renormalization of the LECg4, F; and the pion masaf,, see [10] for more details. In
addition, one has a contribution from the 1PE graphs with gp&ertex replaced by the
dig-vertex from the dimension threeN Lagrangian. This correction leads to the so-called
Goldberger—Treiman discrepanaydcan be accounted for by the replacement

g4 — g4 — 2d1gM? (2.10)

in Eq. (2.9). The corrections at NNLO arise from one-loop diagrams with one subleading
a NN vertex and lead to renormalization of the LEG [14]. The corrections to 1PE

at N°LO are due to two-loop diagrams with all vertices of the lowest chiral dimension,
one-loop graphs with one subleading vertex frdmw or £, and tree graphs with two
subleading vertices or one sub-subleading vertex. After performing renormalization of the
LECs, one finds the R&LO contribution to the 1PE potential to be proportional to [24]

WP (g) x F(4?), (2.11)

9%+ M3
where the functiorF (¢2) = a1 M2 + aaM2¢? + a3q® can be viewed as the pion—nucleon
form-factor. The latter does not represent an observable quantity. Expressing the function
F(q) as

F(qz) = (a1 — a2+ ocg,)M;[1 + (q2 + M;)(oczM; + a3(q2 — MJE)) (2.12)

the NBLO contribution reduces to a renormalization of the 1PE potential (2.9) and contact
interactions. Notice that one also encoustan additional correction to the Goldberger—
Treiman discrepancy. In addition, one has to take into account relativistia?)-
corrections to the static 1PE potential, which depend on a particular choice of the unitary
transformation in the NN system and the form of the scattering (or bound state) equation,
see Ref. [25] for details. The final expression for the 1PE potential adopted in the present
work takes the form
0% p2+p?\. - 01-462-q

wo=—(57) (15 )a g
where, as in our previous work [21], we take the larger valye= 1.29 instead ofg4 =
1.26 in order to account for the Goldberger—Treiman discrepancy. This corresponds to the
pion—nucleon coupling constagt y = 13.1.

We now turn to the 2PE contributions. The 2PE poterlt’%ﬁ + Vz(g) is discussed in

[13-16] and in [12] using an energy-dependembfalism. While dimensional regulariza-
tion or equivalent schemes have been used in [13,14,16] to calculate matrix elements of

(2.13)
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the potential, a finite momentum cut-off approach has been applied in [12]. Th@ N
corrections have been recently obtained by Kaising dimensionalegularization [18].

In the following, we will adopt the SFR method to obtain the nonpolynomial contributions
to the 2PE potential with the short-range quonents being explicitly excluded, see [17]

for more details. The expressions for the 2PE potential in the SFR scheme up to NNLO
have already been given in [21]. To keep the presentation self-contained, we give below
the corresponding (nonpolynomial) terms at NLO

WP ()= — LA
@) =~ gzezpal" @
484 MA
AM? (5% — 4% — 1 2(23¢% — 102 — 1)+ —A "

X{ = (5g — 484 — 1) +q°(23¢4 A )+4M§+q2 ,
V()= - =vP(q) = ! LA (q) (2.14)
T q2 S 64 2F4 '

and at NNLO
3 2 2 2 2\ 4 A
Ve (g) = 16ﬂF4{2M (2c1 —c3) —c3q }(2Mn+q VA% (q),
W)= 2w (g) = i ca(4M2 + ¢?) A% (g) (2.15)
T q? 5 327 F} i ’ ‘

where the NLO and NNLO loop functioris‘i(q) andA/i(q) are given by

) 3 A202 4 0252 4 24
LA(q) = 0(4 — 2Mp) 2 in 22" 475"+ 2Aqws
2q AM2(AZ + g2)

w=/q?+4M2, 5=,/ A2 —4M?2 (2.16)

and
. ~ 1 2M,
A% (g) =0(A - 2Mz) o arctanq(i) (2.17)
2q 2AM,

The N?LO corrections to the 2PE potentiﬁgﬁ) have been recently calculated by Kaiser
[18]. They arise from the one-loop “bubble” diagrams with both dimension#twav N
vertices of thecy,  4-type and from the diagrams which contain the third order pion—
nucleon amplitude and lead to one-loop and two-loop graphs. We begin with the first group
of corrections, for which one finds:

2

3 2 .
(4) _ LA 2 2 2 4
Vel = 16712F4 (Q){[ 5 +C3(2M +4q ) 461Mn:| ~|—4—5a) },
W@ = - LW = %P (2.18)
1 =T = ggrapa &) :
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No closed expressions can be given for some of the corrections from the second group.
It appears to be convenient to give the contributions to the potential using the (subtracted)
spectral function representation:

pc,s(i1)
Vv, -7
csta)= / B2t g?)’
pr (1)
V- _
rla)= / 1B3G2+ D)’
ne,s (1)
W, =—— g5,
cs@)= / 1512+ 2
nr (1)
= 2.19
W)= / P (2.19)
For the spectral functions (1) (n; (1)) one finds [18]
4 3g4 (1> —2M%)
Pé)(ﬂ) A(4—F)69(A %)
2 52 2MZ — u? o+ 2My
x {(Mn 2u )|:2M,,~|- o Inu—ZMn
+ a0y (M2~ 1) .
nf{”(u) w20 ()
_gA(H _4M§) 5
x@Fs (AT
w W+ 2M.
{(M2 it s |

p§4) (n)=p pT @ (w)

2.3 6,,,.3
- 8arsm - - 2g ur [1
=—0(A— dia—dis) — ——=—=|=—J1+ J2 |,
( M){SF;}n( 14— d15) (8nF,$)3[9 1+ 2“

2
@, N rt 2 2 2213 43
Ne (M)—Q(A—M){W[Z(KA—]-)” —3g41°](d1 + do)

73

2 a2 £.2,217
+ GOF;",LLT[ [G(gA l)r Sgiut ]d3

3 Entem and Machleidt were able to calculate most of the integrals in Egs. (2.20) analyticalfy=fov) and
to express the corresponding contributiongh®potential in terms of the loop functiof$® (¢) and A (¢q) [26].



372 E. Epelbaum et al. / Nuclear Physics A 747 (2005) 362-424

erg
6FAum
sl
9216QF8u2xr3
— 60g3 (8 + 15¢5) M2u*

[Z(gf‘ — 1)r2 — 3g%t2]d_5
—320(1+ 243)° M8 + 240(1+ 63 + 8% ) M2 12

2r+u
2M;;

[~16(171+ 2¢% (1 + g75)(327+ 493 )) M

+ (=4 +29¢% 4+ 122¢% +3¢%) 18] In
r

270Qu (8w F2)3
+ 4(—T73+ 17483 + 254%% + 726¢5) M2 2
— (—64+ 3897 + 17824 +109%5)1%]

2r 6.4 406 2 2.2

_— t%J1 — 2¢%(2¢5 — D)retcJo| ¢, 2.20

+ 3#(8JTF3)3 [gA 1 gA( A )r 2] ( )
where we have introduced the abbreviations

1
r=§ /M2_4M§7 f= /MZ—ZM,%, (2.22)

and

1
M2 M2 3/2 M2 2,2
le/dx{ JT_(1+ 7{) |nr-x+ n+7‘x}’
0

r2x2 r2x2 M
7 o M2 M2N\*? rx 4 /MZ 4 r2x2
— T b4 T

We use the scale-independent LEGSd>, d3, ds, d14 anddys defined in [23]. In addition,
one has to take into account the leading relativigtjon)-corrections to the 2PE potential:

3¢4 2M?> p
4 8 A Pre 4 4 4 A
1% =__S°4 _ —3(4aM? — g A ,
& (@) 512an;,1{ — —3(4Mz — ") (q)}
2 2 245

(C)) 8a 3gu M3 2 2 2 2.9
w = — | aM? +2¢% — %2 TM? + =

c (@) 12871_ij;1{ w2 |: 7 t2q gA( n+2q

x (2M2 +q2)A/‘(q)},
1 9¢2 3 :

4 4 A 2 2

V@ ==02Vs @ = g Ea (4M” T34 )AA(Q)’

1
WP (q) = —;Wé‘” @)

2
84 2 2 2 2,9 2\|,4
=———>2 _(8M 2g° — sM — A
256an7;1[ e gA( o )} @
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Vi) = 3g4 (2M2 2) g4
Wid@) = —W(ZWZ %) A% (). (2.23)

Notice that these relativistic corrections differ from the ones given in Ref. [14]. In fact,
the specific form of the terms in Eq. (2.23) depends on the form of the Schrddinger (or
Lippmann—Schwinger) equation, see [25] for more details. The relativistic corrections
given in Eq. (2.23) are consistent with the relativistic Schrodinger equation (A.4) and with
the (1/m?)-corrections to the 1PE potential in Eq. (2.13).

Three-pion exchange starts to contribute 4L®. The corresponding expressions for
the spectral functions and the potential (obtained using dimensional regularization) have
been given by Kaiser in [19,20,27]. It hasdn pointed out in these references that the
3PE potential is much weaker than théLld 2PE contributions at physically interesting
distances: > 1 fm. Having the explicit expressions for the 3PE spectral functions, it is
easy to calculate the potential in the SFR scheme. It is obvious even without performing
the explicit calculations that the finite-range part of the 3PE potential in the SFR scheme
is strongly suppressed at intermediate and short distances compared to the result obtained
using DR. This is because the short rangmponents which dominatthe 3PE spectrum
are explicitly excluded in this approach To illustrate that let us consider the isoscalar spin—
spin contribution proportional tgA, which has been found in [20] to provide the strongest
3PE potential for B fm < r < 1.4 fm. The corresponding DR spectral functlm’jﬁn ™)

and,oT 3. (1) are given by [20]

4 2 3 4 5
gA(/-'L_3M7T) 2 M M M
:Os3n( )= T 357(32F3)2 2M2 — 12uMy, — 22 +157+2_+3M_
I (- )
PR (1 357 (320 F23)2

M2 M5 M6

(2.24)

The finite-range part of the spin—spin poten#alr) can be obtained from the correspond-
ing spectral functions via

o
1
Vs(r) == / dp pe™ (2pr (1) — 3ps(w)). (2.25)
3M;
Using the spectral functions in Eq. (2.24) one then gets!/@?n(r):
gﬁ —3Myr

S 3n( r)= 2(87'[F7$)3 7 a+ Mﬂr)2(2+ Mﬂr)z_ (226)

Introducing the cut-offA in the spectral functions viag 3} (1) = p§% (1)6(A — ) and

PR () = p2R_(1)0(A — 1) we obtain for the SFR potentialSER(r):
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gh e
30327 F2)3 17
— 25M2r%(6+ 6y + 3y? + y3) + 45M3r3(2+ 2y + »?)

+30M2r*(1+y) — 63M2r°], (2.27)

VEER(m = VIR () — [120+ 120y + 60y? + 20> + 5y + y°

where we have introduced the abbreviatior Ar. In Fig. 1 we plotV?g (r) andvﬁgﬁ(r)

for r from 0.5 to 2 fm. The potential calculated using the spectral function regularization is
much smaller in magnitude compared to the one obtained using dimensional regularization.
Clearly, such a suppression does not take place at veryﬂavgjeaerevﬁgjf(r) approaches
Vst?gn(r). At such distances, however, the 3PE potential becomes negligibly small com-
pared to the 1PE and 2PE contributions singhe to its shorter range. As a consequence,
the 3PE potential can be neglected everywhere except the region of very-smhére it
anyhow becomes unreliable. This is further exemplified in Fig. 2, where we show the ratio
of the NLO isoscalar spin—spin contributions of 3PE and 2PE using both regularization
schemes for a wide range aflt turns out that the 3PE contribution reachesfor 0.5 fm

at most 2%—-8% of the correspondingIdD 2PE contribution depending on the choice

of the spectral function cut-off. We therefore neglect all 3PE contributions in the present
analysis.

Although we have regularized the 2PE cobtitions by cutting off the large-mass com-
ponents in the spectrum (or, equivalently, by explicitly shifting the corresponding short-
distance components to contact terms), theulteng potential still behaves incorrectly at
large momenta (or equivalently at short distances). The effective potential is valid for small
values of the momentum transtgand becomes meaningless for momenia A, . More-
over, since the potentidl grows with increasing momentg the scattering equation is

ultraviolet divergent and needs to be regularized. Following the standard procedure, see,

100

Vg 5 [MeV]

0.01

0.0001
0.5 0.75 1 1.25 1.5 175

r [fm]

I

Fig. 1. Isoscalar spin—spin 3PE potential using dimamedi (DR) and spectral function regularization (SFR). The
cut-off in the spectral function varies in the rande= 500-700 MeV.
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Fig. 2. The ratio of the isoscalar spin—spin 3PE and 2BEQ\contributions using dimensional (DR) and spectral
function regularization (SFR). The cut-aff the spectral function varies in the range= 500-700 MeV.

e.g., [16], we introduce an additional cut-offthe LS equation by mitiplying the potential
V(p, p') with a regulator functiory 4,

V(5 B = AV B B (). (2.28)
In what follows, we use the exponential regulator function
£2(p) =exq—p®/A°]. (2.29)

We will specify the values of the cut-offs below.

It should be understood that our treatment of the effective potential is based on the
heavy baryon formalism. As demonstrated in [28,29], heavy baryon expansion becomes
formally invalid for certain two-pion exchange contributions at very large distances. This
problem with the heavy baryon formalism has been first observed in the single-nucleon
sector and can be dealt with using, e.g., the Lorentz invariant scheme proposed by Becher
and Leutwyler [30]. Itis clear, however, that theV interaction due to two-pion exchange
becomes very weak at large distances, so that the problem with the formal inconsistency
of the heavy baryon approach is expected to have little relevance for practical applications.

Last but not least, we would like to comment on some key features of the SFR scheme
adopted in the present work. First of all, it is crucial to understand that this approach does
not affect the “chiral features” of th¥ N potential. We remind the reader that the resulting
effective N N potential consists of the long- and shoainge pieces. Spontaneously broken
approximate chiral symmetry of QCD leads to highly nontrivial constraints for the long-
range part of the potential, which is given by the terms nonpolynomial in momenta. The
short-range part of the potential given by a series of the most general contact interactions
with increasing power of momenta is notedfed by chiral symmetrwith the exception
of the quark-mass dependence of the corresponding LECs, which is not relevant for the
present analysis. In other words, only the long-distance asymptotics of the potential is
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constrained by chiral symmetry. The SFR scheme does, per construction, not affect the
long-distance asymptotics of the potential and leads to the same result as obtained using
DR, see [17] for more details. The only difference to the DR result is given by a series of
the short-range interactions. It is, therefore, obvious, that the SFR method does not affect
the constraints of the chiral symmetry implemented inAhé potential. Further, we point

out that the equivalence of the SFR and the finite cut-off regularization has only been
established at a one-loop level and does not hold true for both loop integrals oflte N

2PE contribution. The prominent feature of the applied regularization scheme is given
by the fact, that it only affects the two-nucleon interaction. One can, therefore, directly
adopt the values for various LECs resultingfrthe single-nucleon sector analyses, where
dimensional regularization has been used. On the contrary, if a finite momentum cut-off
regularization would be applied to both loop integrals entering tHeON2PE contribution,

one would need to re-extract the values of the corresponding LECs from pion—nucleon
scattering and the proces®v — nr N using the same regularization scheme.

