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Similar to elastic electron scattering, Compton Scattering on the proton at high momentum

transfers(and high p⊥) can be an effective method to study its short-distance structure. An

experiment has been carried out to measure the cross sections for Real Compton Scattering

(RCS) on the proton for 2.3-5.7 GeV electron beam energies and a wide distribution of

large scattering angles. The 25 kinematic settings sampled a domain of s = 5− 11(GeV/c)2,

−t = 2−7(GeV/c)2 and −u = 0.5−6.5(GeV/c)2. In addition, a measurement of longitudinal

and transverse polarization transfer asymmetries was made at a 3.48 GeV beam energy

and a scattering angle of θcm = 120o. These measurements were performed to test the

existing theoretical mechanisms for this process as well as to determine RCS form factors.

At the heart of the scientific motivation is the desire to understand the manner in which

a nucleon interacts with external excitations at the above listed energies, by comparing

and contrasting the two existing models – Leading Twist Mechanism and Soft Overlap

“Handbag” Mechanism – and identify the dominant mechanism. Furthermore, the Handbag

Mechanism allows one to calculate reaction observables in the framework of Generalized

Parton Distributions (GPD), which have the function of bridging the wide gap between

the exclusive(form factors) and inclusive(parton distribution functions) description of the

proton. The experiment was conducted in Hall A of Thomas Jefferson National Accelerator

Facility(Jefferson Lab). It used a polarized and unpolarized electron beam, a 6% copper

iii



radiator with the thickness of 6.1% radiation lengths (to produce a bremsstrahlung photon

beam), the Hall A liquid hydrogen target, a high resolution spectrometer with a focal plane

polarimeter, and a photon hodoscope calorimeter. Results of the differential cross sections

are presented, and discussed in the general context of the scientific motivation.
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Chapter 1

Introduction: Proton Structure and

Generalized Parton Distributions

1.1 The Proton

The first evidence of the existence of an elementary (as it was thought of at the time)

particle with the characteristics of proton came as early as in 1918, when Ernest Rutherford,

while studying the effect of alpha particles on nitrogen gas, noticed features in the data

which are characteristic to hydrogen nuclei. Rutherford then concluded that the nitrogen

nucleus must consist of hydrogen nuclei, and hence suggested that the hydrogen nucleus,

which was known to be the element with the lowest atomic weight, is an elementary particle,

and named it the proton. For some period of time the proton was indeed believed to be an

elementary structure-less particle, or in terms of Quantum Electrodynamics, a Dirac particle.

The invalidity of this belief became clear in 1933, when Otto Stern determined proton’s
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gyromagnetic ratio’s g-factor by measuring the magnetic moment, and found it to be gp =

5.59 instead of gDirak ≈ 2 as expected for a truly structureless particle. This circumstance

ignited a major interest in the proton, and spurred global attempts to understand proton’s

internal structure.

The first experiments used elastic electron scattering – in an analogy to Rutherford’s

elastic alpha-particle scattering experiments on gold atoms – to glean an insight on the

proton. In analogy with the classical example, where the observables of scattering on an

extended charge-current distribution can be expressed as a product of the “point” observable

and the Fourier transforms of charge and current distributions, the cross section of elastic

electron distribution was expressed as a product of Mott cross section for scattering on point

proton, and a combination of electric and magnetic form factors:

dσ

dΩ
=

dσMott

dΩ

[
G2

E + Q2

4M2 G
2
M

1 + Q2

4M2

+ 2
Q2

4M2
G2

M tan2 θ/2

]
(1.1)

where −Q2 is the four-momentum transfer squared, while GM and GE are the magnetic and

electric form factors. This separation of the scattering cross section into electric and magnetic

parts was performed by Marshall Rosenbluth, and nowadays is referred to as “Rosenbluth

formula” [14].

Later on in the history of nuclear physics, in the sixties, Murray Gell-Mann proposed

a model of proton, consisting of three partons – truly point-like structure-less particles,

which are confined in the proton by the strong interaction. The strong interaction is also

referred to as the color force, and is mediated by the exchange of particles known as glu-

ons. The quantum theory describing these processes is called Quantum Chromodynamics

(QCD), and is constructed in a direct analogy to Quantum Electrodynamics (QED). Once
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the model was proposed, it was immediately inferred that a strong enough excitation could

break the proton into its constituent parts. This gave rise to a series of Deeply Inelastic

Scattering(DIS) experiments. The results of the early DIS experiments from Stanford Lin-

ear Accelerator (SLAC) seemed to indicate that when scattered on the proton, the electron

experiences scattering on multiple discrete scattering centers, as if the proton consisted of

smaller particles. Specifically, it was found that at fixed Bjorken xB the ratio of observed

cross section and the cross section of scattering on a point particle (as calculated in QED) –

σDIS/σpoint – is almost independent of the four-momentum transfer q, as would be the case

for a truly point-like particle. Furthermore, with increasing beam energies and momentum

transfers this dependence becomes even weaker. Based on these findings, it was concluded

that the proton consists of point-like particles – partons – and as the energies increase the

scattering occurs on these partons rather than on the proton itself [15]. The logic behind the

experimental technique is remarkably similar to that of the early Rutherford experiments,

albeit at a much higher energy scale.

After the discovery of a nucleon’s parton structure, a flurry of activity followed in nuclear

physics, both in experiment and in theory . A number of DIS experiments investigated the

spin structure of the proton, and discovered that the quark spin doesn’t entirely account for

the proton’s magnetic moment. Meanwhile, the theorists tried to address the issue of quark

confinement as well as that of applicability of perturbation theory to QCD. The complexity

of the problem consist of the fact that unlike the electromagnetic interactions, the color force

increases with increasing distances. This means that as the energy transfers decrease the

probe “sees” interactions at larger distances, with a stronger potential. As the potential
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of the interaction increases, it becomes impossible to treat it as a mere perturbation to

the total energy of the ensemble. It has been however very unclear as to at which values

of s, t and u Mandelstam variables(see Appendix A for the definition) does perturbative

QCD (pQCD) become applicable. An extensive calculation by S. Brodsky and G. Farrar

[16] performed in the perturbative framework resulted in the so called Constituent Quark

Counting Rule, which predicted that for the exclusive processes the applicability of pQCD

would entail scattering cross section’s s-dependence of the following form:

dσ

dt
= f(θcm) s2−n

where n is the total number of photon, lepton and quark elementary field constituents in

the initial and final states of the diagram. This is one of the most mathematically rigorous

results of perturbative QCD, and can be experimentally tested with high accuracy. Indeed,

results from an experiment in late 1970’s, which measured Compton scattering on proton

at medium energies, did observe what at the time seemed to be a 1/s6 dependence in cross

section. It was however puzzling to find out that experimental results showed values of

f(θcm) which were almost two orders of magnitude larger than the theoretical predictions.

Furthermore, it quickly became clear that a number of nonperturbative phenomenological

models would also predict 1/sn dependences which would agree with the data, at least within

experimental uncertainties.

This gave rise to doubts about the original assertion on pQCD’s applicability at medium

energies. A number of theoretical papers [17], influenced by experimental results which

deviated strongly from perturbative calculations, asserted that pQCD can be applied only

at much higher energies and momentum transfers. This became a reason for a search of a
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mechanism which would treat the quark-quark interactions in a non-perturbative framework.

After a long period of standstill, in 1997 a new mechanism of real Compton scattering was

proposed by X. Ji [18], which argued that the gluon exchanges in the leading twist pQCD

diagram could not be treated perturbatively but needed to be included in the part of the

diagram which accounted for the low-momentum “soft” interactions. This gave rise to the

so called Soft Overlap Mechanism, where only one quark absorbs and re-emits the photon,

while the rest remain as spectators. Due to a lesser number of hard vertexes, this diagram

resulted in a much larger amplitude. Subsequent efforts by A. Radyushkin, M. Diehl, P.

Kroll and others [3] [19] [20] yielded values for cross section comparable to those provided

by the existing data. The new approach was also made original by the use of Generalized

Parton Distribution (GPD) formalism, which in essence is a combination of the ideas behind

Form Factors, extracted from exclusive measurements, and parton distribution functions, as

measured by inclusive measurements.

1.2 Exclusive Physics and Form Factors

Since the advent of nuclear physics electron scattering has been one of the most effective

methods to study the internal structure of nuclei and nucleons. Elastic electron scattering on

a proton is a good example of exploitation of electromagnetic probes to study proton’s electric

and magnetic structure. Here the term elastic implies conservation of total kinetic energy,

and no change in the internal energy of the particles. Meanwhile, the exclusive nature of the

experiment comes from the circumstance that the kinematic quantities for all the incoming

and outgoing particles are known. The electron couples electromagneticaly to the charge
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and current distributions inside the proton. Since the carriers of those distributions are the

quarks themselves, elastic electron scattering can be a very effective method to study the

internal partonic structure of the nucleon. Elastic scattering of electron on a point charge-

current distribution is very well understood in the framework of QED and can be precisely

calculated. Any deviations of the experimental observables from calculations based on point-

like structure will immediately point to and reveal the complex structure of the proton.

Very similar to X-ray crystallography, where scattering cross section can be expressed to

be proportional to the Fourier transform of lattice structure, the cross section of elastic

electron scattering can be expressed into a product of point-like “Mott” cross section and a

combination of electric and magnetic form factors, as seen earlier in Eq. 1.1. Furthermore,

in this formalism the proton only “sees” the virtual photon which it exchanges with the

electron. Hence the resolution of this kind of probe can only depend on the wavelength of

the photon and correspondingly on the four-momentum transfer. The Feynman diagram for

elastic electron scattering can be seen in Fig. 1.1 (a).

The description of elastic electron scattering on an extended charge and current distri-

bution is based on a number of fundamental assumptions:

• To describe the nucleon’s deviations from point-like behavior so called form factors

are introduced, which are included in the scattering amplitude as vector and tensor

transition current matrix elements between nucleon states.

• The form factors have to include at least two independent terms, to separately describe

proton’s electric and magnetic structure.
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Figure 1.1: First order Feynman diagrams for elastic electron-proton scattering (a) and

Deep Inelastic Scattering (b).

• Since the spacial resolution of a probe is directly related to its wavelength, which, in

its turn is related to the momentum transfer, the form factors need to depend only on

the momentum transfer to the nucleon.

At lower energies, when the wavelength of the exchanged virtual photon is larger than the size

of the nucleon, the later is essentially seen as a point particle, and the scattering amplitude

is described by so called Mott cross section:

[
dσ

dΩ

]
Mott

= α2 E ′

4E3

cos2 θ/2

sin4 θ/2
(1.2)

where α is the fine splitting constant, θ is electron scattering angle, and E and E ′ are

electron’s incoming and outgoing energies.

However, as the energy of the incoming electron increases, the wavelength of the virtual

photon decreases and it becomes sensitive to the internal structure of the proton, that is, it

sees only small portion of the charge-current distribution. This causes a strong drop in the

cross section from its Mott value. This drop in cross section is conditioned by the proton’s
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extended current-charge distribution, and the new cross section has the following form:

dσ

dΩ
=

[
dσ

dΩ

]
Mott

{
F 2

1 (Q2) + τ [F 2
2 (Q2) + 2(F1(Q

2) + F2(Q
2))2 tan2 θ/2]

}
(1.3)

where

τ =
Q2

4M2
, and Q2 = 4EE ′ sin2 θ/2

−Q2 here is the squared four momentum transfer to the proton, and corresponds to the

invariant mass of the virtual photon. F1(Q
2) and F2(Q

2) are the Dirac and Pauli form

factors, corresponding to transitions between nucleon states. The physical meaning of these

form factors becomes more understandable when we combine them linearly into so called

electric and magnetic form factors:

GE(Q2) ≡ F1(Q
2) − τF2(Q

2)

GM(Q2) ≡ F1(Q
2) + F2(Q

2)

(1.4)

In the center-of-mass frame of the reaction, and in non-relativistic low energy regime, these

can be related to the Fourier transforms of charge and current distributions. The strong

dependence of the nucleon form factors on Q2 at medium energies is a direct indication of

the proton’s extended shape. By fitting to elastic data, the form factors have been found to

be1

GE(Q2) ≈ (1 +
Q2

0.71GeV2 )−2 and GM(Q2) ≈ 2.75 · GE(Q2) (1.5)

Besides allowing for one to determine the electron scattering cross sections, the form factors

can be directly used to provide detailed information about the proton. For example, for

1It should be noted that this relation is no longer believed to be exact. Recent experiments have shown

that the GE/GM ratio decreases with increasing Q2 [21–23]. For the sole purpose of determining the cross

section, however, this is still a valid expression.
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small values of Q2 the mean square radius of the proton can be found to be [24]

< r2 >= 6

(
dGE(Q2)

dQ2

)
Q2→0

= (0.81fm)2 (1.6)

Furthermore, using Fourier analysis, we can show that in order for a form factor to have the

form of Eq. 1.5, the charge distribution needs to have a form of

ρ(r) ∝ e−r/r0

1.3 Inclusive Physics and Parton Distribution Func-

tions

Having observed the proton at lower momentum transfers, where the interaction is sensi-

tive to the proton’s internal structure only as a strongly-interacting ensemble, it becomes

interesting to decrease the wavelength of the exchanged photon, in order to attempt to

resolve individual constituents, or as we call them now – partons. There is however a cru-

cial difference: as the energy transfer increases, with some probability the proton starts to

break up into its constituents, since the energy binding those is smaller than the energy

absorbed by the proton. The scattering is not elastic anymore, and the process is described

as Deeply Inelastic Scattering (DIS). The diagram of Fig. 1.1(a) has to be replaced with

that of Fig. 1.1(b). In this case, unlike exclusive measurements, the kinematic knowledge

of the electron vertex is not enough to predefine the kinematic quantities in the final state.

The experiment only observes the scattered electron, hence all possible outcomes of the final

state are summed over, which is what makes this an inclusive measurement. Due to this lack
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of information, the elastic form factors cannot anymore describe the process, and new, more

generalized structure functions need to be introduced in analogy with the form factors. The

main difference is that the structure functions need to depend both on Q2 and ν, the energy

transfer to the proton. In analogy to Eq. 1.1 we write

dσDIS

dΩ
=

dσMott

dΩ

{
W2(Q

2, ν) + 2W1(Q
2, ν) tan2 θ/2

}
(1.7)

where the Mott point cross section is defined in Eq. 1.2.

The expression of Eq. 1.7 provides a generic mathematical framework for describing DIS.

It however doesn’t provide any explicit clues about the internal structure of the nucleon and

only allows us to denote our ignorance of proton’s structure. However, if we assume that

the proton in fact constitutes an ensemble of quarks(partons), then we can at least use this

picture of proton structure to model W2 and W1.

Let’s assume that the proton is made of spin-1
2

point-like partons. Then, for a very large

Q2 the scattering should occur on these particles. If this is then the case, we should be able

to develop a quantitative model for the structure functions based on the analogy between

point cross section and DIS cross section:

[
dσ

dΩ

]
Mott

= α2 E ′

4E3

cos2 θ/2

sin4 θ/2

[
δ(ν − Q2

2m
) +

Q2

2m2
δ(ν − Q2

2m
) tan2 θ/2

]
[

dσ

dΩ

]
DIS

= α2 E ′

4E3

cos2 θ/2

sin4 θ/2

[
W2(Q

2, ν) + 2W1(Q
2, ν) tan2 θ/2

]

Notice that unlike Eq. 1.2, here we used the full form of point cross section, with the delta

function introduced to ascertain that the energy-momentum conservation ν = Q2/2m is

upheld at the electron vertex. Based on this comparison one can conclude that for an
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individual parton the DIS structure functions are

2W point
1 (Q2, ν) =

Q2

2m2
δ(ν − Q2

2m
)

W point
2 (Q2, ν) = δ(ν − Q2

2m
)

Simplifying the delta functions, and replacing F1 ≡ mW1 and F2 ≡ νW2 we receive

2F1 =
Q2

2mν
δ(1 − Q2

2mν
) ⇒ 2F1(xB) = xBδ(1 − xB)

F2 = δ(1 − Q2

2mν
) ⇒ F2(xB) = δ(1 − xB)

where we substituted xB = Q2/2mν. This is a very important result: it implies that if the

proton is in fact made of weakly interacting point particles, then at high values of Q2 and at

a fixed value of xB the cross section starts following the shape of point cross section, and the

structure functions depend only on xB and not on Q2 and ν. First time this conjecture was

tested at Stanford Linear Accelerator (SLAC) in 1971, when DIS data was used to determine

the Q2 dependence of F2 = νW2. Plots of F2(xB) vs. Q2 for different values of xB can

be seen in Fig. 1.2, showing an almost total independence of Q2, and hence validating the

assumption that the proton consists of point-like particles.

If a parton carries x-th of the total longitudinal momentum of the proton, i.e. if it has a

momentum of xpL, then it can be shown that the structure functions for that parton should

be

F1(xB) =
xB

2x2
δ(1 − xB

x
)

F2(xB) = δ(1 − xB

x
)

However, the probability that the i-th parton carries a momentum fraction x is limited. Here

we have to introduce the Parton Distribution Functions(PDF), which are the differential
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Figure 1.2: Plot of F2(xB) vs. Q2 for different values of xB = Q2/2mν. Data is from [1]
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probabilities of a given parton carrying a momentum xpL. Summing our results over the

partons, and including the probability that that parton carries a momentum x, we get the

following expressions for the structure functions:

F2(xB) =
∑

i

∫ 1

0

dxe2
i fi(x)xδ(x − xB) (1.8)

⇒ x = xB = Q2/2mν and F2(x) = x
∑

i

e2
i fi(x)

F1(x) =
1

2x
F2(x) (1.9)

The x = xB relation is a remarkable result: it allows one to use known experimental kine-

matic settings (such as four-momentum and energy transfer to the target) to determine the

momentum of an individual active parton. This in its turn allows one to map the dependence

of structure functions on quark’s fractional momentum x. Experimental measurements of

F1 and F2 can be seen in Fig. 1.3. The next step, after measuring the structure functions

is to try and decompose them into their PDF components, by using an experimental semi-

inclusive technique called flavor tagging (to determine the flavor of the hadronized quark)

to separate the statistic events by the flavor of the active parton.

It is important to note here, that the simplistic linear sum over all the partons in Eq. 1.9

implies that we neglect all parton-parton interactions. When we wrote the simple sum we

essentially ignored all the couplings between the quarks. This is an approximation which

is somewhat analogous to the so called impulse approximation in nuclear scattering, and

assumes that if the energies are high enough then the relativistic time dilation in the rest

frame slows down the rate at which the partons interact with each other to the point where

the external coupling has a characteristic time scale which is much smaller then the time
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Figure 1.3: Plots of F1(x) = 2mW1(x)

vs. ω ≡ 1/x and F2(x) = νW2(x) vs. ω ≡
1/x for different values of xB = Q2/2mν.

Data is from one of the original experi-

ments which took place at Stanford Lin-

ear Accelerator [2]

scale of parton-parton interaction. The parton in this case is essentially a free particle.

Another way to see is the following: as the Q2 increases, the wavelength of the virtual

photon decreases, and the photon “sees” only very short distance interactions. At short

distances the color force is almost non-existent, allowing the particles to behave as if free.

Above we used the analogy with impulse approximation. There is however a major

difference. After the struck nucleon escapes the potential of the nucleus, it can exist as

a completely free particle. The quark however is subjected to color confinement: it has to

interact with the spectator partons to form a colorless hadron which then becomes one of the

fragments of the original proton. Due to the size of the proton this process of hadronization

requires a time scale which is much larger (again, assuming Q2 � m2) than the time scale

at which the quark is hit by the virtual photon. As a result, we can argue that for large

values of Q2 the interaction with the parton happens as if it were free, and that any final

state interactions responsible for hadronization do not affect the calculated cross section.
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1.4 Generalized Parton Distributions (GPD)

Deep Inelastic Scattering and Elastic Electron Scattering are the two very different methods

of investigating the nucleonic structure, and deal with two different phases of the proton.

These approaches imply very different experimental techniques, and involve the extremes of

momentum transfer spectrum. The mathematical formalism used is also very diverse: in

the first case, x-dependent structure functions and parton distribution functions are used,

while in the second case Q2-dependent Dirac and Pauli form factors are employed. It seems

rather intuitively natural, then, to expect that since at issue is the same particle – proton –

it should be possible to construct a common “unified” formalism, which would describe both

inclusive and exclusive processes. In the recent eight or so years a major effort has taken

place in the scientific community to develop such a formalism, to reconcile these disjoint

approaches to the nucleon structure. Generalized Parton Distributions (GPD in short) can

be seen as generalizations to the parton distribution functions from DIS. These are hybrid

objects which are meant to intrinsically describe the proton, independent of the particular

reaction to which the proton participates. Given the GPD, one can describe essentially

any inclusive or exclusive process involving the proton. Thorough reviews and descriptions

of GPD’s can be found in Ref. [18], [25] and [4]. A simple leading order model for Real

Compton Scattering on proton has been developed by A.V. Radyushkin [3], based on GPD

calculations.

Mathematically, for Real Compton scattering (which is the reaction of interest in this

thesis) the GPD’s depend on two main variables: x parton momentum fraction, as in DIS, and
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Compton Scattering (RCS) on a nucleon.

A simple example of a model for Gener-

alized Parton Distribution F (x, t) can be

found in Ref. [3]
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Figure 1.5: Feynman diagram for the

analogous elastic electron scattering on a

nucleon.

t = −Q2 as in elastic electron scattering2. In physics terms, the GPD denotes the probability

that a parton interacting with an external electromagnetic probe (the real photon, as in the

case of RCS) has the momentum fraction x at a squared momentum transfer of t. For an

exclusive process, such as Real Compton Scattering, the GPD represents the amplitude for

a quark of momentum fraction x to be emitted by the proton, absorb a four-momentum

transfer t, and then recombine with the spectator quarks to reform the proton. After having

absorbed the initial photon the active quark goes into a state with a virtuality whose measure

is related to s. Notice that the parton distribution functions in DIS only depend on x: the

outgoing parton is real and hence has the virtuality of zero.

2Here it is important to note that in elastic electron scattering Q2 denotes the virtuality of the incoming

photon. In RCS however, the incoming photon is real, so Q2 and t here denote the squared four-momentum

transfer to the proton, which can be alternatively calculated by −Q2 = t = (k− k′)2, where k and k′ are the

four momentums of the incoming and outgoing real photons
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The Feynman diagram for Real Compton Scattering on proton can be seen in Fig. 1.4.

The purpose of the GPD’s, as already mentioned, is to form a link between inclusive and

exclusive descriptions of the proton. The Optical Theorem is used to relate the DIS structure

functions to the forward(i.e. t = 0) scattering amplitude. This allows for a crucial comparison

between the two reactions (doubly Virtual Compton Scattering and DIS), and a subsequent

relation between their amplitudes. This can be used to reduce the GPD’s to simple Parton

Distribution Functions at the limit of t = 0. This is a very important relation which allows

us to fit the x-dependence of the GPD models to DIS data.

The next important feature of the GPD’s is in the reduction relations and model inde-

pendent sum rules which relate these to the electromagnetic form factors. So, for example,

to receive the Dirac, Pauli and other elastic scattering form factors, we have the following

relations:

F1(t) =
∑

i

ei

∫ 1

0

Hi(x, t)dx

F2(t) =
∑

i

ei

∫ 1

0

Ei(x, t)dx

gA(t) =
∑

i

ei

∫ 1

0

H̃i(x, t)dx

hA(t) =
∑

i

ei

∫ 1

0

Ẽi(x, t)dx (1.10)

The summation is performed over all the quarks inside the nucleon, and ei is the charge of

the given quark.

For Real Compton Scattering the situation is analogous, with the only difference of the

horizontal quark propagator and the extra electromagnetic vertex, which contribute a ei/x
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term in the integral:

RV (t) =
∑

i

e2
i

∫ 1

0

Hi(x, t)
dx

x

RT (t) =
∑

i

e2
i

∫ 1

0

Ei(x, t)
dx

x

RA(t) =
∑

i

e2
i

∫ 1

0

H̃i(x, t)
dx

x
(1.11)

Finally, as mentioned earlier, at the forward limit (t = 0) the GPD’s need to converge with

simple parton distributions (similar to f(x) in Eq. 1.9):

Hi(x, t = 0) = qi(x)

H̃i(x, t = 0) = Δqi(x) (1.12)

where q(x) and Δq(x) are helicity independent and helicity dependent parton distributions.

Besides being mathematical tools for describing electromagnetic reactions on the nucleon,

the GPD’s have a real physical meaning. This becomes clear when one performs Fourier

transformation to switch from transfered four-momentum t space to “impact parameter”

space. The “impact parameter” in this case is the transverse distance between the active

quark and the center of mass of the proton. Plots of detailed calculations by M. Burkardt [5]

and M. Diehl [4] can be seen in Fig. 1.6 and Fig. 1.7. These plots reflect an interesting feature

of the proton: as x momentum fraction decreases, the size of the proton itself increases. This

can be understood simply by considering Heisenberg uncertainty principle Δx Δp ∼ �: when

the quark momentum decreases, it’s coordinate uncertainty needs to increase.

The function of the GPD’s as a bridge between different types of already existing inclusive

and exclusive descriptions of the nucleon is rather clear from the Eq.’s 1.10, 1.11 and
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Figure 1.6: Impact parameter b⊥ =

(bx, by) distributions in the transverse x−
y plane for a proton, for different values

of active quark’s fractional momentum x

[4].

Figure 1.7: Distribution of impact

parameter amplitude b⊥ and fractional

momentum x. [5].
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2.8. Furthermore, besides describing elastic electron, Real Compton, and Deep Inelastic

Scattering, the GPD’s can also be used to describe other processes, such as Deeply Virtual

Compton Scattering. In order to test the particular parameterizations and mechanisms used

to model the GPD’s, we as experimentalist use the following circumstance – the existing

GPD models are based on DIS (Eq. 2.8) and elastic (Eq. 1.10)data: to be considered a

robust description of the proton the GPD’s must be able to independently(i.e. without any

further adjustments) reproduce Real Compton Scattering data, as presented later in this

thesis. This question will be answered later, towards the end of the thesis, and will be

one of the ultimate tests for their acceptance as a universal formalism describing nucleonic

structure.
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Chapter 2

Compton Scattering on Proton at

Medium Energies

2.1 Introduction

In the previous chapter we discussed the two major methodologies in the field of electro-

magnetic interactions: exclusive (elastic electron scattering) and inclusive(DIS) experiments.

Furthermore, we introduced the concept of the Generalized Parton Distributions(GPD’s).

In this chapter we will see how GPD’s can be used to determine the reaction observables

for Real Compton Scattering on proton at medium energies (4 ≤ s ≤ 11 , 2 ≤ −t ≤ 6, in

units of GeV 2)1. However, before we dive into discussions about nucleonic structure we need

to understand Compton Scattering on a structureless Dirac particle. At the lower energies,

when the proton is seen as a point particle, the simple QED calculations have yielded excel-

1Throughout this thesis we use Mandelstam variables s, t and u to define kinematic states. For complete

definitions refer to Appendix A
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lent agreements with data. At higher energies however, which is the region of interest here,

the data is rather sparse.

2.2 Compton Scattering on Point Particle

Scattering of a particle of light on a charged particle has first been observed by Arthur

Compton at the beginning of 20th century. Using energy-momentum conservation he cor-

rectly predicted the kinematic relations between the scattered light’s wavelength, incoming

light’s wavelength, and scattering angle. Later on, with the advent of Quantum Mechanics,

theorists O. Klein and Y. Nishina performed calculations of the scattering amplitude [26].

The two leading order Feynman Diagrams for Compton Scattering on a point particle

with charge e are the following:

Before we start writing the scattering matrix element for this process, it is useful to

look at the diagrams themselves. The fermion propagators, which determine the kinematic

dependence of the scattering amplitude, are the following: 
 s 1
s2 and 
 u 1

u2 , where s and u are

the standard Mandelstam variables, and 
 a ≡ aμγμ. s depends only on incoming photon

beam energy and particle mass (for a fixed target). Furthermore, −u ≈ s(1 − cos θ)/2
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decreases with scattering angle, from which it follows that unlike elastic electron scattering,

where the cross section drops sharply with increasing scattering angle, the cross section for

Compton scattering increases with scattering angle.

To determine the scattering amplitude, we use Feynman rules for fermion and boson

lines, and for fermion propagators:

iM = ū(p′)(−ieγμ)ε�
μ(k′)

i( 
 s + m)

s2 − m2
(−ieγμ)εν(k)u(p) +

ū(p′)(−ieγμ)εν(k)
i( 
 u + m)

u2 − m2
(−ieγμ)ε�

μ(k′)u(p)

After summing over all fermion spin and photon polarization states, and after an extensive

calculations of traces, which is described in detail in Ref. [27], the expression for scattering

amplitude is

1

4

∑
allspins

|M|2 = 2e4

[
p · k′

p · k +
p · k′

p · k
]

. (2.1)

Here we have only kept the leading order terms. The variable p is the four-momentum of

the fermion, k is the four-momentum of the incoming photon and k′ is that of the outgoing

photon. After including the phase space integral we get

dσ

dt
=

1

2π

2e4

32(m2 + E
√

E2 + m2 + E2)

[
p · k′

p · k +
p · k′

p · k
]

. (2.2)

Since p · k = s − m2 ≡ s̃ and p · k′ = u − m2 ≡ ũ, and since s2 = (m2 + E
√

E2 + m2 + E2)

we finally get the following simple expression for Compton scattering on a point particle:

dσ

dt
=

2πα2
�

2

s2

(
s̃

ũ
+

ũ

s̃

)
(2.3)

where s̃ = s − m2 and ũ = u − m2. This result is important for two main reasons. First

and foremost, this is the expression which describes Compton scattering on proton at such
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low energies as 30 MeV , when the large wavelength of the photon causes it to be insensitive

to proton’s structure2. And second, this expression describes the interaction at the parton

vertex in Fig. 2.4’s diagram. As we will see in later discussions, the description of RCS

on proton can be described through a cross section which is, in analogy with Rosenbluth

formula of Eq. 1.1, a product of point Klein-Nishina cross section (i.e. Eq. 2.3) and a linear

combination of form factors.

