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Abstract

The form factors of the neutron give information on fundamental properties of the

nucleons and provide a critical testing ground for models based on QCD. In late

1998, Jefferson Lab (JLAB) experiment E93-026 measured the spin-dependent part

of the exclusive (e, e′n) scattering cross section from a polarized deuterated ammonia

(15ND3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. A lon-

gitudinally polarized electron beam was scattered from the polarized target and the

quasi-elastically scattered electron was detected in coincidence with the knocked-out

neutron. The data have been analyzed in terms of the spin-correlation parameter, or

the electron-deuteron vector asymmetry (AV
ed), of (e, e′n) to determine the neutron

electric form factor Gn
E. The result is consistent with data from existing experiments

and shows a good agreement with the Galster parameterization of Gn
E within experi-

mental uncertainty.
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Chapter 1 Introduction

With the discovery of the neutron in the decay of radioactive nuclei by Chadwick

[1] in 1932, the proton and neutron (collectively called nucleons), together with the

electron, were believed to be the basic building blocks (elementary particles) that

made up all matter in the universe.

In 1934, the proton magnetic moment was first measured by Frisch and Stern

[2] and its observed anomalous value suggested an internal structure for the proton.

In late 1940’s, electron scattering was harnessed to probe nucleon structure using

the relativistic theory of electrons established by Dirac in 1928 [3]. One of the first

experiments to study the nucleon electromagnetic structure using electron scattering

was conducted by Hofstadter and his colleagues [4]. The results suggested that at

large electron scattering angles, the experimental differential cross section for electron-

proton scattering deviated from that of the Mott cross section [5] (for the scattering

from a pointlike nucleon):

(
dσ

dΩ

)
Mott

=
α2 cos2(θe/2)

4E2 sin4(θe/2)
, (1.1)

where θe is electron scattering angle, E is the incident electron energies and α is the

fine-structure constant. In 1956, Chambers and Hofstadter determined the root mean

square (rms) charge radius of the proton to be
√

< r2 >=0.8 fm from electron-proton

scattering [6]. Most recently, the proton charge and magnetic structure have been

measured with high accuracy [7, 8, 9, 10], and the charge radius of the proton has

been determined to be
√

< r2 >=0.81 fm. The proton is not a point particle.

The neutron is a spin-1
2

particle with zero total charge and according to the Dirac

equation it must have zero magnetic moment. In 1934, the neutron magnetic moment

was first measured by Frisch and Stern [2] and a hypothesis for the neutron having a
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negative magnetic moment of about two nuclear magnetons (µN = eh̄
2M

, where e and M

are the proton charge and mass) was developed. The neutron magnetic moment has

been obtained to a very high precision by Greene et al. [11] in 1979 and the anomalous

neutron magnetic moment was determined to be µn = (−1.91304184±0.00000088)µN.

The existence of the anomalous magnetic moment suggests a substructure for the

neutron.

The first scattering experiments to study the electromagnetic structure of the

neutron date back to the work of Havens et al. [12] and Fermi and Marshall [13],

where electron-neutron scattering was measured by the scattering of thermal neutrons

from atoms. The neutron appeared to have a slightly positive charged core surrounded

by a region of negative charge. Most recently, the mean square charge radius of the

neutron has been precisely determined to be −0.113 ± 0.003 ± 0.004 fm2 [14]. These

data confirm that the neutron not only has magnetic structure, but also a non-trivial

electric structure.

Today, the theory of the strong interaction (Quantum Chromodynamics – QCD),

tells us that the valence structure of the nucleon is a bound state of three quarks, two

up quarks and one down quark for the proton and two down quarks and one up quark

for the neutron. The electromagnetic current of the nucleon arises from the motion of

these confined valence quarks and from the ’sea’ of virtual particles. The anomalous

value of the neutron magnetic moment arises then from the strong interaction and

from the electromagnetic currents of the quarks and anti-quarks inside the neutron.

Electron scattering remains the best way to explore the charge and current distri-

butions of nucleons and nuclei. The advantage of using electron scattering is that the

electron-photon interaction is well understood, described by the theory of Quantum

Electrodynamics (QED), which makes precise calculations possible. The interaction

between the electron and the target nucleon is relatively weak, of the order of the

fine-structure constant α(� 1
137

), which allows the electron to probe the nucleon with-

out disturbing its structure. As the momentum transfer to the target increases, the

wavelength of the virtual photon decreases and finer and finer structure of the target
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can be resolved. At low momentum transfer, the elastic peak is the dominate feature

in the scattered electron energy loss spectrum. At higher momentum transfer, the

excitation of the nucleon resonances become relatively more important. At very high

momentum and energy transfer, the wavelength of the virtual photon is so small that

the interaction occurs with the individual quarks, and the scattering is said to be

deep inelastic.

The ground state of the nucleon can be quantified by two electromagnetic form

factors, GE and GM . These form factors describe the nucleon charge and magnetic

moment distributions, respectively. The electromagnetic form factors of the proton

are fairly well known from elastic electron-proton scattering experiments up to Q2 of

about 10 (GeV/c)2, but existing measurements of the electromagnetic form factors of

the neutron are inadequate. The primary experimental obstacle faced in measuring

the neutron form factors is the lack of free neutron target. Since the deuteron, which

consists of a proton and neutron, is the simplest and most weakly bound nuclear

system, historically, the neutron electromagnetic form factors have been extracted

from electron-deuteron cross section measurements. Measurements of the magnetic

form factor of the neutron Gn
M have recently been measured to better than 3.3% [15,

16] at Q2 < 1.0 (GeV/c)2. However, since the neutron electric form factor Gn
E is very

small, the removal of the dominating proton contribution and neutron magnetic form

factor contribution to the deuteron cross section introduces large uncertainties. This

leaves the electric form factor of the neutron poorly determined. The measurement

of Gn
E remains a significant challenge for nuclear physicists even after four decades.

The nucleon form factors are among the fundamental quantities in physics. As

the nucleon is the simplest three-quark system, its electromagnetic structure, which

reflects its internal structure, gives unique information on the strong interaction.

Measuring the distribution of the electric charge within the neutron will improve our

knowledge of the strong force that binds quarks and gluons inside nucleons and nuclei.

Any nuclear physics calculation involving electromagnetic processes requires reliable

nucleon structure information and the form factors of the nucleon will provide tests
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for any model that utilizes subnucleonic degree of freedom.

To improve the situation of the Gn
E measurements, Jefferson Lab (JLAB) E93-

026 was designed to study the neutron electric form factor by measuring the helicity

induced asymmetry in coincidence quasi-elastic scattering of polarized electrons from

polarized neutrons. A longitudinally polarized electron beam was scattered from

polarized deuterium nuclei in deuterated ammonia (ND3). The determination of the

asymmetry in the cross section for two opposite orientations of the electron beam

helicity yields the product of Gn
E and Gn

M . The measurements were carried out in the

Fall of 1998 in JLAB’s experimental Hall C at a four momentum transfer squared of

Q2 = 0.5 (GeV/c)2. In the remainder of this thesis, a complete description of the

JLAB E93-026 will be presented.

The format of this thesis will be as follows: In Chapter 2 , we will summarize

the electron-nucleon scattering formalism and the conceptual development of the nu-

cleon form factors. Chapter 3 will describe various theoretical models that have been

developed in the past to interpret nucleon structure. A survey of the existing Gn
E

measurements using various techniques in the past and at present will be presented

in Chapter 4. Chapter 5 will focus on the formalism used by the current experiment

to extract Gn
E from the polarization observables. A detailed description of the ex-

perimental apparatus for E93-026 will be given in Chapter 6, including two major

additional pieces of equipment made available to this particular experiment at Hall

C: the polarized target and the neutron detector. The Monte Carlo simulation which

guided us through the experiment and data analysis will be described in Chapter

7. Chapter 8 will present the sequence of data analysis and results. Chapter 9 will

describe the use of a theoretical model to extract Gn
E from the measured experimental

asymmetry. Finally, Chapter 10 will provide a summary and conclusions, along with

the prospects for future measurements.
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Chapter 2 Formalism of Electron

Scattering

In this chapter, we will review the historical development of the derivation of the

electron-nucleon scattering cross section and the nucleon form factors. We begin by

deriving the cross section for electron scattering from pointlike fermions [17]. By

including the nucleon structure in the nucleon form factors, the same formalism can

be applied to electron-nucleon scattering. The interpretation of the nucleon structure

functions will then be discussed.

2.1 Scattering of Electrons by Pointlike Charged

Fermions

Fermions are particles with half-integer spin(h̄/2, 3h̄/2, · · ·) and obey Fermi-Dirac

statistics. For the scattering of electrons by pointlike charged fermions, as shown in

the Feynman diagram of Figure 2.1, the scattering is assumed to take place through

ω,q=( q)

-

k

-

p

p’

e

k’

N

Ne    

Figure 2.1: One-photon exchange Feynman diagram for electron-fermion scattering.

the exchange of a “virtual photon”. This photon represents a localized electromag-
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netic field that can interact with the charge and current of the fermions. The differ-

ential cross section for elastic electron-fermion scattering can be written as [18]:

dσ

dΩ
=

m2
e

4π2

E′

E
f−1

rec

1

4

∑
si,f ,Si,f

|Mif |2, (2.1)

where E(E′) is the initial (scattered) electron energy, me is the electron mass, the 1
4

factor is for the average over the two spin states of the particles in the initial state

and the sum over the two spin states of the particles in the final state. s(S) denotes

the spin of the electron and pointlike fermion. The recoil factor is given by:

frec = 1 +
2E

M
sin2(θe/2), (2.2)

where M is the mass of the pointlike fermion and θe is the electron scattering angle.

The transition matrix element Mif of the scattering process can be written as a

product of fermion currents and a photon propagator:

Mif =
e2

Q2
jµ · Jµ, jµ = u(p′)γµu(p), Jµ = u(k′)γµu(k), (2.3)

where jµ and Jµ are the currents of the electron with the initial (final) four-momentum

p(p′) and the pointlike fermion of initial (final) four-momentum k(k′). The lepton

spinors u(p), u(p′), u(k) and u(k′) are operated on by the Dirac vector γµ. Q2 =

q2 − ω2 > 0 is the four-momentum transfer (q, ω) squared. Therefore, we have:

Mif =
e2

Q2
[u(p′)γµu(p)] [u(k′)γµu(k)] ,

M+
if =

e2

Q2
[u(p)γσu(p′)] [u(k)γσu(k′)] , (2.4)

MifM
+
if =

4EE′

m2
e

[
cos2(θe/2) +

Q2

2M2
sin2(θe/2)

]
e4

Q4
,

where the pointlike fermion target is initially at rest in the laboratory system with

the initial energy M .
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Hence, the cross section in Equation 2.1 for electron-pointlike fermion scattering

can be rewritten as:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

f−1
rec

[
1 +

Q2

2M2
tan2(θe/2)

]
, (2.5)

where
(

dσ
dΩ

)
Mott

is the Mott cross section shown in Equation 1.1.

2.2 Scattering of Electrons by Nucleons

ω,q=( q)

-

k

-

p

p’

e

k’

N

Ne    

Figure 2.2: One-photon exchange Feynman diagram for e − N scattering.

The scattering of electrons by pointlike charged particles can be precisely calculated

and any deviation from the pointlike behavior of the nucleon can be described by

the so called form factors. For the target nucleons with internal structure, the most

general form of the nucleon current is given by [19]:

Jµ = u(k′)
[
γµF1(Q

2) +
i

2M
σµνqνF2(Q

2) + qµF3 + γµγ5F4 + qµγ5F5

]
u(k), (2.6)

where σµν = i
2
(γµγν − γνγµ), and Fi’s are called the nucleon form factors. Parity

and current conservation (qµJµ = 0) require F3 = F4 = F5 = 0. The structure of

the nucleons, represented by a blob in Figure 2.2, is contained in the Dirac and Pauli
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form factors: F1(Q
2) and F2(Q

2). The nucleon current can then be written as:

Jµ = u(k′)
[
γµF1(Q

2) +
i

2M
σµνqνF2(Q

2)
]
u(k). (2.7)

The first term is called the Dirac current and the second term is called the Pauli

current. The transition matrix element is:

Mif =
e2

Q2
jµu(k′)

[
γµF1(Q

2) +
i

2M
σµνqνF2(Q

2)
]
u(k), (2.8)

and the electron-nucleon scattering cross section can be written as:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

f−1
rec

{
F 2

1 +
Q2

4M2

[
4M2F 2

2 + 2(F1 + 2MF2)
2 tan2(θe/2)

]}
. (2.9)

In order to describe the two isospin states of the nucleon, the neutron and proton,

we need to use four form factors: F p
1 (Q2), F p

2 (Q2), F n
1 (Q2), F n

2 (Q2). At Q2 → 0, the

internal structure of the nucleon can no longer be probed and these form factors are

normalized to F p
1 (0) = 1, F p

2 (0) = 1.79, F n
1 (0) = 0, and F n

2 (0) = −1.91.

Yennie et al. [20], Walecka [21], and Ernst et al. [22] showed that F1 and F2 alone

are not true measures of the charge and magnetization distributions of the nucleons.

It is convenient to perform a linear transformation, resulting in the Sachs electric and

magnetic form factors [22]:

GE(Q2) ≡ F1(Q
2) − Q2

4M2
F2(Q

2), GM(Q2) ≡ F1(Q
2) + F2(Q

2). (2.10)

In the Q2 = 0 static limit they are given by: GE(0) = Q
e

and GM(0) = µ
µN

, where Q

and µ are the charge and the magnetic moment of the nucleon respectively. Specifi-

cally, for the proton and neutron:

Gp
E(0) = 1, Gp

M(0) = 2.79, Gn
E(0) = 0, Gn

M(0) = −1.91. (2.11)

Replacing both Dirac and Pauli form factors in equation 2.9 by the electric and
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magnetic form factors GE,M , the electron-nucleon cross section expression becomes

the well-known Rosenbluth formula [23]:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

f−1
rec


G2

E + Q2

4M2 G
2
M

1 + Q2

4M2

+
Q2

2M2
G2

M tan2(θe/2)


 . (2.12)

Note that the expression for the cross section in Equation 2.9 contains the interference

term of the Dirac and Pauli form factors, but Equation 2.12 contains no interference

term of the electric and magnetic form factors. Furthermore, one recognizes that cross

section measurements at a fixed momentum transfer but different scattering angles

allows the separation of the two form factors (“Rosenbluth separation”).

2.3 e − p Scattering and Proton Form Factors

The measurement of the electromagnetic form factors of the proton is straightforward:

a liquid hydrogen target is placed in an electron beam, and the differential cross

section of the elastically scattered electrons is determined.

The proton magnetic form factor has been measured to high accuracy for Q2 up to

10 (GeV/c)2 in elastic scattering. The proton charge form factor is also measured with

high accuracy in this region, however, since the magnetic form factor contribution to

the Rosenbluth cross section increases with Q2, the proton charge form factor is less

accurately determined at high Q2 when extracted with a Rosenbluth separation.

Measurements for the proton form factors from unpolarized experiments [7, 8, 9]

have reached very high precision, and the results found that a dipole fit of the form

[24, 25, 26, 27, 28] (also see Section 3.1):

Gp
M

µp

=

(
1 +

Q2

0.71

)−2

, Q2
[
(GeV/c)2

]
(2.13)

fits the shape of measured proton magnetic form factor curves very well at Q2 < 7.0

(GeV/c)2. Traditionally, the proton electric form factor has also been parameteried
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with the dipole form. However, recent recoil polarization data from JLAB [10], have

found a significant deviation from the dipole fit of the proton electric form factor for

Q2 > 1.0 (GeV/c)2. The results are summarized in Figure 2.3.
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Figure 2.3: Ratio of the magnetic and charge form factors of the proton to the dipole
parameterization as measured by Andivahis et al. [8], Walker et al. [7], Sill et al.
[9], Höhler et al. [24] and Price et al. [28] from unpolarized experiments. The recoil
polarization data of Jones et al. [10] is also shown. Data were normalized by the
dipole parameterization.

For neutrons, for which nature does not provide a free neutron target, it is neces-

sary to use a deuteron target and subtract or suppress the effect of the proton. For

this reason, the existing data on the neutron form factors are less satisfactory. We
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will discuss the neutron form factors in later sections.

2.4 Interpretation of Nucleon Form Factors

The form factors were introduced to describe the scattering on extended charge (elec-

tric) and current (magnetic) distributions. In the non-relativistic limit (ω � mN ),

the approximation Q2 = q2 − ω2 = q2(1 − ω
2mN

) ≈ q2 can be made and the experi-

mental nucleon electric (magnetic) form factors are related to the configuration space

charge (magnetization) distribution through Fourier transform:

GE(Q2) =
1

(2π)3

∫
d3rρ(r)e−iq·r, GM(Q2) =

1

(2π)3

∫
d3rµ(r)e−iq·r. (2.14)

For qr � 1, where r is approximately the nuclear radius, the exponential in the above

equation can be expanded, and GE(Q2) and GM(Q2) become:

GE(Q2) = 1 − 1

6
Q2 < r2

E > +
Q4

120
< r4

E > + · · · ,

GM(Q2) = 1 − 1

6
Q2 < r2

M > +
Q4

120
< r4

M > + · · · , (2.15)

with < rk
E > and < rk

M > being defined as:

< rk
E >=

∫
rkρ(r)d3r, < rk

M >=
∫

rkµ(r)d3r. (2.16)

< r2
E > is called mean square radius (msr). The expansion is also valid in the Breit

frame which is characterized by ω = 0.

Using the dipole form factor of the proton, one finds an exponential charge dis-

tribution:

ρ(r) =
∫

Gp
E(q)e−iqrd3q = 3.06e−4.27r. (2.17)

The mean square radius of proton can be found from the slope of Gp
E(Q2) at the
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origin (Q2 = 0):

√
< (rp

E)2 > =

√√√√−6

(
dGp

E(Q2)

dQ2

)
Q2=0

= 0.81 fm. (2.18)

Since the neutron has no net charge, the electron-neutron scattering cross section

is dominated by the magnetic contribution which is proportional to (Gn
M)2. At low Q2,

the electric contribution to the cross section measures the charge radius and contains

two terms: the interaction of the neutron magnetic moment with the Coulomb field

of the electron (“Foldy term” [29]) and the contribution due to rest frame charge

distribution of the neutron. These two terms are associated with the Dirac form

factor F1 and the Pauli form factor F2:

< (rn
E)2 >= −6

(
dGn

E(Q2)

dQ2

)
Q2=0

=< (rn
1 )2 > + < (rn

Foldy)
2 >, (2.19)

where < (rn
1 )2 >= −6

(
dF n

1 (Q2)

dQ2

)
Q2=0

and < (rn
Foldy)

2 >= −6




d

(
− Q2

4m2
N

F n
2 (Q2)

)
dQ2




Q2=0

=

3µn

2m2
N

. The Foldy term arises from a relativistic correction associated with the neutron

magnetic moment and has nothing to do with the neutron’s rest frame charge dis-

tribution. It has the value of 3µn

2m2
N

= −0.126 fm2. Since the recent measurement by

Kopecki et al. [14] from scattering thermal neutrons from atomic electrons reports

the value of < (rn
E)2 >= −0.113 ± 0.003 ± 0.004 fm2, it has been argued that any

“true” charge distribution effect must be very small inside the neutron. However,

recent theoretical calculations using a relativistic approximation to the constituent

quark model [30] argue that although the Foldy term closely resembles the measured

< (rn
E)2 > numerically, it is canceled exactly by a “non-intuitive” contribution to

the radius < (rn
1 )2 > due to the Dirac form factor F1, leaving < (rn

E)2 > correctly

interpreted as arising entirely from the (rest frame) internal charge distribution of the

neutron. Hence, Gn
E is sensitive to the charge distribution of the neutron.
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Chapter 3 Theoretical Models for

Nucleon Form Factors

Along with experimental endeavors for measuring the nucleon form factors, theoret-

ical attempts to understand the structure of the nucleon have continued for almost

six decades. A number of different approaches have been developed to try to under-

stand the nucleon elastic form factors. In this section, I will highlight some of the

most influential theoretical models of the nucleon form factors. These models include:

the dipole parameterization, vector meson dominance model (VMD), hybrid models

(VMD–p-QCD) such as the Gari-Krümpelmann model, and quark models. Low Q2

data have been interpreted in terms of mean squared radii of the charge and current

distributions. Moderate Q2 data have been viewed in the light of vector meson dom-

inance which models the virtual photon as a sum of vector mesons. Models such as

diquarks also make specific predictions for the elastic form factors at moderate Q2.

High Q2 data have provided a testing ground for p-QCD predictions of the asymptotic

Q2 dependence of the form factors.

3.1 Dipole Parameterization

The dipole approximation is the lowest order attempt to incorporate the non-pointlike

structure of the proton into the form factors. It is entirely a phenomenological pa-

rameterization. Early experiments [24, 25, 26, 27, 28] found the dipole approximation

of the nucleon form factors with the form of:

Gp
E =

(
1 + Q2r2

0

)−2
=

Gp
M

µp

=
Gn

M

µn

, Gn
E = −τGn

M , τ =
Q2

4M2
n

, (3.1)
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fits the proton data well. Since the form factors of the nucleons are related to the

Fourier transform of the nucleon charge and magnetization distributions in the non-

relativistic limit. This dipole form factor yields an exponential charge distribution

for proton:

ρ = ρ0e
−r/r0 , (3.2)

where r0 (r2
0 = 1.41 (GeV/c)−2) is the scale of proton radius and ρ0 = 1

8πr3
0

is a

normalization constant.

