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Abstract

Nucleon form factors allow a sensitive test for models of the nucleon. Recent
experiments utilising polarisation observables have resulted, for the first time, in
a model-independent determination of the neutron electric form factor G%,.

This method employed an 80% longitudinally polarised, high intensity (10 pA)
electron beam (883 MeV) that was quasi-elastically scattered off a liquid deu-
terium target in the reaction D (€, e7)p. A neutron polarimeter was designed
and installed to measure the ratio of transverse-to-longitudinal polarisation using
neutron scattering asymmetries. This ratio allowed a determination of the neu-
tron electric form factor, G, free of the previous large systematic uncertainties
associated with the deuterium wave function. The experiment took place in the
ATl experimental hall at MAMI taking advantage of a high resolution magnetic
spectrometer.

A detailed investigation was carried out into the performance of the neutron
polarimeter. This utilised both analysis of the experimental data and the results
of a Monte-Carlo simulation. The simulation required the creation of original
models for polarised neutron scattering on hydrogen and carbon. These were able
to successfully describe the experimental data giving confidence that analysis of
the neutron polarisation is well understood.

The central work of this thesis is the analysis for a four-momentum transfer

C
found G% = 0.047 £ 0.009(stat) £0:507 (sys).

The predictions of sophisticated nucleon models were then compared to the

2
squared, Q* = 0.79 <M> , model-independent measurement of G%. It was

complete set of double polarisation data. The new data point reinforced that the
Soliton model [1] gives the best parameterisation for the model-independent G,
data.
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Chapter 1
Introduction

The last century saw incredible advancement in our understanding of the micro-
scopic structure of the universe. Starting with Rutherford in 1911, who showed
that on the scale of 107! m (much smaller than the wavelength of visible light)
matter consisted of atoms with a central positive charge, which he named the
“nucleus”, surrounded by a cloud of negative electrons [2]. The nucleus itself was
found to have dimensions less than 10~'* m, but to contain 99.95% of the atomic
mass. In 1919, Rutherford discovered the nucleus contained positively charged
particles which he called “protons” [3]. The discovery of the neutron by Chadwick
in 1932 [4] allowed the total mass and charge of the nucleus to be explained in
terms of these two particles of similar mass, but with the proton having a posi-
tive charge exactly opposite to that of the electrons and the neutron zero charge.
Collectively these two nuclear particles have become known as “nucleons”. This
gave a picture of the atom from a set of three elementary particles.

However, soon after the discovery of the neutron came a measurement of the
proton magnetic moment by Frisch and Stern [5] which was not consistent with the
prediction from Relativistic Quantum Theory. The prediction by Dirac implied
that any truly elementary particle should have a magnetic moment determined by
its charge and mass only. In 1939 Alvarez and Bloch confirmed that the neutron
also had an anomalous magnetic moment and it became clear that the nucleons
were not in fact pointlike elementary particles as the electron is, but instead have
internal structure.

With the development of high energy electron beams advances were made
in investigating nucleon structure. The interactions of an electron beam are
dominated by the exchange of energy and momentum via a virtual photon, the

carrier of the electromagnetic force. In the 1950’s Hofstadter and others [6] found,



using electron beams with energies of around 150 MeV and scattering on light
nuclei, that the cross sections obtained were not consistent with the Mott cross
section for a point particle, but that the deviation could be explained by inclusion
of a finite size term, as suggested by Rosenbluth [7], to account for a “meson cloud
surrounding the proton”. The extra term came to be written in terms of the Sachs
electromagnetic form factors of the nucleon [8], which in this thesis are noted as
Gg and Gj;. The electromagnetic form factors give a general parameterisation
for the response of the nucleon to an electromagnetic probe.

The forties saw the discovery of new particles in cosmic rays. They were found
to have a mass much greater than the electron but less than the nucleons and were
given the name “mesons”. The masses of the lightest mesons, known as pions,
were of the right magnitude to be responsible for interactions between nucleons
based on the exchange potential hypothesised by Yukawa in 1935. In 1964, Gell-
Mann layed down the quark model which noted that all nucleons and mesons,
or more generally “hadrons”, could be explained in terms of three elementary
spin — % particles with fractional charge and their anti-particles. He called these
particles “quarks”. It was later found that six quarks existed, the other three
having masses much heavier than the original three, to go along with six leptons
of which one is the electon. The modern picture of the nucleon is that it consists
of three valence quarks' and any number of quark-antiquark pairs. According to
the theory of Quantum Chromodynamics the quarks interact through the strong
interaction which is mediated by the exchange of “gluons”.

The last fifty years have seen a continued effort into measuring the nucleon
electromagnetic form factors using electron scattering techniques. The resolving
power of the virtual photon, exchanged in the scattering process, is given by
its negative squared four-momentum transfer, Q2. The proton electromagnetic
form factors were measured accurately as a function of Q? using a Rosenbluth
separation technique on elastic electron-proton scattering cross sections. The
form factors can then, via a Fourier transform, be related to the distribution
of charge and magnetisation in the nucleon, thus providing an excellent testing
ground for Quantum Chromodynamics.

The neutron form factors are altogether more difficult to measure. Neutrons

have lifetimes of less than 15 minutes and so no static laboratory target exists

! The proton valence quarks are two “up” and one “down”, while the neutron has one “up” and
two “down”. The “up” and “down” quarks are the two lightest. The third lightest is the strange
quark, which is also present in the nucleon in virtual quark-antiquark pairs (“sea quarks”).



to study neutron interactions. Instead, neutrons bound in light nuclei have been
used as a pseudo-free target, but even in the lightest nuclei this requires models
of nuclear structure to extract the neutron form factors. These models and sub-
traction of the proton form factors lead to large systematic uncertainties in the
measurements. In addition, neutrons are far more elusive to detect due to their
zero net charge. Therefore calibration of the neutron detection efficiency yields
another large source of systematic uncertainty. In particular, the neutron electric
form factor has proven extremely difficult to determine as it is very small relative
to its magnetic counterpart and as a result cannot be accurately separated using
cross section measurements.

The development of polarised beams, targets and nucleon polarimetry over the
last 10 years has given a new lease of life to form factor measurements. Polari-
sation observables are sensitive to the electromagnetic form factors. Exploiting
the close relationship between experimental asymmetries and polarisation observ-
ables allows the determination of form factor ratios. This has, at last, lead to

measurements of G, with relatively small systematic uncertainties.

It is the purpose of this work to determine G% at Q> = 0.8 (%)2 by mea-
suring the recoil polarisation of neutrons quasi-elastically ejected from deuterium
nuclei by a longitudinally polarised electron beam, i.e D (€,e'7)p. The data
analysed for this thesis was collected during April and May of 2001 in the Al

experimental Hall at MAMI.



Chapter 2

Electron Scattering Formalism

2.1 Elastic electron-nucleon scattering

Electrons do not experience the strong nuclear force, their interaction with nu-
cleons is dominated by the electromagnetic force. This interaction is accurately
described to first order by the exchange of a virtual photon as shown in figure
2.1. Quantum Electrodynamics (QED) allows precise calculations of such phys-
ical processes using the Feynman rules, i.e. in principle we can calculate the
cross section (o) and other observables for such a reaction. In practice, for an
extended object such as a nucleon, a full calculation of o requires information
on the internal distribution of charge and magnetisation which currently is not
known precisely. On the other hand, as the electromagnetic interaction may be
calculated almost exactly, the internal charge and current distribution may in

principle be determined from experimentally measuring o or other observables.

Figure 2.1: Electron scattering off a hadron via one photon exchange. In the case
of elastic scattering X and Y must be the same particle.



2.1.1 Scattering Electrons off Pointlike Spin—% Particles

It was shown by Dirac that pointlike spin—%1 particles have well defined magnetic

moments [9]:

Ze

Mp = om
where Ze and m are the charge and mass of the particle respectively.
Taking X and Y (fig. 2.1) to be the same pointlike fermion i.e. elastic scat-

tering, the differential cross section for electron scattering can be written as [10]:

d_O' . m2MN e
dQ  4r?

(2.1)

where the initial and final four-vectors are shown in figure 2.1, 6, is the scattering
angle of the electron, m, and My are the masses of the electron and fermion and
My; is the transition matrix between the initial and final states. In the one-photon
exchange approximation, this is given by the product of the electron (jgys) and
target (Jzar) electromagnetic currents and a propogator é . The propagator en-
ters the matrix element to account for the electromagnetic interaction, Q? being

the negative four-momentum squared of the exchanged virtual photon which car-
@
the electromagnetic potential in r-space, i.e it describes the electromagnetic field

ries the electromagnetic field. The form arises from the Fourier transform of

in momentum space and this inverse relationship means smaller distance scales

are probed with photons of higher Q2. In general for electromagnetic scattering,
My; = —jie, JEM
fi = @JEM P

with the matrix elements of the electron and target currents given by,

dion =1 (P, 87) extu (p°, s") (2.2)

JEM = (P!, ST) Zey*u (P, S7) (2.3)

7

Here u (p, s) are the Dirac spinors (i.e. the wave function) for particles of four-

vector momentum p and spin s which characterise the particles before and after

1Spin—% particles like the electron, proton and neutron are collectively known as Fermions.



the interaction. The v* (u = 0, 1...5) terms are the Dirac matrices, which operate
at the vertices where the virtual photon starts and ends. In equations 2.2 and
2.3 they are operating on the initial and final wavefunctions. The strength of the
interaction is given by the coupling constant (o = e? in Gaussian units). Z is the
charge of the particle in units of charge e.

For the case of unpolarised scattering the spins are averaged over all possible
initial states and summed over final states, so the squared transition matrix is

then given by,

2 2264 1 —(f i\ — f m 7
"= G 2 [T v ()T (PY) 7 (P
spins
2%t (47)
" RG .

{2MYE.E, —p - p' [M} + My (E, — E.)] + m2 My}

| My

It is instructive to consider the cross section for the case where the electron
energy is very small compared to the rest mass of the target, so that the electron

effectively scatters off a stationary point-like charged particle i.e. equivalent to

being deflected in a Coulomb field. Taking A‘/E[—N < 1so that F, = E.; ‘&‘ = |pe
and (p')” = (yi)Q yields :
do m? —— 2
—_— ) © Mz
dQ 12 Ml
Z2e* (4n)?
~ ¢’ (47) ;2B —pf - p' + m?)
2mg (p/ - p') T
7202 (1 — B?sin? %
_ Zet (- Fein'y) (2.5
4B4E? sin® %

when only terms up to order M% are considered in 2.4 and the relationships B.1-

B.3 from Appendix B have been used. This is just the Mott cross section (Z—S)M

for electron scattering in a Coulomb field.
The other case worth investigating is that for large electron energies which
will be true for the present electron scattering experiment. At this relativistic

. . ! ! . .
limit, ;5”—; < 1 and % — % . The cross section in 2.1 becomes :



do _ mi E] 1

aa "~ 4%251+%sin2%@

‘ 2

My; (2.6)

Equation 2.4 can be rearranged using B.4-B.8 to give :

222 2 96 2 08
‘Mfz"ZZ TZ2a <0032 + ¢ sin? —)

m2E, E! sin® % 2 T oMZ T 2

Inserting this into 2.6 gives :

do _ (do 1|2 HE 2, o e
CO AR PR, S o

where pp is the magnetic moment of the fermion. Here purp = up, the Dirac

magnetic moment. The recoil factor:

2E. . , 0. E,
frec =1+ —MN SIH2 5 = ﬁ (28)
and ) ,
do o cos 5
— = — = — 1. 2.9
(dQ)M 41E2sin' & for (2.9)

Thus the cross section for the case of relativistic electrons includes two ad-
ditional terms. The first, f..., is due to the recoiling of the target and causes
the cross section to fall off with the scattered electron energy E!. The terms
in the square brackets contain separate magnetic and electrostatic contributions,
the magnetic contribution being the second additional term to the non-relavistic
case. For slow moving electrons 3 — 0, Q*~ 0 so the magnetic force is negligi-
ble, (Zef x B will be small) but in the relativistic limit where Q* can be large it
becomes significant.

Equation 2.7 also shows that an electron cannot interact with a neutral point-

like fermion which has zero charge and magnetic moment.

2.1.2 Scattering Electrons off Non-Pointlike Spin-% Parti-
cles

Protons and neutrons are both fermions with non-pointlike structure. Their mea-

sured magnetic moments are significantly different from their Dirac magnetic

moments due to currents arising from motions of the internal partons. This mea-

sured value was the first indication of the composite nature of the nucleon whose

7



magnetic moment is given by :

in = (Zn + bin) = (2.10)

tp = (Zp + Kp) M.

e
Q—MP’
where Z,, = 1,0 is the nucleon charge and k,, = 1.79,—1.91 is called the
anomalous magnetic moment?, i.e. the deviation from the Dirac magnetic mo-
ments. These are given in units of charge e and the nuclear magneton, uy,
respectively.

The target current J (eqn. 2.3) has to be altered to account for this internal
structure. For the most general distributions of charge and magnetisation, the

matrix elements for the nucleon current are [11] ,

J* =eu (P,) ’YuFl (Q2) + O'“Vql,FQ (QQ) + (]“Fg, + ’YM’Y5F4 + q,{y5F5] U (P)

(2.11)

where the nucleon form factors F; have been introduced. This expression can

2My

be simplified in the case of pure electromagnetic currents by considering the
conservation of parity, current and time reversal, which result in the form factors
with no @* dependence being zero, i.e. F3 = Fy = F5 = 0. F} (Q?) and F, (Q?)
are known as the Dirac and Pauli form factors respectively. Using equation 2.11
to calculate the transition matrix elements (eqn. 2.4) and deriving the cross

section for a nucleon with a general extended structure gives,

d d 2 2
5= (@) s {[r @)+ rrr @)+ 2 (m (@) + B (@) )

(2.12)

Comparing this to equation 2.7, we can deduce that the charge and magnetic

moment the virtual photon resolves is dependent on Q? :

Q2

7 = |F? (Q2)+4M]2VFQ2 (Q%) (2.13)
2
12— [F(Q) +F (622)]24;412V (2.14)

In the limit @ — 0 internal structure is no longer resolved; the photon

2Which is actually the anomalous part of the anomalous nucleon magnetic moment.



interacts with the nucleon as a whole and the cross section should then tend to
equation 2.7. In this limit equation 2.13, 2.14 and 2.10 show that the form factors

F; and F; tend to the charge Z and anomalous magnetic moment x respectively.

2.1.3 Nucleon Electric and Magnetic Form Factors

In many cases it is more useful to use the Sachs form factors [8], which can be

related directly to the charge and magnetisation distributions :

GEEFl—TFQ and GMEF1+F2 (215)

Gr (Q%) and Gy (Q?%) are known as the charge and magnetic form factors respec-

Q2

tively and 7 = ;7. Equation 2.12 can now be written in the Rosenbluth form
N

171,

G (@) +7G%, (@°)
147

do do 1 2 2 2 be

— = —= 2 t — 2.1
dQ (dQ>Mfrec{ + TGM (Q ) an 2 ( 6)
In the limit Q%> — 0 the electric and magnetic form factors are given by the
integrated charge and magnetic moment of the nucleon, in units of e and puy

respectively:

Gh=1 G =279
n—0 G =-179

There are then four electromagnetic nucleon form factors: the proton and
neutron electric and magnetic form factors, which will be represented by the
symbols G%,, G%,, G and G%,. It is sometimes useful to consider the nucleon as
one particle with two different isospin states. In this case isoscalar and isovector

form factors are used :

1 1
~ |Ghar + Gy ] and Gy = =[Gl ) — G ] (2.17)

G =
E,M 2 2

2.1.4 Rosenbluth Separation

The original method used to measure the nucleon form factors was to perform a

Rosenbluth separation. Equation 2.16 can be written more generally in the form,



do (do\ ™' 0,
- (E) = A(Q*) + B (Q*) tan® (2.18)

where (j—g)M

and A (Q?) and B (Q?) are the target structure functions (eqn. 2.16). This cross
section can be measured experimentally for a fixed @2, but for a range of 6,

. . - 20, . d do\ 1
by varying the beam energy and using Q* = 4E.E!sin® %. Plotting ol (d—g)M
073 allows the structure functions to be determined from a straight

line fit. The electromagnetic form factors can then be separated from the two

is the cross section for scattering off a pointlike particle (eqn. 2.5)

against tan?

structure functions.

2.1.5 Mean Squared Radii

Further nuclear structure information can be gained by considering again the limit
Q? — 0. If the inverse Fourier transforms of equations 2.22-2.23 are expanded in
@Q? then the form factors can be expressed in terms of integral moments of the

charge or magnetisation radii (rf ,,):
)

2\ ~ /.0 _Q_2 2 Q_4 4 _
Gea (Q) = (rhu) c <1"E7M>—|—120 (o) — - (2.19)

with,
(ri) = /7“’”2/) (r)d*r and (rf;) = /r’“”u (r)d?r, fork =0,2,4, ...

Noting that Gpa (0) = (r} /), we get again that the form factors at Q? — 0
are equal to the integral of the charge or magnetisation distributions, i.e. Z or
pr. Taking the derivative of (2.19) with respect to @Q? and ignoring terms left at
order (J?, we find that the the second moment <r%’M>, which is also known as

the mean square radius, is given by,

4G
(i) = —6 < dc’;j”) . (2.20)
20

In this non-relativistic limit (r% ,,) is just the charge (magnetisation) weighted
mean square position of the constituents. These radii have been accurately mea-

sured and it was found that the proton charge and magnetic radii and the neutron

magnetic radii were very similar [12, 13, 14]:

10



= (0.86+0.06) fmn; (r%)? = (0.873 +0.011) fm

ASECIT

(r3)? = (0.86 £ 0.01) fm; (r3,)

In the case of the neutron squared charge radius, experiments have shown it
to be negative (i.e. the slope of G% versus Q? is positive at the origin). This
result coupled with the zero net charge of the neutron implies a distribution
with a central positive charge turning negative towards the surface. The most
accurate measurement [15] which involved scattering thermal neutrons on the
electron cloud of heavy atoms gave (r%) = — (0.113 £ 0.003 & 0.004) fm?.

This interpretation of (r%,) being due to a static charge distribution in the
neutron is still not certain. Using equation 2.15 to write equation 2.20 in terms

of the Dirac and Pauli form factors :
(de) B Fyr (0)
1Q7 ) gy A2

We see that there is a contribution from the anomalous magnetic moment (Fj (0)),

(i), = —6

which is known as the Foldy term [16] and arises as a relativistic correction asso-
ciated with the neutrons anomalous magnetic moment. Its contribution is known
(F3 (0) = k,) to be 0.127 fm* which is very close to the measured (r%) . Tt
would appear from this argument that the measured rest frame charge radius
arises mainly from this Foldy term and not a static charge distribution. However
using a valence quark model Isgur [17] showed that there is an additional con-
tribution to F7" that is not due to the intrinsic charge distribution and that this
term exactly cancels the Foldy term allowing the charge radius of the neutron to

be interpreted as due to a static charge distribution.

2.1.6 Charge and Magnetisation Distributions

To relate the electromagnetic form factors to the charge and magnetization dis-
tributions they must first be transformed into the Breit frame. This frame is de-
fined as having zero energy transfer and so the photon four-momentum is given
by ¢ = (O,Q) and Q? = ‘gf. For the case of electron-nucleon scattering this
is just the centre of mass frame. It was shown by Sachs [8] that the electro-
magnetic current in the Breit frame can be separated into electric and magnetic

contributions,

11



(@) = Ze(Gr(d), (e xa) Gu (2)) (2:21)

with o the Pauli matrices. Comparing equation 2.21 to the classical current

density in r space,

T (r) = (ep (1), x vp(r))

leads to the interpretation of the electromagnetic form factors in the Breit frame,
as the Fourier transforms of the distributions of charge and magnetisation in

configuration space.

p(r) = E/GE (¢°) e "md’q (2.22)

p(r) = /GM (¢°) e *d’q (2.23)

An added complication to extracting the true charge and magnetisation distri-
butions for a static nucleon arises from relativistic transforms between the Breit
frame and rest frame of the nucleon. In fact a precise relativistic relationship
between the Sachs form factors measured by electron scattering at finite Q? and
the rest frame charge and magnetisation distributions does not exist [18]. This
has two main reasons: first the transition densities between composite states of
different momenta differ from the static densities in the rest frame; second the
Lorentz boost of a composite system into a different frame depends on the in-
teraction of its constituents. Different models of nucleon structure use different
inversion procedures to account for this relativistic behaviour. Each is based on a
Lorentz contraction of Q% to account for the difference in probed distance scales
for the rest and Breit frames, due to the Lorentz contraction of the interacting

wave packet (photon wavelength) as suggested by Licht and Pagnamenta [19],

F@)=0-n""F (&
AN
here 7 is defined as above, F, is the form factor before a relativistic correction
and n is the number of particles in a cluster (nucleon). The choice of n relates to
the model of nucleon structure being used.

Thus if the electromagnetic form factors of the nucleon are measured experi-
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Figure 2.2: The neutron charge distribution from polarised [20] (full line) and the
unpolarised [21] (dashed line) G, data.

mentally as a function of %, the charge and magnetisation distributions of the
nucleon may be determined. Figure 2.2, shows the neutron charge distribution
using fits for both polarised and unpolarised experimental data, (sec. 3), using a

non-relativistic transform.

2.2 Electron-Deuteron Scattering

Measuring proton form factors is relatively straightforward due to the existence
of free proton targets e.g. liquid hydrogen. A complication to measuring the
neutron form factors is the lack of a free target. Most previous experiments have
used a deuteron target as a source of neutrons. As a result measurements of the
neutron form factors rely on a knowledge of deuteron structure. This section will

briefly show how the free nucleon form factors relate to the deuteron.

2.2.1 Elastic Scattering

A summary of well known integral deuteron properties are shown below :

Mass 1875.61339 <M§V)2
Binding Energy 2.224575 MeV
Spin parity 1t
Isospin 0
Quadrupole Moment 0.28590 fm?
Magnetic Moment 0.857406 pn

13



These properties restrict the deuteron ground state wave-function to be a com-
bination of 3S; and D, states with wave functions u (r) and w (r) respectively.
The relative contributions of the two states (the amplitude of u and w) can be
found by considering the deuteron magnetic and quadrupole moments. These
wave functions are sensitive to the choice of the nucleon-nucleon potential (e.g.
[22, 23, 24]), and as we see later this uncertainty in the wave function can lead
to large systematic errors when extracting G% from electron-deuteron scattering
data.

For electron-deuteron elastic scattering the cross section can be written similar
to equations 2.16, and 2.18, showing that a Rosenbluth separation can be used
to obtain the structure functions, A (Q?) and B (Q?) [25]:
do do 9 9 5 O
ol (dQ>M0tt{A(Q)+B(Q)tan 2} (2.24)

Clearly the deuteron, which is a composite system containing a proton and
neutron is going to have different structure functions from individual nucleons.
These structure functions are composed of three form factors instead of two,
which is a result of it being a spin-1 particle. These form factors are known as
charge monopole(G(), charge quadrupole(Gg) and magnetic dipole(G) and are
functions of @2 only. They are related to the structure functions through [26],

8 2
A = Go+gnGo+3nGy
1
B = 577(1+77)G?w

ith n = -2— playi imilar role to 7 = -2 in elect 1 tteri
with n = 777 playing a similar role to 7 = 77— in electron-nucleon scattering,
where Mp is the mass of the deuteron.