2.3 Compton Scattering on Proton: perturbative QCD

The DIS experiments showed that at such low momentum transfers as Q2 ∼ 2 GeV 2 the

proton’s constituents already behave as an ensemble of free non-interacting particles. This

lead to the intuitive conclusion that in inclusive processes and similar energies a similar

pattern of behavior could be expected. According to a number of theorists [29] this implied

that perturbative methods could be used to treat interaction inside the proton at these

energies. A number of calculations were performed [29], which assumed the applicability of

perturbative QCD (pQCD) when calculating reaction observables. These predictions were

compared with the existing data of the time [6], and revealed what was perceived as good

case of scaling behavior in the experimental data. Differential cross section results, however,

showed dramatic disagreements with data, sometimes by orders of magnitude.

2It should be added that even at low energies this is only a leading order term. Such higher order QED

processes as loop corrections contribute considerably to this otherwise simple picture. See Ref. [28, pp.19-20]

for the full expression.
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pQCD Leading Twist Mechanism

The Leading Twist Mechanism is based on the validity of the following assumptions:

• To the leading order, only the valence quarks participate in the interaction. The

contribution of the sea quarks is negligible.

• The incoming photon is absorbed by one of the valence quarks, which shares the

exchanged momentum with the other valence quarks though the exchange of virtual

gluons. The final photon is emitted by one of the three valence quarks.

• The exchanged gluons are highly virtual: this, and the previous feature determine the

“hard” scale of the interaction.

• High energy scale. The mass and transverse momentum of the partons are neglected.

• According to Brodsky-LePage hypothesis [29], scattering amplitude can be factorized

into soft and hard parts, where the “hard part” denotes one that can be computed

using Feynman rules for pQCD. The “soft part” denotes the parts of the process which

demand a phenomenological approach.

The later statement can be schematically written as the following convolution:

T = φinit ⊗ Thard ⊗ φfinal (2.4)

where φ are the initial and final state soft Distribution Amplitudes(DA) of the proton, while

Thard corresponds to the hard interaction in between. The Feynman diagram for the Leading

Twist Mechanism can be seen in Fig. 2.1. The Distribution Amplitudes φ(x1, x2, x3) are
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Figure 2.1: Leading Feynman Diagram for Leading Twist Mechanism. xi stand for the

fractional momentum of the quarks. The diagram enclosed by the doted box corresponds to

Thard from Eq. 2.4, and its amplitude can be determined using calculations based on pQCD.

somewhat similar to Parton Distributions (PDF), in that they represent the joint probability

that the three valence quarks inside the proton carry fractional momentums of x1, x2 and

x3 = 1−(x1+x2). The main distinction between the PDF’s and DA’s, however, is that PDF’s

are a single-body probability, representing the amplitude of a single quark of momentum

x1(i.e. all dependence on x2 is integrated out), while the DA’s represent the joint probability

dependence on both x1 and x2. The relation between these is

q(x1) =
∫ 1−x1

0
φ(x1, x2, x3) δ(x1 + x2 + x3 − 1) dx2dx3.

The perturbative framework leads to one of the most rigorous scaling predictions which

can be tested experimentally. When the momentum transfer to the system is very large, it

is expected to start behaving like a system of free particles, in analogy with what we saw for

DIS. This leads to constituent scaling rules [16], which predict the following dependence for
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differential cross section:

dσ

dt
=

f(θCM)

sn−2
(2.5)

where f(θCM) is a function which only depends on the center-of-mass scattering angle, and

n is the number of elementary fields in initial and final states. For Compton Scattering

diagram n = 8.

2.3.1 Predictions for Compton Scattering

In the last twenty years there have been a number of calculations performed in the perturba-

tive framework of Leading Twist Mechanism, with the purpose of attempting to reproduce

the existing data [6]. A calculation by M. Vanderhaeghen, P. Guichon and J. Van de Wiele

[30] demonstrated the technical complexity of the calculations, which involved extensive

summations over 336 diagrams, representing different couplings of photons to quarks as

well as different orderings of the gluon exchanges relative to the photon vertices. For the

diagram of Fig. 2.1, the factorized expression of Eq. 2.4 can be written as the following

helicity-dependent scattering amplitude:

Mhh′
λλ′ = < p′, h′|Thard(k

′, λ′; k, λ)|p, h >= (2.6)

=

∫
dxi dyi φ�

N(xi)Thard(h, λ, xi; h
′, λ′, yi; s, t)φN(yi)

Here xi and yi stand for the fractional momentum of the quarks in initial and final states,

respectively, h and λ are the proton and photon helicity states, and s and t are the usual

Mandelstam variables3. Notice that the Distribution Amplitudes only depend on the longi-

tudinal momentum of the quarks: to achieve this, all dependence on transverse momentum

3See Appendix A for complete definitions
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has been integrated over. Furthermore, the expressions for the DI’s are not obvious at all –

these are subject to extensive calculations and phenomenological modeling.

A number of models have been developed over time for the proton’s Distribution Ampli-

tudes. The original – and the most robust – model is the so called Asymptotic DA, which

assumes that at high enough energies the quarks are essentially free non-interacting parti-

cles, and share the longitudinal momentum equally. Thus, < x1 >=< x2 >=< x3 >= 1/3.

This model however leads to predictions which underestimate the existing data by several

orders of magnitude. Other models of so called Skewed Distribution Amplitudes have also

been considered – labeled as CZ[7], KS[8] and COZ[9] – which involve a hadronic state with

strongly asymmetric distribution of momentum, where one of the quark is assumed to carry

almost all of the longitudinal momentum. This leads to higher values of cross sections, how-

ever, this approach also has a number of intrinsic self-contradictions, as will be discussed

later. Plots of φ(x1, x2) DA’s for KS and COZ models can be seen in Fig. 2.3.

Determination of the Thard(h, λ, xi; h
′, λ′, yi; s, t) factor in Eq. 2.7 is subject to perturba-

tive QCD calculations, and is, from a physics point of view, the most straightforward aspect

of the equation. But even here, however, there are a number of complexities. First, as many

as 336 independent diagrams have to be determined and summed into a final amplitude.

The internal gluon lines in the box of Fig. 2.1 correspond to propagators of the form 1/q2

where q2 is the virtuality of the gluon. If the gluon goes on mass shell, i.e. when q2 = 0, this

causes singularities in the integrals which make part of Thard. Different approaches to these

singularities, even for a given DA, lead to very different predictions.
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Comparisons with Previously Available Data

The primary criteria of interest in data-to-theory comparisons has been the predicted s−6

dependence in cross section, as determined in Eq. 2.5. The plot in Fig. 2.2 presents previously

available cross section measurements [6]. The data is plotted in f(θCM) = s6 ·dσ/dt vs. θCM

(see Eq. 2.5) to reveal what seems to be a considerable case of s−6 dependence in the cross

section. It should be noted that, due to uncertainties in theoretical approaches to the DI’s,

the scaling predictions are by far the most robust features of the pQCD framework. It is

then understandable that the observation of the scaling at the time resulted in a belief that

the Leading Twist Mechanism was overall valid, and that it was only a matter of choosing

the correct DA’s in order to completely explain the data.

The first attempt to describe the data was done by using asymptotic DA’s with a max-

imum at x1 = x2 = x3 = 1/3. However, as can be seen in Fig. 2.2, with asymptotic DA

the Leading Twist contribution underestimates measurements by approximately two orders

of magnitude, and completely fails to describe the data. Furthermore, Leading Twist calcu-

lations have been used to determine the elastic form factors for the proton and neutron. It

has been found that the calculated value for proton’s magnetic form factor GM (see Eq. 1.1)

is zero; the prediction for neutron magnetic form factor has a wrong sign, with the absolute

magnitude being two orders of magnitude below the data [31].

It was then argued that the proton DI’s must be asymmetric to reflect the fact that the u

quarks carry a relatively larger fraction of proton’s momentum than the d quarks. Different

model for humpy nucleon DI’s have been presented, by V.L Chernyak, A.A. Ogloblin, I.R.

Zhitnitsky (labeled as CZ and COZ [7] [9]), I.D. King and C.T. Sachrajda (labeled as KS
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Figure 2.2: Plots of data from

Ref. [6], and pQCD predictions

using different DA’s: CZ [7] (dashed),

KS [8](full),COZ [9](point-dashed), and

asymptotic (doted).
Figure 2.3: Plots of Skewed DA’s:

KS(top) [8] and COZ(bottom) [9].

[8]), where the fractional momentum was strongly concentrated in one quark, leaving the

other quarks with x2 ∼ 0, x3 ∼ 0:

φCZ(x1, x2, x3) = φas · (1.69 − 9.26x1 − 10.94x3 + 22.7x2
1 + 13.45x2

3 + 9.26x1x3)

where φas is the asymptotic DA.

The main assumption behind the humped(or skewed) distribution amplitudes, as thor-

oughly criticized in Ref. [17] and Ref. [3, p. 114008-6], is based on the assumption

that it is valid to use the perturbative expressions of 
 k/k2 and 1/k2 for quark and gluon

propagators even for such low virtualities as k2 ≈ (0.3 GeV )2. It is safe to say that this is
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somewhat contradicting the requirement that the interaction take place on the hard scale.

Furthermore, it then becomes clear why the CZ-like distribution amplitudes (similar to the

expression above) cause a major amplification of the scattering amplitude. For a humpy

DA, the average x for the active quark is almost 1, while that of the others passive quarks is

close to zero. This is the configuration that contributes greatly to the amplitude, since small

values of k2 ∼ 0 result in very large values of the 1/k2 and 
 k/k2 propagators, which in their

turn cause a major enhancement of the cross section. From this it follows that in order to

achieve Leading Twist contributions which are larger than those provided by the asymptotic

DA, the perturbative expressions 1/k2 and 
 k/k2 for the propagators have to be valid down

to very low virtualities. This, as already mentioned, is a rather unclear. Low virtualities for

gluons imply low energies and hence very strong couplings (which produce large scattering

amplitudes), which makes this approach inherently inconsistent: perturbative assumptions

are used to treat a process which is clearly nonperturbative.

It has to be added that besides the above discussed issues, evidence against humpy DA’s

has been also provided by lattice calculations [32]. It has been shown that very moderate

shifts from the maximum point of x1 = x2 = 1/3 are sufficient to account for the observation

that u quarks carry relatively larger proportion of the longitudinal momentum [33]. Such

a small shift however will not produce the drastic enhancements needed to amplify the

predictions to the point of agreeing with the existing data.
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Figure 2.4: Leading order Feynman diagrams for Real Compton Scattering in the frame-

work of Soft Overlap “Handbag” Mechanism.

2.4 Soft Overlap “Handbag” Mechanism

As already discussed in the previous section, major discrepancies have been observed between

the existing measurements and the predictions of Leading Twist Mechanism. This has moti-

vated a different approach to the problem of understanding nucleon structure at the energies

and momentum transfers typical to medium energy regime. An alternative mechanism devel-

oped over the recent ten years involves only one active quark in the interaction, leaving the

remaining quarks as spectators. This approach argues that the active quark absorbs the

momentum transfer from the photon, and re-emits a final photon without exchanging any

hard gluons with the rest of the proton. The energies of the gluons in Fig. 2.1 do not cor-

respond to the hard scale, and hence these soft gluons cannot be represented in the hard

perturbative section of the diagram.

Similar to Leading Twist mechanism, the Handbag mechanism is based on a set of key

assumptions:

• Both valence and sea quarks participate to the interaction.

32



• All the momentum transfer is absorbed by the active quark, no hard gluons are

exchanged with the spectator quarks, and the momentum is shared with the rest of

the proton through overlaps of non-perturbative “soft” proton wave-function.

• Scattering amplitude can be factorized into the hard part, describing the active quark’s

interaction with the external photons (and determined in the perturbative QCD frame-

work), and the soft non-perturbative part, describing its interaction with the rest of

the proton.

• The mass and transverse momentum of the quarks are not neglected, but rather play

an important role in linking the active quark with the other constituents of the proton.

• A symmetric reference frame is chosen in such a manner as to make the skewedness

vanish:

ξ =
(p − p′)+

(p + p′)+
= 0

(see Ref. [3] for definitions of skewedness and light-cone frame of reference)

The leading order Feynman diagrams for the Handbag Mechanism can be seen in Fig. 2.4.

As can be seen from comparing Fig. 2.4 to Fig. 2.1, the main difference between Leading

Twist Mechanism and Handbag Mechanism is condensed in the second point of the above list

of assumptions: if Leading Twist treats the gluons of the diagram of Fig. 2.1 perturbatively,

the Handbag Mechanism assumes that pQCD is not a valid framework for treating the

gluons and hence isolates the soft gluonic exchanges into the soft overlap wave-function of

the proton. It has to be added that the Soft Overlap and Leading Twist Mechanisms are

in no way mutually exclusive formalisms: as just described, the Soft Overlap Mechanism is
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really a power correction to the Leading Twist. Furthermore, at issue here is the dominance

of a particular mechanism. It is commonly agreed upon that at very high energies the

Leading Twist is the asymptotically dominating mechanism. It is however not clear as to

what is the appropriate energy scale. This is the topic of interest of this thesis, and this is

the question that we will try to answer.

2.4.1 Compton Scattering Form Factors through Generalized Par-

ton Distributions

In the previous chapter we already discussed the nature of the Generalized Parton Distri-

butions. Here we will describe the methodology of applying the GPD formalism to the

Soft Overlap Mechanism, with the purpose of a schematic description of how GPD’s can be

extracted from the overlap of the soft wavefunctions for the initial and final states of the

proton. The Double Distributions (DD), which were the predecessors of the GPD’s in that

besides x they also depend on the quark’s fractional momentum y in the final state, were

first used by A.V. Radyushkin [3] do determine the GPD’s. His work was closely followed

by M. Diehl, P. Kroll et al. who instead used a Fock state expansion for the wave function

parameterization [19; 20; 34]. In this section however we will follow the formalism adopted

by A. Radyushkin, due to its relative simplicity (in that it doesn’t include any next to lead-

ing order corrections) and rather intuitive approach. Furthermore, since we are dealing with

Real Compton Scattering, in all discussions we assume skewedness a ξ equal to zero (see

Ref. [3, pp.2-3]).

By definition, the GPD’s specify the probability of obtaining a quark with the fractional
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momentum xp for a given momentum transfer of t = (p−p′)2, where p and p′ denote proton’s

initial and final momentums. In order to describe a physical proton, the GPD’s need to obey

a number of reduction relations, such as

∑
i

ei

∫ 1

0

Hi(x, t)dx = F1(t)

∑
i

ei

∫ 1

0

Ei(x, t)dx = F2(t) (2.7)

which reduce them to the known elastic electromagnetic form factors. Furthermore, a very

useful relation can be extracted from comparing doubly virtual Compton Scattering (i.e.

both photons are virtual) to Deeply Inelastic Scattering. Using the optical theorem, the

imaginary part of the forward (i.e. t = 0) virtual Compton amplitude will give us the DIS

structure functions(see, e.g., Ref. [35]). From here it can be shown that:

Hi(x, t = 0) = qi(x)

Ei(x, t = 0) = Δqi(x) (2.8)

where q(x) and Δq(x) and the helicity independent and helicity dependent parton distribu-

tions. Since both q(x) and Δq(x) are very well known and measured functions, this relation

reduces considerably the complexity of the modeling. Furthermore, Eq. 2.7 and Eq. 2.8

show the hybrid nature of the GPD’s – they are related both to the regular parton distri-

butions and to the form factors, serving as a connection between the inclusive and exclusive

formalism of nucleon structure.

To the lowest Fock state the initial and final states of the proton can be described by a

light cone wave function Ψ(x, k⊥), where k⊥ is the transverse momentum of the quark. The

elastic electron scattering Feynman diagram for this representation can be seen in Fig. 2.6.
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Figure 2.5: Two-body contribution to

RCS form factor.
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Figure 2.6: Two-body contribution to

elastic form factor.

By choosing a frame of reference where the momentum transfer t is entirely transverse, the

two-body contribution into the form factor can be expressed as [36]

F tb
1 (t) =

∫ 1

0

dx

∫
Ψ∗(x, k⊥ + x̄t) · Ψ(x, k⊥)

d2k⊥
16π3

. (2.9)

where x̄ = 1 − x is the fractional longitudinal momentum of the rest of the proton.

This integral, which is the overlap of the initial and final state soft wavefunctions, corre-

sponds to the lower non-perturbative half of the diagram in Fig. 2.5. It includes in itself the

probability of emission and re-absorption of a quark with fractional longitudinal momentum

x and transverse momentum k⊥, and contains innumerable soft gluon interactions between

the active quark and the rest of the proton. Comparing this expression to Eq. 2.7, we can

identify

H(x, t) =

∫
Ψ∗(x, k⊥ + (1 − x)t) · Ψ(x, k⊥)

d2k⊥
16π3

. (2.10)

The key of the problem then is to choose a reasonable model for the wave function Ψ(x, k⊥).

Assuming a Gaussian dependence on the transverse momentum [36] one can write

Ψ(x, k⊥) = Φ(x) e−k2
⊥/2xx̄λ2

(2.11)

36



Here λ is a measure of the transverse size of the proton in momentum space. The meaning of

Φ(x) becomes more clear when one computes the overlap integral to determine GPD H(x, t):

H(x, t) = q(x) ex̄t/4xλ2

where q(x) =
xx̄λ2

16π2
Φ2(x) = H(x, t = 0)

where, as before, q(x) is the two-body part of the parton distribution. To be precise, this is

only the simplified model for the GPD, which only includes the two-body contribution. For

the total result the higher Fock components need to be added as well. These contributions

are by far not small, however the purpose here is to provide the basic idea behind the GPD

formalism [3].

It is now important to understand the role of different variables and functions which make

part of H(x, t). Variable λ, as mentioned, specifies the average transverse momentum carried

by the quarks, and it can be shown that < k2
⊥ >= λ2

∫ 1

0
xx̄f(x)dx for the down quark. It is

determined by using Eq. 2.7 to relate H(x, t) to F1(t) form factor, and then by fitting it to

the available form factor data, using λ as a free parameter, to achieve λ2 = (0.84GeV )2 [3].

Once the GPD’s are modeled, it is then possible as well to compute the Real Compton

Scattering axial and vector form factors, in an analogy with the already discussed elastic

form factors [3]:

∑
i

e2
i

∫ 1

0

Hi(x, t)
dx

x
= RV (t)

∑
i

e2
i

∫ 1

0

H̃i(x, t)
dx

x
= RA(t) (2.12)

Notice the main differences between the expressions for elastic form factors(Eq. 2.7) and RCS

form factors above: the charge in the later case is squared, and an extra 1/x term is present

in the integral. These features reflect the presence of an extra electromagnetic coupling
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vertex and an extra quark propagator (compare the diagrams in Fig. 2.5 and Fig. 2.6).

Real Compton Scattering Cross Section

To the leading order, the expression of RCS cross section is very similar to elastic electron

scattering Rosenbluth cross section, in that it consist of a product of the point cross section

and a combination of electromagnetic RCS form factors:

dσ

dt
=

dσKN

dt

{
fV R2

V (t) + (1 − fV )R2
A(t)
}

(2.13)

where in place of Mott cross section we have Klein-Nishina point Compton scattering cross

section

dσKN

dt
=

2πα2

s2
(
s̃

ũ
+

ũ

s̃
) (2.14)

and the kinematic factor fV is fV = (s̃ − ũ)2/2(s̃2 + ũ2). Due to our kinematic settings,

fV ≈ 1. This then allows for a very interesting approach to the problem of relating the data

to the theoretical prediction: instead of comparing dσ/dt, we can use another criteria as an

experimental test of the theory –

dσ/dt

dσKN/dt
= R2

V (t) (2.15)

This is a remarkable result, in that it depends only on the Mandelstam variable t, but not on

s. It is of course possible to compare the predictions of cross section to those extracted from

the data. However, a particular model for a GPD employs a specific parameterization, and

the final result for the form factors is vulnerable to model-dependent uncertainties. However,

if the Soft Overlap Mechanism is overall correct, then the ratio of Eq. 2.15 may deviate from
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Figure 2.7: Currently available predictions for polarization transfer asymmetry KLL: Lead-

ing Twist (green), Soft Overlap Handbag (blue), LFCBM and Regge exchange.

the theoretical prediction for the form factor, but it should be only dependent on t, and not

on any other variables.

This is a very powerful test, since it allows us to isolate any “low order” model depen-

dencies, and test the overall applicability of GPD formalism. With this goal in mind, the

kinematic settings in the experiment have been chosen such as to allow measurements at

different values of s with same t, to test whether dσ/dσKN is independent of s.
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2.4.2 Compton Scattering Polarization Transfer Asymmetry through

GPD’s

Up to now the discussion of the reaction observables has been centered around the RCS

cross sections, as a primary observable of the interaction. However, the helicity amplitudes

of Eq. 2.7 can also be used to determine various spin observables for Compton scattering

on the proton. The asymmetry measurements of the polarization transfer in the �γp → γ�p

reaction (where the vector denotes a polarized state) involve a two-spin correlations between

the initial polarized photon and the recoil proton, which carries the transfered polarization.

The longitudinal polarization transfer is defined as follows:

KLL =
dσ(+, ↑) − dσ(−, ↑)
dσ(+, ↑) + dσ(−, ↑) (2.16)

where the first entry in the cross section refers to the photon beam helicity, and the sec-

ond entry refers to the recoiled proton polarization. The polarization transfer asymmetry

calculation for Handbag Mechanism results in the following expression [19]:

KLL =
dσKN

dσ
KKN

LL RV (t)RA(t) (2.17)

where KKN
LL = (s̃2−ũ2)/(s̃2+ũ2) is the longitudinal asymmetry for a Klein-Nishina scattering

on a point particle. Using the earlier result from Eq. 2.15 for vector form factor we receive

KLL = KKN
LL

RA(t)

RV (t)
(2.18)

The GPD calculations for the RA/RV ratio predict a number which is rather close to one.

Meanwhile, the Leading Twist predictions for the KLL produce results which are negative in

value. A full comparison of different theoretical predictions can be seen in Fig. 2.7, with the
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doted vertical line denoting the center-of-mass angle of the measurement. The scientific value

of the polarization transfer measurement then becomes clear in light of the wide contrast

between the predictions of the Handbag and Leading Twist Mechanism. Furthermore, unlike

cross section measurements, where uncertainties due to humpy DA’s are rather large, for

the polarization transfer asymmetry calculations with even the most extreme DA’s produce

results that are still very far from the Handbag predictions.

Another aspect of the polarized measurements, which can be of a great use for determining

the RCS form factors, is that the measurement of KLL/KKN
LL can be used to determine the

ratio of RA/RV . This can be utilized to refine our previous rather approximative approach

of Eq. 2.15 when determining the vector form factor RV (t):

RV (t) =

(
dσ

dσKN

)1/2

[fV + α(1 − fV )]−1/2 (2.19)

where α ≡ RA(t)/RV (t) = KLL/KKN
LL is determined from the polarized results.

2.5 Summary

In this chapter we discussed the theoretical background and physics motivation behind the

experiment. The main purpose of the experiment is

a) Test the scaling predictions of Leading Twist Mechanism, by determining the value of

n in Eq. 2.5 to a high precision. To this end, data has been taken at to allow grouping

of different data sets with same θCM but different s, which will allow us to perform a

fit of cross section values to determine n.

b) Test the predictions of Soft Overlap “Handbag” Mechanism, by
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1. comparing differential cross section measurements with theoretical calculations

2. testing the ratio dσ/dσKN (see Eq. 2.15) for s independence

c) From the above comparisons, determine and identify the dominant mechanism at

medium energies.
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Chapter 3

Experimental Apparatus

The E99-114 “Real Compton Scattering” experiment (RCS) was performed in the Hall A

of Thomas Jefferson National Accelerator Facility. The purpose of the experiment was

to perform measurements of two observables for the p(γ, γ′p) reaction: the differential cross

sections for Compton scattering on proton over a wide range of scattering angles and incident

energies; and asymmetries of polarization transfer to the proton [37]. The kinematic coverage

of the experiment is quite extensive: Mandelstam variable s varied between 4.82GeV 2 and

10.92GeV 2 , and −t varied between 1.64GeV 2 and 6.46GeV 2. For a full listing of kinematic

and experimental settings refer to Table 6.4. Throughout the experimental run the beam

current varied in between 5μA and 60μA, and a copper radiator with the thickness of 6%

of copper’s radiation length was employed to produce a bremsstrahlung photon flux. The

resulting mixed beam of electrons and photons impinged on a 15cm liquid hydrogen cryo-

target.

During the experimental run the scattered and recoiled particles are detected in coinci-
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Figure 3.1: Experimental Setup of Hall A for E99-114 experiment

dence by the RCS photon spectrometer and Hall A High Resolution Spectrometer (HRS),

respectively. The photon spectrometer is an electromagnetic calorimeter, built as a highly

segmented array of lead glass blocks, which fully absorb the energy of the incoming parti-

cle. The High Resolution Spectrometer on the other hand consists of a number of magnetic

quadrupoles and a dipole which performs momentum separation. It contains a focal plane

detector package, which, to a very high resolution, can measure proton’s focal plane vari-

ables, in order then to reconstruct the vertex variables using known optic transformations. A

very high combined resolution is needed in order to distinguish the primary p(γ, γ′p) reaction

from the background of p(e, e′p) and p(γ, π0p) processes. The schematic experimental setup

can be seen in Fig 3.1.
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3.1 The Thomas Jefferson National Accelerator Facil-

ity

The Thomas Jefferson National Accelerator Facility(TJNAF, also referred to as Jefferson

Lab or JLab), was commissioned and built in the 1980’s as part of general motivation to

explore and study the hadronic structure on the GeV scale. The laboratory was designed

and developed in collaboration between US Department of Energy and Southern Universities

Research Association. The first experimental run with scientific results was performed in

1995. In the last ten years hundreds of experiments have been conducted, providing data of

critical value to our understanding of nucleon and nuclear structure at this energy scale [38].

TJNAF research program consists of an accelerator – Continuous Electron Beam Acceler-

ator Facility (CEBAF) – and three experimental halls where the actual experiments are

performed, as well as a number of laboratories for testing and preparation of experimental

apparati.

CEBAF is one of the few modern accelerators which provide a continuous high duty factor

beam of high current (from 1nA to 120μA), and use cryogenic accelerating radio-frequency

(RF) cavities and cryogenic magnets for deflecting, focusing and accelerating the beam.

The general diagram of the accelerator, with the three halls, can be seen in Fig. 3.2. The

electrons are produced by a strained gallium arsenide photocathode under vacuum, which

is subjected to radiation from three 499MHz gain switch diode lasers. By controlling the

phase shift between the lasers, one can produce three mixed electron beams, spaced by 2π/3,

after which each can be accelerated separately and be simultaneously delivered to each of
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Figure 3.2: Schematic view of CEBAF. The electron beam is produced in the injector,

after which it is accelerated in each of the two superconducting linacs. The beam can be

circulated up to five times, resulting in an energy of apprx. 5.75GeV .

the experimental halls. This methodology essentially triples the statistic productivity of the

laboratory. Furthermore, the laser light can be polarized both circularly as well as linearly,

producing circularly or linearly polarized electrons.

Once the beam is produced it is sent into the first linear accelerator (linac), which con-

sists of 20 cryomodules, each accelerating the electrons by approximately 30MeV . The

cryomodules are made of Niobium and are made of four consecutive cavities, which need to

be cooled by liquid helium at a temperature of 2K, in order to keep the cavities in the phase

of superconductivity. The advantage of using superconductors instead of room temperature

conductors is that the skin depth of the metal in room temperature is equal to the wavelength

of the RF wave, allowing it to penetrate and heat the metal. This brings about a number

of problems – energetic loss being the smallest of those. Specifically, the heating causes the

cavity to enlarge, changing its natural frequency and de-synchronizing the accelerator. With

superconductors these problems are absent, which allows for the use of very powerful RF

46



fields for acceleration. The use of an RF field of that power in simple conductor would result

in a meltdown of the cavity.

After going through the first linac, the beam goes through the recirculation arc, which

sends the beam to the second(identical to first) linac. The two arcs of the accelerator consists

of a combination of dipoles (to steer the beam), quadrupoles and sextupoles (to focus the

beam) as well as septum elements. Once the beam traverses the second linac it enters the

second arc, hence restarting the cycle – with an additional energy of 1.15GeV . This cycle

can be repeated 5 times, resulting in a beam with the energy of 5.7GeV .

3.2 Experimental Hall A of Jefferson Lab

Hall A is one of the three experimental halls of Jefferson Laboratory. It contains a pair of

magnetically identical High Resolution Spectrometers (HRS), which can be rotated around

the center of the hall (where the target is positioned) in order to detect the scattered and

recoiled particles. Upstream from the target there is a series of apparati which measure

the beam parameters – such as energy, current, position and polarization – to a very high

precision. The hall has a series of different type of targets, such as waterfall target, cryogenic

hydrogen, deuterium and helium targets, as well as an assortment of solid targets [39].

3.2.1 Beamline setup

A detailed measurement of electron beam parameters needs to be performed before that

beam can be used for experimental purposes. These measurements are performed by several
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devices placed upstream from the target. These measure the exact position of the beam,

its polarization and its energy. Furthermore, before reaching the target the beam needs to

be rastered in order to prevent overheating of the target, which may result in either target

damage, or (for liquid targets) in boiling, which in its turn will cause a dramatic drop in

luminosity.

