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Recent measurements of the coherent synchrotron radiation (CSR) e�ect carried out at CERN
and at Je�erson Lab indicate that the observed emittance growth and energy modulation due to
the orbit-curvature-induced bunch self-interaction are sometimes bigger than the results predicted
from previous analyses and simulations based on a Gaussian longitudinal charge distribution. In
this paper, by performing a model study, we show both analytically and numerically that when the
longitudinal bunch charge distribution involves concentration of charges in a small fraction of the
bunch length, enhancement of the CSR self-interaction beyond the Gaussian prediction may occur.
The level of this enhancement is sensitive to the level of the local charge concentration.

I. INTRODUCTION

In designs of next-generation accelerators, high-energy electron beams of short bunches with high charges are often
transported through magnetic bending systems. For example, in order to obtain the high-peak-current beams required
by future linear colliders and short-wavelength free-electron laser (FEL) drivers, bunch compression chicanes consisting
of several magnetic bends are often used: after an energy correlation along the bunch length is imposed on the bunch
by upstream radiofrequency (RF) cavities, high-charge bunches are transported through a chicane where the �nal
bunch length can be manipulated by employing the energy dependence of path length through the chicane. The
Je�erson Lab infrared FEL driver energy recovery recirculator [1] and combiner rings in the compact linear collider
(CLIC) design [2] are other examples of high-charge microbunches traversing through magnetic bending systems.
As an electron bunch goes through a bend, each electron emits synchrotron radiation. Coherent synchrotron

radiation (CSR) occurs when the radiation wavelength is longer than the bunch length, as a result of the orbit-
curvature-induced electromagnetic self-interactions within the bunch. These self-interactions, which are dominated
by the collective synchrotron radiation forces at high energy, will induce energy modulation in the bunch, and may
cause degradation of beam quality via the energy dependence of particle orbits in the bend. Understanding this CSR
e�ect is crucial for designs of bending systems in future accelerators so as to meet the stringent design requirements
on the preservation of small transverse and longitudinal emittances.
Earlier analyses of the CSR self-interaction [3-5] were all based on a rigid-line-charge model. Even though these

approaches can be applied for general longitudinal charge distributions, since the analytical results for a Gaussian
beam are explicitly given, one usually applies the Gaussian results to estimate the CSR e�ects using measured or
simulated rms bunch lengths. Likewise, a self-consistent simulation [7] was recently developed to study the CSR
e�ect on bunch dynamics for general bunch distributions. However, due to the lack of knowledge of the detailed
longitudinal phase-space distributions when simulating an CSR experiment, this simulation is usually carried out
assuming a Gaussian phase-space distribution with the rms bunch length derived from bunch length measurements.
Recent CSR experiments [8-10] indicate that the measured energy modulation and emittance growth are sometimes
bigger than results predicted by these previous analyses and simulations [6,7] using a Gaussian beam. To understand
this observed enhancement of the CSR e�ect, it is instructive to study the CSR self-interaction for a compressed
beam which may be highly non-Gaussian. In general, the �nal distribution of a fully compressed beam is determined
by many factors, including the details of the electron source, upstream space-charge interaction, RF structure, wake
function and optics|all of which vary with di�erent designs. In this paper, instead of treating the general distribution,
we carry out a model study by analyzing and numerically simulating the CSR self-interaction for a bunch compressed
by a magnetic chicane with the �nal bunch length determined only by the RF curvature and beamline optics. This
study reveals a general feature of the CSR self-interaction: whenever there is longitudinal charge concentration in a
small fraction of a bunch length, enhancement of the CSR e�ect beyond the Gaussian prediction can occur; moreover,
the level of this enhancement is sensitive to the level of the local charge concentration within a bunch. This sensitivity
should be given serious consideration in designs of future electron accelerators and when one interprets measurement
results of CSR experiments, so as to avoid underestimation of the CSR-induced phase-space dilution for high-charge
short electron bunches traversing bending systems.
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II. BUNCH COMPRESSION OPTICS

In order to study the CSR self-interaction for a compressed bunch, let us �rst �nd the longitudinal charge distribution
for our model bunch when it is fully compressed by a chicane (here we assume that the perturbation of bunching
process by CSR is negligible because most of the CSR perturbations take place at the end of the chicane when the
bunch length reaches its minimum value). We will �rst study the bunch compression for a beam with zero uncorrelated
energy spread Æun = 0, and then generalize the results for Æun 6= 0. Consider an electron bunch with N electrons. The
longitudinal charge density distribution function of the bunch at time t is