The deuteron form factors are then related to the nucleon isoscalar form fac-
tors of equation 2.17, and the deuteron wave-function [27] in the Non-Relativistic

Impulse Approximation(NRIA)? by:

3The impulse approximation neglects the effects of final-state interactions (FSI), isobaric and
meson exchange currents (IC, MEC) etc. This is generally known as the Plane Wave Impulse
Approximation (PWIA) which assumes both initial and final electrons are plane-wave states.
The NRIA approximation is reasonable for Q? < 1 where relativistic corrections give small
contributions[21]. There is also the Distorted-Wave Impulse Approximation which attempts to
correct, for FSI, MEC etc.

14



Go = 2G3Cq(q)
M
Gu = 31> (2GHCs (0) + GECL(0)
The functions C'(g) are structure integrals of the deuteron s- and d- state
wave functions, u (r) and w (r) respectively. They are given by the Fourier-Bessel
transforms of combinations of the spatial wave functions into momentum space.

Explicitly,

N

N——"
2
S

Ce = [ [0+ w0 (%
Co = 3_\/51 /w (r) [u (r) — gw (7“)] J2 (%) dr

2
o = 2ol (2) n (D)
Cs = /{zﬂ(r)—%w? (r)] o () ar

+ g/w(r) u(r)+§w(r)] J2 (%) dr

These equations show that G¢ is just given by a convolution of the proton

and neutron charge structure (form factors) with the deuteron wave function, Cg
The quadrupole form factor is dependent on the D-state wave function and
would be zero without the D-state component (w (r) = 0), as for the predicted
zero quadrupole moment for a pure S-state deuteron. GG may be considered as a
naive charge distribution which is corrected by G¢ for the effect of tensor forces
between the states of different angular momentum (i.e. S,D) to give the overall
charge contribution to the cross-section.
The magnetic dipole form factor has a similar simple interpretation to G¢ in
the case of a pure S-state deuteron, being a convolution of the the sum of the
nucleon magnetic form factors and the deuteron wave function. Again this has

to be adjusted to account for the D-state contribution and tensor forces.
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Figure 2.3: Schematic of quasi-elastic scattering, the momentum of the virtual
photon is transferred to the struck nucleon only. The momentum of the rest of
the nucleus is unchanged.

2.2.2 Quasi-Elastic Scattering

Quasi-elastic scattering is characterised by a virtual photon interacting with and
ejecting one of the nucleons inside a nucleus, with the rest of the nucleus acting
as a spectator. The struck nucleon will have an initial Fermi momentum p . inside
the nucleus with the other nucleon having the opposite to conserve momentum
(fig. 2.3). In this approximation much of the physics simplifies to scattering from
a free nucleon, particularly when the nucleon Fermi momentum is low compared
to that of the virtual photon.

The two-fold differential cross-section for free electron-nucleon scattering (fig.
2.4) can be written in terms of the virtual photon density matrix p, and structure
functions f. The matrix p, has elements that are functions of the scattered electron
kinematics, while the structure functions are related to the nucleon charge and

current. The cross section is [28] :

Sfree [ f f f f ] é
c\p + P +p + p where ¢
lQe free 0 LJL TJ)T LT JLT TTJ)TT 6 2Q4 Ee

and the the subscripts L and T refer to the longitudinal and transverse com-
ponents respectively. From Appendix C, we have f;, = G%, fr = —27G%, |
frr = frr = 0, and substituting for the virtual photon density matrix, (eqn.
C.1), this equation reduces to equation 2.16.

The general five-fold (the extra nucleon gives a further 3 degrees of freedom)
cross section for quasi-elastic scattering from a nucleon in a deuteron (as shown
in fig. 2.3) is,

16



SCATTERING PLANE

Figure 2.4: Free Scattering. The scattering plane is defined by the incoming and
scattered electron. z, = @; Y, = g X pe and z, = Y, X Zg The (gn,gn,gn) frame
has the same axes directions. The orientation angles 6 and ¢r of the target

polarisation PT are shown with respect to the virtual photon momentum and the
scattering frame.

do

———e— = S0 = cpr.fr + prfr 4 prrfircos or + prr frr cos 2¢g] (2.26)
A0, d0CH

where the structure functions now have deuteron structure terms as well as the
nucleon form factors and ¢p is the angle between the electron scattering plane
and the reaction plane defined by the two nucleons in the final state (fig. 2.5).

For the Plane-Wave Born Approximation® (PWBA), with a plane-wave final state

CM
p5,

becomes :

) and a pure S-state deuteron |¢4), Arenhével [28] showed the cross section

do 2 2 2 2 2 (0,2 1 -9
(m)BOTH = SO = 3ca |:4MNPLCE' + ngQ ( CM + 2. CM)

1 [ pSM
1 : 2.97
RV iy (2.27)

5 =aGh + BGh: %y =aGh, + BGY; My = oGk, + BGY, (2.28)

4The Plane-Wave Born Approximation combines the Born approximation : the electron
exchanges one-photon in the scattering process; with the PWIA.
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~"SCATTERING PLANE

REACTION PLANE CM

Figure 2.5: Quasi-elastic scattering. The scattering plane is defined by the in-

coming and scattered electron. The two frames for the polarisation are definded

S~ o . _~CM.  _ ~CM _ ~
asgq—g,gq—gxgeandgq—g ng,andnowgn—gnp,gn—gnp X q and

z, =y %z, Thereaction plane is defined by the two nucleons in their centre-of-
momentum frame. The orientation angles #; and ¢ of the deuteron polarisation
are shown with respect to the virtual photon momentum and scattering plane.

np 2

1 1
and oo = <QCM — —QCM | ¢d> ; 8= <BS;M + QQCM | wd>

Again the f;r and frpr structure functions are zero and the cross section is
independent of ¢r. At the quasi-elastic peak 6,, = 0(proton), m(neutron) and
Bf}f‘/f + £¢“M = 0 (-proton,+neutron), where ng is the CM momentum of the
struck nucleon. So either the amplitude a or g tend to zero for the case of
scattering on the neutron or proton respectively. The quasi-elastic scattering

cross section [28] is then,

2

1
CM CM __
<Bnp + 54 —0|¢d>
(2.2)
2

is the probability of either the proton or neutron

do quast quasi do 212
<dEngenggw ) =% = <dQe> e @

Born

where [{(pC & 2 = 0 | )
having the same momentum direction in the final state as the virtual photon,

which is again just the quasi-elastic condition: 6,, = 0, 7. In general the ejected
nucleon will have a momentum direction differing slightly from that of the virtual

photon, for scattering sufficiently close to the quasi elastic peak, [(0 | ¢4) |2 may be
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effectively replaced by the momentum density distribution of the struck nucleon

inside the deuteron, <p <Bf) = ‘<Qf | ¢d>‘2>.

2.3 Polarised electron scattering

All the previous cross sections have been averaged over the initial and summed
over the final spin states of the electron and target. However with recent ad-
vances in polarised beam and target technologies, investigation of spin dependent
electron scattering has become experimentally feasible. Such experiments have
become the favoured method for measuring the nucleon form factors, since for
quasi-elastic scattering the knowledge of the nuclear wave function is not so im-
portant if ratios related to polarisation states, where the nuclear structure effects

cancel to first order, are used.

2.3.1 Spin Dependent Free Electron-Nucleon Scattering
Polarised beam and target

The spin averaged cross section of equation 2.25 can be generalised in the one-
photon exchange approximation to account for a longitudinally polarised electron

beam and nucleon target with polarisation vector PT (fig. 2.4),

dO’ pol
(dQ ) = clprfr + prfr + prrfur + prrfrr + P (pprfrr + 07 fr)]
e/ free
(2.30)

where h, P, are the helicity and degree of longitudinal polarisation. The addi-
tional spin dependent structure functions are given by fi, = —\/ﬁﬁG Gy and
fr = 27Q*G%,. For experimental purposes it is convenient to write this cross
section in terms of the electron-nucleon scattering asymmetries A, 5 . These are

beam helicity-flip asymmetries of the cross section :

pol
( do ) = §/7ee (h, P) = SI™ (1 + hP.A,y - P") (2.31)
dQB free
giving,
1
A% = —— _[gfree (b, PT) — §/ree (—p, PT 2.32
eN Qth:Sgree |: ( Iz) ( Iz)] ( )
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which can be experimentally determined by aligning the target polarisation along
the x axes, which are defined by the virtual photon momentum. A? is the
asymmetry when the polarisation is aligned along the virtual photon direction
and A when the polarisation is perpendicular to the virtual photon and parallel
(perpendicular) to the scattering plane. Comparison with equation 2.30 allows

the components of A,y to be given in terms of the electromagnetic form factors :

2PILTGEGM
Ty =— AV =05 AZy =
eN prG% + 21pr G2, TN eN

279 Gy

2.33
pr.G% + 27 prG?, (2.33)

For comparison with the Rosenbluth unpolarised cross section (eqn. 2.16)
the full spin dependent cross section in terms of the spin averaged, R,, and spin

dependent R,, nuclear response functions [29] is,

do )pol < do ) . .
= frec Run + hPeP R ol
(dQe dQe Mott [ g ]

free

Gy (@) +7G3, (@Q°) e
Ryn = [ E T M ] +27G%, (QQ)tan2§
e 1 93 1 .
R, = 2tan’ ) T\/l g + tan? EG?M cos fr + 4/ H——TGEGM sin O cos ¢T]

where 67 and ¢r give the orientation of the target spin with respect to ¢g. The
dependence of the polarised cross section on G is then greatest when the nucleon
spin is in the scattering plane, ¢ = 0,7 and perpendicular to the virtual photon,
0r = 5. This can also be seen from A7y (eqn. 2.33)which requires the same
orientation of the nucleon spin.

Polarised beam and unpolarised target

If a polarised beam is incident on an unpolarised target the virtual photon will
transfer spin polarisation to the recoiling nucleon. The polarisation of the nu-
cleon is related to the nucleon form factors in a similar manner as the scattering
asymmetries.

The recoil polarisation P is given by analogy with equation 2.30,
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ﬁ
I

c|prg, +pry,+prrg,, + prrg, ., + hPe (PILTQILT + PITQIT)]
= S (P, + hP.P') (2.34)

Q.

The z-axis of the polarisation frame is along the nucleon momentum and the y-axis
is normal to the reaction plane (fig. 2.4). The splitting into beam polarisation
dependent and independent parts separates the contribution from polarisation

transfer and induced polarisation respectively [30]. The only non-zero polarisation

structure functions, for elastic scattering, are ¢/ = —ﬂMLNGEG v and gf =
21‘{;2 G3,, implying the induced polarisation P, = 0 and
N

P:; = - ) z
prG% + 2TprG3, Y pr.G% + 21prG3,

(2.35)

Thus a measurement of the recoil polarisation components will also give informa-

tion on the nucleon form factors.

2.3.2 Quasi-Elastic Spin Dependent Electron-Nucleon Scat-

tering

Quasi-elastic scattering approximates scattering on a nucleon inside a nucleus by
elastic scattering with a nucleon which is not at rest. For polarised quasi-elastic
scattering the spin of the nucleon inside the nucleus must also be known to allow
investigation of the polarisation effects. In light nuclei such as D or 3He the
situation is relatively straightforward as both are largely in an S-state and so
nucleon angular momentum contributions to the nuclear spin are small. For S-
state ®* He the Pauli Principal constrains the proton spins to be anti-aligned. The
spin of the nucleus is then carried by the neutron and polarised > He can be used
as a polarised neutron target if the spin of the nucleus is known. In practice *He
is not a pure S-state and the protons do contribute to the net nuclear polarisation.
For an S-state deuteron the only way to have a net polarisation is with the
spins of the proton and neutron aligned i.e. vector polarised. So again the
neutron will have a polarisation that is the same as the nucleus to first order.
Deviations of the neutron polarisation from the nuclear polarisation are much
easier to calculate for the deuteron compared to >He, as the former is relatively
weakly bound and the two-body calculations are simpler than three-body.

For the case of quasi-elastic scattering on a deuteron target (fig. 2.5) the
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general spin dependent cross section can be written as,

d pol
(m) S [L4 hPA + PLAY 4 PAAT 4 PEAT 4 P, (PAY, + PEAT,)]
e € np

= S (h, P, PY)

where the beam, target and beam-target, vector and tensor asymmetries are
defined by,

1
A = 555 [S(1,0,0) = S(=h,0,0)

1

1
AL = Spgg 15 (0. PL P =5 (0,21 P)]

AT - S (h, P!, P§) = S (=h, P{, PY)]

|
4\/§hPngSO

qZ[S(h,—Pld,PZd) _S(_ha_Pldapg)]

and Sy is given by eqn. 2.26, Pfo are the deuteron spin orientation parameters
which are related to the vector and tensor polarisations.
For the Born approximation, the cross section simplifies as A, = A} = AT, =

0. In addition for an S-state vector polarised deuteron P? = \/gPZ and P§ =

\/ngz = 0, where P, is the magnitude of the deuteron vector polarisation and
P,, the tensor polarisation. These relations mean that there is no change in the
cross section if either the beam or target are unpolarised. The only remaining

asymmetry AY, reduces to:

A;/d = = [S (ha Pz) - S(_ha Pz) - [S (ha _Pz) - S(_h’a _Pz)”
4\/2hP,P,5,
_ ot (S (h, P,) — S (—h, P,)] (2.36)
2,/2hP,P,S,

2

_4\/§p’TC]2V[ cos O + \/ Q> My ply +Ci +* Cag sin O cos or
6M2prCh + pr@Q? [°CR, + 2'CR)]
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where the ¢ terms (eqn. 2.28) contain the nucleon form factors and the deuteron
wave-function. As explained in section 2.2.2 the deuteron wave-function will
factor out of the ¢ terms in the quasi elastic limit (6, = 0, 7). The wave-function
will then cancel in AY, which will be independent of the NN potential as a result.
In terms of the form factors, G%(ﬁ&[ for 0,, = 0(r), i.e. scattering off a proton

(neutron), AY, is now given by,

2 [pépG%w cos O + 2v/27p 7 G Gy sin O cos ng]

AV =
ed 3 pLGE + 21prGYy

(2.38)

For the case of deuteron polarisation directed perpendicular to the virtual photon
direction, in the scattering plane i.e. 0r = 7,97 = 0,7, AV, ~ A%, | the beam
target vector asymmetry reduces to the free eN asymmetry. The cross section is

now given by,
S (h,P,) =S (1 + hPeAXdPZ)

Polarised beam and unpolarised target

Similar to equation 2.34 the polarisation components can be written, separating

out the electron polarisation dependent part :

d*o
————— P =5, (P, + hP,P'
dEaq,docy = = S0 (Lo T hEL)
The polarisation P is given in the centre-of-momentum frame of the two nu-
cleons, with the z-axis along the momentum of the struck nucleon, ng and the
y-axis parallel to ¢ x QS;V[, i.e. perpendicular to the reaction plane (fig. 2.5).
When neglecting final state interactions this equation simplifies as P, = 0 and

for the Born approximation, P, = 0. The remaining components are given by,

a’cqM
PLp/n) = W2 e (£ + 2! )
caq?

P, (p/n) = iQTO (£'¢+2- ' Cur)

The + is required by convention as the direction of the quantisation axis
(i.e an) will depend on whether a proton or neutron is hit. For the case of

quasi-elastic scattering the (g s again tend to the product of the wave function
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amplitude, |(0 | ¥4)|” and the nucleon form factors. |[(0 | ¥4)|* then factors out of
the polarisation components, as it also factors out of the unpolarised cross section
S, (sec. 2.2.2), so that the recoil polarisation components are the same as for free
scattering equation 2.35.

When there is a deviation from pure quasi-elastic scattering, the polarisation
frames (z,, Y4, 2,) and (2, Yn, 2,) no longer coincide (fig. 2.5). Therefore a rota-
tion has to be performed to give the components in the (z,,y,, 2,) frame where
the simple relationships to the nucleon form factors apply. In the following the
polarisation of the neutron is denoted P = (P,, P,, P,) . The superscripts ¢ and
n are used to indicate whether the polarisation vector is defined in the frame with

either the z-axis along the virtual photon or neutron directions respectively i.e
P%or P" (fig. 2.5).
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Chapter 3

Previous Form Factor

Measurements

3.1 G% Measurements

3.1.1 Unpolarised Experiments

The original parameterisation for a non-zero G% (Q?) was derived by Galster et
al [31] from measurements of the electron-deuteron elastic cross-section at DESY
(eqn. 2.24). For measurements with 6, < 15° the structure function B (Q?) con-
tributes less than 0.1% to the cross-section and so the measurement essentially
gives structure function A (Q?), which is dependent on the four nucleon electro-
magnetic form factors and the deuteron wave function (sec. 2.2.1). Galster et al
used a fit to the experimental G%, data and assumed form factor scaling' for G,
and G?%,, then fitted the A (Q?) data for a selection of deuteron wave functions
using the parameterisation : G% (Q?) = —£25GY (Q?) with free parameter p.

(1+p7)
The best fit was found with the deuteron wave functions of Feshbach-Lomon [32]

and p=>5.6. Figure 3.1 shows the Galster fits for different wave functions, show-
ing a substantial systematic uncertainty in the parameterisation for the different
nuclear models.

Separate measurements of the electron-deuteron elastic cross-section at Saclay
[21] by Platchkov et al, led to another parameterisation of G’ (Q?). In this anal-

ysis corrections were made to A (Q?) to account for effects out with the impulse

!'Form factor scaling assumes the same shape for the electromagnetic form factors, with the
magnetic form factors scaled by the nucleon magnetic moment. This scaling works well at low
Q? for G%’M and G}, but does not apply to G'%.
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Figure 3.1: G% (Q?) extracted from fits to A (Q?*) data by Galster et al. The
three lines show the results using the deuteron wave functions of Feshbach-
Lomon|32](p=5.6), Hamada-Johnstone|22|(p=10.7) and McGee|33](p=19.7) re-
spectively.

approximation, specifically relativistic corrections and meson exchange currents.
To test the sensitivity of G7 (Q?) to theoretical models, a series of deuteron wave
functions, distinguished by the form of the nucleon-nucleon potential, were used.
An additional parameter a, was added to the parameterisation of Galster et al,
which allowed a variation of the mean charge radius (i.e. the slope at Q? = 0

sec. 2.1.5) 1 G, (Q%) = 125G p (Q%) *. Figure 3.2, shows the two-parameter fits

(% ~ 1) for a selection of nucleon-nucleon potentials. The result shows a large
sensitivity to the nucleon-nucleon potential, so again these parameterisations are

very model dependent. Platchkov et al point out that only the Paris and RSC
potential fits are consistent with the measured mean charge radius.

More recently Schiavilla and Sick [34] extracted G’ from the deuteron quadrupole
form factor Gg. They determined G (Q2) from a fit to the electron-deuteron
elastic scattering world data, using “flexible parameterisations” for the three
deuteron form factors. This ngp (Q2) was compared to a theoretical calculation
Gg‘ (QZ), which was given by the average of five independent calculations that
initially used the Galster parameterisation for G% (Q?). The theoretical calcula-
tion G was then adjusted by altering G until it agreed with G;”. The resulting

data for G, are shown in figure 3.3; the error bars include both the systematic

2Gp (Q?) is known as the dipole form factor : Gp (Q?) = #, with m2, = 0.71. The
149

D
dipole form factor gives a good approximation to the proton electric form factor and when
scaled by the their magnetic moments it also fits the nucleon magnetic form factors.
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Figure 3.3: G7% extracted by Schiavilla and Sick using the deuteron quadrupole
form factor.

errors from the spread of theoretical predictions and the experimental uncertainty
from the G, (QQ) fit. This data agrees well with the parameterisation of Gal-
ster et al, but is systematically higher than the preferred parameterisation of

Platchkov et al, which used the Paris potential for the deuteron wave function.

3.1.2 Double Polarisation Experiments

More recent experiments at MIT-Bates [35], NIKHEF [36|and MAMI [37][20],
have taken advantage of polarised electron beams to use polarisation observables
to extract information on G%. These also require either a polarised target as in

the 3He (?, e'n) pp reaction, or alternatively information on the polarisation of
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neutrons scattered from unpolarised deuterium in the D (€,€'7) p polarisation
transfer reaction, as discussed in section 2.3.2. Although big advances have been
made in the theoretical description of two and three nucleon systems, the nuclear
wave function is still not known exactly. Polarisation observables tend to show
less dependence on the nuclear wave function than cross sections and so are able
to circumvent the systematic uncertainties associated with the choice of nucleon-

nucleon potential models.

G'L through Polarisation Transfer

There have been three previous G}, measurements using the polarisation trans-

2
fer technique. The corresponding Q? points were: 0.255 (%) at MIT [35],

2
0.15 (Ge\/) [20] and 0.34 (%) [37] at MAMI. The technique for calculat-
ing G% through the D (€, €/ 7) p reaction was suggested by Arnold, Carson and
Gross [38]|, who used the results of [39] which showed the spatial components

(Pq ) of the recoil neutron polarisation for free electron-neutron scattering to

be:
. 2¢/7 (1 +7).tan (%) GLGY,
Fo=—hFe (Go)? +7(G3)? (142 (1 +7) tan? (%)) (3.1)
PI=0 (3.2)
Pt —hP, 27'\/1 + 74 (1 +7)° tan? (%).tan (%) EG%) 33)
(GR)” +7(GR)" (14 2(1+7) tan® ()

This is an equivalent result to that derived in section 2.3 and the coordinate
system is the same as for figure 2.4, neutron frame.

For quasi-elastic scattering these results apply in the case of the Born approx-
imation and parallel kinematics where the neutron is detected along the direction
of the momentum transfer ¢, as shown in section 2.3.2. In this case, where the ef-
fect of final state interactions is ignored, the proton effectively acts as a spectator

and equations 3.1-3.3 imply,
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B ! G (3.4)

P \/T+T(1+T)tan2(%e)‘G§\L/f

A measurement of this polarisation ratio with the relevant kinematical vari-
ables and the previous experimental determination of G7%, will then yield a value
for G, independent of any model used for the deuteron wave function. Measuring
the polarisation is described in detail in section 4.5.

In practice the finite phase space of the neutron and electron detector systems
result in the measured neutrons deviating slightly from parallel kinematics. The
polarisation ratio will in this case be subject to effects from the Fermi motion of
the neutron bound in deuterium. Essentially this causes the polarisation axes to
be rotated resulting in a deviation of the polarisation components from the free
scattering case, 7 — z!. Also the Born approximation does not fully describe the
response of the deuteron structure, particularly at low @? where the amplitude
of higher order corrections are greatly increased due to final state interactions
(FSI), meson exchange currents(MEC), isobaric currents(IC) and relativistic ef-

fects. However, a previous analysis [20] of G, using the full model of Arenhdovel,

2
suggests that these effects are likely to be small at Q% = 0.8 (%) , as they

2
are ~ 65,8% for Q% = 0.15,0.34 (%) respectively and will decrease further
with increasing %. Also, for the Fermi motion correction the average rotation
of the polarisation axes is smaller for increasing % due to the relatively high

momentum transfer compared with the Fermi momentum.

G through Polarised Beam and Target

A double polarised GZ measurement may also be realised by scattering polarised
electrons off a polarised neutron target where analogous expressions to equations
3.1 and 3.3 can be found for the electron-nucleon polarisation asymmetries [28|
A,y, replacing P, and P, with A?, and AZy respectively (sec. 2.3). The cross
section for the case of quasi elastic scattering can be written, with A, P, the elec-
tron beam helicity and polarisation respectively and P’ the neutron polarisation,
in the form (eqn. 2.31),

do _
aQ

where S is the unpolarised electron-nucleon cross-section given by equation 2.16

S (h,P) = So (L+hP.A,, - P")
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and the + indicates the helicity of the beam. The A_, components can then be
found by measuring the asymmetry with respect to beam helicity and aligning the

target polarisation parallel(z) or perpendicular(x) to the virtual photon direction

Tr,z __ )
Ae;L__

Again as there are no free neutron targets the polarised neutron must be bound
in a either D or *He and therefore corrections need to be applied to account for
the polarisation of the neutron not being exactly that of the target, which is the

polarisation measured in these experiments.