2.4. |sospin-breaking effects

Isospin-breaking nuclear forces have beenmsitely studied within effective field the-
ory approaches, see, e.g., [7,31-35], as well as using more phenomenological methods, see,
e.g., [36,37] for some recent references. In then8ard Model, isospin-violating effects
have their origin in both strong (i.e., due to the different masses of the up and down quarks)
and electromagnetic interactions (due to different charges of the up and down quarks). The
electromagnetic effects can be separated into the ones due to soft and hard photons. While
effects of hard photons are incorporated in effective field theory by inclusion of electro-
magnetic short distance operators in the effective Lagrangian, soft photons have to be taken
into account explicitly.

In the present analysis we are rather limited in the treatment of isospin-violating interac-
tion, which have to be included precisely in the way it is done by the Nijmegen group [38].
This is due to the fact that we are using the Nijmegen phase shifts instead of the real data
as an input to fit the unknown LECs. Let us explain this point in more detail. With the only
exception of thé' Sy partial wave, therp isovector phase shifts in the Nijmegen PWA are
not obtained independently fromp data, but rather extracted from the proton—pratem)
phase shifts using the assumption that the differences in the phase shifts result entirely due
to isospin-breaking effects associated with # m, andM_ + # M_o in the 1PE potential
as well as due to electromagnetic interactions. In order to be consistent with the Nijmegen
phase shift analysis, we therefore have to neglect various isospin-breaking corrections and
adopt the same isospin-breaking and electromagnetic interactions as in [38]. Nevertheless,
we have decided to overview the dominant isospin-breaking contributions and to remind
the reader on their relative size following mainly the lines of Ref. [7] but extending the
consideration to higher orders. For a detailed review of charge-symmetry breaking in the
nucleon—nucleon interaction the reader is referred to [35].

Consider first isospin breaking in the strong interaction. The QCD quark mass term can
be expressed as

1_
LRE&=—5a(mu+ ma) (1~ et3)q. (2.30)
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where

- 1
Md =M (2.31)

€
mg+m, 3

The above numerical estimation is based on the light quark mass values utilizing a mod-
ified MS subtraction scheme at a renormaiiaa scale of 1 GeV. The isoscalar term in

Eqg. (2.30) breaks chiral but preserves isospin symmetry. It leads to the nonvanishing pion
mass,M§ = (my, +mg)B # 0, whereB is a low-energy constant that describes the strength

of the bilinear light quark condensates. All diisymmetry breaking interactions in the ef-
fective Lagrangian are proportional to positive powerMﬁ. The isovector termc t3)

in Eq. (2.30) breaks isospin symmetry and generates a series of isospin-breaking effective
interactionsx (e M2)" with n > 1. It therefore appears to be natural to count strong isospin
violation in terms ofeMg. However, we note already here that isospin-breaking effects are
in general much smaller than indicated by the numerical valug bécause the relevant
scale for the isospin-conserving contributionslig rather thann, + mg.

Electromagnetic terms in the effective Lagrangian can be generated using the method
of external sources, see, e.g., [39—41] for more details. All such terms are proportional to
the nucleon charge matri@ch = e(1+ 3)/2, Wheree denotes the electric char§évore
precisely, the vertices which contain (do not contain) the photon fields are proportional to

oh (Qgﬁ), wheren =1, 2, . ... Since we are interested here in nucleon—nucleon scattering
in the absence of external fields, so that no photon can leave a Feynman diagram, it is
convenient to introduce the small paramefer 1/10 for isospin-violating effects caused
by the electromagnetic interactions.

Due to its perturbative nature induced by the small parameﬂmfﬁ ande2, we treat
the strong and electromagnetic isospinlatmn in addition to the power counting of the
isospin symmetric potential mentioned in 8en 2.1. Although not necessary, in practical
applications it often appears to be more convenient to have a single expansion parameter.
Thus, one has to relate the quantiteg to the generic low-momentum scafkerelated to
external three-momenta of nucleons and the pion massg’ ~ M, ~ Q) and introduced
before. Here and below, we will make use of the following simple counting Rules:

€~e~—. (2.32)

The counting of the electric charge is consistent with the one commonly used in the pion
and pion—nucleon sectors, see, e.g., [39,42-44] (it differs, however, from what is commonly
used in the description of extremely nonrelativistic hadronic bound state, see, e.g., [45]).
In addition to the above mentioned countimules, we need to deal with the extra4r)2-

factors, which typically arise when calculating loop integrals. For pion loops, such factors

4 Or equivalently, one can use the quark charge mattix3 + t3)/2.

S This suggests a slightly different counting of the strasmspin-breaking effects as compared to [7]. Most of
the conclusions of [7] remain, however, unchanged. The itapbdifference is that theading isospin-violating
short-range interaction is now propional to the quark mass difference, ehelectromagnetic contact terms are
shifted to higher orders.



378 E. Epelbaum et al. / Nuclear Physics A 747 (2005) 362-424

are naturally incorporated in the chiral power counting through the relation- 4z F;, .
For photon loops we will further assume, that

2 4
SN (2.33)
(4r)2 A4

which simply means that the factorg(@)? provide two additional powers of the small
parameter. In the following, we will denote the order of various isospin-violating interac-
tions by “L@®”, “NL@”, ... in order to distinguish the above mentioned phenomenological
extension of the counting rules from the usual chiral power counting in the isospin-
conserved case. Certainly, one has alwaysftteon to discard this generalization of the
chiral counting rules and to perform separate expansiors énand Q/A, . Notice fur-

ther that Egs. (2.32) and (2.33) suggest a different counting of the strong isospin-breaking
effects compared to Ref. [7]. In that workeng and electromagnetic effects have been
classified using a separate expansion without introducing a unified expansion scheme. The
L®, NLQ, ... contributions in the present work should therefore not be confused with the
corresponding terms in [7]. Last but not least, the above counting scheme is similar to the
one adopted, e.g., in [31,33], where effecta /7 were also considered as being one order
suppressed compared to the onesM?2 /A2.

Let us now apply the power counting rules to estimate isospin-violating corrections to
hadronic masses, see also [35] for a similar estimation. We begin with the pion mass.
It is well known that the pion mass does not receive contributions linear in the quark
mass difference and the strong contribution to the pion mass starts at the second order
in myg — m,. Consequently, the leading strong term can be estimate(dﬁz%ﬁ)str =
(M2, — Mﬁo)Str o (eM2)?A2, which is of the orden = 6 to be compared to = 2
for the isospin-symmetric ternx Mﬁ. One thus expects the strong contribution to the
pion mass differencéA My )sir= (M,+ — M 0)str to have the size- 0.1-0.3 MeV de-
pending on whether one substitutes in the numerical estima#gror 4z F,, for A, .

Clearly, we cannot predict whether the shift is positive or negative. The leading elec-
tromagnetic contribution ta\ M2 is of the order(AM2)em ~ e*(4m)~2A2, which is a

(v = 4)-effect according to our counting rulesuMerically, one estimates the size of
the pion mass difference to &AM, )em ~ 1-3 MeV. We see that both power counting
arguments and numerical estimations suggest that the pion mass difference is mainly of
electromagnetic origin. Furthermore, the estted size of the electromagnetic shift agrees
well with the observed valudf,+ — Mo = 4.6 MeV. All these statements can also be
backed by hard calculations, for a classical review see [46]. For the nucleon mass differ-
ence, the strong contribution is linear in the dumass differences and can be estimated as:
(Am)str= (mp —mp)se~ (eMZ) A}t ~6-9 MeVE According to the counting rules, this

is the (v = 3)-effect. Electromagnetic shift appearsiat 4 and is expected to be of the or-
der(Am)em~ 62(471)_2AX ~ 0.5-07 MeV. In reality, the effects are of opposite sign and
the difference between them is less pronounced. One obsenyes m p)syr >~ 2.1 MeV

6 This too large value reflects our earliégatement about the use of the parameter estimate isospin-breaking
corrections.
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and(m, —mp,)em~ —0.8 MeV, leading to the physical value of, —m, = 1.3 MeV (see
again [46] for more details).

We are now in the position to discuss various isospin-breaking contributions to the
two-nucleon force. As explained in [7], the leading-order (i.€)) lisospin-breaking in-
teractions are due to the pion mass difference in the 1PE potential and the static Coulomb
interaction. The latter is clearly of the order ¢2Q~2F2, while the former is

AM? e S\ 1 107
i~ ()i =l ) 9

where we used of the counting rules (2.32) and (2.33) together Mith~ Q. Thus,

the LY isospin-breaking force is of the order= 2. Consider now N corrections to

this result, which appear at= 3. The pion—nucleon coupling constant receives strong
isospin-violating contributions of the ordelef/A)z(. The corresponding LECs in the
pion—nucleon Lagrangian are denoteddy, dig anddjg in the notation of Ref. [23].

This charge dependence of the pion—nucleon coupling constant leads to isospin-violating
1PE of the ordepr = 3. In addition, one has to take into account strong isospin-breaking
contact interaction of the kind

eMZ(NTeN)(NTN), (2.35)

which leads to charge symmetry breakiifge can check the accuracy of our estimation
numerically using the values for the LECs found in [7]. According to Eq. (2.35), we expect
the ratio of the isospin-breaking terms to isospin-conserving ones to be typically of the
size:eMﬁ/A)z( ~ 0.5%-11%, where the uncertainty results again from using two differ-
ent estimations ford,, . Picking up the numbers from Table 2 in [7] we find for this ratio

the values B%, 08% and 31% for three different values of the (sharp) cut-dffin the
Lippmann—Schwinger equatiort = 300, A = 400 andA = 500 MeV. Thus, our humeri-

cal estimation is consistent with the results of [7]. The NINtorrections are of the order

v =4 and arise from various sources. First, one has to take into account isospin-breaking
in the 2PE potential due to electromagnetic corrections to the pion—nucleon coupling, see,
e.g., [33]. The correction due to the pion mass difference in the leading 2PE potential can
be estimated as

AMpo®  rot
MZ A2 A4

(2.36)

Another isospin-violating two-pion exchange interaction at this order is generated by the
triangle and football diagrams with one insertion of the isospin-breakingy N vertex

with the LECcs (using again the notation of [23]). This vertex is proportionadmg and

is thus formally of the lower order than the electromagneticV N verticescx ¢2/(4r)2.

As we have seen on an example of the nucle@ss difference, in practice, both effects
might be of a comparable size. For a recentkuvon this kind of isospin-breaking forces

7 The factorF,? results from the common normalization of the isospin-symmetric part of the two-nucleon
potential adopted in this work. This factor can be unaerdt e.g., from looking at the 1PE potential in Eq. (2.9).
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see [37]. The remaining contributions are given by the stajieexchange of the order
~ ¢2/(4m)? and by two independent contact interactions

&2

e
(4r)? (4r)?
which lead to both charge independence and charge symmetry breaking. Notice that, in
practice, the effect of the second interaction cannot be disentangled from the effect of term
in Eq. (2.35).

Let us now estimate the size of isospin violation in the NN scattering due to the nucleon
mass difference. We first note that the first relativistic corrections to the isospin-symmetric
part of the two-nucleon force appear &llD (v = 4) and are given byl/m?)-corrections
to the 1PE andl1/m)-corrections to the leading 2PE potential. Consequently, the size of
the corresponding isospin-violating terms can be estimated as

A_]’)’ZQ4 N EM]% Q4 :O[QS]

A4 A4 A8
m AX mAy AX AX

(NTz3N) (NTesN)  and (NTwaN)(NTN) (2.37)

(2.38)

Such terms therefore contribute only at the onder 8. In addition to the above mentioned
corrections, one has to account for the fact that the neutron—proton mass difference leads to
energy shifts of virtual states when calculating two-pion exchange diagrams. This can also
easily been understood in the language of the heavy baryon formalism: factoring out the
exponential factor expm ,v - x) from the proton and neutron fields, wherandx denote
the proton velocity and position, the neutqmopagator receives a shift in the denominator
o (m, —m ) after integrating out the small field components. It is then easy to see that the
isospin-violating 2PE is suppressed against its isospin-conserving part by a factor:

_Am _eMZ _O[QZ]

0 A0 A%

Therefore, neutron—proton mass difference in 2PE starts to contribute 4t This sort of
charge symmetry breaking corrections hasistudied recently in [35,36]. Notice further
that, as pointed out in [35], certain loop integrals in the 2PE contributions give only one
power of (4r) instead of expected two powers ané,aherefore, enhanced. We will not
take this enhancement into account in the present work. Apart from the above mentioned
corrections to the nucleon—nucleon force, the neutron—proton mass difference has to be
taken into account in kinematical relations as discussed in Appendix A, as well as in the
expression for the kinetic energy of the nucleons. Let us consider this last effect. Its contri-
bution to the scattering amplitude can be estimated by looking at the Lippmann—-Schwinger
equation

T=V+VGoT, (2.40)

(2.39)

whereGy refers to the free propagator of two nucleons. Both terms on the right-hand side
of the above equation are of the same onder 0. Taking into account the nucleon mass
difference inGq leads therefore to a correction to thematrix of the order

A M2 4
m e ”:(’)[Q :|

~ AL
m mAy Ax

(2.41)
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and thus contribute at = 4. Notice that this estimation is valid for both relativistic and
nonrelativistic expressions for the two-nucleon propagéigr

All other isospin-violating corrections are suppressed by further powers of the small
parameter. We would like, however, to point out an important limitation of our estimation
due to the fact that we do not explicitly accodot the long-range rtare of electromag-
netic forces. Consider, for example, the leading one-pion and one-photon exchange forces.
For simplicity, we will restrict ourselves to tHeS proton—proton channel, where the 1PE
potential takes the form

2 2
(0) 8gA q
V. =) -——. 2.42
(@ <2Fn) g2+ M2 (242
The static Coulomb interaction
o2
Veoulomdq) = ?, (2-43)

is suppressed comparedwég) (¢) by two powers of the small paramet@y A, according

to the power counting. Such an estimation works fairly well for momentéd the order

g ~ M, for which we geﬁ/l(g) (g = My) ~ 23 GeV 2 andVcoulomg = M) ~5GeV 2.