The position of the beam at the vertex is implicitly measured by two Beam Position

Monitors (BPM). The first BPM is placed 7m upstream from the target, while the second

one is only 1m away. Each BPM has four antennae. An Eddie current is induced in the

antennae as the beam packed passes by, and the relative amplitudes of the currents can

be used in order to determine the distance of the beam from each of the four antennae.

This allows for a precise determination of beam position relative to the two BPM’s. The

positions of the BPM’s relative to each other and relative to the target have been thoroughly

surveyed, which allows for a calculation of beam position at the center of the target using a

linear extrapolation.

The Beam Current Monitors (BCM), which measure the accumulated integral charge of

the beam, are based on a principle which is similar to that of the BPM’s. The BCM’s are

located 24m upstream of target. A BCM consists of a cylindrical resonant cavity, whose

natural frequency is equal to that of the beam, and has a coaxial loop antenna. As the beam

packet passes it induces a current in the loop of the antenna, which can then be measured

and the charge can be calculated. The time derivative of the accumulated charge is used to

monitor the beam current.

There are two different methods to measure the energy of the incoming beam. As the
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Figure 3.3: Schematic layout of Hall A beam setup and relative positioning of the two High

Resolution Spectrometers.

beam traverses the tunnel from the beam switch-yard to the hall, it is being deflected by the

dipole magnets by an average angle of 34.4o. Variations from this value are measured to a

high accuracy by a set of wire scanners. Having the precise knowledge of the dipole magnetic

fields and deflection angle, one can calculate the energy of the beam. A second method uses

the p(e, e′p) elastic process: the beam traverses a thin polyethylene (CH2) target, and the

measurement of the recoiled proton’s track by a silicon strip detector is used for a kinematic

calculation of incoming electron’s energy. The combination of the two methods allows for a

determination of energy with a relative accuracy of 2 × 10−4 parts.

The general layout of the beamline can be seen in Fig. 3.3.
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3.2.2 Cryogenic Target and 6% Cu Radiator

Hall A employs a number of different liquid targets, each with an independent fluid transfer

systems. The E99-114 experiment used a liquid hydrogen target, with a copper bremsstrahlung

radiator attached [40].

The different targets are attached to a vertically positioned ladder system, which can be

remotely controlled to move up and down, aligning the target cell of choice with the beam.

The target ladder itself is placed inside a target vacuum chamber, which is directly connected

to the beam pipe, and has two wide aluminum windows of 0.34mm thickness. The width of

the windows covers the full ΘHRS ∈ (12.5o, 165o) angular domain of the spectrometers.

The liquid target cells which hold the actual target material are made of aluminum

cylinder with a semi-spherical cap, with a length of 15cm and a diameter of 63.5mm. Devel-

opment of the target cell has been a very complicated challenge, since it is very important

to keep the target wall thicknesses to the minimum in order to limit background multiple

Coulomb scattering. The target thicknesses are 71μm,102μm and 178μm for the upstream

windows, downstream cap and target side walls, respectively. Since the exterior of the cell is

at vacuum and the interior is subjected to the pressure of the pumping system, the pressure

experienced by the cell is 0.17MPa.

Boiling of the cryotarget is one of the undesired events during experimental run. The

transition from liquid to gaseous phase results in a drop of density, which dramatically

reduces the luminosity of the experiment. Given the narrow beam profile this would be

inevitable with the high beam currents used in Jefferson Lab. To avoid target boiling, the

beam is being rastered at frequencies of 17kHz and 24kHz in the horizontal and vertical
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planes by two dipole magnets, in this manner distributing the deposited heat over a larger

volume. Meanwhile, the target fluid is recirculated through a complex system of fins, to

insure a uniform heat exchange.

The increasingly high energies of our experiment imply decreasingly low cross sections.

Keeping in mind that the combined acceptance of the experimental setup is rather limited, it

becomes clear that a very high photon flux is needed in order to achieve acceptable statistic

accuracies. One method to produce a photon flux is to use a thick “radiator” – a material

whose nuclei’s electric field will interact with incident electrons and cause them to produce

breaking radiation, or bremsstrahlung. The bremsstrahlung radiator, built to produce a

photon beam, is attached to the liquid hydrogen target. It is composed of a set of copper

foils, whose total thickness is equal to 0.81g/cm2. This is equal to the 6.2% of copper’s

radiation length. As described before, the beam incident on the radiator consists of highly

monochromatic electrons. The energy loss of the electrons is proportional to Z2, where Z is

the atomic number of the radiator material.

The process of “external” bremsstrahlung is quite well understood, which is what makes

it a very useful tool for performing a whole category of experiments, such as Compton

scattering, neutral pion photoproduction experiments, deuderon photodisintegration exper-

iments etc. A detailed calculation, describing bremsstrahlung has been performed by J.L.

Matthews and R.O. Owens [41] during 1970’s. A plot of the bremsstrahlung spectrum and

corresponding electron spectrum for radiation from a material with a thickness of 6.84%

radiation lengths and an incoming electron energy of 3.474GeV can be seen in Fig. 3.4.

The result of the above described procedures is a mixed electron-photon beam, since
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Figure 3.4: Bremsstrahlung spectrum (red) and corresponding electron spectrum(blue) for

a radiator of thickness of 6.84% radiation lengths. The shaded region corresponds to the

part of the spectrum observed by the experimental acceptance.
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hall A has no instrumentation to remove the electrons after they have passed through a

radiator. The electrons’ incoming energy defines the “endpoint” of the energy regime, and it

is clear from Fig. 3.4 that the ratio of photons/electrons is lowest at the endpoint. Since the

experiment involves two-body kinematics, a particular combined setting of HRS and photon

calorimeter defines a specific incident particle “window” of (Emin, Emax).The experimental

demands, as discussed before, require a rather high photon/electron ratio, since the elastic

p(e, e′p) constitute a background and complicate the data analysis. This is the reason why our

acceptance “window” has been set to lower energies – Eγ ∈ (3000, 3300) for this particular

plot – in order to increase the flux of the photons and reduce the number of background

electrons. Obviously, this energy domain could be lowered even more, causing an even further

increase of photon/electron ratio, however due to theoretical constraints the experiment

needs to perform measurements at as high values of s Mandelstam variable as possible.

3.2.3 High Resolution Spectrometer

The highlight of Hall A standard instrumentation are the twin High Resolution Spectrome-

ters(HRS). These devices are developed to have a moderate acceptance (about 6×10−3sRad

and 9.5% momentum coverage), while achieving a very high momentum and angular res-

olutions. A list of HRS’ acceptance and resolution parameters can be found in Table 3.1.

High Resolution Spectrometer consists of four magnetic elements: three superconducting

quadrupoles, and one superconducting dipole, which performs the momentum selection of the

spectrometer. The superconductive phase is accomplished by cooling magnets’ niobium coils
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Momentum Range 0.3 − 4.3GeV/c

Acceptance ±4.5%

Resolution 2.5 × 10−4

Out of Plane Angle Acceptance ±60mR

Resolution 2.mR

In Plane Angle Acceptance ±30mR

Resolution 0.8mR

Transverse Projection of Vertex Acceptance ±5cm

Resolution 0.8mm

Table 3.1: Performance characteristics of Hall A’s left HRS.

with liquid helium at a temperature of 4.5K.These elements succeed each other in Q1Q2DQ3

configuration, as can be seen in Fig. 3.5. Most of the focusing is accomplished by the system

of the quadrupoles. The first Q1 quadrupole focuses in the vertical plane and defocuses in

horizontal plane, while Q2 and Q3 provide focusing in horizontal plane and defocusing in

vertical plane. For a given value of central momentum setting, the current in the dipole

is chosen based on output from a measurement device which measures nuclear magnetic

resonance of a probe placed inside the dipole. The absolute magnetic field is calculated from

resonance frequency to an extremely high accuracy. The fields inside the quadrupoles are

monitored using Hall probes, which are used only for diagnostic purposed since they do not

provide the same precision. Instead, the currents inside the quadrupoles are set based on

pre-existing data on current-to-field relations. Due to ferromagnetic hysteresis, however, a

given current may correspond to two different field values. In order to avoid this dichotomy,
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Figure 3.5: Schematic drawing of Hall A High Resolution Spectrometer’s magnetic struc-

ture.

the magnetic fields inside the quadrupoles can be changed only in one direction, and in case

of reversal the full cycle of hysteresis needs to be performed.

3.2.4 HRS Detector Package and Vertical Drift Chambers

The High Resolution Spectrometer’s magnetic optics can be understood through an analogy

to a photographic camera, with the difference that in addition to measuring the focal plane

coordinate the HRS detector package also measures particle’s vector of motion. If one were to

know the optic properties of the spectrometer, then one could precisely calculate the values

of kinematic variables at the reaction vertex. To perform this calculation, we first need to

measure the particles coordinates at the focal plane with a very high accuracy. HRS standard

detector package includes a pair of Vertical Drift Chambers(VDC), which are positioned

after the last Q3 quadrupole of the spectrometer. Each VDC measures the particles precise
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position at its central plane, and from the two values of position one can calculate the particle

momentum’s angle with respect to the spectrometer’s central axis. The detector package is

located inside the “detector hut”, a large chamber with heavy concrete walls to protect the

detectors from large doses of radiation damage, as well as to reduce the rate of accidental

coincidences during an experiment which uses other detectors in coincidence with HRS. The

detector packages consists of an array of elements, some of which are listed below, in the

order of being seen by the particle:

• Two succeeding Vertical Drift Chambers, used to track the particle’s (proton, in our

case) trajectory.

• A vertical scintillator plane used for event triggering in coincidence mode with the

photon arm (see Sec. 3.5.1).

• A pair of “square” scintillator planes used for a “singles” trigger and time-of-flight

measurements.

• An aerogel threshold C̆erenkov counter, which detects the C̆erenkov-Vavilov radiation

from the heavier particles, and uses it as a particle type identification.

• A Focal Plane Polarimeter (FPP) for measuring the focal plane polarization of the

particle stream. This, along with information on spectrometer’s magnetic structure,

can then be used to calculate the vertex polarization of the particle. The FPP is made

of two sets of straw chambers for particle tracking, as well as two analyzer blocks used

to introduce azimuthal asymmetry in particle’s trajectory.
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Figure 3.6: Schematic layout of Hall A beam setup and relative positioning of the two High

Resolution Spectrometers.

A full view of the HRS detector package can be seen in Fig. 3.6.

As mentioned above, in order to reconstruct the kinematic variables at reaction vertex it’s

necessary to have a good “image” at the focal plane, in an analogy with photography. The

focal plane variables are determined through the Vertical Drift Chambers [42], a function

which makes the later probably the most important element of Hall A detector package.

The detectors are located after the third HRS quadrupole, and are oriented parallel to

the Hall A floor and at 45o to spectrometer’s central axis. The VDC’s are mounted on rails,

which allows for their simple extraction from the detector hut for purposes of maintenance

and diagnosis, and are aligned by an accuracy of 100μm with each other. A schematic view
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of the detectors and of their alignment can be seen in Fig. 3.7. As can be seen in the lower
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Figure 3.7: The Vertical Drift Chambers of High Resolution Spectrometer, and their rela-

tive positioning.

drawing, each chamber contains two planes of gold-plated tungsten wires. The total number

of the wires is 368 and the relative angle of the wires to the central axis of the spectrometer

is 45o. The geometry dimensions of the chambers are the following: approximately 240cm

long, 40cm wide and 10cm high, and the detection area of each chamber is 211.8× 28.8cm2.

The voltage drop between each wire and the cathode plane is 4000V . The cathode planes

are made of gold-plated mylar, and are located between the wire planes. The gas which fills

the area between the wires and the cathode is a mixture of argon and ethane at the ratio of

62 : 38 [42].

The general principle behind the operation of drift chambers is somewhat similar to that

of a Geiger counter. As a charged particle passes through the gas filling the gap between

the cathode and the anode (the wire), it causes ionization of the gas atoms. The produced

free electrons then experience the strong electric field which causes them to drift towards the
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wire. While the distance of the electron to the wire is much greater than the wire radius, it

experiences only a constant electric field, and its velocity quickly reaches a constant value.

However, when the electron approaches the wire it experiences a strongly non-uniform field.

This causes it to accelerate, and as a result the electron ionizes other gas atoms and causes

an avalanche. When the avalanche reaches the wire it triggers a strong electric pulse, which

is then amplified by the pre-amplifier/discriminator card. The output of the card is then

sent to and processed by a LeCroy Fastbus 1877 Time-to-Digital Converter (TDC), which

digitizes the signal and sends it to trigger electronics. Using known values of electron drift

velocity in the gas, and having the time of drift as a data, one can later calculate the exact

position where the ionization occurred. Combining this information from different wires, a

hit coordinate can then be calculate with a very high precision. The resulting coordinate

and angular resolutions are 100μm and 0.5mR.

3.3 Photon Spectrometer

The detection of the photon from Compton scattering on proton is performed by the photon

spectrometer. The spectrometer has been developed, designed and built by the E99-114

collaboration specifically for this experiment. The key constraint behind the design of the

photon spectrometer was the demand for high coordinate and medium energy resolutions.

These characteristics are critical in order to distinguish Compton scattering events from the

pion decay background and elastic electron scattering p(e, e′p) events. The high position

resolution was achieved by building a highly segmented hodoscope array of lead glass blocks.

This segmentation also insured relatively low counting loads on the photo-multiplier tubes.
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The spectrometer’s structure consisted of the electromagnetic calorimeter, a deflection dipole

magnet, and an electron veto detector. The later unit was used only for a very few runs,

because its extremely high counting rates caused unacceptably large electronic deadtimes.

3.3.1 Electromagnetic Calorimeter

As mentioned previously, the primary process of electrons’ interaction with matter is bremsstrahlung

radiation: as the electron is accelerated by the field of a nucleus, it emits a photon. The

photon’s mechanism of interaction with nuclei is through electron-positron pair production.

The diagrams for the two processes can be seen in Fig. 3.8. When a photon enters the matter,

X X

-e

γ γ
-e

+e

(a) (b)

Figure 3.8: Feynman diagrams for a) Electron Bremsstrahlung b) pair production. During

an electromagnetic shower the radiated photon of (a) becomes the pair-producing photon of

(b).

it causes a pair production, as shown in Fig. 3.8(b). The outcoming electron and positron

have energy distributions which are peaked at Eγ/2. The electron then can interact with

the nuclei of the matter, radiating a photon, as in Fig. 3.8(a). The photon of this process

then can become the initiator of another pair production. This process can go on repeatedly,

similar to an avalanche, generating an electromagnetic shower, until the energy of the parti-

cles is below some threshold value, at which point pair production becomes impossible. The
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above described process can also be initiated by an incoming electron. The devices which are

able to fully absorb the energy of the shower are called, in an analogy with thermodynamics,

electromagnetic calorimeters.

The characteristic depth of the electromagnetic shower is determined by two parameters.

One is the radiation length, which determines the mean depth of each generation. The other

parameter is the energy at which energy loss by ionization becomes predominant. This energy

is essentially the threshold at which the shower stops progressing. During pair production

the average energy of the produced leptons is half of incoming photon energy, therefore at

each generation the energy of every given particle is halved in average. After n generations

the mean expected energy of a given particle will be approximately E0/2n. If the threshold

energy is equal to ε0, then the shower will stop when the energy of the particle is equal to

ε0, that is, when

E0

2n
= ε0 and correspondingly n = log2

E0

ε0

(3.1)

If the radiation length of the material is equal to X0, then the depth of shower will be equal

to d = n · X0 = X0 · log2(E0/ε0). Since the radiated photons and pair-produced leptons are

emitted mostly parallel to the original particle, the transverse development of the shower is

primarily conditioned by multiple Coulomb scattering of the electrons and protons in the

material.

The measurement of the shower energy is done by detecting the C̆erenkov-Vavilov radi-

ation from the highly energetic electrons. For this, a material needs to be chosen so that

its index of refraction implies a speed of light always less than the speed of the electrons

with energy ε0. On the other hand, to reduce the depth of the shower d a material with
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Density 3.86g/cm3

Index of Refraction 1.65

Radiation Length X0 2.5cm

Critical energy ε0 15MeV

Table 3.2: Electromagnetic and optic characteristics of TF-1 lead glass.

a small radiation length X0 needs to be chosen. The choice of material for the calorimeter

needs to be withing these constraints. The calorimeter needs to be built from a very heavy

material – preferably lead itself – with a high index of refraction. It however needs to be also

transparent, in order for the C̆erenkov radiation to reach the photo-cathode of the photo-

multiplier tube (PMT). The obvious choice which satisfies these requirements is lead-glass.

The physical properties of TF-1 lead glass can be seen in Table. 3.2. Using the values from

the table and Eq. 3.1 we can determine the depth of the shower: d = 20cm. The depth of

the calorimeter itself is 40cm.

The RCS total absorption electromagnetic calorimeter was designed and built by a group

of researchers and technicians from Yerevan Physics Institute (YerPhI). The calorimeter

consist of 705 lead-glass blocks, with FEU-84/3 photo-multiplier tubes connected to the rear

of the blocks. The connection is optically transparent. The lead glass blocks are wrapped

in optically-opaque material made of aluminised Mylar film and black Tedlar – in order to

allow for identification of the block which was hit by the original particle – and are arranged

in an array 32 rows high and 22 columns wide. Each block has a rectangular cross section

with a side of 4cm, and a length of 40cm. The matrix of the lead-glass blocks is shielded
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Figure 3.9: Drawing of RCS electromagnetic calorimeter, showing its internal structure.

inside a light-proof containment vessel, with doors at the rear for easy access in case of repair

needs. The PMT were connected to the lead-glass blocks by using springs to apply pressure

against the lead-glass surface , and optical grease was applied at the contact point to insure

a good optical coupling. A drawing of the calorimeter can be seen in Fig. 3.9.

As mentioned earlier, the C̆erenkov light emitted by the electrons is registered by the

photo-multiplier tubes (PMT). PMT’s are one of the most frequently used tools in medium

and high energy physics. The principle behind a PMT’s operation is the photo-electric

effect. As the photons enter the PMT, they hit a metallic surface called photo-cathode. If

the photon’s energy is high enough it transfers its energy to an electron in the metal. If that

energy is higher than the energy binding the electron to the metallic lattice, then the electron

becomes free and is then accelerated by strong electric field of the first dynode. Once the
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electron reaches the dynode, it strikes free new electrons, which are then accelerated towards

the second dynode. This process is repeated about ten times, producing a large amplification

of the original signal. For this process to be effective, the voltage between the dynodes has to

be somewhat large. The total voltage applied between the last anode and the photo-cathode

was 1600V . The whole assembly of cathodes, dynodes and anode is kept in vacuum inside

the tube. The collected electric signal is then sent to an electronic trigger logic and a Fastbus

1881 Analog-to-Digital Converter (ADC), which digitizes the accumulated charge and sends

the result to data acquisition.

Due to minute differences in their construction, for the same amount of incoming light and

for the same applied voltage different PMT’s will give different signals. Since the final goal

of this measurement is to determine the energy deposited in the calorimeter, it is necessary

to calibrate the voltages, using a standard source of light emission, which will allow one to

change the voltages of the PMT in order to achieve the same signal. This is called gain

monitoring system. To expose different blocks to the same light amount, ultraviolet light

from a nitrogen laser is used. The laser light has been incident on a plastic scintillator, which

worked as a wavelength shifter. The scintillator eliminates the directionality of the light, and

its output is sent by optical fibers to a plastic Lucite surface, which is placed immediately

in front of the array of lead-glass blocks. In this manner, all the blocks are illuminated by

the same intensity of light, allowing for an automated system to change the voltages applied

to the PMT’s in order to achieve the same signal. The automation has been performed by a

Java control software, whose output has been sent to the LeCroy-1458 high voltage supply.

The support structure of the calorimeter was built from steel, and housed a number
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of support units: the calorimeter array, the front-end electronics, cabling to and from the

electronics, a forced air cooling system for the PMT’s, gain monitoring system and the laser.

The whole structure was built in a self-contained manner, in order to simplify the frequent

task of moving the calorimeter from one kinematic point to another. To accelerate this

procedure and to increase mobility, the system of more than two thousand cables which

travelled from and to the rear of the calorimeter was placed on a train of wheeled carts.

There has also been a need to develop a system which would allow the quick and simple

alignment of the calorimeter with its kinematic position. To do this, the Hall A floor has

been painted with a map of color coded dots – every degree angle, and every half meter,

with the actual positions marked in paint. Furthermore, two “light pointer” tools, consisting

of an aluminum tube with a incandescent light attached at the back, were attached to the

support frame, in such a manner as to be aligned with calorimeter’s axis. One of the lights

was placed 0.5m in front, and other 3m behind the calorimeter face. During the move, the

calorimeter was placed in such a way as to align the light spots with the dots on the floor. As

a result the process of fine alignment took less than one minute. Only a moderate accuracy

(within 2cm) was necessary, since the misalignment of the calorimeter could later be precisely

calculated using elastic scattering data and two-body kinematics of that reaction.

3.3.2 Electron “veto” Detector and Dipole Magnet

Elastic p(e, e′p) electron scattering is one of the backgrounds which complicate the identi-

fication of the Compton scattering events. This is due to the constraint that in order to

achieve high luminosities the acceptance’s energetic window had to be close to the endpoint,
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Figure 3.10: A numerical calculation of the component of the magnetic field perpendicular

to particle’s trajectory as a function of lateral(xmagnet, the abscissa) and longitudinal(zmagnet,

the ordinate) coordinates. xmagnet is increasing toward decreasing scattering angles.

making the electron-photon beam unavoidable. From point of view of two-body kinemat-

ics, the electrons are completely indistinguishable from the photons due to their negligible

mass. While the electromagnetic shower development is slightly different for electrons and

photons, the calorimeter’s resolution wouldn’t allow one to make that distinction. The only

other way to distinguish the electron events from the photon events would be to either place

an electron veto detector in front of the calorimeter – allowing it to detect the C̆erenkov

light from the electrons in lucite – or to place a dipole magnet after the target, which would

offset the two-body kinematic correlation between the recoil proton and the electron, thus

allowing the separation of the electrons from the unaffected photons. The idea behind the

use of magnet is based on kinematic correlations between the two arms of the experiment.
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One can use the proton’s kinematic variables and two-body kinematics to reconstruct the

photon’s or electron’s scattering angle. If no deflections are present , the difference between

the calculated value and actual measurement should be centered around zero (the width

of its distribution entirely conditioned by resolution and multiple scattering effects). Thus,

when viewing the kinematic correlation between the two arms, the electrons and photons

would be superimposed. However, if a strong magnetic field were to be introduced immedi-

ately after the target, it would offset the correlation of the electrons, separating them from

the Compton events. It was decided that a deflection of 10cm on calorimeter face when the

calorimeter is at the distance of 5.2m away from the target would be sufficient to guarantee

the separation. A numerical calculation of the field of the RCS dipole magnet [43] can be

seen in Fig. 3.10. The magnetic field allowed for a γp/ep separation at all the kinematic

points. What can be seen in the figure, and what is very important, is that the field is

increasing with decreasing scattering angles: the electrons scattered at smaller angles have

larger energies and need a larger field for the same amount of deflection.

One way to determine the field of the RCS Magnet is by using numerical calculations,

the result of which can be seen in Fig. 3.10. Another manner is to simply observe elastic

electron scattering, and determine the field integral
∫

B ·dl by measuring electron deflection.

This analysis has been performed for a number of kinematic points, for a setting when the

current of the magnet was 500A and a setting where it was 600A. The resulting dependence

has been fitted using a polynomial expression [44]. The results for both current settings can

be seen in Fig. 3.11.

67



 [Deg]labθ
20 30 40 50 60 70 80

 B
 d

l  
 [

T
es

la
 m

et
er

]
∫

0.1

0.2

0.3

0.4

0.5

600 A

500 A

Figure 3.11: A plot of
∫

B ·dl versus scattering angle. The two sets of data, as fitted with

two different lines, correspond to the current settings of 600 A (red line) and 500 A (blue

line)

3.4 Hall A Focal Plane Polarimeter

The measurements of Compton scattering polarization transfer asymmetry are an important

part of the E99-114 experiment, as already discussed in Chapter 2. The task of determining

the polarization of recoiled protons at the target requires a measurement of polarization at

the focal plane of the spectrometer, as well as a good understanding of the precession of

proton spin in the magnetic fields of spectrometer’s magnetic elements. The Focal Plane

Polarimeter (FPP) is the Hall A detector used for measuring particle polarization at focal

plane by means of detecting the angular effects of secondary nuclear interaction in two

analyzers. [45].
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Figure 3.12: The dual analyzer configuration of Hall A Focal Plane Polarimeter (FPP).

3.4.1 Proton Polarimetry

As the proton scatters from a nucleus, its spin interacts with its induced orbital angular

momentum. This spin-orbit coupling results in a sensitivity of the final scattering direction

on the spin of the incoming proton. If one observes a large set of incoming protons whose

spins are preferentially pointing in a given direction, then one will observe an azimuthal

asymmetry in the scattering angle. By measuring this asymmetry it is possible to determine

the polarization of the incoming protons. For example, in case if there is no preferred

direction of the incoming proton spins, the azimuthal component of the scattering angle

will be perfectly uniform in its distribution. In general a polarimeter is constructed of

two sets of tracking detectors (such as VDC’s and/or straw chambers), whose purpose is

the determination of the particles’ initial and final directions, and an analyzer scattering

material (such as carbon or polyethylene) in between. A schematic diagram of the Hall A
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FPP configuration can be seen in Fig. 3.12, showing a second analyzer and a third set of

detectors, which are added to increase the analyzing efficiency of the apparatus. A detailed

description of the technique of secondary scattering for particle polarimetry can be found in

Ref. [46], [47] and [48].

The Hall A FPP has been developed and built by Hall A collaboration, and has been used

in a number of experiments to extract information on proton polarization. The standard

configuration, before the E99-114 experiment, consisted of one 51 cm-thick carbon analyzer

and one set of straw chambers, to track the proton after it passed through the analyzer. The

E99-114 experiment however saw the use of a second analyzer-detector package, with the

addition of a 44 cm-thick polyethylene(CH2) analyzer, which greatly increased the analyzing

power of the polarimeter. The overall effectiveness of the FPP as a tool is described by a

quantity known as the Figure-Of-Merit (FOM), which is a combination of the efficiency and

analyzing power of the material. The efficiency is simply related to the quantity of material

that the proton has to traverse. The analyzing power describes the intrinsic properties of

the material, such as the induced spin-orbit coupling.

The variable nature of the analyzing power for a given material can be of a serious

concern when choosing a material for the analyzer. The carbon analyzer of the FPP consists

of blocks of high purity graphite. The experimental data has shown that the FOM for carbon

drops significantly as proton momenta exceed 2.4 GeV/c. Hence other alternatives had to be

considered to compensate for this drop in performance. The polyethylene was first introduced

as the sole analyzer for FPP during a double polarization measurement of the proton form

factors [49]. With proton momenta in the 2.6−3.8 GeV/c range, a significant improvement
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in the FOM was achieved, as compared to previous measurements with carbon [23].

It was therefore naturally concluded that a polarization measurement should optimally

involve both carbon and polyethylene analyzers. A minor re-arrangement of the existing

tracking apparatus resulted in the configuration of Fig. 3.12, where the proton can scatter

either or both on carbon and polyethylene analyzers, and precise data on its trajectories

can be obtained from the VDC’s and straw chambers in order to reconstruct the azimuthal

asymmetry, which then can be used in determining the total polarization of the incoming

proton flux.

3.5 Data Acquisition and RCS Trigger

After the experimental hardware detects a signal, its amplitude and timing are processed and

digitized by different front-end electronic ADC and TDC modules, whose signal is then sent

to Hall A Data Acquisition (DAQ) system. This system is made of a variety of CAMAC,

Fastbus and VME electronic units, in addition to which it also contains electronic mod-

ules developed and built by Hall A electronics group. The software processing of data is

implemented by using the data acquisition software package CODA – CEBAF On-line Data

Acquisition [50].

The DAQ system for the hadron arm and for the beamline monitoring apparati was

essentially unchanged for our experiment, as it is part of standard Hall A instrumenta-

tion. However, the calorimeter, built and developed by the RCS collaboration, needed a

separate system of readout package. Also, given the specifics of electronic support for the
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calorimeter, a new type of coincidence trigger scheme had to be developed for the combined

HRS-calorimeter system. While the readout package for left HRS is located in the shield-

ing hut, which also houses the focal plane detector package, the electronics for calorimeter

were placed on the left side of Hall A floor. To protect the micro-electronics from radiation

damage – which can be extensive due to very high radiation levels during runtime – a heavy

concrete wall was constructed to block radiation.

3.5.1 Trigger Configuration

Since the calorimeter unlike the HRS detector package is not protected from the massive

volumes of radiation , it needs a very flexible trigger which can be both highly discriminative

– to reject the vast amounts low energy background – and redundant at the same time in

order not to reject true hits. The 704 calorimeter blocks are grouped in sets of 8 adjacent

blocks, in 2 × 4 sub-arrays. The signals of the blocks of a given sub-array are summed in

a linear summing module, giving a sum8 signal. This signal however cannot be used for

trigger: it is quite likely that the electromagnetic shower will start at the intersection of 4

sum8 sub-arrays, and the maximum energy registered by the trigger electronics will be only

the fourth of the total energy, causing it to reject the hit as a background. Hence, another

summing scheme needs to be invented to allow for such a redundant summing as to insure

that a shower, no matter where it is produced, will be entirely contained by a particular

single sum. To do this, the sum8 signals are further summed in groups of 4, giving sum32

arrays. However, this summing is performed inclusively, and every sum8 is contained by four

sum32 arrays, as can be seen in Fig. 3.13. As an input to the discriminator all the 56 resulting
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Figure 3.13: The photon trigger consists of the OR of the overlapping sum32 arrays, a

configuration which makes sure that a given electromagnetic shower is entirely contained by

at least one summing unit.
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sum32 are compared to a threshold voltage, and an OR logical operation is performed on

the result. This results in a photon single trigger, labeled in the data stream as T1.