Deuterium target

There have been two previous G, measurements using polarised deuterium. The
corresponding Q? points were: (.21 (@)2 [36], and 0.495 (@)2 [40]. As has
been discussed in section 2.3.2, for a deuterium target the vector beam-target
asymmetry is measured, which is equivalent to the free beam-neutron asymmetry
A, for quasi-elastic scattering on the neutron in the Born approximation. As
for the recoil polarisation measurements higher order corrections need to be cal-
culated to account for nuclear effects out with the Born approximation i.e. FSI,
MEC etc, to correctly identify the free beam-nucleon asymmetry.

As shown in equation 2.33, A?, contains an interference term of the charge
and magnetic form factors which allows G’ to be extracted provided G%, is
known. In practice the actual value for G% has been extracted by reproducing
the measured AY, (63 =2, ¢4 =0) ~ AZy, using the full Arenhével model and
iterating the value of G'% until the comparison with the data is optimised. The
dependence of the resulting G on the deuteron model is more significant for
these polarised target measurements as only one component of AY, is measured.
In comparison the recoil polarisation methods measure the ratio of polarisation
components where the higher order corrections of the deuteron model cancel to
a greater degree. In the Hall A, JLAB Q% = 0.5 (%)2 measurement the
contribution of FSI, MEC, IC and relativistic effects was estimated to be about
13% [40], compared to 8% for Q* = 0.34 (%)2 recoil polarisation experiment
[20].
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3He target

There have been three previous G measurements using a polarised > He target,
the corresponding Q? points were: 0.385 (%)2 [41] and 0.67 (%)2 [42][43].
For a polarised ®*He target the two protons are predominantly in the S-state,
contributing a combined spin of zero. The polarisation is then carried to a high
degree by the neutron. Previous experiments using targets of this type have

measured the ratio of parallel and perpendicular asymmetries:

A:gn . Aen (QT = 7¢T = 0) 1 G%
0

) \/T+T(1+T)tan2%Gﬁ/f

This is the same relationship as used for the recoil polarisation experiments,
allowing a greater cancellation of the target nucleus structure. However, as there
is a greater contribution from FSI and MEC in the more tightly bound *He
nucleus larger, more complicated corrections are necessary to allow comparison
of the measured asymmetry ratio with the free nucleon result above.

The Q? = 0.385 (MY measurement [41] was corrected in the Faddeev

C
analysis of Golack et al [44] to account for the large FSI effects at low @2, the

2
result was a 55% increase in G%. The measurement at Q? = 0.67 (%) by
[42] has recently been combined with new data at the same Q? [43| and corrected
for FSI. Both data sets are consistent and the FSI correction resulted in a 3.4%

increase in G'g.

Results

The results of all previous double polarisation experiments are shown in figure
3.4. This includes the D(€, e/ )p data from Mainz [37, 20] and MIT-Bates [35];
the B(?, e'n)p data from NIKHEF [36] and JLAB [40]; the 3@(?, e'n)p data
from Mainz [42, 41, 44, 43]. Also shown are the Galster parameterisation and the

Platchkov parameterisation with the Paris nucleon-nucleon potential.

3.2  Measurements of G,

. — : . . an
A% X w o

In previous double polarisation GG experiments which measure the ratio &=, Gy,
M

has been approximated by the dipole form factor:
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Figure 3.4: G’ data from double polarisation experiments. From references (left
to right) [20, 36, 35, 37, 44, 40, 43, 42]|. The green markers are from * He experi-
ments and the blue from deuterium. Also shown are the Galster fit (black) and
Platchkov fit (red).

b= mGp = — (3.5)
(1+Z)
Recent, more accurate experimental measurements of G7%, allow it to be distin-
guished from the dipole form factor, this gives a more accurate input for evalu-
ating G'.

The majority of these experiments have involved measuring the ratio of quasi-

elastic neutron to proton cross sections R = Z((Zil,zg in the D (e,e’N) reaction
[45, 46, 41, 47]. To first order this ratio is independent of nuclear binding effects
as can be seen from the quasi-elastic cross section derived earlier (eqn. 2.29).
Higher order effects can be calculated and corrected for to give the ratio in terms
of the PWIA, where it is the same as for free electron-nucleon scattering. The
well known elastic electron proton cross section is then used to extract the elas-
tic neutron cross section, which is essentially given by G7%, as G7% is very small
in comparison. However, there have been significant discrepancies between the
different experimental results. The ELSA results [47] give G}, values 10-15%
higher than the other results. This discrepancy is due to the measurement of
the neutron detection efficiency 7, which is crucial in such a measurement as it
is proportional to R. The ELSA experiment measured 7, on site through the
tagged p (7, 7)) n reaction, whereas the MAMI [46, 14| and NIKHEF [45] experi-

ments transported their neutron detector to the PSI neutron beam facility which
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Figure 3.5: Ratio of the neutron magnetic form factor with the dipole form factor.
Red triangles are from D (e, e’ N) ratio Mainz/PSI [46, 14|, green squares from
ELSA D (e,e'N) [47], blue circles are from 3}72(?,6) [48, 49] measurements
and green triangles from D (e, ¢’ N) Rosenbluth experiments [50]. The fit is the
constant fraction parameterisation of [14].

employed the p (n, p) n reaction. The latter method is considered to give the more
reliable results.

The transverse asymmetry Ap (= AZy in eqn. 2.32) of SHe (€,e) quasi-
elastic scattering has been used to determine G%, with no dependence on 7,
[48, 49]. As for the G SHe (€, e) experiments, this technique uses the 3He as
a polarised neutron target with the proton spins cancelling, thus the transverse
asymmetry arises from scattering on the polarised neutron and is dominated by
G-

Additional high * measurements have been made [50] using a Rosenbluth
separation (sec. 2.1.4). Though the error bars are large they suggest that G%,
falls away from the dipole form factor at Q? > 3 (@ 2.

The results from these experiments are shown in figure 3.5 with the result of
the continued fraction parameterisation of Kubon et al [14]. The ELSA points
are in disagreement with the other measurements and haven’t been included in
the fit. The fit shows G%, deviating from the dipole form factor by up to 5%

2
for Q% < 1 (%) . Above this the quality of the data is poor and so the fit
should not be taken too seriously. This parameterisation will be used in the final

analysis to extract G'.
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Chapter 4
The D(¥, e 7)p Experiment

The 3-Spectrometer Facility (A1 Hall) [51], at the Mainz Microtron (MAMI), has
been used to carry out the D (€,e7)p experiment. The use of a high resolu-
tion magnetic spectrometer gave a higher precision measurement of the scattered
electron momentum than had been achieved in previous Mainz G experiments,
which used a lead-glass calorimeter. This lead to a reduced systematic error in
the virtual photon momentum and @Q? and in addition the spectrometer gave a
much cleaner separation of quasi-elastic scattering from non-elastic e-n processes
and general background in the experimental hall.

The experiment measured the neutron electric form factor at Q? = 0.3,0.6
and 0.8 (%)2, (the two lower @Q* data have been analysed separately [52]).

For the Q? = 0.8 (%)2 data an 883 MeV beam with a current of ~ 10 A was
incident on a 5 cm thick liquid deuterium target.

Figure 4.2, shows the experimental layout. The exclusive (€,e'7) reaction
was tagged by detecting electrons and neutrons in coincidence. The electrons
were momentum analysed in Spectrometer A (B and C were not used), while
the neutrons were detected in a purpose built polarimeter which measured their
scattering angles, time of flight and scattering asymmetries.

The electron scattering angle and incident energy determined the reaction Q?,
with the polarimeter centred along the direction of the virtual photon momentum
to intercept as many of the quasi-elastically scattered neutrons as possible. The
Fermi momentum of the neutron inside the deuteron will result in a deviation of
the neutron recoil angle from that of the virtual photon, but the polarimeter is
large enough to detect even neutrons which initially had high Fermi momenta.

When deciding on the optimum kinematics it is also worth noting that the im-
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Figure 4.1: Layout of MAMI, showing the 3 racetrack microtrons (2 in RTM2 and
1 in RTM3) and the experimental halls A1, A2, A4, X1. The HDSM (Harmonic
Double Sided Microtron) section is not curently operational, but will eventually

allow an increase in beam energy to 1.5 GeV in 2005.
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Figure 4.2: The A1 hall setup for the Q? = 0.8 (%) , D(€, e/ )p experiment.
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portant x-component of the recoil neutron polarisation grows with increasing 6,
(neutron angle with respect to incident electron). However the overall figure of
merit (event rate)? x (polarisation) decreases with increasing 6,, as the scattering
cross section plummets as #, increases. To maximise the figure of merit, it was
therefore desirable to place the polarimeter at as forward an angle as could be
allowed by the hall geometry and fix the spectrometer angle to complement it.
To achieve as small a @, as possible for a given Q? we had to operate at maximum
beam energy. The set-up for the Q? = 0.8 (%)2 point required the detection
of 453 MeV electrons at an angle of 90° to the beam direction. The comple-
mentary neutrons with energy 427 MeV were then detected at 27° on the other
side of the beam-line. Since 883 MeV is the absolute maximum beam energy for
MAMI and ~ 27° the minimum angle the polarimeter can be positioned with
respect to the beamline, Q% = 0.8 (%)2 is the maximum value obtainable for

the D(@, e 7)p experiment at MAMI.

4.1 The Polarised Electron Beam

Polarised electron source

Polarised electrons [53] were obtained through photoelectron emission from the
(ITI-V)-semiconductor crystal, GaAsP. A Ti:Sapphire laser was used to provide
the polarised photons, as the wavelength of around 830 nm matches the energy
gap between the valence and conduction bands of the GaAsP crystal. The linearly
polarised beam from the laser was transformed to circularly polarised by a Pockel
cell which acted as a quarter-wave plate. The degree of circular polarisation
was better than 99.5% and the helicity was flipped by switching the polarity of
the Pockel cell. Helicity flipping is important in the experiment to eliminate
systematic instrumental asymmetries and the source was operated so that there
was a 50% chance of a helicity flip each second.

This system provides a source of electrons longitudinally polarised to at least

75%, although during our beam-time polarisations of up to 85% were observed.

Electron Accelerator

MAMI-B is a continuous-wave electron accelerator [54|, which is hugely advan-
tageous compared to previous pulsed beam linear accelerators. In coincidence

experiments such as (e,e’n), the signal to random background ratio is propor-
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tional to the duty factor. For a given mean beam current the duty factor, defined
as the ratio of the duration of an electron pulse to the time difference between
two consecutive pulses, determines the instantaneous counting rates in the detec-
tor systems. For a continuous-wave machine, the duty factor is 100%, while for
the best pulsed LINAC beams it is typically ~ 1%, giving MAMI a factor 100
increase in the signal-to-random ratio.

To achieve continuous-wave operation MAMI uses low voltage gradients in
its linear accelerating sections and thus many recirculations, accomplished in 3
consecutive racetrack microtrons, are necessary to achieve ~ 900 MeV. Figure
4.1 shows a schematic layout of the facility. A 3.5 MeV linear accelerator injects
electrons, to the first racetrack, RTM1. In this first section the beam is acceler-
ated to 14.35 MeV after 18 re-circulations. In the second racetrack, RTM2, the
beam reaches 180 MeV after 51 re-circulations, before entering RTM3, where the
electrons gain 7.5 MeV each pass through the acceleration section. The beam can
then be extracted by a movable deflection system after an even number of circu-
lations, allowing electron energies E, (n) = (180.2 + 7.504n — 3.5.107°n? 4 0.16)
MeV, up to the maximum of 883 MeV allowed by the RTM3 magnets. Beams
from pA to 100 pA intensity, varied through focusing electrodes on the gun, may

be delivered to any one of five experimental halls.

4.2 Mpgller Polarimeter

The Mgller polarimeter used the asymmetry of @ + @ — e+ e scattering. For a
longitudinally polarised beam (Pg) incident on a longitudinally polarised target
(Pr) the cross-section in the centre-of-mass frame at scattering angle 6 is given

by :

do  do,
= a0 [1+ PrPgAyz(0)]
Where the unpolarised cross-section %2 and the analysing power Az (6) can

be calculated to high precision using QED. The +, is dependent on the beam
helicity, i.e. whether the beam polarisation is aligned parallel (+) or anti-parallel
(-) to the target polarisation. This allows measurement of a helicity dependent
asymmetry from which the beam polarisation can be derived, provided the target

polarisation is accurately known :
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The A1 Mpgller polarimeter contained a 6 pm thick magnetised iron foil. The
spins of the atomic electrons were aligned parallel to the beam direction using
a 4-Tesla superconducting solenoid, giving a target polarisation of 8.05%. A
quadrupole magnet focused the Mgller electrons through a collimator, which ac-
cepted azimuthal angles of £12° about the vertical scattering plane. Electrons
that passed through the collimator were then deflected in to a dipole field to hit
two lead glass detectors. The collimator, dipole field and detectors were carefully
configured so that only a Mgller electron pair gave a signal in both detectors.
Counting this coincidence signal for different beam helicities then allowed the
determination of the beam polarisation by using equation 4.1.

Figure 4.3 shows the beam polarisation as monitored by the Mgller polarimeter
during the 2001 G, beamtime. The polarisation increased with time which is a

typical aging phenomenon of GaAsP crystals.

4.3 Cryogenic Target

During the experiment both a liquid Hydrogen (LH2) and a liquid Deuterium
(LD2) target were employed. The Hydrogen target was required for calibration
purposes and the Deuterium for the D(€, e/7)p data-taking. A schematic of the

cryo-target is shown in figure 4.4. The beam was incident on a 5 cm long target
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Figure 4.5: Schematic diagram of Spectrometer A, Al Hall, Mainz. (Picture
H.Merkel).

cell containing LH2 or LD2. The scattering chamber was connected by a transfer
line shielded by liquid nitrogen, to a LH2 source which had been cooled to 21 K by
a Philips machine cryo-generator, which operates at a power of approximately 60
W [55]. This then cooled the liquid target in a heat exchanger. The target liquid
was circulated through the cell and the beam position was continuously rastered,
with an amplitude of 6 mm, to minimise boiling due to localised heating by the

beam.

4.4 Electron Spectrometer

The Al hall at MAMI contains 3 high resolution magnetic spectrometers (fig.
4.5), which can be used for the detection of both positively and negatively charged

particles [51]. Magnetic spectrometers rely on measuring the bend radius of
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Figure 4.6: Layout of spectrometer magnets.

charged particles in a magnetic field to determine the particle momentum. The
Al spectrometers were developed to take advantage of the high duty-factor elec-
tron beam for investigations of hadronic and nuclear structure. Due to the small
cross sections intrinsic with electron scattering reactions this requires that the
spectrometers have as large a solid angle and momentum acceptance as possible
while still providing a small momentum resolution (~ 107°). This in turn re-
quires that the particle track is measured across the focal plane to allow accurate
momentum reconstruction. A detector system consisting of high position reso-
lution wire chambers for tracking, fast plastic scintillation detectors for timing
resolution and a threshold Cerenkov gas detector for particle identification has
been employed to allow accurate event reconstruction.

For our experiment Spectrometer A was used to detect the scattered elec-
tron and reconstruct its four-momentum, thus giving an accurate measure of the

virtual photon momentum and the reaction Q2.

4.4.1 Spectrometer “A” Magnet Configuration

The layout of the magnets is shown in figure 4.6. It consists of an entrance
quadrupole(Q), followed by a sextupole(S) and two dipoles(D1,D2).

The quadrupole magnet defocuses the incident electrons in the dispersive
plane to allow higher momentum resolution. In addition it is used to reduce
high-order optical aberrations. The sextupole corrects for the larger second order
aberrations, allowing the particle track to be accurately reconstructed. Further

optical corrections are implemented in software using information from the focal-
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plane tracking detectors.

The dipoles are responsible for bending the track of the charged particle al-
lowing its momentum to be analysed. The homogeneity of the dipole field has
to be of the same order as the required momentum resolution (10~°). In Spec-
trometer A the dipoles can operate a maximum induction of 1.5T. The deviation
from a reference track (i.e. with known momentum) allows the determination of
the particle momentum. The reference track lies in the symmetry plane of the
spectrometer and is defined as the trajectory of a particle that emerges with mo-
mentum p, from the centre of the target through the centre of the spectrometer
acceptance.

The spectrometer is symmetric with respect to a mid-plane, assumed to be the
x-z plane, to which the magnetic field is perpendicular everywhere. The z axis is
defined by the reference particle trajectory and is the direction of its momentum.
The x-axis is then perpendicular to both the z axis and the magnetic field and the
y axis forms a right-handed coordinate frame with the other two. The trajectory
of any particle is described by its deviation from the reference particle in position
(x,y) at the focal plane, direction of the track and momentum (§ = (p — p,) /Po),

where p, is the momentum of the reference particle.

4.4.2 Focal-plane detector system

The spectrometer detector systems are used to measure the trajectory of the
particle after momentum analysis with an accuracy that permits the reconstruc-
tion of the reaction vertex, the particle momentum and the in-plane, out-of-plane
emission angles by tracing the particle trajectory back to the target. They are
also used to identify the type of charged particle being analysed. This informa-
tion can then be used, in the case of an electron, to accurately determine the
four-momentum of the virtual photon that is exchanged in the target and thus
the reaction Q2.

A diagram of the detectors is shown in figure 4.7. They consist of three main
components : four vertical drift chambers (VDCs) for tracking the electron to
allow the reconstruction of its momentum and reaction vertex. Two segmented
planes of plastic scintillation detectors provide a trigger signal with ~ 1 ns timing
resolution and particle identification. Threshold Cerenkov detectors allow the

separation of electrons from negatively charged pions.
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Figure 4.7: The focal-plane detector system for Spectrometer A.

Vertical Drift Chambers

Each drift chamber consists of four planes of VDCs, each constructed from several
hundred drift cells, with a single VDC plane shown schematically in figure 4.8
. The cells are confined by two cathode planes positioned 24 mm apart, which
typically sit at a high voltage of around 6 kV. The cell wires lie in a plane parallel
to the cathodes and alternates between signal and potential wires with diameters
15 and 50 pm respectively. The distance between each signal and potential wire is
2.5 mm. The VDC is filled with a mixture of 49.25% argon and 49.25% isobutane
with 1.5% ethanol to minimise aging.

A charged particle traversing the VDC (fig. 4.8) will ionise the gas molecules
and the electric field between the potential wires and cathode planes will then
cause the electrons to drift towards the wires ionising more molecules on the
way. The drift-time for the ionised electrons to reach the signal wires, with the
reference time coming from the scintillator detectors, is related to the distance
of the ionisation from the wire. The measurement of drift time and hence this
distance in consecutive cells of the VDC along the ionising track allows recon-
struction of the x-y hit coordinates. Successive drift chamber planes will each
yield an x-y position allowing reconstruction of the particle track. Knowledge
of the spectrometer magnets imaging properties then allow a calculation of the

particle momentum at the target as explained below.
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Figure 4.8: Diagram of a VDC layer, showing how different timing signals from
each wire can allow the track to be recreated. The reconstructed x-y position is
also shown.

Scintillation Detectors

The trigger planes are each comprised of 15 bars of plastic scintillator. The
first plane is 3 mm thick NE 102A, while the second is 10 mm thick NE Pilot
U. Photomultiplier tubes, placed at each end of a scintillator bar, collect the
scintillation light via plastic light guides. The second layer gives precise timing of
a particle hit in the focal-plane detection system and for this experiment provides
the start signal for the neutron polarimeter TDCs. The relative scintillation
intensity in each plane (indicative of the relative charged particle energy loss), is

characteristic of the incident particle and is used to aid particle identification.

Threshold Gas Cerenkov Detectors

Particles incident on the Cerenkov detectors pass through a 6 m? volume of Freon
114 (CF,Cl)y at atmospheric pressure. Electrons with an energy greater than 10
MeV will radiate Cerenkov photons in this gas, while charged pions would need an
energy of at least 2.7 GeV to produce Cerenkov photons. These photons are then
reflected by 2 x 6 spherical mirrors, each of area 40 x 50 ¢m, which are positioned
at the top of the spectrometer facing oncoming particles. The reflected light is
then caught by 2 rows of 6 light collection funnels (18.4 ¢cm diameter), which are
mounted on each side of the spectrometer in front of 5” photomultiplier tubes. A
coincident signal then in these photomultipliers filters out the negatively charged

pions, which do not produce Cerenkov light at the energies we are operating at,
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from the electron events with very high efficiency (99.98%).

Calibration

The purpose of the magnetic spectrometer is to reconstruct the position and
momentum of the scattered electron at the reaction vertex which in the target
reference frame is (pr,Or, ¢r, 21, yr, 2r). The spectrometer tracking detectors
(VDCs) measure the position and direction of the electron after it has traversed
the magnetic fields in the focal-plane frame (zp, yr, 2r, 0, o, dr). This experi-
ment mainly requires the scattered electron momentum (pr, 07, ¢r) which to first
order is related to the focal-plane coordinates by pr — xp, 07 — yr. However to
transform accurately back to the target frame requires a knowledge of the inverse
transfer matrix, (TMA).

In principle, elements of the TMA can be calculated directly from the known
magnetic optics, but in practice these complex calculations are largely avoided by
calibrating from well understood experimental data. Various values for pr can be
selected by taking data with different beam energies while keeping the spectrom-
eter at a fixed angle. fr and ¢r can be selected by using a sieve collimator in
front of the first magnet, each hole in the sieve corresponding to a known (6, ¢7)
bin and y; can be varied by using several separated sheets of target material. In

this way the TMA may be mapped empirically.

4.5 Measuring the Neutron Polarisation

The neutron polarimeter relies on the spin-orbit dependence (Vi,l-s) of the
nucleon-nucleon (or nucleus) interaction to produce an asymmetry in the az-
imuthal distribution of a scattered neutron. This asymmetry is directly related
to the polarisation of the neutron and is used to determine the ratio of polarisation

L

7 Which is required for the measurement, of G, (sec. 3.1.2).

components

4.5.1 Polarised Nucleon-Nucleon Scattering

Nucleon-nucleon scattering is in itself a very productive branch of nuclear physics,
being the major source of experimental input for determining semi-phenomenological
“realistic” nucleon-nucleon potentials. The density matrix formalism was intro-

duced by Wolfenstein and Ashkin to describe nucleon-nucleon scattering and is
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Figure 4.9: Neutron scattering in the first hydrocarbon scintillator wall of the
polarimeter. The npol coordinate system has z,,, through the centre of the first
wall, yppe is vertical and z,,, makes a right-handed coordinate system. The
incident neutron coordinate system (z,,¥n, 2,) is then a rotation giving the z,
axis along the neutron momentum as in figure 5.23.
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the basis for the subsequent discussion which relates the azimuthal asymmetry
to the incident neutron polarisation [56].
If a fraction of a beam of particles is in a pure quantum state the beam

expectation value of an operator A is
(4) = Tr (pA)

Where p is introduced as the density matrix and T'r (M) refers to the trace
of a matrix M. The differential cross section for the scattered nucleon with initial

and final momentum P, and B;% respectively, can then be expressed as:

oot )

d

Where p; and p,. are the incident and final-state density matrices and M (gn, Q; )
is the spin matrix whose elements are the scattering amplitudes in various final
spin states for fixed initial spin states. Equation 4.2 is just the standard proce-
dure of summing over the final states and averaging over the initial states. For
the case of a polarised incident nucleon beam and unpolarised target, the spin

matrix can be described by a two-by-two matrix of the form [57]:
M=a+bs-N

where s is the incident nucleon spin vector and /N a unit vector orthogonal to the
direction p, x p_;L, i.e perpendicular to the scattering plane'.