The power counting, however, breaks down for small momenta M, due to the
long-range nature of the Coulomb interaction. For example gfer M, /4 one gets:

Vl(g) (g = Mz /4) ~ 3 GeV 2 while Vcoulomdg = Mx /4) ~ 82 GeV2. Consequently, the
Coulomb interaction provides the dominant contribution to the potential for small mo-
menta and requires a nonperturbative treatment at low energy. A possible way out of the
above mentioned inconsistency would be to develop separate and systematic power count-
ing for momenta much smaller than the pion mass. This is, however, beyond the scope of
the present work. Notice that a similar idea with two different power counting regimes has
been applied recently to the nuoleCompton scattering in order to extend the region of ap-
plicability of the effective field theory in the\-region [47]. In the present analysis, we will
simply take into account higher-order corrections to the long-range electromagnetic inter-
actions when determining the values of the LECs in order to correct for the low-momentum
behavior of theV N potential. The first long-range corrections beyond the ones considered
above result from two-photon exchange, whose size can be estimated as

62 62 ) QG
T Q2@ O[A_E;] e

It thus formally appears at the ordee= 6. In addition, at the same ordee= 6 one has to
take into account relativisti€l/m) corrections to the static one-photon exchange, which
provide a contribution of the following size:

2 2 2 6
e -0 _6_2F3:(9|:Q_:|.
AG

~

The relative sizes of various isospin-breaking contributions discussed above are summa-
rized in Table 1. In what follows, we will give explicit expressions for the above mentioned
interactions.
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Table 1
Dominant contributions to the isospin-symmetric and isospin-breaking parts of the two-nucleon force
Isospin-symmetric Isospin-breakiniipite-range Isospirbreaking, long-range
LO (v=0):
static 1PE, contact terms without — —
derivatives
NLO (v = 2): LD v =2): LY (v =2):
leading 2PE, contact terms with 2 M, .+ # M_o in 1PE static ¥-exchange
derivatives
NNLO (v = 3): NLD (v = 3):
subleading 2PE isospin breaking in 1REe(M§), —
contact term without derivatives
eM%
N3LO (v = 4): NNL® (v = 4):

subsubleading 2PE, leading 3PE, isospin breaking in 1PEo( ¢/ —
(1/m?)-corrections  to  1PE, (4m)?), M+ # M_o in 2PE, tri-
(1/m)-corrections to 2PE, contact angle and football 2PE diagrams
terms with 4 derivatives ¢, my-exchangem, # mp in
2PE and in the LS equation, con-
tact terms without derivativesx
e?/(4m)?
N4L@ (v = 6): 1/m?-corrections
to the static %-exchange, 2-
exchange.

2.4.1. Finite-range isospin-breaking forces

Let us now give the explicit expressions for the finite-range isospin-violating interac-
tions up to NIY. The dominant = 2 contribution (1)) due toM,,+ # M_o can be taken
into account by replacing the isospin-conserving expresgiQky) in Eq. (2.13) by

gA )2? _?231@32-5(1_ P2+P/2)
2F, q2+M§0 2m?2 ’

Vlﬂ,pp(Q) = Vizun(q) = _<

v @ (m)% L ( 2 1 )
1rnp, T=1g)=—\| 55 ) T1-7201:902-4 -
7T,np 2F, q2+M§i qz"‘Mio
1 p2+p/2
T oz )
_p2+p/2

2
A= =22 - - 1
Viznp.T=0(q) = _(ZgT> T T2010402 4 5y (1 o2 ) (2.46)
e b

whereT denotes the total isospif,,+ andM, o are the masses of the charged and neutral
pions, respectively, and

2 1
My = SMz+ + 2 M0 = 13803 MeV. (2.47)

The 1PE potential gets further charge independence and charge symmetry breaking con-
tributions at NI and NNLY due to isospin violating pion—nucleon couplings. The final
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expression for the 1PE potential is then of the kinwl(g), wheren; are the channel-
dependent constantg,, # n.p # 1. Unfortunately, the actual size of isospin-violating
corrections to the pion—nucleon coupling is not well determined at presence [33].

The pion mass difference in the 2PE can be incorporated as outlined in Ref. [48]. It is

most convenient to consider the isosgadnd isovector 2PE piece separately,
Vor = Vzoﬂ + Vzln‘?l - To. (2.48)
The isoscalar paﬂt’fn can be expressed as [48]

2 0

1
vy = 3Vor Mz, Mzs) + §V20ﬂ(Mno, M_0)

T

M.+ — M_o\?
g

where the arguments 01‘20]1 denote the masses of exchanged pions. For the isovector 2PE
Vzln, one has the general structure

Vi = 1503 Vor Mo+, M) + (F1- T2 — 1573) Vi (M, Myp0)
Vi (My+, My+) for pp andnn,
=1 2Vi (My+, My0) — Vi (Mys, My+) ~ V3 (M0, M,10) (2.50)
fornp, T =1.
The result in the last line of the above equation is valid modulé, - — Mno)/Mﬂ+)2—
corrections. For th& = 0 case the 2PE potential reads, (M, M;).
Thery exchange diagrams have been calculated in Ref. [32] and we give below the re-
sults obtained in that paper omitting all computational details. Due to isospin, only charged

pion exchange can contribute to the potentialV,;, and thus it only affects thep sys-
tem. The potential has the form

2

Viey (@) = —W(a Ty —1313)51- G2 G Vay (B),
ol (@-p3? a1 2y
Vny(ﬁ)—;[_mm@.‘}‘ﬁ )+ﬁ—r'32:| (2.51)

Here,8 = |g|/M,+ andy is a regularization scheme dekent constant. The analytical
form of V., is similar to the one of the 1PE potential, but it differs in strength by the factor
a/m >~ 1/400.

Finally, the expressions for the remaining isospin-violating 2PE contributions agNNL
have been given in [35].

2.4.2. Long-range (soft) isospin-breaking forces

We now discuss long-range isospin-breaking interactions which are often referred to in
the literature as “electromagnetic forces”. The static Coulomb force in Eq. (2.43) does cer-
tainly not completely represent the electromagnetic interaction between two nucleons but
only its leading contribution. The first long-range corrections to the static Coulomb force



384 E. Epelbaum et al. / Nuclear Physics A 747 (2005) 362-424

are either suppressed hy 2 (relativistic corrections to the static one-photon exchange) or

by an additional power of the fine-structure constarftwo-photon exchange). Although

all these effects are formally of higher ordese nevertheless prefer to take them into ac-
count explicitly for the following reasons. Firef all, the effects of these interactions are
magnified at low energy due to their long-range nature. Further, as explained above, in our
analysis we have to take into account isospin-breaking effects in the same way as it is done
in [38]. The electromagnetic interaction for thp andnp case is given by

Vem(pp) = Vei+ Ve + We + Vum (pp),

Vem(np) = Vum (np),

VeEm(nn) = VM (nn), (2.52)
whereVc1 and V2 are usually referred to as “improved Coulomb potential”. They take
into account the relativisti¢l/m?)-corrections to the static Coulomb potential and include

contributions of the two-photon-exchange diagrams [49]. The explicit coordinate-space
expressions read:

/

o
Vei=—,
r
1 A 5 ao’
Voro=—==5|(A+k) =+ —(A+k%) | ~— , 2.53
c2 2m%|:( + )r+r( + )i| mpr2 ( )
whereA denotes the Laplacian. The energy-dependent constamgiven by
, mf, + 2k2
o =« (2.54)

mp /m%—}—kz

Herek is the c.m.s. scattering momentum. The te¥ay is chosen in such a way that

it leads to an exact cancellation between the proper two-photon and the iterated one-
photon exchange, see [49] for more details. The approximation made in the second line
of Eq. (2.53) is based upon using Coulomb distorted-wave Born approximation (CD-
WBA), see [50] for more details. The modified Coulomb potentig] in Eq. (2.53) can

be treated in momentum space in the same asmthe usual static Coulomb potential as
described in Appendix € The magnetic moment interactidfyv in Eq. (2.52) is given

by [51]

o N
Vvm (pp) = —m[ﬂislz-i- (6+48k,)L - S].
m2r

(078 1- - - -
Vi (np) = — s | 22§15 —(L-S+L-A) |,
2mpur3| 2m, m
2
s
Vi =——-=512, 2.55
MM (r1) 22,3012 (2.55)

8 Clearly, one has to use the appropriately at§d regular and irregular Coulomb functioRgr) and G, (r).
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where u, = 2.793 andu, = —1.913 are the proton and neutron magnetic moments
andk, = up — 1, k, = pu, their anomalous magnetic moments. Furtrfen',s the or-

bital angular momentuma = (61 — 62)/2 and S12 = (61 - 1) (62 - ) /12 — 51 - 62/3.

The corresponding expressions in momentum space can be found, e.g., in [52]. Fi-
nally, the vacuum polarization potentid,p derived by Ueling [53], see also [54],
reads

/ 2 12
20 o 1 )(x 1 (2.56)

— —2m,
VVP—gT dxe mrx(l—i-ﬁ > s

X
wherem, is the electron mass. Clearly, the vaien polarization potential is not of an
infinitely long range. Its range is governed by the electron mass, which is still tiny com-
pared to the relevant mass scales in the nucleon—nucleon problem. This is similar to the
treatment of vacuum polarization in EFT approaches for hadronic bound states, see, e.g.,
[55].

Itis important to realize that the expressi¢@<2) refer to point-like nucleons and only
define the long-distance asymptotics of the corresponding electromagnetic interaction. The
short-distance structure is more complicated and not shown explicitly. In particular, we do
not include zero-range (for point-like nucleons) terms as well as electromagnetic form fac-
tors which can, in principle, be calculated consistently in EFT. Such short-range terms with
the nucleon form factors of a dipole form are, for example, included in the Argonne V18
potential. Last but not least, we note that the above consideration of the electromagnetic
effects is based on the “nonrelativistic” Schrédinger equation (3.12), which will be de-
fined in the next section. To close this section let us point out some well-known practical
complications which arise due to the presence of the long-range electromagnetic forces.

o Asymptotic states are affected blectromagnetic interactions. Tl§ematrix has to be
formulated in terms of asymptotic Coulomb states.

e The formally suppressed (as compared to the strong nuclear force) electromagnetic
interactions are enhanced at low energy. The Coulomb interaction requires a nonper-
turbative treatment. Even the effects due to magnetic moment interaction might be
large for certain observables under spediiitematical conditions. For example, in
thenp system, it gives rise to a forward-angle dip structure for the analyzing power.

e The expansion of the scattering amplitude in partial waves converges very slowly in
the presence of magnetic moment interactions.

3. Scattering equations

We start with the relativistic Schrédinger equation (A.4) and assume the potential to be
of a finite range. The treatment of the nucleon-aan scattering problem in the presence
of the long-range Coulomb interaction is relegated to Appendix C. The scattering states are
described by the Lippmann-Schwinger equatiorresponding to the Schrédinger equa-
tion (A.4). The LS equation (for th&-matrix) projected onto states with orbital angular
momentum, total spins and total angular momentuynis
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00
" o2

pp
]};/](p?p/)_‘/l;{(pﬂp/)_’_z'/T ”//( P”)

7" P, (3.1)

X
2\/p’2—|—m2—2\/p”2—|—m2—|—i
with  — O*. In the uncoupled casé,is conserved. The partial wave projected poten-

tial V;,]l(p/, p) can be obtained using the formulae collected in Appendix B. The relation

between thes- and on-the-energy shefl-matrix is given by

Sy (p) = 8w — a2V p2 +m2T}} (p). (3.2)

The phase shifts in the uncoupled cases can be obtained frofarttadrix via

. .0j . L 1j
0j 2i8; 1j 2i8;
L = J o= J

SU e , S// e , (3.3)

where we have used the notati&)vﬁ. Throughout, we use the so-called Stapp parametriza-
tion [56] of the S-matrix in the coupled channelg & 0):

1j 1j
g— Sitij-1 Sitaim
o 1j 1j
S S

j+1j-1 Jj+1j+1
cos(Ze)exp(ZuS ") isin(Ze)exp(ia +zaj+1) (3.4)
B zsm(Ze)exp(qu 1+’51+1) cos(Ze)exp(ZzS 1) ' .

For the discussion of the effective range expansion fo? shgartial wave we will use the
different parametrization of th&-matrix, namely the one due to Blatt and Biedenharn [57].
The connection between these two sets of parameter is given by the following equations:

3,‘-1+31+1=31—1+31+1,

. tan(2¢)
SiN(6j—1 —§8j+1) = M,
oA A sin(2¢)
sin(dj—1—4j+1) = M, (3.5)

where$ andé denote the quantities in the Blatt—Biedenharn parametrization and we have
omitted the superscripts fdis.

To close this section we would like to remind the reader that the Schrddinger and
Lippmann—Schwinger equations (A.4) and (3.1) may be cast into a nonrelativistic form.
One way to do that is using the Kamada—Gldckle transformation [58], which relates the
relativistic and nonrelativistic c.m.s. momerntandg via

2

The potentialV to be used in the nonrelativistic Schrédinger equation

P
[;+V]¢=E¢, (3.7)
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is defined in the partial-wave projected representation as
i ) g2 g2 g% ) g’
/2 q/Z
1 1+ —, 3.8
( + 2m ) + 4m? (3.8)

WhereV”, (p, p) is the potential entering the relativistic Schrodinger equation (A.4). The
wave-functiony is related toZ in Eq. (A.4) via

q2 q2 4
$(q) = <1+W) 1*@"’( 2+ 2) (3.9)

The S-matrix is defined via

”/(f]) (Sll’ - St quTll’ (Q) (310)
where theT -matrix Tfl{ satisfies the usual nonrelativistic Lippmann—Schwinger equation
// "2

(.4) =V, q>+2f Gt Vi)

1"

m 78] "o
g7 g g )

(3.11)

It can be demonstrated [58] that tRematrix S;/, equals for any given energy tifematrix

”, J defined in Eq. (3.2), that |§;,/, (q) = S”, (p). Another commonly used way to cast the
relativistic Schrédinger equation (A.4) into a nonrelativistic-like form is based upon the
algebraic manipulations with this equation, see [25]. More precisely, addintp Doth
sides in Eq. (A.4) with subsequent squaring them, subtractirfged dividing both sides
by 4m leads to

2 _ k2
[P_+V]w: . (3.12)
m m

where the momenturais related to the energy in Eq. (A.4) via

E = 2Vk2+ m2 — 2m, (3.13)

and the potential operataft is given by

_ /2 2 VZ
2m 4m

or, in the partial-wave projected basis, by
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p2tm?  p?+m?
dp//p//z
S
Z/ 27 )3 ll”(p p”)Vl,,jl,(p",p’)_ (3.15)

1

The curly bracket in Eq. (3.14) denote an anticommutator. Notice that contrary to the pre-
viously described approach, threonrelativistic” Schrodingeequation (3.12) still requires
relativistic kinematics in relating the energy and momentum, see Eq. (3.13)S-Téred

T-matricesS®] and T/ are defined via Eqs. (3.10) and (3.11), respectively (§itff, g,

174 i
¢’ being replaced by, T, p, p’). At any given momenturp one has.S‘;l’/(p) S;f, (p). We

have also checked numerically that both equat{8rig) and (3.12) lead to identical results.