Although the dipole model describes the Q2 dependence of the proton form factors

very well at low Q2, the physical insight it provides is limited. Many other studies

have been attempted to explain the nucleon form factors with physically motivated

models.

3.2 Vector Meson Dominance Models

Vector meson dominance (VMD) models [31, 32] describe the photon nucleon inter-

action via intermediate coupling with vector mesons, as shown in Figure 3.2. The

γ

N

N

V

Figure 3.1: The photon-nucleon coupling in the vector meson dominance model.

form factor for the γ − N coupling through vector mesons can be written as:

F (Q2) =
∑

i

CγVi

Q2 + M2
Vi

FViN(Q2), (3.3)
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where, 1
Q2+M2

Vi

is the propagator associated with a meson of mass MVi , CγVi is the

photon-meson coupling strength, and FViN(Q2) is the meson-nucleon form factor.

In the VMD models, the Dirac and Pauli form factors of the nucleon are written

as linear combinaton of the iso-vector and iso-scalar form factors:

F p
1 = F IS

1 + F IV
1 , F p

2 = F IS
2 + F IV

2 ,

F n
1 = F IS

1 − F IV
1 , F n

2 = F IS
2 − F IV

2 . (3.4)

The neutron consists of an infinite series of pointlike nucleons and mesons arising

out of the vacuum for brief moments and coupling to each other. The virtual photon

fluctuates into a hadron with the same quantum numbers (charge, strangeness, spin)

to form the vector mesons (ρ, ω), hence enhancing the strength of the interaction.

VMD models differ according to their inclusion of different meson states in the

calculations. All VMD models include the exchange of the lowest mass mesons, ρ and

ω. Two typical models are described below.

3.2.1 Iachello, Jackson, and Lande (IJL) Model

Developed by Iachello, Jackson and Lande (IJL) [33], the IJL VMD model included

couplings from ρ, ω and φ meson exchanges, and a term describing a direct coupling

between a nucleon and a virtual photon. The Dirac and Pauli iso-scalar and iso-vector

form factors are:

F IS
1 =

1

2
g(Q2)

[
(1 − βω − βφ) + βω

M2
ω

M2
ω + Q2

+ βφ

M2
φ

M2
φ + Q2

]
,

F IV
1 =

1

2
g(Q2)

[
(1 − βρ) + βρ

M2
ρ + 8ΓρMπ/π

M2
ρ + Q2 + (4M2

π + Q2)Γρα(Q2)/Mπ

]
,

F IS
2 =

1

2
g(Q2)

[
(−0.12 − αφ)

M2
ω

M2
ω + Q2

+ αφ

M2
φ

M2
φ + Q2

]
, (3.5)

F IV
2 =

1

2
g(Q2)

[
3.706

M2
ρ + 8ΓρMπ/π

M2
ρ + Q2 + (4M2

π + Q2)Γρα(Q2)/Mπ

]
,
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where g(Q2) is the intrinsic nucleon form factor. An attempt has been made to

include the finite width of the ρ meson, Γρ, into the formalism using the technique

of Frazer and Fulco [34]. The width of the other mesons are small and were ignored.

The coupling constant α(Q2) was defined by:

α(Q2) =
2

π

[
Q2 + 4M2

π

Q2

]1/2

ln

[
(Q2 + 4M2

π)1/2 + (Q2)1/2

2Mπ

]
. (3.6)

The intrinsic form factors were parameterized by a dipole form: g(Q2) = (1+γQ2)−2.

The parameters were fit to the proton and neutron form factor data for fixed

Mρ=0.765 GeV/c2, Mω=0.784 GeV/c2, and Mφ=1.019 GeV/c2. With Γρ=112 MeV/c2,

the parameters for the best fit were found to be:

Table 3.1: Fitted parameters in IJL model

γ βρ βω βφ αφ

0.25 (GeV/c)−2 0.672 1.102 0.112 -0.052

Note that the value γ is much smaller than the value of r2
0=1.41 (GeV/c)−2 from

dipole form factor.

3.2.2 G. Höhler Model

The VMD model of Höhler [24] includes the exchanges of ρ and ω mesons, as well as

the effective pole terms for the ρ′, ω′ and φ meson exchanges. The contributions from

the ρ meson were determined from π−N scattering data, 2-π final state data – π−π

scattering, and the pion structure function Fπ(Q2). Masses and coupling strengths

of the heavier mesons were free parameters that were fit to the neutron form factor

data. The form factors can be expressed as:

F IS
1 =

∑ a1(V )

M2(V ) + Q2
, F IV

1 = F IV
1ρ (Q2) +

∑ a1(V )

M2(V ) + Q2
,

F IS
2 =

∑ a2(V )

M2(V ) + Q2
, F IV

2 = F IV
2ρ (Q2) +

∑ a2(V )

M2(V ) + Q2
,
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2F IV
1ρ =

0.955 + 0.090(1 + Q2/0.355)−2

1 + Q2/0.536
, (3.7)

2F IV
2ρ =

5.335 + 0.962(1 + Q2/0.268)−1

1 + Q2/0.603
,

where V represents heavier meson states and the lowest pole in F IS is ω exchange.

Different fits were done for various form factor data. The set of parameters best fit

to the electron-neutron scattering data alone were “fit 8.2’ shown below.

Table 3.2: Fit 8.2 parameters in G. Höhler model

F IV F IS

M(V)(GeV/c)2 1.21 2.45 2.95 mω mφ 1.80
a1 0.05 -0.52 0.28 0.71 -0.64 -0.13
a2 -1.99 0.20 0.19 -0.11 0.13 -0.02

The VMD models explain data to a good approximation at low to moderate Q2.

At high Q2, the virtual photon couples to one of the quarks inside the nucleon, and

p-QCD can be used to predict the Q2 behavior of the form factors by counting the

number of gluons needed to be exchanged in the scattering process. In the dimensional

scaling prediction, the Dirac and Pauli form factor have asymptotic behavior of:

F1 ∼ 1/Q4 and F2 ∼ 1/Q6. This implies that both Gp
E and Gp

M fall as ∼ 1/Q4 at

high Q2. Extrapolating the structure functions of VMD models to the limit of high

Q2 would lead to an violation of the p-QCD dimensional scaling predictions [35].

3.3 Gari-Krümpelmann Model

The Gari-Krümpelmann’s (G-K) model [36] combines the low Q2 phenomenology of

VMD with the high Q2 prediction of p-QCD. This model incorporates in a simple

way the constraints from meson dynamics at low Q2 and the asymptotic predictions

from p-QCD at high Q2. Both the Dirac and Pauli form factors follow a monopole

type Q2 dependence at low Q2, where meson (ρ, ω) physics dominates. At high Q2,

they follow p-QCD asymptotic behavior: F p
1 ∼ 1/Q4 and F p

2 ∼ 1/Q6. Within the
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G-K model, the iso-vector and the iso-scalar form factors were parameterized by:

F IV
1 =

(
M2

ρ

M2
ρ + Q2

gρ

fρ

+ 1 − gρ

fρ

)
FQCD

1 ,

F IS
1 =

(
M2

ω

M2
ω + Q2

gω

fω
+ 1 − gω

fω

)
FQCD

1 ,

κvF
IV
2 =

(
M2

ρ

M2
ρ + Q2

gρ

fρ
κρ + κv −

gρ

fρ
κρ

)
FQCD

2 ,

κsF
IS
2 =

(
M2

ω

M2
ω + Q2

gω

fω

κω + κv −
gω

fω

κω

)
FQCD

2 , (3.8)

FQCD
1 =

Λ2
1

Λ2
1 + Q̂2

Λ2
2

Λ2
2 + Q̂2

, FQCD
2 =

Λ2
2

Λ2
2 + Q̂2

FQCD
1 ,

Q̂2 = Q2 ln

(
Λ2

2 + Q2

Λ2
QCD

)
/ ln

(
Λ2

2

Λ2
QCD

)
,

where κv = κp −κn and κs = κp +κn, and κp and κn are the anomalous contributions

to the proton and neutron magnetic moments, respectively. Λ1 is the scale of the

proton wave function (∼ 0.8 GeV) and Λ2 is the scale separating the meson physics

dominance from the quark dynamics dominance.

The model was fit to proton and neutron form factors from measured electron

scattering cross sections using Mρ=0.776 GeV/c2 and Mω=0.784 GeV/c2. The best

fit parameters were:

Λ1 = 0.795 GeV, Λ2 = 2.27 GeV, ΛQCD = 0.29 GeV,

gρ

fρ
= 0.377, κρ = 6.62,

gω

fω
= 0.411, κω = 0.163. (3.9)

The p-QCD effects begin to dominate the form factor at Q2 = Λ2
2=5.15 (GeV/c)2.

The G-K model has been extended by including φ-meson exchange in the iso-scalar

form factors [37]. This inclusion affects the neutron charge form factor significantly.

The Saclay data on Gn
E [38] extracted using the Paris potential favor the inclusion

of the φ-meson exchange, while recent high precision results on proton form factors

[39, 10] prefer the model which excludes φ-meson exchange.
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3.4 Quark Models

In the quark model, hadrons (mesons and baryons) are represented as a bound states

of two and three quarks. The quantum numbers of the quarks are listed in Ta-

ble 3.3. Where I, I3, B, S, C, B∗, T, Q/e = I3 + 1
2
(B + S + C + T + B∗) denote the

Table 3.3: Quark quantum numbers.

Flavor I I3 S C B∗ T Q/e
u 1/2 1/2 0 0 0 0 +2/3
d 1/2 -1/2 0 0 0 0 -1/3
s 0 0 -1 0 0 0 -1/3
c 0 0 0 1 0 0 +2/3
b 0 0 0 0 -1 0 -1/3
t 0 0 0 0 0 1 +2/3

isospin, the third component of the isospin, the baryon, strangeness, charm, beauty,

top quantum numbers and electric charge, respectively. The quarks have an addi-

tional quantum number or property – color (red, blue, green) and are confined by

strong color forces through gluons inside the hadrons. The strong interaction coupling

constant is asymptotically free, i.e., αs(Q
2) approaches zero at short distance, where

perturbation theory can be used.

Many quark models exist. They differ in the way they mock up the effects of

confinement and in the symmetries that the quark wave functions have. Quark mod-

els include bag models, quark models with hyperfine interactions, constituent quark

models and diquark models.

3.4.1 Bag Models

Within the MIT Bag model [41, 42], the baryon system consists of three noninter-

acting massless quarks which are confined in a bag of radius r, essentially an infinite

square well confinement potential. The bag radius is a free parameter. The one-gluon

exchange interaction is treated as a perturbation. The MIT bag model is not chiral
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invariant. The axial current (J5) associated with the MIT bag model does not respect

chiral symmetry even in the limit where the quark masses are zero (“chiral limit”).

To restore chiral invariance (in the limit mπ → 0), the cloudy bag model (CBM)

[43] was developed. In CBM, the bag is surrounded by a cloud of pions, moving freely

everywhere except at the bag surface where they can be absorbed or emitted. The

absorption and emission obey chiral symmetry. Within the CBM, the virtual photon

couples either directly to the quarks inside the bag or interacts with the pion field.

The neutron mean square charge radius < (rn
E)2 > obtained from this model ranges

from −0.107 fm2 to −0.153 fm2 as the bag radius varied from 1.1 fm to 0.7 fm, which is

in good agreement with the recent experimental value of −0.113 fm2. By eliminating

the center of mass motion via several different momentum projection techniques, and

appropriately taking the Lorentz contraction of the internal structure of the baryon

into account [44], it is found that the nucleon form factors agree with experimental

data with a bag radii of around 1.0 fm, a larger bag radius corresponding to a smaller

value of Gn
E.

The neutron electric form factor is very small, as the charge of the valence quarks

of the neutron adds up to zero, and therefore Gn
E is expected to be very sensitive to

sea quark contributions in the nucleon. This is demonstrated in the model of Górski

et al. [45] based on the Nambu-Jona-Lasinio (NJL) Lagrangian. The quarks are not

confined in a bag but the Lagrangian is built such that the quarks are effectively

confined. It is a simple quark model which includes spontaneous breaking of chiral

symmetry and it predicts that the valence quarks and the sea quarks contribute to

Gn
E with similar magnitude and opposite sign. At large radii (r > 1.0 fm), the charge

distribution of the neutron is dominated by the sea quark contribution.

3.4.2 Quark Model with Hyperfine Interactions

The neutron electric form factor has been calculated by Isgur, Karl and Sprung [40]

in a model based on the color hyperfine interactions which add mixed symmetry

components into the nucleon spatial wave function. In their model, the unperturbed
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ground state (2SS
1
2

+
) is mixed with the nearby nucleon excited states (2S ′

S
1
2

+
,2 SM

1
2

+

and 4DM
1
2

+
). The resultant SU(6) violations are then a good test for hyperfine

interactions.

While the admixture of the 4DM
1
2

+
state in the nucleon is predicted to be small

and the admixture of the radial excitations, 2S ′
S

1
2

+
, is difficult to detect, the admixture

of the 2SM
1
2

+
states gives rise to the observed charge radius of the neutron. The non-

zero neutron charge distributions can be viewed as follows: the two identical d quarks

in the 2SS neutron must have S=1 to satisfy the Pauli exclusion principle. They

repel each other due to their parallel spins; on the other hand, the two u − d quark

pairs attract each other; result in a distorted neutron wave function which breaks

the SU(6) asymmetry. As a result, this pushes the d quarks to the periphery of the

neutron and pulls the u quark into the center, thus creating a charge segregation

inside the neutron and leading to a non-zero Gn
E.

The model predicts the neutron and proton charge form factors to the leading

nonvanishing order in the mixing coefficients (i.e., to order αs) using the harmonic

oscillator model and finds:

Gn
E(Q2) = −1

6
< (rn

E)2 > Q2e−Q2/6α2
s , Gp

E(Q2) = e−Q2/6α2
s . (3.10)

The model predicts that the maximum of Gn
E occurs at Q2 � 0.36 (GeV/c)2. The

resulting Gn
E agrees with the data from Galster et al. [52] very well.

3.4.3 Constituent Quark Model

The nonrelativistic approximation of the quark models is problematic since the ef-

fective quark masses and the intrinsic momenta have the same order of magnitude.

Attempts to implement relativistic invariance for the description of the electromag-

netic properties of the nucleon are the covariant constituent quark models by Konen

and Weber [46] and Chung and Coester [47], which use light-front dynamics for the

constituent quarks.
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In the relativistic constituent quark model, the constituent quarks are extended

objects with masses of ∼ 300 MeV and hence have form factors associated with them.

In this model, there are two free parameters: the quark confinement scale 1/αs and

the quark mass mq.

In this framework, the available experimental data for 0 ≤ Q2 ≤ 1.5 (GeV/c)2

[46] and 0 ≤ Q2 ≤ 6.0 (GeV/c)2 [47], have been well described with two adjustable

parameters.

In recent work of Ivanov, et al. [48], they calculated the nucleon form factors

within a relativistic three-quark model with a Gaussian shape for the nucleon-quark

vertex and standard (non-confined) quark propagators. Gauge invariance of the

hadron-quark interaction has been implemented by a path-independent definition

for the derivative of the time-ordering P-exponent. The two adjustable parameters,

the range parameter ΛN appearing in the Gaussian and the constituent quark mass

mq, have been obtained by fitting the data for the magnetic moments and the elec-

tromagnetic radii of the nucleons. Even with reasonable values of ΛN=1.25 GeV and

mq=420 MeV, the model underestimates the proton electromagnetic form factors and

the neutron magnetic form factor, but overestimates the neutron electric form factor

at high Q2 in the calculated range of 0 ≤ Q2 ≤ 1 (GeV/c)2.

3.4.4 Diquark Model

At high Q2, even with a relativistic invariant framework, the constituent quark model

is unable to describe the measured form factors. This shortcoming is due to the

exponential fall-off with respect to Q2 of the single particle wave function in the

confining potential.

Historically, the diquark model [49, 50] was proposed, in part, to explain results

from a polarized elastic p − p scattering experiment [51] at Brookhaven. This exper-

iment indicated an unexpectedly large contribution of helicity non-conserving ampli-

tudes in elastic p− p scattering. In this model, the three-body physics of the nucleon

was simplified by introducing two tightly bound quarks called “diquark” (r ∼ 0.1 –
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0.3 fm) and a single constituent quark. The diquark is treated as a quasi-elementary

particle. Q2 dependent form factors were introduced to account for the finite size of

the diquark. The resulting two-body system was treated perturbatively. The quarks

comprising the diquark provide spin 1 and 0 coupling which allow for helicity flips.

The model of Kroll et al. [50] describes the experimental data for nucleon form factors

at intermediate Q2 well.

3.5 Presentation of Predictions on Gn
E

Figure 3.2 summarizes the Q2 dependence of Gn
E in various theoretical parameteriza-

tions. All theoretical predictions were compared with the Galster [52] experimental

parameterization of the Gn
E.
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Figure 3.2: Gn
E(Q2) in various theoretical predictions compared with the Galster

parameterization.
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Chapter 4 Survey of Gn
E Measurements

For over four decades, physicists have been trying to measure the charge distribution

of the neutron. This has proved difficult because a free neutron has a short lifetime

(∼15 minutes) such that it is impossible to perform any useful measurements. With

the advent of the new generation of electron accelerators and improved experimental

techniques, it is now possible to precisely determine the electric form form factor of

the neutron.

Due to the lack of a free neutron target, we have to use nuclei composed of

protons and neutrons. Most experiments have used deuterium and (only recently)

helium targets to obtain information about the neutron charge structure. Several

approaches have been developed to determine Gn
E using electron scattering:

• Unpolarized electron-deuteron scattering, including elastic scattering D(e, e′)D,

and inclusive quasi-elastic scattering D(e, e′)X;

• Polarized electron quasi-elastic scattering from unpolarized deuterium with the

measurement of the recoil neutron polarization D(�e, e′�n)p;

• Polarized electron quasi-elastic scattering from polarized helium 3 �He(�e, e′n)pp;

• Polarized electron quasi-elastic scattering from polarized deuterium �D(�e, e′n)p.

In the remainder of this chapter, we will discuss each of these techniques and their

respective results for Gn
E. Since the technique of the polarized electron scattering

from polarized deuterium target, �D(�e, e′n)p is harnessed in this experiment, we will

describe its details in the next chapter.
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4.1 The Deuteron Structure

The deuteron is a loosely bound nucleus of a proton and a neutron and it has lowest

binding energy among stable nuclei. It provides one of the best testing grounds for

the NN-interaction. The static properties of the deuteron are listed in Table 4.1 [53].

Table 4.1: Static properties of the deuteron.

Mass 1875.61339 MeV/c2

Binding Energy 2.224575 MeV
Spin-Parity(JP ) 1+

Isospin(I) 0
Quadrupole Moment 0.28590 fm2

Magnetic Moment 0.857406 µN

The non-zero quadrupole moment of the deuteron and the departure of the mag-

netic moment from the pure 3S1 state expectations indicate that the ground state

of the deuteron is an admixture of 3S1 and 3D1 states. This means that in addition

to the central force in the NN-interaction, there is a tensor force which couples the

D-state and the S-state components. The wave function of the deuteron given by

Ericson et al. [54] can be written as:

ΨJ=1,M =
1√
4π

[
a
u(r)

r
+ b

ω(r)

r
S
(
r

r

)]
χ1M , (4.1)

where S
(

r
r

)
= 3

(
σ1 · r

r

) (
σ2 · r

r

)
−σ1 ·σ2, u(r), ω(r) and χ1M are the S-state, D-state

radial and spin wave functions respectively, a and b are the amplitudes of the S- and

D-state, σ1,2 are the Pauli matrices, and r is the relative position vector of the proton

and the neutron. The S- and D-state radial wave functions are normalized to 1.

The relative mixing of the D-state with the S-state can be determined by repro-

ducing the observed deuteron magnetic moment. The NN-potentials that have been

employed for many years (Hamada-Johnston [55], Reid soft core, Reid hard core [56]

and Lomon-Feshbach [57]) give a D-state mixture in the deuteron of about 4 – 7%.

For a polarized deuteron, the presence of the D-state component implies that for



26

the most of the time the neutron spin is aligned with that of the deuteron, while a

small part of the time its spin is anti-aligned. Since the D-state has orbital angular

momentum L = 2, in the notation of |mL, mS; M >, the M = ±1 substates are

represented by:

√
3

5
|2,−1; 1 > +

√
3

10
|1, 0; 1 > +

√
1

10
|0, 1; 1 >,√

3

5
| − 2, 1;−1 > +

√
3

10
| − 1, 0;−1 > +

√
1

10
|0,−1;−1 > . (4.2)

From the Clebsh-Gordan coefficients it can be seen that the nucleon spin (mS) is

parallel to the deuteron spin (M) 1
10

of the time and 3
5

of the time anti-parallel. The

total number of nucleons in the S and D states with spins parallel to the deuteron is

[58]:

γ = NS − 1

2
ND = N − 1.5ND, (4.3)

where N = NS + ND are the total, S- and D- state numbers of nucleons, and ND =

ηDN , with the D-state mixture of ηD. For the average D-state mixture of ∼ 5%,

this gives γ � 0.92. This γ factor needs to be applied to the measured deuteron

polarization in order to obtain the correct neutron polarization: Pn = γPD, where Pn

and PD are neutron and deuteron polarization, respectively.