Substituting this into equation 4.2 gives a differential cross section of the form,
I=I1[14+aN-s]

where I, = |a?| + |b?| is the unpolarised cross section and « () = 2Re [ab*]
is defined as the analysing power of the reaction; both can be calculated from
phase-shift analysis and examples are shown in figure 4.10. The deviation from
azimuthal symmetry is then given by the term a/N - s, which is a product of the
analysing power and transverse polarisation.

The azimuthal angular distribution of the neutrons scattered in the first wall

of the polarimeter can therefore be described by [59],

'For the coordinate systems defined in figure 4.9, N = (sin ¢!, cos ¢!, 0).
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Figure 4.10: The analysing power (top) and differential cross-section (bottom)
for np scattering, from SAID [58] partial-wave analysis.
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Figure 4.11: Idealised ¢/, distribution showing the “up-down” asymmetry (blue
line).

o (0, ¢,) =00 (1+ Pecregs [P)'sing,, + P} cos ¢, ]) (4.3)

when the neutron polarisation is written with the beam polarisation factored
out, i.e. P, — P.P,. T, is the incoming energy of the neutron, #! and ¢/,
are the neutron scattering angles in the first wall, measured with respect to
the incident neutron and Py, P} are the transverse components of the neutron
polarisation in the coordinate system of the incoming neutron (fig. 4.9). P, is the
polarisation of the electron beam, o, is the polarisation independent cross section
and a,yr is the effective analysing power of the first wall. This is the analysing
power « (T,,0!) averaged over the angular acceptance of the polarimeter. Thus
by measuring the azimuthal distributions N (¢/,), of neutrons scattered in the
first wall, we may determine the transverse (x,y) components of the incident
neutron polarisation when s is known. If P} ~ 0 (sec. 3.1.2), the azimuthal
distribution is sinusoidal (fig. 4.11), so we can construct an asymmetry A, that

is proportional to P" ? :
N (¢p) = N (¢ + )
N (%) N (o + )

Determining P in this manner obviously requires an accurate knowledge of

A= Peaess (Tuby) P =

(4.4)

the electron beam polarisation and the effective analysing power of the neutron

polarimeter.

2N (¢),) is the number of neutrons with 0 < ¢!, < m and N (¢, + m) the number with
T < ¢y, < 2m.
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4.5.2 Spin Precession Technique

Although the electron polarisation may be measured using Moller polarimetry,
determining the effective analysing power of the neutron polarimeter is not so
straightforward. In principal a.r; could be calculated as the analysing power
ap (A) is well known for p(7,n')p. But the scintillator contains carbon as
well, a¢ (0) for 2C (7,n') X is unknown and not kinematically separable from
neutron-hydrogen scattering in the scintillator. It could be measured using a
neutron beam of known energy and polarisation, but even if the polarimeter was
calibrated at a neutron beam facility, the results would need to be corrected for
the effects of the quite different background radiations at the Mainz electron beam
facility. In addition we also require the longitudinal neutron polarisation (P)?3,
to determine G%. Previous Mainz D(€, e 7)p experiments [20, 37], overcame
these factors by using a spin precession technique first suggested in [38] and this
same technique has subsequently been used for this experiment.

For a neutron flight path L, through the field of the magnet, the spin will

precess through an angle of y:

20, 1
= — Bdl 4.
= / (4.5)

where B is the magnetic field and 3, the velocity of the neutron in units of c.

If the neutron spin is precessed so that P’ = 0 then the asymmetry in equation
4.4 will vanish ([ - s = 0 as the spin is in the direction of the neutron momen-
tum). At this point the precession angle will give the ratio of the transverse and

longitudinal components of the polarisation via a simple trigonometric relation:

n

t 0o = —— 4.6
n X, = (16)

Measuring the asymmetry (eqn. 4.4) as a function of magnetic field strength,

allows the determination of this angle of zero crossing. Thus the ratio ?fz is
obtained independent of the effective analysing power of the polarimeteri It
should be noted however that although . does not effect the value of G, it is
advantageous to maximise the analysing power in order to minimise the statistical
uncertainty. The variation of a. sy under different kinematics cuts applied to the

data is discussed in section 6.3.

3The n refers to the frame in which the polarisation is defined. (fig. 2.5).
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4.5.3 Helicity Flipping

Large systematic errors can be caused by any misalignment of the polarimeter
and any difference in detection efficiency of the upper and lower second-wall
frames. Both of these would lead to false asymmetries due to erroneous azimuthal
distributions. To cancel these systematic effects the helicity of the electron beam
is flipped, which has the effect of flipping the neutron polarisation and thus the
sinusoidal azimuthal dependence of the differential cross section (eqn. 4.3). This
is equivalent to transforming ¢, — ¢/ +m, i.e. the upper and lower frames switch,
thus cancelling out these systematic effects. The asymmetry is now constructed

as:

i \/N+ ¢’ _|_7r \/N+(¢;Z+7T)N_ (¢;7,)

A: e Tnaen Pepx =
ery ( ) \/N+ ~ (¢l +m) \/N+ (@), +m) N~ (¢],)
(1.7)

where N* implies the distribution when the helicity is +1.

4.5.4 TIsospin Symmetry

Neutron scattering from a nucleon target can be described by the exchange of
mesons with either positive or neutral charge, with the former resulting in the
nucleons swapping type in the final state. For exact isospin symmetry the proba-
bility of exchanging a charged or uncharged meson is the same and the isospin of
the nucleons in the final state should not effect the kinematics, thus the analysing
power and asymmetry, should not change, regardless of the type of nucleon de-
tected in the second wall.

In fact there is a slight breaking of isospin symmetry as seen in the different
masses of the proton and neutron. This also results in the forward-backward
asymmetry in the scattering cross section and the deviation of the analysing power
from pure sinusoidal dependence (fig. 4.10). Despite the lower cross section and
analysing power for forward scattered protons which are incident on the second
wall (backward scattered neutrons), the high detection efficiency of protons in the
second wall (~factor 4 greater than for neutrons) makes it worthwhile to analyse

both forward angle neutrons and protons when detected in the second wall.
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Figure 4.12: The A1l neutron polarimeter. (Not to scale).

4.6 Neutron Polarimeter

The polarimeter geometry is based on a design by Taddeucci et al [59] and is
shown in figure 4.12. The essential components of a polarimeter for measurement
of transverse neutron polarisation are two planes of scintillator orientated per-
pendicular to the incident neutron direction. The first plane acts as an active
analyser using neutron scattering off hydrogen and carbon nuclei and also allows
a determination of the incident neutron energy through time of flight measure-
ment. The scattered neutrons are then detected in the second scintillator plane.
This allows a reconstruction of the neutron scattering angles !, and ¢/,, where the
¢!, distribution is sensitive to the transverse polarisation of the incident neutron
(sec. 4.5).

For the polarimeter used in our experiments the first wall consisted of 2 layers
of 15 scintillator bars with dimensions 80 x 7.5 x 5.0 cm?, orientated vertically.
In addition, a layer of 15, 1 cm thick, plastic scintillators, the veto layer, were
positioned directly in front of the main wall, to allow the suppression of incident
charged particles and make neutron identification possible.

The second wall was split into an upper and lower frame, each of which had
3 layers of 4, 180 x 20 x 10 ? scintillators stacked horizontally. Again a 1 cm
thick veto bar shadowed each row of second wall bars. An important reason
for splitting the 2nd wall was to avoid the region around the (e,e'n) reaction

plane where there is a high background intensity from atomic interactions of the
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electron beam with the target. The upper and lower sections were separated by
approximately a metre.

An additional component to the polarimeter design of [59], first suggested by
Arnold, Carson and Cross [38] is a dipole magnet with a vertical field. This was
used to precess the neutron spin, allowing determination of the longitudinal as
well as the transverse spin components (sec. 4.5).

The magnet, the first scintillator plane and the second were positioned respec-
tively 3 m, 6 m and 9 m from the target. This positioning allowed the two frames
of the second wall to be shielded from the target by the dipole magnet, the gap
between its pole faces being a window for the 1st wall. All neutrons detected in
the 2nd wall therefore should have come from scattering in the 1st wall, which is
another reason for the splitting of the second plane.

Extra shielding was employed to reduce the counting rate of the electromag-
netic background in the polarimeter. A 5 cm thick lead wall was constructed in
the gap of the spin-precession magnet to attenuate hard photons and electrons
and 5 mm of aluminium was placed directly in front of each of the scintillator
walls to attenuate soft electrons.

Each scintillator bar had a light guide and photo-multiplier tube (PMT) at-
tached at each end. The scintillation light caused by charged particle interactions
produced a signal in the PMT’s which was then recorded by time-to-digital (TDC)
and charge-to-digital (QDC) converters. The QDC’s gave information on the en-
ergy deposited in a bar. The mean time of the 2 TDC signals was used to find the
time of flight of the neutron from the target, while the TDC difference gives the
hit position along the length of the scintillator. The other 2 spatial coordinates
are given by the position of the hit bar.

4.7 Data Acquisition

The trigger electronics and data acquisition system AQUA [60], were responsible
for ensuring neutron and electron signals were recorded in the data stream for
each event, as efficiently as possible. Front-end VME computers were attached
to Spectrometer A and the neutron polarimeter. These read out fastbus ADCs
and rate counters (scalers). They then passed the data to an event-builder which
merged and synchronised events, after which the data could be formatted and

written to an output file.
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Electronic Trigger

The trigger (fig. 4.13) had to discriminate against background signals which
otherwise would flood the data acquisition and result in a high dead-time! with
many missed true events. The neutron polarimeter signal rate (mostly back-
ground) was some orders of magnitude higher than that for Spectrometer A. This
is due to the large volume of the polarimeter scintillators and the spectrometer
detectors being shielded from direct view of the target and the exit beam-line.
The spectrometer focal plane detectors had a relatively “clean” signal, seeing only
momentum-analysed particles and cosmic rays.

The central part of the trigger demanded a two-way coincidence (module A in
fig. 4.13) between spectrometer A and the polarimeter. The spectrometer signal
(SpectA — X A) came from an OK of the second thicker scintillator plane and
required a coincidence between the two attached photomultipliers.

For the polarimeter (Npol — X B), signals from the photomultipliers were
split (splitterbox S), with one output sent to the ADC’s and the other to a
discriminator (B). For signals above a predefined threshold (to suppress the high
rate of low energy signals), the discriminator output a 50ns or 100ns wide logic
signal for the first or second wall respectively. In the case of the second wall an
AND was demanded between the two ends of a bar, by a coincidence module
(C). The Npoly signal is then produced by an OR (C then E) of all the second
wall bars. Npol; is similar but also requires a NOT signal from the veto detector
directly in front of a scintillator bar, for the suppression of charged particles,
along with the AND of each end of the bar. An AND (D) of Npol; and Npol,
was then used to produce a 100ns pulse for the polarimeter signal, (Npol — X B)

If there was an overlapping SpectA-Npol signal the coincidence module sent
out four signals, (i-iv):

(i) The signal to “Npol coinc. return A” started the VME frontends reading
the ADC and TDC modules for the data acquisition. An interupt or fast-clear
signal was then sent back to the trigger. The interupt set the pBusy module to
inhibit further triggers and stop AQUA reading more events until it is finished
with the event it is on. When AQUA is finished reading all the modules it resets
the pBusy allowing new events to be read. The interupt also incremented the

event-counter which allowed the event-builder to synchronise events from the

“Dead-time is the time when the frontend computers are reading the signals in the electronic
modules and no new trigger can be sent.

54



different detectors. The fast-clear reset the ADC and TDC modules a ps after
the gate start.

(ii))A 180ns gate was sent to the polarimeter ADCs to specify the charge
integration time. The charge comes from the splitterbox signal which will be
proportional to the signal from the photomultipliers and thus the energy deposited
in the scintillator bars.

(iii)A common start derived from the (SpectA — X A) signal, caused by rela-
tivistic electrons, was sent to the TDCs. The stops came from the discriminator
signals for the individual photomultipliers, so after calibration the difference in
these times was related to the time of flight of the neutron (sec. 5.2.5).

(iv)The last signal was used to temporarily disable the Spect.A-Npol coinci-
dence module stopping multiple “Npol coinc. return A” signals.

In addition scaler modules were used to count the number of signals over the
discriminator threshold from each photomultiplier. This acts as a monitor of the
rates in the detectors which for the front wall elements were > 10° Hz in the

worst cases.

AQUA

The newly revised Al data acquisition system, AQUA was responsible for reading
the signal digitisation modules, event-building and writing the data to disc. After
a valid event trigger each of the VME front-end computers, which were positioned
in the experimental hall next to their detectors, read the TDC and ADC modules,
the event-counter and scalers via an interface to fastbus and sent the data to
the event-builder in the counting room. The event-counter information then
allowed the data streams from each detector to be merged by the event-builder. In
addition to the detector data, control data e.g. high voltages, target temperature,
was also merged into the data stream. This setup allowed an interupt rate of
200Hz for the experimental data taking, so we could take advantage of 10 puA
beam currents.

The data were then written to the output run files. For storage purposes the
file size was taken to be ~ 100 Mb which for 10 zA beam currents corresponded

to around 30 minute “runs”.
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Chapter 5

Analysis

5.1 Simulation of the Neutron Polarimeter

Prior to undertaking the data-analysis there was an uncertainty as to the physics
processes occuring in the analysing scattering reaction in the first wall of the neu-
tron polarimeter. Previous recoil polarisation anlaysis had assumed the analysing
power came predominantly from the neutron scattering on hydrogen nuclei, hence
cuts were applyed to maximise neutron-hydrogen scattering over scattering in-
teractions with the carbon [61]. It was also unclear if the asymmetry of protons
detected in the second wall would give a similar asymmetry as neutrons (i.e.
isospin symmetry sec. 4.5.4). Clarification of these issues was clearly important
before a detailed analysis of the data.

In order to understand better the response of the polarimeter a Monte Carlo
computer model was written, based on the CERN GEANT4 (G4) Monte Carlo
library [62], with analysis of the MC output performed using the ROOT data
analysis libraries [63]. The four main parts to the simulation are polarimeter
geometry, event generation, particle interactions and data analysis. These are
described in the following, where named components of the G4 software system
are given in bold face. G4 is an object-orientated system using the C+- language

where code is based on the concept of class [64].

5.1.1 Polarimeter Geometry

To simulate the physical experiment, G4 requires the detector geometry to be de-
fined via the G4DetectorConstruction class. A variety of standard geometry

classes were used to define the volume of the various polarimeter components.
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Magnet 1st Wall

Top View

Figure 5.1: Scale layout of the polarimeter used in the GEANT4 simulation.

Included for the simulation were the scintillator arrays constituting the front and
rear walls of the polarimeter and the spin precession magnet. The scintillator ma-
terial was taken as a composition of 10 atoms of hydrogen and 9 atoms of carbon
with a density of 1.032 gem 3. Figure 5.1 shows a visualisation of the simulation
geometry. The bars were coded as G4SensitiveDetector, to allow particle in-
teractions occurring inside their volume to be recorded, with sufficient flexibility
to allow easy changing of the polarimeter positions, necessary for different Q?

settings.

5.1.2 Event Generation

Generating an event is started by selecting an initial momentum for the neutron
for the G4ParticleGun object, which “fires” the neutron at the polarimeter. As
we were interested only in events where the electron scatters into the spectrome-
ter we randomly selected the scattered electron momentum, ﬁzgec from angular
and momentum distributions obtained in the real experiment, as shown in figure
5.2. The incident electron was given by the beam direction and energy. These
quantities define the reaction Q2. The corresponding virtual photon will have

momentum given by equation 5.1, which in the experiment has a direction cen-
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Figure 5.2: Scattered electron energy and angle, reconstructed from Spectrometer

A.

tered on the polarimeter!. The electron is also given, at random, a longitudinal

polarisation direction (beam helicity), of +1.

Bl _pre (5.1)

As the neutron “target” was in reality deuterium the neutron will have a Fermi
motion exactly opposite to that of the proton in the deuteron. The neutron
was therefore given a momentum ?zemiselected randomly from the distribution
obtained from [65]. The resulting momentum of the neutron incident on the

polarimeter was then given by :
fermi
B, =B+

The G4PrimaryGeneratorAction procedure was called at the start of each
event and was responsible for calculating the initial neutron momentum in this

way and assigning it to the G4ParticleGun.

''As the experimental kinematics were selected this way.
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5.1.3 Particle Interactions

Once an event had been generated and the neutron had been fired from the
G4ParticleGun, the G4SteppingManager looked after the neutron’s progress
through the polarimeter as a series of G4Steps. For each G4Step the G4Stepp-
ingManager decided which process had occurred and then applied the appropri-
ate model to find the outcome of the interaction. The possible processes and mod-
els were defined in G4PhysicsList. For the (~ 100 MeV) neutrons the processes
defined were G4HadronElasticProcess and G4HadronInelasticProcess. The
default process, if no interaction occurred during the step is G4Transport which
simply moved the neutron without deviation from its momentum direction. In-
vestigation of the GEANT4 neutron interaction models showed them to be in-
sufficiently realistic for the energy range of our experiment, so that new models
had to be created, these are outlined below. The neutron kinematics were stored
by G4TrackingManager as a series of G4Tracks, with each G4Step having
a corresponding G4Track.

Process Selection

At the start of a G4Step the InteractionLength = ). U% (equivalent to the
mean free path) was calculated for all the possible physics processes, where o; is
the cross-section for a process occurring on element i of the compound material
(e.g. scintillator or air) that the neutron is currently in. A Physicallnterac-

tionLength for each process was then determined as :

Physical InteractionLength = InteractionLength x [—log (R)]

Where R is a random number in the range [0,1|. The process which has the
shortest PhysicallnteractionLength is then selected for that G4Step. Note,
the PhysicallnteractionLength for the G4Transport process (no interaction)

is simply the distance to the next volume.

Neutron Scattering Models

For a neutron scattering in a plastic scintillator there are a number of different
possible reaction channels from both the Hydrogen and Carbon nuclei. For this
simulation the considered interactions followed the STANTON code of Cecil et al
[66]. The interactions were then evaluated by procedures based on STANTON,
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G4 and newly developed scattering models.
The list of interactions considered by STANTON is as follows :

I.n+p—=>n+p

2. n+ C'2 — n + C'? non-diffractive
3. n+ C? — n+ C*2 diffractive

4. n4+C% 5 n4+C% 4y

5. n+C? — a+ Be’

6. n+C? — n+ 3a
7.n+C2%2 s n+p+ BY

8. n+C? = 2n+CH

The semi-empirical cross-sections which STANTON uses for these interactions
are shown in figure 5.3. It is clear from this figure that reaction channel (7) and
(1) are the most important for the present experiment where the neutrons have
energies of 300 or 400 MeV. Elastic scattering on C'?) (2), also has a significant
cross-section, but the recoiling Carbon deposits too little energy in the scintillator
and consequently the polarimeter is insensitive to this channel.

An important quantity in the interaction is the analysing power, which gives
the scattering asymmetry. Unfortunately this is well known only for elastic np
scattering (fig. 4.10). For the purposes of this simulation it has been assumed
that reaction (7) is a quasi free scattering process with an analysing power similar
to the elastic np reaction, (1). The other reaction channels are assumed to have
zero-analysing power, although it is likely to be non-zero but small.

Reaction channel (1) elastic np scattering was modelled in the following

way:

1. The centre of mass four-momentum was calculated as Poyr = (Fear, Poy) =

P,+ P, , where P, , are the four-momenta of the initial neutron and proton.

2. The breakup momentum Py, , for either particle in the centre of mass was

[(E%M*(MnJFMP)Q) (E%M*(Mp*Mn)Q)]
2Ec v .

calculated as Py = \/
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Figure 5.3: Cross sections for neutrons scattering on hydrogen and carbon.

3. Bcnr was chosen using a weighted random number generator based on dis-
tributions (fig. 5.4), which were generated using the SAID [58] partial-wave

analysis of n-p scattering data.

4. The analysing power was found as a function of s, and T,,, the kinetic
energy of the neutron (fig. 4.10) also from SAID.

5. The azimuthal angle ¢¢ps was found from a distribution weighted by the
analysing power (fig. 4.11).

6. Ponr,O0cn and ¢cpr were then combined to give the momentum vector of
the neutron in the centre of mass frame. The proton was given the opposite

momentum and the two momenta were boosted back into the lab. frame.

Reaction channel (7) quasi-elastic np scattering was modelled in a similar
way to reaction channel (1). The neutron scatters off a proton which is “off mass
shell”, and had an initial Fermi momentum in the carbon nucleus. The recoil,
excited Boron nucleus was treated as a spectator and it thus had a momentum
opposite to the initial proton fermi momentum due to conservation of momentum.
The initial Fermi momentum was taken from distributions derived from harmonic

oscillator potentials assuming the proton was in either an s or p-state. Spectral
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Figure 5.4: The differential cross sections for 'H (n, p) used to select the proton-
neutron centre-of-mass angle.

analysis of nucleon knockout from carbon [67] shows that excitation energy from
p-shell knockout is small and for this model it was taken to be zero. For s-shell
knockout the excitation energy has a broad distribution and for this simulation
it was simply taken to be constant in the range 25-50 MeV zero elsewhere. A

summary of the kinematics is shown in Figure 5.5.

5.1.4 Light Response

An additional calculation has to be added to the G4 code to simulate the light re-
sponse of the scintillator. When a proton loses energy through atomic interactions
to create scintillation light, the total energy of light detected by the photomul-
tipliers is not linearly related to the amount of energy lost by the proton. This
non-linearity is thought to be due to quenching of the scintillation processes,
where the ionisation density is high [68], which will occur increasingly at low
energies where the proton velocity is small. This is particularly true when the
kinetic energy of the proton is only a few MeV. The light response function used
is that of Madey et al [69] which was also adopted in [66] for the STANTON code.
They fitted their measurements and those of [70] to a semi-empirical function of

the form,

T, = a\T, — as [1.0 — exp (—a3T*)] (5.2)

Where the fit parameters were found to be a;234 = 0.95, 8.0, 0.1, 0.90 and the
light response is given in terms of an equivalent electron light output which is
assumed to be linear with energy. Therefore, by converting proton energy 7,

to equivalent electron light response T,, we effectively simulate the response of
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Before After
] —— 0
| S_p . Potential well of the proton in the Carbon
E Sp=Separation Energy
X Ex=Excitation Energy
\p=50MeV

Before : n (Mn,En,Tv’n) D (M;;ff,Ep,ﬁfermi) , C (Mc,0,0)
Atter s 0 (My, B, P ), 0 (My, By, Pry) s B (Mg, B, =P pepmi)
The proton state is selected with a probablity ratio of 2:4 for s:p states.

Ex is taken as zero for p-state and chosen at random from the potential well
depth for s-state. Giving the mass of the excited recoil Boron as :

M}, = Mo — M, — Sp — Ex

The initial energy of the proton can then be found from the conservation of
energy :

Mo = Ep + E, , with Ep = \/(M})’ + P}
= B, = Mo —\/(M}5)” + P},

ermi

The four vectors of the initial neutron and proton are now known and can
be used as in the elastic np scattering model.