It should be understood that both ways to cast the relativistic Schrodinger equation (A.4)
into a nonrelativistic form discussed in this section are limited to the two-nucleon problem.
To the best of our knowledge, no extension to different systems has yet been offered. Con-
sequently, three- and more-nucleon observables calculated using a nonrelativistic approach
with the NN potentialV or V will lead to different results. One should therefore use the
relativistic Schrédinger equation (or Fadde¥akubovsky equations) with the potential

in such cases. The same applies for processes with external probes.

4. Bound state

We now turn to bound state (i.e., deuteron) properties. The deuteron binding éfiergy
and wave functiowld(p) can be obtained from the homogeneous part of Eq. (3.1)

dp'p'?

1
Eq— (2 p%2+m2 — 2m) 7 /(2 )3

withs = j =1andl =1’ =0, 2, or, alternatively, from the nonrelativistic-like equation

wi(p) = V(. PO, (4.1)

1 C>Odpp
wi(p) = f ! wd 4.2
“(p) Ed+E§/(4m)_p2/m; e V(o PSP, (4.2)

WhereV, ,,(p p’) is related ton{,(p p’) via Eq. (3.15). Here we have used the relation
(3.13) between the binding energy and momentum. In addition, one can also use the non-
relativistic Schrodinger approach as described in the previous section, which leads to

d
o) = ——5— /m Z f (’2’ ”)3 1(p. D)D), (4.3)

WhereV I,(p p) isdefined via Eq. (3.8). The wave functloﬁ;é(p) andlI/d(p) are related
via Eq. (3 9).
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We will now regard the so-called static properties of the deuteron using the nonrelati-
vistic-like equation (4.2). The latter is fully equivalent to the relativistic equation (4.1) and
leads to the same wave function, but has the advantage that one can apply the standard
nonrelativistic formulae to study various deuteron properties. We denoté-bandw (r)
the S- and D-wave components of the coordinate space wave fund!j‘é(m) and byu(p)
andw(p) the momentum space representationg@§/r andw(r)/r:

2 7 2 7
u(p) = ;/u(r)Jo(pr)rdr and w(p) = ;/w(r)Jo(pr)rdr- (4.4)
0 0

The wave functiona andw are normalized according to
o0 o0
/dp Plu(p)?+w(p)?]= / dr [u(r)? +w(r)?] = 1. (4.5)
0 0

The probabilityPq to find the nucleons inside of the deuteron iDetate can be calculated
via

Pd=/dpp2w(p)2=/dr w(r)?. (4.6)
0 0

Further, one can compute the deuteron quadrupole mo@gand the matter root-mean-
square (rms) radiug (r2)d through the following equations:

Od=

8-

/dr rzu)(r)[«/gu(r) — w(r)]
0

_ 1 [ ,du(p) dw(p) du(p)
=—2 dp{@[p o ap TR ]
0

2
n p2<dw(p)) + 6u)(p)2} 4.7)
dp

and
[o/0]

-3/

12
drrz[u(r)2+w(r)2]:| . (4.8)
0

The wave functiona (r) andw(r) behave at large as

u(r) ~Age V", w()~Ape V" <1+ i + iz), (4.9)
yr  (yr)
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whereAg andA p are the asymptotic normalization factors of fteand D-states, respec-

tively, andy = ,/|mEq+ E§/4|. Instead of the quantitiess andA p, one often introduces
the deuteron normalizatiaNg and the asymptoti® /S ratio nq according to

Ap

(4.10)

Not all of the above mentioned deuteron properties are observable and can be measured
experimentally. TheD-state probabilityPy is well known to be unobservable [59]. The
deuteron electric quadrupole moment corresponds to the quadrupole form fagtos &,

whereg denotes the momentum transfer. Clearly, the expression (4.7), which gives just the
deuteron expectation value of the quadrupole oper@ipr

1
Qij = Z(3ri”j —8;jr), (4.11)

is only an approximation to the experimentally measured value for the quadrupole moment,
which, i.e., does not take into account two-nucleon currents and relativistic corrections, see,
e.g., [60] for more details. A related discussion in the framework of EFT can be found in
[61]. The situation is similar with the deuteron matter rms-ragigs®)d , which is related

to the experimentally measured deuteron charge rms-r@& gh via [62—-64]

(r 2>Sh ={r Z)gt +(r2)0 + (¥ (4.12)

where (rz)f:’h =0.886(11) fm (taking the mean of the three recent values form Refs. [65—

67] and adding the errors in quadrature) a(n%}’gh = —0.113(5) fm? [68] are the proton
and neutron ms-radii, respectively, and the “point-nucleon” radius of the det{i@r}tgpis
given by

(2= {2 + 2. (4.13)
Here (rz)% subsumes the “nuclear” effects due to two-body currents as well as relativis-
tic corrections. Notice that while the “point-nucleon” deuteron radius is measurable, the
matter radius{rz),‘,’1 is clearly not an observable quantity. In particular, the separate contri-
butions(rz)gl and(rz)% change by a unitary transformation in the two-nucleon system, see
[64] for more details. For one specific choice of such a transformation, the effects due to
two-nucleon currents i(rz)% are estimated to be of the order0.016 fi? [64]. Contrary
to the previously discussed deuteron quadrupole moment and rms-radius, the asymptotic
guantitiesAg andA p (or, equivalentlyNg andnqg) as well as the deuteron binding energy
are observables related to the “pure” nucleon—nucleon system. In particular, the binding
energy gives the position of thé N S-matrix pole, while the normalizatioNy is related
to the residue of the pole in the following way, see, e.g., [52,69]

. —k
N3 = lim (P — ko)
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Herekq =iy and f(lxl)(p) is the (I = I’ = 0)-component of the diagonalizef-matrix
TH1=yuT1U-1, where

U= ( cose S'”ﬁ), (4.15)
—SlNe COSe

and € is the Blatt and Biedenharn mixing angle [57]. Altgrnatively, one can rewrite
Eqg. (4.14) in terms of the Blatt and Biedenharn eigenphasedlijf) as

. 2i(p—k
Ngz lim i(p d)

) 4.16
p—ka 1 —itan[oo(p)] (4.16)

Notice that theT -matrix becomes real and the phase shiftp) imaginary at negative
energies. Finally, we point out that the asympta@icS ratio nq is given by the negative of
the Blatt and Biedenharn mixing angle at the deuteron pole [52]

ng = — tané (kq). (4.17)

Up to now we have discussed the deuteron properties in the context of the nonrelati-
vistic-like equation (4.2). As already pointed out before, one could alternatively use the
nonrelativistic equation (4.3). Both schemes are completely equivalent for the two-nucleon
system and lead to the same phase shifts and the deuteron binding energy. It is also clear
from Eq. (4.17) that the asymptotie/S ratio nq does not change when one uses Eq. (4.3)
instead of Eq. (4.2). On the other hand, the normalizaiigror, equivalently, the asymp-
totic normalizationA g will change. Eq. (4.16) takes the form

N3 = lim Zl(p—:kd)

, (4.18)
p—ka 1 —itando(p)]

if one uses the nonrelativistic Schrédinger equation (4.3). Hare,i /[m E4] is the non-

relativistic deuteron binding momentum abglis the S-wave eigenphase shift calculated
using Eq. (3.11). Since both schemes are phase equivalent, one has

So(p) = bo(jy/1+ p2/(4m2)). (4.19)

Here we made use of the relation (3.6) between the relativistic and nonrelativistic momenta.
We have therefore:

4 ke 1—itan[bo(py/1+ p2/(Am2))]
2i (\/2m2(1/1+ p2/m2—1) — \/2m2(,/1+ k3/m2 —1))
= lim

p—kq 1—itan[So(p)]

;N§<1+ %> (4.20)

8m
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Here we have again used the relation (3.6) between the relativistic and nonrelativistic mo-
menta. The result in the third line of Eq. (4.20) is valid up to corrections of the order
Eg/mz. It can be rewritten in terms of the asymptafiavave normalization as follows:

- 3Ey4
As=As|1+(1+n3)—|. 4.21
s S|: + (14 ng) 16mi| (4.21)
To end this section, we note that the other deuteron properties sighrak&qg. (4.6),04 in

Eq. (4.7§ and,/(r2)d in Eq. (4.8), which are not observable, are expected to change when
calculated using the nonrelativistic wawmttion from Eq. (4.3). For a recent reviews on
the deuteron the reader is referred to Refs. [70,71].

5. Thefits

In this section we discuss the determination and specify the values of the various LECs
adopted in the present analysis. Throughout this work, we use the following values for
the pion decay constarfi;, the pion massed/,+, M, o and the proton and neutron
massesn, andm,: F; = 924 MeV, M.+ = 1395702 MeV, Mo = 1349766 MeV,

m, = 9382720 MeV,m, = 9395653 MeV.

For the 1PE potential, we use the expression (2.13) witk- 1.29. This larger value
of the LEC g4 as compared to the standard ogie= 1.26 is in order to account for
the Goldberger-Treiman discrepancy as discussed in Section 2.3. Notice further that we
take into account the pion mass difference as given in Eq. (2.46). The leading 2PE po-
tential given in Eq. (2.14) is parameter-free. The NNLO arfitl® 2PE contributions in
Egs. (2.15), (2.18)—(2.20) depend on the LE¢S 2, ¢3 andc4 from the second-order N
Lagrangian as well as af +d>, d3, ds andd14— d1s from the third-orderr N Lagrangian.

For the LECs-1 4 we adopt the central values from t@&-analysis of ther N system [73]:

c1 = —0.81 GeV1, ¢4 = 3.40 GeVL. For the constant; the valuecs = —3.40 GeV1

is used, which is on the lower side but still consistent with the results from reference [73]:
c3 = —4.69+ 1.34 GeV L. The same value fars has been adopted in our NNLO analysis
[21]. Further, this value was found in Ref. [26] to be consistent with empirical NN phase
shifts as well as the results from dispersion and conventional meson theories. Notice, how-
ever, that it is about 25% smaller in magnitude than the value extracted from the partial
wave analysis of thpp andnp data [72]. The LEG:, could not be fixed accurately analyz-

ing pion—nucleon scattering inside the Mandkets triangle in [73]. We therefore adopt the
central value found in the third-order analysis [23]:= 3.28 GeV . For the combinations

of d;’s, we again use the values found in [28]:+ d> = 3.06 GeV 2, d3 = —3.27 GeV 2,

ds = 0.45 GeV2 anddy4 — d15 = —5.65 GeV 2.

9 It would be more appropriate to introduce a special timtafor the quadrupole moment defined in Eq. (4.7)
using nonrelativistic impulse approximation in a way simiilathe deuteron rms-radiugnfortunately, no such
notation appears in the literature, which might lead to ausinh. It should be understood that while the deuteron
guadrupole moment represents thepmsse of the deuteron to an external electromagnetic field and is certainly
measurable, Eq. (4.7) gives only an approximmtiwhich is model-dependent and not observable.
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We now turn to short-range contact interactions. Thewwo0 LECsCs 7, severv =2
LECs C1.7 as well as fifteenn =4 LECs D;_ 15 in Eq. (2.4) are unknown and have to
be fixed from a fit to data (i.e., to Nijmegen phase shifts). Contributions of the contact
interactions to various partial waves are given in Eq. (2.5). Thus, we have to determine
8 LECs in the351—-3D; channel, 4 LECs in théSy channel, 3 LECs in thé P,—3F;
channel, 2 LECs in each of tHePy, 3Py, 3 Py partial waves and 1 LEC in each of th®,,
3D, 3D3—3G3 channels. In addition to the above mentioned isospin-conserving contact
interactions, we have two isospin-violating contact terms with unknown coefficients, see
Egs. (2.35) and (2.37). Both terms contribute to g partial wave and provide charge-
dependent contributions to the LE@SO. In the following, we will therefore distinguish
between@{’é’O , Cfgo and C‘f;o. We also note that we always use the proper kinematics as
given in Appendix A. Let us now specify precisely our way of fixing the LECs. The LECs
contributing to isovector channel®,—3F», 3Py, 2Py and' D, have been fixed from a fit
to Nijmegenpp phase shifts [38], which are much more precise than the corresponding
np phase shifts. The isovectop phase shifts are then extracted from figeones in a
parameter-free way by taking into accourg firoper 1PE potential and switching off the
electromagnetic interaction. This is precisely the same procedure as used in the Nijmegen
PWA [38]. In thelSy partial wave we have to take into account isospin-violating contact

interactions as discussed above. We determine the I(E”gs Cfgo, Cig,» Dlls0 andeSO

from a combined fit in thé Sp pp andnp channels. The LE(?ffgO is then obtained from

the requirement to reproducleet experimental value [74,7%}h, = —18.9 fm for thenn
scattering length. All remaining LECs are fixed from a fitrjp phases from Nijmegen

PWA [38]. We notice that contrary to our NLO and NNLO analysis [16,21], we had to use
here a large energy interval, i.e., up kg, = 200 MeV, in order to fix the LECs. This

is because of two reasons: first, the phase shifts if$geand in the>s;—3D; channels
simply do not show enough structure beyafg, = 100 MeV in order to fix reliably 4 and

8 parameters, respectively. Secondly, phase shifts at low energy are not very sensitive to
higher-order contact interactions except maybe in theSweaves.