Traditionally, hadron singles triggering in HRS is performed using two sets(S1 and S2)

of scintillator paddles, whose coincidence defines the “single” trigger for the hadron arm.

Each detector consists of a set of five scintillator paddles, each of which has two PMT’s on

each end. An electronic operation based on such a complex system of signals is somewhat

complex and rather slow, in terms of electronic time, in a situation where it is important

that the hadron signal is the first to arrive in order to open the electronic “gate”1. For this

reason another scintillator, labeled S0, with only two PMT’s, was used for the coincidence

trigger. The scintillating material, while rather useless for coordinate reconstruction, is ideal

for triggering purposes, since it allows for a very fast and highly efficient signal2. The S0

scintillator detector consists of a 10mm-thick scintillator paddle, with two PMT’s attached

to the opposite ends. The logical AND of the two signals defines a trigger, T7. The logical

of T7 AND T1 defines the coincidence trigger, labeled as T5 in the data stream.

The full schematic drawing of the trigger logic can be seen in Fig. 3.14, showing the T1

and T7 triggers separately. Since the T1 trigger works by opening an electronic gate of a

limited time duration, it is important to insure that in case of a coincidence event the T7

trigger arrives within that time window, which is as short as 100ns. However, due to different

distances the times of flights for the hadrons and photons are different. This discrepancy is

1It would also have been possible to choose the calorimeter single trigger as the opener of the gate, however,

due to calorimeters exposure to radiation, this would involve a huge amount of noise-based triggers, affecting

the electronic dead time in a highly negative manner
2The S0 efficiency has been estimated to be more than 99.5%
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resolved by introducing artificial electronic delays to the signals, to insure that in case of an

actual coincidence event a coincidence trigger is in fact produced.

3.5.2 Data Acquisition System

During an event, the results are recorded in the raw data, in a format which only contains the

raw values of TDC and ADC for thousands of detector channels. Later stages of physical

analysis will use this information, as well as known detector geometries and positions, in

order to compute actual physical values such as momentum, angles, and coordinates. The

read-out of these ADC and TDC values and their writing into the data stream is controlled

by a CODA-based system which has been configured for this particular experiment. As

mentioned earlier, the digitization of the analog signals are performed by ADC and TDC

modules, which were located in four Fastbus crates. These crate was controlled by a computer

with a Fastbus interface called a Read-Out Controller (ROC). The photon arm electronics

contained the VME crate which constituted the Trigger Supervisor(TS) and Event Builder

modules. The Trigger Supervisor is a VME board specially developed by the JLab electronics

group and controlled by a Motorola MVME 2400 unit. It can be used to program up to

twelve different triggers, with a pre-scaler value applied to each one of them. The system

of pre-scalers allows one to randomly reject not-so-crucial data – in order to save disk space

and computational time – and keep the important data type. For example, in our case the

Trigger 5 coincidence events were the most important, and a pre-scaler of 1(meaning every

single event was recorded and stored) was applied on them. Other event types, corresponding

to T1 and T7, were less important for future physical analysis, and a large pre-scaler values
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Figure 3.14: The drawing of electronic setup for the RCS trigger logic.
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of order 1000 were applied to them, allowing us to keep only every 1000th event of that type.

When the trigger supervisor receives a trigger, it outputs a Level 1 Accept (L1A) signal

to all ROC’s, which then provide gates to all the ADC modules (allowing them to register the

event’s ADC values) and a common stop to all the TDC. When all the modules are finished

recording and communicating the front-end data, a busy flag is turned off in the Fastbus

crate and ROC informs TS that it is ready for the next event. In this manner a TDC hit in a

detector starts the counting of time for that channel, and records it only if a trigger has been

achieved. Otherwise, if a trigger signal has not been received, the timing reaches a threshold

and the information is abandoned. The TDC’s essentially calculate the time between a hit

and a common finish command, from which the relative timing of every channel can later be

deduced. The Fastbus 1877 TDC modules used have 96 channels, have a timing resolution

of 1ns and are able to record multihit events. The Fastbus 1881 ADC modules have 64

channels with individual thresholds which can be set remotely. The function of the ADC’s

is to calculate and digitize the total accumulated charge from a signal pulse.
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Chapter 4

Data Analysis: Data Reduction, and

Preliminary Analysis

The data analysis of RCS experiment in many ways reflects the unique character of the

experiment and the instrumentation involved. The analysis can be divided into two sections:

data reduction, when raw ADC and TDC channel values are processed into more meaningful

kinematic variables, such as scattering momentum, angle, and vertex position; use of the

resulting “processed” data to extract Real Compton Scattering cross sections with the use

of a Monte Carlo simulation package. This chapter will discuss the first part of the analysis

– data reduction and extraction of proton and photon energies and scattering angles.

4.1 The General Flow of Analysis

The main bulk of data reduction is performed using three stand-alone packages: espace

(Event Scanning Program for hall A Collaboration Experiments) [51], RCS analyzer and
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merge. The first package performs the analysis of the hadron arm – analysis of VDC track

information and reconstruction of the hadron kinematic variables at the target. The second

package performs the analysis for the photon arm – determination of the calorimeter hit

position and particle energy. Finally, the merge code merges the two data streams into a

single one, at the same time calculating different “derivative” variables – such as incident

particle energy and kinematic correlations between the recoil and scattered particles.

The data reduction and physical analysis can be broken into separate stages:

• Decoding of raw CODA data, and extracting ADC and TDC values for the more than

2000 channels.

• Use of calibration coefficients to convert the ADC and TDC values into information

on absolute amplitude and timing of the signal.

• For the hadron arm, use the above data to reconstruct VDC hit positions, and from

there determine the focal plane kinematic variables. For the photon arm, use center of

mass algorithms and calibration constants to determine hit coordinate and energy of

the electromagnetic shower.

• Determine proton’s kinematic variables at the target using its focal plane variables and

transformation tensors for the spectrometer’s magnetic optics.

The next stages of the analysis consists of event separation, described later in this chapter,

and Monte Carlo fits to the data, as described in the next chapter. By having measured

the full extent of kinematic variables for an event, we can use a combination of kinematic

correlations and trigger information in order to determine the probable origin of every event.
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4.2 Proton Data

As mentioned before, the analysis of the proton data is performed using espace software

package, which is written in ABSOFT Fortran [52], and uses standard data analysis CERN-

LIB [53] libraries. The package decodes the raw CODA data , and uses timing information

in order to reconstruct the hit position on a given Vertical Drift Chamber (VDC) plane,

of which there are two. This in turn allows not only for the determination of focal plane

coordinates, but also for the calculation of focal plane trajectory angles. In the next stage,

espace uses optics transfer matrices in order to reconstruct proton’s kinematic variables at

the vertex in the target. These are the variables that are of a primary use in our data

analysis.

4.2.1 HRS Vertical Drift Chambers

The Hall A left High Resolution Spectrometer (HRS) uses two Vertical Drift Chambers

(VDC) in order to build the magneto-optic “image” of the vertex in the focal plane of the

spectrometer. The function of a VDC is to track a particular event, and provide information

which then can be used to fully determine that event’s coordinate and vector of motion. As

described in the previous chapter, the VDC’s consists of an array of very thin tungsten wires

subjected to the voltage of 4000V. The whole array is immersed in a mixture of argon and

ethane gases [42].

When a charged particle traverses the detector, it causes ionization of the gas. The

“droplets” of ionized gas experience the electrostatic attraction of the electric field, and
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start drifting (hence the name) towards the wires. By measuring the relative time it took

a centers of ionization to reach different neighboring wires one can reconstruct the position

and angle at which the track traversed the detector. While the reconstruction of position

can be quite precise, uncertainty in trajectory angle can be quite high, and depends strongly

on a particular method of calculation employed. To eliminate this uncertainty, the VDC’s

are always used in pairs, and only position information from each VDC is used. By coupling

the hit positions on the two VDC planes one can also calculate the angle of the trajectory, in

two dimensions. At this point a full kinematic description of a track has been achieved, its

values denoted as an array (U, V, ηU , ηV ), where the first two parameters are the hit positions

on the first detector, relative to a reference wire, and the last two variables are the trajectory

angles relative to the normal of the detector plane.

The final stage of detector plane operations is the use of VDC geometry and position-

ing information in order to translate the above VDC coordinates into a more “universal”

spectrometer variables. The Transport Coordinate System of the HRS is a system which

is attached to the central trajectory of the spectrometer, with ẑ axis pointing along the

trajectory, while ŷ pointing horizontally, away from the beam-line.
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4.2.2 Spectrometer’s Magnetic Optics

At any point inside the spectrometer a particle trajectory can be defined relative to the

reference central trajectory by a vector of the following form:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

θ

y

φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here x and θ ≡ dx/dz are the trajectory’s coordinate and angle in the vertical plane, while

y and φ ≡ dy/dz are the trajectory coordinates in the horizontal plane.

If one were to treat the spectrometer optics as that of a perfect thin lens (i.e. no second

order aberrations), one could achieve the following transformation between focal plane (fp)

coordinate system to the target(tg) coordinate system:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ

θ

y

φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

tg

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈δ|x〉 〈δ|θ〉 0 0

〈θ|x〉 〈θ|θ〉 0 0

0 0 〈y|y〉 〈y|φ〉

0 0 〈φ|y〉 〈φ|φ〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

θ

y

φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fp

(4.1)

In the first array δ ≡ (p−pcentral)/pcentral is the relative momentum. Notice that it is impossi-

ble to independently determine both vertical position xtg and momentum at the target. The

vertical position however can be easily determined using ytg and Beam Positioning Monitor

information. Also, notice the zero’s in the matrix: these arise from the assumption that the

magnetic elements of the spectrometer are perfectly aligned in the horizontal plane, and the
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magnetic features of the vertical plane do not affect the optical properties of the horizontal

plane.

In practice, however, the HRS magnetic system is everything but a thin lens: the sex-

tupole corrections of the quadrupoles amount to large non-linear aberrative effects, and these

need to be taken into account when performing optic reconstructions, in order to achieve

the highest possible angular and coordinate resolution. A more complete description of the

transformation above is presented through tensor notation:

ytg =
∑
i,j,k,l

Yijklx
i
fpy

j
fpθ

k
fpφ

l
fp (4.2)

θtg =
∑
i,j,k,l

Tijklx
i
fpy

j
fpθ

k
fpφ

l
fp

φtg =
∑
i,j,k,l

Pijklx
i
fpy

j
fpθ

k
fpφ

l
fp

δ =
∑
i,j,k,l

Dijklx
i
fpy

j
fpθ

k
fpφ

l
fp

where Y,T,P,D are the optics tensor elements. The mid-plane symmetry of the spectrometer

requires that – just like in the linear case – for k + l being even Yijkl = Pijkl = 0 and for k + l

being odd Dijkl = Tijkl = 0.

Optics Calibration

Determining the optics tensor elements is a necessary task in order to achieve an optimal

angular and vertex resolution for HRS. A method to achieve this has been developed by

different members of Hall A collaboration [54]. The general idea behind the method is

to somehow fix the values of the target variables ytg, θtb, φtg and δ and observe how well
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the optics tensor reconstructs those variables. The calibration is achieved my varying the

tensor elements as to minimize the errors of the reconstruction using chi-square minimization

method. The errors, or aberration functions, are defined as the following:

Δy =
∑

s

[∑
i,j,k,l

Yijklx
i
fpy

j
fpθ

k
fpφ

l
fp − y0

tg

]2

(4.3)

Δ(φ, θ) =
∑

s

⎧⎨
⎩
[∑

i,j,k,l

Pijklx
i
fpy

j
fpθ

k
fpφ

l
fp − φ0

tg

]2

+

[∑
i,j,k,l

Tijklx
i
fpy

j
fpθ

k
fpφ

l
fp − θ0

tg

]2
⎫⎬
⎭ (4.4)

where the summation
∑

s is performed over all the events in the statistic set. Notice that

the calibration of the angles is performed simultaneously for both angles.

The experimental task is then to fix the values of y0
tg, θ0

tb and φ0
tg. The procedure is the

following:

• To fix ytg (the transverse vertex position) a special optics target has been built. It is a

set of nine thin 12C foils, which allows for fixed values of z0
tg (the vertex along beam-

line). The data set used in the calibration consists of beam electrons scattering quasi-

elastically from carbon into the spectrometer. It is important that the spectrometer be

placed at such an angle as for the carbon target to span the full transverse acceptance

(±5cm at the hall center ) of the spectrometer.

• The spectrometer entrance is covered by a sieve-slit collimator, which is made of thick

cadmium and has 49 small holes drilled at pre-determined positions. A drawing of the

collimator can be seen in Fig. 4.1 (left).

• The combination of a particular hole on the sieve-slit and of a particular carbon foil

defines a specific y0
tg, θ0

tb and φ0
tg.
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In order for the above mentioned variables to be known correctly, surveys have been per-

formed, which have measured the positions of the target, the sieve-slit, and the spectrometer

to a very high precision. A number of caveats exist when performing the optics calibration.

Since the data set consists of quasi-elastic events, the distribution of those events across the

spectrometer angular and momentum acceptance is determined by the strongly changing

cross-section of quasi-elastic electron scattering on 12C. It is then very important to weight

the use of data in such a way as to uniformly span all the focal plane variables1.

Calibration Procedure and Results

The first step of the calibration is the subtraction of detector offsets. Ideally, the detector

package should be perfectly aligned with the central ray of the spectrometer. This however

is not the case, and due to mechanical issues it is practically impossible to keep the detectors

perfectly aligned with the ideal center. There are always offsets of order 1− 2mm. Further-

more, other non-linear offsets are also possible: the detector package may be tilted, both in

vertical and in horizontal plane. Furthermore, the position offset of the detectors may vary

across the detector face. This is due to the fact that the detectors may be somewhat bent

and not perfectly rectangular.

To correct for these offsets we choose the data from the central foil of the carbon target,

and from the central large hole of the sieve slit collimator (see Fig. 4.1(left)). Since both the

1One could of course argue that this may not be the most optimal thing to do, since the distribution of

production data(i.e. data which is used to study the overall physics problem of the experiment) might not

be uniform itself. In this case it might be wiser to weight the calibration in such a manner as to mimic the

production data.
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Figure 4.1: Left: Sieve-slit collimator pattern. Right: plot of event coordinates as projected

on the sieve slit plane, clearly showing the position of the holes (compare with the picture

on the left). The intersection of the lines correspond to the actual measured position of the

holes.

central hole of the sieve-slit and the central foil of the target are set to be approximately

on spectrometer’s central axis, this selects trajectories which followed the central ray of the

spectrometer. This makes the three focal plane variables of Eq. 4.3 vanish, yfp = θfp =

φfp = 0, leaving the final target variables sensitive only to a sum over the powers of xfp, i.e.:

ytg =
∑

i

Yi000x
i
fp , θtg =

∑
i

Ti000x
i
fp and φtg =

∑
i

Pi000x
i
fp (4.5)

Here Yi000, Ti000 and Pi000 entirely correspond to the position and angular offsets of the

detector package. By doing a 2nd order fit, we achieve the following values for the offsets
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(the units are in meters and radians):

Tensor i = 0 i = 1 i = 2

Yi000 −7.7491 · 10−3 1.7564 · 10−3 7.8145 · 10−4

Pi000 −2.4842 · 10−3 −1.2188 · 10−3 −2.8384 · 10−4

Ti000 −1.0052 −3.3331 · 10−1 −4.0880 · 10−2

(4.6)

By studying the first row, corresponding to Yi000, we conclude that the detector package has

a general “zero-th order” offset of 7.5mm, that the offset is increasing as one moves away

from the origin, implying that the whole package is tilted by arctan(0.0017) ≈ 0.1o. Also,

observing a non-zero 2nd order term, we conclude that there is a slight bent in the VDC

frame. Similarly, the non-zero values of Pi000 and Ti000 are indicating to an angular offsets

of the VDC detector plane 2

Once the offset corrections have been subtracted, the rest of the optics calibration can

follow as described in the previous subsection. First, angular optimization is performed. The

results can be seen in Fig. 4.1, showing a good agreement of the reconstructed sieve holes

with their actual locations (intersections of the lines). The offsets of the central 5 × 5 holes

2The large value of T0000 is due to VDC’s being set at 45o angle to the central axis of the spectrometer,

hence T0000 ≈ tan(45o) = 1.
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from their ideal positions can be seen in the table below (results are in miliRadians):

δθ1 δφ1 ...

δθ1 δφ1 −0.075, 0.076 0.18,−0.27 −0.33, 0.06 0.68,−0.6 0.9, 0.57

... −0.4,−0.1 −0.5, 0.25 −0.8, 0.3 −0.6, 0.4 −0.4, 0.6

−0.2,−0.04 −0.3, 0.1 −0.4, 0.1 −0.4, 0.4 −0.3, 0.7

−0.3, 0.3 −0.3, 0.2 −0.03, 0.1 −0.3, 0.2 −0.2, 0.5

−0.1,−0.2 −0.1, 0.04 −0.2, 0.04 −0.3, 0.1 −0.5, 0.4

(4.7)

Finally, once the angular calibration has been performed, we perform vertex coordinate

calibration. The resulting distributions can be seen in Fig. 4.2. The left plot shows the nine

foils of the optics target, while the right plot shows the dependence of the vertex position

from scattering angle. As expected, there is no correlation between the later two variables,

pointing to the stability of the optic reconstruction.

4.3 Photon Data

One of the key parts of the data analysis process is the reduction of data acquired from

the calorimeter. At the lowest level this consists of the digitized ADC signals from the

photo-multiplier tubes which are connected to the lead-glass blocks of the calorimeter (see

Ch. 3.3.1). The amplitude of the signal is a measure of the energy deposited inside the block.

Once the hit cluster has been identified, the sum of the ADC values corresponds to the total

energy of the incoming photon. Also, by calculating an ADC weighted average of the block

positions one can obtain the hit position. The energy and the hit position of the photon are

needed to reconstruct the entire two-body reaction at the vertex.
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Figure 4.2: Left: the nine foils of the carbon target. Right: vertex position plotted against

scattering angle. The lack of any correlation points to a good calibration and a stable

optic transformation tensor. In both plots the lines correspond to the measured target foil

positions.

However, to proceed with these steps, one first of all needs to find the correspondence

between the ADC value and the energy deposited in the block corresponding to that ADC.

A detailed description of calorimeter energy reconstruction and calibration procedure can be

found in Ref. [10].

4.3.1 Energy and Position Calibration

When a photon or an electron enters a medium, it starts interacting with the electric field of

the nucleus. This starts what is commonly referred to as an electromagnetic shower. In case
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of an electron, the interaction causes it to experience bremsstrahlung and emit an energetic

photon. The later, itself subject to the field of the nuclei, pair produces an electron and

a positron, and the process of bremsstrahlung is repeated. At every “generation” of the

shower, a single particle is converted to two, and the energy of an individual particle is on

the average halved (assuming that the bremsstrahlung photon caries almost all the energy of

the electron, which is of course the extreme case). The minimum number of the generations

is determined using Eq. 3.1. The Čerenkov light emitted by the electrons and positrons is

then detected by the photo-multiplier tubes.

As the shower is progressing, it is also spreading transversely relative to the direction

of the original incoming particle. So, the lead glass block where the particle entered will

experience the strongest signal, since the peripheral blocks of the cluster will register the

“tails” of the transverse spread of the shower. The simple sum of the energies of the blocks

will give the total energy of the shower:

E =
∑

i

Ei

where the summation is performed over all the blocks of the cluster. Meanwhile, the position

at which the particle entered the block can be reconstructed using so called “center of mass”

method:

(x, y) =
∑

i

(xi, yi) · Ei/E (4.8)

In order to reconstruct the energy deposited in a given block, one assumes that the ADC

signal registered by the photo-multiplier tube is proportional to the energy. From here one

can calculate Ei as

Ei = Ci · (Ai − Pi)
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where Ai is the ADC amplitude, Pi is the pedestal value, and Ci is the calibration coefficient.

In order to calibrate Ci one needs to know Ei. In order to achieve this calibration, part

of the experimental beam time was used to accumulate elastic electron scattering data: the

radiator was removed, and the kinematic setting was adjusted to observe elastic electron

scattering. Once the proton is detected in the High Resolution Spectrometer, the electron’s

angle and energy can be reconstructed to very high precision, assuming two-body kinematics.

This is then the needed input for the calibration. The calibration coefficients Ci are then

determined by performing a numerical minimization of the error

χ2 =
∑

n

{
∑
i∈Mn

[Ci · (Ai − Pi)] − En} (4.9)

where n is the event number, and En is the energy reconstructed from proton kinematics.

Results

Since the domain of calorimeter energies corresponding to the kinematic range of the experi-

ment is very wide, calibration had to be performed for every single kinematic setting. Thus,

before production data could be taken, elastic data was first acquired, to be used later for a

calibration.

The results of calibration for kinematic point 5D can be seen in Fig. 4.3. The fits to

the data show a calorimeter resolution of 5.4%. It also shows the intrinsic deficiencies of

the “center of mass” method of position reconstruction, as one can see that the events

are artificially systematically concentrated around the block centers. The plots in Fig. 4.4

contain fits to distributions of in-plane correlation δx and out-of-plane co-planarity δy for

elastic ep → ep events. These show that the combined angular resolution of the experiment

91



Entries  19949
Mean     3150

RMS       196

E [MeV]
2400 2600 2800 3000 3200 3400 3600 3800 40000

50

100

150

200

250

300

350

Entries  19949
Mean     3150

RMS       196

Energy reconstructed in Calorimeter Entries  19949

Mean   0.003286

RMS    0.05692

 / ndf 2χ     75 / 53

Constant  4± 4.3e+02 

Mean      0.0006± 0.0026 

Sigma     0.001± 0.054 

EΔσ
−0.3 −0.2 −0.1 0 0.1 0.2 0.30

50

100

150

200

250

300

350

400

450

Entries  19949

Mean   0.003286

RMS    0.05692

 / ndf 2χ     75 / 53

Constant  4± 4.3e+02 

Mean      0.0006± 0.0026 

Sigma     0.001± 0.054 

Energy resolution

X coordinate [cm]
−40 −30 −20 −10 0 10 20 30 400

100

200

300

400

500

Reconstructed X coordinates

Y coordinate [cm]
−60 −40 −20 0 20 40 600

50

100

150

200

250

Reconstructed Y coordinates

Figure 4.3: Top: plots of calorimeter energy E and (E − E(p))/E(p)), where E(p)is the

expected energy, calculated from proton kinematics. The second plot is fitted, showing a

calorimeter resolution of 5.4%. Bottom: Reconstructed calorimeter hit position coordinates.

From Ref. [10].

dx
Entries  62597

Mean   0.6426

RMS     5.882

 / ndf 2χ  115.4 / -3

Constant  26.6±  4963 

Mean      0.0209± 0.8201 

Sigma     0.02±  4.78 

-30 -20 -10 0 10 20 300

1000

2000

3000

4000

5000

dx
Entries  62597

Mean   0.6426

RMS     5.882

 / ndf 2χ  115.4 / -3

Constant  26.6±  4963 

Mean      0.0209± 0.8201 

Sigma     0.02±  4.78 

 x [cm]δ

dy
Entries  63408

Mean    3.443

RMS     5.818

 / ndf 2χ    148 / -3

Constant  28.3±  5242 

Mean      0.020± 3.644 

Sigma     0.02±  4.53 

-30 -20 -10 0 10 20 300

1000

2000

3000

4000

5000

dy
Entries  63408

Mean    3.443

RMS     5.818

 / ndf 2χ    148 / -3

Constant  28.3±  5242 

Mean      0.020± 3.644 

Sigma     0.02±  4.53 

 y [cm]δ

Figure 4.4: In plane (left) and co-planarity(right) correlations, calculated by subtracting

measured calorimeter position from the predicted position as calculated from proton’s kine-

matic variables. The Gaussian fits reveal the combined vertical and horizontal coordinate

resolution of the experiment: 4.8 cm and 4.5 cm at the distance of 1200 cm.
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Figure 4.5: Calibration Coefficients Ci for every block of the calorimeter. From Ref. [10].

(in kinematic point 2A, where the plotted data was taken) is about 4 mRad.

Another important feature of the calibration is the dependence of calibrated Ci coeffi-

cients on block number. Fig. 4.5 shows that the calibration of the peripheral blocks has

yielded abnormally large values. The external positioning of the peripheral blocks causes

them to “participate” in considerably less number of events, resulting in deficient calibra-

tions. This problem is resolved by simply excluding the data corresponding to these blocks

from the data analysis process. A C++ software package for analyzing the calorimeter
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data has been developed by the collaboration. For a detailed description of the calorimeter

analysis software refer to [55].

4.4 Coincidence Data

Once the first stage of data analysis (reduction) has been completed and the data has been

analyzed both for proton arm and photon arm, a merging procedure is performed, where a

ROOT based software is used to read in the outputs of ESPACE and ROOT Analyzer as

input and to produce a single “merged” file as an output. A number of useful kinematic

calculations were also included during the process of merging. These included calculations

of incident particle’s reconstructed energy, as well as scattered particle’s angle and energy,

all based on two body kinematics.

4.4.1 Event Structure and Separation

Once a final merged file is ready, one can start performing the first stages of scientific analysis,

such as determining kinematic cuts. The goal of the preliminary, or “on-line” analysis it the

determination of preliminary cross sections. This “pre Monte-Carlo”(pMC) analysis has been

performed at different degrees of involvement since the end of the experimental run. Besides

providing quick and arguably approximate answers to theoretical questions, the preliminary

results can be refined to the point where they can be used as a benchmark for the final results.

In this way, the difference between the results acquired using the Monte Carlo simulations

and the results achieved using the preliminary analysis can be a measure of the systematic
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uncertainties of the experiment.

Before discussing the challenges and deficiencies of the preliminary pMC analysis (and

the subsequent need of a numerical model for the experiment) , it is important to first

understand the general approach to the analysis. As mentioned earlier, the main difficulty

of the experiment is its complex event structure: elastic electron scattering, neutral pion

production, post-scattered electron bremsstrahlung, virtual Compton scattering(VCS) and

finally real Compton scattering(RCS). Separating these event types is a highly non-trivial

task. It is important to choose a kinematic variable (or a derivative of those) which will

reveal best the differences between these event types. The variable which was chosen are the

co-planarity and in-plane angular correlation between the two arms:

δx = xp − x

δy = yp − y

where x and y are the calorimeter hit coordinates, while xp and yp and those calculated

based on proton information and assuming two-body kinematics, as well as a zero mass

for the outgoing particles. If resolution and detector offset effects are ignored, δx and δy

will be zero for the RCS events 3. A plot of δx, δy and Ecalo can be seen in Fig. 4.8. The

electrons are offset considerably due to the deflection which they experience in the magnetic

field of the RCS magnet. Meanwhile, the neutral pions decay almost instantaneously after

their production, in a manner which is isotropic in their rest frame, producing a uniform

background. The main issues facing the analysis are following:

3This is also true for the VCS events. However the later can be subtracted with ease, see Chap. 6.2 for

details, hence for the rest of the discussion we will not mention this even type, and hold their subtraction

until the very end
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• Subtraction of

– neutral pion decay background and

– post-scattered electron bremsstrahlung background.

• Inclusion of acceptance-related losses in determination of cross section.

Neither of these is by any means trivial. The shape of the pion background and bremsstrahlung

is not obvious, and can cause large systematic uncertainties at kinematic points where the

coordinate and energy resolutions are especially low. However, as mentioned earlier, besides

these defects, the preliminary results achieved through polynomial fitting can be used to

determine the overall systematic uncertainties of the experiment.

4.4.2 Preliminary Polynomial Fitting

In this subsection I will provide a description of preliminary data analysis, and as an example

I will use the analysis performed on kinematic point 5A, which is one of the points which

have the largest backgrounds.

The first step of the data analysis is to determine the standard cuts needed which will

reduce background and remove the acceptance effects. The variable fG EV type denotes

the particular type of trigger which an event satisfied. The type fG EV type = 5 cor-

responds to events which recorded a hit in the calorimeter and proton spectrometers S0

scintillator detector (see Chap. 3.5.1). However even after placing the coincidence cut, the

highly sensitive nature of the experimental apparatus allows for a very large volume of acci-

dental coincidences. To observe and manage the structure of the accidental background,
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Figure 4.6: Left: time difference(“coincidence time”) between the hits in the two arms

for coincidence events. Right: coincidence time vs. calorimeter energy for the events which

registered coincidence hits between the two arms. The doted square denotes the cut used

for data analysis.Both plots are done for kinematic point 5A.

it is very useful to look at the coincidence time between the two arms: that is, the time

interval between the two hits. Coincidence time for real events should be a fixed number,

somewhat smeared by detector related effects. The accidental background on the other hand

should have a uniform distribution in time. Fig. 4.6 (left) illustrates this point very well.

As it becomes clear from the plot, solely a coincidence time cut won’t suffice to remove the

background. In Fig. 4.6(right) one can see the distribution of background as a plot of time

versus calorimeter energy. A combined energy and time cut can almost entirely eliminate

the accidental background, without a tangible effect on actual physics event. A number of

other cuts which further reduce the probability of random background include cuts on vertex

coordinate, with the purpose of removing data from the target end-caps.
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The next task is to determine the cuts needed for elimination of uncertainties due to

acceptances. While in the scope of preliminary work it is very important to choose the

correct cuts, it is however of no importance in the overall domain of this dissertation, since

our final results were obtained using Monte Carlo simulations which did take into account

acceptances and hence involved very wide cuts. Therefore we will limit the discussion to

the minimum, with the limited purpose of only providing a general understanding of the

methodology and procedure.