Figure 5.5: Quasi-elastic np scattering.
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the scintillator to the proton energy loss in units of MeV,,., allowing a direct
comparison in energy deposited between the simulation and real data when the
real data is calibrated in units of MeV,, (electron equivalent). Equation. 5.2 is

plotted in figure 5.6.

5.1.5 Data Analysis

If a neutron interaction occurred in the scintillators then the following quantities
were stored in a G4Hit object : time(time of flight), energy deposited (in MeV
and MeV,.), hit position and bar number. In addition further information about
the interaction was stored in a GenEvent object : initial and final neutron
four-vectors, reaction channel and number of interactions.

These objects were then analysed after the event had been fully tracked by
G4Event- Action, the main part of which mimics the real data analysis, i.e.
recreating energies from times of flight, scattering angles from hit positions, check-
ing for veto coincidences and sorting multiple hits, (sec. 5.4.3 for details). The
results were then written to ROOT ntuples, as for the real analysis, but with the
additional GenEvent information giving details of the interaction physics, which
allowed the selection of particular reaction channels when looking at kinematic
distributions.

These events were then analysed to determine the effective analysing power
of the simulated polarimeter. This was calculated through equation 4.7, where
N7 () were obtained from the simulated ¢!, distributions. The beam polarisa-

tion and transverse neutron polarisation were taken to be 1 and so the asymmetry
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Figure 5.7: Simulated asymmetry (crosses) versus azimuthal scattering angle.
The red line curve is a one-paramater(amplitude) sinusoidal fit.

in equation 4.7 is equivalent to the effective analysing power over the acceptance
of the polarimeter a,.sr. A typical plot showing the resulting asymmetry versus
¢!, is shown in figure 5.7. The amplitude of the one-parameter sinusoidal fit gives
aefp = 0.166 3= 0.004.

5.2 Neutron Polarimeter Calibrations

The most important calibration for the neutron polarimeter was the spatial cali-
bration to determine the “hit” positions in each wall, that is the positions where
the neutrons interacted with the nuclei in the plastic scintillator. A good cali-
bration of these hit positions allowed an accurate determination of the scattering
angles which were used to derive G. In addition knowledge of the time of flight
yields the energy of the neutron before (first wall) and after (second wall) the
analysing reaction.

The spatial calibration required the physical positions of the scintillators in
the frame of the neutron polarimeter and the differences of the hit times from the
photomultipliers attached at each end of a scintillator. The time of flight from
the mean hit time of the two photomultipliers required a calibration of the TDC
start time derived from the hit time in the trigger plane of the spectrometer. It
was therefore important to correct for electronic effects in the TDC signal, in
particular since leading-edge discriminators were used a walk correction had to
be applied. This also required the amplitude of the photomultiplier signal and is
discussed in the following sections.

The calibrations |71, 72| were applied to the raw data as part of the COLA++
analysis procedure (sec. 5.4.1). The run.db (database) input file was used to
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identify the correct calibration file and polarimeter position for a particular run

time during the extended data taking period.

5.2.1 QDC Pedestals

The QDC pedestal is an offset intrinsic to an individual QDC channel. It is due
to a small D.C. current which is applied to the QDC input to ensure the input
current is always negative even if there is a positive overshoot on the input signal.
Thus the QDC zero point occurs at a non-zero channel which has to be subtracted.
A sharp peak was clearly visible at this channel, since most recorded events for a
particular common gated QDC are null, making the correction straight forward

to determine.

5.2.2 TDC conversion-gain calibration

The TDCs (Phillips 10C6), have 1024 channels and the full scale range was set to

f 1100—2(11 ~ (0.1 ns. This was

checked using a signal from a photomultiplier which was split, one signal being

100ns implying that each channel should have a width o

used as a common start for the TDCs the other being put through a delay, stepped
in delay lengths of 8ns and then used to stop the TDCs. The delay was checked
using an oscilloscope and the TDCs read by the acquisition software AQUA-++.
Comparisons of the delay to the TDC channels showed that the channel width

was indeed 0.1ns with an uncertainty of less than 1%.

5.2.3 Walk Correction

The start time for the polarimeter TDCs came from the trigger scintillator plane
of the electron spectrometer. The delay of this signal is well known with respect
to the time of electron scattering in the target, since the electrons are relativistic
and will therefore have a constant velocity (=~ ¢), to good approximation, with a
correction applied offline to account for slight delay differences between elements
of the trigger plane. The stop signal comes from the leading edge discriminators
attached to the polarimeter PM tubes (fig. 4.13) and as a result is subject to
a leading edge walk effect [73]. Due to finite rise time a signal with a high
pulse height will cross the discriminator threshold before a signal with a low
pulseheight (fig. 5.8) and so a correction must be applied in the offline analysis,
to the individual TDC signals.
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Figure 5.8: The effect of different pulseheights for a signal of constant rise time
on the trigger times (r1,r2) of a leading edge discriminator.

To measure the walk effect a signal with a fixed start time and well defined
scintillator hit position is required, so that the distance the light travels in the
scintillator is constant and does not effect the timing. A horizontal trigger de-
tector, equipped with constant fraction discriminators which have hardware to
compensate for walk effects, was positioned behind the first wall for dedicated
calibration data runs to meet these requirements. The relationship between the
TDC, (t), and QDC, (E), signals can then be approximated by the relation|71] :

b

where a is a constant time offset between the polarimeter TDC and the reference
scintillator and b = r/E,, with r being the rise-time of the pulse and E, the
discriminator threshold. The square root is due to the assumption that the pulse
initially rises quadratically with time which is approximately true.

To calibrate the first-wall walk correction, the polarimeter trigger (sec. 4.7)
was set to accept coincidences between any polarimeter scintillator and the trig-
ger detector. The electron beam was incident on a polyethylene target, yielding
particles with a large dynamic range of energies to pass through the polarime-
ter. The fixed position of the trigger detector gave a fixed hit position in the
polarimeter scintillator. Plots were then made of E versus ¢ for each scintillator
and used to determine the parameters of equation 5.3. These were then stored in
the configuration files where they were accessed during the data reconstruction.
An example of a TDC spectrum before and after the walk correction is shown in
figure 5.9.

For the second-wall walk correction the trigger required a coincidence between
a first wall scintillator, a second wall scintillator and the trigger detector. Here
to select hits from a fixed point on the scintillator, a cut on the difference of the

two second wall TDCs was required. However, the situation for the second wall
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Figure 5.9: The plot on the left shows the leading edge walk effect. The plot on
the right shows the same data after the walk correction.

turned out to be more complicated as the walk parameter b, varied with position
along the bar. This is a dispersion effect of the scintillation photons traveling up
to 1.8 m through the scintillator bar. To account for this the parameter b was

fitted as a function of the hit position (z) assuming an exponential dependence :

—x

b(z) = boer

To achieve a reasonable accuracy the parameter y was taken as a mean for
all scintillator bars, whereas the b, parameters were bar dependent. The final
calibration result for p was around 300 cm, implying a relatively small exponential

variation along the bar.

5.2.4 Spatial Calibrations

The spatial calibration allowed the positions of the neutron interactions to be
evaluated in the reference frame of the neutron polarimeter. This was defined so
that the x-axis was parallel to the horizontal second-wall scintillator bars (per-
pendicular to the first wall bars). The y-axis was parallel to the vertical first-wall
bars (perpendicular to the second) and the z-axis was perpendicular to both in
the radial direction from the target (fig. 4.12). The degree of segmentation of
the first and second walls was sufficient so that, with relatively small errors, the
z coordinate of a neutron interaction was given by the mean z position of the

hit scintillator. The x coordinate of an interaction in the first wall and the y
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coordinate in the second wall was determined in a similar way.

The positions of the polarimeter walls, stands and magnet were surveyed
using a goniometer from the target position and using the known dimensions
of the polarimeter components, this technique gave errors of the order of a cm.
The positions of the individual bars were measured with respect to the stands
to an accuracy of a few mm. The third coordinate which corresponds to the hit
position along the scintillator bar, can be determined via a calibration of the time
difference between the two photomultiplier signals.

The time from an electron being scattered in the target (effectively the start
time for the polarimeter TDCs) until an electronic pulse stops the TDCs of the

hit scintillator can be described by the following equations :

T

tl - to + - tA + 6t1 (54)
Cscint
L —
P Chat VSRS T (5.5)
Cscint

Where %, is the flight time of the neutron from the target to the scintillator, ¢ 4
is the time for the electron to travel from the target to the spectrometer trigger
scintillator, dt; 2 account for all the fixed delays in cables and electronics, cseins iS
the speed of light in the scintillator, L is the length of the scintillator and z; is
the hit position with respect to PM1 connected to TDC1 (fig. 5.10). Subtracting

to from ¢, gives :

At = tl — t2 = - (21‘1 - L) + (6t1 - 5t2)
scint
S To= ;4 L= Cs;“t {At — (6t — 6ts)}

where z, is the hit position relative to the centre of the bar, which is the re-
quired coordinate in the neutron polarimeter frame. The parameters required to

calibrate At for each scintillator are then csene and t,rp = (5t — 0t5).

First-Wall

Dedicated beam time was devoted to the spatial calibrations. For the first-wall the

y-coordinate is obtained from the TDC difference and thus the trigger scintillator
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Figure 5.10: Schematic of neutron detector.

detector was aligned horizontally to select signals in the scintillator bar which
were from a fixed position. The height of the trigger detector was then varied
and the centroid of the distribution of At plotted as a function of trigger detector
height. The parameters cgeint and t,7s were then determined from the gradient
and crossing point of this highly linear functional dependence.

Additional data taken for the elastic H (e, €'p) reaction allowed a check of this
procedure. Once the electron trajectory has been reconstructed by the spectrom-
eter the momentum of the recoiling proton is known accurately and therefore its
hit position in the first wall detectors can be predicted. A comparison of these
hit positions with those reconstructed from the calibrated polarimeter showed
discrepancies of ~ cm.

The uncertainties on the first wall position were estimated as o, = 1.44 cm,

oy =12 cm and o, = 2.17 cm.

Second-Wall

The position calibration of the second wall was done using cosmic rays and did
not require the electron beam. A trigger detector was placed at various positions
perpendicular to the length of the scintillator and a coincidence was demanded
between the trigger detector and the second-wall to record any cosmic rays pass-
ing through both. Again by plotting the position of the trigger detector versus
(t; — t2) the parameters cgp and t,s; were found.

The uncertainties on the second wall position were estimated as o, = 2.00cm,

oy = 5.77cm and o, = 2.89cm.

5.2.5 Time of Flight Calibrations

An actual time of flight from a neutron exiting the target until it hits the scintil-

lator can be reconstructed by adding equations 5.4 and 5.5:
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T:t1+t2:2to+

+ (0t1 + 0ta) — 2t

Cscint

T
=1, = §+Toff+tA (5.6)

As t 4 is already known from the spectrometer calibrations all that is required
is the constant offset T;, ¢, which accounts for the time it takes the light to travel
in the scintillator and electronic delays. For this we need a reaction with a known
time of flight, ¢,.

First-Wall

The time of flight of protons from elastic H (e, e'p) scattering can be used to give
a known t,, as the momentum of the proton may be deduced from the electron
detected in the spectrometer. From this momentum, the time of flight to the

polarimeter can be calculated and T,¢; may then be found via equation 5.6.

Second Wall

Again the situation for the second-wall is more complicated. The elastic H (e, e'p)
reaction cannot be used as the protons will interact with the first wall giving an
uncertainty in momentum and hence the time of flight between the first and
second walls. Instead we calibrated the second wall relative to the first-wall using
minimum ionising electrons. As they effectively travel at the speed of light their

flight time between the first and second walls can be accurately determined :

too = to1 + 12

where t.;, the absolute time of flight to the first wall, is known after the first
wall has been calibrated. ¢, the time of flight of the electrons between first and
second walls is given by 15 = ’% where r5 is the distance between hit positions
in the first and second wall. As t.5 is now known the offset can be determined
as for the first wall. Figure 5.11, shows the distribution of the calculated time
of flight for relativistic particles between the two walls, minus the actual time of
flight measured after the calibrations. The sharp peak at zero, associated with

real relativistic particles, shows that the relative calibration is correct.
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Figure 5.11: Time-of-flight for relativistic particles (m) between the first and

c
second walls minus the measured time-of-flight. The peak at zero is relativistic

particles. The peak around -5ns is neutron scattering events.

5.2.6 Energy Deposited in the First-Wall Scintillators

1

dep Calibration was adopted to allow a comparison between

An approximate F
the real data and the simulation. This calibration does not effect the asymmetry
analysis. The energy deposited in the scintillators was determined for each bar by
taking the geometric mean of the QDC readings for each photomultiplier attached
to the bar: Eéep =/QDC, - QDCj,. This was then histogrammed for events with

protons passing through the first wall and then compared to a similar histogram

taken from the simulation using the standard GEANT4 proton energy loss model

(fig. 5.12). As explained in section 5.1.4 the simulation gives E}  in units of

dep
MeV,. so by matching the peak position of the simulated and real proton Eéep
peak the real data can be calibrated with a linear function in units of MeV,.. To
1

compare to the simulation the real data was divided by a factor of % ~ 96 .

5.3 Calculating Precession Angle

An important part of the analysis is the calculation of the neutron spin precession
as it passes through the vertical field of the dipole magnet. The polarisation ratio
is derived from the zero-crossing angle y, (eqn. 4.6) and is therefore sensitive to
errors in the precession angle, .

A neutron with a path L(z,y,z) through a magnetic field of strength B(0,B,,0)

will have its spin precessed in the z-z plane by an angle [74]:
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Figure 5.12: Eéep from protons passing through the first wall of the polarimeter
for real data (left) and simulated data (right).

20y, 1
= — Bdl .
= / (5.7)

Where i, is the neutron magnetic moment and £, is the neutron velocity re-
constructed from the electron four-vector and the hit position in the polarimeter
(sec. 5.4.3). [3, could also be calculated from the time of flight of the neutrons

to the first wall of the polarimeter, but this would have a larger uncertainty.

5.3.1 Dipole-Field Integral

To determine the field integral [, Bdl for an event |75], the path of the neutron
through the field must be known. The path of the neutron through the field was
a straight line from the target (assumed point-like) to its hit position ﬁl, in the
first wall of the polarimeter, which had polar coordinates 6; and ¢ (recreated in
sec. 5.4.1). ?1 (61, ¢1) uniquely determines the neutron’s point of entry, in the
x-y plane, to the magnet, ]?M (01, ¢1).

We have then that fL Bdl = Bini(tpynr) = Bint (61, ¢1). Where (01, ¢1) —
(xar, yar) through a standard polar-Cartesian coordinate transformation. The
integrated field for the seven different magnetic currents used in the experiment
was mapped for the full range of x5, and y), using the MAFIA 3D magnetic field
simulation package. In this, the dipole field was calculated at 200000 mesh points
in a volume defined by one quarter of the magnetic gap (fig. 5.13). The symmetry
of the dipole geometry then allowed these results to be extrapolated for the full
volume. The mesh points were separated by distances of about 1 cm, 0.98 cm
and 4.88 cm in the X, Y and Z directions respectively and continuous variation of

the field was achieved by a smooth interpolation between the mesh points. The
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Figure 5.13: Scale diagram of the dipole magnet, also shown is the Cartesian
coordinate system used in the text. Left is the view from the target (front).
Right is the view from the side.

3-dimensional field map produced was then used to integrate the flux along a
given path defined by =z, and yy, giving the field integral Bin(zar,yar). Bint was
calculated for 2079 entry points for each magnetic field setting and the results
were written to input files for the analysis code which determined (xpr, ypr) on
the neutron flight path and then found the closest field integral for that event.

In addition to simulating the field in this way it is important to measure at
least part of it to check the accuracy of the 3D simulation. This was performed
using a Hall probe to map the field in the x-z plane, measuring at points approx-
imately 2cm apart in each direction. The error in measured field strength was
estimated to be of the order of 1%. This map was then analysed in a similar
manner to the simulated field map (smoothed and integrated) and the two path
integrals compared for flight paths in the x-z plane. This procedure was repeated
for a number of different paths, x-z planes and currents. The discrepancies ranged
from effectively zero at the centre of the magnet gap to 2% at the edges of the
pole faces for high currents. Also measurements were made of the small x and z
field components, which were shown to contribute less than 1% to the spin pre-
cession and therefore were neglected. Overall the error in the field integral was
determined to be 2% [52].
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5.4 Event Reconstruction

COLA++ is the in-house analysis software for experiments performed in the
MAMI A1 spectrometer hall. For the G7, analysis we used the standard Spectrom-
eter A reconstruction code to recreate the scattered electron four-momentum, but
new code had to be developed to deal with the neutron polarimeter [72]. Once
COLA++ had performed the initial event reconstruction and the relevant kine-
matic variables were stored in a ntuple? further reconstruction was done using
a ROOT [63] based analysis code. At this stage multiple polarimeter hits were
sorted and four-vectors calculated. The resulting TGEnEvents were stored in a

TTree® for further analysis.

5.4.1 Neutron Polarimeter Reconstruction

COLA++ accessed the raw data files, which for the polarimeter consist of QDC
and TDC values. Using an object orientated methodology these were passed
to the appropriate scintillator bar object, each of which had two ADC and two
TDC variables corresponding to information read out from the actual bar. A
bar object was created for every scintillator in the polarimeter and these objects
fed the reconstruction of a neutron event performed by the “npol.cc” code. This

procedure is outlined below:

e The data was checked to see if there were valid TDC and QDC values for

the bar, i.e not “overflow” or “underflow” entries.

e The QDC pedestals were then subtracted and the new values were checked
to see if they corresponded to a real signal. i.e. if they were still greater

than zero.

e The two QDC values were combined to give the pulse height which is propor-
tional to the energy deposited in the bar, where, Ey., = /QDC1 - QDC?2.

e The walk correction was applied for the TDCs (sec. 5.2.3).

e The TDCs were combined to give the absolute time of flight of the neutron
and hit position along the bar:

2An ntuple is a store of multi-parameter events with information for each event stored as an
array of real numbers.

3A TTree is a store of multi-parameter events with information for each event stored as an
array containing different ROOT class objects (e.g. vector, matrix).
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TDC1+TDC?2

tof =
of 5

+Topr+1a

pos = tdcscale - Coeint - (TDC1 —TDC2 + ty57)

Where the offsets (T,rf and t,ff), ta, tdescale and the speed of light in the
scintillator ¢ens, had been determined through the calibrations described in sec-
tion 5.2.4.

e The physical position of the bar in the frame of the neutron polarimeter
was read from an input file to give the other two Cartesian coordinates of

the hit, giving a hit position vector.
e The polar coordinates of the hit position were calculated.

e Cuts were made on the time of flight to select events inside the electronic
timing gates of the event trigger, allowing both real and random events to
be analysed and rejecting “junk” events caused by transient effects at gate

edges etc.

The bars were then grouped depending on which part of the polarimeter they

represented, veto or neutron detector, first or second wall, top or bottom frame.

e Hit neutron detector bars were checked to see if they were in coincidence
with the veto detectors in front of them, i.e. was the hit caused by a charged

particle?

e If they were in coincidence, a flag was set to identify them as proton events.

If they were not in coincidence, the flag was set to identify them as neutrons.

e The hit position in the first wall was used to determine the magnet field

integral associated with the neutron flight path. (sec. 5.3).

e The event information was then written to an ntuple if there was a “good”
hit in a bar for both the first and second wall.

Information was given to the ntuple for each bar : the time of flight, the pulse-
height, the polar coordinates of the hit position, the field integral, the bar number

and the proton/neutron flag.
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Figure 5.14: The effect of the AOK cut on scattered electron angle (6,) versus
energy E!.

In addition to the polarimeter information the four-momentum of the virtual
photon, a flag indicating a valid electron event and the beam helicity were given
to the ntuple for each event. The ntuples were then analysed separately using
the ROOT data-analysis package.

5.4.2 Electron Spectrometer

Section 4.4, described the operation and calibration of the magnetic spectrometer.
The scattered electron four vector was reconstructed as part of the COLA-+
analysis. The resulting angle 6, versus energy E! distribution is shown in figure
5.14, before(left) and after(right) the application of the “AOK” cut and without
any cuts on the polarimeter. AOK is a combination of cuts : a cut on the
spectrometer-polarimeter coincidence time to reduce the random background; a
cut on the vertex reconstruction to reject events from the target walls and a cut
on a signal from the threshold Cerenkov detector to veto 7—. The sharp line in
both spectra correspond to elastic electron-proton scattering events which were
due to a small amount of Hydrogen contamination in the target cell. In the right
hand plot the remaining quasi-elastic events are distributed around this line as a

result of the Fermi motion of the struck nucleon in deuterium.

5.4.3 G Events

The purpose of this stage in the analysis was to create ROOT TTrees that could

be analysed to create ¢/, distributions and thus asymmetries, with a variety of
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kinematic cuts and a random background subtraction. The ntuple output from
the COLA+-+ analysis could contain multiple hits in the same polarimeter wall
for each event. In the case of multiple hits in neighbouring bars it was assumed
that each came from the same scattering interaction, in which case the energy
deposited was summed and they were stored as just one hit. If more than one bar
was hit and they were not neighbouring, we could not easily decide a priori which
if any was a true hit as opposed to a random and we analysed each separately.
The real neutron would contribute to a scattering asymmetry, while randoms
would produce a background, that had to be subtracted to leave the real signal
at a later stage. Thus if there were two of these hits in the first wall and one in
the second, two events were considered. If there were two in the first and two
in the second, four events were created as each first wall hit has to be combined
with each second wall hit, and so on.

Also two sets of T'Trees are required to separate the case of detecting a proton
in the second wall from detecting a neutron. From now on these two cases will
be referred to as NP and NN events respectively.

A single G event in the TTree consists of four four-vectors and additional

polarimeter information. The event variables are explained in table 5.1.

Particle Four-Momenta

The energy and momentum of the virtual photon ¢, was calculated from the beam
and scattered electron four-vectors : ¢ = e — €.

Two four-vectors n;, and n; were determined for the neutron travelling from
the target to the first wall. The first had its energy calculated from the time of
flight measurement, the second from the hit position and virtual photon kinemat-
ics. The momentum direction for both was given by the vector from the target to
the hit position in the first wall, the polar coordinates (ry, 61, ¢1)* having already
been calculated (sec. 5.4.1). The energy E, of n;, was calculated for ¢ = ¢; and

r = 7] using :

b=

r
t.c

My,

E=——"_ (5.8)

B

4The polar coordinates r1, 61, ¢; are given in the neutron polarimeter frame (fig. 4.9).
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‘ Variable ‘ Meaning

q Four-vector for the virtual photon.
Nin Four-vector for the neutron between the target and the
1st wall. With energy calculated from tofl.
Nscat Four-vector for the neutron after being scattered in the
first wall. With energy calculated from tofl and tof2.
n;, Four-vector for the neutron between the target and the
Ist wall. With energy calculated from Spectrometer A.
VA Neutron scattering angle between first second walls. See
figure 4.9
. Neutron azimuthal scattering angle.
t Time of flight from target to 1st wall.
ty Time of flight from target to 2nd wall.
B}, | Energy deposited in the 1st wall.
Ey,, | Energy deposited in the 2nd wall.
idy Number of the 1st wall scintillator bar the scattering
occurred in.
idy Number of the 2nd wall scintillator bar the scattering
occurred in.
hpy Hit pattern for the 1st wall. Shows how many bars were
hit and the position of other hit bars relative to this one.
hpo Hit pattern for the 2nd wall.
npy Shows whether 1st wall hit is in coincidence with veto
or not. i.e. neutron (=1) or proton hit(>1).
npo Shows whether 2nd wall hit is in coincidence with veto
or not. i.e. neutron (=1) or proton hit(>1).
vetoy Records how many first wall veto detectors fired.
Bin: The integrated field the neutron experiences through the
magnet.
NoS; | Indicates wether the 1st wall hit was from a prompt tofl
region(=0) or a random region(# 0).
NoSy | Indicates wether the 2nd wall hit was from a prompt
tof2 region(=0) or a random region(# 0).
Case Seperates events into + /- helicity and 0 < ¢, < 7; 7 <
¢!, < 21 combinations.