It remains to specify the values for the cut-ofisand A which enter the Lippmann—
Schwinger equation and the spectral-function representation of the two-pion exchange
potential, respectively. Certainly, both cut-offs are introduced in order to remove high-
momentum components of the interacting nucleon and pion fields, which are beyond the
range of applicability of the chiral EFT. We remind the reader that from the formal point
of view, one can choose any value for the SFR cut-off which is large enough so that the
relevant physics is still present. Even the chaite= co, which is equivalent to dimen-
sional regularization, is formally possible since all terms with positive powers @nd
 In A) can be absorbed by redefinition of the corresponding LECs. It has been argued in
[21], however, that the choicé = 500700 MeV leads to a natural separation of the long-
and short-range parts of the nuclear force and allows to improve the convergence of the
low-momentum expansion. In the present analysis we use this range for

While A is related to perturbative renormalization of the pion loop integrals, the cut-
off A specifies the way of nonperturbative renormalization of the Lippmann—-Schwinger
equation. Contrary to the SFR cut-off, one, in general, cannot arbitrarily increase the
value of A [76—79]. This is because one needs an infinite number of counter terms in
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order to absorb all divergences arising through iteration of the potential in the Lippmann—
Schwinger equatiof? Keeping finite and of the order of the separation scale in the NN
problem, one expects the contribution of the higher-order counter terms to be suppressed
by powers of the generic low-momentum scale provided that the corresponding LECs are
of natural size [76,77]. In our previous KlLand NNLO analyses [81] based on the dimen-
sionally regularized expressions for the potential we have used500-600 MeV with

the regulator function being defined #¢ (p) = exp—p?/A%]. In the more recent study

[21] based on the SFR approach we have increased this range 450-650 MeV using
F4(p) = expl— p8/A8]. We have, however, found in [21], that the upper valueg afre
already rather closw its critical valueA€, above which one encounters spurious deeply-
bound states. Notice that the values of various LECs start to strongly vary forA©
leaving the natural range. In order to avoicth a situation we slightly reduce the range of
variation of A to 450-600 MeV in the present analysis. To be more specific, we will use
the following cut-off combinations (all values in MeV):

{A, A} = {450,500}, {600, 600}, {450, 700}, {600, 700}. (5.1)

For A =500 MeV the valuet = 600 MeV is already found to be close . We therefore
replace the cut-off combinatiof00, 500} by {600, 600}. Notice that further reducing of

the A-values beyondi = 450 MeV is, in principle, possible but leads to a strong increase
of the theoretical uncertainty. We therefore refrain from doing that. Finally, we notice that
a more elegant regularization prescriptions, like, e.g., lattice regularization, would allow
to regularize pion loop integrals and the Lippmann—-Schwinger equation in the same way
without introducing two independent scald@sand A. For a related recent discussion of
the role and optimal choice of the cut-off in the LS equation the reader is referred to
Refs. [77,79].

Let us now give the precise definition of the phase shifts considered in the present work
and remind the reader on the type of phase shifts used in the Nijmegen PWA [38]. We will
adopt here the notation of Ref. [50] and denoteslz,{,ythe phase shift generated by the
potentialW with respect to the solution with as the interaction.

5.1. pp phases

The full phase shiftdem 4+ N Of electromagnetic plus strong interaction can be expressed
as

JEM+N :5EM+5EM+N. (5.2)

10 1t has been shown in [80] that/#" singular potentials, which arise, .rom pion exchange contributions,
can be renormalized by a one-parameter square-well edarnn, see [8] for a related work. Although the authors
of [80] have demonstrated that the low-energy NN otelgles can be made independent of the square-well width
by adjusting the square-well strength, the power tiognscheme adopted in the present work is not consistent
with such an approach.
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The above expression applies to uncouptbdnnels. For coupled channels one has to
translate the addition law for the phase shifte a multiplication law for the corresponding
S-matrices

Sem+n = (Sem) Y2 SEM n (Sem) 2, (5.3)

see [51,82] for further details. Such a mochtiion for coupled channels will, however, not
change the conclusions of this section. We will therefore not consider the coupled case in
detail in what follows. The last term in Eq. (5.2) corresponds to the phase shifts of the
electromagnetic plus nuclear interaction with respect to electromagnetic wave functions.
These phase shif$M+N are the ones which are given in the Nijmegen PWA [38]. Notice
that the electromagnetic phase shifty can be represented as

Sem =8c1+6C1. co+ 01T Co v mm +0C1TCo i M +vp =dc1+ P+ o+, (54)

i iati C1 _ sC1+C2 —
V\éhlergzw§Mhave introduced the abbreviations= 5gy, ¢, ¢ =357 o mm @Nd T =
+ + . e .
8C14 G241 mm +vp- IN practice, the quantities, ¢ andt are usually calculated using the

CDWBA. This is justified due to the smallness of the corresponding interadtendmm
andVyp. In this case one has approximately

¢~ imms T~ OCivee (5.5)
For more details the reader is referred to Refs. [50,51].

The phase shiftsE,\"jl'JrN obtained in the Nijmegen PWA do, however, not correspond to
the type of phase shifts, which is usually considered in practical calculations, namely the
phase shiftssghN of the modified Coulomb plus strong interactions with respect to the
phase shifts of the modified Coulomb potential. These phase shifts can easily be calculated
for any given nuclear potential using, e.g., the method described in Appendix GapThe
phases considered in the present work are of that type. We therefore need tégrglgte
to the previously discussed phase sm§5}+N. This can be done by noting that the total
phase shifsgm 4+ N can be expressed in the form

SEM+N = 8C1+ &1 4 o MM + VP4 N- (5.6)

In the coupled case one has to modify this relation in a way analogous to Eq. (5.3). Again,
due to the smallness of the potenti&lts,, Vv and Vip one can make use of the DWBA

C1 C1 ;
to relatedcy, co i mm 4+ vp4n @Nddgy , Which leads to [50]

(SSL C2+MM +VP+ N)z - (‘Sgh N)l

_ & (Cl+N
= A1 = (31 N+ Co MM £ vP);

~ _Tm” f dr 31" [Vea(r) + Vi (r) + We(r) 1 (), (5.7)
0

wherel is the angular momentum ang(r) is the wave function for the potentidit; + V.
Combining now Egs. (5.2)—(5.7) we end up with the following formula which relates the
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phase shiftsS1, \ we are calculating to the ona§\ .  of the Nijmegen PWA:

(38%+ N)[ ~ (‘SEM+N), —Ai+p i+ (5.8)

This formula can be further simplified if one notes that for/alt 1 the wave functions
x1(r) near the threshold are almost not affected by the nuclear interaction [50]. Thus, one
can approximately replace in Eq. (5.7) the wave functigr{g) by the regular Coulomb
wave functions, which leads t4; ~ p; + ¢; + 7;. Therefore, for all partial waves except
150 one hasts&t, )i ~ (BEm ., n)i- In the case of théS partial wave, it has been argued
based on explicit calculations that the quantityis “sufficiently model-independent”for a
wide range of nuclear forces at least in the cigg= 0. Notice that the magnetic moment
interaction in Eq. (2.55) does not contribute in that and all other spin-singlet channels.
The values ofAq based on the Nijmegen N78 potential [83] as well as for thend
po are given in [50] at various energies. In the present analysis, we will use these values
for the above mentioned quantities in order to relate tfgr phase shift to the one of
the Nijmegen PWA via Eq. (5.8) Notice that a more accurate way to determine the
phase shiftsaghN)l would be to define the regularized expressions for electromagnetic
interactions and to calculate the quantitigs¢, T and A; explicitly (one can still use
DWBA). We, however, believe that there is meed for such a refinement at the level of
accuracy of NLO.

Let us now summarize our way of calculating phase shifts irpfhsystem. We com-
pute the phase shif@hN of the modified Coulomb plus nuclear potenti@h + Viy with
respect to wave functions of tHé1-potential. The strong interaction part of the chiral nu-
clear force at order RLO is discussed in Section 2. It has to be used in the relativistic
Schrodinger Eq. (A.4), while the electromagnetic interactions in Eq. (2.52), including the
modified Coulomb forcé/c1, are to be used in the nonrelativistic-like Eq. (3.12). We there-
fore first apply Eq. (3.15) to derive the modified strong potential for use in Eq. (3212
then calculate phase shiﬁghN in momentum space as described in Appendix C. In the
fitting procedure the calculated phase shift§, \ are compared with the phaséig)l , \
of the Nijmegen PWA [38]. For all partial waves excépp we use the approximation
(8T \)1 ~ (BEM__\)i- For thelSo phase, we make use of Eq. (5.8), where the quantities
A, p; andt; are taken from Ref. [50].

11 The quantity4; in [50] does not contain the contribution dte®magnetic moment interaction, which has
been neglected in that work. In our analysis we only need to kapwxplicitly for / = 0 and therefore can still
use the result of [50].

12 Notice that in principle, the mofied potential should contain contritions due to electromagnetic interac-
tions. Eq. (3.15) should actually be applied to the sudrthe strong interaction and electromagnetic potentials
VN and Vem. The modified potential would then contain pieces/n, Vem, (1/m)VNVN, (1/m)VNVem and
(1/m)VemVem. Applying Eq. (3.15) only to the strong potentigly and adding the appropriate (modified) elec-
tromagnetic contributions, we thus miss termg1/m)VnVem. Such contributions are suppressed by a factor
Q/m compared to ther y-exchange in Eq. (2.51) and beyond the accuracy of the present calculation.
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5.2. np phases

As already pointed out in Section 2.4tBe electromagnetic interaction in the case is
given entirely in terms of magnetic moment interactiGiv (np). Consequently, Eq. (5.2)
takes the form

SMM +N = SMM + SMM 4 N- (5.9)

The np phase shifts of the Nijmegen PWA as well as in our analysis correspond to the
phase shiftsﬁ,’\\,l",\"j,' 4 Of nuclear plus magnetic moment interactions with respect to mag-
netic moment interaction wave functions. Notice that the terrbinim (np) in Eq. (2.55)
proportional toA gives rise to the so-called “class IV” isospin-breaking force [84], which
mixes spin-singlet and spin-triplet states. The contribution of this term is very small and
usually only taken into account when constructing the magnetic moment scattering ampli-
tude, see, e.g., [85]. In our analysis we make use of the standard approximation [85]

5MM+N ~ON, (5.10)

for all (I # 0)-states. Therefore and because @& fact that the magnetic moment inter-
action does not contribute to tHeSy channel, we have to take into accouriiv (np)
explicitly only in the35;-2D; partial wave. In that case the phase SBW+N is cal-
culated by subtractingym from dmm +n, Where the phase shifégy are obtained using
the Born approximation.

5.3. nn phases

As in the previously considered case of neutron—proton scattering, inntisgstem
one has to take into account only magnetic motrieteraction. Decomposing the phase
shifts as in Eq. (5.9) one can make use of the approximam@hN ~ 8N in all nn partial
waves. As already stated before, this ap@mation is accurate for partial waves witkt 0.

In the case of théSy partial wave, the phase shift is still given By since the long-range
magnetic moment interaction does not contribute to this channel. Thenafiqriease shifts
in all partial waves correspond &g.

6. Resultsand discussion
6.1. Phase shifts

In the following sections, we will show the results for thp phase shifts. Before
showing the results of our analysis, let us make a simple estimate for the expected the-
oretical uncertainty at RLO. Following the reasoning of Ref. [21], we expect for the
uncertainty of a scattering observable at c.m.s. momeritianh N°LO to be of the or-
der~ (maxk, M, 1/*)°. To provide a fair estimate, we identify the hard scabith the
smallest value of the ultraviolet cut-off, i.e., we adapt 450 MeV. This results in the
following estimations for the theoretical (maximal) uncertainty:
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~0.5% atEjgp~ 50 MeV and below
~7% atEjap~ 150 MeV,
~25% atEjgp~ 250 MeV.

One should keep in mind that the above estimations are fairly rough. For a detailed discus-
sion on the theoretical uncertainty, esgdlgiat NLO and NNLO, the reader is referred to
[21].

6.1.1. S-waves

The phase shifts in thkSy and3S; partial waves are shown in Fig. 3. Both are visibly
improved compared to the NNLO result. FBgy = 50 MeV, 150 MeV and 250 MeV we
find the phase shift in th&Sy partial wave in the ranges 42°—4072°, 16.04°-17.03°
and 222°—-4.76°, respectively. These values agree well with the ones from the Nijmegen
PSA:§ = 4054, § = 16.94° ands = 1.96°. The relative uncertainty of our results is in
agreement with the abowstimations except faf|;p = 250 MeV, where the phase shift is

60

40

20

Phase Shift [deg]

150 ' ‘ ' ' 3'
X :
100\ .

Phase Shift [deg]

0 - -

A L 1 L 1 L 1 " 1
0 50 100 150 200 250
Lab. Energy [MeV ]

Fig. 3.S-wavenp phase shifts versus the nucleon laboratory endrge grid, light shaded and dark shaded bands
show the NLO, NNLO [21] and RLO results, respectively. The cut-offsand A at N3LO are varied as specified

in Eq. (5.1). The filled circles depict the Nijmegen PWésults [38] and the open triangles are the results from
the Virginia Tech PWA [106].
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Table 2
The S-wave LECsﬁ,«, C; andD; at NBLO for the different cut-off combinationsA[MeV], A[MeV]}. The values
of theC; are in 1d GeV—2, of theC; in 10* GeV—4 and of theD; in 10* Gev—°

LEC {450,500 {600,600} {450,700 {600,700}
éfspo —0.0834 —0.0800 -0.1247 —0.0436
C?S"O —0.0913 —0.0892 —0.1289 —0.0544
e ~0.0880 ~0.0851 ~0.1272 ~0.0494
Cig, 1.5007 18075 21217 18950
iy, —26.9836 ~16.7678 —247288 ~17.6295
D? 5 3.7402 —2.5565 08214 —2.0771
Cag, —0.1498 01782 —0.1599 00746
Cag, 0.4144 —0.9058 06275 —0.3557
D3y ~26.3516 ~13.4902 —238555 ~12.4078
D3y 4.8091 26661 43807 18895

close to 0. The results for th&s; partial wave are similar to the ones in th& channel.
The uncertainty due to the cut-off variation is found to be smaller in this case.

The pertinentS-wave LECs are tabulated in Table 2 for the four pairs of cut-offs (5.1).
Here, several remarks are in order. First, we note that, in general, one has to expect multi-
ple solutions for the LECs. This problem has already been discussed in [16] at NLO and
NNLO. For the!So channel, we have to fix five LEO@{?O, C‘ﬁg’o, Cig, Dllso’ Dlzso’ from
a fit to Nijmegenpp andnp phase shifts. We did find multiple solutions for LECs which
describe the data equally well if we neglect isospin breaking arﬁlﬁgg Cig,, Dllso’ D12SO
from a fit to the Nijmegemp phase shift. Taking into account isospin breaking effects and
performing a combined fit to botbp andnp phase shifts turns out to improve the situation
and help to sort out the true solution. We found a single solution for the LECs for the cut-off
combinationg A, A} = {450, 700} and{600, 700}. For the two other cut-off combinations
several local minima in thg?-plot have been observed. We then adopted the values for
the LECs corresponding to the global minimum. We have checked that these values result
from the ones for differenitA, A} by a continuous change of the cut-offs.