The goal of the acceptance cuts is to eliminate parts of the phase space where events are

lost due to acceptance in a manner which is not possible to account for. Once the cuts have

been determined, the cross sections can be calculated using dσ/dΩ ∝ Y/(ΔΩ) where ΔΩ is

the solid angle corresponding to the acceptance cut. There are two manners of constraining

the acceptance, the first and most obvious one being the one of placing cuts on spectrometer

variables (since acceptance affects primarily the proton arm). However, due to a number

of reasons – including but not limited to the need of determining the Jacobian dΩp/dΩγ –

it has been decided that a corresponding cut will be placed on scattered photon angle and

incoming photon energy. The full list of the cuts is the following:

• Event type – coincidence: fG EV type == 5

• Coincidence time: fG MS tdc1 c[7] ∈ (630, 670) ns

• Calorimeter energy: fG GC e > 2750MeV

• Vertex: ztrgt ∈ (−6, 6) cm

• Beam Energy: E in ∈ (5300, 5500) MeV
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• Photon in-plane geographic angle: fG GC ph ∈ (−5.2, 5.2) mRad

• Photon out-of-plane geographic angle: fG GC th ∈ (−30.6, 30.6) mRad

Once the standard cuts have been identified, the next step consists of determining the

cuts on δy(see Fig. 4.8). The purpose of this cut is to reduce the pion decay background,

which strongly contributes to the statistical error. It was decided to place a 2σy cut on δy,

and then correct the yield by 1/.95. However, in order for this step to be accurate, it is

imperative to know both the mean of y as well as σy very precisely. To achieve this, an

iterative procedure of repetitive fitting is performed: first, very tight and approximate cuts

are placed on δy and a fit of δx is performed; then a similarly tight cut is placed on δx and

δy is fitted. This is repeated twice, until a very precise values of δx0 and δy0 are acquired.

Fitting Function: δx and δy

A fitting function for δx and δy is chosen, based on the assumption that the effects defining

the RCS and elastic electron peaks are of stochastic nature, and hence the shape of the peaks

is Gaussian, in both dimensions. Meanwhile, a smooth 2nd order polynomial is used for the

pion decay background. The functions used to fit δx and δy are

• δy: a0 + a1 · δy + a2 · δy2 + a3 · e−(δy−a4)2/2a5

• δx: a0 + a1 · δx + a2 · δx2 + a3 · e−(δx−a4)2/2a5 + a6 · e−(δx−a7)2/2a8

The results of the fits can be seen in Fig. 4.8 (top), and the schematic structure of the data

is illustrated in Fig. 4.7.
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Fitting Functions: Ecalo

A process which we haven’t yet fully discussed is bremsstrahlung radiation by electrons. The

Fig. 4.7 shows the propagation of the electron events through the experimental setup. As

the electrons are scattered in the target, they travel through dense target material, through

vacuum windows and air, before being deflected by the magnetic field of the dipole magnet.

However, during their trajectory preceding the deflection the electrons can interact with

these materials and produce bremsstrahlung radiation. The bremsstrahlung photons are

almost parallel to the electrons, and have the same angular kinematic dependences as the

RCS photons, a circumstance which makes them angularly indistinguishable from the RCS

events.

If there were no bremsstrahlung photons in the data, the yield would be determined

from the above fit, and the preliminary analysis would end there. However, the presence of

bremsstrahlung photons complicates the picture somewhat: the Gaussians of Fig. 4.8(top)

are only partially made of RCS events and contain a large number of bremsstrahlung events.

This calls for an additional step in the analysis. The only manner to distinguish and subtract

the bremsstrahlung photon events is to observe their energy as registered by the calorimeter.

Again, to minimize the participation of pion decay background, which inherently increases

the statistical error, we place a narrow ±2σx cut, centered on δx0. Using our fits of δx

we determine the so-called dilution factor D = Pi/(RCS + epγ). Next, we refer to the

calorimeter energy of the events inside the cut. However, calorimeter energy proper reflects

also the combined energy acceptance of the experiment. To subtract this effect, we instead
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plot the variable

E → ΔE+ < E > with ΔE ≡ Ecalo − E(p) (4.10)

where E(p) is the calorimeter energy predicted from proton side, assuming two-body kine-

matics. Fig. 4.8(bottom) shows the distribution of ΔE+ < E >.

The Gaussian peak itself represents the combination of the RCS and pion decay events.

Since the narrow cuts on δx and δy correspond to the pion decay photons with a rest-frame

decay angle of ≈ 0, these photons carry essentially the full energy of the pions, which – given

the fact that vertex-kinematic dependences have been entirely canceled by the subtraction

of E(p) – can be assumed to be approximately equal to that of the RCS events. The

combination of the above arguments allows us to treat the RCS and pion decay events in

this plot as essentially the same.

The long tail below the Gaussian is the shape of bremsstrahlung radiation. It can be

approximated to have a ∝ 1/E dependence on energy, with a sharp cutoff at endpoint E0.

Since the electron, which was the source of bremsstrahlung radiation had an energy identical

to that of RCS event, here E0 is simply the energy of the RCS event, and should coincide with

the mean of the Gaussian representing RCS and pion decay events. This type of dependence

can be modeled with the following approximate analytical expression:

E1

E
· 1

e
E−E0

E2 + 1
(4.11)

The first factor of the expression is simply the 1/E dependence of bremsstrahlung spectrum

on energy. The second factor is the energy spectrum of Fermi distribution: this is a factor

which is ≈ 1 when E is less than E1, and ≈ 0 when E is greater than E1. At the border
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region of E ≈ E1 it “smears” the otherwise sharp step by the measure of E2. Combining

this with the Gaussian for the RCS and pion decay events we get

E1

E
· 1

e
E−E0

E2 + 1
+ E3e

(E−E0)2/2E2

where E0, E1 and E2 are the fitting parameters. Notice two important features of the above

function: the mean of the Gaussian E0 and the “cutoff” of the Fermi distributions are the

same – this reflect the requirement that bremsstrahlung endpoint is equal to the RCS photon

energy; the “smearing” of the Fermi distribution is equal to the variance of the Gaussian: this

is because measurements of RCS photon energy and bremsstrahlung spectrum’s endpoint are

limited by the same calorimeter resolution, E2.

Once fitting is performed, and the coefficients are determined, the absolute number of

bremsstrahlung events can be determined by integrating Eq. 4.11. The rest of the events

in the histogram correspond to the sum of the RCS and pion decay events. Using the

information about the dilution factor from the δx fit, we form two equations with two

unknowns:

D = Pi/(RCS + epγ)

Pi + RCS = A

where A and epγ have been determined from the energy fits. This allows us to determine

RCS yield and to use it to calculate the cross section.
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4.4.3 Shortcoming of Preliminary Analysis

While the above discussion detailed the logic, the methodology behind and the merits of pre-

liminary analysis, it also revealed its shortcomings. First and but not foremost, it involves

severe cuts on acceptances, resulting in considerable loss of statistics. But most importantly,

it involves a very large number of fit parameters: 19 for the overall fit, and 10 to determine

the cross sections. It is intuitively assumed that the polynomial fit to the pion background

in Fig. 4.8(top) does in fact correspond to the reality, however there is no rigorous basis

to this assumption. For the kinematic points where σδx andσδy are large this is of a par-

ticular concern, since the pion decay backgrounds then plays a larger role in determining

the RCS yield. The same can be said about the assumptions that the pion decay events in

Fig. 4.8(bottom) does in fact follow a Gaussian form. And more importantly, Eq. 4.11 is

clearly a very approximate model for the behavior of the bremsstrahlung, not only because

the 1/E dependence of the spectrum is not exact, but also because that background – orig-

inating from electrons – is also dependent on acceptance effects. Furthermore, while Fermi

distribution is a clever and ingenious analytic model for resolution effects, it is by no means

an exact one: the Fermi distribution function describes a process where particles, due to

thermal interactions within the Fermi sea, are excited into higher energy states, hence caus-

ing the “smear” of the otherwise sharp step. Resolution effects on the other hand have a

“two-way” character – they affect statistic samples in both directions.

The above listed problems, while small by themselves, can add up to large systematic

uncertainties for the kinematic points where background volumes are large. This is the

reason why a full numerical model of the experiment is needed in order to understand fully
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the event structure and physical composition of the data.
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Figure 4.8: Top: plots of δy and δx, revealing RCS peak at δy ≈ δx ≈ 0, the electron peak

at δx ≈ −40 cm and the π0 decay background continuum underneath the peaks. The fit

consists of a combination of two Gaussian functions (to account for RCS and ep events) and

a polynomial functions to account for pion background.

Bottom: calorimeter energy distribution, fitted using a combination of a Gaussian and a

1/E function which has been “smeared” by calorimeter resolution.
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Chapter 5

Monte Carlo Simulation

5.1 Introduction

Monte Carlo method is a very versatile computational tool which is extensively used not

only in nuclear physics, but also in such seemingly unrelated fields as medical physics, mar-

ket finance, and biology. In its essence, Monte Carlo is a numerical method of evaluating

integrations and convolutions of very complex (and sometimes non-analytical) functions – a

task which is often impossible to perform analytically. The general purpose of the Monte

Carlo is to sample a particular phase space with a known (or assumed) distribution, and then

apply different conditions: at this point one can calculate expectations and other observable

quantities.
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5.2 Monte Carlo Method

A typical Monte Carlo consists of two main parts: event generator, and “condition cut.”

The purpose of the event generator is to simulate the initial conditions of the process. It

samples the phase space in a manner which is similar to a particular known(or assumed)

function. Question arises – how does one generate a statistic set of numeric events which

are distributed according to a particular probability density function? There are different

methods to achieve this, but all of these methods need a good random number generator,

which generates a uniform and statistically independent numerical values in the interval of

[0,1). There are a number of different well known generators. The one used in our work is

called RANLUX, and belongs to the CERNLIB libraries [53]. It has a very large period, and

is based on mathematical models derived from chaos theory [56].

5.2.1 Rejection method

Also known as “Metropolis” or “Van Neumann” method, the Rejection Method is intu-

itively the simplest manner to achieve a statistic distribution based on a particular multi-

dimensional probability density function. In order to generate a statistic set with a distri-

bution f(x, y, z), we generates four random number:

xrnd = xmax · rand[0, 1) yrnd = ymax · rand[0, 1) zrnd = zmax · rand[0, 1) and

frnd = fmax · rand[0, 1)
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Figure 5.1: Left: Illustration of the rejection method – random point are sampled in the

bounding box, and rejected if the ordinate is larger than f(x). Right: Inverse Transform

Method for continuous (a) and discrete (b) distributions

where rand[0, 1) is a random number between 0 and 1. In this way we have achieved some

entirely random (within the random number generator’s qualities, of course) values for x, y

and z (for simplicity’s sake here we assume that xmin = ymin = zmin = 0). At this point we

evaluate f(xrnd, yrnd, zrnd) and apply the following condition:

if (f(xrnd, yrnd, zrnd) < frnd) {reject}

else {keep}

If one were to repeat this procedure a very large number of times, then within statistic

uncertainty the resulting distribution would be identical to f(x, y, z). Note that f(x, y, z)

does not have to be an analytical function. For the cases where the probability density

is a very complex function, it is useful to calculate it only once for an array of values of

(xi, yi, zi) before starting the main loop, and then use interpolation to determine f(x, y, z)

for a particular value of (x, y, z). An illustration of this method can be seen in Fig. 5.1.
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One should be warned that while this procedure is rather simple, it may however involve

a massive loss of computational time due to the necessary rejection of samples. This is true

especially in the case when f(x, y, z) varies strongly within the domain of interest. Not only

does this method incur a loss of computational resources, but it also involves lower statistics

for the parts of the phase space with relatively low f(x, y, z). We do use Rejection Method

in our event generator, however in our particular case the RCS cross sections do not change

much within the detector acceptance, hence the above concern is not applicable.

5.2.2 Inverse Transform Method

For cases where the probability density is a one-dimensional function, it is possible to

avoid the above mentioned inefficiencies of rejection method by using the Inverse Trans-

form Method. Consider a continuous probability density distribution f(x) and

F (x) =

{∫ x

xmin

f(x′)dx′
}

/

{∫ xmax

xmin

f(x′)dx′
}

(5.1)

In this case F (x) is itself a uniformly random variable in the domain [0,1], and by finding

x = F−1(rand[0, 1])

we will generate a distribution which will be identical to f(x). The above example can be

easily generalized for discrete distributions, as can be seen in Fig. 5.1.
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5.3 Monte Carlo Simulation of Experimental Appara-

tus

Cross section is one of the main observables which is used in experimental nuclear physics to

test particular theories or models. Essentially, the cross section of a process (be it scattering,

decay, or particle production) corresponds to the probability of that process occurring under

particular kinematic constraints. The differential cross section is defined as

dσ

dΩ
=

Y

Ω · k · Nγ
(5.2)

where Ω is the solid angle of the detector acceptance, k is the concentration of scatterers per

unit area (#nuclei/cm2), Nγ is the number of scattering particles (photons, in our case),

and Y is the yield – the number of the detected scattered particles. Hence, assuming one

knows k · Nγ (target and beam characteristics), the problem of measuring dσ
dΩ

is reduced to

evaluating Y
Ω
. The difficulty then is obvious – in even a slightly complicated experiment,

especially one which employs a spectrometer with a very complex acceptance due to its

magnetic optics, as described in Chap. 3, Ω has a very non-trivial dependence on detector

geometries. Said in another way, the yield observable has a very complicated dependence

on the geometries, and what we actually observe is not the simple Y ∝ dσ
dΩ

· Ω but rather a

complicated convolution:

Y ∝
∫

allspace

dσ

dΩ
· A(Ω) · dN(Eγ)

dEγ

dΩ dEγ (5.3)

where A(Ω) is a sort of “acceptance” function – the probability that a particle outgoing into

the infinitesimal solid angle dΩ will actually be registered by the detector setup. dN(Eγ )
dEγ

is
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the bremsstrahlung distribution – photon number per energy beam per incoming electron

(hence the need later to multiply it by the number of the incoming electrons, Ne).

The above discussion shows the impossibility of the simplistic Eq. 5.2 approach to deter-

mining cross sections. Instead, a more complex approach is needed – that of Monte Carlo

numerical simulations of the experimental procedure. The general concept of the simulation

is the following: recreate the experimental procedure (starting with beam incident on target,

and ending with particle detection), allowing only one (ideally) variable – cross section – to

vary, and then compare the result with data. In other words we get two quantities:

Ydata = k · Ne ·
∫

allspace

{
dσ

dΩ

}
· A(Ω) · dN(Eγ)

dEγ
dΩdEγ (5.4)

and

YMC = k · Ne ·
∫

allspace

{
dσMC

dΩ

}
· A(Ω) · dN(Eγ)

dEγ

dΩdEγ (5.5)

where YMC is the simulated data which is generated with an assumed cross section
{

dσMC

dΩ

}
),

Ydata is the actual yield in the experimental data,
{

dσ
dΩ

}
is the actual (unknown) cross section,

and N(Eγ) is the energy spectrum of the incoming photon beam. The purpose of the

calculation is to determine
{

dσ
dΩ

}
. To achieve this we simply divide Eq. 5.4 by Eq. 5.5 and

rearrange, obtaining

dσ

dΩ
=

dσMC

dΩ
· Ydata

YMC

(5.6)

Notice that there are two assumptions in the above calculations: a) that the ratio

dσ/dσMC is approximately constant across the acceptance and b) that both Eq. 5.4 and
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Eq. 5.5 have the same values for K,Nγ and for A(Ω). This is based on the assumption that

our simulation is accurate, and that we are correctly reproducing the experimental appa-

ratus. This, of course, needs to be checked – it is not unusual for experiments to ignore

the presence of an object or piece of equipment which is blocking the acceptance. There

are methods to check for and ascertain that the above assumption is in fact correct. We

achieve this by collecting “controlled” data – data with a very simple event structure and

known cross section, such as elastic electron scattering on proton – to study whether the

simulation reproduces this data. Any deviations are treated as systematic uncertainties, and

are included in the calculations of total uncertainties of the final experimental results.

Our Monte Carlo code was written in Absoft Fortran [52], which is a variation of F77,

and has structures.

5.3.1 General Structure

The Monte Carlo used to simulate the experimental apparatus can be broken into the fol-

lowing sections:

• Input of kinematic variables and constants needed to calculate the RCS form factors

and RCS cross section.

• Input of bremsstrahlung calculation for the 6% copper radiator.

• Use the above input (bremsstrahlung and cross sections) to determine the ratio of

electrons to RCS to π0 events for that particular kinematic point.

• Calculation of the RCS, π0, and ep cross sections across the phase space to be covered
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in the Monte Carlo. The phase space is divided into 40 steps (in polar angle and in

beam energy), and for each point the cross section is calculated. This needs to be done

very carefully, since in our Monte Carlo we generate the recoiled proton values(instead

of scattered values), so appropriate Jacobians have to be applied where needed. These

tables later will be used for a “Rejection Method” Monte Carlo.

• At this point the Monte Carlo output needs to be normalized to the accumulated

charge of the experimental run. Hence, using a fixed value (1mC), the cross sections

and the solid angle, the number of events corresponding to the covered phase space

is calculated. This is the number of events which correspond to 1mC. Here we also

introduce a weight variable which is the ratio of the statistics requested by the user and

the number of events corresponding to 1mC. Later corrections for accumulated charge

will be done at the end stage of the analysis (e.g., if the actual charge was 2.5mC, then

the Monte Carlo output will be weighted by 2.5).

• Here start the Monte Carlo loop, which progresses in the following order:

– First, using the above calculations, the reaction type is chosen between RCS, ep

or π0.

– Beam energy is chosen using the inputs of bremsstrahlung calculations.

– The vertex is chosen, randomly on the 15cm target.

– Similarly, the azimuthal scattering angle is chosen randomly.

– Using the Rejection Method and the tables of cross sections for the particular

reaction, we choose a polar (total) scattering angle for the recoiled proton. Using
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2-body kinematics we calculate the recoil momentum.

– From the above values of azimuthal and polar scattering angles (spherical coordi-

nates) we calculate the “geographic” angles in spectrometer coordinate system(φtg

and θtg). We do the same with the vertex coordinate(ztg to ytg) and momentum

(δ = (p − pcentral)/pcentral).

– The coordinates and energy of scattered particle are calculated. For a π0 event

we also simulate the isotropic decay in pion’s rest frame and transform it back to

laboratory frame.

– A this point we have all the kinematic variables defining the event, and we can

start with all types of corrections. First, we apply a combination of internal and

external (a vertex-coordinate dependent adjustment to the exponent in cross sec-

tion) bremsstrahlung radiative correction to the angle/momentum of the proton,

and to the energy of the incoming and scattered electron.

– Multiple scattering is applied: in radiator; target entrance window; target exit

windows; target chamber exit windows; air (on calorimeter arm).

– At this point the event is truly complete: we apply acceptances. First, we check

if the event was within the boundaries of the calorimeter.

– Given that the event passed the above check, we use mc hrsl.f from SIMC [65]

simulation package to trace the proton back and forth through HRS, transporting

it from target to focal plane, aperture by aperture (using COSY magnetic model

for quadrupoles and dipole), and at every point checking whether the proton is
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within the aperture or quadrupole geometry. In the case if any of these conditions

fail, the event is abandoned.

• End of simulation. Calculations of peripheral kinematic variables (such as calo x and

calo y). The HBOOK ntuple is filled.

The general RCS Monte Carlo structure is illustrated in the flow chart of Fig. 5.3.1

5.3.2 Input Parameters

The Monte Carlo code has been developed in such a manner as to allow for a simple opera-

tion under quick changes of kinematic variables. The input file is called ggmc.in, and among

a number of fixed variables requires the specification of the following for each kinematic point:
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Figure 5.2: The structure of RCS Monte Carlo Simulation. The shaded region corresponds

to the Monte Carlo loop itself. 116



Input Variables Input type Units

Number of Events to run Integer N/A

Radiator Thickness Float %

Polar (scattering) Angle of Event Generation Float mRad

Azimuthal (out-of-plane) Angle of Event Generation Float mRad

Relative Momentum of Event Generation Float %

Transverse Position Coordinate of Event Generation Float cm

Incoming Beam Energy Float GeV

Calorimeter Angle Float Deg

Calorimeter Distance Float m

High Resolution Spectrometer (HRS) angle Float Deg

High Resolution Spectrometer (HRS) central momentum Float GeV

Cu Radiator On/Off Integer 1/0

Magnet On/Off Integer 1/0

Magnet Current Integer Amperes

Random Number Generator Kernel Integer N/A

Name of output file Character String N/A

At this point all the setup and positioning of the detectors has been defined, and one can

proceed with the actual simulation.
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5.3.3 Bremsstrahlung Calculation

To start the simulation, we need to determine N(Eγ) of Eq. 5.5. The liquid hydrogen

cryo-target includes a copper radiator, which, with the target itself amounts to 6.84% of

the radiation lengths for copper. The diagram for “external” bremsstrahlung can be seen

in Fig. 5.3.7. There exists a rigorous analytical calculation by J.L. Matthews and R.O.

Owens [41] for rather thin (< 1%) radiator thicknesses. For an infinitesimal material with

a radiation thickness of dt the bremsstrahlung yield is

d2n(Z, E0, k)

dk dt
=

3.495 × 10−4

Ak

[
Z2Φn + ZΦe

](cm2/g

MeV

)
(5.7)

where the following variables are used: k is the photon energy ; E0 is the incident electron

energy; t is the thickness of material in radiation lengths ; A is the atomic number ; Z is the

nuclear charge; Φe and Φn are electron-electron and electron-nuclear spectra, respectively.

In order to determine the bremsstrahlung spectrum for a rather thick material we need to

integrate not only over thickness, but also over the varying electron energy: as the beam

traverses the radiator the bremsstrahlung radiation and ionization by collision with atomic

electrons cause electron energy to decrease, a circumstance which leads to a completely

different bremsstrahlung yield.

The two principal mechanisms which cause electron energy loss in the material are the

following: ionization by electron-atom collisions WC(E, E0, Z, T ) (see calculations by Blunk

and Leisegang [57] ), and radiation loss due to electron-nuclear soft interaction, which has

the spectrum of

WR(E, E0, Z, T ) =
[ln(E/E0)]

ζ−1

E · Γ(ζ)
(5.8)
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Here ζ is related to radiation thickness T through ζ = 1.44·T , and Γ(ζ) is a parameterization

based on Padé approximation [58]. In this case the total energy loss distribution is

W (E, E0, Z, T ) =

∫ E0

E

WC(E0, E
′, Z, T ) · WR(E ′, E, Z, T )dE ′ (5.9)

Finally, after having calculated the total energy loss we can calculate the bremsstrahlung

spectrum:

dN(k, E0, Z, T )

dk
=

∫ E0+Δ/2

E0−Δ/2

dE

Δ

∫ E

kmin

dE ′
∫ T

0

dt W (E ′, E, Z, t)
d2n(Z, E ′, k)

dk dt
(5.10)

This is the correct formula for a thick radiator (> 1%), which is clearly the case in our

experiment. To calculate this complex integral numerically, a c code has been developed [59]

at Jefferson Laboratory. The output of the code can then be used for calculating the total

number of the bremsstrahlung photons in a particular energetic domain, or can be used as

an input for the event generator of a Monte Carlo simulation – which is exactly how we use

it. After the output of the computation is read by the Monte Carlo code and registered as an

array, it’s integral is calculated, to be used later according to Inverse Transform Method(see

Chap. 5.2.2) inside the Monte Carlo loop proper.

5.3.4 Cross Section and Normalization of Yield to Accumulated

Charge

Before entering the Monte Carlo loop we need to prepare a table of cross sections – dσi(cos θi, Ei)/dΩ

– as well as compute the normalization to the accumulated charge.

The purpose of preparing tables of cross sections, instead of calculating them inside

the loop, is that it will economize a considerable amount of computational time. For both
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electron scattering and π0 processes we use variable cross sections both in angle and energy,

however for Compton Scattering events we use uniform cross sections. This is done so since

it is easier to interpret the data, mostly due to the fact there is no certainty that the variation

of theoretical cross section in fact corresponds to the reality. We do however use varying

cross sections for π0 photo-production, since the δx (see Chap. 4.4.1) distribution for the π0

is somewhat correlated with the variation of cross section, and a good reproduction of δx

distribution is essential for event separation.

As discussed in Chap. 5.3 the purpose of the simulation is to produce a statistic yield for

a particular kinematic requirement with a particular accumulated charge and a particular

acceptance. The idea of the event generator is to sample a phase space which is (has to be)

larger than the combined acceptance of the experiment. This is critical: in order for the sim-

ulation to produce correct results, it needs to explore every corner of the phase space – both

in terms of solid angle and momentum acceptances. Hence, we need to choose an incoming

energy domain which is larger than the corresponding acceptance of the High Resolution

Spectrometer (since the energy acceptance is primarily limited by the ±5% acceptance of

the spectrometer), and a solid angle which is larger than that corresponding to the entrance

window of the spectrometer. Once the correct values are chosen, we can calculate Eq. 5.5,

which becomes

YMC = Ne · k
∫

allspace

{
dσtheory

dΩ

}
· dN(Eγ)

dEγ

dΩdEγ (5.11)

where the number of the electrons is found from accumulated charge and electron charge Ne =

C/e, and k is found from k = ρ · l ·A – A being Avogadro’s number, l being target thickness,

and ρ being the density of liquid hydrogen. The integration is performed numerically. To
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recapitulate, we calculated the yield for an accumulated charge C, which we conventionally

chose to be C = 1 mC. 1

To simulate a process where C amount of charge has been accumulated, we need to sample

a YMC events over the acceptance of the experiment, and then compare it to Ydata of Eq. 5.4

to calculate the cross section according to Eq. 5.6. However, we cannot limit our statistics to

YMC as found above, since the number may in fact be too small for insuring a high statistic

accuracy. So, to circumvent this, instead of sampling only YMC events, we sample a much

larger Ysimulation number of events, and later weight our final results by YMC/Ysimulation. In

this manner our final results will still be YMC as calculated above but will have the much

smaller statistic error corresponding to Ysimulation.

Theoretical Cross Sections

As discussed, the simulation needs to include a cross section for the simulated processes.

From our three event types to simulate – elastic electron scattering, Real Compton Scattering

and neutral pion photoproduction – only elastic p(e, e′p′) process has a known cross section.

For that reaction we use the Rosenbluth separation formula, which presents elastic scattering

differential cross section as a combination of magnetic and electric form factors:

dσ

dt
=

(
dσ

dt

)
Mott

·
[

G2
E + Q2

2M
G2

M

1 + Q2

2M

+
2Q2

M
tan2 θ/2 · G2

M

]
(5.12)

where four-momentum transfer squared is calculated as Q2 = 2EE ′(1 − cos θ), E and E ′

being incident and scattered particle’s energies, respectively.

1Notice the assumption that A(Ω) ≡ 1. The convolution with this factor is essentially “naturally”

performed when we apply acceptance checks at the end of the Monte Carlo loop.
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The choice of cross section for RCS and pion production processes is less obvious. For

RCS this is because there are no fully tested theoretical models to describe the process –

hence the need of our experiment. However, as far as RCS events are concerned this is

not much of a concern, since the primary method of event separation employs kinematic

correlations, which for a two-body reaction is independent of cross-section’s behavior. We

use a constant value of RCS cross section throughout the simulation. The value of the cross

section is based on theoretical calculations of Radyushkin, Diehl and Kroll based on Soft

Overlap “Handbag” Mechanism. For the pion events the kinematic correlation is strongly

dependent on the variation of cross section throughout the acceptance of the experiment,

hence some sort of a theoretical cross section needs to be employed. The model used in the

Monte Carlo simulation assumes that pion production has the same angular dependence as

Real Compton Scattering, while its energy dependence is stronger by an extra factor of 1/s,

where s is one of the Mandelstam variables:

dσπ0

dt
=

dσRCS

dt
· 1

s
· (5.13)

Here dσRCS

dt
is the RCS cross section evaluated using the “Handbag” Mechanism. The logic

behind the extra 1/s factor is based on the argument that pion production diagram is

essentially identical to that for RCS, with the exception that in case of pion production

instead of the final photon of RCS we have a quark-antiquark pair. Using constituent quark

counting rules one can argue that the extra fermion line should bring about the extra 1/s

suppression of the cross section.
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5.3.5 Event Generator

We can completely define a particular event by choosing the following four kinematic and

geometric variables: scattered particle’s (be it a photon, a π0 or an electron) initial energy,

recoiled proton’s polar angle, recoiled proton’s azimuthal angle, and the reaction vertex.

From incoming particle’s energy and recoil angle we can calculate also the recoil momentum.

This may be somewhat counterintuitive, but instead of sampling the phase space of the

scattered particle (and then calculate the recoil particle’s kinematics) we sample the recoil

particle. While this causes some complications – it necessitates calculations of Jacobians for

the cross sections – overall this is the correct strategy: due to its decay into two photons

the phase space of the π0 is highly complicated. Hence, to avoid the necessity of applying

different generation volumes for π0 we simply do our sampling on proton’s side.

First, we determine the event type: RCS, π0, or electron. This is not done entirely

randomly, but weighted by a convolution of cross sections and bremsstrahlung(for RCS and

π0) or energy loss (for electrons) distributions: before starting the Monte Carlo loop we

calculate

fRCS =

∫
dσRCS

dΩ
· dNγ

dEγ

dEγ , fπ0 =

∫
dσπ0

dΩ
· dNγ

dEγ

dEγ and fe =

∫
dσe

dΩ
· dNe

dEe

dEe

with these factors normalized as fe + fRCS + fπ0 ≡ 1. Here, the electron energy loss and

bremsstrahlung are related as dNe

dE
|E=Ee = dNγ

dE
|E=(E0−Eγ) where E0 is the initial (beam)

energy. We choose a random number in the domain a ∈ rand[0, 1) and apply the following
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condition:

if(a < fRCS) then event type=RCS

if(fRCS < a < fRCS + fπ0) then event type= π0

if(a > fRCS + fπ0) then event type=electron

Once the event type has been determined, the next task is to determine the energy of

the incoming particle(which may be an electron or a photon). Here we use the results of

the calculation based on Eq. 5.10, which is recorded in form of an array of (dNi

dEi
, Ei) and of

an array nm = (
∑m

i=0 ΔE · dNi

dEi
, Em). The sum in n is essentially the integral of Eq. 5.1.