Table 5.1: G, event variables.
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Figure 5.15: A Gaussian fit to y (deg.) for data taken with the precession magnet
current set to 400A.

The energy of n] was calculated from 7 , 6; and ¢; (see appendix B.2).

After being scattered in the first wall the neutron ng., had a momentum along
vy — v, where vy, is the hit position on the first (second) wall. This resulting
vector was then rotated into the reference frame z? (fig. 4.9 and eqn. 5.9), so that
the scattering angles of interest !, and ¢/, are given in this frame. The energy

was calculated using equation 5.8, with t = t, — ¢t; and r = |u; — v,].

=P Y =PuXq Tn = Gn X (5.9)

Mean Precession Angles

The precession angle for each event was calculated from eqn. 5.7. The mean
precession angle for each magnetic field was taken from a Gaussian fit to the
precession angle distribution from the accepted events. An example of the fit for
a magnetic current of +400A is shown in figure. The systematic uncertainty on

X is the same as that of B;,; which is 2%.

Hit Pattern

As explained earlier (sec. 5.4.3) it was necessary to know the number and position
of hit scintillators relative to each other. This information was recorded by the
variables hp; and hp, for the first and second walls respectively. Table 5.2 shows
the possible values of hp; 5. Only events with 0 < hp; o < 100 were analysed
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‘ ‘ meaning ‘

1 no neighbours hit
+n n of the 2 bars at each side hit
-10 | the bar has been combined with a side neigbour
+10n n of the three bars behind hit
100 one of the 2 bars diagonally in front hit
200 bar directly in front hit

Table 5.2: Hit Pattern decoding information
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Figure 5.16: The prompt time cuts and Eg,, threshold are shown by the red lines.
The top two panels show Eg,vs. t for the first and second wall NN events, the
bottom two panels show the NP events.

as other numbers correspond to the same interaction and analysing such events
would result in double counting. In these cases the energy deposited in the
neighbouring scintillator is added to the analysed event and the hit position is

averaged between the two.

Prompt and Random Events

In order to apply a background subtraction (sec. 5.5.1) it was necessary to define
prompt timing regions where we could expect to find quasi-elastically scattered
neutrons from the target and random timing regions, where random coincidences
only were expected. To allow a random background region to be analysed under

the application of kinematic cuts, the time of flight for the random region had to
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be offset to fall in the same range as the prompt region and thus have the same
range of kinetic energy. The variable NoS; o (table 5.1) refers to the degree of
shift of the random coincidence region in order to bring it into the same range as
the prompt region and is by definition equal to zero for the prompt region.

There were four possible combinations of prompt and random events from the
two polarimeter walls, i.e. first-wall prompt, second-wall prompt (PP); first-wall
prompt, second-wall random (PR); first-wall random, second-wall prompt (RP);
first-wall random, second-wall random (RR). An output TTree containing all
the variables shown in table 5.1 was required for each combination.

Figure 5.16 illustrates the prompt cuts used in the analysis: 26.5 < t; < 30
ns and 39.5 < t5 < 48 ns. The plots show the energy deposited in the scintillator
versus the time of flight for both the first and second wall and NN and NP type
events. The band of low Eg, which span all of the time-of-flight spectra are
random coincidences mainly from ~-ray interactions, the effect of these events on
the measured asymmetry is discussed in the following section. A low threshold
cut of Ej,, > 5MeV and Ej,, > 400channels was also applied, this gets rid of a
large amount of the background while losing very few real events.

5.5 Calculating Asymmetries

The previous section described how TTrees were produced with the relevant
event information for creating and analysing the asymmetry A (x) described by
equation 4.7. At this point a total of 56 TTrees were produced : 2 x 4 x 7
= (neutron in second-wall +proton in second-wall) x (number of prompt/random
regions) x (number of magnetic fields). For each magnetic field an asymmetry
was produced along with a precession angle. The process of calculating these
asymmetries is described in the rest of this section.

Figure 5.17 shows an idealised ¢!, distribution, where ¢/ is the azimuthal
scattering angle of the incident neutron (fig. 4.9). The variable X = a PP} is
the product of the analysing power, electron beam polarisation and the transverse
neutron polarisation, (eqn. 4.7) . In the case of the experimental data we use
yields, instead of cross-sections, as the solid angles, luminosity etc. cancel in
the asymmetry. The relation Ny (¢],) = No (1 + X sin¢))) (red line), shows the
ideal distribution for a polarimeter with full ¢/, acceptance. Our polarimeter had
a limited acceptance related to the geometry of the two frames of scintillator in the
second wall. In this case (blue line), we get Neyp (1) = Npuu (¢,) Q (¢),) where
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Figure 5.17: Idealised diagram of the ¢! distribution. The red line shows the
case for full ¢/ acceptance, while the blue line for an acceptance similar to the
polarimeter. The full lines are for beam helicity h=+1 and the dashed for h=-1.
The experimental distributions go to zero at 0, m and 27 because there is no
second wall acceptance at these angles (2 = 0).

Q(¢),) is the fraction of the ¢! range within the acceptance. Helicity flipping
(h = 1), of the beam causes P}’ — —P and so Ny, flips to the dashed curve
and Nt (¢!) — N~ (¢, + 7). When the yields are combined to give B and C
(eqn. 5.10), with ¢! shifted by m so 0 < ¢!, < 7, the helicity flipping cancels any
differences in geometry and counting efficiency between the two frames and so we

get Qp (¢)) = Qc (¢],) and the acceptance will cancel out in the asymmetry :

A YN GIN G m) = NG TN (0) _ Bgh) = C(n)
n \/N+ ¢/ +7r —|—\/N+ qg/ —|—7T)N (d’ln) B((;S )—|—C((¢’))
5.10

The four azimuthal angular distributions used to calculate A (x) for each magnetic
field are :
Nt (¢)) = positive helicity and 0 < ¢/, < 7.
~ (@) = negative helicity and 0 < ¢!, < 7.
N+ (¢l + m) = positive helicity and 7 < ¢!, < 2.
~ (¢, + m) = negative helicity and 7 < ¢/, < 2.
These were combined as in equation 5.10 to produce the distributions B (¢),)
and C' (¢!,) which were subject to kinematic cuts and a random background sub-
traction which is described below. The statistical uncertainty of these histograms

is discussed in appendix A.
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Figure 5.18: A one-parameter sine fit to the ¢; asymmetry distribution. The
resulting amplitude X is shown.

Asymmetry from fitting A (¢/,) distributions

Rewriting equation 5.10 one obtains :

! B(¢,)=C(¢1,)
Alen) = Bhraeh

)
)
Ne[(LEX sin )~ (1= Xsin g )0(0) v o
Nol(Tr Xom o) (- Xsmg () = - Sy (5.11)

A one-parameter sinusoidal fit to the histogram A (¢,) gives the amplitude X,
which for a particular spin precession angle gives A (x). This asymmetry is actu-
ally the product of the effective analysing power, the beam polarisation and the

transverse neutron polarisation :
A(X) =X () = aeprPePs (x) (5.12)

Examples of this fit for data taken with precession magnet currents of 400 A
are shown in figure 5.18. The large increases in uncertainties at ¢! close to 0 and

180° results from the finite polarimeter acceptance in azimuthal angle.

5.5.1 Random Background Subtraction

When detecting neutrons by time-of-flight any real neutron signal in the polarime-
ter will be contaminated by random coincidences with the electron spectrometer.

If B and C are the total ¢! distributions (i.e. containing both real and ran-
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Figure 5.19: Time-of-flight to the 2nd polarimeter wall (¢5) versus the 1st (¢;) in
ns. The good neutron scattering events are in the cluster marked (a), the other
features are explained in the text. The full red and blue lines show the prompt
timing cuts for ¢t and ¢;. The resulting projections on the ¢; and ¢, axis are used
to fit the RP and PR background respectively. The dashed blue line shows the
region used to fit the RR, 5 region.

dom coincidences) and Rp ¢ are the contribution from just random coincidences,
then the real neutron scattering asymmetry and the asymmetry of all events are

related via :

— (B=Rp)=(C=Ro)
Areal — (B RB)JF(C,RS) (5 13)
= o — Qoo (5.14)
~ Rp — Rc
_ B—C. _
Aall — BFC ran — -RBTRC (515)
and the real-to-random ratio, r = Rﬁigo' Equation 5.14 shows that random

background events cause dilution of the real asymmetry by a factor of (1 — %)
In addition any asymmetry in the background itself, A,,,, will lead to an offset
from the real asymmetry. By subtracting the random contributions from the total
azimuthal distributions, as in equation 5.13, both these effects are corrected.
Figure 5.19 shows the time of flight for the first and second scintillator walls
plotted against each other. The horizontal band (b), shows events that have a
random signal in the first wall and a real signal in the second wall (RP). The
vertical band (c), is prompt events in the first wall and random in the second

(PR). The intersection of these bands is the region of real neutron scattering

85



events (PP). The four regions outwith the aforementioned bands (d) contain
random events in both walls (RR). An additional diagonal band (e) is the result
of a relativistic particle interacting in both the first and second wall.

For each of the different random regions (RP, PR, RR), the amount of random
events polluting the real signal was estimated by a fit to time-of-flight spectra
using a function parameterising the signal and background. Examples of the

resulting fits are shown in figure 5.20 and details are given below :

e For RP events (b), the first wall time-of-flight spectrum ¢;, was created with
a cut on prompt timing events in the second wall. The random background
was then approximated by a 2nd degree polynomial and the neutron signal

by a Gaussian (panel (i)): RP (t;) = pi + paoty + p3t? + pyexp (7—(t12;:5)2>

e For PR events (c), the second wall time-of-flight spectrum ¢, was created
with a cut on prompt timing events in the first wall. ¢, was offset by -40ns
so that over the prompt timing region the fit is dominated by a constant
offset and minimises the contribution of the other background polynomial
parameters. The random background was approximated by a 3rd degree
polynomial, the small relativistic particle peak by a Gaussian and the neu-
tron scattering signal by a three parameter Landau® function L (¢5) (panel

_ _ 2
(ii)) : PR (t2) = p1 +pata +psts +pat® + L (ta, ps, b6, pr) +ps exp <%)

e For RR events two stages were required. Firstly a ¢ spectrum cut on
a random t; region, with the same width as the prompt timing region
(dashed blue line in fig. 5.19) was fitted with a 3rd degree polynomial
background and a Gaussian(panel (iv)): RRy (to) = p1 + pota + psts + pat® +
D5 €XP (_(t;T_ffi)?> . This parameterisation was then weighted with the result
of a fit to the ¢;, random-random spectrum RR; (t1), panel (iii), which had
the same form as RP (t1), to account for the random ¢, region used for the

ty fit having a slightly reduced background compared to the prompt region.

Random ¢!, distributions RP;, PR;, RR;® from events with time of flight outwith

the prompt cuts, were created in parallel with the prompt data PP;, to determine

5A Landau distribution is an asymmetric probability density function characterised by a
narrow peak and a long tail to one side. The 3 parameters are analogous to those of a Gaussian,
i.e area, most probable peak position and peak width.

SRP; is a ¢!, histogram collected from events with a random time in the first wall and
prompt time in the second wall etc., 7 refers to the bin number. For small bin width it tends
to a continuous function of ¢!, : RP; = RP (¢),).
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Figure 5.20: Fits to time-of-flight spectra in ns are shown with the blue line while
the resulting contribution from the background is shown with the red line. The
histogram of panel (i) is the projection of the region (b) fig. 5.19 on the ¢; axis.
The histogram of panel (ii) is the projection of the region (c) on the ¢, axis. The
histogram of panel (iii) is the projection of the region outwith (b) on the ¢; axis.
The histogram of panel (iv) is the projection of the blue dashed region on the ¢,
axis.

the shape of the random ¢!, distributions. These histograms were then normalised
using the results of the background fits :

tup
H:WM%mmW}:&ﬂEQﬂi
Z Z > "Ri br

where t“P, ¢!V are the upper and lower prompt time limits, bp is the bin width of
the time-of-flight histogram and n is the number of bins. R; refers to one of RP;,
PR; or RR; and the integral is over either the first or second wall time-of-flight
(fig. 5.20). The errors on the background distributions are discussed in Appendix
ALl

This procedure was applied independently to the four different combinations
of helicity and ¢/, range (eqn. 5.10). The three types of random distributions were
then combined to give the overall background distribution R;, and the random

subtracted prompt neutron scattering distribution NN; :

R, = RP! + PR, — RR}
N; = PP, — %
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Figure 5.21: An example of distributions used for the random subtraction. The
black line shows the resulting ¢! distribution used as part of the asymmetry
calculation.

An example of the ¢! distributions from the four different prompt-random
regions (PP, PR, RP, RR) and the resulting random subtracted distribution are
shown in figure . The four N; histograms can now be combined as in eqn. 5.10
to give the asymmetry distribution.

By combining the four random histograms in a similar way the contribution of
the background asymmetry A,,, to the asymmetry with no random subtraction
Aay (eqn. 5.14), was determined, the results for each precession angle are shown
in figure 5.22. These asymmetries of a few tenths of a percent give a small

correction to the overall asymmetries which range typically from ~ 2 — 10%.

5.6 Nuclear Structure Corrections

Section 2.3 discussed the transfered polarisation of the electron to the recoil neu-
tron (P) in both free n (€,e' ) scattering and quasi-elastic D (€, e/ 7) p scat-
tering. It was shown that for the Born approximation (one-photon exchange)
and scattering on the quasi-elastic peak (#,, = 0), the polarisation components
are the same in both cases (i.e. eqn. 2.35). In the real experiment we sample
data outwith both of these ideal cases and therefore corrections have to be made

to account for these deviations.

88



0.02
E o NN
0.015—
= ° NP
0.01
— 0.005— ; l
@®© o
= o S $
< S ? ¥
-0.005[—
-0.01{—
-0.0151—
PPN L. | L N B
002765 -40 20 20 40 60

1©)

Figure 5.22: The contribution of the random background to the A,; for both NN
and NP type events.
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Figure 5.23: The neutron polarisation coordinate systems defined by the virtual
photon (x,,y,, z,) and the neutron (x,, ¥y, 2, )-
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5.6.1 Kinematic Correction

Due to the large solid angles of the detectors, we also detected neutrons which
had a significant initial Fermi motion p ;- Therefore the recoil neutron momentum
p, may deviate from the direction of the virtual photon ¢ (fig. 5.23). The
polarisation we measure in the polarimeter (P") is in a coordinate system with

the z-axis along P,, whereas the polarisation components (P?) that are related

n?
to the form factors through eqns. 3.1-3.3 are given in a coordinate system with

the z-axis along the virtual photon momentum, g:

Therefore to calculate G% using eqn. 3.4 the neutron polarisation has to
be rotated back into the photon frame using a Wigner rotation [20, 52| which
accounts for the Lorentz boost between the two frames. The Wigner rotation

from the photon frame to the neutron frame is :

P = D;'(¢r) - Dy (Ow) - D: (¢r) - P

cospr —singr 0 cosfy 0 —sinfy
= singr cosgpr O | -] O 1 0
0 0 1 sinfy, 0 cos Oy
coS O singrp 0
—singr cos¢gr 0 | -P?
0 0 1
1 0 — sin Oy cos ¢or
= 0 1 —sinfy cospgr | - PT+ O (05 )(5.18)
sin Oy cos ¢ sin Oy sin ¢r 1

where ¢r is the angle between the reaction and scattering planes and fy is the

Wigner angle |76]:
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Figure 5.24: Distributions of the angles 6, and ¢g in degrees (fig. 5.23).
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Figure 5.25: The distribution of factor f for the whole data set NN and NP event.

and v (p) = Ey’;l(f) are the boost parameters of the neutron with p;, ¢, and p,

being the momentum of the initial neutron, virtual photon and struck neutron

respectively, and 6, is the angle between the recoil neutron and virtual photon.

The spin precession technique measures the mean polarisation ratio tan xy, = g—”zg
of the analysed neutron events (sec. 4.5.2). Using equation 5.18 to relate this to

the mean ratio in the photon frame :

PTL
ps  [+%E  pro_ pPr\? -
P! 1 fi Pz”+f<+<P”> rou

z

where f = sinfy cos¢r. If the polarimeter acceptance is symmetric around
its z-axis then sin @y cos ¢ = 0, the effect of the Fermi motion cancels and no
correction is required. However if there is a slight asymmetry in the polarimeter
acceptance sinfy cos pr # 0, this has to be corrected for. Figure 5.24 shows
an example of the experimental 6,, and ¢p distributions. Figure 5.25 shows
the resulting f distributions for NN and NP events with the means of these
distributions giving f = —0.0020 £ 0.0001 for both NN and NP events.
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Figure 5.26: The different contributions to quasi-elastic electron scattering. Born
: one-photon exchange. FSI : final state interaction, an exchange of a meson
between the nucleons after the electron has scattered. MEC : the photon couples
to a meson being exchanged by the nucleons. IC : excitation of the nucleon to an
intermediate A resonance state.

5.6.2 Beyond Plane-Wave Impulse Approximation

The Plane-Wave Impulse Approximation (PWIA) ignores contributions to the
electron-neutron scattering reaction from final state interactions(FSI), meson ex-
change currents (MEC) and isobaric currents (IC) (fig. 5.26). In addition rela-
tivistic corrections have to be made to a non-relativistic formalism. These contri-
butions have been included in a model by Arenhével et al [28]7, which has been
used to calculate the polarisation components as a function of scattered electron
energy (E!) and angle (f.) and also the angle between the recoil neutron and the
virtual photon 6, (Full). In addition the polarisation was calculated assuming
the Plane Wave Born Approximation with relativistic corrections(Born), thus al-
lowing the deviations due to nuclear structure to be determined. The measured
polarisation was then corrected by this deviation to allow the polarisation ratio

to be expressed in terms of the electromagnetic form factors as in equation 3.4.

Px Px meas Px Full Px Born
(F)Z(?) - (F) ‘(?) e Aty

"In this model the proton and neutron magnetic form factors are assumed to have Dipole
form and the Galster parameterisation is used for the neutron electric form factor. The Bonn
r-space potential is used for the nucleon-nucleon potential.
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NP

Figure 5.27: Distribution of ARp, to correct for FSI, MEC and IC effects (fig.
5.26)

For each event the Full and Born polarisation components are found in a pre-
compiled lookup table which consists of five bins each for E!, f, and 15 bins for 6,
[52]. This allows ARp to be estimated for each event and the distribution for the
full data set is shown in figure 5.27. The correction to the measured polarisation
is taken as the mean of this distribution giving ARp = —0.0080 4+ 0.0003 for NN
and ARp = —0.0078 + 0.0003 for NP.
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Chapter 6

Results and Discussion

6.1 Asymmetry versus Precession angle

6.1.1 Fitting the spin precession

The previous section 5 described how to derive from the raw experimental data an
asymmetry and spin precession angle for each of the seven magnetic field settings.
The next stage is to find the precession angle where the asymmetry crosses zero
Xo and thus the ratio of the transverse (P, as P ~ 0) to longitudinal (P]")
components of neutron polarisation in the frame defined in equation 5.16, by

n

using equation g—; = tan xo.

For a particulhar magnetic field setting, with an associated spin precession of y,
the asymmetry A () is directly proportional to P! (), the transverse spin after
a precession of y. After its spin is precessed the neutron’s transverse polarisation

is given by :

P, (x) = Pysin (X — Xo) (6.1)

where P, is the magnitude of the neutron polarisation and y, is the angle be-
tween the polarisation before spin precession and the initial neutron momentum
direction. Substituting this into equation 5.12, gives the asymmetry as a function

of x :

A(X) = aeppPePysin(x — xo) =p0-sin(x +pl)

A two parameter sinusoidal fit to the A () data points determines both x, = —pl
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Figure 6.1: Asymmetry versus precession angle for both NN(blue) and NP(red)
type events. The boxes show the fit results for each case.

and the product a.srP.P, = |p0|. The fit procedure used the ROOT utility
TMinuit, which essentially calls the CERN package MINUIT [77] to perform a
non-linear least squares fit. Plots of A (y) with the resulting fits are shown in
figure 6.1 for both NN and NP data. Also shown are the fit parameters with
their associated errors and the fit x2, with ndf the number of degrees of freedom
for the fit. The parameter pl, i.e. x, which leads to G is independent of c .
However if a.rr and therefore the amplitude of the sinusoid is increased, the
steeper gradient at A (x) = 0 will constrain pl more, leading to a smaller error
in G'.

To obtain the effective analysing power a. s, one must know the electron beam
polarisation P, and P,, which is the polarisation transferred to the neutron by
an electron beam with P, = 1. The beam polarisation was monitored by a Mgller
polarimeter (sec. 4.2), and for the 2001, 0.8 (G%Vyproduction runs this was
P, =84+ 3% (fig. 4.3). To estimate the transferred polarisation for the purpose
of calculating a.ss, one can use the formula of Arnold, Carlson and Gross (eqns.
3.1-3.3) with the Galster parameterisation for G% and the dipole parameterisation
for G%,. This results in P, = 0.133 , P, = 0.95 and P, = /P2 + P2 = 0.96,

_ 1p0|

which yields aerr = 557

The results are summarised in the table below.
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NN NP

Xo(°) | 8.08+£2.22 | 6.73+1.98
2= ] 0.141£0.039 | 0.118 £ 0.035
Qery PP, | 0.115 £ 0.007 | 0.083 £ 0.004

Qerp | 0.1424.009 | 0.102 + 0.005

6.1.2 Effect of Random Subtraction

The random subtraction procedure is outlined in section 5.5.1. Figures 6.2 and
6.3 show the asymmetries for each precession angle with and without random
subtraction, for both NN and NP events. For NN events the amplitude of the
sine fit is increased by about 25% while for NP events the increase is only around
a few percent. For NN events the random background mainly comes from gamma
radiation and as a result is largely independent of precession magnet field. As the
neutron detector is set at a forward angle with respect to the electron beamline
the number of these background events is quite high and therefore the shift in
the asymmetries is relatively large. For NP events, where a further coincidence
is required with a veto detector in the second wall, the probability of a random
triple coincidence from gamma interactions is very small. The contribution to
the background from charged particles interacting in both a veto detector and
scintillator bar in the second wall is more significant and highly dependent on the
magnetic field, leading to a different correction for each precession angle. The
number of these events is still small and so the difference to the distribution with
and without random subtraction is slight. Table 6.1 gives the measured values of
asymmetries, crossing points, the real-to-random ratio and the number of events
analysed for each field setting. Table 6.2 shows the resulting values of o, and

% derived from the sinusoidal fit parameters.