�(s; t) = Nen(s; t);

Z
n(s; t)ds = 1; (1)

where s is the longitudinal distance from a reference electron (s > 0 for bunch head), and n(s; t) is the longitudinal
density distribution of the bunch. As the bunch passes through the chicane, s varies with t for each electron and
consequently the density distribution also depends on t. Let us identify each electron by the parameter �, which is
the initial longitudinal position s0 of the electron at t = t0:

s0 � s(�; t0) = �: (2)

At t = t0, let the bunch be a line aligned on the design orbit at the entrance of a bunch compression chicane, with a
Gaussian longitudinal density distribution and the initial rms bunch length �s0:

n(s0; t0) = n0(�) =
1p

2��s0
e��

2=2�2s0 : (3)

To compress the bunch using the chicane, a linear energy correlation is imposed on the bunch by an upstream RF
cavity, along with a slight second-order energy correlation due to the curvature of the RF wave form. With Æ1 and Æ2
the linear and second-order correlation coeÆcients (Æ1; Æ2 > 0 and Æ2 � Æ1), the relative energy deviation Æ = �E=E0

from the design energy E0 is then

Æ(�; t0) = �Æ1 �

�s0
� Æ2

�
�

�s0

�2

; (4)

where we assume no uncorrelated energy spread. When the beam propagates to the end of the chicane at t = tf , the
�nal longitudinal coordinates of the electrons are

s(�; tf ) = s(�; t0) +R56Æ(�; t0) + T566[Æ(�; t0)]
2 (5)

= s(�; t0)(1� R56Æ1
�s0

)� �[s(�; t0)]
2; (6)

where R56 = dL=dÆ and T566 = d2L=2dÆ2, with L denoting the path length of an electron through the chicane, and
� � (R56Æ2 � T566Æ

2
1)=�

2
s0. To obtain the maximum compression of the bunch, one designs the chicane by choosing

R56, the initial bunch length �s0 and the initial energy correlation Æ1 to satisfy

1�R56Æ1=�s0 = 0; sf � s(�; tf ) = ��[s(�; t0)]2: (7)

For typical bunch-compression chicanes, one has R56 > 0 and T566 < 0; therefore � > 0, which implies sf � 0 from
Eq. (7). Using Eqs. (7) and (2), we have

�2 = �sf=� (� > 0; sf � 0): (8)

The �nal longitudinal density distribution n(sf ; tf ) can then be obtained from charge conservation n0(�)d� =
n(sf ; tf )dsf and from Eq. (8), which gives

n(sf ; tf ) =
1p

2��sf

esf=
p
2�sfq

�sf=
p
2�sf

H(�sf ); (9)

where H(s) is the Heaviside step function, and �sf denotes the rms of the �nal longitudinal distribution
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�sf �
q
hs2f i � hsf i2 =

p
2��2s0: (10)

The �rst moment of the distribution in Eq. (9) is hsf i = ��sf=
p
2.

The distribution in Eq. (9) obtained for Æun = 0 gives unrealistic divergence at sf = 0. For a realistic beam,
uncorrelated energy spread Æun should be added to Eq. (4) (here we assume Æun has a Gaussian distribution with
hÆuni = 0, and rms width Ærms

un ). As a result, the �nal longitudinal phase space distribution can be obtained by
combining Eqs. (4), (7) and (10), yielding

sf ' �(�sf=
p
2Æ21)Æ

2 +R56Æun; (11)

and the �nal e�ective rms bunch length becomes

�e�sf �
q
hs2f i � hsf i2 =

q
�2sf +R2

56hÆ2uni; (12)

with �sf given by Eq. (10). For example, when �s0 = 1:26 mm, R56 = 45 mm, Æ1 = 0:028, the compression condition
Eq. (7) is satis�ed. With � = 0:08 mm�1, Eq. (10) gives the �nal compressed bunch length �sf = 0:18 mm. An
example of the longitudinal phase-space distribution described by Eq. (11) is shown in Fig. 1.
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FIG. 1. Example of the longitudinal phase-space distribution for a compressed beam with RF curvature e�ect.