4.2 Unpolarized Electron-deuteron Scattering

4.2.1 Electron-deuteron Elastic Scattering: D(e, e′)D

In the Born Approximation, the differential cross section for elastic electron-deuteron

scattering has the following formula [59]:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

f−1
rec

[
A(Q2) + B(Q2) tan2(θe/2)

]
, (4.4)
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where A and B are the longitudinal and transverse deuteron structure functions. The

deuteron is a spin-1 particle and to describe its electromagnetic structure requires

three structure functions, specifically the charge monopole (GC), magnetic dipole

(GM) and charge quadrupole (GQ) form factors. These form factors are related to

A(Q2) and B(Q2) by:

A(Q2) = G2
C(Q2) +

8

9
η2G2

Q(Q2) +
2

3
ηG2

M(Q2)(1 + η),

B(Q2) =
4

3
η(1 + η)2G2

M(Q2), (4.5)

where MD is the mass of deuteron and η = Q2

4M2
D
. In the non-relativistic impulse

approximation, the form factor of the deuteron can be expressed in terms of the

iso-scalar electric and magnetic form factors of the nucleon: GES and GMS by :

GC = GESCE, GQ = 2GESCQ, GM =
MD

MP
(2GMSCS + GESCL), (4.6)

with

GES =
1

2
(Gp

E + Gn
E), GMS =

1

2
(Gp

M + Gn
M). (4.7)

CE, CQ, CS, CL describe the deuteron structure, and Gp,n
M,E are the Sach’s form factors.

The factors CE,Q,S,L can be calculated to good approximation from the non-relativistic

deuteron wave function u(r) for the S-state and w(r) for the D-state [61]:

CE =
∫ [

u2(r) + w2(r)
]
j0

(
qr

2

)
dr,

CQ =
3

η
√

2

∫
w(r)

[
u(r) − w(r)√

8

]
j2

(
qr

2

)
dr,

CL =
3

2

∫
w2(r)

[
j0

(
qr

2

)
+ j2

(
qr

2

)]
dr, (4.8)

CS =
∫ [

u2(r) − 1

2
w2(r)

]
j0

(
qr

2

)
dr

+
1√
2

∫
w(r)

[
u(r) +

w(r)√
2

]
j2

(
qr

2

)
dr,
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where j0(
qr
2
) and j2(

qr
2
) are spherical Bessel functions. The deuteron form factors,

the Coulomb part G2
C , the quadrupole part 8

9
η2G2

Q, and the magnetic part 2
3
ηG2

M

are summed to make A(Q2). A and B can be experimentally determined through a

Rosenbluth separation of elastic unpolarized electron-deuteron scattering, while GC

and GQ can not be separated without additional information.

Different deuteron wave functions and various parameterizations for the neutron

electric form factor have been used in order to obtain the best fit to the experimental

data on D(e, e′)D. Galster et al. [52] in 1971 found the best fit for Gn
E from mea-

surements of electron-deuteron elastic cross sections at 5 fm−2 < Q2 <14 fm−2. They

used Lomon-Feshbach [57] deuteron wave functions and fit the following form:

Gn
E(Q2) = − τµ

1 + bτ
Gp

E(Q2), τ =
Q2

4M2
n

. (4.9)

The best fit was obtained for b = 5.6. Note from Equation 4.5 that the magnetic

form factor GM contribution in A(Q2) is less than 5%.

Due to the coherence of elastic scattering, an interference term between the charge

form factor of the neutron and the proton (Gp
EGn

E), as well as the dominant term

((Gp
E)2), i.e., G2

C = (Gp
E)2 + Gn

EGp
E + (Gn

E)2 contribute to the cross section. This

makes it difficult to determine the neutron charge form factor with good systematic

accuracy. Figure 4.1 shows the best fits to the inferred Gn
E obtained from Saclay

data [38] on electron-deuteron elastic scattering using different models for the NN-

interaction necessary to compute deuteron structure at Q2 < 0.8 (GeV/c)2 using the

form:

Gn
E(Q2) = − aτµ

1 + bτ
Gp

E(Q2), τ =
Q2

4M2
n

(4.10)

with both a and b are free parameters. The resulting systematic error is about 30%.

For the Paris potential results shown in Figure 4.1, the fit to the data points results

in a = 1.25 ± 0.13 and b = 18.3 ± 3.4. On the other hand, theoretical predictions

for other observables did not show a strong NN-potential dependence. The Saclay
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Figure 4.1: Two parameter fits to data for Gn
E deduced from the D(e, e′)D data using

deuteron wave functions calculated with different nucleon potential models.

data are currently being reanalyzed to see if the strong potential dependence of Gn
E is

true, or if it is due to other reasons such as the way they handle the meson exchange

current effects or relativistic corrections [60].

4.2.2 Inclusive Electron-deuteron Quasi-elastic Scattering:

D(e, e′)X

By measuring the elastic e − p cross section, dσ/dΩ, at different electron scattering

angles, it is straight forward to extract the proton electric form factor. This is the

usual Rosenbluth separation, where the cross section can be expressed in terms of θe

and the proton form factors are determined by the slope (m) and the intercept (b):

σ = m tan2(θe/2) + b, m = 2τG2
M , b =

G2
E + τG2

M

1 + τ
. (4.11)

It is possible to determine the neutron form factors from quasi-elastic electron

scattering from a deuterium target. A theoretical model based on the plane wave
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impulse approximation (PWIA) has been developed by Durand [62] and McGee [63].

In this model, the electron-deuteron quasi-elastic scattering cross section is rewritten

as the incoherent sum of the proton and neutron cross section folded with the deuteron

structure. Taking the nuclear binding and NN-interactions into account, Lung et al.

[64] have obtained a reduced cross section of the form:

σred
inel = {σp + σn} I(W 2, Q2)

=
{
ε
[
(Gp

E)2 + (Gn
E)2

]
+ ρ

[
(Gp

M)2 + (Gn
M)2

]}
I(W 2, Q2) (4.12)

= εRL + RT ,

where ρ = ω2/Q2, ε = [1 + 2(1 + ω2/Q2) tan(θe/2)]
−1

, I(W 2, Q2) is an integral over

deuteron S- and D-state wave functions, RL and RT are the longitudinal and the

transverse components of the cross sections which are determined by Rosenbluth

separation. The integral I(W 2, Q2) term is necessary to account for the motion and

interaction between the nucleons.

Difficulties arise in inclusive unpolarized electron-deuteron quasi-elastic scatter-

ing since Gn
E has been extracted after subtracting the contribution from proton and

removing the magnetic contribution of the neutron. The cross section is dominated

by scattering from protons, and large systematic errors result. In the Rosenbluth lon-

gitudinal/transverse separation, the error propagation for the desired quantity Gn
E is

very unfavorable when the magnetic form factor dominates. Furthermore, additional

uncertainties in the theoretical description of the deuteron structure make it difficult

to extract a model independent result for Gn
E.

With the advancement of polarized electron beam technology, there has been,

and continues to be, a significant effort to extract the neutron charge distribution

from measurements of the spin transfer in the knock out of neutrons from deuterium

nuclei. The first of these experiments at MIT-Bates (Bates E85-05) [65] has proven the

concept, and members of that collaboration have proposed to use the same technique

at JLAB (E93-038). In the next section, we will cover the topic of determining Gn
E
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using a polarized electron beam.

4.3 Polarized Electron Quasi-elastic Scattering from

the Deuteron: D(�e, e′�n)p

The first experiment using the D(�e, e′�n)p reaction mechanism to measure the neutron

electric form factor was performed at MIT-Bates (Bates E85-05) [65]. This approach

takes advantage of the fact that the neutron acquires a polarization through the knock

out mechanism and the polarization transfered to the neutron is proportional to the

neutron electric form factor. The components of the recoil neutron polarization lie

in the scattering plane of the electron and the recoil neutron. The component of the

polarization normal to the scattering plane (P n
y ) vanishes in the Born approximation,

while the polarization component in the scattering plane and normal to the momen-

tum transfer (P n
x ) is related to Gn

E. The polarization transfer coefficient Dzx can be

determined from the longitudinal electron polarization h and P n
x , and it is related to

the ratio of the neutron electromagnetic form factors by:

P n
x = hDzx, Dzx =

−(Gn
E/Gn

M)A(θe)

B(θe) + (Gn
E/Gn

M)2
, (4.13)

where A(θe) = 2
√

τ(τ + 1) tan(θe/2) and B(θe) = τ + A2(θe)
2

are kinematic factors.

By measuring the recoil polarization of the neutron in a polarimeter, it is possible to

extract Gn
E.

A similar technique has been used to determine Gn
E at the Mainz Microtron MAMI

[66] at low momentum transfer by measuring the neutron recoil polarization ratio

P n
x /P n

z , where the z axis for Pn is in the direction of the momentum transfer. The

recoil polarization for a free neutron is given by [68]:

P n
x = −h

√
2τε(1 − ε)Gn

EGn
M

ε(Gn
E)2 + τ(Gn

M)2
, P n

y = 0, P n
z = h

τ
√

1 − ε(Gn
M)2

ε(Gn
E)2 + τ(Gn

M )2
, (4.14)
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where τ = Q2/4M2
n and ε = [1 + 2(1 + τ) tan2(θe/2)]−1 are kinematic factors, and P n

x

is the same as in Equation 4.13. The ratio P n
x /P n

z is related to Gn
E/Gn

M by:

P n
x

P n
z

=
−
√

2ε√
τ(1 + ε)

Gn
E

Gn
M

. (4.15)

The measurement of the ratio,
(

P n
x

P n
z

)
, has an advantage over the measurement of

P n
x because in the ratio the electron beam polarization and the polarimeter analyzing

power cancel. However, since the knocked-out neutrons undergo a second scattering in

the recoil polarimeter, these techniques are limited by the recoil polarimeter efficiency.

4.4 Polarized Electron Scattering from Polarized

Helium: 3�He(�e, e′n)pp

Recently, the neutron electric form factor Gn
E has been determined by measuring the

asymmetry in the exclusive quasi-elastic scattering of electrons from polarized helium,

3 �He(�e, e′n)pp at the Mainz Microtron MAMI [69, 70, 71].

In the polarized 3He nucleus, the two proton spins point in opposite directions, so

that the spin of the nucleus will be largely due to the neutron. Therefore, the 3He

target effectively serves as a polarized neutron target.

In the experiments at Mainz, the scattered electron energy was measured in either

a magnetic spectrometer or a calorimeter in order to distinguish between quasi-elastic

and inelastic processes, e.g. ∆ resonance and π production. The neutrons are detected

in segmented plastic scintillators. A guiding field permits the rotation of the target

spin in the desired directions, especially perpendicular and parallel with respect to

the 3-momentum transfer vector q. By measuring the transverse and longitudinal

asymmetry A⊥/A‖, the ratio of Gn
E/Gn

M is given by [69, 76]:

Gn
E

Gn
M

=
A⊥

A‖

[
τ + τ(1 + τ) tan2(θe/2)

]1/2
, τ =

q2

4M2
n

. (4.16)
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The difficulty of the experimental technique is two-fold: First, one has to de-

termine the neutron polarization from the NMR polarization measurement for the

3He in order to obtain the correct neutron polarization. The mixture of the S′- and

D-state in 3He makes this determination difficult. Second, the reaction mechanism,

especially the final state interaction for the helium target is more complex than that

of the deuterium target. This requires detailed theoretical understanding of the three

body system.

4.5 Gn
E Data from Polarized Experiments

Figure 4.2 summarizes recent Gn
E measurements ranging from Q2=0.15 (GeV/c)2 up

to Q2=0.7 (GeV/c)2 from Mainz using electron scattering from polarized 3He and from

D(�e, e′�n) scattering. The most recent result from NIKHEF using �D(�e, e′n) scattering

(the technique will be discussed in the next chapter) is also shown.
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Figure 4.2: Existing Gn
E data from polarized experiments. The data from Eden [65]

and Herberg [66] are from D(�e, e′�n) reaction; The data from Meyerhoff [69], Becker

[70] and Rohe [71] are from 3 �He(�e, e′n) reaction; The data from Passchier [72] is from
�D(�e, e′n) reaction. Corrections for the effects of FSI are not applied to the data from
Becker and Meyerhoff. The solid curve is the Galster parameterization of Gn

E.
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Chapter 5 Polarized Electron

Quasi-elastic Scattering from Polarized

Deuteron

In this chapter, we present the formalism which exposes the sensitivity of the asymme-

try in quasi-elastic polarized electron scattering from polarized deuterium. We begin

with a simplification of the process to inclusive elastic scattering from the neutron,

and then present its extension to exclusive scattering from deuterium.

5.1 �D(�e, e′n)p Formalism

Reducing the uncertainty on Gn
E requires a reaction which is insensitive to the deuteron

structure, avoids a subtraction of the proton contribution and avoids a Rosenbluth

separation. It was first proposed by Dombey [73] that the asymmetry in scattering

of polarized electrons from a polarized target would be sensitive to Gn
E. This method

exploits the same sensitivity utilized in the recoil polarization measurements men-

tioned earlier. The technique was first used at NIKHEF [72] and was first proposed

and approved for the experiment (E93-026) at JLAB in 1989 [74].

In the E93-026 experiment, we extract the neutron electric form factor by mea-

suring the spin-dependent part of the cross section of �D(�e, e′n)p. The longitudinally

polarized electron scatters quasi-elastically from a polarized deuterium (15ND3) tar-

get ejecting a neutron, and the determination of the asymmetry in the cross section

for two opposite orientations of the beam polarization yields the product of Gn
E and

Gn
M .

Polarized deuterium provides the best polarized neutron target. Arenhövel et al.

[75] have studied the �D(�e, e′n) reaction in detail and found that both the neutron-
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proton final state interaction and the poorly known features of the initial state

deuteron wave function do not introduce significant uncertainties. The effect of the

meson exchange currents also turns out to be relatively small.

Following Donnelly and Raskin [76], we can express the e−N elastic cross section

as a sum of an unpolarized part and a polarized part, which is different from zero

only when the beam is longitudinally polarized. With the kinematic factors and the

nucleon form factors both evaluated in the laboratory frame, as shown in Figure 5.1,

the full expression for cross section is given by:

t

k’

k

Scattering Plane

Spin Orientation Plane

θ

P

q)(ω,

LAB  Frame:

θ

     Q=

u

(along  q)
h

e

*

zu

e

φ*

y

Figure 5.1: Polarized electron scattering from a polarized target.

(
dσ

dΩ

)pol

=

(
dσ

dΩ

)
Mott

f−1
rec

[
vLRL

fi + vT RT
fi + hPt

(
vT ′RT ′

fi + vTL′RTL′
fi

)]

=

(
dσ

dΩ

)
Mott

f−1
rec [Σ + hPt∆] , (5.1)

where f−1
rec is the hadronic recoil factor, the v′s are electron kinematic and polarization

factors, the R′s are nucleon response functions, h is the electron helicity, and Pt is

the target vector polarization. Σ and ∆ are the spin averaged and spin-dependent

nuclear response functions. In the case of elastic scattering from a free neutron, Σ
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and ∆ are given by:

Σ =
(Gn

E)2 + τ(Gn
M)2

1 + τ
+ 2τ(Gn

M)2 tan2(θe/2), τ =
Q2

4M2
n

,

∆ = −2 tan(θe/2)

√
τ

1 + τ

{√
τ [1 + (1 + τ) tan2(θe/2)] cos θ∗(Gn

M)2 (5.2)

+Gn
EGn

M sin θ∗ cos φ∗
}

,

where θ∗ and φ∗ are defined as the usual polar and azimuthal angle of the polarization

vector in an coordinate system defined as the z axis along the q vector, the y axis

given by ŷ = Ê×Ê′

|Ê×Ê′| , with Ê being the unit vector along the incident electron and Ê′

is the unit vector along the scattered electron, the x axis is given by x̂ = ŷ × ẑ, as

shown in Figure 5.1.

The experimental neutron asymmetry AV
en is given by:

AV
en =

σ+ − σ−

σ+ + σ−
=

∆

Σ
. (5.3)

To extract Gn
E, we would like to maximize the sensisitivity of the experimental

asymmetry to it. Therefore, the target has to be polarized in the scattering plane

(φ∗ = 0 or 180o) and perpendicular to q (θ∗ = π/2). Under these conditions, the

(e, e′n) asymmetry AV
en (φ∗ = 0) simplifies to:

AV
en =

−2
√

τ(1 + τ) tan(θe/2)Gn
EGn

M

(Gn
E)2 + τ [1 + 2(1 + τ) tan2(θe/2)] (Gn

M)2
. (5.4)

For elastic scattering, one obtains a quadratic equation for Gn
E from Equation 5.4:

(
Gn

E

Gn
M

)2

+
f(τ, θe)

AV
en

(
Gn

E

Gn
M

)
+ g(τ, θe) = 0, (5.5)

where g(τ, θe) = τ [1 + 2(1 + τ) tan2(θe/2)], and f(τ, θe) = 2
√

τ(1 + τ) tan(θe/2).
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Solving for Gn
E, one has:

Gn
E = C(1 − R), C =

−fGn
M

2AV
en

, R =

√√√√1 − 4g

(
AV

en

f

)2

. (5.6)

The statistical uncertainty of Gn
E is obtained from the statistical uncertainty of

Gn
M and the statistical uncertainty of AV

en. Based on Equation 5.5, using standard

error propagation, one finds:

δ2Gn
E =

(
∂Gn

E

∂Gn
M

)2

δ2Gn
M +

(
∂Gn

E

∂AV
en

)2

δ2AV
en. (5.7)

The relative uncertainty of Gn
E can be written as:

(
δGn

E

Gn
E

)2

=

(
δGn

M

Gn
M

)2

+

(
δAV

en

AV
en

)2 [
C2

(
1 − 1

R

)2 1

(Gn
E)2

]
. (5.8)

Note the presence of a magnification factor M =
[
C2

(
1 − 1

R

)2
1

(Gn
E)2

]
multiplying the

relative uncertainty of AV
en, resulting in a slightly larger (about a factor of 1.05 for

our kinematics) relative uncertainty for Gn
E than for AV

en. On the other hand, this

magnification factor becomes ∼ 14.6 between Gp
E and AV

ep at the same kinematics, and

as a result it is impossible to determine Gp
E at this kinematics. A detailed presentation

of the magnification factor can be found in Ref. [77].

5.2 Gn
E and the Electron-deuteron Vector Asym-

metry

The previous discussion was for elastic scattering from a polarized neutron. As

we have stated earlier, no free neutron target exists, and we resort to quasi-elastic

electron-deuteron scattering with the detection of the knocked-out neutron. This

naturally complicates the issue. In this section, we will follow Arenhövel’s general

formalism for the deuteron electro-disintegration cross sections, discuss the terms we
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were interested in the E93-026 kinematics, and attempt to describe the connection

between the measured experimental asymmetry AV
ed and the neutron electric form

factor Gn
E.

Figure 5.2 shows the definition of various kinematical quantities required in the

theoretical framework of Arenhövel et al. [75]. The general formula for the five-fold

differential deuteron electro-disintegration cross section with unpolarized electron and

unpolarized deuteron is given by:
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e

(ω, q)

φ

θ
pq

θ
nq

P

P

p

n
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Figure 5.2: Unpolarized electron-deuteron scattering.

(
dσ

dk′dΩedΩcm
np

)unpol

= c(ρLfL + ρTfT + ρLTfLT cosφ + ρTTfTT cos 2φ) = S0, (5.9)

where Ωcm
np is the solid angle in the n-p center of mass system, c = α

6π2
k′

kq4
ν
, k and k′

are the incoming and scattered electron momenta. The f ’s are structure functions

and can be expressed in terms of the reduced T-matrix. The ρ’s are the components

of the virtual photon density matrix.