6.2 Proton Misidentification

A possible source of false asymmetry, leading to a systematic error in the crossing
point ., is the misidentification of protons as neutrons in the first wall of the
polarimeter, due to counting losses in the first wall veto detectors. This can create

a false asymmetry in a number of ways:

1. The proton polarisation vector will in general point in a different direction

to that of the neutron, as can be seen from equations 3.1-3.3, which would
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Figure 6.2: A,., (asymmetries with background subtraction-green) and Ay,
(asymmetries without background subtraction-blue) for NN events. Also shown
are the resulting sinusoidal fits and parameters.
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Figure 6.3: A,.q (green) and A, (red) for NP events. Also shown are the

resulting sinusoidal fits and parameters.
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‘ NN ‘ X (O) ‘ Aall r N ‘ Areal

+400 | 52.524+1.05 | —0.083 +£0.010 | 5.13 £ 0.18 | 12180 | —0.093 4+ 0.013
+250 | 33.434+0.67 | —0.0374+0.010 | 5.10 £ 0.17 | 12108 | —0.037 4+ 0.013
+125 | 16.724+0.33 | —0.026 +0.009 | 4.77 £ 0.15 | 13244 | —0.032 4+ 0.013
+000 0+0 0.017 £0.011 4.3£0.15 | 9704 | 0.026 & 0.015
-125 | —=16.724+0.33 | 0.048 £0.010 | 5.03+0.17 | 12830 | 0.057 = 0.013
-250 | -33.46 £0.67 | 0.074£0.010 | 5.224+1.78 | 12686 | 0.089 4+ 0.012
-400 | -52.41+1.05 0.104 £0.010 | 5.224+1.68 | 13086 | 0.118 +0.012
NP X (°) Aan r ‘ N ‘ Areal ‘
+400 | 52.56 +£1.05 | —0.067 4+ 0.006 | 42.19 4+ 5.8 | 32864 | —0.074 £ 0.007
+250 | 33.46 £0.67 | —0.020 £ 0.006 | 24.63 £1.96 | 33820 | —0.019 £+ 0.007
+125 | 16.72+£0.33 | —0.024 £ 0.006 | 11.48 £0.48 | 38046 | —0.025 £+ 0.007
+000 0+0 0.011 £0.007 | 8.084+0.32 | 27276 | 0.014 £ 0.008
-125 | —16.72+0.33 | 0.032+£0.006 | 11.434+0.54 | 34730 | 0.039 4+ 0.007
-250 | —33.48 £0.67 | 0.063 £0.006 | 28.64 +2.88 | 35124 | 0.055 £ 0.006
-400 | -52.51£1.05 | 0.071 £0.006 | 52.89 + 3.67 | 36356 | 0.072 + 0.006

Table 6.1: The above tables summarise the calculated asymmetries, precession
angles, number of real events and the real-to-random ratio of plots 6.2 and 6.3.
Ay is without random subtraction, A,.,; is with random subtraction.

| | NN | NP |
Xo (°) 9.444+2.60 | 7.284+2.10
= ] 0.166 £0.046 | 0.128 £ 0.037
aesr PP, | 0.131 £0.009 | 0.087 £ 0.005
ey | 0.162£.011 | 0.107 £ 0.006

Table 6.2: Polarisation ratio and a, ¢ derived from the sinusoidal fit parameters,
with random background subtracted.
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Figure 6.4: Energy deposited in the first wall, Ej,, (GeV) and scattering angle 6],
(degrees) spectra for events with a veto coincidence in both the first and second
polarimeter walls i.e protons.

result in a phase shift of the A (x) distribution.

2. The application of a magnetic field along the flight path of the proton causes
a bending of its trajectory, as well as precessing its spin, so the precession

relative to the momentum direction is no longer described by equation 4.5.

3. Due to the bending, the number of protons incident on the polarimeter is
precession-field dependent, making the relative number of protons contam-

inating the sample precession-angle dependent.

6.2.1 Proton signals

To investigate the effect of protons from the L H,-target on the measured crossing
point it is instructive to look at a sample of data where first wall hits are in
coincidence with a veto detector, (i.e. charged protons) to localise the kinematic

regions where protons are observed.
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Figure 6.5: The top 3 panels(a-c) show NN events, the bottom 3 (d-f) NP events,
with the black line from experiment and red line from simulation.(a,d) are the
energy deposited in the first scintillator wall, (b,e) the neutron scattering angle
between first and second walls and (c,f) the corresponding two-dimensional plots.

The clearest signals of protons are in the energies deposited in the first wall
(Fi

dep
are shown in figure 6.4. For the Ej,, spectra the strong peak at 0.05 GeV is

) and the scattering angles between first and second walls (6,). These

from protons recording hits in both layers of the first wall, while the weaker
peak at 0.025 GeV results from occasions where a hit in one of the layers has
not been recognised. This could be due to missing the timing cut or an ADC
or TDC entry. For the ¢/ spectra the large peak at small angles is associated
with protons that interact with atomic electrons only in the lead wall and the
first scintillator wall. The bump at larger angles contains protons that have
undergone additional nuclear interactions and consequently has a similar shape
to the neutron @), distribution. The two dimensional plot clearly shows the peaks
in the one-dimensional plots are related, with the protons leaving two distinct
clusters which can be used as a marker for where proton contamination will occur
in neutron spectra. Even though protons not undergoing a nuclear reaction will
not show a scattering asymmetry, their presence can be used to estimate the
number of protons which do, as misidentification by the veto detectors should be

independent of this.
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Figure 6.6: As for fig. 6.5, but the experiment data now have deliberate proton
contamination.

6.2.2 Neutron Signals

1

dep a0d

In the case of neutrons scattering in the first wall, the characteristics of £
¢!, must arise solely from strong interaction scattering. Figure 6.5, shows the Eéep
and 0/ spectra. The black lines show the data, the red lines show the predictions
of the simulation (sec. 5.1), and the green lines are explained below. The 2-d plots
show the data only. The top three plots are for the case of detecting a neutron in
the second wall(NN) while the bottom three plots relate to a proton in the second
wall(NP). In figure 6.5:(c) showing Ej,vs 6, for the case of neutrons scattering
into the second wall a hint of the linear relation between the scattering angle
and energy deposited can be observed, which is just the relation T o sin 6!,
discussed in section 6.3.2. The peaks associated with protons in the first wall
(fig. 6.4:(a,b)) are missing from these spectra (fig. 6.5), which confirms that
neutron identification in the first wall is good. Note, the bump (and subsequent
dip) in the NP Ej,, spectrum at ~ 0.02 GeV, (fig. 6.5:(d)), is due to interactions
occurring at the back of the first scintillator layer so that the proton does not
travel through enough of the scintillator to pass the hardware threshold of ~ 4
MeV.

To test our confidence that there is no significant proton contamination of
the neutron data, we have artificially misidentified some protons as neutrons and
investigated the effect on the spectra, as shown in figure 6.6. We now observe a

clear bump in the NP 6/ plot at 5°, associated with the protons which do not
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undergo nuclear scattering. There is also a small hint of this in the NN data
but less pronounced as we still demand that there is no veto coincidence in the
second wall. The green lines show the proton spectra from figure 6.4 scaled to
the non-nuclear scattering !, peak (fig. 6.6:(e)). Applying the same scaling to
the Ej,, spectra (fig. 6.6:(d)), we see that the protons are responsible for the
slight divergence of the data from the simulation at Eéepw 0.05 GeV, which is not
present in figure 6.5:(d).

By comparing the central scattering angle region we can deduce that the
protons have contaminated the neutron signal by <1% for NN and <5% for
NP, in this artificial case. For the real neutron samples of figure 6.5 the proton
contamination is below 1% for NP events and below 0.5% for NN events. Indeed,
figure 6.5 relates to the case of no precession magnetic field and when the field is

applied the contamination is further reduced.

6.3 Comparison of Simulated and Real Data

The data from both the real experiment and simulations have been analysed
and compared in order to test the predictions of the Monte Carlo model of the
polarimeter, thereby assessing our understanding of the polarimeter set-up. In
particular, in the simulation it was hypothesised that quasi-elastic scattering on
carbon is the dominant reaction channel and that the analysing power for this was
similar to that of free nucleon-nucleon scattering. Also we wanted to determine
if there was a significant contribution from charge exchange scattering, resulting
in protons detected in the second wall with a similar analysing power as the
neutrons detected with no charge exchange. Neither of these possibilities had
been explicitly tested in previous recoil polarimetry measurements.

For a given kinematic variable two comparisons were made: firstly on the
distribution of that variable and secondly on the dependence of the effective
analysing power on that variable. The crossing point Y., should not vary in any
systematic way with any kinematic variable, apart from those associated with
the bound neutron corrections, as it is in all cases determined by the incident
neutron spin direction relative to its momentum.

In the following, events where either neutrons(NN) or protons(NP) have been
detected in the second wall of the polarimeter are separated. The two cases
have different analysing powers (fig. 4.10) and also some kinematic variables

have different meanings for the two cases. The NN events have a higher effective
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Figure 6.7: NN results for #,. The left hand plot shows the distribution for the all
simulated events(red line), simulated p (n,n') p'events (green), real events(blue)
and the random background(black line). The right hand plot shows the effective
analysing power from the simulation(red points) and data(blue points).

analysing power, while the NP events have more counts and a better real-to-

random background ratio.

6.3.1 0,

The scattering angle of the neutron in the first wall of the polarimeter can be
accurately determined, since the walls of highly segmented scintillator give an
accurate hit-position reconstruction. For neutron elastic scattering from Hydro-
gen the lab. angle is related unambiguously to the centre of mass angle -, and
thus the analysing power, (fig. 4.10). For quasi-elastic n-p scattering, as assumed
in the simple model of n +'* C' interactions (sec. 5.1.3), this relationship will
be smeared out due to the effects of nucleon fermi motion. At an incident neu-
tron momentum of ~ 980 (Me\/), obtained at Q% = 0.8 (%)2, this smearing

c

is not small as the typical Fermi momentum in carbon is ~ 220 (Mg\/). The
cross-section for the quasi-elastic channels is an order of magnitude larger than
for scattering on hydrogen and therefore the former channel provides the domi-
nant contribution to both the kinematic distributions and the effective analysing
power. The comparison of simulation and data should therefore show if the simple
n-p quasi-elastic scattering model is a reasonable assumption.

The results for NN and NP events are shown in figures 6.7 and 6.8 respectively

and are discussed in the following.
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Figure 6.8: NP results for #],. The left hand plot shows the distribution for the all
simulated events(red line), simulated p (n,p’) n'events (green), real events(blue)
and the random background(black line). The right hand plot shows the effective
analysing power from the simulation(red points) and data(blue points).

Yields as a function of ¢,

For NN events (fig. 6.7), the simulated ¢/, distribution is shifted slightly to small
angles. This is largely caused by NP events, which pass under the second wall veto
detectors and hit the bottom of the neutron detectors, being thus analysed as NN
events. These events occur both in the simulation and the real data. However,
their hit position in the simulation is known exactly, whereas in the real data
the vertical coordinate of the horizontally aligned bar is unknown and thus the
middle y and z coordinates of the bar are taken (sec. 5.2.4). This corresponds to
a shift in hit position of greater than 10cm (half the vertical dimension of the bar)
and in @), of greater than 1.7°, for a 3 m separation of the first and second walls.
Apart from this special case, any shift in the 8/, distribution resulting from taking
middle coordinates as the hit position cancels as the angular variation is relatively
slow, giving a similar number of events above and below the middle vertical point.
The measured 6], does not enter in the calculation of the asymmetries and so the
data does not need to be corrected for this effect.

For NP events (fig. 6.8), there is not a corresponding problem and the two

distributions are almost identical.

a.rr as a function of 6],

For both NN and NP events the simulated 6], dependence of a.ss is consistent

with the analysing power angular dependence of figure 4.10, bearing in mind the
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Figure 6.9: NN results for R,,. The left hand plot shows the distribution
for the all simulated events(red line), simulated p(n,n’)p’events (green), real
events(blue) and the random background(black line). The right hand plot shows
the effective analysing power from the simulation(red points) and data(blue
points)

polarimeter acceptance. For NN events that is approximately ¢/ (10 — 30°) =
Ocar (20 — 60°) and for NP events 6] (10 — 30°) = 0o (160 — 120°). For NP
events the agreement with the real data is particularly good, which is perhaps
surprising considering the simple nature of the quasi-elastic model. The implica-
tion is that the quasi-elastic events do indeed have a similar analysing power to
free n-p scattering. For NN events, the simulation does not match the data quite
as well, although in the high acceptance region (15 — 30°) it is still a reasonable
agreement. These results show the signal from NP scattering events is better
understood than for NN, this is probably due to the detection of protons in the

second wall being much “cleaner” than the detection of neutrons.

6.3.2 Kinematic Variable R,,

When considering elastic scattering on hydrogen we can calculate the energy of
the recoiling proton 77 using two methods that are independent of time of flight
measurements. The first is from the energy deposited in the scintillator, the sec-
ond from the scattering angle #, and the incident neutron energy 7,, reconstructed

from the photon information and neutron hit position, i.e :

T, =E, =T,sin®0,
Ty, sin? 6, ; 1
Ry, = =Zr—= =1 (elastic scattering)
dep
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Forming a ratio of these gives a dimensionless variable R,,, that is ~ 1 for the
case of elastic NN scattering on hydrogen, shifted slightly due to the non-linear
light response of the scintillator. Additionally, the recoiling proton will not be
stopped in the scintillator in some cases, resulting in Eéep being less than the full
T}, equivalent.

Using this variable allows the contribution of elastic neutron-hydrogen scat-

tering to be emphasised.

1

For NP-type events this relation will no longer hold as Ej,,

is effectively a mea-
sure of the path length of the proton in the scintillator, which is just dependent
on where in the scintillator the charge exchange interaction occured. Therefore,
events occurring at the front of the first wall will have small R,,, values and those

at the back will have large t,,,.

Yields as a function of R,,

The NN distribution (fig. 6.9) has two main components. The first is from
elastic scattering events at R,, = 1, and their simulated contribution is shown
by the green line . The second is from the n +'2 C, quasi-elastic events, where
the R,, correlation will no longer apply due to the struck nucleon’s initial Fermi
momentum, giving these events a broadened distribution. A quasi-elastic shoulder
is just visible in the real data and more clearly in the simulated data at R,,, >~ 0.6.
That it is smaller in the real experimental data implies the quasi-elastic cross-
section may be overestimated relative to the elastic scattering, in the simulation.
Most of the width of the elastic scattering peak is due to the non-linear light
response (sec. 5.1.4), of the scintillator.

For the NP events (fig. 6.10) the experimental and simulated yield distribu-

tions again agree well.

a.f¢ as a function of R,

The NN analysing power for simulated and real data shows a large degree of
scatter so that it is difficult to draw any firm conclusions as to the systematic
behaviour. Around R,, >~ 2.5 the real data does not show the pronounced “max-
imum” of the simulation. The reason for this structure in the simulated data is
the large number of small 6¢y7, and therefore large . s events generated by the
model in this R,, region. Two possibilities as to why the simulation does not

reproduce the data are,
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Figure 6.10: NP results for R,, with the same key as for 6.8. The left hand
plot shows the distribution for the all simulated events(red line), simulated
p(n,p')n'events (green), real events(blue) and the random background(black
line). The right hand plot shows the effective analysing power from the simu-
lation(red points) and data(blue points).

1. The relation of R, to ¢y resulting from the simple model is not correct.

2. The relationship between analysing power and 6qj; does not hold exactly

for quasi-elastic scattering.

This is consistent with the low a.s; of the real data for small §], seen in figure
6.7.

The NP analysing power increases for both the data and simulation which is

1

dep> Which is now only a measure of the

expected, since a,sy will not vary with £
path length of the proton in the first wall. The variation then arises mainly from

the sin” 6/, dependence, as is seen from figure 6.8 where « s rises with increasing
0.

6.3.3 Energy loss of the projectile

The energy loss of the projectile nucleon in the first wall scattering process, {2, can
also be used to investigate the quasi-elastic model. Similar work has been done
using this variable using polarised quasi-elastic scattering with incident protons,
giving a comparison for the current work. €2 can be calculated for NN events by
the subtraction of the scattered nucleon energy T, from the incident neutron
energy 1,. For NP events things are not so straightforward as the proton will
lose energy in the scintillator wall before its energy is evaluated through time

of flight between the first and second walls. Thus in addition to the scattered
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Figure 6.11: NN results for energy loss 2. The left hand plot shows the distri-
bution for the all simulated events(red line), simulated p (n,n') p'events (green),
real events(blue) and the random background(black line). The right hand plot
shows the effective analysing power from the simulation(red points) and data(blue
points)

1

dep> Should also be sub-

proton energy, the energy deposited in the first wall £
tracted. At high energy losses final state interaction(FSI) or meson exchange
current(MEC) effects may be significant and in this case the analysing power can

be quite different to that from free nucleon-nucleon scattering.

Yields as a function of (2

The simulated distribution, which has mainly quasi-elastic events, has been shifted
to larger energy loss by 30 MeV for NN events and 25 MeV for NP events in order
to match approximately the peak positions. It has been observed in previous
investigations of quasi-elastic nucleon scattering [78|, that the peak in the Q dis-

tribution is shifted from the position of free (p,n)!

scattering which is a just
dependent on the scattering angle, by around 25 MeV for a '2C' target. The
peak position for free and quasi-elastic scattering are the same in the simulation.
Rosenfelder [79] showed that this is expected where distortion and correlation
effects are neglected as is the case of the present model. Pandharipande et al [80]
and Wambach [81] have suggested that the cause of the shift is the additional
energy required to convert a proton to neutron in the presence of a nuclear po-
tential. This however does not explain the shift in the (n,n) channel, which has
not previously been investigated, and no shift is observed in (p,p) experiments

[78].

Inotation implies proton incident on the nucleus, neutron scattered out.
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Figure 6.12: NP results for energy loss €2.The left hand plot shows the distri-
bution for the all simulated events(red line), simulated p (n,p’) n’events (green),
real events(blue) and the random background(black line). The right hand plot
shows the effective analysing power from the simulation(red points) and data(blue
points).

a.rs as a function of

The shape of the 2 dependence of the analysing power for NN events is well
reproduced by the simulation, although it is systematically underestimated in all
bins, in particular for the two highest energy loss points. For NP events, the
simulation and data again agree well for {2 < 0.13 GeV, but for 2 > 0.13 GeV the
data and simulation diverge. The calculated increase in a.fr with 2 is related
to the @/, acceptance, as the energy loss of a projectile increases with increasing
scattering angle. At high 2, quasi-elastic scattering is not a good approximation
as additional energy may have been lost through FSI or MEC and in these cases
one would expect a dilution of the analysing power, which is observed in the data.
De Pace and Viviani [82] deduced that the effect of two-step processes (FSI) is
to first order twice as significant for charge exchange processes, since these may
proceed in either the first or second scattering.

The '2C (P, n) reaction has been measured [83, 78] at similar nucleon en-
ergies to the present experiment and some results from [78] are given in figure
6.13, showing differential cross sections and analysing power (A,) as a function
of w(=€Q). The displayed data was evaluated for two particular momentum
transfers, (or equivalently scattering angles) and the cross-section plots compare
the data with results of a model calculation for single (dashed curve) and two-
step (dotted curve) scattering as well as their sum (full curve). The calculations

have been shifted to match the broad measured quasi-elastic peak, as explained

109



e
2

— 03 = R S w—— -

o
o
T

— r 2C 495 MeV #C(p.n) 495 MeV :
% 05 f. 14° (1.33 fm™) 22° (2.07 fm™) |
= Tt

B oosa | =
\ L
r 0.3 3 2 - R\
\E, T F 4 AN
I o2 | AN e

- L N\
S N

b 0.1 AN -

0.0 :_4. L 1 1 B Ty

o
3

T T

0.1

0.1

0.0 U SO S T ST S | PREFIES SO ST U AT

0.0 .
0 50 100 150 200 250

w {(MeV)

Figure 6.13: Differential cross sections and analysing powers for 2C (77, n) from

[78].

above. At high 2 two-step processes become important and the model signifi-
cantly underestimates the measured cross-section in this region, implying either
that two-step processes are underestimated or that other neglected nuclear effects
are significant.

The A, plots (fig. 6.13), show the experimental results, along with a full
line showing the result for free NN scattering and a dash-dotted line showing
the calculations of [84]. In the region where two-step processes are predicted
to dominate, the measured analysing power falls below the value of free NN
scattering. In figure 6.12, the divergence of the measured data from simulated
aerp (), for Q > 0.13 GeV, would seem to be linked to the present model’s neglect

of final state interactions, or other nuclear effects such as meson exchange.

6.3.4 Conclusions on the simulation

The Monte Carlo simulation and experiment largely agree on kinematic distribu-

tions and effective analysing powers, particularly when detecting protons in the
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second wall of the polarimeter. This gives confidence that the analysing reactions

are understood :

e (Quasi-elastic scattering on carbon is the dominant analysing reaction in the

polarimeter.

e Detecting protons in the second wall allows analysis of scattered neutrons

that undergo charge exchange interactions in the first wall.

e The effective analysing power can be reasonably well modelled by assuming
the free nucleon scattering analysing power and introducing Fermi smearing

of the scattering angle.

e The NP data gives results more consistent with the simulation than the
NN data. It therefore seems to be a “cleaner” polarised nucleon scattering

signal.

e The simulation finds the analysing power for NP to be approximately 70%
of that for NN, similar to the results of the data.

However these investigations have not yielded any clear kinematic cuts which
might be used to enhance the neutron scattering asymmetry and as a result no
kinematic cuts will be applied to the final analysis.

The models employed may be of use for planning future neutron polarimetry
experiments in this or higher energy ranges. However for projectile energy loss
(€2), the simulation does not predict the measured peak position or high Q, a.ry
behavior, which is consistent with the model’s neglect of nuclear distortions and
quasi-elastic multiple scattering(FSI). It would be possible to account for these
effects in the quasi-elastic model by input of the measured €2 shift as a function
of incident energy and scattering angle, and also by input of the FSI cross section

which could be taken from calculations (e.g. [78]).

6.4 Final Result

The ratio of recoil neutron polarisation components i—fz has been determined in
the reference frame defined by the recoil neutron (eqn. 59) To determine G via
equation 3.4 requires firstly the application of the nuclear structure corrections
of section 5.6 and then the determination of two further factors: the neutron

magnetic form factor G, and a kinematic factor K (Q?). G% is then given by:
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Figure 6.14: (Q? distributions for sampled NN and NP distributions with Gaussian
fits.

; ; P,? Born
G (@) =K (@) 6 (@) (1) (62)
The distributions of Q? for the events sampled is shown in figure 6.14. Fitting
2
with a Gaussian yields mean values Q? = 0.79 + 0.03 (%) for NN and Q? =

2
0.794+0.03 (%) for NP with o the width of the Gaussian.

6.4.1 G, (Q2 = 0.79 (G%V)Q)

The value for G, (Q2 =0.79 (G%;V)Z) used here has been taken from the contin-
ued fraction parameterisation of Kubon et al [14], which has been discussed in

section 3.2. The parameterisation has the form:

n 22
G (@) = g

2
1420

with the fitted parameters, b...bs = 3.26, —0.272,0.0123, —2.52, 2.55 (@)2.
The quoted error on the fitted function is 1.1%, which gives G, (0.79) = —0.449+
0.004.

In previous double polarisation experiments the dipole form factor (eqn. 3.5)
has been used to estimate G7,, which at this Q? gives a value of u,GP (0.79) =

—0.428. The value from the constant fraction parameterisation is 4.9% larger.
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6.4.2 K (Q?