The situation in the&3S1—3D1)-channel is even more complex since one has to deter-
mine eight LECs. Our results for the LECs are shown in Tables 2—-4. Due to the large
dimension of the parameter space, we cannfihidely claim that the found values for the
LECs correspond to a true global minimum of the

Let us now comment on the naturalness of the determined LECs. In general, the natural
size for the LECs can be (roughly) estimated as follows:

é 4 c 4 D 4

i~ 5 i~ 5 s [
Fr F2Afgc F2Algc

whereALgc is the scale entering the values of the LECs and the faetae4ults from the

angular integration in the partial wave degposition, see Appendix B for the details. The

S-wave LECs shown in Table 2 are of the natural size except the LIE}’B‘,Osand D%Sl,

(6.1)
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Table 3
The LECsC; andD; in the P-waves andq at NBLO for the different cut-off combinationsA[MeV], A[MeV]}.
The values of the; (D;) are in 18 GeV—4 (10* Gev—9)

LEC {450, 500} {600, 600} {450, 700} {600, 700}
Cq1 Py 0.1862 03374 02072 Q03444
D 2.3257 19180 23968 19213
Py
C3P 1.1729 12034 11913 12031
0
D3 P 1.0892 12500 12190 14116
C3P1 —0.6334 —0.6602 —0.7576 —0.7193
D3P1 4.2369 38465 42099 38756
C3P2 —0.5542 —0.5812 —-0.6217 —-0.6114
D3 P 4.1956 42270 40340 41723
Ce1 —0.4516 —0.2726 —0.5045 —0.3352
D¢y 2.6303 17686 20296 15516
Table 4

The D-wave LECsD; at NBLO for the different cut-off combinationsA[MeV], A[MeV]}. The values of thed;
are in 18 Gev—5

LEC (450,500} (600, 600} (450, 700} (600, 700}
Dij, —2.2450 ~2.1874 ~2.3398 ~2.2203
D3, -1.3988 —1.7483 —1.2250 ~1.6620
D3, —1.4180 -0.9023 -1.3578 -0.8580
D3, —2.0792 —1.5493 -1.7522 —1.4841
Doy 0.2333 02901 02274 02892

which are somewhat large in magnitude. Indeed, estimating the d¢ale as A gc ~

500 MeV leads tdD;| ~ 2.4 in the same units as used in Table 2. Still, the higher-order
contact interactions are suppressed compared to the lower-order operators at low momenta.
For example, for the cut-off combinatigd50, 500} andp = p’ = M, the contributions of

the contact operators at various orders are given by

(*So| Véantp. P S0}l o i,
= [C1§, + Cagy(P? + P'?) + (Dig p? P2 + DI (p* + P )] i,
=[-0.091+ 0.057+ (—0.010+ 0.003)] x 10* GeV 2. (6.2)

6.1.2. P-waves

Our results for thenp P-waves and the mixing angka are shown in Fig. 4. All phase
shifts are visibly improved compared to the NLO and NNLO results. One has, however,
to keep in mind that two independent parameters appear now in each of these channels
instead of one parameter at both NLO and NNLO. The results of the Nijmegen PWA are
reproduced in our RLO analysis within the theoretical uncertainty in all phase shifts with
exception ofl P; at larger energies. In the case of the partial wave, the band is dom-
inated by variation of the SFR cut-off. In giular, lower values for this cut-off lead to
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Fig. 4. P-wavenp phase shifts and mixing angée versus the nucleon laboratorgergy. For notation see Fig. 3.

a better agreement with the data at higher energie&At= 250 MeV, the NLO phase

shifts deviate from the data by an amount of up~@&°. The typical size of the?-wave

phase shifts at this energy is of the orde5°. The uncertainty in the calculated phase
shifts due to the cut-off variation agrees therefore fairly well with the estimation in Sec-
tion 6.1. We remind the reader that thedhetical bands at NLO and NNLO are expected

to have a similar width, since the effective potential at these orders contains the same set
of contact interactions (counter terms). As explained in detail in [21], the uncertainty re-
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Fig. 5.3P1-Wavenp phase shift versus the nucleon laboratory energy. The solid and dashed lines correspond to
the LECsC3P1 and D3P1 from the first and second lines in Eq. (6.3), respectively. For remaining notations see
Fig. 3.

sulting from the cut-off variation at NLO is smaller than the actual theoretical uncertainty
at this order.
The pertinentP-wave LECs are tabulated in Table 3 four these four pairs of cut-offs. As
in the previously discussed case of hwvaves, we found multiple solutions for the LECs.
The physical solution can easily be determined due to the smaller number of parameters
(two unknown LECs in eacR-wave). To illustrate this point consider tAg; partial wave
with the cut-offs{A, A} = {450, 500}. We find two solutions for the LEGSsp, andDsp,
fitting to the Nijmegerpp phase shifts:

Csp, =—06334  Dsp =4.2359
Csp =5.9620  Dsp = —20.6154 (6.3)

where we used the same units as in Table &hBsets of parameters lead to an accurate
description of the data, which is shown in Fig. 5. The solution in the first line of Eq. (6.3)
satisfies the naturalness assumption for the LECs and has been adopted in the present
analysis. Notice further that the valde, = —0.6334x 10* GeV~2 is close to the NLO
and NNLO values for these LECs (for the same cut-off combinaiitp) = —0.4932x
10* GeV—2 andCsp, = —0.7234x 10* GeV~2, respectively. The resits for other partial
waves are similar. All LECE; in the P-waves are found to be of natural size and take the
values which are close to the ones at NLO and NNLO. Ph&ave LECsD; are natural
as well.

Let us now comment on isospin-breaking. As already explained before, the LECs in the
isovector partial waves are fitted to thp phase shifts. To calculate the correspondipg
phase shifts, we switch off the electromagnetic interaction and adjust for the proper pion
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Table 5

403

Effects (in degrees) on the phase shifts = {3P0, 3P1, 3P2, 1D5}, due to removal of the Coulomb interactions
(A}’) and subsequently including the pion mass differences in the 1PE poten;ﬁala(c Ejap = 10 MeV. The

shifts A7, AT andA; are defined as followsA! = (8pp)i — (Bpp)is AT = Sup)i — Gpp)i, Ai =AY + AT =
Gup)i — Gpp)i and(Spp),- denotes th@p phase shifts calculated in the absence of the Coulomb interaction. The
Nijmegen PWA results are from [38]. The cut-offsand A are varied as specified in Eq. (5.1)

i Chiral N3LO Nijmegen PWA

AY AT A AY AT A
3p, 0.359-0360 (—0.456—(—0.454  (—0.096)—(—0.094) 0371 —0447 —0076
3P1 (—0.187)—(—0.184) 0.191-0192 Q005-0008 —0.186 Q183 —-0.003
3P2 0.092-0093 (—0.03)—(—0.030 0.061-0062 Q092 -0.035 Q057
1D2 0.014-Q0015 (—0.024—(—0.024) (—0.010—(—0.009 0.014 -0.023 —-0.009

Table 6

Effects on the phase shiffs, i = {3Pg, 3Py, 2Py, 1D}, due to removal of the Coulomb interactions!() and
subsequently including the pion mass differences in the 1PE poteA{fe)la(t Ejap =25 MeV. For notations see
Table 5

i Chiral N3LO Nijmegen PWA

AY AT A AY AT A
3p, 0.320-0325 (—0.789—(—0.784  (—0.465—(—0.464) 0342 —0785 —0.443
3P1 (—0.222—(—0.218 0.293-0293 Q071-0075 —-0.221 Q275 Q054
3P2 0.185-0190 (—0.099—(—0.093 0.088-0096 Q184 -0.115 Q069
1p,  0029-0031 (—0.048—~(—0.048  (—0.020~(—0.017) 0031 -0046 —0015

Table 7

Effects on the phase shiffs, i = {3Pg, 3Py, 2Py, 1D,}, due to removal of the Coulomb interactions!() and
subsequently including the pion mass differences in the 1PE poteﬁﬁe)l;(t Ejap =50 MeV. For notations see
Table 5

i Chiral N3LO Nijmegen PWA

AY AT A; AY AT A;
3p, 0.091-0109 (—0.879—(—0.866  (—0.775—(—0.770 0119 -0896 —0.777
3P1 (—0.236)—(—0.227) 0.320-0323 Q084—-0095 —0.233 Q297 Q064
3P2 0.251-0260 (-0.175—(—-0.161) 0.078-0098 Q253 -0.221 Q032
1D2 0.045-0050 (—0.041)—(—0.041) 0.003-0008 Q049 -0.034 Q015

mass in the 1PE potential. The differences between the correspguplizngd np phase

shifts at three different energié,p = 10, 25 and 50 MeV are shown in Tables 5, 6 and 7,
respectively. In general, we see that the effects due to removal of the Coulomb interaction,
A}’, agree very well with the ones of Nijmegen PWA. The uncertainty due to the cut-offs
variation becomes larger at higher energies. The effects due to including the pion mass
difference AT, show typically somewhat larger deviations from the Nijmegen PWA. This

is presumably to a large extent due to a different treatment of the 1PE force: while we use
the potential in momentum space with high momenta being cut off, the Nijmegen group
performs calculations in coordinate spaced ahooses to cut-off the long-range potential
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at 14 fm. Although both methods certainly lead to the same long-distance asymptotics of
the 1PE potential, they differ significantly in the treatment of its shorter-range part. The
largest deviations from 15% atE|gp = 10 MeV to ~ 20%—-30% atE|zp, = 50 MeV for

AT from the Nijmegen PWA are observed in tRe, partial wave. It is comforting to

see that both isospin-violating effects (i.e., due to the Coulomb force and the pion mass
difference in 1PE) are in most cases of tlang size, as it is also expected from power
counting arguments, see Section 2.4 for more details. We also note that these two effects
have often opposite sign and tend to cancel. For example, one obseBgs-atl0 MeV

[38]: Azp, = A’S’PO + A;TPO =0.371° — 0.447 = —0.076".

6.1.3. D- and higher partial waves

The results forD-, F- and G-waves are shown in Figs. 6, 7 and 8, respectively. We
remind the reader that a®hNO there is one adjustable constdntin each of theD-waves,
while F- and higher partial waves are paramétee. As depicted in Fig. 6, the shape of
the 3D3 partial wave is still not properly reproduced aflMD, although it is greatly im-
proved compared to NLO and NNLO predictions. This phase shift is, however, rather small
as compared to othdp-wave phase shifts, and thus one expects relatively small effect of
this phase shift on th& N scattering observables. We also note that the absolute deviation
from the data in this channel is not larger than in the othewvaves. Most of theF- and
G-waves are at RLO in agreement with theata. One observes that the theoretical bands
do not get thinner at RLO, which might at first sight appear strange. This, however, is
naturally explained by the fact that there are no short-range contact terms in these chan-
nels. Such terms start to contribute fewaves at RLO (Q°) and toG-waves at NLO
(08). Consequently, one should expect the uncertainty due to the cut-off variation to be
of the same size for calculations up to these high orders in the chiral expansion. Clearly,
peripheral partial waves are strongly dominated by the 1PE potential, which represents the
longest-range part of the strong nuclear force. Indeed, one observes that the phase shifts
are mostly well reproduced already at NLO, while NNLO artL® corrections only pro-
duce minor changes. Notice further that due to the smallness of the phase shifts, the Born
approximation works very well in high partial waves and the phase shifts are essentially
given by the diagonal (in momentum space) ixattements of the two-nucleon potential.
It is then clear that the bands arise almost completely due to multiplying the potential by
the regulator function. The only exception from this rule is given by'the partial wave,
where the SFR cut-off has a larger impact on the phase shift at higher energy than the
cut-off in the Lippmann-Schwinger equation. In particular, the lower values of this cut-off
lead to larger values of the phase shift.

The determined LEC®; are tabulated in Table 4. All of them are of natural size.

6.2. S-wave effective range expansion

We now regard the-wave effective range parameters and begin withifhsystem. In
that case one can make use of the usual effective range expansion for finite-range poten-
tials, Eq. (D.1). The reason is that the long-range magnetic moment interaction does not
contribute to states with= 0. Notice, however, that one should not use the standard effec-
tive range expansion for thiD; partial wave and mixing angke, which are modified in
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Fig. 6. D-wavenp phase shifts and mixing angie versus the nucleon laboratorgergy. For notation see Fig. 3.

the presence of the long-range {/r3) magnetic moment interaction. Our results for the
3571 andSy scattering length, effective range and shape coefficiers are summarized

in Tables 8 and 9. The results for th&, scattering length and effective range are improved
compared to the NLO and NNLO predictions of [21]. ThéL result for the scattering
length fills a small gap between the NNLO prediction and the value of the Nijmegen PWA.
The uncertainty due to the cut-off variation for all effective range parameters turns out to
be smaller at RLO compared to NNLO, as it should. We observe a minor discrepancy
for the shape coefficient, which might however simply reflect the lack of numerical ac-
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curacy, with which this quantity is calculated. The description of3fieeffective range
parameters is similar to the one in th& channel.