The cross section for polarized electrons from polarized deuterons is given by:

(
dσ

dk′dΩedΩcm
np

)pol

≡ S(h, P d
1 , P d

2 ) =
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c

{
ρLfL + ρT fT + ρLTfLT cosφ + ρTTfTT cos 2φ + hρ′LTf ′

LT sin φ + P d
1

[
(ρLf 11

L

+ρTf 11
T )d1

10(θd) sin(φ − φd) +
1∑

M=−1

(ρLTf 1M
LT sin ξM + ρTTf 1M

TT sin ψM)d1
M0(θd)

]

+P d
2

[
2∑

M=0

(ρLf 2M
L + ρT f 2M

T )d2
M0(θd) cos(M(φ − φd)) +

2∑
M=−2

(ρLTf 2M
LT cos ξM

+ρTTf 2M
TT cos ψM)d2

M0(θd)

]
+ hP d

1

[
ρ′

T

1∑
M=0

f
′1M
T cos(M(φ − φd))d

1
M0(θd)

+ρ′
LT

1∑
M=−1

f
′1M
LT cos ξMd1

M0(θd)

]
+ hP d

2

[
ρ′

T

1∑
M=0

f
′2M
T sin(M(φ − φd))d

2
M0(θd)

+ρ′
LT

2∑
M=−2

f
′2M
LT sin ξMd2

M0(θd)

]}
, (5.10)

where P d
1 is the deuteron vector polarization, P d

2 is the deuteron tensor polarization,

and the f ′’s are structure functions requiring polarized electrons. θd and φd specify

the direction of deuteron polarization vector in the chosen coordinate system (θ∗ and

φ∗ in Figure 5.1). ξM = M(φ − φd) + φ, ψM = M(φ − φd) + 2φ, and M is the spin

projection of the target. For longitudinally polarized electrons, the ρ’s are given by:

ρλλ′ = ρ0
λλ′ + hρ′λλ′ , ρ0

00 = q2
ν

ξ2

2η
= ρL, ρ0

01 = q2
ν

ξ

η

√
(ξ + η)/8 = ρLT ,

ρ0
11 =

1

2
q2
ν

(
1 +

ξ

2η

)
= ρT , ρ0

−11 = −q2
ν

ξ

4η
= ρTT , ρ′

00 = 0, (5.11)

ρ′
01 =

1

2
q2
ν

ξ√
2η

, ρ′
11 =

1

2
q2
ν

√
(ξ + η)/η = ρ′

T , ρ′
−11 = 0,

where ξ = q2
ν/q

2 and η = tan2(θe/2). The rotation matrices are:

d1
00(θd) = cos(θd), d1

10(θd) = −sin(θd)√
2

, d2
00(θd) =

(
3

2
cos2(θd) −

1

2

)
,

d2
10(θd) = −

√
3/2 sin(θd) cos(θd), d2

20(θd) =

√
6

4
sin2(θd). (5.12)

The polarized cross section can be formulated in terms of spin correlation param-
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eters as suggested by Arenhövel [75]:

(
dσ

dΩ

)pol

= S0f
−1
rec {1 + hPtAeN · P} , (5.13)

where S0 is the unpolarized electron-deuteron scattering cross section, P characterizes

the target polarization, and the spin correlation parameter AeN has the components:

Ax
eN = − 2

√
2τρ′

LTGEGM

ρLG2
E + 2τρTG2

M

, Ay
eN = 0, Az

eN = − 2τρ′
T G2

M

ρLG2
E + 2τρTG2

M

, (5.14)

An analogous result for the recoil nucleon polarization is obtained if one observes the

recoil nucleon polarization instead of using a polarized target:

Px = − 2
√

2τρ′
LTGEGM

ρLG2
E + 2τρTG2

M

, Py = 0, Pz =
2τρ′

TG2
M

ρLG2
E + 2τρT G2

M

. (5.15)

This is the same relation as we saw in Equation 4.14. In the case of longitudinally

polarized electron, Px is directly proportional to the product of Gn
E and Gn

M .

By separating the contributions depending on the polarization h and deuteron

orientation parameters, the cross section can be expressed in the form:

S(h, P d
1 , P d

2 ) = S0

[
1 + hAe + P d

1 AV
d + P d

2 AT
d + h(P d

1 AV
ed + P d

2 AT
ed)

]
, (5.16)

where Ae, A
V
d , AT

d , AV
ed, A

T
ed are electron asymmetry, vector and tensor target asym-

metries, and electron-deuteron vector and tensor asymmetries. Comparing with the

cross section expression 5.10, one can obtain expressions for the five asymmetries:

Ae =
1

2hS0

[S(h, 0, 0)− S(−h, 0, 0)] ,

AV
d =

1

2P d
1 S0

[
S(0, P d

1 , P d
2 ) − S(0,−P d

1 , P d
2 )
]
,

AT
d =

1

2P d
2 S0

[
S(0, P d

1 , P d
2 ) − S(0,−P d

1 , P d
2 ) − 2S0

]
, (5.17)

AV,T
ed =

1

4hP d
1/2S0

{[
S(h, P d

1 , P d
2 ) − S(−h, P d

1 , P d
2 )
]
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∓
[
S(h,−P d

1 , P d
2 ) − S(−h,−P d

1 , P d
2 )
]}

.

The longitudinal-transverse interference function f ′
LT (the fifth structure function)

determines the electron asymmetry Ae for the longitudinally polarized electrons. The

fifth structure function is sensitive to Gn
E, but it is unsuitable for the experimental

determination of Gn
E since the imaginary part vanishes in the Born approximation and

an out of scattering plane measurement is required. The measurement of the deuteron

vector asymmetry AV
d requires orienting the target polarization out of the scattering

plane because of parity conservation and the measurement of the deuteron tensor

asymmetry requires deuteron tensor polarization. Arenhövel’s calculations show that

both single polarization observables, AV
d and AT

d are insensitive to Gn
E in the kinematic

region we were interested in, typically in the range of 160o < θcm
np ≤ 200o, where θcm

np

is the angle of relative n-p momentum with respect to the momentum transfer vector

q in the n-p center of mass system (see Figure 5.2).

For the double polarization observables, the electron-deuteron tensor asymmetry

AT
ed is essentially zero when averaged symmetrically in φ − φd. Figure 5.3 shows AT

ed

for φd = 4o, θd = 90o and φ = 0 for kinematics appropriate to E93-026.

The electron-deuteron vector asymmetry, AV
ed, has a strong effect due to Gn

E. To

explore the sensitivity of AV
ed to Gn

E, one can further express AV
ed as:

AV
ed =

c

S0

{
ρ′

T

1∑
M=0

f ′1M
T cos(M(φ − φd))d

1
M0(θd)

+ρ′
LT

1∑
M=−1

f ′1M
LT cos ξMd1

M0(θd)

}
. (5.18)

In the Born Approximation, the reduced T-matrix is related to the nucleon form

factors by:

tBA
smsµmd

= (−1)md+µ1

4

√
3κ

πM

{
(−1)1−ms

√
3

δs,1δmsmd
·
[
Gp

E(δ|µ|,1κd1
µ0(θ)

−2Mδµ,0) < κ−|Φd > −Gn
E(δ|µ|,1κd1

µ0(θ) + 2Mδµ,0) < κ+|Φd >

]
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Figure 5.3: Electron-deuteron tensor asymmetry as function of θcm
np . Results shown

are for E=2.721 GeV, E′=2.480 GeV and θe = 15.5o kinematics.

+µ(−1)ms
√

s + 1q
∑
µ′

(−1)1−md


 s 1 1

−ms µ′ md


 d1

µµ′(θ) ·

[
Gp

M < κ−|Φd > −(−1)sGn
M < κ+|Φd >

]}
, (5.19)

where |Φd > and |κ > (κ = pnp) represent L = 0 deuteron and final state plane wave

respectively, and θ=0 and π corresponding to proton and neutron quasi-free kinemat-

ics. At the (e, e′n) or (e, e′p) quasi-elastic peak, one obtains the Born Approximation

expression for AV
ed:

AV
ed = ∓ρp/n



√

2

3

ρ′
T

ρT
cos(θd) + 2

√
2

3

ρ′
LT

ρT
sin(θd) cos(φd)Rp/n




= ∓
√

2

3
P ′

z(p/n) cos(θd) +

√
2

3
P ′

x(p/n) sin(θd) cos(φd), (5.20)

where P ′
x(p/n) = ∓2ρp/n

ρ′LT

ρT
Rp/n, P ′

z(p/n) = ρp/n
ρ′T
ρT

, ρp/n =
(
1 + ρL

ρT
R2

p/n

)−1
, and
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Rp/n is related to the proton or neutron form factors by Rp/n =
√

2MGE/qGM .

The factor
√

2
3

is due to the definition of the density matrix for spin–1 particles in

the spherical coordinate system of the Madison Convention [78], where the deuteron

vector polarization is defined as Pt =
√

3
2
(p1 − p−1). The D-state effects on AV

ed has

been included in the calculation.

Using the above equation, Arenhövel has calculated the Gn
E model dependence

of AV
ed for the E93-026 kinematics. The calculation used Bonn (r-space version) [79]

NN-potential and included subnuclear degrees of freedom via meson exchange (MEC)

and isobar configuration (IC) [80]. The dependence is illustrated in Figure 5.4 near

the quasi-elastic kinematics of E =2.721 GeV, E′ =2.460 GeV and θe = 15.8o, where

AV
ed is plotted against θcm

np at θd = 90o and φd = 0o for three different Gn
E values in

the full calculations of Arenhövel: Gn
E = 0.5 × (Gn

E)Galster, Gn
E = (Gn

E)Galster and

Gn
E = 1.5 × (Gn

E)Galster. The results indicate that AV
ed is very sensitive to Gn

E values

around the quasi-elastic peak.
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Figure 5.4: Gn
E dependence of the electron-deuteron vector asymmetry. Results shown

are for E =2.721 GeV, E′ =2.460 GeV and θe = 15.8o kinematics in the full calcula-
tions of Arenhövel.
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Arenhövel has also calculated the NN-potential model dependence of AV
ed in the

region of θcm
np of interested here. The potential models studied are Paris [81], Bonn

(r-space version) and two Argonne potentials, V14 and V28 [82]. Results indicate

that the NN-potential models have no noticeable effect on AV
ed in the kinematic range

of 160o < θcm
np ≤ 200o [75]. Figure 5.5 shows the effect on AV

ed of various assumptions

concerning the reaction mechanism for E=2.721 GeV, E′=2.460 GeV and θe = 15.8o

kinematics. These assumptions include: Normal (N), which includes the Born Ap-

proximation and final state interaction (FSI), Normal with the inclusion of the meson

exchange current (MEC), Normal with the inclusion of the MEC and the isobar cur-

rents (IC), and the full calculations, which includes Normal, MEC, IC and relativistic

corrections (REL). It shows that in the kinematical range of 160o < θcm
np ≤ 200o, AV

ed

is relatively insensitive to the reaction mechanism compared to its sensitivity on Gn
E.
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Figure 5.5: Reaction mechanism dependence of the electron-deuteron vector asymme-
try. Results shown are for E =2.721 GeV, E′ =2.460 GeV and θe = 15.8o kinematics.

The insensisitivity to either NN-potential or the reaction mechanism and the clear
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Gn
E model dependence of AV

ed near the quasi-free peak allow this experiment to obtain

a highly accurate measurement limited only by knowledge of the beam and target

polarization and the acquired statistics, and thus make a precise measurement of the

electric form factor Gn
E.

To recover Equation 5.4 from Equation 5.20, one has to define the deuteron vector

polarization in Cartesian coordinates as Pt = p1−p−1 and define the beam polarization

to be h. Then the relations in Equation 5.12 must replace the spherical components

of the virtual photon density matrix in Equation 5.20. Evaluating at θcm
np = 180o, AV

ed

can then be expressed in terms of kinematic quantities and the neutron form factors

in the form:

AV
en = γ−1AV

ed =
−2

√
τ(1 + τ) tan(θe/2)Gn

EGn
M

(Gn
E)2 + τ [1 + 2(1 + τ) tan2(θe/2)] (Gn

M)2
, (5.21)

where γ is a correction factor to the measured deuteron polarization due to the D-

state admixture of the deuteron.

Experimentally, one forms the asymmetry from the numbers of counts recorded

for four different combinations of the beam and target polarizations (charge and

dead time normalized sum): L+ = Φ+nDS(h, P d
1 , P d

2 ), L− = Φ−nDS(h,−P d
1 , P d

2 ),

R+ = Φ+nDS(−h, P d
1 , P d

2 ), and R− = Φ−nDS(−h,−P d
1 , P d

2 ), where S is the cross

section for polarized electron and polarized deuteron scattering (Equation 5.10).

Φ± = Qbeam(P1±)× (Detector Acceptance) reflect the unequal numbers of counts

for opposite target polarizations, and nD is the number of scattering center. The fol-

lowing expression for the experimental counts asymmetry for e−d double polarization

scattering is based on Equation 5.17:

ε =
(L+ − R+) − (L− − R−)

(L+ + R+) + (L− + R−)
. (5.22)

Following Equation 5.16, the relationship between ε and the electron-deuteron vector
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asymmetry AV
ed can be written as:

ε =
h
[
(1 − β)Ae + (1 + αβ)P d

1 AV
ed + (1 − βγ)P d

2 AT
ed

]
(1 + β) + (1 − αβ)P d

1 AV
d + (1 + βγ)P d

2 AT
d

, (5.23)

where α = −P1−
P1+

is the ratio of the negative and positive target vector polarizations,

β = Φ−
Φ+

is the ratio of the counts for negative and positive target polarization, γ =

P2(P1−)
P2(P1+)

, and P d
2 = 2 −

[
4 − 3(P d

1 )2
]1/2

. Solve for AV
ed, one has:

AV
ed =

1

h(1 + αβ)P d
1

{
ε
[
(1 + β) + (1 − αβ)P d

1 AV
d + (1 + βγ)P d

2 AT
d

]

−h
[
(1 − β)Ae + (1 − βγ)P d

2 AT
ed

]}
. (5.24)

Based on Arenhövel’s calculation, with full φ acceptance (0o < φ < 360o), the detector

acceptance averaged Ae, AV
d and AT

ed have zero contributions to the experimental

asymmetry, leaving only term contains AT
d remains in Equation 5.24. For P d

1 = 20%,

we have P d
2 � 3%, with AT

d in the order of 10−2, one can ignore the contribution from

the term contains AT
d as well, and Equation 5.24 can be further simplified to:

AV
ed =

ε(1 + β)

h(1 + αβ)P d
1

. (5.25)

In the case of using a complex molecular targets such as E93-026, the number of

scattering center nD must be corrected for the dilution factor. Hence a dilution factor

f (see Section 9.2) is introduced to count for the scattering from target components

other than deuterium, and the above equation is modified to:

AV
ed =

ε(1 + β)

h(1 + αβ)P d
1 f

. (5.26)
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Chapter 6 Experiment E93-026

6.1 Overview

Experiment E93-026, “The Measurement of Electric Form Factor of Neutron (Gn
E)”,

was carried out at JLAB Hall C in the Fall of 1998. The accelerator at JLAB can

provide longitudinally polarized CW electron beams simultaneously to the three ex-

perimental halls. The average electron beam current delivered to Hall C for this

experiment was ∼100 nA. Data were taken with the polarized deuterium target (see

Section 6.6) with the target magnetic field direction perpendicular to the central

momentum transfer vector q. Electrons were detected in the High Momentum Spec-

trometer (HMS) and the recoil neutrons were detected in the Neutron Detector (ND).

A schematic view of the experimental layout in Hall C is shown in Figure 6.1.

The first time use of a polarized target in JLAB’s experimental Hall C provided

numerous challenges. The solid polarized target requires low beam current, I < 120

nA, in order to maintain high polarization. The determination of the beam position

for such a low beam current also presents significant difficulties. Because of the tar-

get polarization measurement mechanism, even with low beam intensity, the electron

beam needs to be rastered over the surface of the entire target, to distribute beam

and to ensure uniform radiation of the target material. The presence of the strong

magnetic field in the polarized target requires accommodation. Due to the magnetic

field, the incoming and outgoing electrons, as well as the knocked-out protons, are

bent. To ensure a horizontal beam incident on the target and to guide the outgoing

electrons to the beam dump, the use of upstream and downstream chicane magnets

is required. We also have to accurately determine the target magnetic field direction

and make sure it is perpendicular to the central value of the momentum transfer

vector. The use of the neutron detector presents additional challenges: the detector
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Figure 6.1: Equipment on Hall C floor during E93-026 experiment.
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shielding, determination of the detector ADC thresholds, detector efficiencies, posi-

tioning, photomultiplier tubes (PMT) bench testing, etc. The upgrade of the CEBAF

Online Data Acquisition (CODA) from version 1.4 to 2.0 involved a significant effort.

These are just part of the realistic difficulties we faced during the experiment. In the

remainder of this chapter, I will treat the most relevant pieces of equipment in the

experiment, describe how they operate and how they were set up. At the end of the

chapter, readers should have a general picture of how the experiment was established.

6.2 Accelerator

A schematic view of the JLAB accelerator is shown in Figure 6.2.

Helium
Refrigerator

North Linac
(400 MeV)

South Linac
(400 MeV)

Recombiner

Recombiner

Polarized
Source

Spin
Rotators
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Pre-acceleration 45 MeV
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End Stations
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Elements
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1245 MeV

3645 MeV

2845 MeV

Figure 6.2: Schematic view of the accelerator and experimental halls [Figure from J.
Grames].

The electron beam is accelerated to 45 MeV 1 in the injector. It is accelerated

1This is the value for a nominal linac boost at 400 MeV. The injector energy is scaled with that of
the linacs so that the magnetic elements in the arcs and recombiners will scale by a common factor
as the momentum is changed.
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in the north linac by superconducting radio frequency (RF) cavities. The beam is

steered through the east arc and then enters the south linac where it is accelerated

further. After it has traveled through the north and south linacs it can be extracted

to any of the three experimental halls or it can be steered through the west arc for

further acceleration, up to 5 passes through the accelerator. The net energy gain

after each pass is adjustable so that the extracted beam is a multiple of the energy

gain for each pass. Beams for different passes negotiate the arcs by taking paths

which lie vertically on top of each other and each pass has a separate set of magnets

for bending electrons with a specific energy. The beams are separated vertically at

the end of each linac and they are recombined as they exit the arc and before they

enter the next linac. At the south linac the beam can either be diverted to the beam

switchyard for delivery to the experimental halls or sent for another acceleration pass.

6.3 Polarized Electron Sources

The polarized electron beam was produced by the polarized electron source, located

at the accelerator injector area, by illuminating a semiconductor photocathode made

of strained crystal of gallium arsenide (GaAs) with a circularly polarized laser [83].

The photocathode is activated by exposure of the semiconductor surface to monolayer

quantities of cesium and an oxidant. The band structures of bulk and strained GaAs

are shown in Figure 6.3. Circularly polarized laser light induces photoemission from

the lower lying valence band and excites allowed transitions from valence band (VB)

to the conduction band (CB). These transitions cause the electrons in the conduction

band to have a net polarization. The polarization direction depends on the laser

frequency and on whether the laser light is left-handed or right-handed circularly

polarized. Polarized electrons released from the conduction band are accelerated by

a 100 kV cathode and injected in to the accelerator.

Electrons in the valence band of the bulk GaAs have orbital angular momentum

of 1. Due to the spin-orbit interaction, the otherwise six-fold degenerate state splits
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Figure 6.3: Band structure of the bulk (left) and strained GaAs (right), The energy
level is labeled by the orbital angular momentum (L) and the total angular momen-
tum (J). The degenerate level is labeled by the total angular momentum projection
(mJ). The energy gap δ is caused by the strain. The transitions shown are those
that can be excited by the left-handed circular laser light (solid line) along with the
transitions that can not be excited (dashed line) when the laser frequency is tuned
to the transition corresponding to the degenerate level 1 and 3.
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into a four-fold degenerate state P3/2 and a two-fold degenerate state P1/2 with an

energy gap of ∆so=0.34 eV. With the illumination of the left (right) handed circularly

polarized laser light with energy of about 1.54 eV (Eg), transitions can be excited

from the degenerate P3/2 state to the S1/2 state. The number of transitions that can

be excited is determined by angular momentum conservation. Shown in Figure 6.3

are transitions for left-handed circularly polarized laser light. The relative transition

probability for possible transitions is determined by the Clebsch-Gordan coefficients.

The degeneracy of the valence band in bulk GaAs together with the relative transition

probabilities limits the maximum theoretical electron polarization to be 50%. In

practice, some polarization will be lost while the electron stays in conduction band

and during the acceleration process, limiting the electron polarization from bulk GaAs

to around 40%.

By using strained GaAs, the degenerancy of the valence band is removed. Such

strained cathodes are made by growing a layer of bulk GaAs on top of a thick layer

of GaAlAs, which has a slightly different lattice spacing. The GaAs lattice will be

strained slightly and an electric field will be set up in the material. The electric field

splits the degenerate levels in the P3/2 state and allows each level to be pumped sep-

arately by selecting the right laser frequency. The maximum theoretical polarization

for the strained GaAs is 100%. The actual beam polarization for E93-026 experiment

was approximately 75%.

The JLAB polarized gun is capable of delivering current as high as 8 coulombs/day.

To increase the photocathode quantum efficiency and operating lifetime, the photo-

cathode was cleaned by exposure of the cathode surface to atomic hydrogen. To

reduce the loss of electrons between the photocathode and the experimental halls, an

RF gainswitched diode laser oscillator-amplifier system was developed. Three such

lasers, each operating on the third subharmonic of the 1497 MHz fundamental accel-

erator frequency, produce three interleaved bunch trains, which are delivered to three

independent experimental halls with the aid of third subharmonic RF separators, as

the block diagrams show in Figure 6.4. Longitudinally polarized electron beams have
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been delivered to all three experimental halls with this system. The polarized beam

current to a single experimental hall has been as high as 110 µA CW, a prebuncher

being used ahead of the RF chopper system to optimize the transmission.
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Figure 6.4: Layout of the JLAB laser system and polarizing optics. The laser beam
are transported in the plane of the optical table. They are reflected upward by
the vertical mirror and then pass through the Pockels cell and electron gun vacuum
window to the photocathode [Figure from J. Grames].