The distribution of K (Q?) = \/7' + 7 (1 +7) tan? (%) over the complete data set
is shown in figure 6.15. For determining G, the mean values of K have been
used : K (0.79) = 0.705 £ 0.014 for NN and K (0.79) = 0.705 £ 0.012 for NP.

6.4.3 G

A summary of the contributing factors and the results for G, is given in table
6.3, for NN and NP separately. The results for each are in good agreement with

each other (within 1o). Combining both these results leads to a final value of

2
= (0.047 +0.009) at Q* = (0.791 % 0.034) (G )"

6.4.4 Systematic Uncertainties

One advantage of the present experimental technique is that a large number
of systematic uncertainties cancel to first order in the polarisation ratio when
equation 4.7 is used to calculate the asymmetry. The flipping of the beam helicity
essentially gives two asymmetry experiments with the top and bottom second wall
scintillators. Individually these experiments will have the same neutron detection
efficiency for the two different helicity states and so the detection efficiency cancels
in the asymmetry. Luminosity fluctuations are also negligible as the helicity is
flipped on average every second.

An advantage the current A1 Hall MAMI experiments had over the previous
MAMI A3 measurements was an accurate reconstruction of the reaction Q?. The
high resolution magnetic spectrometer gives a momentum resolution of below
104
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| | NN | NP |

Q? 0.791+0.034 | 0.792+0.034
—- 0.166 & 0.046 0.128 £ 0.037
7 | —0.0020 £ 0.0001 | —0.0020 + 0.0001
N Tl
(%) 0.164+0.046 | 0.126+0.037
AR, | —0.0080 = 0.0003 | —0.0078 + 0.0003
¢\ Born
(%) 0.172+0.046 | 0.134+0.037
K(Q%) | 0705+0.014 | 0.705+ 0012
G (QY) | —0449+0.004 | —0.449 + 0.004
Gi(Q) | 00540014 | 0.042%0.012

Table 6.3: Summary of contributing factors and final results. % is taken from
full :

table 6.2; f (sec. 5.6.1) is added to this to give (P”?) ; AR, (sec. 5.6.2) is

P

q

Born
added to this to give (%) ; eqn. 6.2 is then used to determine G.

Uncertainties can also arise from particle misidentification which can lead to
measuring a combination of neutron and proton polarisation. The contribution of
the misidentified protons was discussed in section 6.2 and found to be at most 1%
for NP events and 0.5% for NN events. The mean polarisation ratio of protons
is related to the ratio of form factors in the same way as for neutrons and using
the result of [85] % = 0.95 £+ 0.015, gives (%)p = 0.753. Assuming this gives
a 0.5% contribution to the NN events and a 1% contribution to the NP events,
the measured G7 is shifted by only -0.001 and -0.002 respectively, (i.e. -2% and
-5%).

A similar uncertainty can occur from protons ejected from the liquid deu-
terium target undergoing a charge exchange interaction before reaching the first
wall of the polarimeter, resulting in neutrons with essentially the same polarisa-
tion as the initial protons. The main source of such neutrons would be the lead
shielding positioned in the gap at the entrance to the precession magnet. In the
analysis of the Q* = 0.3 and 0.6 (%)2 data [52] the combined yield of these
neutrons and misidentified protons was estimated by analysing data taken with
a liquid ' H target. The fraction of these false events was found to be 0.5% and
1.1% for NN and NP respectively, which is similar to the upper limit found for
misidentified protons alone in this analysis. In [20] the systematic uncertainty
from p — n reactions in the lead shielding was given as 1%. It is hoped to

eventually simulate this effect using the differential quasi-elastic Pb(p,n) cross
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section which has been measured [78| at similar incident energy. This would also
require the simulation of the neutron double coincidence detection efficiency to
determine the total yield of neutrons and in addition the ratio of quasi elastic
(e,e'n) to (e, e'p) cross sections which have been determined in a measurement
of G%, analysis [14], to give the luminosity of protons incident from the target.

The experimental uncertainty in G, also leads to a systematic uncertainty in
G. The fit by Kubon et al [14]| on recent high precision measurements of G, is
estimated to have an uncertainty of 1.1%.

The systematic uncertainty on the precession angle x is discussed in section
5.4.3. Tt is mainly due to the uncertainty of the integrated field which is 2%.

Combining these contributions the overall systematic error is estimated to be

+g ;g’ for NN and +‘;’ ;g’ for NP data and ggg’ combined.

6.5 G versus )’

6.5.1 Experimental Data and Phenomenological Fits

The result of this analysis gives the highest ) data point obtained for a double

polarisation experiment at MAMI. Figure 6. 16 shows the current status of exper-

imental data. The present Q* = 0.8 (GeV) data point is consistent with the

M)Z
C

trend of the previous data. After rising steeply to a maximum at ~ 0.25 ( ,

2
G falls off slowly with @Q? in the range Q* < 1 (%) .
The displayed data set shown has been fitted with the commonly used param-

eterisation [21]:

. 1 2
B (@) = g @e (@) with 60 () = m and 7 = 46\24,%

(6.3)

0.71

The derivative of 6.3 at Q* = 0 is related to the mean squared charge radius

(rg), as given in equation 2.1.5, so that :

(dG%Q(% 4M2 - "< £

Using the precise measurement of [15]; (r%), = — (0.113 £ 0.003 £ 0.004) fm :
fixes a = 1.73 (Ge\/) which leads to a fitted value of b = 4.4 0.9 (Ge\/)
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Figure 6.16: G% data from polarised experiments (see fig. 3.4 for references)

2
including the new MAMI A1 data (red squares). The Q% = 0.3 and 0.6 (@)

data are from [52]. Also shown are the original ad hoc Galster fit [31] to unpo-
larised data (black line) and the new fit to the polarised data with one(red) and
two(blue) free parameters.

On the other hand taking a and b as a free parameters results in the values
a=12=£0.2 (@)2 and b =7.94+3.3 (%)2. Which is not consistent with
the measured (r7),, but as yet gives very little restriction to (r%), as the data
are at too high a Q7.

These fits agree very well with the preferred Galster fit (sec. 3) where not

allowing for a variation in the slope of G% at Q? = 0, essentially fixed a =
—92 —2
—kin =191 (@) and found b = 5.6 (@) . This must be regarded as a

UN
coincidence though, the results of Galster cannot be taken too seriously due to

the limitations of the deuteron wave functions available at the time.

Pion Cloud and Constituent Quarks

A recent paper by Friedrich and Walcher, which included the preliminary re-
sults of this analysis, has suggested a new parameterisation for G'%, which has a
straightforward interpretation with respect to nucleon structure in terms of a pion
cloud and constituent quarks [86]. They hypothesise that the Galster parame-
terisation does not describe the data ideally, in particular it does not allow for a
perceived “bump” in the data around 0.2 < Q? < 0.4 (%)2. They also point
out that there is no real physics motivation behind the Galster parameterisation

as it merely allows the dipole parameterisation to tend to zero at Q? = 0. To fit
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Figure 6.17: The double polarisation data with the Galster fit (a=1.73, b=4.4)
(blue) and the Friedrich-Walcher fit(red).

the “bump” they include an extra term to equation 6.3 :

a@Q? N dQ?
(L+0Q° +¢Q")  (14eQ?) (1+ /@2’
For their fit they fixed a and d to give the correct (r%), , e and f were fixed at

) -2
0.5 (%) , the remaining parameters b and ¢ were found to be 6.02 (%)

G (@) =

(6.4)

and 229 (%)10 respectively. Both the Galster fit of section 6.5.1 and the
Friedrich-Walcher fit are compared to the data in figure 6.17. The experimental
uncertainties are such that the data shows no clear preference for either curve.
After establishing that such a fit gives a reasonable agreement with the data
it was then shown that its features can be described by viewing the nucleon as a

superposition of a bare nucleon with a pion cloud:
n=a,n’+b, (p+7) and p=a,p° +b, (n" + ")

The form factors are then given by the sum of the form factors of the constituents,
which for the bare nucleons are related to dipole form factors of the constituent
quarks. The “bump” in the G% data is then a result of the (p® + 7~) contribution,
while the large Q> > 1 behaviour is dominated by the bare neutron.

An advantage of this picture is that it fits all four nucleon form factors G%,,
G%;, G and G, remarkably well. G%,, G%, and G%,; have been measured to a

much greater accuracy than G’ and these all show a similar structure in the
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Figure 6.18: The neutron charge distribution taken from Kelly [18] (left) and
Friedrich-Walcher [86] (right). (The difference in y-scale is possibly due to a
factor of 47). The distribution from the Galster fit to double polarisation data is
shown in red in both cases.

Q?~ 0.3 (@)2 region.

Neutron Charge Distribution

One of the key reasons for interest in G% (Q?) is it’s relationship to the distri-
bution of charge in the neutron p(r) (sec. 2.1.6). Kelly [18] asserts that this
relationship is not given by a simple Fourier transform, but in fact a relativistic
Fourier transform is required. The result of such a transform is shown in figure
6.18(left) along with the non-relativistic Fourier transform of a Galster fit. The
filled region indicates the uncertainty due to experimental accuracy and transfor-
mation procedure.

Friedrich and Walcher also transform their G% (Q?) results to p (1) using non-
relativistic Fourier transform as shown in figure 6.18(right), for their fit given in
the previous section. With respect to their model a small r peak is given mainly
by the bare neutron and has a form similar to that of the Galster line, while
the extended negative charge distribution is a result of contributions from the
negative pion cloud and differs significantly from the Galster curve.

Overall the interpretation of the neutron charge distribution and indeed how
it relates exactly to the electric form factor is still unclear and although much

progress is being made in this area more accurate data is still essential.
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6.5.2 Theoretical Models

Quantum Chromodynamics(QCD) is a quantum field theory where quarks, the
elementary constituents of hadrons, interact via the exchange of spin-one bosons
called gluons. The quarks are subject to two main constraints: that they are
confined in colourless hadronic states?; that they interact weakly at very small
distances(asymptotic freedom). At very high momentum transfer equivalent to
very small distances, QCD may be solved pertubatively. The scaling behaviour
of the form factors in the limit @? — oo can be predicted from pertubative
QCD (pQCD). Brodsky and Lepage [87] predicted a @~* and Q=% dependence

for Fy and F, respectively (see eqn. 2.15) and therefore a Q* dependence in the

Q Fy __
Fy -

wave components of quark orbital angular momentum, has given a modified ?

QF
Fy

(Q* measurements of the proton form factor ratio [89].

ratio : const. More recently Ralston [88], from consideration of non S-

dependence of the ratio showing = const. This is consistent with recent high

At the nucleonic scale (~ 1fm) QCD may not be solved pertubatively and one
has to resort to models to describe the nucleon. Any credible model must be able
to predict the nucleon form factors. In general nucleon models are particularly
sensitive to the small neutron electric form factor and a large variety of models
and predictions for G can be found in the literature; all the models are effective
theories that have many parameters which are adjusted to fit the data. A selection
is shown in figure 6.19, along with the model-independent double-polarisation
experimental data.

The best comparison to the fit at both high and low ? is given by the Soliton
model of Holzwarth [1]| (e in fig. 6.19) which also gives excellent agreement with
the proton form factor ratio [89]. Holzwarth modifies the standard Soliton model
which is an effective (pionic) field theoretical model, by inclusion of vector meson
dominance contributions (VMD). VMD allows the virtual photon to couple to
the nucleon through vector mesons (e.g p, w, ¢), which have the same spin-parity
as the photon.

The dispersion theory result (f) [90] and the Goldstone-Boson Exchange Con-
stituent Quark Model (GBECQM) (c) [91] both yield similar results. Though
the shape is similar to the Soliton model the curves are systematically below the
data. The Dispersion Theory approach is an attempt to simultaneously param-

eterise all four of the nucleon form factors by a fit of the available data subject

2Quarks carry a colour charge of either red, blue or green.
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to the constraints: inclusion of the two-pion continuum in the isovector spectral
functions, the neutron charge radius determined from low energy neutron atom
scattering and the pQCD scaling. It is not surprising then that this parameter-
isation underestimates G7, as the parameterisation of Platchkov et al with the
Paris potential [21]| (fig. 3.4) which is well below the double polarisation data
was used for the fitting.

In the GBECQM the effective degrees of freedom are constituent quarks® and
Goldstone-boson fields, the nucleons can then be considered as systems of three
constituent quarks interacting through the exchange of Goldstone-bosons, which
manifest themselves as an octet of pseudoscalar mesons.

The rest of the models fail to predict the clear maximum in the measured G,

2
at Q% ~ 0.3 (@) , instead they predict G increases in the range 0 < Q? <

1 (%)2. For Q* > 0.3 (%)2 the model of Cardarelli and Simula [92](b)
which is a relativistic constituent quark model fits the data reasonably well. In
addition to constituent quarks this model allows the breaking of SU(6) symmetry,
thus allowing a non-zero G, .

The VMD model of Gari and Krumpelman [93](d), which includes coupling
to the ¢ meson and also assumes the pQCD scaling of Brodsky and Lepage, is
low for Q% < 0.3 (@)2 and high for Q? > 0.8 (@)2. However, it clearly fits
the data better than model of the same authors with no ¢ meson [94] (a).

To summarise only the Soliton model, dispersion theory and the CQGBE pa-
rameterisations give a reasonable shape for G% in the range 0 < Q% < 1 (%) 2.

The Soliton model also agrees well with the magnitude of the experimental data.

3Constituent quarks are assumed to be pointlike particles with masses ~ 300MeV .
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Figure 6.19: Comparison of various theoretical models of the nucleon with the
model-independent double polarisation data. (a)Gari-Krumpelman(Vector Me-
son Dominance no ® meson) [94]; (b)Cardarelli-Simula(with Constituent Quarks)
[92]; (c)Goldstone-Boson Exchange Constituent Quark Model [91]; (d)Gari-
Krumpelman(VMD with ¢ meson) [93]; (e)Soliton [1]; (f)Mergell-Meissner-
Drechsel(dispersion theory) [90]; .

6.6 Conclusions

The spin precession technique has been used to determine the polarisation ratio
2
of the recoil neutron in the D(€,e 7)p reaction at Q* = 0.79 (%) . From

this ratio the neutron electric form factor G, has been extracted :

GeV

2
G", (0.79 <T> ) = 0.047 £ 0.009(stat) £5007 (sys)

This result for G includes full corrections for deuteron structure effects based
on the model of Arenhdvel [28]. In the course of the analysis a detailed inves-
tigation has been made into the functionality of the neutron polarimeter. The
effective analysing powers measured compare well with those calculated from a
Monte-Carlo simulation which assumes a quasi-elastic scatter of neutrons on Car-
bon as the main analysing reaction channel in the polarimeter. Nucleon-nucleon
scattering events, with and without charge exchange in the neutron polarimeter,
were analysed separately. The results of both reaction channels agree well.

This measurement had the advantage over the previous MAMI spin precession
measurements (by the A3 collaboration) of utilising one of the A1 high resolution

magnetic spectrometers giving an accurate Q2 reconstruction and eliminating
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inelastic electron scattering events, thus reducing a large source of systematic
uncertainty.

The best fit to the current model-independent data is given by the Soliton
model of Holzwarth [1] which agrees well with both the shape and magnitude of
the experimental data.

Future prospects for G are very promising. In parallel with this analysis
data points at @* = 0.30 and 0.59 (%)2 [52] were also analysed by Michael
Seimetz for the Mainz A1l collaboration. At Jefferson Lab. Hall C analyses
of G% data at Q? = 0.4, 1.14 and 1.47 (%)2, also using a spin precession
technique are well underway. Proposed experiments [95] at Jefferson Lab. Hall
A using the SFTé (?, n) p reaction have been accepted and will measure G, up
to Q% ~ 3.5 (%)2 allowing a first test of the pQCD scaling behavior of this
observable at large Q%. The Glasgow Nuclear Physics Group are major players

in this experiment, continuing their involvement with G% measurements.
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Appendix A

Asymmetry Errors

Care has to be taken when propagating the statistical errors in an asymmetry

B—C
B+C”

o = (2 o (2) 6o A1)

calculation. The general case for an asymmetry defined as, A = has,

02 (o8B 2 B2 (5C 2
_ L[ B e "
(C'+ B)
as (35) = (Bi%)Q and (55) = (L;fg)Q'

The asymmetry is calculated in this analysis from a fit to its distribution in
., therefore the asymmetry and error must be calculated for each bin of a ¢,
histogram, this is denoted A; and o' for bin i.
B; and C; are given by combinations of the N (¢!) distribution histograms,
from eqn. (5.10),

B =\/BE=\/BIB} =[N/ (6})N; (¢}, +m) (A.3)
Ci =/OP = JTIC? =\/N} (¢ +m) N, (4}) (A1)

where i again indicates the histogram bin. First the errors o, of the N; his-

tograms were found from the prompt and random histograms, the errors for

which are described in sec. A.1 :
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N, = PP,— PR, — RP, + RR,
()" = @) + (o) + (o) + (o)

)

The error of the products B}? and C}? are then found from the correct combina-
tion of N; histograms. So if B} = N (¢]) etc. (eqns. A.3-A.4),

(072)" = (o))" (B))" + (0*)" (B])®

) )

The error of B;, which is the square root of B}?, is then:
P12

NG
So if the errors for C; are calculated in the same way, the error for each asymmetry
A

i

(o) =3

bin o{* are given by eqn. (A.2). The error on the overall asymmetry is given by

the resulting sinusoidal fit.

A.1 Error on Random Distributions

There are two contributions to the error on the subtracted random ¢/, histograms
introduced in section 5.5.1, the first is from the shape, the second from the nor-
malisation. The shape comes from the random ¢!, histograms R; (any of RP;, PR;
or RR;), which are normalised to the integral of the background fit f (¢) over the
prompt timing regions (7; — 7,,) to give a random histogram R}, for the prompt
region :

i f@Wdt1

!
Jp— 7: h = = —
R; = WR; where W SR by Rr

where b, is the bin width of the histogram used to fit f (¢). If the background

function is a 3rd degree polynomial :

f(t) = po + pit + pat? + pst?
T,
u :D2 $3 :D4 uw
:>F:le f@)ydt = |pot +pi%5 +p2% + P .
1
= (T, —T)po+ 5 (T; = TP)pr + 5 (T2 = T7) + § (T = T}

124



The error in F', o, is then calculated from the parameter errors oy, :

2 2 2 2
2 _(ar\" 2 oF " 2 oF " 2 oF " 2
UF bw - (8[)0 ) UPO + (8[)1 ) Upl + (8[)2 ) 0p2 + (8[)3 ) UPB

= (T, —T)* 02 + L (T2~ T})* 02, + L (TP — T} o2, + 1 (T} - T} o2,

The error in the integral of the R; histogram is taken as square root of the integral,
ory = vV Rr. The error in the weight is then :

This is the error in W integrated over all ¢/ bins. However the error has to be
applied to R} bin by bin to allow for a proper fit to A;, therefore the error in W
has to be scaled for each bin in such a way as to give the correct integrated error.
Assuming the fractional error on W for each bin is proportional to the fractional
error of the bin content R;, off = \/R; and that W is constant over all bins :

oV k

? _

W VR

where k is a normalisation constant. The sum of the square of the errors of all
W)2

the bins must equal the square of the integrated error (a , SO :

CRORED VL=

Now the error on R} can be calculated :

’ ’ 2 ’ / 2
(o) = (55) (@) + (5%) (@)’
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After this procedure the random histograms R} can be used for the random sub-

traction.
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Appendix B

Reaction Kinematics

B.1 Electron Scattering

For electron scattering in a Coulomb potential, with the initial and final electron
four-vectors : p' = (E,, k) p/ = (E., k')

Conservation of Energy and Momentum :

E, = E' and |k| = |k (B.1)

Scalar product of initial and final momenta :
' ) ge
k-kE = |k <1—251n 5) (B.2)
Momentum transfer :

0e
o] = K — b = 2 k|sin (B.3)

For electron scattering from a point-like spin—% particle and the nucleon four-
vectors P’ = (Ey, P) and P/ = (E)y, P'), with ~ implying in the relativistic limit
e <1

The virtual photon four-momentum ¢ = (w, g) :

g=p-—p =P-F (B.4)

The squared four-momentum transfer :

0.
¢ =w’—¢* =—-Q° ~ —4E.E sin’ 5 < 0 (B.5)
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i\ 2 i i i
= —p) =p+p? =2 p=2(ml —p ) (B.6)
Conservation of energy gives :

E.
Bl=—° _ (B.7)

e — 28, i O
1—1——MNsm2

My (E, — E)) = E.E! — |k| |K'| cos 0, — m?
~ E.E! (1 —cos0,) (B.8)

= 2FE.E, sin? %e

B.2 Di(een)p

For quasielastic scattering there are 9 degrees of freedom in the final state, i.e.
the three components of the momentum of the three particles in the final state

Pes Py, and pl,. The electron spectrometer determines 3 (&) and the polarimeter

determines 3 (p;,); in addition the energy and momentum conservation restrict 4,
giving 10, so we have overdetermined the kinematics. This allows us to calculate
one of the 6 degrees we measure from the other 5 we measure, which is useful
because we can thus get a more accurate deterimination of the neutron momentum
o'

The 4-vectors of the initial (electron, deuteron) and final (scattered electron,
recoil neutron and spectator proton) states are written as:

e = (Ee,pe) , d=(mg,0), ¢ = (Eé,p_’e) , n= <E;L,%) , P = <E;),p_;,>

Then energy and momentum conservation give,

e+d = e+p+n

=p° = (¢+d—n) withq:e—d:(wag)
=m, = ¢+d®+n°+2d-q+2n-q+2d-n
=m, = ¢ +mj+m’+2mew+ —2E,mg — 2E,w + 2p, - q
:>2En7—2p_'na = q2+m§+mi—m;+2mdw:6
B+2|p,|
= FE, = —
2y
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2 1
+mp = ) <62 +4
!

o= (%)
(

=

2
o? + 4ap

Pn

Pn

()

P

n

Where a = ﬁ_n-g = ¢, sin 8, cos ¢, + gy sin 0, sin ¢, +q;, cos ¢, and v = my +w.

129



Appendix C

Density Matrices, Structure

Functions

C.1  Virtual Photon Density Matrix

The non-zero longitudinal /transverse (pL/T) components of the virtual photon
density matrix p = py + hp', with h the beam helicity, are given in terms of the

electron kinematics :

2
_ 28 — 28 /&)
PL =4 oy prT =47, 3
L £
- — ]_ - — 2i
pr =54 < +277> pPTT 3,

IBPERS
o Lo 1.2 [(&4n)
Pir =90 gm Pr =\ (C.1)

with & = Z—; and 1 = tan?® (02—‘3); q and g are the four and three momentum of the

virtual photon respectively and 6, is the electron scattering angle.

C.2 Nucleon Structure Functions

The structure functions f are related to the nucleon current J, and density matrix

PN -

fr. = Xoo fr = Xpo + Xy fror = —V2 (Xoz + Xz0)
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fro == (Xow = Xy)  fir = V2 (Xoy — Xyo)  fr = =i (Xay — Xyo)

where, X,3 =T7r (JopnJs) , for (a, 5 =0,2,y).
Taking the initial nucleon density matrix py = % (1+ P -0), where P is the

nucleon polarisation and the nuclear current given by eqn. (2.21) :

Jo=Gp, Jp=is=Guoy, J,= —iﬁGMax

where M is the nucleon mass and Gg and G, are the nucleon electromagnetic

form factors. We get for free elastic scattering,

fn =G, fr = 55:G3,, fur =0
2
frr =0, fir = —V3EGrGu P, fr=-512G3 P (C2)
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