Next, we consider thpp system. This case is much more complex since one has to ac-
count for electromagnetic interaction. Ideally, one should use the phasesékﬂﬁ% and
the expression for the effective range function given in [50] to obtain the effective range
expansion for the nuclear force in presentthe long-range electromagnetic interactions,
which in thelSy channel are given by the improved Coulomb and vacuum polarization
potentials in Egs. (2.53) and (2.56). In the present analysis we have used a simplified de-
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scription for thepp phase shift as explained in Section 5. We do not calculate explicitly the
phase shiftsE\ , , but rather the onesgy, , of nuclear plus modified Coulomb potential
with respect to Coulomb wave functions, adjusting for the difference as explained in Sec-
tion 5. We have therefore made use of Eq. (D.5) to calculatpptexattering length and
effective range. We obtain the following values:

app = (—=7.795«~7.812 fm,  r,, =2.73-276 fm, (6.4)
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Table 8

Scattering length and mge parameters for thksy partial wave using the NLO and NNLO potential [21] com-
pared to the RLO results and to the Nijmegen phase shift analysis (PWA). The vahigg are based on thap
Nijm Il potential and the values of the scatterilemgth and the effective range are from Ref. [101]

NLO NNLO N3LO Nijmegen PWA
a [fm] (—23447)—(—23522)  (—23497)—(—23689  (—23585—(—23736) —23.739
r [fm] 2.60-262 262-267 264-268 268
vo [fm3]  (—0.46)—(—0.47) (—0.48—(—0.52) (—0.49—~(—0.51) —0.48
v3 [fm] 4.3-44 4.0-4.2 40-41 40
va [fm7]  (=20.7)—~(—210) (—=19.9)~(—20.5) (—19.8)—(—20.2) —200

Table 9
Scattering length and mge parameters for th%sl partial wave using the CR NLO and NNLO potential [21]
compared to the RLO results and to the Nijmegen PWA [93]

NLO NNLO N3LO Nijmegen PWA
a [im] 5.429-5433 5424-5427 5414-5420 5420
r [fm] 1.710-1722 1727-1735 1743-1746 1753
vp [fm3] 0.06-Q07 004-Q05 004-Q05 004
vg [fm] 0.77-081 071-076 069-070 067
v fm?]  (—4.3)~(—4.4) (—4.1)~(—4.2) (—4.0~(—4.1) —40

where the uncertainty is due to the cut-off variation. These values agree nicely with the
experimental ones [82]:

apy =—7.8149+0.0029fm  r,,’=2.76940.014 fm (6.5)

One should, however, keep in mind that we made an approximation and neglected the
effects due to the long-range part of the vacuum polarization potential and the interaction in
the second line of Eq. (2.53). As found in [50] neglecting these electromagnetic interactions
affects the values af,,, andr,, by an amount smaller than@L fm, which is within the
theoretical uncertainty of the present analysis.

Finally, we consider then system. Since no long-range electromagnetic interactions
contribute to thé' Sy partial wave, one can use the effective range expansion (D.1). Since
we have used the “standard value” for timescattering lengtla,,,,

as9=_189+0.4 fm (6.6)

nn

as an input to fix the LEC of the leading isospin-violating short-range interaction, we can
only make predictions for the effective rangg:

Fnn = 2.76—280 fm. (6.7)
This agrees with the experimental number [86]
Faa? =275+ 0.11 fm. (6.8)

Notice that there is still some controversy about the experimental value of $@ttering
length extracted using different reactions. For example, the vgj{le= —18.50-+ 0.53 fm
has been reported from studying thé( —, ny)n process [74], while measurements of the
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neutron deuteron breakup reaction lead on one haafjfe= —18.7+ 0.6 fm [87] and on
the other hand to different values,." = —16.1+ 0.4 fm anda," = —16.3+ 0.4 fm [88].

Last but not least, we would like to point out that the relation between the values of
the effective range parameters, which would result if there would be no electromagnetic
interaction, and the observed ones is highly nontrivial. Neglecting electromagnetic nucleon
mass shifts, we can, for example, switch off the Coulomb interaction ipglsgstem and
recalculate the effective range coeifficts using Eq. (D.1). This leads to

app = (—16.000«(—16.63) fm, rpp = 2.81-286 fm. (6.9)

Although the value fofz, is fairly close to the one for then andnp scattering lengths,

as one would expect from the approximate isospin invariance of the strong interaction, it
should be understood that effects due to electromagnetic interaction are not completely
removed from these quantities. To clarify this point let us take a look at the lead;mgy

andpp short-range interactions:

2

(@m)?’

e2

~Np
C]'So (C1So)5tr+ ﬂnp (4 )29
2

e
Cry = (CI¢ ) s+ Bov @

ClSo (Clso)str + Bun

(6.10)

Here the LEC:{C‘{S )strare entirely due to the strong interaction. If only linear terms in the
quark mass difference are included, see ®5), these LECs are related with each other
as(ClS )str + (C"" )str= 2(C1 )Str and the dlfferenc(eC )Str— (C )Str is proportional

to eMﬁ. The terms;c Bi in Eq. (6.10) are due to the short—range eIectromagnetic interac-
tions, see Eq. (2.37F Since we do not know the values of the LE@isin Eq. (6.10) and
it is not possible to disentangle them frcm?ps in the two-nucleon system, we cannot ex-

tract the values for NN observables due to %he strong interaction out of the experimentally
measured quantities. Notice that the LEgsmight (at least in principle) be determined
from processes with external pions. Notice further thatghecattering length with the
long-range Coulomb interaction being switched off is even not a well-defined quantity in
an effective field theory approach since it is sensitive to details of the strong interaction at
short distances. Indeed, the extracted scattering lengtm Eq. (6.9) shows a significant
cut-off dependence. Clearly, the scattering length due to pure strong interaction is perfectly
well defined and the cut-off dependence is (largely) absorbed by the appropriate “running”
of B,,. For related discussion on the proton—proton scattering length in context of effective
field theory see [89,90]. Furthermore, a useful approximation for the quangjtpased

13 The fact that we have three independent LE&zs, Bnp and By, and only two terms in Eq. (2.37) might
appear confusing. In fact, we have only shown exfielectromagnetic isospin-breaking and omitted isospin
conserving terms in Eq. (2.37). One of the two electromtgiigspin conserving contact interactions contribute
to 1SO and one td”Sl NN scattering. Therefore, three and not twdépendent electromagnetic terms contribute
to 1Sy NN scattering.
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Fig. 9.np differential cross section and vector analyzing poweEgf = 25 MeV. The Nijmegen PWA result is
taken from [107]. Data for the cross section are tak®m [108] and for the analyzing power from [109,110].
The cut-offsA and A are varied as specified in Eq. (5.1).

on the short-range nature of the strong interaction and the fact that the scattering length is
large can be found in [91].

6.3. Two-nucleon scattering observables

Once theNV N phase shifts are calculated, all two-nucleon scattering observables can be
obtained in a straightforward way using, e.g., the formulae collected in [52]. In Figs. 9-12
we show thenp differential cross section and vector analyzing poweEgt =25, 50, 96
and 143 MeV at NNLO and RLO in comparison with the data and the Nijmegen PWA re-
sults. In this calculation, we have includedmgpartial waves up tg < 8 and did not take
into account the magnetic moment interaction. At the lowest energy we have considered,
Elap = 25 MeV, both NNLO and RLO results are consistent with the ones of the Ni-
jmegen PWA. The small disagreement witle tRijmegen PWA in the analyzing power at
forward direction is due to the neglected magnetic moment interaction. At higher energies
the NNLO predictions become less precise. AL® the uncertainty in the cross-section
due to the cut-off variation at the largest energy we have calcul&tggl= 143 MeV, is
less than 10%. It is comforting to see that NNLO artL® results overlap in most cases
and are both in agreement with the Nijmegen PWA. We further notice that the small but
visible deviations of our RLO result for the differential cross section from the Nijmegen
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Fig. 10.np differential cross section and vector analyzing powek gt = 50 MeV. Data for the cross section are
taken from [108,111] and for the analyzing powemfr§l10,112-115]. For remaining notations see Fig. 9.

PWA curve at forward and backward angles and higher energies is most probably due to
the lack of partial waves with > 8 in our calculations. The convergence of the partial
wave expansion is well known to be slow in these particular cases. For example, it has
been found in [92] that a sum up jo= 16 is needed to obtain convergence for the cross
section atE|gp = 300 MeV within 1%.

6.4. Deuteron properties

We now turn to the bound state properties. We stress that we do not use the deuteron
binding energy as a fit parameter as it is frequently done but rather adopt the same LECs
as obtained in the fit to the low phases. In Table 10 we collect the resulting deuteron prop-
erties in comparison to the NLO and NNLO results from [21]. All results for the deuteron
properties in this table have been calculated using the formulae given in section 4 based on
the relativistic wave functiom9(p). First, we note a clear improvement afl) in the
chiral expansion. The predicted binding energy #t® is within 0.4% of the experimental
value. This has to be compared with 1%-1.5%2¢0—2.5%) deviation at NNLO (NLO).

Also visibly improved is the asymptoti§-wave normalization strength g, which now
deviates from the experimental (¢ead) value by 0.3% as compared+td..1% (~1.9%) at
NNLO (NLO). Our predictions for the asymptotia/S-ratio have a tendency to slightly
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Fig. 11.np differential cross section and vector analyzing poweEgt = 96 MeV. Data for the cross section
are taken from [116,118,119]. Data for the analyzing power aEgf= 95 MeV and taken from [117]. For
remaining notations see Fig. 9.

Table 10
Deuteron properties derived from the chiral potential 3t& compared to the NLO and NNLO results from [21]

and the data. Herd/ is the binding energyQq the quadrupole momeniq the asymptoticaD/S ratio, 4/ (r2)9,,
the root-mean-square matter radids;, the strength of the asymptotitzwave normalization an@y the D-state
probability. The data foFq are from [102], forQq4 from [103,104], forng from [105] and forA g from [104]. For
the rms-radius we actually show the experimental vatwetfe deuteron “point-ndeon” rms-radius from [64].
In the NBLO calculation, the cut-offs are varied as specified in Eq. (5.1)

NLO NNLO N3LO Exp
Eq [MeV] (=2171)—~(—2.186)  (—2.189—(—2.202  (—2.216—~(—2.223 —2.2245759)
04 [fm?] 0.273-0275 Q271-0275 0264-0268 028593)
nd 0.0256-00257 00255-00256 00254-00255 00256(4)
J 29 [fm] 1.973-1974 1970-1972 1973-1985 1975311)
Ag [fm~1/2) 0.868-0873 0874-0879 0882-0883 088469)
Py [%] 3.46-429 353-493 273-363 -

reduce its value when going from NLO to NNLO to’ND. The results at all orders are in
agreement with the data within the experimental uncertainty. Further, 4.® Kesult for
ng agrees well with the one of the Nijmegen PWA [93}, = 0.02532). We do not ob-
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Fig. 12.np differential cross section and vector analyzing poweEgt = 143 MeV. Data for the cross section
are atEjgp = 1428 MeV and taken from [120] and for the analyzing power from [121]. For remaining notations
see Fig. 9.

serve any improvement for the quadrupole momeng@urat N3LO, which shows an even
larger deviation from the data compared to NNLO (6%—8% versus 4%-5%). We, however,
remind the reader that the present calculatio@gis based on formulae of Section 4. Itis
incomplete and does, in particular, not take into account the contribution of the two-nucleon
current. Notice that apart from the pion-exolga two-nucleon currents, there are contri-
butions from two-nucleon contact current, where the corresponding LEC cannot be fixed
from nucleon—nucleon scattering. Such current results from the operator in the effective
Lagrangian with four nucleon fields, one photon field and two derivatives. It appears nat-
ural to fix the value of the accompanying LE®©m the requirement to reproduce the value

of the deuteron quadrupole moment. For the calculations of the various deuteron proper-
ties including the quadrupole moment as well as other two-nucleon observables in pionless
EFT the reader might consult Refs. [94,95]. Notice that the situation with the quadrupole
moment is analogous to the one described®] for the deuteron magnetic moment. In

that case the corresponding short-range two-nucleon current results from the operator with
just one derivative and thus appears even at a lower order. The situation with the deuteron
rms-radius is similar to the one with the quadrupole moment: we observe a larger deviation
from the data at RLO as compared to the NLO and NNL®@sults. Notice however that the
deviations at NLO from the experimental number are still of the order of 0.5% or less. The
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above comment on the missing contributions in the quadrupole moment calculation applies
to the deuteron rms-radius as well. ABIND one should account for the contribution due

to the short-range two-nucleon current, ainresults from the contact operator with four
nucleon fields, one photon field and two derivatives, see [94] for more details. It is re-
markable that the cut-off dependence,6§-2)d at N°LO is significantly larger compared

to NLO and NNLO. This implicitly confirmur previous statement about the necessity

to incorporate the short-range current at thider. The cut-off dependence of the corre-
sponding LEC will compensate the cut-off dependencg/¢f2)d making the deuteron
“point-nucleon” radius cut-dfindependent up to higher-order corrections. The complete
N3LO calculation of the quadrupole moment and the “point-nucleon” electric charge ra-
dius of the deuteron will be presented in a separate publication. As a numerical check, we
have recalculated all deuteron propestissing the nonrelativistic wave functigi(p) in

Eqg. (4.3). As expected from the discussion in Section 4, we reproduce the valugs for
andrg. The asymptoti§-wave normalizatiom s changes byl s — Ag = 0.00039 fnT /2,

This has to be compared with the valdig — As = 0.000392 fnm /2 from Eq. (4.21). The
guadrupole moment and the rms-radius change by 0.4% and 0.1%, respectively. Finally,
we show the deuteron wave function in coordinate space in Fig. 13 for a particular cut-off
choice, together with results obtained at NLO and NNLO. One observes a stronger sup-
pression of the&-wave component at short distances compared to NLO and NNLO, as well

0.7 T T
()Gj AT —=- NLO n
- S -—-- NNLO
o 051 p A — NNNLO| ]
™ [ Wy
g 04r- o NS 1
=, T _n;,’ =
= U"; - n 4
o) roe
5 02, .
—“.'
014 =
0 1 1
T T T
0.15+ e .
Q\]’_‘
LE 0.1
o N
i)
= 0.05

r [fm]

Fig. 13. Coordinate space representation ofShéupper panel) and-wave (lower panel) deuteron wave func-
tions at NLO, NNLO and RLO for the cut-offs:A = 550 MeV, A = 600 MeV.
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as the lower probability for the deuteron to be in thestate. The latter observation fol-
lows also from the smaller value &4 quoted in Table 10. The shape of the wave function
changes for different cut-off choices. We rieihthe reader that the deuteron wave function
is not observable (except at very large distances).

7. Summary

In this paper, we have considered the interactions between two nucleois@tinl
chiral effective field theory. The pertineresults of this study can be summarized as fol-
lows:

() The two-nucleon potential atNLO consists of one-, two- and three-pion exchanges
and a set of contact interactions with zero, twal éour derivatives, respectively, according
to the chiral power counting, see also Table 1. We have applied spectral function regular-
ization to the multi-pion exchange contributions. This allows for a better separation of the
low and high momentum components in the pion loop diagrams than dimensional regu-
larization. Within this framework, we have shown that three-pion exchange can safely be
neglected. The corresponding cut-off is varied from 500 to 700 MeV. The LECs related to
the dimension two and threéNr 7 vertices are taken consistently from studies of pion—
nucleon scattering in chiral perturbation theory, [23,73]. In the isospin limit, there are 24
LECs related to four-nucleon interactions which feed into $he P- and D-waves and
various mixing parameters, cf. Eq. (2.5).