Electrons are deflected in the beam line, and due to the anomalous magnetic

moment of the electron, its spin precesses. To provide simultaneous longitudinal

electron polarization in three experimental halls, one has to consider the total electron

spin precession from the injector to each of the experimental halls. For each JLAB

experimental hall (A, B, C), the total precession angle can be expressed as [84]:

θA =
E

me

(g − 2)

2

[
2n2

A − nA

(
1 − 2α − 1

2.4

)
− α

(
1 − 1

4.8

)]
π,



55

θB =
E

me

(g − 2)

2

[
2n2

B − nB (1 − 2α) − α
]
π, (6.1)

θC =
E

me

(g − 2)

2

[
2n2

C − nC

(
1 − 2α +

1

2.4

)
− α

(
1 +

1

4.8

)]
π,

where E is the energy of single linac (both linacs are assumed to operate at the same

energy), ni is the number of the recirculation passes for beam delivered to hall i, and

α=0.1125 is the ratio of the injector energy to the linac energy. The beam energy for

each hall is given by:

EA,B,C = (2nA,B,C + α)E. (6.2)

To find out the energy combinations which will keep the longitudinally polarized

electrons still longitudinally polarized for each hall, we require the difference in total

spin precession angles to the two halls in question (hall i and halls j) be an integral

(n) multiple of π:

θi − θj = nπ. (6.3)

Once the discrete energy combinations are determined, the total spin precession angle

can be determined for a particular hall, and thus determine what initial polarization

orientation must be set at the injector to obtain longitudinal polarization in three

halls. During E93-026, the beam energy to Hall C was chosen to be E = 2.721 GeV,

and the initial injection angle was −75.3 degrees.

The E93-026 measurements were done at a four momentum transfer of Q2 = 0.5

(GeV/c)2. The quasi-free kinematic settings are listed in the Table 6.1, where θe,

θq and TN are quasi-elastic electron scattering angle, in-plane angle of q and kinetic

energy of the knocked-out neutron.

Table 6.1: The E93-026 kinematics.

Q2(GeV/c)2 E(GeV) θe θq TN (GeV)
0.5 2.721 15.7o 61.6o 0.267
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6.4 Møller Polarimetry

Møller polarimetry is used to measure the electron polarization through the process

of Møller scattering. Møller scattering is polarized electron-electron scattering and

its cross section was first calculated by Møller in 1931. The polarized cross section

in the center of mass system can be written in terms of longitudinal and transverse

analyzing powers Azz and At [85]:

dσ

dΩ
=

α2

4E

(3 + cos2 θ)2

sin4 θ

[
1 − P B

z P T
z Azz(θ) − P B

t P T
t At(θ) cos(2φ − φB − φT )

]
, (6.4)

where θ is the center of mass scattering angle, φ is the azimuth of the scattered

electrons, Pz and Pt are longitudinal and transverse polarizations of the beam and

target electrons respectively, φB and φT are azimuths of the transverse polarization

vector, with analyzing powers given by:

Azz(θ) =
(7 + cos2 θ) sin θ

(3 + cos2 θ)2
, At(θ) =

sin4 θ

(3 + cos2 θ)2
. (6.5)

The asymmetry is determined from differences in the counting rates when either

the beam or the target polarization vectors are reversed. During E93-026, both the

electron beam and the target foil were longitudinally polarized, which results in a

longitudinal asymmetry only:

A = Azz(θ)P
B
z P T

z . (6.6)

At θ = 90o in the center of mass, the analyzing power is at maximum of Azz = 7
9

and

the laboratory cross section is a constant, dσ
dΩ

= 179 mb.

E93-026 was the first experiment to use the Møller polarimeter in Hall C. The

design goal [86] of the polarimeter is to measure the electron beam polarization with

a relative uncertainty of 1% or less with a relatively short (∼ 20 minutes) time of

data taking. This was achieved by detecting the scattered and the recoil electrons in

coincidence.
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Figure 6.5: Sketch of the Møller Polarimetry in Hall C.

The basic units of the polarimeter are shown in figure 6.5. The beam enters from

left and hits an iron target foil sitting in the center of the superconducting split coil

solenoid (circle). The electrons in the iron foil were polarized by the 3 Tesla magnetic

field of the superconducting solenoid. At this high field the electrons are polarized

normal to the foil plane. In this state the saturation magnetization is known to the

10−3 level. The solenoid was always powered such that �B pointed downstream and

hence the polarization vector of the target electrons pointed upstream.

The Møller electrons are scattered at very small angle (∼ 1o) in the laboratory

frame. The electrons are very close to the beamline and need to be deflected away to

perform measurements. Two quadrupoles are used to achieve this deflection and to

focus the electrons into the detectors. The use of the two quadrupoles allows us to

keep the cone of the 90o center of mass scattering electrons at fixed dimensions after

a 11 meter drift distance (resulting in a 49 cm and 16 cm deviation from the beamline

in horizontal and vertical direction respectively). The first quadrupole (small square,

the “Los Alamos quadrupole”) has a 4 inch bore and a physical length of 12 inches.

The second quadrupole (10Q36, big square) has a 10 inch bore and a physical length

of 48 inches.

The Møller electrons are detected in coincidence using two lead glass shower coun-
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ters, one of which is shown in Figure 6.6. The electrons are fully stopped within the

detector. In front of each shower counter is a collimator which defines the acceptance

for the coincidence events. Right before the two collimators are two hodoscope arrays

of 16 plastic scintillators, each 1 cm in width.

photo multiplier

electron

photo multipliers
array of collimator shower

plastic hodoscope
16 channel

total absorption detector
lead glass 

Figure 6.6: Møller polarimetry detector arrangement [Figure from J. Grames].

Between the two quadrupoles is a system of 7 movable collimators, as shown in

Figure 6.7. These collimators are critical to reduce uncorrelated accidental coinci-

dence from Mott scattering processes. Mott scattered electrons are close to the beam

energy while the 90o center of mass Møller electrons are near 1
2

of the beam energy

and the Mott electrons with the right momentum and scattering angle to make it

through the quadrupoles into the detectors do not follow the same path in the con-

figuration space as the Møller electrons. The use of the collimator cuts away nearly

all the background from Mott scattering. The resulting signal to noise ratio is bet-

ter than 1000:1, thus it is reasonable to measure the beam polarization using scaler

information alone.

The polarimeter has been run with a typical CW beam current of 2 µA and

a target thickness of 4 µm. The time to achieve a 1% statistical uncertainty is 6

minutes at 40% beam polarization. Although it is possible to run the polarimeter

up to 10 µA CW beam with a 10 µm thick target foil, those intense beams tend to
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Figure 6.7: Collimator system with Møller electron trajectories [Figure from J.
Grames].

activate downstream beamline elements and are thus problematic.

During E93-026, the asymmetry in the Møller scattering process has been mea-

sured as a function of the spin injection angle into the accelerator. The asymmetry

follows a cosine distribution when plotted against the spin injection angle. The spin

injection angles and the beam polarizations for different run periods during the exper-

iment are listed in Table 6.2 [87]. At 2.721 GeV, the anticipated total spin precession

between the source and the Hall C Møller is πp = 2598o. The excess precession,

mod(πp, 2π), is 78.2o. Thus with an injector launch angle of −75o, the beam at the

Møller should be longitudinal and should have the same helicity as the source. Dur-

ing E93-026, we had negative spin injection angles and measured a negative Møller

asymmetry. As previously mentioned, the electron target polarization was always

negative. Therefore, we can conclude that the signal which we had labeled positive

helicity actually tagged negative helicity electrons. Thus the absolute sign of the

beam helicity in Hall C was fixed by measuring the sign of the Møller asymmetry.

The average beam polarization during E93-026 was 77.64% ± 0.21% (stat.).

The systematic uncertainties in the beam polarization measurement are deter-

mined by the uncertainty in the average analyzing power < Azz > and the uncertainty
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Table 6.2: Electron spin injection angle and beam polarization during E93-026.

Run Number Injection Angle(θL) h(%)
21816 − 21924 −75.38o 76.43 ± 0.73
21925 − 22030 −75.27o 76.69 ± 0.51
22031 − 22096 −75.27o 77.49 ± 0.51
22097 − 22178 −75.30o 78.07 ± 0.42
22179 − 22216 −75.30o 77.44 ± 0.37
22217 − 22289 −75.34o 78.22 ± 0.50

in the target polarization. The average analyzing power is determined by: the detec-

tor acceptance, the geometrical position of detectors and quadrupoles, the Levchuk

effect [89], the radiative corrections, multiple scattering, the beam position and the

incident angle on target, and the quadrupole field tune. The Levchuk effect is caused

by the initial momentum components of the target electron parallel or anti-parallel

to the incoming electron, which alters the available center of mass energy as well as

the cross section. It increases the analyzing power by 3% [88] and the uncertainty in

its calculation is one of the largest sources of errors. Monte Carlo simulation shows

that all other sources added together contribute about 0.4% uncertainty [88]. The

uncertainty in the target polarization is given by the knowledge of the saturation

magnetization of iron and the temperature of the target at the location of the beam

spot. The systematic error due to the saturation magnetization is about 0.1%. The

target temperature, which depends on beam current, beam and target size, beam en-

ergy and heat conductivity of the target material, dominates the target polarization

uncertainty. At beam currents below 3 µA, the systematic uncertainty due to beam

heating was estimated to be less than 1%.

6.5 Hall C Beamline

After extraction from the accelerator, the beam is sent to the Hall C arc and into

the end station. A set of magnets in the Hall C arc are used to steer the beam.

Monitoring instruments distributed through the beamline measure the beam profile,
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energy, current, and position. Figure 6.8 and Figure 6.9 show the equipment along

the Hall C arc and Hall C beamline. Major pieces of the beamline will be described

briefly in the remainder of this section.

BPM: C07

Superharps:
C07A/C07B

BPM: C12

Superharps:
C12A/C12B

Fast
Raster

BPM: C17

Superharps:
C17A/C17B

BCM1 BCM2

Unser

Figure 6.8: Equipment in the Hall C arc.
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Figure 6.9: Standard equipment in the Hall C beamline.

6.5.1 Harps and Superharps

Several harps and superharps are located along the beamline for monitoring the beam

profile. A harp is a movable frame with 2 vertical wires and 1 horizontal wire to

measure the beam profile in both directions. As the harp is moved the wires intercept
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the beam. An analog to digital converter (ADC) digitizes the signals from each wire

and a position encoder measures the position of the ladder as it passes through the

beam. The beam profile can be determined using the combined information. For low

beam current during E93-026, particles scattered from the harp wires were detected in

the scintillator detectors (PMT+scintillator) and analyzed versus the position readout

which was provided by the encoder.

Superharps are used to measure the deflection angle along the Hall C arc to

determine the beam energy in Hall C. They get their name from the extra care

taken to survey them and to accurately fiducialize their positions. Using the position

measured by three sets of superharps along the Hall C arc and field maps of the

bending magnets, one can determine beam energy to an uncertainty of ∼ 10−3. Details

of harps and superharps can be found in Ref. [90].

6.5.2 Beam Position Monitor

The beam position in Hall C was closely monitored by four beam position monitors

(BPMs). The BPM is a cavity with four antennae rotated at −45o. When the beam

passes through one of these cavities, the beam’s fundamental frequency is picked up

on each antenna. The amplitude of this detected signal is digitized and the beam’s

center of gravity is calculated on each axis. The beam position can then be calculated

by the normalized signals from two antennae on opposite sides of the beam. The

absolute beam position measurement accuracy is ±1.02 mm [91]. The relative position

measurement is much better than that.

The BPMs on the last girder in Hall C were not calibrated against the harps

during this experiment. The BPMs on this girder were calibrated by comparing them

with the Target Beam Position Monitor (TBPM) located about 1 meter before the

target.

In order to measure the beam position for the low currents during E93-026, an

effort was made before the experiment to select the most sensitive BPMs from a pool

of 75 BPMs.
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Details of the beam position monitors can be found in Ref. [91].

6.5.3 Beam Current Monitor

There are three current measuring devices in Hall C. Two of them (BCM1 and BCM2)

are RF cavities operating as high bandwidth, high signal/noise beam current moni-

tors. The other is the Unser monitor which is a parametric DC current transformer

composed of two separate transformers in the feedback loop of a nulling amplifier.

They are located on the beamline as BCM1, Unser, and BCM2 near girder 3C18

upstream of the Hall C target.

The RF cavities for the two BCMs are constructed of stainless steel and positioned

coaxially along the beam line. Details of he RF cavities can be found in Ref. [93].

The 499 MHz beam time structure in Hall C excites the 1497 MHz TM010 resonance

mode. This mode is suitable for current measurement because the electric field is

radially symmetric and the coupling to the beam is relatively insensitive to the beam

position when the beam is near the center of the cavity. In Hall C, the 1497 MHz

was downconverted to 100 kHz and then a rms-DC convertor was used to obtain a

voltage which is proportional to the beam current. For this experiment, since the

experimental asymmetry is very small, a very narrow filter was put at the input of

the rms-DC convertor (centered at 100 kHz) in order to optimize the signal/noise.

The absolute calibration of the RF cavities was done with the Unser monitor.

The Unser monitor gain is very stable but suffers from an unstable zero offset and

therefore is not appropriate to measure the absolute beam current on a run by run

basis. To calibrate the RF cavities, a relatively higher beam current (normally at 25

µA) is desired. The relationship between the output RF power of the cavities and the

beam current was then measured. For the low beam current (100 nA) during E93-

026, a signal generator operating at the same frequency (1497 MHz) was adjusted to

correspond to 100 nA and was used to calibrate the electronics. The resultant mea-

surement uncertainty for the beam current is about 5% [92]. During the experiment,

the calibration constants used for both BCM1 and BCM2 were the old calibration
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constants for one of the cavities. These calibration constants were invalidated by the

work done on the beamline during preparations for the experiment. A new calibration

was done for BCM1 after the experiment with relatively higher beam current and the

obtained calibration constants were used for the data analysis. BCM2 was not used.

For the upcoming E93-026 run, we will investigate calibrating the beam current

monitors using the Faraday cup at the injector. This is possible provided that beam

loss in the accelerator is minimal. The new calibration won’t improve the accuracy

but will be less time-consuming.

6.5.4 Beam Energy Measurement

There were two main methods to measure the beam energy. The first method used

the settings of magnets in the east arc. Knowing the bend angle of the arc and the

magnetic field, one can determine the beam energy. However, due to uncertainties in

field integral and position measurement, the accuracy is limited to ∼ 10−3. Another

method to measure beam energy is using the Hall C arc. In principle, the beam

position can be precisely measured in this method by three superharps and a precise

field map is available for the dipole magnet. However, at the time of this experiment,

the measurement uncertainty was also limited to ∼ 10−3.

6.5.5 Beam Raster

The electron beam at JLAB has a very small transverse size (< 200 µm FWHM). In

order to uniformly distribute both the heat and the radiation from the beam over the

full target the beam was rastered with radius of 1.0 centimeter.

There are two rastering systems in Hall C. The fast raster, located 25 meters

upstream of the target, and the slow raster just upstream of the target. Both raster

systems consist of the raster magnet, raster power resonance loops and a raster pattern

generator. The fast raster is capable of moving the beam over a several millimeter

radius and is used in Hall C for solid and cryogenic targets. The raster system consists
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of two sets of magnets. The driving frequency was 24.2 kHz for both the x and y

directions. The y raster was phase-shifted by 90 degrees. In order to produce a

pseudo-spiral pattern, both magnets were amplitude modulated at a frequency of 47

Hz.

The slow raster was designed specifically for this experiment. The pattern is a

pseudo-spiral with a special amplitude modulation which keeps the raster’s linear

velocity along the track constant. The driving frequences were 100 Hz in both x and

y directions and were phase-shifted by 90 degrees, which resulted in a steady circle.

With the fast raster superimposed on the slow raster, it becomes a “donut”, albeit

with a small hole of ∼ 1.0 mm.

In an effort to minimize the experimental induced asymmetries, a 1 Hz modulation

frequency was applied to the amplitude of the slow raster driving frequencies. The

modulation frequency was synchronized to the helicity flip for 2/3 of the E93-026 data

set. The first 1/3 of the data used a 1.2 Hz modulation frequency and is therefore

not synchronized with the helicity reversal. With helicity synchronization, for each

helicity flip, the driving modulation was set to the full amplitude again. This way

the beam sampled the entire target surface for each helicity packet, starting from the

edge of the target and ending in the center. The block diagram for the slow raster and

synchronization to the helicity flip is shown in Figure 6.10. Details of the E93-026

beam raster system are described in Ref. [94].

The typical raster pattern during this experiment is shown in Figure 6.11. The

figure shows a density plot of the number of triggers against the slow raster ADC

values. It can be seen that fewer events occur in the right hand side of the figure

(corresponding to the top part of the target cell). This is due to the fact that the

target cell was not fully loaded and the target material had settled. The hole in

the center was caused by the imperfection of the slow raster synchronization to the

helicity flip. This imperfection was caused by the fact that the amplitude modulation

frequency triggered by the external helicity flip signal was slightly greater than 1 Hz.
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Figure 6.10: The E93-026 slow raster and raster-helicity synchronization.
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6.5.6 Chicane Magnets

The polarized target includes a magnet whose field direction defines the axis of polar-

ization. The orientation of the magnet was such that electron beam was bent down

toward the floor. In order to ensure that the incoming beam is incident on the target

cell horizontally, it was necessary to bend the beam up before it entered the target

scattering chamber. In addition, it was necessary to bend the beam after it had exited

the target so that it would arrive in the beam dump. A series of chicane magnets

were installed to accomplish these functions.

          Polarimeter
quadrupole

2nd match section

1st raster

2nd raster

BE

BZ1

BZ2

Polarized target

To beam dump

Vertical plane

Horizontal plane

Figure 6.12: The Hall C chicane magnets and beam raster system schematic.

There are three chicane magnets: BE, BZ1 and BZ2, as shown in Figure 6.12.

BE, BZ1 and BZ2 are located 18.71 m, 4.84 m upstream and 4.84 m downstream of

the target respectively. The effective length (Leff), gap width (G), current (I), field

strength (B) and bending angle (Φ) for three chicane magnets are listed in Table

6.3. The BPMs were located upstream and downstream of the chicane magnets, and

give the position information from which to determine the chicane magnet settings.

Details of the chicane magnets can be found in Ref. [95].

The target magnetic field bends scattered electrons down. The electron spectrom-
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Table 6.3: The E93-026 chicane magnets specifications.

Leff(m) G(inch) I(A) B(kG) Φ(deg)
BE 1.0 1.0 108.40 2.2006 1.3887
BZ1 2.0 1.7 216.20 4.2462 5.3552
BZ2 2.0 3.0 354.02 3.4765 4.3844

eter (located in the horizontal plane) preferentially accepts electrons which scattered

up. Therefore, the momentum transfer vector q points down and the scattering plane

is tilted. For the out-going protons, the field causes an upward deflection.

6.5.7 Target Beam Position Monitor

The Target Beam Position Monitor (TBPM) determines the electron beam position

just in front of the target scattering chamber in Hall C. The TBPM measures the

beam position for each trigger, and therefore the approximate (relative) interaction

point of the electron beam and the polarized target is known for each event.

The measurement principle is based on secondary electron emission (SEE). The

device consists of horizontal and vertical arrays of thin metal strips and two thin anode

foils. Each plane has 34 stainless steel strips with a width of 1 mm and a thickness

of 8 µm (6.3 mg/cm2). The ends of the strips are glued on a cut out printed circuit

board (PCB). In order to cover the entire area with the strips, the even numbered

and odd numbered strips are distributed onto two separate planes, one on the top

and the other on the bottom of the PCB. The two planes are separated by 1.6 mm in

the beam direction, for both x and y. For each direction, 28 of these stainless steel

strips are read out, corresponding to a coverage of ±14 mm in x and y.

The two anode foils on both sides of the strip arrays are used to collect the

secondary electrons. They are made of 2.5 µm (2.1 mg/cm2) HAVAR foil. A typical

static anode voltage of 100 volts is applied (E=100 V/cm) and an anode voltage over

500 volts may not be exceeded. To protect the strips and foils, a maximum unrastered

beam current of 200 nA was allowed. The sensitivity of the TBPM is 25 fC (156000
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electrons).

The TBPM was run under low beam current during E93-026 and its sensitivity

was less than its design goal. For this reason it failed to accurately determine the

position for a significant fraction of events. For a beam centered around zero, strip 1

and -1 produce the same amount of secondary electron and its operational principle

of differential integration fails. Therefore, the TBPM recorded hit positions were not

directly used in event reconstruction. Instead, the TBPM was used to calibrate the

slow raster current (ADC) versus position (The calibration was done through a linear

fit with an offset and a slope. The offset was defined by the central beam position.)

on a run by run basis.

Details of the TBPM can be found in Ref. [96].