This allows us to use the inverse transform method, as described in Chap. 5.2.2 in order to

simulate the incoming photon’s energy distribution.2

Next we determine two geometric variables: vertex ztgt and proton’s azimuthal angle.

These two variables are chosen in a uniformly random manner in the domain of target size

(15cm) and spectrometer’s maximum known acceptance (plus an extra amount).

Finally, we have to determine the scattering angle. As mentioned before, we actually

generate the proton’s recoil angle rather than that of the scattered particle. To do this

we first choose a value of cos θ in a uniformly random manner. Then, we use a prepared

array of dσi(cos θi, Ei)/dΩ, and use interpolation to determine dσ(cos θ, E)/dΩ, as well as

dσmax(E)/dΩ. Once we have these numbers, we can run a rejection method Monte Carlo,

as described in Chap. 5.2.1. We generate a random number dσmax(E)
dΩ

· rand[0, 1), and if the

outcome is less than dσ(cos θ, E)/dΩ then we continue with this event.

2For the electrons we simply substitute E → E0 − E: an electron with an energy E has produced a

bremsstrahlung photon whose energy is equal to the energy loss (i.e. (E0 − E)) of the electron.
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At this point we have determined all the defining variables of the reaction: from the above

quantities we can calculate the proton’s momentum, and performing two-body kinematic

calculations we can determine all the kinematic variables of the scattered particle, whether

it is an electron, a photon or a neutral pion.

5.3.6 External Bremsstrahlung in Air and Target material

As described in Chap. 4.4.1 the electrons are kinematically inseparable from the photons.

To separate those event types, a powerful dipole magnet has been placed in front of the

calorimeter. However, before being bent and separated, the electrons go through a consid-

erable amount of air and target material, emitting bremsstrahlung photons. These photons

are incident on the calorimeter, have electron’s vertex kinematics, and hence, at least as

far as scattering angle is concerned, are entirely inseparable from the Compton scattering

photons. In other words, the central Gaussian peak observed in δx distribution consists of

events which include both bremsstrahlung photons(epγ, to be short) and Compton scattering

photons. There is only one criteria which betrays the epγ event - their energy distribution,

as detected by the calorimeter, is entirely different from those of the pions and Compton

events (see Chap. 4.4.2). This allows us to identify and subtract the bremsstrahlung photons

from the data. The sampling of the radiative photons is done in a very similar manner to

that of bremsstrahlung from the copper radiator, as described in Chap. 5.3.3, with the only

difference that since the total material thickness is less than 1% of radiation length, we use

the analytical calculations of Ref. [41] for an inverse transform (Chap. 5.2.2) Monte Carlo.

It is assumed that the radiated photon has a trajectory which is almost perfectly parallel to
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Figure 5.3: The Feynman diagram for external bremsstrahlung.

that of the electron.

5.3.7 Radiative Corrections at Reaction Vertex

Since we use elastic electron scattering on proton as a “control” data for testing experimental

simulation, we need to include all other reactions related to this process. One reaction which

considerably alters the simple two body kinematic dependences of elastic scattering is the

internal radiation, which occurs at the hard scattering point, as can be seen in the diagram

of Fig. 5.4.

The cross section of radiative corrections for (e, e′p) reaction is calculated using Quantum

Electrodynamics, and is very well compiled and presented in Ref. [60] and Ref. [61]. In

our simulation we use the Peaking Approximation [60, pp.10-14], which is based on the

assumption that the bremsstrahlung photon is emitted in a direction parallel to that of the

emitter. A plot of the exact calculations of scattering angle can be seen in Fig. 5.3.7.

In Peaking Approximation the angular distribution of the emitted photon is approximated

to be

Apeaking(ω̂) = λeδ(ω̂ − k̂) + λe′δ(ω̂ − k̂′) + λp′δ(ω̂ − p̂′) (5.14)
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Figure 5.4: The Feynman diagram for internal bremsstrahlung.

Figure 5.5: The angular distributions of radiated photons, for different values of Q2. The

abscissa is the cosine of the angle between photon’s and emitting electron’s direction
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where ω̂,k̂,k̂′ and p̂′ are radiated photon’s, incident electron’s, scattered electron’s and

recoiled proton’s directions, respectively, while the λ-s are the corresponding relative strengths.

The “typical” peaking approximation for electron bremsstrahlung gives the following values

for the relative strengths:

λe = α
π

[
2 · ln

(
2|k|
m

)
− 1
]

λe′ = α
π

[
2 · ln

(
2|k′|
m

)
− 1
]

λp′ = α
π

[
p′0
|p′| · ln

(
p′0+|p′|
p′0−|p′|

)
− 2
] (5.15)

a quick inspection of the above reveals that the 1/m term in λe and λe′ makes the later at

least an order of magnitude larger than λp′. Since radiation is itself a correction to the elastic

cross section, we could ignore λp′. The above values of λ are essentially the integrals around

the peak of the photon angular distributions, as shown in Fig. 5.3.7. However, since the

of-peak contribution is considerable, the relative strengths need to be corrected as follows:

λ̃e = λe + α
π

[
2 · ln

(
|k|
|k′|

)
+ ln

(
1−cos θe

2

)]

λ̃e′ = λe′ + α
π

[
2 · ln

(
|k|
|k′|

)
+ ln

(
1−cos θe′

2

)]
(5.16)

Now that we have determined the relative strengths of radiation, all we need to do is deter-

mine the total energy loss of the particle. The cross section of energy loss is found from [60,

Eq. 72]

dσ

dE
∝ 1

E1−λ
where λ = λe + λe′ + λp′ (5.17)

The code of the simulation calculates λ, then performs an inverse transform method Monte

Carlo to select E, and then splits it between the different branches with relative fractions of

(λe/λ),(λe′/λ) and (λp′/λ).
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5.3.8 π0 decay

One of the most difficult aspects of our data analysis is, as discussed in Chap. 4.4.2 the

subtraction of the π0 background. Unlike the electron and photon the pion does not survive

to reach the calorimeter. It decays almost instantaneously (Particle Data Group lists its life

time as 8.4× 10−17 seconds, which in laboratory frame corresponds to 25 nm), and what we

observe are the resulting photons of the decay.

From kinematic point of view the pion decay is simple. The pion, a combination of qq̄

pairs as π0 = (uū − dd̄)/
√

2, decays isotropically in its rest frame, and due to momentum

conservation the photons are emitted back-to back, that is

cos θγ ∈ rand(0, 1) , φ ∈ rand(0, π) and Eγ = mπ0/2 (5.18)

where θγ is the angle between the forward-emitted photon and the initial direction of the

pion,

and mπ0 is the pion mass. We use Lorenz transformation to go back to lab frame,

Elab
γ = γ · (Eγ + βpγ‖) (5.19)

where β = v/c and γ = 1/
√

1 − β2. Using the expression for Eγ from above and noting that

cos θγ = pγ‖/Eγ we find that

Elab
γ = γ · mπ

2
· (1 + β · cos θγ) =

Eπ

2
· (1 + β · cos θγ) (5.20)

where in the last step we used Eπ = γ · mπ as the original vertex energy of the pion.

Correspondingly, the energy of the second “weaker” photon is achieved by substituting θ →

π − θ, which gives us

Elab
γ2 =

Eπ

2
· (1 − β · cos θγ) (5.21)
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so that the total energy is Elab
γ2 + Elab

γ = Eπ, that is, the original energy of the pion.

Doing a similar calculation for the longitudinal component of momentum, we receive

plab
‖ =

Eπ

2
· (β + cos θγ) (5.22)

from where we can calculate the photon’s relative angle to the pion’s original direction:

cos θlab
γ =

plab
‖

Elab
γ2

=
β + cos θγ

1 + β · cos θγ

(5.23)

For example, when the photon is emitted in the direction parallel to that of the original

pion, we get cos θlab
γ = cos θγ = 1, as expected.

So, as we saw, the simulation of pion decay essentially consists of sampling the following

variables

cos θlab
γ1 = β+z

1+β·z Elab
γ1 = Eπ

2
· (1 + β · z)

cos θlab
γ2 = β−z

1−β·z Elab
γ2 = Eπ

2
· (1 − β · z)

(5.24)

where z ∈ rand(0, 1) is a randomly chosen number between 0 and 1.

5.3.9 High Resolution Spectrometer

As mentioned above, the complicated nature of our experiment’s acceptance is explained by

the complex magnetic and geometric structure of the Hall A High Resolution Spectrometer.

The spectrometer has a quadrupole-quadrupole-dipole-quadrupole configuration, with differ-

ent slits and apertures in-between the optical-magnetic elements. While the non-magnetic

parts of the spectrometer can be reduced to simple linear transformations and if() then

statements in the code, the magnetic parts are much more complicated. This is however

not a new problem, since the design and construction of particle accelerators demands a
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good understanding of beam dynamics in magnetic elements. Over the years a number of

software packages have been developed which use differential algebra in order to numeri-

cally calculate the transformation matrices for the optic system of the magnetic elements,

the most notable of those packages being COSY [62]. This package, in combination with

known HRS geometries and optic studies has been used to develop a magnetic model for the

spectrometer.

COSY uses Taylor expansions in order to describe the magnetic system to determine

the trajectories of particles. The input into COSY consists of geometric measurements of

the magnetic elements – quadrupoles and dipole – as well as actual field measurements

which were performed during Hall A commissioning. Most importantly, these measurements

included studies of fringe fields at the non-flat entrance and exit faces of the dipole. The

inclusion of the known values increases the accuracy of the magnetic model. The output

of the software is presented as a set of transformation matrices which then can be used to

calculate the exit values of the trajectories based on their entrance values. A number of

recent experimental studies have been performed to minimize the error on transformation

matrices by studying the relative alignment of the quadrupoles [63] and to understand the

source of the remaining uncertainties [64].

The COSY magnetic model for Hall A left High Resolution Spectrometer has been used

by previous experiments to develop a Monte Carlo package, called SIMC [65], which contains

different types of event generators, target types, as well as the left and right spectrometers

(lHRS and rHRS). Due to a previously known reliability of COSY based codes, it was

decided to use the SIMC simulation for the spectrometer as part of our general Monte Carlo.
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After the event generator produces a particular event, the variables corresponding to the

photon arm are used to check whether the event entered calorimeter’s acceptance (which is

simulated as a simple square). After this, the proton vertex variables are presented as an

input to SIMC’s mc hrsl.f module. The event is then transported through vacuum toward

the first quadrupole, and a check of entrance window and quadrupole entrance is performed.

If passed, the event is then transported to the 2/3 of the length of the quadrupole, where

it is again checked for being inside the quadrupole radius3. Afterwards, it is transported

through the rest of the quadrupole, then transported through vacuum, where it is checked

for apertures, after which it finally reaches the next quadrupole. This process is performed

repeatedly until the event reaches the detector hut of the spectrometer, where its values are

“smeared” by a Gaussian distribution of 0.275 mm standard deviation in order to reproduce

the VDC resolution. Once this is done, the focal plane variables are used to reconstruct the

vertex variables.

5.4 Data Analysis: Elastic Electron Scattering

As mentioned before, a particular simulation or numerical model needs to be tested before

being used for determining experimental results. To test the simulation, one needs some sort

of “controlled data” – a data which is extracted from a process with simple event structure,

known kinematic dependences and known cross sections.

3Using GEANT simulations and independent calculations it has been established that the beam envelope

reaches its maximum radius at 2/3 of a quadrupole length. COSY has been used to perform two calculations:

one for the first 2/3 of the quadrupole, and second for the last 1/3
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A reaction which perfectly satisfies these conditions is elastic electron scattering on pro-

ton. Besides having a known cross section, the target needed for observing this process is

identical to that of Compton scattering, with the only difference that Compton scattering

also requires a radiator in order to produce a photon beam. To collect elastic electron data

the radiator is removed, and the spectrometer-calorimeter configuration is changed so that

the combined acceptance is centered on the beam energy. Due to high beam currents of

> 40μA the data collection takes very short time.

One of the deficiencies of of elastic scattering (or any other two-body process) when

used for the above mentioned purpose is that its momentum is correlated with its scattering

angle. This causes a non-uniform illumination of the HRS focal plane. The reason this is so

is because xfp ∼ p and yfp ∼ θ, where xfp and yfp are the vertical and horizontal coordinates

of the particle at the focal plane. The result of these correlations is that the data illuminates

only the diagonal of the focal plane. This may leave large areas of focal plane untested. To

eliminate this problem, we change the central momentum of the spectrometer in order to

shift the diagonal up and down the plane. The resulting illumination can be seen in Fig. 5.6.

The data sets corresponds to spectrometer central momentum values of 1.788 GeV , 1.762 GeV ,

1.711 GeV , 1.681 GeV , 1.661 GeV , 1.637 GeV . Spectrometer is rotated to an angle of 33.970

to the beam, while the calorimeter is placed at an angle of 460 and distance of 12m from

the target. A thorough comparison between data and Monte Carlo can bee seen in Fig 5.4,

showing an excellent agreement. A list of comparisons among the other five runs can be seen

in Fig. 5.8

While the qualitative comparisons between the data and Monte Carlo look encouraging,
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Figure 5.6: The momentum vs. angle distribution for the data set from acceptance scan

runs.
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Figure 5.8: 2a scans, momentum(from top to bottom) – 1.788Gev/c, 1.762Gev/c,

1.711Gev/c, 1.661Gev/c, 1.637Gev/c.
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it is however important to perform a quantitative analysis in order to determine the actual

precision of the simulation. To do this we use the elastic data to determine elastic scattering

cross section, which we then can compare with the known values. The previously known

value of cross section, as extracted from literature [66] [21], is

dσ

dΩ
= 0.52 nBarn/sRad

Despite containing a rather clean event structure, the data still contains a significant number

of events from e p → e p π0 neutral pion electro-production. It is not however very difficult

to eliminate these: unlike elastic electron events, the pion events, just as in production data,

do not produce a correlation between left and right arms. To clean the data from background

noise, from π0 events and other backgrounds, we place the following cuts:

Event type 5 – insures electronic coincidence between the two arms.

Ecalo > 600 – cut on calorimeter energy, to eliminate low energy background.

abs(fg gc gx) < 36 and abs(fg gc gy) < 56 – remove the last row of peripheral calorime-

ter blocks, to insure an area of reliable calibration.

abs(calo x) < 36 and abs(calo y) < 56 – same for the reconstructed calorimeter vari-

ables, to reduce π0 background.

abs(δx − δx0) < 2σx and abs(δy − δy0) < 2σy – place a 2σ cut on the δxδy distribution,

to further reduce the number of the pions, as discussed above. This will result in a

loss of 10% of the elastic (e, p) events, a factor which is taken into account in the final

comparison.
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run p0 [GeV/c] Live Time Acc. Charge [mC] Ratio

1630 1788 0.91 11.60 1.005 ± 0.007

1632 1762 0.92 12.60 0.995 ± 0.005

1611 1711 0.91 10.72 1.01 ± 0.007

1635 1661 0.91 9.79 1.004 ± 0.004

1636 1637 0.92 9.33 1.01 ± 0.005

1637 1614 0.91 9.05 0.99 ± 0.01

Table 5.1: Ratio of observed and measured (e,p) cross sections

abs(δ) < 4% – a cut on momentum. As a result of data-Monte-Carlo comparisons it has

been discovered that there are very strong disagreements in the region of abs(δ) > 4%.

This is mostly due to the fact that the mc hrsl.f module, due to a number of reasons

related to the functionality of COSY model for non-flat magnets, doesn’t contain any

acceptance checks inside the dipole magnet. Meanwhile, in real life a large volume of

events are “lost” when they hit the bottom and top of the magnet. This cut causes a

negligible loss – less than 10% – of statistic volume.

The achieved final results can be seen in Table 5.1. We conclude that the Monte Carlo

simulation reproduces the elastic data to within 1% of its known value, and that the variations

of determined cross section across the HRS acceptance are less than (2 ± 1.2)%.
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Chapter 6

Data Analysis with Monte Carlo

Simulations

6.1 Production Data

Once the analysis of “controlled” data is complete, we can confidently proceed with the

production data – that is, the data which contain the actual process of interest, Real Compton

Scattering. In this chapter we will discuss in detail the analysis procedure for only one

kinematic point – 3C. The other kinematic points have an analysis procedure either identical

or very similar to that of 3C. See Table 6.4 for the experimental settings of this point.

Through the plots in this section, the data is denoted by the blue dots with error bars, while

red lines correspond to the simulation.
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Figure 6.1: Uncorrected (left) and corrected (right) coincidence time distributions,after

extensive cuts on calorimeter energy and other kinematic variables. The red lines denote the

timing cut used in the analysis.

6.1.1 Kinematic point 3C: Event Separation and Extraction of

Yields

As mentioned earlier, the variables which allows us to separate the events from different

processes are δx and δy, which are defined as

δx = xp − x

δy = yp − y

(6.1)

where x and y are the particle’s horizontal and vertical hit coordinates, as detected by

calorimeter, and xp and yp are the predicted coordinates calculated from proton’s kinematic

variables as detected by the spectrometer. Since we need to reduce the pion decay background

as much as possible, and since the correlation achieved by pion decay events is much broader

than that of RCS events , we place a narrow (approximately 3 · σy) cut on the δy variable,

after which we plot the event distribution of δx variable. The resulting plots can be seen in
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Figure 6.2: Left: δx distribution with abs(δy − 3.) < 15. Right: same, with

abs(δy − 3.) > 15, showing the pion distribution.

Fig. 6.2

The set of the cuts, which we will call cut1 is presented below:

Event type == 5: Insure coincidence between the two arms.

abs(δt + δp · 200 − 650) < 15: Cut on coincidence time, which shows a signal at ≈ 0 and

random noise background underneath. The δp · 200 correction is done to correct for

different flight times for events which crossed different parts of the HRS dipole and

hence had different flight distances (See Fig. 6.1 for comparisons between corrected

and uncorrected coincidence times).

abs(ztgt) < 6: Cut on target length, to remove possible background from the end-caps (alu-

minum walls) of the target.

abs(δp) < 4%: Cut on spectrometer momentum, to remove MC-data disagreements at the

edges of the momentum acceptance. Here δp ≡ (p − pcentral)/pcentral, where pcentral is
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the central momentum of HRS.

Ecalo > 700: Cut on calorimeter energy, to remove low-background noise.

abs(δy − 3.) < 15: Cut on δy variable, to reduce the pion background and thus to increase

the signal-to-noise ratio. The −3. term in the parentheses is the vertical offset of the

calorimeter positioning, which translates into an offset in δy.

abs(xcalo) < 36 AND abs(ycalo) < 56: Cuts on calorimeter hit position, to remove the

peripheral rows and columns of the calorimeter, known to have a rather poor calibra-

tion.

Eγ > 3000 AND Eγ < 3300: Cut on incoming energy.

In addition to the above set of cuts, we use a second set of cuts, called cut2, which is identical

to cut1 with the the only difference of abs(δy − 3.) > 15. The purpose will be clear soon.

The resulting δx distributions of the data can be seen as the blue dots of Fig. 6.2. A

two-dimensional scatter plot of the experimental data can be seen in Fig. 6.3(a).

Pion Background: kinematic correlations and coordinate-energy dependences

Once we have applied these cuts on the data, we do exactly the same for Monte Carlo –

both for Compton and pion events. At this point we can start working on pion background

subtraction. To do this, we need to place additional cuts which will isolate the pion events,

as in cut2 – by placing an “anti-cut” on the kinematic correlation, we have eliminated all

electron, Compton and epγ events. So, the combination of cuts is { cut2 ×(δx > −15)cm }

+ { cut1 ×(δx > 10)cm }, and a δx vs. δy plot of the resulting events is shown in Fig. 6.3(b).
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Finally we can determine the Kπ coefficient of Eq. 5.4:

Kπ = nπ/n′
π and

dσπ

dt
= Kπ · dσ′

π

dt
(6.2)

where nπ is the number of counts under the above mentioned cut, and all primed variables

correspond to Monte Carlo output or input. Kπ is the factor by which the input cross section

underestimates the real cross section, and indicates by how much we need to scale our Monte

Carlo output to fully reproduce the pion background.

The plots of the data volume which was used above to determine the pion background can

be seen in the two dimensional plots of Fig. 6.3. The left plot is the general event distribution,

showing the electron and RCS peaks superimposed on pion decay continuum. The plot on

the right is the event volume used to determine the Monte Carlo to data normalization.

The projections of Fig. 6.3 (b) on δx and δy axes can be seen in Fig. 6.4, showing a solid

agreement between the experimental data and the simulation.

Besides studying the δx and δy distributions for the pion background, we can also look

on two important variables: energy of the photons from pion decay, either as measured by

the calorimeter, or as calculated using the pion kinematics. The first variable, which we will

simply denote as Ecalo, can be observed simply by placing the above mentioned cuts. The

second variable can be calculated in the following manner: from proton kinematics calculate

the pion energy, and then determine the final photon energy using Eq. 5.24,

Elab
γ1 =

Eπ

2
· (1 + β · z) where z ≡ cos(θCM ) (6.3)

θCM being the pion decay angle in its rest frame. Using Lorentz transformations z can be
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Figure 6.3: a) general event distribution. Blue circle marks the electron distribution, and

red circle marks the RCS event distribution. b) events extracted as a result of the cuts used

in Eq. 6.2, and later used for determining the pion background normalization
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Figure 6.4: Events from Fig. 6.3(b) projected on δx and δy axes. Simulation is denoted by

red line, while the blue circles represent data.
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Figure 6.5: In all following plots the simulation is denoted by a red line: a) The energy of

π0 decay photon, as calculated from proton’s kinematics and photon calorimeter coordinate,

using Eq. 5.24; b) The energy of π0 decay photon, as measured in the calorimeter; c) the

difference of the previous two quantities.

found as

z =
r2
0 − r2

r2
0 + r2

where r0 = D · mπ

Eπ

and r2 = δx2 + δy2 (6.4)

Here D is the distance to the calorimeter, while mπ and Eπ are pion’s mass and total

energy, respectively. The resulting distribution of pion decay photon’s energy, measured and

computed as discussed before, can be seen in Fig. 6.5. The closeness of simulation to the

experimental data is another proof that the neutral pion background is well understood and

that the simulation contains a complete description of that process.

Once corrected by Kπ, the Monte Carlo output can be seen in Fig. 6.2 (left), where it is

compared with the experimental data. Also, Fig. 6.2 (right) shows the same distribution with

the abs(δy − 3.) > 15 “anti-cut”(cut2), which in purpose isolates the pion events, allowing
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Figure 6.6: Left: δy distribution with abs(δx − 2.) < 8.

a full data-to-Monte-Carlo comparison. This is another test which shows that the Monte

Carlo can reproduce the data very well in the [-40,60]cm domain, where our signal is located.

Pion Background: Co-planarity correlation

Before proceeding to the next stage of the analysis, we would like to look at another variable

– the co-planarity correlation δy, as defined in Eq. 6.1. The count distribution is plotted

Fig. 6.6. The peak at δy ≈ 0 are the RCS and epγ events, while the continuum beneath

are the neutral pion decay events. This is a very revealing test, since the δy distribution is

dependent solely on the combination of acceptance and pion decay’s simple kinematics. The

fact that we have such a good agreement between the simulation and data is indicative to

simulation’s completeness.
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Pion Background: incoming energy dependence

The δx and δy distributions for electron, RCS and epγ events is defined entirely by offsets

caused by the magnet as well as resolution effects. However, the situation is quite different

for the pions. The strong left-right arm correlation for the pion is diluted by its decay photon

distributions, which is isotropic in pion’s rest frame, and quite broad in laboratory frame.

The decay process weakens the otherwise strong correlation. This makes the δx distributions

very broad for pions and strongly dependent (as mentioned earlier) on acceptance effects.

This circumstance makes the δx distribution also dependent on pion production differential

cross sections. The difficulty of simulating pion production then becomes obvious: unlike

such other processes as elastic electron scattering, there are no complete and tested theoret-

ical models which describe the dependence of pion photoproduction cross sections on angle

and energy. The only model which is available predicts that neutral pion photoproduction

cross section should vary as

dσπ0

dt
∝ 1

s
· dσRCS

dt
(6.5)

However, as previous and actual (see Table 6.3 measurements show, this is not always correct.

The solution to the problem is then the following: since we can isolate the π0 events,

we can also study their incoming energy (which is reconstructed from proton’s kinematic

variables), and observe whether the Monte Carlo simulation matches the experimental data.

If not, further 1/sn weights need to be applied to achieve a best fit. To illustrate, the results

of two kinematic points are brought in Fig. 6.7. The plot in Fig. 6.7(left) is for kinematic

point 3C, while Fig. 6.7(right) is for kinematic point 5E. Both plots show the Monte Carlo

simulation with and without scaling. For 3C an 1/sn as prescribed by Eq. 6.5 has been
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Figure 6.7: Energy dependences of neutral pion photoproduction for 3C(left) and 5E(left)

kinematic points. Blue circles denote the data, full lines denote simulation with a non-

constant cross section, and doted lines denote simulation with a constant cross section.

applied. For 5E an exponent of n = 9 for
dσπ0

dt
∝ 1

sn has been selected, showing a resulting

robust agreement with the experimental data.

Bremsstrahlung Photon background and Real Compton Scattering cross section

At this point we can move on to the next task – determining Krcs and dσrcs/dt. As mentioned

in previous chapters, we cannot simply use the same method in δx distribution as we did for

the pions: the Gaussian in Fig 6.2(left) contains both Compton and bremsstrahlung photon

events. As mentioned earlier, the electrons, before being deflected by the magnet, interact

with target material and air, producing bremsstrahlung radiation which is directed parallel to

electron’s direction, and has an energy of E0−E ′, where E0 and E ′ are the electron’s original

and final energies, respectively. This makes the bremsstrahlung photons angularly(that is,

in δx and δy) indistinguishable from the Compton events. The only manner to distinguish

them is to look at the energy of the particle, as registered by the calorimeter. To do this,
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Figure 6.8: Ecalo distribution with abs(δx − 2.) < 8. The punctured line denotes the cut

used to isolate the epγ background.

we observe the count distribution with a combination of cuts {cut1 AND abs(δx − 2.) < 8

}. Resulting distribution can be seen in Fig. 6.8 as the blue points.

This distribution contains in itself three event types: Compton (RCS), bremsstrahlung

(epγ), and pions. The number of the counts corresponding to the later we can find out

easily: it is Nπ = N ′
π · Kπ, where as always priming corresponds to the simulation output.

The only other event type left are the epγ. We however can separate those by observing

the low Ecalo “tail” of the count distribution. All we have to do is place a cut which will

eliminate everything except the bremsstrahlung events: Ecalo > 700andEcalo < Epeak−3 ·σE ,

where Epeak is the peak value of the distribution, and σE is the standard deviation of the

Gaussian fit to the Ecalo > Epeak part of the distribution. This way, by isolating the epγ

events, we can determine the coefficient Kγ , which indicates by how much the simulation

underestimates or overestimates the volume of bremsstrahlung:

Kγ =
nγ

n′
γ

(6.6)

148



where nγ is the number of data counts under the above mentioned cut, and n′
γ is the same

number but for simulation.

Finally, we move under the domain of Ecalo > Epeak − 3 · σE , where we can now subtract

the bremsstrahlung and pion events, and determine Krcs:

Krcs =
N − Kπ · N ′

π − Kγ · N ′
γ

N ′
rcs

where N is the total number of data counts under the Ecalo > Epeak − 3 · σE cut, and the

primed values of N are the counts of simulated output. A more explicit expression can be

achieved using the values of Kπ and Kγ –

Krcs =
N − nπ · (N ′

π

n′
π
) − nγ · (N ′

γ

n′
γ
)

N ′
rcs

(6.7)

Assuming that the statistical error of the simulation is negligible, we calculate the statistic

uncertainty of Krcs:

δ2
rcs = (

∂Krcs

∂N
· δN)2 + (

∂Krcs

∂nπ

· δπ)2 + (
∂Krcs

∂nγ

· δγ)
2

which gives us

δrcs =
1

N ′
rcs

√
N + nπ ·

(
N ′

π

n′
π

)2

+ nγ ·
(

N ′
γ

n′
γ

)2

(6.8)

Table 6.1 lists the values of the above numbers.

The final results for the remaining kinematic points are presented in the Table 6.3.

Stability of Results Under Acceptance Cuts

As part of our systematic checks, we need to observe the stability of our final results under

different conditions. One of these check is to place different cuts on calorimeter face, and
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nπ 20802 nγ 291

n′
π 9708 n′

γ 92.

Kπ 2.143 Kγ 3.172

N 8632

N ′
rcs 967.

Krcs 1.565

dσ′
rcs

dt
0.1651 nB/GeV 2 dσ′

π

dt
7.70 nB/GeV 2

dσrcs

dt
= dσ′

rcs

dt
· Krcs 0.258 nB/GeV 2 dσπ

dt
= dσ′

π

dt
· Kπ 16.5 nB/GeV 2

δrcs 0.02 nB/GeV 2 δπ 0.1 nB/GeV 2

Table 6.1: Table of numerical values used in the analysis process. The primed variables are

those produced by the simulation for an accumulated beam charge of 1mC.

observe dependences of RCS cross section on these cuts. Fig 6.9 shows that the results are

very stable under different cut conditions. The numerical results are also listed in Table 6.1.

The stability of the results under varying acceptance cuts is yet another successful test of

simulation’s good reproduction of experimental acceptance.

Systematic Uncertainties due to Bremsstrahlung Background

Another possible source of systematic uncertainties is the presence of the epγ background.