(i) We have reviewed the various isospin breaking mechanisms and proposed a novel
ordering scheme, based on one small pa&tmthat collects strong as well as elec-
tromagnetic isospin violation, cf. Eq. @) accompanied by a particular counting rule
for photon loops, see Eq. (2.33). This differs from the scheme proposed and applied in
Ref. [7]. In the actual calculations, we have included the leading charge-independence
and charge-symmetry breaking four-nucleon operators, the pion mass difference in the
1PE, the kinematical effects due to the naclenass difference and the same electromag-
netic corrections as done by the Nijmegen group (the static Coulomb potential and various
corrections to it, magnetic moment intetians and vacuum polarization). This is done
because we fit to the Nijmegen partial wavesthe future, it would be important to also
include isospin violation in the 2P,y -exchange and the isospin breaking corrections to
the pion—nucleon scattering afitpde (which have been consistently determined in [44]).

(iif) We have discussed in some detail the form of the scattering equation that is used
to iterate the potential and similar for the bound state. We use the Lippmann—Schwinger
equation with the relativistic form of the kinetic energy. Such an approach can easily be
extended to external probes or few-nucleon systems. We have also discussed the reduction
to a nonrelativistic form which be might of easier use in some applications. The LS equa-
tion is regulated in the standard way, cf. Eq. (2.28), with the cut-off varied from 450 to
600 MeV.

(iv) The total of 26 four-nucleon LECs has been determined by a combined fit to some
np and pp phase shifts from the Nijmegen analysis together withnihacattering length
valuea,, = —18.9 fm, as detailed in Section 5. The resulting LECs are of natural size
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exceptDlls0 and Dgsl. Comparing to the fits at NLO and NNLO, we had to extend the fit
range to higher energies for the reasons discussed in Section 5.

(v) The description of the low phase shift$, P, D) is excellent, see Figs. 3-6. In all
cases, the RLO result is better than the NNLO one with a sizeably reduced theoretical
uncertainty. This holds in particular for the problemati wave which was not well re-
produced at NNLO. The peripheral waves, G, H, .. .), that are free of parameters, are
also well described with the expected theoretical uncertainty related to the cut-off varia-
tions, see Figs. 7, 8. We stress that the description of the phases in general improves when
going from LO to NLO to NNLO to NLO, as it is expected in a converging EFT.

(vi) The resultingS-wave scattering lengths and range parameters imphécf. Ta-
bles 8 and 9) angp systems (cf. Eq. (6.4)) are in good agreement with the ones obtained
in the Nijmegen PWA. In addition, we can give theoretical uncertainties for all these quan-
tities, which are mostly in the one percent range.

(vii) The scattering observables (differential cross sections, analyzing powers) for the
np system displayed in Figs. 9-12 are well described, with a small theoretical uncertainty
at the order considered here.

(viii) The deuteron properties are further predictions. In particular, we have not in-
cluded the binding energy in the fits, the deviation from the experimental value is in the
range from 0.4 to 0.07%. The asymptosievave normalization and the asymptofiy S
are also well described. The remaining discrepancies in the quadrupole moment and the
rms matter radius are related to the shortged two-nucleon current not considered here.

In the future, these studies should be extended in various directions. In particular, one
should construct the electr@ak current operators to the same accuracy and work out the
corresponding three-nucleon force, which is of special interest since it does not contain
any novel LECs. Furthermore, a more systematic study of isospin violation in the two- and
three-nucleon systems based on the formalism developed here should be pursued. Work
along these lines is under way.
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Appendix A. Kinematics

Consider two nucleons moving with momenrtaand po. We use the relativistic kine-
matics for relating the energlap of two nucleons in the laboratory system to the square
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of the nucleon momenturj in the center-of-mass system, which is defined by the con-
dition p1 + p» = 0.14 The relation betweei|a, and 52 reads (here and in what follows:

p=1pl):

e Proton—proton case:

1
pP= EmpElab- (A1)
o Neutron—neutron case:
1

e Neutron—proton case:

2 m% Elap(Ejab + 2m,)
(my + mp)2 + 2E|abmp .

(A.3)

The relativistic Schrédinger equation for two protons or two neutrons in the c.m. system
reads

[(2y/p?+m—2m)+ V]¥ =EV, (A9

wherem is the proton or neutron mass. For the neutron—proton system it takes the form

[(\/p2+m5+\/p2~l—m%—mn—m,,)~|—V]lI/=ElI/. (A.5)
The free Hamiltoniarfy can be expressed in terms of the masdefined as
2m
m = 7pmn 5 (AG)
mp +my

in the following way

Ho=\/p2+m,%+\/p2+m§—mn—mpZZ\/PZﬂLmZ—Zm, (A7)

modulo terms which are proportional ta , — my)2. Taking into account such terms goes
beyond the accuracy of the present analysis W therefore use the approximate expres-
sion (A.7) in this work, which leads to the Schrédinger equation of the type (A.4).

Appendix B. Partial wave decomposition of the NN potential

In this appendix we describe the partial wave decomposition of the two-nucleon poten-
tial. For that we first rewrite the potenti&l in the form

14 1t would be more appropriate to call such a system center-of-momenta or rest-frame and not center-of-mass
as usually done in the literature.
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. - A L - S T
V=Vc+Vso1-002+ VSLIE(01+62) “(kxq)+ Vsro1-(g xk)oz- (g xk)
+ Vog(61-§)(52- §) + Vor(51- k) (@2 - ), (B.1)

with six functionsVe (p, p’, 2), ..., Vor(p, p’, z) depending op = | p|, p’ = |p’| and the
cosine of the angle between the two momenta is calldtese functions may depend on
the isospin matrices as well. To perform the partial wave decompositiontbfi.e., to
express it in the standatd; representation, we have followed the steps of Ref. [97]. In
particular, we start from the helicity state representatjpnir2), wherep = p/p andiy
anda; are the helicity quantum numbers corresponding to nucleons 1 and 2, respectively.
We then expressed the potential in fh@:A1A2) representation using the transformation
matrix (pA1iz| jmAi)2), givenin Ref. [97]. The final step is to switch to tfiej) represen-
tation. The corresponding transformation matfigm| jma1i2) is given in Refs. [97,98].
For j > 0, we obtain the following expressions for the nonvanishing matrix elements in
the|lsj) representation:
(JOjIV1j0j)
1
= 271/511 Ve = 3Vo + p'?p?(22 = 1) Vor, — 4%Vioq — K*Vor} P (2),
-1
(JLjIV1j1j)
- Zn/dz { [vc + Vo +2p' pzVs — p'?p?(1+32) Vor,
-1

+ 42V, +

1
Zqzvak]

1
x Pj(2) + [—p’pVSL +2p"2p VoL — 2p’p<Vaq - Z%k)]

x (Pj-1(2) + P,-H(z))},
(U £11jIVIj £1.1))

2 1
= Zn/dz {p'p[—VSL + m(-P/PZVoL + Voq — ZVakﬂ

x Pj(z) + |:Vc + Vo + p'pzVse —l—p/z 2(1—Z2)VUL

1 2 2 2, 2 1
*5; +1<2p/ PVor = (P""4 P%) Vou + ZVor | ) | Pixa(@

(JEL1j1V]jF1, 1j)

Vig+D

—_p — s
S o f { P P@Vey — V) P (2),
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2[7/2[72

+[¢2j+1
2[7/2[72 5 1
+ Vs 2V, Vs P; . B.2
~I—[ 211 L+P< et k)] Jil(Z)} (B.2)

Here, P;(z) are the conventional Legendre polynomials. et O the two nonvanishing
matrix elements are

1
VoL + P/Z(Zvoq + EVok>:|Pj$l(Z)

1
(000 V|000 = 271/dz Ve = 8Ve + p'2p?(22 = 1) Vor — ¢%Veq — K*Vor}.

(110V|110 = 271/611 {zvc +2Ve + p'p(22 = V) Vss + p'2p?2(1— 2?) Vor
-1

, 1
— (P2 + p?)z—2p'p) Vg — 4—1((10’2 +p%)z+2p'p) Vok}~
(B.3)

Note that sometimes another notation is used in which an additional overall minus sign
enters the expressions for the off-diagonal matrix elementsiwith + 1,’ = j — 1 and
I=j—-1I=j+1.

Appendix C. Momentum space treatment of the Coulomb interaction

In this appendix we would like to explain our way of treating the nucleon—nucleon scat-
tering problem in the presence of the Coulomb interaction in momentum space (following
closely Ref. [7]). The starting point is the nonrelativistic Schrédinger equation of the form
(3.7) or (3.12), where the potential consisfswo pieces: the short-range one given by the
strong interaction and the long-range one given by the Coulomb force.

As the Coulomb potential is of infinite range, tlSematrix has to be formulated in
terms of asymptotic Coulomb states. Therefore, the phase shifts for a given angular mo-
mentum! due to the strong potential in the presence of the long-range electromagnetic
interactions, denoted b§, are defined in terms of a linear combination of (irregular
Coulomb-functiong’(G) as

X1 (r) = F(r) +tan(8)) G (r) (C.1)

analogously to the expression for an arbitrary potential of short range (i.e., in the absence
of the Coulomb force)

X () = F2(r) + tan(87) GO (r) (C.2)

with 79, G denoting solutions of the Coulomb problem with zero charge (conventionally
expressed in terms of Bessel and Neumann functions) and the corresponding phase shift is
calleds;. So far, we have restricted ourselves to uncoupled channels. We will consider the
coupled case later on.
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As Eq. (C.1) exhibits asymptotical Coulomb-states, we have to re-express our Lipp-
mann-Schwinger equation in terms of them. A very convenient scheme for inclusion of the
Coulomb force in momentum space was suggested long time ago by Vincent and Phatak
[99] and is used in the present analysis. In what follows we will briefly describe this ap-

pro‘?ﬁ: .starting point of this technique is the observation, that for a potential of the form
V=Vc+ Vs (C.3)
with
Vs =0 (r=R), (C.4)

andy; the two-nucleon wave-function for a given angular momentum, two exact solutions
for the wave-function can be given for every point on a sphere with rakligtse. One is

of the form as in Eq. (C.1), and another one according to Eq. (C.2) with the phase shifts
calculated for the following potential as in Eq. (C.3), witig \however, being the Fourier-
transformed Coulomb-potential integrated to the radius

R
P (a7 4 .o
VC(|6]/ _Q|) =/d3re’(q P ’% = |(}/iﬁ(l— COS(|q’ —q|R)). (C.5)
0

Here,g, g’ are the cms momenta ands the fine-structure constant. On the above-defined
sphere, both wave functions describe the same system. Now we know how to obtain an
expression for the strong phase sbjftn the presence of the Coulomb interaction in terms

of the short-range shifij in the absence of electromagnetism: we only have to match the
two solutions. This is most conveniently done by requiring the logarithmic derivative of
both solutions to be equal, what enables us to express the strong shift in the presence of the
Coulomb force in a Wronskian form

tan(s))[F, Gol + [F, Fol

tan(s!) = C.6
A = T Gl + tans))[Go. G (6
with
WLH=Q£E—F%3 : (C.7)
dr dr F=R

Let us now extend the previous consideration to the coupled case. For that we replace
Eq. (C.1) by the matrix equation

x' (1) =F@r)—mgK'G(r), (C.8)

whereK! is the K -matrix for the strong potential in the presence of the Coulomb interac-
tion, x'(r) is the 2x 2 matrix which contains the wave functions

l I
x) = (x{l,,-lm X;‘lﬁl(’)) , (€9)
Xjr1j-1() Xjpa j42(r)

andF(r) andG(r) are the 2x 2 matrices which contain the Coulomb wave functions

_ [ Fj—1(r) 0 _ [ Gj-1(r) 0
F(@r)= ( 0 Fj+1(r)) , G(r)= ( 0 Gj+1(i’)) . (C.10)
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All subscripts in the above equations refer to the values of the angular momé rnunai-
ogously, Eq. (C.2) has to be replaced by

x ()= Fo(r) — quSGO(r), (C.11)
whereK* is the K -matrix for the strong potential only.
Matching now the wave functiop! () with x*(r), calculated from the potenti& de-
fined in Egs. (C.3) and (C.5), at some radRiby equating the corresponding logarithmic
derivatives as described above one obtains fokthmatrix K’

K' = L [F(Fo—mqk*Go) M(Fy— mgK’Gp) — F']
mq

x [G(Fo—mgK*Go) *(Fy—mgK*Gp) — G']” (C.12)

The only remaining difficulty is the determination of the matching radiuecause the
given solution is wrong as long as (C.4) is not valid. On the other hand, it is not possible
to extendR to arbitrarily large valug, because the cosine in Eq. (C.5) will cause rapid
oscillations.R ~ 10 fm turns out to be a good choice, see [7]. We use the €12 fm
in the present analysis.

1

Appendix D. Effectiverange expansion

In this appendix we collect the formulae for tlfewave effective range expansion. In
the simplest case of the scattering with the finite-range potential, the quanbttg),
whereéy is the S-wave phase shift ankis the c.m.s. momentum, is well known to have
the low-momentum (or effective range) expansion:

1 1
kcotso) = —= + Erk2 + v2k* + v3k® + vak® + O(k19). (D.1)

Herea is the scattering length,the effective range angb 3 4 the shape parameters.

In the presence of the long-range potential the effective range expansion has to be mod-
ified. In that case one usually defines an effective range function instead of the quantity
kcot(8p), in which the left-hand singularities due to the long-range interaction are re-
moved, see Ref. [50] for more details. In the case of the modified Coulomb potential given
in Eq. (2.53), the effective range functidiy takes the form [50]

Fc = C5(n")kcot(85) + 2kn'h(n'), (D.2)

where the quantity’ is given by

/ mP /
=7 D.3
n=oo (D-3)
and the functionS?g(n’) (the Sommerfeld factor) andn’) read
2,/ 27”7/ / . /
Con) = —z— and h(n) =Rew @ +in)] =In(r). (D.4)

Here, ¥ denotes the digamma function. Notice that the phase(%iﬁ theS-wave phase
shift of the finite-range plus Coulomb potential with respect to Coulomb wave functions.
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In the notation of Section 3§ should be written asS7 , . The effective range expansion

for the functionF¢ is

11
Fo ==~ + 5k + gk + oS k8 4+ ok + O (k). (D-5)

In a general case of an arbitrary long-rangeiaction, the effective range function
may be obtained, e.g., along the lines of Ref. [100] provided that the long-range potential
is weak enough to be treated perturbatively. For more discussion on the effective range
expansion in presence of electromagnetic interaction the reader is referred to [50].
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