6.6 Polarized Target

6.6.1 Overview

Experiment E93-026 used a solid polarized target developed by the University of

Virginia [97]. The target was successfully used in two previous experiments at the

Stanford Linear Accelerator Center (SLAC). During the spring of 1998, the target was

reassembled in JLAB Hall C. It consists of a superconducting dipole magnet which

operates at 5 Tesla, a 4He evaporation refrigerator, a large pumping system, a high

power microwave tube operating at frequencies around 140 GHz and a NMR system

for measuring the target polarization. The schematic view of the polarized target is

shown in Figure 6.13. More details of the target components and the principle of

operation are found below.

6.6.2 Dynamic Nuclear Polarization

The E93-026 experiment used solid 15NH3 and 15ND3 as the target material which

was polarized using the principle of dynamic nuclear polarization (DNP). The DNP
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technique requires the target materials to be doped (by chemical or irradiation means)

so that a small amount of paramagnetic radicals provide unpaired electron spins. The

dipole-dipole interaction between the nucleus and the electron spins leads to hyperfine

splitting. By applying a RF field with a frequency very close to the electron spin

resonance frequency (about 140 GHz at 5.0 Tesla), the high electron polarization (due

to the large electron magnetic moment) can be transferred to the nucleus (proton or

deuteron).

The Zeeman splitting between the magnetic moment µ and the external magnetic

field B generates 2I + 1 energy levels, where I is the spin of the proton or deuteron,

as shown in Figures 6.14 through 6.17. Let’s first consider a spin-1
2

system, in ther-

mal equilibrium (TE), the population of the two magnetic sublevels is given by the

Maxwell-Boltzmann distribution:

N1/2 = N−1/2 × e
−∆E
kBT , N1 = N−1 × e

−∆E
kBT , (6.7)

where T is the system temperature and kB is the Boltzmann constant. By definition,

the polarization of a spin-1
2

system (proton) is P(1
2
)=(N 1

2
−N− 1

2
)/(N 1

2
+N− 1

2
) and the

vector polarization of a spin-1 system is P(1)=(N1 − N−1)/(N1 + N0 + N−1), where

Ni represents population at level m = i. The thermal equilibrium polarizations for

spin-1
2

and spin-1 systems is given by:

P
(

1

2

)
= tanh

(
µB

kBT

)
, P (1) =

4 tanh
(

µB
2kBT

)
3 + tanh2

(
µB

2kBT

) . (6.8)

At 5 Tesla and a temperature of 1 K, the electron thermal polarization is 99.8%, the

proton thermal polarization is 0.51%, and the deuteron thermal polarization is 0.14%.

By applying microwave power, the polarization of the electron is “transferred”

to the nucleus and thereby enhances the nucleus polarization. The polarization is

further enhanced by a process called “spin diffusion”, a means by which nuclei far

from the flipped electron are flipped into the polarized state due to the dipole-dipole
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interaction between neighboring nuclei. In the case of the proton in Figure 6.14,

the direct polarization enhancement is achieved by driving the forbidden transition

from state e− 1
2
p− 1

2
(the z-component of the electron and proton are me = −1/2

and mp = −1/2) to state e 1
2
p 1

2
by applying microwaves with a frequency around

νe − νp = 140.127− 0.213 = 139.914 GHz. The electron will relax back from the non-

stable state e 1
2
p 1

2
to the ground state e− 1

2
p 1

2
. The electron relaxation time is of the

order of 104−105 times less than that of the protons. This means that a small number

of electrons are continuously being spin-flipped while a proton whose spin is flipped

once, can stay in that state for a long time, and thus the polarization is gradually

enhanced. This results in an positive enhancement for proton since proton spins were

flipped from Iz = −1
2

to 1
2

(the same direction as thermal polarization). Likewise, by

applying νe − νp = 140.127 + 0.213 = 140.34 GHz, one can drive the transition from

the state e− 1
2
p 1

2
to the state e− 1

2
p− 1

2
, resulting in a negative enhancement.

me=1/2

me=-1/2 =1/2

mp=-1/2

mp=1/2

mp=-1/2

mp

"+"140 GHz

212.9 MHz

"-"

Figure 6.14: Electron and proton Zeeman hyperfine splitting in a 5 Tesla field.

In the case of ND3 we must turn to the energy level diagram for deuterons (µ=

0.857µN). Shown in Figure 6.15 are the three magnetic sublevels of the deuteron

corresponding to md = +1, 0 and –1, neglecting the small quadrupole interaction

energy. The energy gaps between neighboring levels are ∆ = µB = 32.7 MHz.

The coupled energy of the electrons and the deuteron spin has 6 levels. The z-
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Figure 6.15: Deuteron Zeeman effect in a 5 Tesla field.

component of the electrons and the deuteron spin for these levels are: e 1
2
d1, e 1

2
d0,

e 1
2
d−1, e− 1

2
d−1, e− 1

2
d0, e− 1

2
d1. In thermal equilibrium, only levels e− 1

2
d−1, e− 1

2
d0 and

e− 1
2
d1 are occupied, the others are essentially empty. The Zeeman diagram for the

electron and deuteron is shown in Figure 6.16. The dominant linear term, geB/(2Gc)

10

0

E
 + -

g
e

B
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2B
c

) 
  (
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Figure 6.16: Electron and Deuteron Zeeman diagram in an external field.

with Bc = 0.024088 T, has been subtracted (added) for the me = 1/2 (me = −1/2)

states. For me = 1/2 states, e 1
2
d1 and e 1

2
d−1 approach each other at higher external
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fields and cross at B=17 T. For me = −1/2 states, e− 1
2
d−1 and e− 1

2
d1 move apart

with a gap linear proportional to the external field. At B=5 T, The e− 1
2
d1 to e 1

2
d−1

and e− 1
2
d0 to e 1

2
d1 transitions have similar RF frequencies (140.596 GHz and 140.610

GHz), these transitiona result in an ultimate enhancement of the md = −1 state. The

e− 1
2
d0 to e 1

2
d−1 and e− 1

2
d−1 to e 1

2
d1 transitions also have similar frequencies (140.450

GHz and 140.465 GHz), these transitions lead to an ultimate enhancement of the

md = +1 state. Transition e− 1
2
d−1 to e 1

2
d1 corresponds to M3 absorption and is

expected to be least efficient. Transitions e− 1
2
d1 to e 1

2
d0 and e− 1

2
d−1 to e 1

2
d0 are well

separated in RF frequency and lead to an enhancement of the md = 0 state.

There is an interaction between the quadrupole moment of the deuteron (0.02 ×

10−24 cm2) and the electric field gradient in the lattice along the principal axis of the

field gradient tensor, ψzz = ∂2V
∂ζ2 , which produces an additional energy shift as shown

in Figure 6.17. This additional shift depends on the angle θ between the principal

axis of the field gradient tensor and the magnetic field. For ψzz > 0 in Figure 6.17 for

the extreme cases of θ = 90o and θ = 0o, one expects two maxima in the NMR signal

separated by 6δ, where δ = hνq and νq = 1
8

eq
h
ψzz. The tail of each transition (the

dashed and dotted curves in Figure 6.17) corresponds to the level diagram around

θ = 0o.

The process described above (namely, “the solid state effect”) is only valid for

materials which have discrete energy levels. In most materials, the process of dynamic

polarization can not be described by the solid state effect and is described by the Equal

Spin Temperature (EST) hypothesis.

In the case of energy bands rather than discrete energy level, a nuclear ordering

takes place, leading to an alignment of spin. The population of the states inside each

band can be described by a Boltzmann distribution with a “spin temperature”, Ts,

being the temperature of the electron spin-spin interaction reservoir. The enhanced

polarization can then be obtained by replacing the thermal temperature by spin
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Figure 6.17: Energy level diagram of the deuteron spin system with quadrupole in-
teraction in a magnetic field and the resulting deuteron NMR line shape [98].
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temperature in Equations 6.8:

P
(

1

2

)
= tanh

(
µB

kBTs

)
, P (1) =

4 tanh
(

µB
2kBTs

)
3 + tanh2

(
µB

2kBTs

) . (6.9)

The EST hypothesis says that all spin species in a material are at the same spin

temperature and the polarization of different spin species are proportional to the

magnetic moment of each type.

Figure 6.18 shows the deuteron polarization versus the 15N polarization in 15ND3

material, as measured at the University of Virginia in April of 2000. During E93-026

running, the average deuteron polarization was ∼21%. The corresponding polariza-

tion of 15N is about 10%.

Figure 6.18: Measured deuteron and 15N polarization in 15ND3.
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6.6.3 Target System

Magnets and Field Direction Determination

The target magnet is a pair of superconducting Helmholtz coils manufactured by

Oxford Instruments and powered by a high current power supply providing 77 Amps

to produce a magnetic field of 5 Tesla. The coils have a 20 cm central bore, 100o

opening angle and 8 cm of coil split. The field is uniform to 10−4 over a 3 cm

diameter spherical volume (DSV). It requires about 80 minutes to ramp the magnet

up to 5 Tesla and then it is operated in persistent mode.

During E93-026, the magnetic field was directed perpendicular to the momentum

transfer q to maximize the asymmetry sensitivity to Gn
E. Exact determination of the

target magnetic field direction (i.e., the polarization direction) becomes very impor-

tant since a lack of knowledge on the field direction determination would introduce

significant contributions to the measured asymmetry from Gn
M (see Equation 5.2) and

reduce the sensitivity to Gn
E.

The target magnetic field direction in E93-026 was determined using a Hall probe.

The Hall probe was assembled onto the machined surface of a tube fixed to a rotatable

vernier. The assembly was built to allow the Hall probe and tube to slide vertically

into the magnet, leaving the vernier and surveying rods outside the magnet. After

insertion into the magnet, the vernier was related to the magnet orientation by a

survey in situ. The linear Hall effect yields a voltage output proportional to �ve × �B,

i.e., proportional to sin θ, where θ is the angle between �ve and �B. An additional

voltage due to the current induced in the probe by the Hall voltage and a misalignment

of the probe in the φ direction (“planar Hall effect”), is propotional to B2 cos2 θ. An

offset in the Hall voltage, which can be strongly temperature dependent, is present

as well.

In order to obtain the field direction with a A sin θ + B cos2 θ + C angular de-

pendence of the Hall voltage, one determines two zero crossings of the voltage at

approximately opposite angles θ1 and θ2. The handle (and the probe) was rotated
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to locate the position where the Hall probe read zero voltage. At this position, the

handle is roughly along the field direction. The angle (θ1 + θ2)/2 + 90o gives the field

direction independently of offset and planar Hall effect.

The measurements were repeated several times and the mean values were adopted.

During the E93-026 measurements, the uncertainty of the average measured angle was

about 3′, with an Hall voltage offset correction of about 1′ [99]. The detailed procedure

and the results of the measurements can be found in Ref. [99].

Accurate determination of the field direction is important since the experimental

asymmetries depend heavily on angle θ∗, as shown in Figure 5.1, which is determined

by the field direction and the direction of q. We will discuss θ∗ and φ∗ in later sections.

4He evaporation refrigerator

The polarized target uses a 4He evaporation refrigerator placed vertically in the center

bore of the magnet. It is contained in a separate vacuum shield (see Figure 6.13).

Liquid helium is transferred from the magnet resevoir into the separator through a

short transfer line. The radiation baffles are cooled down by pumping the helium

vapor from the separator. Liquid helium passes more easily through the separator

plates and is fed into the nose containing the target through a tube and plate heat

exchanger controlled by a needle valve. The bypass valve can be opened to bypass the

heat exchanger to facilitate pre-cooling. The targets were immersed in liquid helium

in the nose and pumped by a 12000 m3/hour roots pump system in order to reach

temperature at 1 K.

The target material was contained in a target insert which was slid along the

central bore of the refrigerator. A schematic drawing of the lower part of the insert is

shown in Figure 6.19. It carried the cylindrical targets, microwave guides and horns,

NMR coils and cryogenic cables and temperature sensors. It carried five targets, two

containing ND3 or NH3, an empty target and two solid targets of either carbon or

beryllium. Note that all targets were immersed in a liquid helium bath. The position

of the target was remotely controlled. The target position was surveyed and the target



79

field was mapped so that the target of choice was always sitting at the center of the

most uniform part of the field. The target cup was a cylinder 3 cm long and 2.5 cm

in diameter. NMR coils were imbedded inside the cup. The carbon target was a thin

disk of the same diameter and ∼0.69 cm long. It was chosen to have approximately

the same nucleon density and radiation length as the full target.

C/Be

TOP

Hole

Bottom

Carbon

NMR
Coils

Carbon/Be

Beam

Tail
Piece

ND3

He

C

He He

ND3

Figure 6.19: Schematic of the E93-026 polarized target insert. The dash line repre-
sents the tail piece which contained liquid helium during data taking.

Microwave System

The microwaves were generated by an Extended Interaction Oscillator (EIO) tube 2.

It was mounted on a movable table tied to the target insert. The frequency of the

microwaves was measured by an EIP frequency counter and the power was measured

by a calibrated thermistor. The microwaves were broadcast by a horn to the target

material in the insert with a maximum power of about 1 W.

2Manufactured by CPI, Canada.
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6.6.4 Target Materials

15NH3 and 15ND3 were chosen as the target materials for E93-026 because of their

high polarizability and large polarizable nucleon content. Since the nitrogen is also

polarized, 15NH3 and 15ND3 are preferred since the 15N polarization is carried by the

proton rather than the proton and neutron as in the case of 14N. Ammonia has also

demonstrated a high resistance to the degradation of polarization by radiation. These

materials have 15N purities of better than 98% and deuteron purities of 99% or better.

The target materials were prepared by freezing the ammonia gas and crushing

the solid ammonia into the appropriate size granules (roughly 1 – 3 mm in diameter)

under liquid nitrogen. The paramagnetic radicals were introduced into the solidi-

fied material by irradiation. The process of irradiation can be performed under two

different conditions: high temperature (85K) irradiation (warm irradiation) and low

temperature (1K) irradiation (cold irradiation). Studies show that cold irradiation is

required to reach high polarization in 15ND3 [97]. A batch of materials for E93-026

were pre-irradiated at the 30 MeV SUNSHINE facility at Stanford University, and

another batch of materials were pre-irradiated at the 38 MeV injector for the JLAB

FEL. Both were warm irradiations. The optimal dose for the irradiation is about 1017

electrons/cm2.

6.6.5 NMR and Target Polarization Measurement

A free spin system is described by angular momentum Ih̄ and a magnetic moment

M = γh̄I, where γ is a scalar called the “gyromagnetic” ratio of the spin (different

for different nuclei). When the spin system is irradiated by an RF field at the Larmor

frequency (= −γH, where H is the applied field strength), either the spin system

absorbs energy or the RF induces the spin system to emit energy, depending on

whether positive or negative polarization is being measured. The energy change is

proportional to the electromagnetic energy localized in the resonator, coil or cavity

producing the RF field and can be described or detected as an additional load or a
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change in the quality factor (Q factor) of the resonant circuit of the RF system.

The nuclear polarization is defined as P =< Iz > /I, where I is the spin of

the nucleus and < Iz > is its component along the magnetic field. Due to the

nuclear magnetic dipole moment, the nuclear spin system acquires a complex magnetic

susceptibility which can be written as:

χ(ω) = χ
′
(ω) − iχ

′′
(ω), (6.10)

where χ
′
(ω) is the dispersive and χ

′′
(ω) the absorptive part of the susceptibility. The

polarization is related to the absorptive part of the nuclear magnetic susceptibility

by the integral [100]:

P = K
∫ ∞

0
dωχ

′′
(ω), (6.11)

where K is a constant involving the properties of the nucleus concerned. To determine

the nuclear polarization by measuring the spin susceptibility χ
′′
(ω) of a sample, the

continuous wave NMR method or Q-meter technique was used during E93-026. The

Q-meter technique has been well documented in Ref. [101].

A series resonant LCR circuit, as shown in Figure 6.20 is used in the Q-meter

technique, the impedance change of the circuit due to a change of nuclear suscepti-

bility can be measured as a change in voltage, and therefore polarization changes can

be measured as a linearly related to the integral of the magnitude of the measured

voltage:

P = K
∫ ∞

0
dωV (ω) = KS. (6.12)

In order to determine the unknown constant K, one needs to know the reference

value of Scal for a known polarization. At thermal equilibrium, the nuclear polariza-

tion is given by the Curie law [102]:

Pcal = h̄
γHI(I + 1)

3kT
. (6.13)

The calibration constant K is determined at thermal equilibrium, K = Pcal

Scal
. The
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Figure 6.20: Schematic diagram of the Q-meter (NMR) circuit.
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enhanced nuclear polarization can then be determined by:

PT =
S

Scal

Gcal

G
Pcal, (6.14)

where Gcal and G are the gains of electronics for the thermal equilibrium case and

enhanced polarization case respectively.

The thermal equilibrium calibration was typically done at temperatures ranging

from 1.5–1.9 K with no microwaves and no beam. The temperatures were obtained

through 3He and 4He vapor pressure manometers. The sample material sat in the

helium bath for a time much longer than its nuclear spin relaxation time, to ensure

thermal equilibrium. A series of NMR signal area measurements were made and

averaged to obtain the calibration constant. The NMR signal sits on the baseline

(the response of the circuit in the absence of polarizable material). This baseline

is measured by moving the target field a few percent such that the system is well

off resonance. The NMR signal has this baseline subtracted, and after removing

any residual baseline by fitting the wings of the signal, its area (voltage integral) is

calculated.

The typical thermal equilibrium signal and enhanced signal for deuteron are shown

in Figure 6.21. The deuteron signal is significantly smaller compared to that of proton

due in part to its smaller magnetic moment. During E93-026, the polarization for ND3

reached values as high as 45%, but averaged 21%. The major polarization measure-

ment error comes from the thermal equilibrium measurement which determines the

calibration constant. The combined polarization measurement error during E93-026

was ∼ 5% [103]. The systematic error of the TE measurements dominates this error.

Sources of TE systematic errors include target cell filling factors (material settling

and coil sampling) and lineshape fitting. The statistical error of TE measurement is

about 1 − 2%.
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Figure 6.21: The deuteron thermal equilibrium and enhanced signals.

6.6.6 Polarization Build-up

The performance of the irradiated ND3 deuterium target is summarized in Figure

6.22, where the typical deuteron polarization build-up curve is shown. The ND3 had

better performance after “in-situ” beam irradiation which creates additional unpaired

electrons. Before and after “in situ” radiation, the deuteron polarization maxima

typically reached 15% and 45%, respectively. With “in situ” radiation, the deuteron

polarization reaches 18% after 60 minutes.

6.6.7 Data Acquisition System

The target system made use of the National Instruments product LabView 4.0 for

the NMR measurement and target control and monitoring. The block diagram of

the software components of NMR system is shown in Figure 6.23. The system con-

trols include Q-curve acquisition, superconducting magnet c ontrol, microwave system

control, online analysis, an event logger and other miscellaneous tasks. The target

polarization along with a time stamp were sent to the main online data acquisition

computer through the EPICS (Experimental and Physics Industrial Control System)
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Figure 6.22: Polarization build-up for deuterons in ND3 target.

[104] slow control system.

6.7 High Momentum Spectrometer

During experiment E93-026, the scattered electrons were detected by the High Mo-

mentum Spectrometer (HMS) in coincidence with the knocked-out neutrons. The

HMS is a standard piece of equipment in Hall C. It consists of a collimator system,

three quadrupoles, one dipole, and a package of detectors: two drift chambers, two set

of x− y hodoscopes, a gas Čerenkov counter and a lead-glass shower counter. In this

section, we will discuss these elements in the order they were seen by the scattered

electrons.

6.7.1 Slit System

A set of slits are installed in front of the HMS first quadrupole. Different slits can

be selected and remotely inserted and removed. Two different slits were used during

E93-026: the sieve slit and the pion slit, both are shown in Figure 6.24. The slits

were made of Tungsten with 10% CuNi.
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Figure 6.23: The target data acquisition system components.
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Figure 6.24: The HMS sieve slit (left) and new pion collimator (right).
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The pion slit has an octagonally shaped aperture designed to limit the solid angle

acceptance of the HMS. It is 6.35 cm thick with solid angle acceptance of about 5.9

msr for a point target. The numbers shown in Figure 6.24 are the rear dimensions,

the front dimensions have the same solid angle for a point target placed 1.66 meters

away.

The sieve slit is a 3.175 cm thick Tungsten-CuNi plate with an array of small

holes of 0.508 cm diameter and is used to study the focal plane distributions. The

individual holes allow for electrons to be distributed with known angular distribution

in magnetic optics tests. Two holes are missing from the pattern in order to verify

the reconstruction orientation. The central hole is smaller than the others in order

to measure the angular reconstruction resolution. Figure 6.25 shows the focal plane

x−y coordinates distributions for the sieve slit and pion slit, with the polarized target

magnetic field on.
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Figure 6.25: Focal plane x − y distribution (in cm). The left panel is for sieve slit
and the right panel is for pion slit. The target field is on.
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6.7.2 Magnets

The HMS is a magnetic spectrometer with a flexible detector package which has a

large solid angle and a large momentum acceptance (∆P/P ∼ ±10%). It has a 25o

vertical bend and consists of three quadrupole (Q1, Q2, Q3) and one dipole magnet.