The manner in which this background is subtracted has been discussed earlier. However, it

was done assuming that all of the observed background consists of bremsstrahlung photon

events, or more precisely – it follows the general shape of bremsstrahlung background. By

default this does not have to be so – it is hard to a priori exclude the possibility that other
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Figure 6.9: Dependence of absolute cross section on calorimeter cuts. The ordinate is

presented as the ratio of cross section to a constant cross section supplied to the Monte

Carlo simulation. The line and the gray error band represent our final result.

sources of background could be present. To investigate this we can use the electrons in the

experimental data. In our simulation of off-endpoint kinematic points the normalization of

electron yield is arbitrary. However, the ratio of the electrons to bremsstrahlung photons is

not. So, we can compare the ratio of experimental data electrons to simulated electrons, and

see if that ratio is the same for the bremsstrahlung radiation events. Fig. 6.10 illustrates this

procedure: after subtracting pion background and RCS events of the simulation from the

data, we are only left with electrons. This then allows us to compute the ratio Ne/N
′
e, where

the primed number corresponds to the simulation. The variable α, defined as α =
nγ/n′

γ

Ne/N ′
e

(where nγ and n′
γ are defined in Eq. 6.6), should be equal to one. Its deviation from one is

a measure of how much the simulation underestimates the background.

The main sources of bremsstrahlung radiation are target material (liquid hydrogen),

target cell walls (0.125 mm of aluminum), target chamber vacuum window (0.4 mm of

aluminum) and the air between target chamber wall and the magnet (105. cm, after which the
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Figure 6.10: a) Electron data count distribution, with π0 background subtracted. Red line

is the simulation. b) A full data to simulation comparison, with a simulation of electron

background added to the other event types.

electrons are deflected). One source of uncertainties is the real thickness of target chamber

vacuum window: due to the atmospheric pressure the vacuum window surface is not flat,

but is in fact highly wrinkled. This implies that the real distance traveled by electrons could

be somewhat larger than the nominal thickness of the window. We estimate that the real

thickness cannot exceed 2 × 0.4mm, and perform our simulation both with and without

this assumption.

The value of α determined thus have been α0 = 1.7±0.07 and αwrinkling = 1.4±0.06. This

proves that there is in fact other background, which is not of same origin as bremsstrahlung

radiation. Meanwhile it is important to note that α is within the order of magnitude of

one, and that the secondary background is less than our main well known bremsstrahlung

background. Furthermore, it is important to understand that it is intuitively reasonable to

assume that whatever the origins of the background, it decreases with increasing calorimeter
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energy Ecalo, and overall follows a shape which is similar to that of bremsstrahlung radiation.

To answer the question of by how much would the deviation of secondary background’s

shape from that of bremsstrahlung affect our results, we consider two assumptions. One

assumption – one that we have used all along to determine the RCS cross section – is that

all of the background follows the shape of bremsstrahlung radiation, making our results

essentially perfect. The other assumption – a worst case scenario – is that while up to

900 MeV the background is identical to bremsstrahlung, it drops linearly with increasing

energy, and becomes zero at 2300MeV (we can see from the data that at 2300MeV all

types of backgrounds and signals come close to zero). The two resulting fits can be seen in

Fig. 6.11 as the red lines, where the pointed line corresponds to assumption number two,

and the full line is our standard fit (assumption number one). The difference of the cross

sections calculated by these two methods has been found to be 7%. It would be correct then

to assume that the real value of cross section is in the domain of [0.93 · dσ/dt; dσ/dt], where

dσ/dt is the cross section determined by assumption number one (standard fit). We then

take the average of the two quantities, that is 0.965 · dσ/dt, as our final value of RCS cross

section, and quote a systematic error of 3.5% due to bremsstrahlung background subtraction

.

6.2 Subtraction of Virtual Compton Scattering Events

At this point we have discussed the three event types – electron scattering, neutral pion

production and electron bremsstrahlung – which constitute our main background. However,

Virtual Compton Scattering(VCS), ep → epγ, is another process which is present in the
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Figure 6.11: Calorimeter energy distribution. Red lines correspond to simulation with

two assumptions: pointed line – that background drops linearly; full line – that background

follows the simulated shape of bremsstrahlung radiation. The difference between the resulting

cross sections is 7%

data and contributes to the background. Furthermore, due to kinematic similarity to Real

Compton Scattering, it is impossible to separate the VCS events during data analysis. The

Born diagram of VCS can be seen in Fig. 6.12.

There are however some constraints on VCS which make it highly predictable, in terms

of relative cross sections. As the photon’s virtuality increases, so does the angle between its

direction and that of the beam. This translates into an offset in the angle of the final photon,

resulting in larger absolute values of δx and δy. We perform a simple kinematic calculation

for the electron vertex of the diagram in Fig. 6.12, in order to determine the dependence of

virtual photon angle and it’s virtuality Q2 ≡ −q2. The resulting relation is

θ =

√
Q2 · E0 − Eγ

E0E2
γ

(6.9)

where Eγ is the virtual photon energy, and E0 is the beam (electron) energy. From here we

can see that as the incoming photon’s virtuality increases, so does the angular offset of the

reaction and proton vertex. Since the final proton’s momentum stays the same, the offset
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Figure 6.12: Virtual Compton Scattering(VCS). Due to very low virtuality (−q2 <

0.01GeV 2) of the incoming photon, the part of the diagram enclosed in the blue square is

essentially identical to Real Compton Scattering(RCS), in terms of amplitude and kinematic

dependences. The only difference between this process and RCS is the incoming photon(γ∗)

flux.

in in-plane angle causes a miscalculation of incoming energy, and hence of δx. Furthermore,

the out-of-plane angles of the proton and the photon change in the same direction (while

in normal kinematic conditions the out-of-plane angles change in opposite direction): this

causes miscalculations in the value of δy as well. The acceptable virtuality of the incoming

photon is hence severely limited by our narrow cuts on δx and δy.

Once the full range of Q2 and Eγ has been determined, one can calculate the virtual

photon flux and compare it to the real bremsstrahlung photon flux. A detailed calculation

has been performed by V.M.Budneev et al. [67], determining the total number of virtual

photons per energy per virtuality to be

dnγ

dEγ d(Q2)
=

α

π

1

Q2 · Eγ

(
1 − Eγ

E0

+
1

2
(
Eγ

E0

)2 − (1 − Eγ

E0

)
q2
min

q2

)
(6.10)
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where

q2
min = m2

e

(Eγ

E0
)2

1 − (Eγ

E0
)

would be the lower limit of q2 integration, me being the electron mass. Here it is worth

noticing that the m2
e factor makes the last term in the parentheses of Eq. 6.10 extremely

small, allowing us to write

dnγ

dEγ d(Q2)
=

α

π

1

Q2 · Eγ

(
1 − r +

1

2
r2

)
where r ≡ Eγ

E0

Since the experimental acceptance is set very close to the bremsstrahlung endpoint, it could

also be approximated that r ≈ 1 and Δr ≡ 1 − r � 1. Using this, and performing a first

order Taylor expansion of the r2/2 term we get

dnγ

dEγ d(Q2)
≈ α

π

1

Q2 · Eγ

(
Δr +

1

2
· (1 − 2Δr)

)
=

α

2π

1

Q2
· 1

Eγ

Two important conclusions can be reached. First, that the energy dependence and Q2

dependence of the flux are almost entirely disjoint of each other. And second, that the

1/Eγ dependence of the virtual photon flux is almost identical to that of the thin-target

bremsstrahlung, which is the source of Real Compton Scattering. This has an important

consequence: since the energy dependence at proton vertex (the blue box on Fig. 6.12) is also

the same for VCS and RCS events, the calorimeter energy distribution of the final photons

can be expected to be identical for both even types.

To determine the VCS to RCS ratio in the data, the VCS process has been added to the

Monte Carlo simulation, allowing us to determine the NV CS/(NV CS + NRCS) in a rigorous

manner. The Monte Carlo simulation for the VCS events is almost identical to that of the

RCS events, with the following differences:
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• In the kinematic calculations, the incident photon has a “mass” of
√

Q2

• The values of Q2 and Eγ are chosen uniformly in a random manner.

• The final photon direction is offset by geometrical in-plane and out-of-plane angles of

θv · cos(φv) and θv · sin(φv) · cos θscatt, respectively, where θv is virtual photon’s angle

relative to the incoming beam, determined by Eq. 6.9, φv is its azimuthal angle, chosen

randomly between 0 and 2π, and θscatt is the final photon scattering angle.

• The same procedure is performed for the proton, with the only difference that θscatt is

taken as proton’s recoil angle.

• δx and δy are determined using 2-body kinematics, with the assumption of an RCS

event.

• When calculating normalization to beam charge, bremsstrahlung flux is not included

in the integration of cross section, but an extra weight factor of dnγ

dEγ d(Q2)
·ΔEγ ·Δ(Q2)

is included in the final phase of the analysis, which is performed in ROOT. Here,

ΔEγ · Δ(Q2) is the phase space of event generation in energy and virtuality.

Plots of simulations of RCS and VCS events can be seen in Fig. 6.13. During the analysis

procedure, we apply cuts used in the data analysis on both RCS and VCS simulated events,

and from there determine the ratio of NV CS/(NV CS + NRCS). The final results of the VCS

correction analysis are presented in Table 6.2. A quick examination shows that the correction

to the RCS cross section is in the range of 11% to 15%. The final results of cross sections

can be found in Table 6.3.
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Kin. point V CS/(V CS + RCS) Calorimeter Distance (m) cut on ±δx and ±δy (cm)

2a 0.120 12.0 15.,15.

2b 0.117 7.1 11.,8.

2c 0.113 5.2 10.,10.

3a 0.122 14.4 12.,11.

3b 0.124 10.0 10.,9.

3c 0.126 7.9 8.,15.

3d 0.134 6.2 9.,15.

3e 0.124 5.7 9.,10.

3f 0.128 5.3 9.,15.

4a 0.134 18.0 15.,7.

4b 0.151 16.4 15.,15.

4c 0.138 13.1 8.,10.

4d 0.137 10.1 8.,10.

4e 0.143 7.9 8.,8.5

4f 0.139 6.9 8.,7.

4g 0.134 6.2 8.,10.

4h 0.138 5.6 8.,10.

5a 0.140 18.0 9.5,5.2

5b 0.143 18.0 11.8,6.1

5c 0.138 14.5 8.1,5.8

5d 0.138 11.4 5.6,5.6

5e 0.132 9.5 6.4,5.

5f 0.130 8.8 5.3,5.2

5g 0.133 8.1 4.8,5.4

5h 0.125 7.0 3.8,6.1

Table 6.2: The proportion of Virtual Compton Scattering events, VCS/(VCS+RCS), cal-

culated using Monte Carlo simulations, for different kinematic points.

158



dσrcs/dt δrcs (Emin, Emax) s t θCM dσπ/dt δπ

2A 6.37 0.18 (1.95,2.25) 4.819 -1.649 -1.411 1046 4

2B 4.59 0.13 (1.95,2.25) 4.819 -2.010 -1.050 801 5

2C 2.18 0.05 (1.95,2.25) 4.819 -2.600 -0.460 201 2

3A 0.798 0.035 (3.,3.3) 6.789 -1.961 -3.069 80.17 0.50

3B 0.247 0.026 (3.,3.3) 6.789 -2.537 -2.493 12.10 0.16

3C 0.223 0.017 (3.,3.3) 6.789 -3.039 -1.990 16.50 0.10

3D 0.282 0.009 (3.,3.3) 6.789 -3.695 -1.335 17.50 0.11

3E 0.291 0.009 (3.,3.3) 6.789 -4.028 -1.002 43.13 0.16

3F 0.304 0.011 (3.,3.3) 6.789 -4.349 -0.681 56.40 0.20

4A 0.386 0.017 (4.05,4.5) 8.900 -2.030 -5.110 27.800 0.100

4B 0.107 0.006 (4.05,4.5) 8.900 -2.570 -4.570 2.294 0.030

4C 0.060 0.005 (4.05,4.5) 8.900 -3.087 -4.053 2.364 0.040

4D 0.034 0.003 (4.05,4.5) 8.900 -3.675 -3.465 3.780 0.017

4E 0.025 0.003 (4.05,4.5) 8.900 -4.383 -2.757 4.370 0.030

4F 0.031 0.003 (4.05,4.5) 8.900 -5.031 -2.109 3.693 0.028

4G 0.047 0.003 (4.05,4.5) 8.900 -5.477 -1.663 5.254 0.026

4H 0.063 0.004 (4.05,4.5) 8.900 -5.924 -1.216 11.000 0.060

5A 0.0680 0.0057 (5.1,5.6) 10.916 -2.612 -6.545 1.400 0.020

5B 0.0295 0.0039 (5.1,5.6) 10.916 -3.183 -5.974 0.900 0.020

5C 0.0152 0.0025 (5.1,5.6) 10.916 -3.730 -5.427 1.254 0.010

5D 0.0092 0.0010 (5.1,5.6) 10.916 -4.413 -4.743 0.770 0.010

5E 0.0069 0.0007 (5.1,5.6) 10.916 -5.027 -4.130 0.700 0.010

5F 0.0057 0.0009 (5.1,5.6) 10.916 -5.441 -3.716 0.720 0.010

5G 0.0045 0.0006 (5.1,5.6) 10.916 -5.933 -3.223 0.890 0.009

5H 0.0055 0.0007 (5.1,5.6) 10.916 -6.460 -2.697 1.150 0.007

Table 6.3: Final results of Real Compton Scattering differential cross sections, corrected

for VCS contributions (as presented in Table 6.2).
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Run ID Ebeam [GeV] Calo D Calo θγ/Eγ HRS θ/p HRS θ/p

off endpoint endpoint

2a 2.341 12.0 46. / 1.260 35.6783 / 1.556 33.97/1.711

2b 2.341 7.1 56. / 1.066 29.824 / 1.779 28.28/1.951

2c 2.341 5.2 79. / 0.751 20.285 / 2.129 19.14/2.322

3a 3.478 14.4 31. / 2.161 39.08 / 1.768 37.44/1.928

3b 3.478 10. 39. / 1.824 32.46 / 2.142 30.95/2.332

3c 3.478 7.9 45. / 1.604 28.54 / 2.38 27.14/2.586

3d 3.478 6.2 57. / 1.255 22.53 / 2.752 21.36/2.981

3e 3.480 5.7 65. / 1.079 19.47 / 2.939 18.43/3.176

3f 3.478 5.3 75. / 0.906 16.36 / 3.118 15.47/3.362

4a 4.615 18. 22. / 3.228 42.58 / 1.789 40.97/1.943

4b 4.615 16.4 26. / 2.940 37.73 / 2.109 36.17/2.290

4c 4.615 13.1 30. / 2.665 33.691 / 2.407 32.21/2.611

4d 4.615 10.1 35. / 2.351 29.53 / 2.741 28.16/2.970

4e 4.615 7.9 42. / 1.974 24.951 / 3.137 23.74/3.391

4f 4.615 6.9 50. / 1.628 20.96 / 3.496 19.90/3.769

4g 4.615 6.2 57. / 1.390 18.21 / 3.742 17.27/4.025

4h 4.615 5.6 66. / 1.152 15.379 / 3.987 14.57/4.278

5a 5.754 18.0 20. / 4.005 40.0083 / 2.133 38.47/2.311

5b 5.754 18.0 23. / 3.700 36.0285 / 2.462 35.78/2.550

5c 5.754 14.5 26. / 3.409 32.664 / 2.772 31.25/3.002

5d 5.754 11.4 30. / 3.044 28.91 / 3.154 27.60/3.410

5e 5.754 9.5 34. / 2.717 25.83 / 3.494 24.62/3.772

5f 5.754 8.8 37. / 2.497 23.858 / 3.722 22.72/4.013

5g 5.754 8.1 41. / 2.234 21.59 / 3.992 2.54/4.298

5h 5.754 7. 46. / 1.953 19.221 / 4.28 N/A

Table 6.4: Kinematic values of the calorimeter and spectrometer settings
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Figure 6.13: Top: δx distributions for RCS (blue) and VCS(red) events. Bottom: Q2

distribution for virtual photons. The full circles correspond to data with cuts on δx and δy.

The open circles are for the data with no cuts.

161



Chapter 7

Physics Analysis and Discussion of

Results

7.1 Final Results of RCS Cross Section and Systematic

Uncertainties

The previous chapters gave a detailed description of the two methods of data analysis which

have been used to extract cross sections:

a) Preliminary Analysis: stringent cuts on acceptances, and polynomial fitting of pion

and bremsstrahlung backgrounds (See Chapter. 4.4.2).

b) Monte Carlo Analysis: wide cuts on acceptance, use of Monte Carlo simulations to

account for the acceptance effects, to subtract the background and to fit the signal.
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The two methods employ very different and mostly unrelated approaches to the problem.

The deficiencies of the preliminary analysis have been discussed at length in Chapter 4.4.3.

It however can be argued that if the procedure is performed with great attention to detail,

then the result can serve as a good measure of the order of magnitude of the actual cross

section. It has been agreed that the mean of (a) and (b) will be used as the final result

of the experiment, and that half of the difference between the two results will be used as a

measure of the systematic error.

The table in Tab. 7.1 lists final results determined through this method, with a listing of

the kinematic variables and statistic and systematic uncertainties.

7.2 Systematic Uncertainties

The systematic uncertainties are a description of an experimentalist’s knowledge of his exper-

imental apparatus and of the structure of the data which is subject to analysis. Experiments

which measure cross sections are especially vulnerable to effects due to unknown acceptances

and to complicated backgrounds, as discussed in detail in Chapters 5 and 6. In the case

of current analysis, the problem of the acceptances and backgrounds has been addressed

through a complex Monte Carlo simulation. The measure of the systematic uncertainties

can be estimated by comparing the results achieved through Monte Carlo simulations (i.e.

the analysis described in previous two chapters) with results achieved through polynomial

fits, as described in detail in Chapter 4. If the data structure and the experimental setup

is understood to perfection, then the two results, within statistic uncertainties, should not

differ. In our case, however, a comparisons of the two results shows rather significant differ-
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Kin. point Eγ s t u θcm dσ/dt errors

statistic systematic, lower lmt.

2A 2.100 4.819 -1.649 -1.411 1.556 5.7476 0.1910 0.6236

2B 2.100 4.819 -2.010 -1.050 104.38 4.3067 0.1382 0.2849

2C 2.100 4.819 -2.600 -0.460 127.94 2.0597 0.0616 0.1223

3A 3.150 6.789 -1.961 -3.069 76.26 0.8106 0.0351 0.0125

3B 3.150 6.789 -2.537 -2.493 89.23 0.2427 0.0263 0.0043

3C 3.150 6.789 -3.039 -1.990 100.48 0.2192 0.0175 0.0037

3D 3.150 6.789 -3.695 -1.335 115.89 0.2737 0.0103 0.0086

3E 3.150 6.789 -4.028 -1.002 124.49 0.2809 0.0088 0.0099

3F 3.150 6.789 -4.349 -0.681 133.71 0.2932 0.0170 0.0106

4A 4.275 8.900 -2.030 -5.110 64.01 0.3905 0.0173 0.0048

4B 4.275 8.900 -2.570 -4.570 73.22 0.1154 0.0082 0.0084

4C 4.275 8.900 -3.087 -4.053 81.62 0.0640 0.0052 0.0036

4D 4.275 8.900 -3.675 -3.465 90.98 0.0343 0.0026 0.0006

4E 4.275 8.900 -4.383 -2.757 102.29 0.0252 0.0026 0.0003

4F 4.275 8.900 -5.031 -2.109 113.10 0.0311 0.0034 0.0004

4G 4.275 8.900 -5.477 -1.663 121.06 0.0468 0.0029 0.0000

4H 4.275 8.900 -5.924 -1.216 129.75 0.0593 0.0039 0.0033

5A 5.350 10.916 -2.612 -6.545 64.28 0.0670 0.0060 0.0009

5B 5.350 10.916 -3.183 -5.974 71.93 0.0288 0.0039 0.0007

5C 5.350 10.916 -3.730 -5.427 78.96 0.0150 0.0025 0.0001

5D 5.350 10.916 -4.413 -4.743 87.51 0.0092 0.0010 0.0000

5E 5.350 10.916 -5.027 -4.130 95.14 0.0072 0.0007 0.0002

5F 5.350 10.916 -5.441 -3.716 100.33 0.0058 0.0009 0.0000

5G 5.350 10.916 -5.933 -3.223 106.62 0.0042 0.0007 0.0003

5H 5.350 10.916 -6.460 -2.697 113.59 0.0053 0.0007 0.0002

Table 7.1: Table of final cross section results.
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Figure 7.1: The ratio of the results as determined by Polynomial Fitting method and Monte

Carlo method.

ences. Excluding the data points of 2A, 2B and 2C kinematic settings (which in any case do

not participate in the physics analysis, due to their extremely low values of −t and −u) the

results differ from as little as 1% to as much as 15%. It then can be said that this difference

is a reflection of the overall combined systematic uncertainties in the experiment and data

analysis. The plot in Fig. 7.1 is a distribution of the ratio dσpolynom/dσMC , where the first

cross section is determined through the polynomial fitting, while the second is the results of

the Monte Carlo method.

The plot indicates to a rather random distribution of the ratio, which suggests that the

systematic error (as determined through this method) is of a random nature and that the

total error should the determined by adding the systematic and statistic errors in quadra-

tures. The final value of cross section is determined by taking the mean of the two results.

The total statistical error is determined to be the largest of the two statistic errors.
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It has to be added here that these estimates of systematic uncertainties, determined

through this method, are not by themselves a full measure of systematic error of the experi-

ment, and if no further information were provided they would have been rather a lower limit

on the error. However, the previously performed tests of the Monte Carlo simulations, where

elastic electron scattering events were used to check the accuracy of the numerical model,

can be used here to provide an estimate of the order of magnitude of the systematic errors

due to the Monte Carlo analysis itself. Some of the few results of the systematic checks for

Monte Carlo are summarized as follows:

a) Acceptance scans. As described in detail in Chapter 5, these were performed with

elastic electron scattering data. The Monte Carlo fits of the accumulated data were

performed in order to extract elastic electron scattering cross sections. These were

then compared to recent results, from other experiments at Jefferson Laboratory [68].

A list of the comparisons is shown in Table 5.1. It was found that the data reproduced

existing cross sections to within (1 ± 0.5)%, and that the variation of the calculated

cross section amounted to only (2 ± 1.2)%.

b) Uncertainties due to the fits of epγ bremsstrahlung background. In Sec. 6.1.1 we studied

the nature of radiative background underneath the Compton peak in δx distribution.

It was found that the background is larger than expected. Hence a second method of

fitting was tried, where a simple linearly dropping distribution function was used to

model the epγ background, as a worst case scenario. For kin. 3C this fit resulted in a

value of cross section which was 7% below the one provided by the usual MC fit. The

average of the two results was taken as the final result, and a 3.5% uncertainty was
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assumed for that point. However, it should also be added that kin. 3C was specifically

chosen as the worst limiting case: a combination of low calorimeter energy resolution

and large epγ background resulted in a maximum effect on the final result. Similar

analysis for other kinematic points with better calorimeter resolution resulted in much

smaller (such as only 1 − 2%) disagreements.

c) Dependence of cross section on calorimeter acceptance cuts. It was shown in Sec. 6.1.1

that the variation of the cross section was within the statistical uncertainty for the

different data cuts.

It is then useful to compile a list of the most important possible sources of experimental

uncertainties, and discuss how the above discussed checks provide for an upper limit on those

uncertainties:

• Acceptance effects. As found above, this is limited to no more than 2%. There is

a minor caveat however: the acceptance scans which were performed using elastic

electron scattering data covered the full momentum acceptance, however the angular

coverage is much less – 40 mRad out of total 60 mRad. This can result in uncer-

tainties due to the edges of the angular acceptance. Here however we can use the

information from point (c) above. As we place cuts on the calorimeter acceptance, the

two-body nature of the reaction conversely places similar constraints on the spectrome-

ter acceptance. The good stability of the cross section results which we observed under

different cuts on calorimeter acceptance then imply that uncertainties due to the edges

of spectrometer’s angular acceptance are much smaller than the statistic uncertainty.
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• Cuts on target vertex. Spectrometer’s optic aberrations can result in inaccurate cuts on

the target vertex, which will cause errors in the known values of total luminosity. This

however is entirely limited by the check in (a): since the acceptance scan measurements

also included cuts on target vertex, therefore any possible effects should be limited by

the 2% as found above.

• Effects due to inaccurate values of electronic and computational dead times. The

acceptance scans were performed in coincidence mode, and the data was collected

under the same trigger type as the production data. This implies that any problems

with electronics and computation would have had affected the results in (a) as well.

A minor caveat exists here as well: in the case if the production data involved much

larger trigger rates than those for acceptance scan, then this statement would not be

valid, since larger computational dead times could have caused larger uncertainties.

This however can be checked. The rates for the coincidence trigger for the acceptance

scans were varying between 210 − 390 Hz and the dead times were varying between

8%−9%. For production data taking the trigger rates for coincidence where the largest

at the most forward angles, where high cross sections for elastic electron scattering

contributed to a very large data flux. The trigger rates and dead times for the kinematic

points 3A were 240 Hz and 95%, and for 4A were 72 Hz and 96%. For most of the

other kinematic points the typical even rates constituted about 20 − 50 Hz and live

times were about 99%. It then can be said that the systematic uncertainties due to

dead times for production data were same as or less than those for acceptance scans.
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• Inaccuracies in the accumulated beam charges as reported by the Beam Charge Moni-

tors. Since the evaluations of the elastic cross sections in (a) utilized this information,

therefore any uncertainties related to this effect should be contained within the 2%

overall limit.

• Inaccuracies due to cuts on calorimeter acceptance and/or calorimeter performance.

It is possible, that, due to limited coordinate resolutions, the real area affected by the

cuts was different from the one assumed in analysis. However, similar cuts were also

employed in the acceptance scans analysis, as described in (a). Furthermore, a similar

effect would have been felt in the checks of (c). Again, this places an upper limit of

2% on this effect.

• Radiator thickness and correctness of the integration of Eq. 5.10 as performed in

Ref. [59]. This is by far the largest uncertainty affecting our results. The results of this

integration have been compared to GEANT simulations, demonstrating an agreement

of 1% [43]. It is however impossible to entirely rule out the possibility that both calcu-

lations were in fact incorrect. A number of dedicated experiments are being planned

in JLab’s Halls A and B [69], with the sole purpose of measuring the bremsstrahlung

photon flux and compare the results to the calculations of Ref. [59].

7.2.1 Differential cross section comparisons

Once the final cross section results have been agreed upon, comparisons with the theoretical

predictions can be performed. The theoretical values of cross section have been provided by
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calculations performed by M. Diehl and P. Kroll. These included calculations of vector and

axial form factors RV (t) and RA(t) and of Next to Leading Order (NLO) expressions for

cross section [11] [12], which are by no means small. Comparisons between the final cross

section results and theoretical calculations based on Soft Overlap Handbag Mechanism can

be seen in Fig. 7.2. The plot also shows data from a previous experiment (see Ref. [6]) in

form of open points. In order to adjust the cross sections of Ref. [6] to the kinematic settings

of the experiment, we have used the following approach: for every point which has a value of

s0 which differs from our settings of s, we have applied a multiplicative correction of (s0/s)
n,

where the value of the exponent has been found to be approximately n = 8, as found in the

next sections.

The raw comparison points to a considerable disagreement between data and theory.

It is however important to keep in mind that the calculations have been performed for

−t,−u, s � m2
p, where mp is proton’s mass. It has been suggested (see Ref. [11]) that

−u,−t > 2.5 GeV 2 is a good estimate to satisfy this condition. The plot in Fig. 7.3 is

plotted with this condition in mind, showing a rather clear improvement over the previous

comparison.

The main contributions to theoretical errors arise from uncertainties over target mass

corrections. This is due to the ambiguity of relating the internal Mandelstam variables ŝ, û, t̂

(which define the perturbative upper part of the Handbag diagram, Fig. 7.9) to external

experimentally measurable ones, s, u, t. Depending on kinematic setting and on the values of

Mandelstam variables, this uncertainty can be rather large, and has been estimated through

extensive calculations, as detailed in Ref. [70]. The upper and lower limits, and the central
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Figure 7.2: RCS cross section dσ/dt in units of nB/GeV 2. Solid points represent data from

this experiment (E99-114), while open points marks correspond to previous data [6]. The

lines with error bands correspond to calculations of RCS form factors using GPD formalism,

see Ref. [11] [12]
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curve of the theoretical bands in Fig. 7.3 are determined by the following three approaches:

Scenario 1 Scenario 2 Scenario 3

ŝ = s ŝ = s − m2
p ŝ = s − m2

p

t̂ = t, û = u t̂ = t, û = u − m2
p t̂ = −ŝ(1 − cos θ)/2, û = −ŝ − t̂

The comparisons in Fig. 7.3 and later on in Fig. 7.4 allow as to say that while the Handbag

model would definitely benefit from some refinement(as will be shown later), it does to a

larger degree describe the RCS data.

7.2.2 s-dependence of dσ/dσKN ratio, and vector form factor RV

From the previous section it is possible to conclude that there is, at least within experimental

and theoretical uncertainties, an encouraging agreement between the experimental results

and the theoretical predictions which are based on Soft Overlap Mechanism. It is then

possible to use the cross section results to determine the values of vector form factor RV (t).