Next, we consider a rigid-line bunch on a circular orbit of radius R, with the longitudinal density distribution
function obtained from Eq. (9) for a compressed bunch

�cmpr
0 (�) =

1p
2���

e�=
p
2��q

��=p2��
H(��); (13)

where � = s=R and �� = �s=R, with s denoting the longitudinal distance from reference electron and �s the rms
bunch length. To account for the e�ect of the uncorrelated energy spread in Eq. (11), which gives the compressed
bunch an intrinsic width, we let the compressed bunch be a continuous distribution of macroparticles with their
centroid distribution described by Eq. (13), while each macroparticle is a line Gaussian distribution with the density
function

�m(�) = e��
2=2�2m�=

p
2��m�; �m� =

R56Æ
rms
un

R
; (14)

where �m� is the angular rms size for each macroparticle. Hence the overall distribution for a compressed bunch is

�cmpr(�) =

Z 1

�1
�cmpr
0 (�� ')�m(')d': (15)

Denoting a as the ratio of the intrisic width to the rms bunch length (here we are interested in 0 < a < 1)

a =
�m�

��
=

R56Æ
rms
un

R��
; (16)

3



we �nd �cmpr(�) in Eq. (15) becomes

�cmpr(�) =
21=4

4��
p
a
Exp

 
� �2

2a2�2�
+
u2

4

!p
juj
�
I� 1

4

�
u2

4

�
+ [H(�u)�H(u)] I 1

4

�
u2

4

��
(17)

where u =
ap
2
+

�

a��
and I�(x) is the modi�ed Bessel function. The asymptotic forms of �cmpr(�) in Eq. (17) can

be obtained from the asymptotic behavior of I�(x):

�cmpr(�) =
1

21=4��
p
�ajuj

8>><
>>:

1p
2
e��

2=2a2�2� (u > 0; juj � 1);

ea
2=4e�j�j=

p
2�� (u < 0; juj � 1):

(18)

Note a = 0 gives �cmpr(�) = �cmpr
0 (�). From Eq. (15), one �nds the rms angular width for �cmpr(�)

�e�� �
p
h�2i � h�i2 = ��

p
1 + a2; (19)

which agrees with Eq. (12). Fig. 2 shows good agreement of the analytical result of the longitudinal density distribution
in Eq. (17) with the numerical result for the example given in Fig. 1.
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FIG. 2. Analytical and numerical result of the longitudinal density distribution for the example shown in Fig. 1, with a

de�ned in Eq. (16).

III. CSR SELF-INTERACTION FOR A COMPRESSED BUNCH

To study the CSR self-interaction for the rigid-line bunch in Eq. (17) under a steady-state circular motion, let us
�rst enlist the formulae established by earlier analyses [3-5]. The longitudinal collective force via space charge and
CSR interaction is derived from the scalar and vector potentials � and A,

F�(�) =
e

�c

@

@t
(�� � �A) = �Ne2

R2

Z 1

0

1� �2 cos �

2 sin(�=2)

@

@�
�(� � ') d'; (1)

where � = v=c, � = j�j, 
 = 1=
p
1� �2, and � is an implicit function of ' via the retardation relation ' =

�� 2� sin(�=2). In this paper, we treat only the high-energy case when 
 � ��1 and � ' 2(3')1=3. In this case F�(�)
is dominated by the radiation interaction:

F�(�) ' �Ne2

R

Z 1

0

�2 sin �
2

1� � cos �2

@

@�
�(� � ')d' ' �2Ne2

31=3R2

Z 1

0

'�1=3
@

@�
�(� � ')d': (2)

The radiation power due to the radiation interaction is

P = �N
Z

F�(�)�(�)d�: (3)
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Results for the longitudinal collective force and the radiation power for a rigid-line Gaussian beam are [3-5]:

�Gauss(�) =
1p
2���

e��
2=2�2� (�� � 1


3
); (4)

FGauss
� (�) ' Fg

Z 1

0

(�=�� � �1)

�
1=3
1

e�(�=����1)
2=2d�1 with Fg =

2Ne2

31=3
p
2�R2�

4=3
�

; (5)

PGauss ' N2e2

R2�
4=3
�

31=6�2(2=3)

2�
: (6)

where �(x) is the Gamma function.
Next, we analyze the CSR self-interaction for a rigid-line bunch with the density function given in Eq. (17) under

the condition �� > �m� � 
�3. We proceed by �rst �nd CSR force for a compressed bunch with a = 0 and then
extend this result to cases with a > 0. Applying Eq. (13) to Eq.(2), we obtain the longitudinal collective force on a
compressed bunch with zero width as a result of radiation interaction:

F cmpr
�0 (�) ' �2Ne2

31=3R2

Z 1

0

'�1=3
@

@�
�cmpr
0 (� � ') = �21=4 Fg dG(y)=dy (y = �=��); (7)

with Fg given in Eq. (5), and

G(y) = H(�y) e�jyj=
p
2jyj1=6 �

�
2

3

�
	

�
2

3
;
7

6
;
jyjp
2

�
+H(y) y1=6 �

�
1

2

�
	

�
1

2
;
7

6
;
yp
2

�
; (8)

where 	(a; 
; z) is the degenerate hypergeometric function

	(�; 
; z) =
1

�(�)

Z 1

0

e�ztt��1(1 + t)
���1dt: (9)

The steady-state CSR longitudinal force for a compressed bunch with nonzero width a 6= 0 (a given in Eq. (16)) can
then be obtained using Eqs. (2), (15) and (7), yielding

F cmpr
� (�) =

Z 1

�1
F cmpr
�0 (')�m(�� ')d' =

21=4 Fgp
2� a5=6

f

�
�

a��
; a

�
; (10)

with

f(y; a) =

Z 1

�1
G(a x)(y � x) e�(y�x)

2=2dx: (11)

Similarly, the radiation power can also be obtained for the compressed bunch using Eq. (3) with �cmpr(�) in Eq. (17)
and F cmpr

� (�) in Eq. (10), which gives

P cmpr

PGauss
' 0:75

I(a)

a5=6
; with I(a) = �

Z 1

�1
f

�
�

a��
; a

�
�cmpr(�)d�: (12)

Numerical integration shows that jf(y; a)jmax | the maximum of jf(y; a)j for �xed a | is insensitive to a for
0 < a < 1, as depicted in Fig. 3. As a result, for a compressed bunch with �xed ��, we found from Eq. (10)

the amplitude of the CSR force F cmpr
� (�) varies with a�5=6. Therefore in contrast to the well-known scaling law

R�2=3��4=3s for the amplitude of the longitudinal CSR force for a Gaussian beam, a bunch described by Eq. (17) has

jF cmpr
� jmax / R�2=3��1=2s �

�5=6
w with �w = R56Æ

rms
un denoting the intrinsic width of the bunch. Likewise, for a=0.1,

0.2, and 0.5, we found from numerical integration that I(a) ' 0.76, 0.90 and 1.02 respectively, and correspondingly
P cmpr=PGauss ' 3.9, 2.6 and 1.4. This dependence of the amplitude of the CSR force and power on the intrinsic
width of the bunch for a �xed rms bunch length manifests the sensitivity of the enhancement of the CSR e�ect on
the local charge concentration in a longitudinal charge distribution.
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FIG. 3. f(y; a) vs. y for a=0.1, 0.2, and 0.5.

In Figs. 4 and 5, we plot the longitudinal density function for various charge distributions with the same rms bunch
lengths (except the

p
1 + a2 factor in Eq. (19)), and the longitudinal CSR collective forces associated with the various

distributions. The amplitude of F cmpr
� in Fig. 4 agrees with the a�5=6 dependence in Eq. (10). Good agreement of

the analytical result in Eq. (10) with the simulation result [7] for the CSR force along the example distribution in
Fig. 1 is shown in Fig. 6. Figs. 4 and 5 show clearly that the more locally concentrated are the charges than the
smooth behavior of a Gaussian beam, the more enhancement will result from the CSR self-interaction forces. This
general feature of the CSR interaction and emission is not limited to the RF curvature e�ect described in this paper
[11]; furthermore, our simulation shows that the enhancement also occurs in the transient regime. Comparing to a
Gaussian beam, the local charge concentration in a small fraction of the bunch length can lead to a bigger emittance
growth for a compressed or over-compressed beam in a chicane, and a larger energy spread can be observed if the
compressed beam is sent to a spectrometer magnet downstream of the chicane, where the beam can further interact
with itself via CSR. The frequency domain analysis and the e�ect of interaction with o�-axis particles will be discussed
elsewhere.
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FIG. 5. Longitudinal CSR force along the bunch for various charge distributions illustrated in Fig. 4.
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