The magnets are supported by a common carriage that rotates around on a rail system

in the floor. The detectors are also mounted on the same carriage and the relative

position between detectors and magnets is fixed. The detectors are shielded by a

concrete hut. Figure 6.26 shows the schematic of HMS spectrometer.

27m

Q1 Q2 Q3
Dipole

Figure 6.26: Side view of the HMS.

The quadrupoles are cold iron magnets. Soft iron around the superconducting

coil enhances the central field and reduces stray fields. The magnets are cooled

with 4K liquid Helium provided by the JLAB End Station Refrigerator (ESR). The

quadrupole current is provided by three Danfysik System 8000 power supplies which

were water cooled and can provide up to 1250 Amps at 5 volts. Each magnet has

multiple correction coils powered by three HP power supplies capable of providing

up to 100 Amps at 5 volts. The quadrupoles’ fields are regulated by monitoring the

current in the magnets. Field stability is � 10−4 [105].

The HMS dipole is a superconducting magnet with a 25o bending angle for the
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central ray and the gap is 42 cm. The bending radius is 12.06 meters. The effective

field length is 5.26 meters. The current is provided by a Danfysik System 8000 power

supply capable of providing up to 3000 Amps at 10 volts. The dipole magnetic field

was monitored by an NMR probe. The field stability is � 10−4 [105].

The point to point tune for HMS in both the dispersive and the non-dispersive

directions provides a large momentum acceptance, large solid angle and can accomo-

date an extended target length. Q1 and Q3 focus in the dispersive direction while

Q2 focuses in the transverse direction. The original field settings were determined

during experiment E93-021 just before E93-026. We operated the HMS over a limited

momentum range, typically at 2.453 GeV/c.

6.7.3 Detector Package

The HMS detectors include two drift chambers, two sets of x − y hodoscopes, a

gas Čerenkov detector, and a lead-glass shower counter. The drift chambers provide

tracking information, the hodoscopes are used to form triggers and the calorimeter

and Čerenkov counter are used to provide particle identification. A schematic diagram

of HMS detector package is shown in Figure 6.27.

DC1 DC2
S1X S1Y S2X S2Y

Cerenkov
Calorimeter

Figure 6.27: Side view of the HMS detector package.

All detector high voltages were supplied by CAEN high voltage power supplies.
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The HV crates were monitored and controlled in the counting house upstairs by the

EPICS slow control system through a VME CAEN-net controller card located in the

HMS detector hut.

Drift Chambers

Each HMS drift chamber contains 6 wire planes with different orientations, X, X ′

(measuring x), Y, Y ′ (measuring y) and U,V (rotated ±15o from x planes). Each

plane contains field and sense wires. The sense wires (anodes) are 25 µm diameter

gold-plated tungsten and the field wires (cathodes) are 150 µm gold-plated copper-

beryllium. The planes are spaced 1.8 cm apart and the two drift chambers are sep-

arated by 81.2 cm. The chambers have an active area of 113 cm (x) and 52 cm (y)

with a sense wire spacing of 1 cm. Figure 6.28 shows a front view of the HMS drift

chamber. The chambers were filled with an argon/ethane mixture (equal amounts

by weight) along with 1% isopropyl alcohol. The gas was mixed in the gas shed out-

side the hall and the gas flow was controlled by MKDS 1259c proportional mass flow

control valves.

113 X,X’ wires.
107 U,V wires.
52 Y,Y’ wires.
1.000252 cm wire spacing.X,X’

U

Y,Y’

V
X Y U V Y’ X’

Incident
Electrons

1.8 cm
Incident
Electrons

Amplifier/Discriminator
cards

Figure 6.28: Front view of HMS drift chamber.

Charged particle positions are detected by the nearest sense wire through gas
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ionization. By measuring the position with 6 planes, the x and y coordinates of

the particle can be determined and its trajectory can be reconstructed. The sense

wires are read out in groups of 16, each connected to an amplifier/discriminator card.

The signals in the discriminator card were sent to TDCs in the detector hut through

ribbon cables. The TDCs measure the time the wire detected the electrons created

by the gas ionization relative to the time of trigger.

Hodoscopes

The HMS has two sets of x − y hodoscopes. Each hodoscope has 9 to 16 elements.

The hodoscope elements are Bicron 404 paddle (1 cm thick, 8 cm wide) scintillators

with Phillips XP2282B photomultipliers tubes on both ends. The scintillators have

approximately 0.5 cm overlap with each other. The x elements are 75.5 cm long and

the y elements are 120.5 cm long. The x plane has 16 elements and the y plane has

10 elements, giving active area of 129.5 cm by 75.5 cm.

Each scintillator was read out by 8-stage photomultipliers. The signal was sent

to the counting house upstairs through RG-8 cables. The signal was split in the

counting house; one third of the signal was delayed and then sent to an analog to

digital converter (ADC) while the other two thirds of the signal were sent to Philips

PS7106 leading edge discriminators. One copy of the discriminators output was sent

to logical delay units and then to Fastbus TDCs and VME scalers. Another copy

was sent to a Lecroy 4654 logical unit. This logical unit ORed together all signals

from one side of a given plane. This signal participates in the triggers. The logical

diagram of the scintillator circuit is shown in Figure 6.29.

The HMS hodoscope photomultipliers have been gain matched using a gamma ray

source. The time resolution was determined to be about 100 picosecond [105].

Čerenkov Counter

The Čerenkov counter detects the Čerenkov radiation emitted by a particle when

traveling through a medium at a velocity greater than c/n, where c is the speed of
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Figure 6.29: The HMS hodoscope electronics logic.

light and n is the material’s index of refraction. Čerenkov light is emitted in a forward

pointing cone with an opening angle of cos θc=
1

nβ
. The pressure of the gas (and thus

the index of refraction) in the counter can be adjusted such that only electrons will

emit Čerenkov radiation while hadrons will not.

The HMS Čerenkov tank is cylindrical with an inner diameter of 150 cm and a

length of 165 cm (120 cm effective length). The tank was filled with 0.79 atomspheres

(11.6 psi) of Perfluorobutane (C4F10, n=1.00143 at 1 atm, 300K) giving an index of

refraction of 1.0011. This gives a pion threshold of just over 2.98 GeV/c and electron

threshold of ∼ 10.9 MeV/c. The expected yield for electrons was ∼ 11 photoelectrons.

There are two mirrors at the back of the tank which focus the Čerenkov light onto two

5-inch Burle 8854 photomultiplier tubes. The tubes had been coated with a 2430 nm

thick layer of Para-Terphenyl wavelength shifting material protected by a 25 nm thick

layer of MgF2 [107] in order to increase their sensitivity to UV light. The signals from

the photomultipliers were sent to counting house through RG-8 cables. They were

split and one set of outputs was delayed and sent to Lecroy 1881 ADCs and another

set of outputs was summed by Phillips 740 linear fan-in module and discriminated to
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generate signals for the trigger and TDCs and scalers, as shown in Figure 6.30.
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Figure 6.30: Electronics diagram for HMS Čerenkov counter.

The ADC values of the signals from Čerenkov counter were converted to the

number of photoelectrons detected. This proportionality is determined by using a

clean high-statistics sample of detected electrons. No Čerenkov calibrations were

performed during E93-026. The typical number of photoelectrons using the existing

calibration constants at Q2 = 0.5 (GeV/c)2 for (e, e′n) coincidence events is shown in

Figure 6.31. The average HMS electron produced 15 photoelectrons.

Calorimeter

The lead-glass calorimeter was used to measure energy deposited by charged parti-

cles. An electron with high energy will emit photons through Bremsstrahlung. The

bremsstrahlung radiation will generate an electron-positron pair and each electron

and positron will again emit photons and a cascade shower results. Electrons and

positrons will deposit their entire energy into the calorimeter if the calorimeter is of

sufficient radiation lengths. However, only a fraction of a hadron’s energy will be de-

posited. Therefore, using the ratio of energy deposited to the magnetically measured

particle momentum we can separate electrons from hadrons.

The HMS calorimeter is a stack of 10 cm × 10cm × 70 cm blocks of TF1 lead glass

with a photomultiplier at one end, four layers deep and 13 blocks in height, for a total
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Figure 6.31: Number of photoelectrons of (e, e′n) events measured by HMS Čerenkov
counter.

of 52 modules and an active area of 130 cm by 70 cm. The calorimeter is rotated 5o

from optical axis of HMS in order to avoid loss through the cracks between modules.

TF1 has radiation length of 2.54 cm, making the entire calorimeter 16 radiation

lengths in thickness. The gains and attenuation of each module were calibrated prior

to the experiment. In addition, each module had an optical fiber into the light guide

for a laser gain monitoring system.

The signals were transmitted to counting house using RG-8 cables. They were split

50-50; one set of the outputs went through delay lines and then to LeCroy 1881M

ADC and the other set was summed by a Phillips 740 linear fan-in module. The ADC

signals were corrected for attenuation and gain correction factors and the summed

signal was discriminated for use in the trigger logic. The calorimeter electronic logic

is shown in Figure 6.32.

A typical scattered electron E/P ratio from (e, e′n) coincidence events at Q2 = 0.5

(GeV/c)2 during this experiment is shown in Figure 6.33. Without any cut, the ratio

of the number of pions to the number of electrons in the HMS is below 1% during

this experiment. With a W cut or a cut on reconstructed target quantities such as
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ytar, y′
tar, x′

tar, etc., the very small pion contamination was completely eliminated

even without cuts on the E/P ratio and the number of photoelectrons. There were

no calibrations performed during E93-026, but an overall correction factor has been

applied to the old calibration constants in order to center the E/P peak for the

electron around 1.0.

6.8 Neutron Detector

Quasi-elastic scattering events from the deuterium were identified by detecting re-

coiling neutrons in the neutron detector in coincidence with the scattered electron.

The determination of the neutron detector arrangement and its position involves sig-

nificant challenges. The detector has to be optimized in order to accept most of the

neutrons from D(e, e′n) scattering while reducing the acceptance for neutrons scat-

tered from other target materials. Due to the finite neutron detection efficiency, in

order to accept as many neutrons from D(e, e′n) as possible, the number of planes

of the neutron detector and the solid angle acceptance have to be balanced for fixed

number of scintillator elements. The position of the neutron detector is a compro-

mise between the minimum flight path necessary to achieve the time of flight (TOF)

resolutions for particle identification and the solid angle acceptance of the detector.

Monte Carlo simulations have been used to determine these parameters of the neutron

detector.

6.8.1 Detector Configuration

The configuration of the neutron detector was determined by several factors. The first

factor in consideration was the solid angle required to match the electron spectrometer

solid angle and contain the Fermi-broadened neutron peak corresponding to the quasi-

elastic electron peak. Second, a certain neutron flight path was necessary to obtain

the required TOF resolution to separate the quasi-elastically knocked-out neutron

from background events, those in which an electron, a neutron (proton) and another
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particle (e.g. π) were in the final state. For limited detector elements, a larger solid

angle is gained by positioning the detector closer to the target. This strategy fails at

some point – the closer the detector to the target, the poorer the energy resolution

(see Section 6.8.2). Third, due to the finite neutron detection efficiency, the detector

must be configured such that the dilution factor (see Section 9.2) and the count rate

are properly maximized.

The neutron detector was assembled from 160 cm × 10 cm × 10 cm scintillator

bars. A Monte Carlo calculation, using the electron arm spectrometer solid angle of

5.9 msr with a momentum bite of ∆P/P = ±10% was used to determine the optimal

arrangement of the bars. The first bar plane of the neutron detector was placed at

a distance of 403 cm from the target at Q2 = 0.5 (GeV/c)2. This gives a time of

flight peak separation between the neutron and the gamma (pion) of about ∼8 ns.

Figure 6.34 shows the Monte Carlo simulation results of neutron x − y hit position

distributions in the first bar plane of the neutron detector for each component of the

ND3 target at Q2 = 0.5 (GeV/c)2 in (e, e′n) quasi-elastic scattering. These plots

show that the neutrons from deuteron, helium, nitrogen and aluminum scattering

have very different distributions. The purpose of the exercise is to detect neutrons

from D(e, e′n) as much as possible while suppressing the acceptance for neutrons from

other target materials. It was decided to place the scintillator bars horizontally. The

number of bars in the vertical plane and how many planes along the quasi-free q

vector were free, restricted by the total number of bars. Horizontally we center the

detector along the quasi-free q vector. One can then use the freedom of choice on

the number of planes, number of bars in each plane and the vertical position of the

detector constrained by the limited number of bars (79). Monte Carlo simulation was

used (with an assumed neutron detection efficiency) to maximize the figure of merit

which is determined by the dilution factor and count rate. As a result of optimizing

the neutron detector figure of merit, the neutron detector was assembled in 5 planes

with a total scintillator thickness of 50 cm. The number of bars in each plane is 21,

16, 16, 16, and 10 for bar planes 1 through 5 respectively. Due to the target magnetic
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Figure 6.34: Scatter plots of the simulated neutron hit position in the neutron detector
first bar plane for each component of the ND3 target in (e, e′n) scattering. The target
magnetic field bends electrons down, creating a tilted scattering plane, such that the
vertical distribution of neutrons were shifted toward the floor (positive) by roughly
20 cm. The square shows the actual E93-026 neutron detector acceptance.
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field effect, the scattering plane was tilted and the average q vector pointed slightly

toward the floor. The intersection of the q vector at the first bar plane was ∼20 cm

below the beam line. Hence the neutron detector was centered 20 cm below the beam

height. Because the target magnetic field bends protons up, the top 5 elements of the

first bar plane served as an additional proton detector.

There were 39 veto paddles with dimensions 160 cm × 11 cm × 1 cm. The veto

paddles are used to distinguish charged particles from neutrons. As the top 5 bars

in plane 3 (the first bar plane) are only for proton detection, they were covered with

a single veto plane. The remainder of the detector was covered by two veto planes.

The paddle elements were placed horizontally.

The side view of the detector is shown in Figure 6.35. With this arrangement, the

horizontal particle hit positions were determined by the TDCs and the vertical hit

positions were set by the vertical position of the each detector element.

The neutron detector ADC gain was monitored by a laser pulser and the high

voltages of each detector element were adjusted during the experiment if it became

necessary.

The neutron detector was placed in a concrete hut with 122 cm thick walls, 843.28

cm in length, 373.38 cm in width and 548.64 cm in height. The concrete blocks of

the hut shielded the detector from the rear, both sides and the top. The front of the

hut, facing the target, was open. The size of the hut was designed to accommodate

the neutron detectors at four different kinematics.

A shielding system was placed right in front of the neutron detector first veto

plane. The shielding system consisted of 4 layers of lead, with a total thickness of

16.7 mm and a layer of 25.4 mm thick CH2 absorber. The primary goal of the shielding

system was to shield the detector from soft x-rays coming from the target. To further

reduce the background from the upstream and downstream beamline, additional lead

brick walls were built at the pivot and around the neutron detector. A sketch of the

layout of the lead shielding around the neutron detector is shown in Figure 6.36.
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6.8.2 Intrinsic Time Resolution

In E93-026, neutron momenta were determined by time of flight (TOF). The intrinsic

time dispersion of the plastic scintillator and photomultiplier, and hence the energy

resolution of the neutron detector becomes important for discriminating quasi-elastic

events from other inelastic processes such as pion production.

The time resolution of the neutron detector was bench tested in early 1998 using

the mean-timed signal method [108]. Two identical neutron bars were placed one on

top of the other separated by a small gap. Two ∆E paddles were placed above and

below the neutron bars to collimate cosmic ray muons through the 10 cm thickness of

the neutron bars. The PMTs on each side were gain matched using a 228Th gamma

source (Eγ = 2.61 MeV). Coincidence events between two paddles and two bars within

a 100 ns gate width were recorded.

The mean time for the top and bottom bars can be written as:

t̄top =
1

2

(
ttopr + ttopl

)
, t̄bot =

1

2

(
tbot
r + tbot

l

)
, (6.15)

where “r” and “l” denote left and right respectively. The mean time difference:

∆t = t̄top − t̄bot, (6.16)

is the coincidence time between the two detectors. The single detector contribution

to the coincidence signal is therefore:

∆t2 = ∆t2top + ∆t2bot, (6.17)

where ∆ttop and ∆tbot are the individual time dispersions for the top and bottom

detectors. For two identical detectors, we have ∆ttop(bot) = ∆t√
2
. The average mean

time resolution for the entire lot of neutron bars was found to be 195.5 ps [108].

The energy resolution for neutrons detected during the experiment can be calcu-
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lated from:

∆T

T
= γ(γ + 1)

[(
∆x

x

)2

+
(

∆t

t

)2
]1/2

= γ(γ + 1)
(

v

x

)
(∆t)∗, (6.18)

where, γ is the Lorentz contraction factor, ∆x is the uncertainty in the neutron

flight path x due to finite detector thickness, ∆t is the quadrature combination of

the intrinsic time dispersion of the neutron detector bars and the time dispersion

introduced by the reference time signal (HMS time resolution), and (∆t)∗ corresponds

to the time width of a peak in a time of flight (TOF) spectrum (including both time

resolution and position uncertainty). For the Q2 = 0.5 (GeV/c)2 kinematics of the

E93-026 neutron detector configuration, T = 267 MeV, x = 4.03 m, β = 0.627,

γ = 1.28, v/x=0.047 (ns)−1, and ∆x = 10√
12

cm is the sigma of the uniform distribution

in the entire bar of 10 cm width. Taking ∆x
v

=153 ps, ∆tHMS=100 ps [105], we have

(∆t)∗= 267 (=
√

1532 + 1002 + 195.52) ps, and the energy resolution was expected

to be ∆T = 1.28 × (1.28 + 1) × 0.047 (ns)−1 × 0.267 ns × 267 MeV = 9.8 MeV.

The actual time resolution determined from the time of flight peak of the gamma

flash was (∆t)∗ = 450 ps, as shown in Figure 6.37. The resultant neutron detector

energy resolution at this kinematics is 16.5 MeV. The discrepancy can be explained

by the fact that the cosmic rays used in the bench test deposited approximately 20

MeV at a very low rate while during the experiment the range of energy deposited

was wider and the rate is much higher. In addition, the poorer performance may be

a cumulative effect of cable length matching and walk correction.

6.8.3 Position Resolution

The horizontal position resolution of the neutron detectors was determined during

bench tests by measuring the time difference in the photon transit times of a scintil-

lator event to each PMT. To perform such tests, the ∆E paddles are used to localize

the accepted cosmic muons. The effective light propagation speed inside the scintilla-

tor was determined to be 14.3 cm/ns [108], and the position resolution due to neutron
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bar intrinsic time resolution was found to be 5.9 cm.

Table 6.4 summarizes the neutron detector time, position and energy resolutions.

Table 6.4: Neutron detector time, position and energy resolutions.

Q2(GeV/c)2 E(GeV) Time(ps) x(cm) Position(cm) Energy(MeV)
0.5 2.721 450 403 ± 10 5.9 16.5

6.9 Triggers and Data Acquisition

The Hall C electronics setup provides for both a single spectrometer trigger and a

coincidence trigger. The trigger supervisor (TS) can be programmed to accept, reject

or prescale each different trigger type. During the E93-026 data taking, there were 6

different trigger types. These are an electron singles trigger, an electron-neutron bar

coincidence trigger, an electron-neutron bar veto coincidence trigger, a scaler trigger,

a laser trigger and a cosmics trigger. The scaler trigger and the laser trigger had

prescale factors set to one, while all other prescale factors were varied during the

experiment.

6.9.1 Triggers

Electron Triggers

For the HMS, the first part of the trigger logic was formed by hodoscope signals which

triggered on charged particles passing through the spectrometer. The gas Čerenkov

counter and calorimeter signals were used to identify electrons and pions. Triggers

with no Čerenkov signals were labeled as pions. Triggers with either Čerenkov signals

or a large shower counter signals were labeled as electrons. The standard HMS trigger

logic is shown in Figure 6.38.

The signals from the HMS hodoscope positive (negative) side PMTs were dis-

criminated and ORed together to form S1X+ and S1X−. A hit in the hodoscope
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was defined by the coincidence of S1X+ and S1X−. Two types of hodoscope triggers

were then formed. STOF was formed by one of the front plane hits and one of the

back plane hits. SCIN on the other hand, required 3 out of 4 hodoscope planes to

be fired. Each hodoscope plane has efficiency of 99.9%. The Čerenkov trigger (Č)

was formed if the Čerenkov sum fired the discriminator with the threshold set at 1

to 2 photoelectrons. The total energy for calorimeter had one discriminator thresh-

old (SHLO) and the first layer block sum has one discriminator with high threshold

(PRHI) and one with low threshold (PRLO). Two types of electron triggers were

formed, ELLO and ELHI. ELHI required only a large calorimeter signal, while ELLO

required only a Čerenkov signal. The final electron trigger was the OR of ELLO and

ELHI. Due to the tight timing relative to the nucleon trigger during the experiment,

instead of using PRETRIG, the electron trigger (ELREAL) was sent directly to the

trigger supervisor.

Nucleon Triggers

In the neutron detector side, triggers were set up based on the events we were inter-

ested in. These events include HMS single events, HMS-neutron detector coincidence

events and other events necessary to monitor the performance of the neutron detector.