As already mentioned previously in Chapter 2, it is possible to approximate

dσ/dt

dσKN/dt
≈ R2

V (t)

where σKN is the Klein-Nishina cross section for Compton scattering on a structureless

and massless point particle. This is however an approximation which is largely based on

the assumption that fV ≈ 1 (see Eq. 2.13). In our experimental setting this factor varies

between fV = 0.82 and fV = 0.98, a circumstance which has to be taken into account. The

approach here is to use the following transformation:

dσ

dσKN
= R2

V (t)

[
fV + (1 − fV ) ·

(
RA(t)

RV (t)

)2
]

(7.1)
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The small value of 1 − fV factor make the cross section data largely insensitive to the axial

form factor RA(t). We however can and do extract this ratio from the polarized Compton

data, which has been analyzed and presented by E99-114 collaboration in Ref. [13]. The

theory predicted that the asymmetry of polarization transfer from a polarized photon to an

unpolarized proton can be expressed as (see, e.g. Ref. [20] [34])

KLL ≈ KKN
LL · RA(t)

RV (t)
(7.2)

where KKN
LL is the asymmetry for Compton scattering on massless, structureless proton, and

can be determined through QED calculations. It was found that

α ≡ RA(t)

RV (t)
= 0.81 ± 0.15 for − t = 4.03 GeV 2

It is also assumed that the t-dependence of this ratio is small enough as not to considerably

affect our calculation. Armed with this information we finally can express the vector form

factor through cross section values:

RV (t) =

(
dσ

dσKN

)1/2

[fV + α(1 − fV )]−1/2 (7.3)

Form factor RV to Next to Leading Order (NLO)

The above discussion described the calculations which have been performed to leading order.

Next to leading order (NLO) effects are however considerable, and have been computed in

detail by Markus Diehl and Peter Kroll [4]. Neglecting the contributions arising from the

gluonic subprocess, the generic expression for the cross sections’ ratio can be written as

dσ/dσkn = fV R2
V (t̂) + gV R2

A(t̂) (7.4)
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Scenario 1 Scenario 2

Scenario 3 Figure 7.4: RCS vector form factor

RV (t) determined by utilizing different

scenarios for target mass corrections. The

data points correspond to kinematic set-

tings where −u, > 2.4 GeV 2. The theo-

retical line correspond to calculations of

RV (t) based on GPD formalism, see Ref.

[11]

where the kinematic functions fV and gV are

fV =
1

2

(ŝ − û)2

ŝ2 + û2

[
1 +

α(s)

2π
CF

aŝ − bû

ŝ − û

]

gV =
1

2

(ŝ + û)2

ŝ2 + û2

[
1 +

α(s)

2π
CF

aŝ + bû

ŝ + û

]

where the color factor is CF = 4/3 and the NLO functions are

a = 1 +
2t̂ − ŝ

ŝ
ln(t̂/û) + (ln(−t̂/ŝ))2 + t̂2/ŝ2(ln(t̂/û))2 + π2

b = 1 +
2t̂ − û

û
ln(−t̂/ŝ) + (ln(t̂/û))2 + t̂2/û2(ln(−t̂/ŝ))2 + π2
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The strong coupling is determined from

α(ŝ) =
12π

27ln(ŝ/(ΛQCD)2)

where ΛQCD = 230MeV [4].

The final results of the extracted form factors is presented in Table 7.2.

Data to theory comparisons can be seen in Fig. 7.4, with the constraint of −t,−u >

2.4 GeV 2. The vertical error bars are a combination of systematic and statistic uncertainties

summed in quadratures. The horizontal error bars correspond to the difference in −t̂ as

calculated through Scenario 1. This difference should in principle be applied to the form

factor curve. However, since the value of |Δt| is different for different values of s, it was

decided to apply the error bar on the data points instead. Two important conclusions can

be drawn here:

• The data points are in a moderate agreement with the Soft Overlap Mechanism’s

calculation for the vector form factor.

• Apart from the pair of data points at −t = 4.5 GeV 2, there seems to be very little

dependence on Mandelstam variable s.

The second point is of a particular importance. The strongest model-independent feature of

the Soft Overlap Mechanism says that if the mechanism is overall correct, i.e. if it is in fact

possible to describe the Compton scattering through form factors, then those form factors

should exhibit dependence only on one variable – t.

In his initial paper, A.V. Radyushkin presented a simple parameterization for the GPD’s,

which was based on the soft overlap of proton’s initial and final state wavefunctions, and
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s t u RV (t), sc. 1 err. RV (t), sc. 2 err. RV (t), sc. 3 err.

4.819 -1.649 -1.411 0.3242 0.0230 0.3925 0.0278 0.4131 0.0293

4.819 -2.010 -1.050 0.2549 0.0125 0.3317 0.0163 0.3575 0.0176

4.819 -2.600 -0.460 0.1264 0.0056 0.2105 0.0094 0.2418 0.0108

6.789 -1.961 -3.069 0.2112 0.0062 0.2289 0.0067 0.2352 0.0069

6.789 -2.537 -2.493 0.1106 0.0070 0.1239 0.0078 0.1292 0.0081

6.789 -3.039 -1.990 0.0987 0.0048 0.1148 0.0056 0.1218 0.0059

6.789 -3.695 -1.335 0.0960 0.0033 0.1210 0.0042 0.1328 0.0046

6.789 -4.028 -1.002 0.0868 0.0029 0.1170 0.0039 0.1316 0.0044

6.789 -4.349 -0.681 0.0750 0.0035 0.1124 0.0053 0.1306 0.0061

8.900 -2.030 -5.110 0.2103 0.0059 0.2187 0.0062 0.2221 0.0063

8.900 -2.570 -4.570 0.1133 0.0082 0.1193 0.0086 0.1218 0.0088

8.900 -3.087 -4.053 0.0828 0.0057 0.0884 0.0061 0.0909 0.0062

8.900 -3.675 -3.465 0.0586 0.0027 0.0638 0.0030 0.0662 0.0031

8.900 -4.383 -2.757 0.0472 0.0027 0.0530 0.0031 0.0559 0.0032

8.900 -5.031 -2.109 0.0480 0.0029 0.0561 0.0034 0.0605 0.0037

8.900 -5.477 -1.663 0.0538 0.0017 0.0657 0.0020 0.0722 0.0022

8.900 -5.924 -1.216 0.0533 0.0032 0.0693 0.0042 0.0783 0.0047

10.916 -2.612 -6.545 0.1114 0.0058 0.1149 0.0059 0.1164 0.0060

10.916 -3.183 -5.974 0.0726 0.0057 0.0755 0.0060 0.0768 0.0061

10.916 -3.730 -5.427 0.0518 0.0045 0.0543 0.0047 0.0556 0.0049

10.916 -4.413 -4.743 0.0395 0.0023 0.0420 0.0024 0.0433 0.0025

10.916 -5.027 -4.130 0.0337 0.0022 0.0364 0.0023 0.0378 0.0024

10.916 -5.441 -3.716 0.0295 0.0023 0.0322 0.0025 0.0336 0.0027

10.916 -5.933 -3.223 0.0242 0.0027 0.0269 0.0030 0.0284 0.0032

10.916 -6.460 -2.697 0.0256 0.0021 0.0290 0.0024 0.0310 0.0025

Table 7.2: Final results for vector form factor RV (t), determined using Scenarios one, two

and three for target mass corrections. Number two has been considered to be the preferred

scenario.
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showed that by using a combination of x-dependence (derived from GRV parameterizations

[71]) and a simple Gaussian dependence of transverse momentum of the quark, it is possible

to achieve a reasonably good fit of the elastic form factor data (See Ref. [3, pp.3-4, Fig.3]).

It should be noted, however, that the Leading Order model presented by Radyushkin has

since been perfected by a number of Next to Leading Order (NLO) calculations [11; 34],

which included higher order terms and resulted in the current rather encouraging data-

theory agreement (compare, e.g., Fig. 7.4 here to Fig. 3 in Ref. [3]). The conclusion that

one reaches is that the GPD parameterizations and models used to describe Real Compton

Scattering are not yet perfect, and have been and will be developed further. It is however

important to note that, while a particular model or mechanism from the framework of GPD’s

may or may not reproduce the RV (t) data, it has to provide for an expression of the form

factor (e.g. that of Eq. 7.3) which will make it first of all s-independent when derived from

the data. This, we believe, is one of the most basic tests of validity of GPD formalism,

when applied to Real Compton scattering. The results for RV (t), as presented in Fig. 7.4,

demonstrate that this is already clearly the case for most of the data.

7.2.3 s−n(θcm) scaling in dσrcs/dt

As already discussed in Chapter 2, the most rigorous prediction of Leading Twist Mechanism

is the Constituent Quark Counting Rule for exclusive interactions [16], which predicts the

following dependence of cross section on Mandelstam variable s:

dσ

dt
=

f(θCM)

sn
(7.5)

178



]2s [GeV
10

])2
/d

t 
[n

b
/G

eV
σd

-310

-210

-110

1

 / ndf 2χ  2.387 / 1

p0        4.611e+06± 7.894e+06 

p1        0.2926± 8.407 

 / ndf 2χ  2.387 / 1

p0        4.611e+06± 7.894e+06 

p1        0.2926± 8.407 

]2s [GeV
10

])2
/d

t 
[n

b
/G

eV
σd

-310

-210

-110

1

 / ndf 2χ  0.04734 / 1

p0        8.375e+05± 1.324e+06 

p1        0.3031± 7.713 

 / ndf 2χ  0.04734 / 1

p0        8.375e+05± 1.324e+06 

p1        0.3031± 7.713 

]2s [GeV
10

])2
/d

t 
[n

b
/G

eV
σd

-310

-210

-110

1

 / ndf 2χ  0.0004171 / 1

p0        1.631e+05± 2.247e+05 

p1        0.3303±  7.18 

 / ndf 2χ  0.0004171 / 1

p0        1.631e+05± 2.247e+05 

p1        0.3303±  7.18 

]2s [GeV
10

])2
/d

t 
[n

b
/G

eV
σd

-310

-210

-110

1

 / ndf 2χ  0.05837 / 1

p0        3.782e+05± 5.426e+05 

p1        0.3334±  7.69 

 / ndf 2χ  0.05837 / 1

p0        3.782e+05± 5.426e+05 

p1        0.3334±  7.69 

]2s [GeV
10

])2
/d

t 
[n

b
/G

eV
σd

-310

-210

-110

1

 / ndf 2χ  0.4962 / 1

p0        8.078e+05± 1.434e+06 

p1        0.2742± 8.104 

 / ndf 2χ  0.4962 / 1

p0        8.078e+05± 1.434e+06 

p1        0.2742± 8.104 

Figure 7.5: Fits to the cross section for given values of θcm. On log-log scale the fitting

function reduces to a simple linear fit of the following form: log(dσ/dt) = c + n · log s

where for Real Compton scattering n = 6. The kinematic settings for data taking have been

planed in such a manner as to allow for kinematic points to be grouped in constant(or almost

constant) θCM . This then allows one to fit the points in a particular group with a power

law function of the form n(θcm) = a · sn and hence to determine the value of n for different

values of θcm.

The plots on Fig. 7.6 show the predictions of the two mechanisms for n(θCM). The

blue points correspond to previously available data [6], while the red points are calculated

based on cross section results from this experiment. The full red points correspond to values

of n which were extracted based on a fit of three kinematic points. The data with the

lowest values of scattering angle, at θ = 76o and θ = 81o were calculated based on only two
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Figure 7.6: Extraction of exponent n from the data for the Constituent Quark Counting

Rule prediction of dσ/dt = f(θCM)/sn. Red data points correspond to this experiment(E99-

114), blue squares correspond to previously available data [6]. The red curve is determined

based on Soft Overlap Handbag Mechanism.
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kinematic points (in which case the fit reduces to a simple interpolation). The rest of the

data however involved three different values of cross section. To account for slightly different

values of angle for the kinematic points inside a given group, we used simple second order

interpolation between the nearby values of cross section to correct the cross section for the

difference in angles. The plot in Fig. 7.5 demonstrates the five different power law fits over

the cross sections which provided the values of n in Fig. 7.6.

There are a number of conclusions that can be reached based on this interpretation of

the results:

• The ∝ s−6 dependence in cross section is the single most rigorous and model indepen-

dent feature of the Leading Twist Mechanism, hence the disagreement of the data with

this prediction gives a definite basis to the conclusion that the Leading Twist Mecha-

nism is clearly sub-dominant for Compton scattering at the energy scale corresponding

to our experiment. It should be added that this is only a confirmation of the conclusion

about the sub-dominance of Leading Twist Factorization which was reached based on

the results of polarized data of the E99-114 experiment (see Ref. [13]).

• The consistency of the Soft Overlap with the experimental result is less obvious, how-

ever. Data seems to indicate to a much steeper dependence on s than what the GPD

prediction predicts. Furthermore, the symmetric distribution of n(θCM ) around the

central angle of θ = 90o is particularly in disagreement with the Soft Overlap’s predic-

tion of a steadily decreasing n.

The conclusion that one can come to, based on the above observations, that this results
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confirms beyond doubt what was already seen in the RCS polarized results [13], namely,

that Leading Twist Mechanism is clearly sub-dominant at the energies and reactions specific

to our experiment.

7.3 Conclusions

The initial purpose behind the E99-114 experiment was to identify the dominant mechanism

for Real Compton Scattering at medium energies. Two types of measurements were con-

ducted: polarization transfer experiment, where the cross section asymmetry due to incoming

photon helicity was measured, with results described in Ref. [13]; differential cross section

measurements, which had the purpose of providing values of cross sections for different kine-

matic conditions. This thesis reflects the effort behind the later aspect of the experiment.

The results described earlier in this chapter have now allowed for a thorough discussion.

7.3.1 Leading Twist Mechanism

The Leading Twist Mechanism, described in detail in Chapter 2 is based on the assumption

that the momentum transfered from the photons is distributed uniformly between the valence

quarks through the exchange of hard perturbative gluons. The large number of hard vertexes

in the Feynman diagram(see Fig. 2.1) contribute to a particularly low cross section for the

scenario which utilizes asymptotic DA’s to model the momentum distribution between the

valence quarks. It furthermore treats the gluonic exchanges and quark propagators within the

perturbative framework of pQCD. Comparisons with existing data have shown this particular
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Figure 7.7: Leading Feynman Diagram for Leading Twist Mechanism. xi stand for the

fractional momentum of the quarks. The diagram enclosed by the doted box corresponds to

Thard from Eq. 2.4, and its amplitude can be determined using calculations based on pQCD.

scenario to underestimate the experimental results by about two orders of magnitude (see

Fig. 2.2 and Ref. [6]). However, alternative models for the Leading Twist Mechanism have

proposed so called humpy DA’s, which assume that one of the valence quarks carries most

of proton’s longitudinal momentum. For a number of reasons this assumption produces

very large enhancements to the cross sections, and results in somewhat better agreement

with cross section data. The later methodology however has attracted considerable criticism

[17] due to its intrinsic self-contradictions (see Ref. [3, pp.5-6] for a good discussion, also

Chapter 2.3.1).

With the final analysis of E99-114 data complete, it is now possible to summarize the list

of interpretations and conclusions that one can draw from the previous and present results.
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Differential Cross Section

As mentioned above, the simplest and the most rigorous approach to the determination

of reaction amplitudes in the perturbative framework is the one which is based on the

assumption of asymptotic freedom. In this context, as the energy scale reaches a partic-

ular (unknown, as far as fundamental theory is concerned) level, the interaction between the

quarks occurs at very short distances, where the color force and the interaction between the

valence quarks becomes negligible. That allows the quarks in the initial state to be treated

as free particles, and the logical implication is that each quark carries almost exactly third

of the longitudinal momentum. In other words, the Distribution Amplitudes of the diagram

in Fig. 7.7 becomes φ(x1, x2, x3) = φ(x1 = x2 = x3 = 1/3). It can also be shown that the

perturbative hard component of the total amplitude, Thard (the doted box in Fig. 7.7) varies

as

Thard ∼ 1

x1 · x2 · x3
(7.6)

Since x1 + x2 + x3 ≡ 1 it can be shown that the product x1 · x2 · x3 reaches its maximum

value precisely when x1 = x2 = x3, and, correspondingly, this situation corresponds to the

lowest possible value for Thard.

It can be inferred from above discourse that any deviations from the principle of asymp-

totic freedom will certainly result in the amplification of the total scattering amplitude.

After the major disagreement between the Leading Twist Mechanism observables (when

calculated using asymptotic DA’s) and data were discovered, it was subsequently proposed

to attempt to explain the experimental results through non symmetric DA’s, where x1 ∼ 1

and x2 = x3 ∼ 0. As can be seen in Fig. 2.2, these 1/x2 ∼ 1/0 factors have contributed
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to major improvements in data-theory comparisons. There, however, are a number of self-

inconsistencies in this approach: the expression of 1/x for a propagator, which is used in

these calculations, can only be used in perturbative framework. However, it has been argued

that it it simply wrong to assume that at such small momentums as x ∼ 0 the perturbative

approach is at all valid.

Here we would like to avoid any further comparisons of absolute cross section results

with the Leading Twist Mechanism, due to the discussed uncertainties over the applicability

of the particular phenomenological models involved, and refer to a much more rigorous and

model-independent observable of this mechanism: the proposed s−6 scaling of the cross

sections.

s−6 scaling

The constituent quark counting rule, involving dσ/dt = f(θ)/s6 expression for exclusive

processes is based on the assumption of applicability of perturbative QCD (pQCD) and

was first derived based on dimensional analysis and on the assumption that in perturbative

framework the valence quarks exhibit a dimensional behavior similar to that of a collection

of free particles. It was later explicitly derived by G.P. LePage and S.J. Brodsky [29].

Since this rule doesn’t involve any specific conjectures involving models for Distribution

Amplitudes, it is a very rigorous prediction of the Leading Twist picture, and has previously

been extensively used when testing the applicability of pQCD to particular reactions.

In fact, the original Cornell results were understood to support the validity of pQCD

specifically because they seemed to point to the much searched for s−6 feature in cross section
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dependences. However, as the comparison in Fig. 7.6 show, the Leading Twist Mechanism

is not the only model which – within experimental uncertainties of the original experimental

results – provides such scaling behavior. The results from E99-114 experiments have both

lower statistic and systematic uncertainties, and at this point it can be clearly stated that

they strongly disagree with the n = 6 condition.

Polarization Transfer Asymmetry results

One of the earlier results of E99-114 data analysis involved the measurements of cross sec-

tion asymmetries due to incoming photon beam polarization flips. The measurement was

performed at kinematic point 3E, at s = 6.8 GeV 2 and −t = 4.03 GeV 2. The measured

longitudinal polarization asymmetry is expressed as

KLL =
dσ(+, ↑) − dσ(−, ↑)
dσ(+, ↑) + dσ(−, ↑) (7.7)

where the first entry in the cross section refers to the photon beam helicity, and the sec-

ond entry refers to the recoiled proton polarization. This ratio measures the transfer of

polarization from a polarized photon to an unpolarized proton. It has to be stated that

the polarization observable KLL is probably one of the best means to achieve the goals of

the experiment, because of the spectacular contrast between the pQCD Leading Twist and

Handbag Mechanism predictions. The plots of the theoretical calculations can be seen in

Fig. 7.8, indicating to an impressive agreement of the experimental result with the Soft

Overlap Handbag prediction. The upper curve, marked as CZ corresponds to the Leading

Twist calculation which employed strongly asymmetric DA’s. It should be noted that even

with model-dependent uncertainties the Leading Twist clearly fails to provide a result which
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Figure 7.8: Polarization Transfer Asymmetry results for Real Compton Scattering on pro-

ton, revealing close agreement of the experimental results (from E99-114 col.) with the

Soft Overlap “Handbag” prediction (marked as “GDP”). The experimental result is from

Ref. [13]. The curves marked as “COZ” and “ASY” correspond to Leading Twist calcu-

lations, based on humped and non-humped DA’s, respectively. The curve marked as “KN”

corresponds to Compton scattering on a structureless and massless proton.

is comparable with the experimental outcome. This decisive evidence only further confirms

what has already been seen both in cross section and asymptotic scaling results: that Lead-

ing Twist Mechanism is clearly subdominant for Compton scattering at the momentum and

energy transfers characteristic to our experiment.
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7.3.2 Soft Overlap Handbag Mechanism

Once the Leading Twist picture has been ruled out, the next task of our analysis is to

understand whether the Handbag Mechanism can be considered to be the dominant one

at the energy ranges concerned. We would like to start the discussion from the polarized

results, since those can be used also to further shed light on the results derived from cross

section values.

It is however important to first review the meaning and significance of the Soft Overlap

Handbag Mechanism. The primary paradigm of the mechanism involves a single participant

quark, with the rest of the proton as a spectator (see Fig. 7.9). Unlike in Leading Twist

factorization, the transverse momentum of the quarks is not ignored. Moreover, it plays a

major role in the manner in which the initial and final state proton wavefunctions are defined

and how the momentum transfered by the photon is absorbed into the transverse momentum

distribution of the active quark.

One of the most scientifically curious aspects of the Handbag mechanism is that it is

formalized in the framework of Generalized Parton Distributions – hybrid structures which

combine in themselves the features of parton distribution functions (PDF) and form factors.
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Thus, at t = 0 forward direction the GPD’s reduce simply into the PDF’s, while their first

moments in x results in the elastic form factors. A GPD can be seen as a PDF which has

been generalized for wide angle exclusive scattering process. The general structure of a GPD

is solidified in the following manner:

• Its x-dependence at t = 0 is simply modeled based on GRV parameterizations [71],

which themselves are based on structure functions derived from DIS data.

• The t-dependence is modeled by assigning the initial and final soft wavefunctions a

Gaussian dependence on active quark’s transverse momentum (which then can be

related to the total four-momentum transfer t), in the following rather intuitive form:

Ψ(x, k⊥) = Φ(x) exp{−k2
⊥/2x(1−x)λ2} where λ is specifically left as a free parameter,

and represents our ignorance of the transverse size of the proton in momentum space.

This parameter is then varied to produce a best chi-square fit to proton elastic form

factor data, to give λ2 = 0.7 GeV 2.

The scientific power of the GPD’s is hidden in their process independent feature: given a

GPD, one can independently determine a) the DIS structure functions, b) Dirac form factors

and of course c) Real and Virtual Compton scattering form factors, as well as the observables

for most of other inclusive and exclusive process. To emphasize, since they have been fitted

to DIS and elastic data, the GPD’s work as some kind of a “triple-bridge” between DIS,

elastic electron and Real Compton data. The ultimate question to ask is the following:

given a GPD which has been adjusted to DIS PDF’s(for its x-dependence) and elastic Dirac

form factors (for its t-dependence), will that GPD independently and without any further
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adjustments reproduce the RCS form factor data, at least to within an order of magnitude?

If so, then it is indeed a valid formalism for considering the above mentioned processes and

interactions, whether inclusive or exclusive in their description. The results described earlier

in Fig. 7.4 and Fig. 7.3 show that this is overall the case and that the Handbag Mechanism

does to a larger degree describe the experimental result.

Polarization Transfer Asymmetry, and RA(t)/RV (t) ratio

Since the very early stages of the preliminary analysis it was rather clear that the asymmetry,

as defined in Eq. 7.7, exhibited a clearly large and positive value. In Fig. 7.8 one can see

the comparison between the asymmetry result and the theoretical predictions. A number of

conclusions can be drawn:

• The longitudinal asymmetry KLL is large and positive. Within the combination of

theoretical, systematic and statistic uncertainties it is clearly favoring the Handbag

mechanism. KLL = 0.677 ± 0.083 ± 0.044.

• The above conclusion allows us to treat the results in the framework of Handbag factor-

ization. According to the Handbag calculations, the polarization transfer asymmetry

can be expressed as

KLL = KKN
LL · RA(t)

RV (t)

where KKN
LL is the asymmetry for a massless and structureless proton, and can be

determined through QED calculations to be KKN
LL = (s2 − u2)/(s2 + u2). RA and RV

are the axial and vector form factors of Real Compton scattering. This is the only

measurement where it is possible to combine polarized and cross section results to
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independently determine both RA(t) and RV (t). Furthermore, we can use the value

of the ratio of the two form factors to derive the vector form factor RV (t) from other

cross section data.

• The proximity of the experimental result to the point particle curve (labeled as KN,

for Klein-Nishina, on Fig. 7.8) implies that the two form factors are very close in

value: RA/RV = 0.81 ± 0.15. It should be understood that the KKN
LL curve is the

measure of the polarization transfer from the photon to the active quark. On the

other hand, KLL is the polarization transfer to the proton overall. The process of

polarization transfer proceeds in the following simplified succession: the polarization

of the incoming photon aligns the quark spin, which then interacts with the proton

in the final state and transfers its polarization to the proton. Hence, the ratio of

KLL/KKN
LL is a measure of correlation between active quark spin and total proton spin.

The result shows that the correlation is large: KLL/KKN
LL = 0.81 ± 0.15. This implies

that the struck quark is very likely to have its spin parallel and in the same direction

as the recoiled (i.e. final state) proton.

Cross Section and vector form factor RV (t) Results

The Real Compton scattering differential cross section results have been discussed earlier

in this chapter. We would like to only add that the rather good agreement of experimental

data with the predictions of Handbag factorization are very encouraging, and the data is

arguably favoring Soft Overlap Handbag Mechanism as the dominant one. The next major

conclusion is that this validates the earlier conjecture that GPD’s, which have been adjusted
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to agree to DIS and elastic electron scattering data, can successfully reproduce RCS data

without any further modifications.

Another very interesting conclusion which we have been able to reach is that the RCS

vector form factor RV (t), as derived from cross section through the Handbag prescription

RV (t) =

(
dσ

dσKN

)1/2

[fV + α(1 − fV )]−1/2

(where α ≡ RA/RV = KLL/KKN
LL as determined from polarized data at t = −4.03 GeV 2)

has shown distinct s-independence, and rather a close agreement with the GPD model.

7.3.3 Overall Conclusions

In the above analysis we come to the following general conclusions:

• Leading Twist Mechanism is clearly subdominant at the energies and momentum

transfers of the experiment E99-114, namely: 1.6 GeV 2 ≤ −t ≤ 6.5 GeV 2 and

4.8 GeV 2 ≤ s ≤ 10.9 GeV 2.

• There is a large amount of solid scientific evidence which favors the Soft Overlap

“Handbag” Factorization as the dominant mechanism. However, it needs to be added

that most of the conclusions were reached for points where the Mandelstam variables

were constrained to the requirement of being much larger than proton mass squared:

−t,−u > 2.4 GeV 2. Furthermore, the data points at largest values of s = 10.9 GeV 2

seem to indicate that the theory is over-predicting the values of cross sections. Also,

it should be added that for one group of kinematic points, at −t = 4.5GeV 2 the

s-independence of RV is not observed.
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7.4 Future Plans

This thesis has been dedicated to the study of Real Compton Scattering on proton at the

energy and momentum transfer range of 1.6 GeV 2 ≤ −t ≤ 6.5 GeV 2 and 4.8 GeV 2 ≤ s ≤

10.9 GeV 2, with the general purpose of understanding the mechanism of proton’s interaction

with external electromagnetic probes and with the hope of validating(or abolishing) a unified

framework for treating a wide variety of electromagnetic processes involving the nucleon. We

believe that the experimental work and experimental results described and detailed in this

thesis will illuminate further paths towards greater understanding of the nucleonic structure,

both in its exclusive and inclusive descriptions, and will lead towards new insights both in

experimental and theoretical physics in the search of methodologies to achieve this interesting

goal.

We would like to list a number of possible theoretical and experimental efforts which will

contribute further towards understanding the complex nature of the nucleon.

7.4.1 Theoretical Improvements for Soft Overlap Mechanism

As already mentioned, the constraint of −u,−t > 2.4GeV 2 is needed in most of data-

theory comparisons. This, however, severely limits our ability to fully exploit the available

experimental data: out of as many as 25 kinematic points only 13 satisfied this requirement

and were thus used in the physics analysis. Furthermore, the polarized data, which were used

to determine KLL were taken at −u = 1. GeV 2 which is a very low value, given the above

theoretical constraints on the Mandelstam variables. We believe it is of utmost importance
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to perform a complete calculations which do not involve any approximations and are not

limited by such constraints.

7.4.2 12 GeV upgrade at Jefferson Laboratory

On the experimental front, a 12 GeV upgrade of the Continuous Electron Beam Accelerator

Facility (CEBAF) at Jefferson Laboratory has been approved. This may allow for future

measurements of Real Compton Scattering on proton at even higher values of s,−t and −u.

Measurements at higher energy and momentum transfers will contribute to two important

circumstances: larger values of −t and −u will permit for an even more rigorous comparisons

of data with theory; it will be possible to search for the possible onset of the pQCD scaling

behavior and for possible dominance of Leading Twist Factorization at larger values of s and

−t. If such a transition is indeed observed, then it will be a major and maybe final milestone

in the search of the elusive threshold of pQCD’s applicability.

7.4.3 RCS-II

Finally, while even one measurement of KLL polarization transfer asymmetry can be and has

been very elucidating, the plot of Fig. 7.8 indicate that there are a number of phenomeno-

logical models which compete with the Handbag Mechanisms: such as Regge mechanism

(where the incoming photon couples to a ρ0) and Constituent Quark Model [12], which

is calculated in the formalism of Light Front Cloudy Bag Model. A new experiment,E03-

003 [72] has already been proposed and approved at Jefferson Laboratory, with the purpose

of measuring KLL for scattering angles of θcm = 60o, 100o, 140o and 160o. We believe that
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these measurements will further strengthen our understanding of Real Compton Scattering

and nucleon structure at the medium energies.
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Appendix A

Mandelstam variables

The Mandelstam variables are three Lorentz invariant kinematic quantities which can dis-

tinctly define the kinematic settings of the reaction. For any two body process, such as the

one described in the diagram of Fig. A.1 the Mandelstam variables are defined as

s = (p + k)2 , t = (p′ − p)2 , u = (p′ − k)2 (A.1)

where p,k,p′ and k′ are the four-momentum vectors of the incoming and outgoing particles.

The physical significance of s and t is rather clear: s is analogous to the total energy in

the system, while t corresponds to the total amount four-momentum which the incoming

particle exchanged with its counterpart. It can also be shown that

s + t + u =
i=n∑
i=1

m2
i (A.2)

where mi is the rest mass of the reaction participants.
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Figure A.1: Scattering diagram, with

incoming and outcoming particle four-

momentums p,k,p′ and k′
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