The nucleon trigger consisted of a neutron bar trigger (BAR), a paddle trigger (PAD),

a cosmic trigger (CT) and a laser trigger (LT), as shown in Figure 6.39. Signals of

neutron bars were discriminated. The OR of the left (right) signals from groups of 8

bars were formed. The OR of the left hand signals was then put into coincidence with

the OR of the right hand signals for each group. As there were 79 neutron bars, there

were 10 such signals: (1 + 2 + 3 + · · ·+ 8)left · (1 + 2 + 3 + · · ·+ 8)right. The Neutron

Bar trigger was formed by the OR of these ten lines. The paddle trigger was formed

in the same way as the bars, except for there being 2 paddle layers with a total of 39

paddles. The discriminator threshold was set as to maximize the signal to noise ratio

while still retaining high detection efficiencies. For E93-026, the thresholds were set

to 75 mV for bars and 30 mV for paddles.
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The cosmic trigger was formed in the following way. The signals from the top

bar of each plane were ORed together and the signals from the bottom bar of each

plane were ORed together; from these two logical signals a top-bottom coincidence

was formed. This coincidence signal was ORed together with the coincidence of BAR

and PAD produced the cosmic trigger.
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Figure 6.39: The E93-026 nucleon trigger logic.

Each of the (1+2+3+ · · ·+8)left · (1+2+3+ · · ·+8)right (Coinc 4516) was sent

to a discriminator (Disc PS706) resulting in ten lines, each counting typically at 400

kHz. The width of the signal was typically 50-60 ns (depending on overlap) in order
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to set a good timing. The outputs of each of the ten discriminators had widths of �

19 ns and were sent to a logical Fan-in. The output of the Fan-in, with a rate of 4

MHz, was sent to the 8LM (a 8-fold programmable logical unit) where a coincidence

with the HMS (width of 11 ns) was formed.

The laser trigger was primarly used to monitor the PMT gains of the neutron

detector by producing light pulses at about 1 Hz with a known intensity. The PMT

signals were digitized and could be used to check for PMT gain stability, detector

resolution, relative energy calibration and detector dead time. The sketch of the laser

pulse system is shown in Figure 6.40. The light pulse was produced by a nitrogen

N_Detector

N - Laser
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Beam Splitter

Attenuator

Scintillation Fiber

to 1:5 Splitter
N-Detector

to PIN diode

to PIN diode

HMS/SOS
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Figure 6.40: The E93-026 laser pulse system for PMT gain monitoring.

laser and split to produce two laser beams with different intensities. The UV light is

converted to scintillator light in the blue region by focusing each laser beam onto a

1 mm diameter scintillation fiber. The scintillation fiber and the plastic light guide

(also 1 mm in diameter) are coupled together. The light output of the laser system

is monitored by a PIN diode which is connected to one end of the scintillation fiber.

The other end of the scintillation fiber is connected to splitters to provide connections

to each PMT. The coupling to the PMTs is accomplished by gluing the optical fiber

into a piece of acrylic plastic cut at 28 degrees. This plastic is glued to the light pipe
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of each detector element.

E93-026 Triggers and Event Types

E93-026 had 7 different event types. Event type “1” is a HMS single event; event type

“3” is an electron-nucleon coincidence event; event type “4” is a pedestal event; event

type “0”, “5” and “20” are scaler events; event type “6” and “14” are laser events

(used to monitor the neutron detector PMT gain), event type “7” is a cosmic event

and event type “140” is a Labview event from the polarized target data acquisition

system.

The Electron and the Nucleon Trigger logical signals had a width of 40 ns. The

pretriggers logic signals were sent to two 8LM logical units. The 8LMs were pro-

grammed to form different triggers, as shown in Figure 6.41. For instance, if the

HMS and neutron detector pretriggers are in coincidence then the 8LM generates a

coincidence trigger. Finally, a copy of each trigger was fed into the trigger supervi-

sor (TS), and the other copy was used for retiming signals. The TS is an electronic

module built at JLAB and is used to interface between the trigger hardware and the

data acquisition computer. The TS can be programmed to accept, reject or prescale

triggers as desired. When a trigger arrives at the TS, the TS waits a few nanoseconds

and then latches all of the enabled triggers into a data word. It then uses a look-up

table to determine what event type the trigger corresponds to and what gates need

to be generated.

6.9.2 Data Acquisition

The E93-026 data acquisition systems involves the use of 7 computers running CODA

(CEBAF Online Data Acquisition system) version 2.0 on a UNIX type operating

system. In addition, the control of the high voltages for wire chambers and neutron

detectors involves another 3 computers running the EPICS control system. A Sun

system (CDAQS1) is used to record data and a HP-UX system (CDAQH1) is used to

interface the high voltage control system. Polarized target data was sent to CODA
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Figure 6.41: The E93-026 pretriggers and triggers.
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from the target control PC running LabView. A schematic diagram of the data

acquisition system is shown in Figure 6.42.

Calorimeters, Raster/BPM 
HMS Hodoscopes, Cerenkovs,

ROC-3, FB ADC & TDC

ROC-1, FB ADC & TDC

Neutron Detectors

VMEC-1, 2, 10, 11, 14, 15

HMS Quads, HV,
Moller control,
ND HV, Beam Current

ROC-2, FB TDC

HMS Drift Chambers

VMEROC-0

Trigger Supervisor

HMS scalers

VME

FDDI Intergace

Helicity scalers

VMEROC-5 ROC-8

GeN Scalers

Hall  C  Counting  House

Experimental Hall  C

Trigger  Electronics

HP-9000/735 CDAQS1

Run Control
Event Builder

Storage Silo
Massive

VME-7

HMS HUT FB-SFI

Target
Control(PC)

Electronics
Target

Labview

Slow Control
EPICS

72 GB

Figure 6.42: The E93-026 data acquisition system components.

The data acquisition system is controlled by a single Run Control process running

on the host workstation (CDAQS1). The program views the experiment as consisting

of a number of subsystems, with each subsystem containing one or more components.

Some of the subsystems implemented are: user trigger system, trigger supervisor,

readout controllers and event builder, event analysis, event recorder, EPICS interface,

etc.

Signals from the detectors are processed by boards (TDC, ADC and scalers) in
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front end FASTBUS and VME crates in Hall C and in the electronics room. These

boards are read out by processors referred to as a “Read Out Controllers (ROCs)”.

The ROCs are CPUs running a UNIX-type operating system, they are front end

interfaces to the crates. A common trigger interface, the trigger supervisor, generates

triggers which cause the digitizers (ADCs, TDCs) to convert and be read out by the

front end crates. The ROCs operate independently, reading and buffering their event

fragments and then sending them via fast ethernet to the event builder process on a

Unix workstation. This process can handle multiple connections and build the event

into CEBAF common event format. Event fragment numbers are checked to detect

missing data. The Event Recorder (ER) writes all events directly to disks. Hall C

had four disk partitions of 18 GB each during E93-026. The data on these partitions

are backed up to the mass storage silo automatically and deleted from disks manually.

The data log file begins with a status event, including a prestart event, an end

event, and a user defined event (kinematics, magnet settings, comments, etc.), fol-

lowed by physics events. The ratio of HMS single events and quasi-elastic e − N

coincidence events was set by prescale factor in the data acquisition input script file.

During E93-026, the TDCs were (and can only be) run in “sparcified mode”, such

that only channels with stops were read out. The ADCs have a programmable thresh-

old for each channel and were also read out in sparcified mode for the HMS, but not

for the neutron detector. At the beginning of each run, 1000 random triggers were

generated (with ADC sparcification being disabled) in order to measure the pedestals.

Some beam related devices like beam positions monitors, beam loss monitors, and

the beam raster were read out on an event by event basis. Typical event size for

this experiment was about 2000 bytes/event. In addition to physics events, the read

out of the HMS and neutron detector scaler event was triggered every 2 seconds by

an asynchronous process. Three helicity scalers (positive, negative and both positive

and negative) were read out for every potential helicity flip or every 1 second. Slow

controls interfaced by EPICS were read out every 30 seconds, triggered by CODA.
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Chapter 7 Simulations

A Monte Carlo simulation was used in E93-026 for optimizing the neutron detec-

tor configuration (also see Section 6.8), fixing the cuts for data analysis in order to

maximize the number of desired events and minimize undesired background events,

evaluating the dilution factors (also see Section 9.2), as well as modeling radiative

corrections (also see Section 9.4. It has also been used to extract Gn
E from measured

experimental asymmetry by averaging theoretical asymmetries over the experimental

detector acceptance. In this chapter, we will describe the MCEEP simulation pro-

gram, modifications made to the MCEEP program for this experiment, and present

simulation results and expectations.

7.1 The MCEEP Program

The MCEEP simulation program was written by Paul Ulmer [109]. It is based on

the general formalism of exclusive electron-nucleon (e, e′N) reaction cross section de-

veloped by Picklesimer and Van Orden [110]. Ignoring terms which require recoil

polarization measurement, the (e, e′N) reaction cross section is given by (for a polar-

ized beam on an unpolarized target):

d3σ

dωdΩedΩp

=
m|p′|
2(2π)3

(
dσ

dΩe

)
Mott

×
[
vLRL + vTRT +

vTTRTT cos 2φ + vLTRLT cos φ + hvLT ′RLT ′ sin φ

]
, (7.1)

where R’s are nuclear response functions, v’s are kinematic factors, and φ is the angle

between the electron scattering plane and the plane containing q and the detected nu-

cleon, as shown in Figure 5.2. The response functions can be obtained by Plane Wave

Impulse Approximation (PWIA). In PWIA, one assumes one-photon exchange (Born
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Approximation); the reaction occurs over a short time period such that the dynamics

of the residual nucleons can be ignored (Impulse Approximation), both electron and

nucleon can be described by plane waves (Plane Wave Approximation). This implies

that the nucleon undergoes no final state interaction. Under these approximations,

the (e, e′N) cross section factors into an electron-nucleon off-shell cross section times

the nuclear spectral function [111]:

σeeN = KσeNf−1
recαsfS(Pr, εm), (7.2)

where, σeN is the elementary off-shell (e, p) or (e, n) cross section, K is a kinematic

factor, αsf is the spectroscopic factor, S(Pr, εm) is the spectral function representing

the probability of finding a nucleon with momentum −Pr and separation energy εm

within the nucleus, and frec is the recoil factor given by frec = 1 − Ep

Er

Pp·Pr

|Pp|2 , where

Ep(r) and Pp(r) are total energy of the detected nucleon (recoiling system) and the

nucleon (recoiling system) final momentum, respectively.

The MCEEP program is written in a modular fashion allowing easy incorporation

of specialized subroutines, such as additional momentum distribution functions. It

can perform calculations for elastic scattering, (e, e′N) to bound states of the residual

system or (e, e′N) to the continuum. The program employs a uniform sampling tech-

nique to populate the experimental acceptance. This differs from traditional Monte

Carlo which generate events distribution according to a predetermined weighting func-

tion.

For the bound state, MCEEP performs a five dimensional integral for the cross

sections, where the ejectile momentum is calculated from the bound state missing

mass and the values of the other five randomly selected kinematical variables: the

electron momentum, in-plane and out-plane angles and the ejectile in-plane and out-

plane angles. An option menu for evaluation of the (e, e′N) coincidence cross section

is provided for bound states. Option 100, which only computes the four unpolarized

response functions listed in Equation 7.1 was used for the E93-026 simulation. The



116

“CC1” prescription of de Forest [112] was used for σeN and various spectral functions

were provided. For a composite target, such as the E93-026 polarized target, each

target component was simulated separately and the results were added together. For

deuterium, we have incorporated the facility to use cross sections from Arenhövel

[113]. For the 4He momentum distribution we used a parameterization of the t+p

breakup channel of 4He using the Urbana potential. The 15N was simulated using

the momentum distribution of 16O of Van Orden. For aluminum, we have used a

momentum distribution extracted from the inclusive quasi-elastic data through a y-

scaling analysis of the following form [114]:

n(p) =
ab

π
e−bp2

+
cd

π
e−dp2

, (7.3)

with a = 2.566, b = 36.96, c = 0.417 and d = 13.77.

MCEEP also provides options for radiative corrections, where the emission of

photons from the incoming and outgoing electron can both be taken into account.

The radiative corrections include both internal and external processes. Details of how

MCEEP handles radiative corrections will be discussed in Section 9.4.

7.2 Simulation Input

In order to run MCEEP, a user input file were setup, where various target and beam

quantities and options can be specified. A sample MCEEP input file for D(e, e′n)

reaction can be found in Appendix A.

The target model used in the simulation is the UVa/Basel/JLAB 15ND3 solid

polarized target. A detailed list of the target materials traversed by the electrons

can be found in Section 8.2. Major target components were taken into account in

the simulation. The target length is 3.0 cm, with an additional 1 cm of helium

(0.5 cm before and 0.5 cm after the target cavity). The target packing fraction

(defined as the volume ratio of the ND3 to helium in the cylindrical target cavity) is

determined from inclusive ND3 and carbon data (refer to Section 8.2). The result of
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d15ND3
:d4He =0.50:0.50 [115] was used, where d is the target length along the beam

for a cylindrical target. The densities of the target materials are ρ15ND3
=1.056 g/cm3,

ρ4He=0.145 g/cm3 and ρAl=2.70 g/cm3. The amount of aluminum in the target is

about 10 mil (or 0.0254 cm) total. The contribution from the target cell wall was

assumed to be zero since the raster diameter is about 5 mm smaller than the cell

diameter. The NMR coil consists of ∼ 0.01 cm thick copper and ∼ 0.004 cm thick

nickel, its contribution is expected to be similar to that of aluminum. At this time, the

simulation does not include the NMR coil contribution. For an average beam current

I = 100 nA, the resulting MCEEP luminosities (i.e., ρdI in µA · g/cm2) for electron

scattering from deuterium, nitrogen, helium and aluminum are listed in Table 7.1.

Table 7.1: The MCEEP input luminosities.

Target Deuteron Helium Nitrogen Aluminum
ρdI(µA · g/cm2) 0.0452 0.0363 0.1131 0.00686

The target nuclei nucleon separation energies used in the simulation are listed in

Table 7.2.

Table 7.2: The MCEEP input target nuclei nucleon separation energies.

Target Deuteron Helium Aluminum Nitrogen
1p 1

2
1p 3

2
1s 1

2

∆E(MeV) 2.2 20.577 8.27 12.0 18.0 40.0

The incident electron beam was rastered over the circular face of the E93-026

cylindrical target. The beam raster was introduced in MCEEP so that the beam spot

on the target was determined by:

x =
1

2
rd

√
r1 cos(r2), y =

1

2
rd

√
r1 sin(r2), (7.4)

where x, y are incident beam coordinates, rd is the raster diameter (2.0 cm), r1 is a

random number between 0 and 1, and r2 is a random number between 0 and 2π.
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The HMS solid angle was approximated as an elliptical aperture with major and

minor axes of 140 milliradian and 54 milliradian. The distance from the center of

the target to the center of HMS collimator plane is 1.66 meters. The electron arm

momentum acceptance was set to ∆P/P = ±10%. The phase space used in the

Monte Carlo studies in terms of the scattered electron in-plane angle (φ), out-plane

angles (θ) and scattered electron momentum are shown in Figure 7.1 for D(e, e′n)

scattering. The target magnetic field was turned on and the effect of the field is to

bend electrons down toward the floor.
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Figure 7.1: Phase space distributions of the electron solid angle and momentum in
D(e, e′n) scattering. From top left to bottom left are scattered electron out-plane
angle (θ), in-plane angle (φ) and momentum (E′). Due to the target magnetic field,
the out-plane angle is not centered at zero, instead it points up.
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In the MCEEP input files, the spectroscopic factors for all target components were

set to 1.0. Since MCEEP is based on PWIA, the resulting cross sections for each target

component were normalized by an overall normalization factor to account for the

reduction of the cross section due to the final state interactions. This normalization

factor we applied is the product of the nuclear transparancy (Tθ) and the nucleon

correlation correction factor (Fcor). It is defined as the ratio of the measured (e, e′N)

yield to the PWIA yield:

η = TθFcor =

∫
V d�pmdEmN exp

θ (Em, �pm)∫
V d�pmdEmNPWIA

θ (Em, �pm)
, (7.5)

where θ is the knocked-out hadron angle and the integrals are taken over the kinematic

phase space V and a range of missing energy and momentum. Results from a quasi-

elastic (e, e′p) experiment [116] show that 12C has TθFcor = 55% at Q2 = 0.5 (GeV/c)2.

The helium yield normalization factor is based on a Glauber calculation using the

inelastic scattering cross section of n-p and n-n interactions [117]. The aluminum

contribution is small and its PWIA yield normalization factor is assumed to be 50%.

The overall PWIA yield normalization factors used in E93-026 simulation for electron-

neutron scattering (e, e′n) for all target components are summarized in Table 7.2.

Note that since we used the full calculations of Arenhövel for D(e, e′n), final state

interactions were already included and hence no further correction is required.

Table 7.3: The (e, e′n) PWIA yield normalization factors.

Target Deuteron Helium Nitrogen Aluminum
η 1.0 0.85 0.55 0.50

7.3 Modifications to MCEEP

For this analysis, we have used a modified copy of the MCEEP version 3.3 simulation

package to model the coincidence (e, e′n) cross section. The program was modified to

include the target magnetic field effects, the geometry of the neutron detector, and
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the deuteron electro-disintegration coincidence cross section from Arenhövel [113]. A

procedure to average the theoretical electron-deuteron vector asymmetry (AV
ed) [113]

over the detector acceptance was also incorporated.

7.3.1 Target Magnetic Field

The E93-026 polarized target contains a pair of Hemholtz coils operating at 5 Tesla.

The field path integral
∫

Bdl of the target magnetic field provided by the manufacturer

is shown in Figure 7.2. It shows that most of the deflection to the charged particles

occurs within the first 30 cm of distance from the center of the target.

Figure 7.2: Target field path integral.

Transport of charged particles in the target magnetic field is achieved by solving

the differential equation of motion of a charged particle in an external magnetic field:

F = ma =
q

e
v × B, (7.6)

where q is the charge of the particle in unit of e, v is the particle velocity and B is

the external magnetic field.
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In practice, the target field map is loaded at the beginning of the MCEEP pro-

gram. Electrons are transported through the target magnetic field from the center

of the target to the HMS collimator plane by the solving the differential equation of

motion by Runge-Kutta integration [118] and the intersection with the HMS collima-

tor plane are determined. Events within the physical acceptance of the collimator are

accepted, otherwise they are discarded. Electrons which pass the HMS collimator are

transported through the HMS magnets using the HMS forward transport maps [119]

and drifted to HMS detector package. At each magnet, a physical acceptance check

is enforced. If the electron is lost in one of the HMS magnet walls or ends up outside

of the drift chambers or hodoscope acceptance, the event is discarded.

During the experiment, the target field is perpendicular to the quasi-elastic q

vector, this results in an angle of ∼ 13o between the quasi-elastically scattered electron

momentum and the target field. Due to the horizontal and vertical components of

the electron velocity (with a finite HMS solid angle acceptance), the target field effect

is to shift and rotate the event distribution at the HMS collimator plane. Figure

7.3 shows the simulations of the angular distribution (out-plane angle versus in-plane

angle) of the D(e, e′n) events in HMS collimator plane for both target magnetic field

off and on.

In the simulation, magnetic field effects were included for scattered charged par-

ticles only. That is the incoming electron beam was assumed to be parallel to the

floor at the interaction point. This should be a good approximation as the magnetic

chicane was designed to ensure this.

Since the transport of the charged particle through the magnetic field requires

the knowledge of the particle momentum, one has to account for any energy loss or

radiative effect changing the momentum of the particle. Unless one knows exactly

where the particle loses its energy and segments the particle’s trajectory, simulation

with the target field effect and the radiative corrections simultaneously would be

problematic. Because the target volume is small compared to the field volume, it is

a good approximation to assume all energy losses (radiation and ionization) of the
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Figure 7.3: Simulated electron distribution in HMS collimator plane for D(e, e′n)
scattering. The left panel is with target magnetic field being turned off and the right
panel is with target magnetic field being turned on. The angles are measured in radian
and positive values of the vertical angle (θ) correspond to particles with downward
pointing trajectories.
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scattered electrons occur at the vertex. The subsequent transport of electron uses

its energy after radiation. In this way, the conflict between the target magnetic field

deflection effect and the radiative effects can be reconciled.

7.3.2 Neutron Detector

The E93-026 neutron detector configuration was incorporated and a simple efficiency

calculation was implemented in the simulation. The neutron detector is placed at

4.03 meters away from the target along the quasi-elastic momentum transfer vector

q, and the centroid of the detector is 20 cm below the beamline. Based on the studies

of Madey et al. [123], a calculation, shown in Figure 7.4, gave the neutron detection

efficiency versus detector ADC threshold for E93-026 quasi-elastically knocked-out

neutron at kinetic energy of 267 MeV. Details of the determination of the E93-026
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Figure 7.4: Neutron detection efficiency versus detector ADC threshold. The calcu-
lation was done for neutron kinetic energy of 267 MeV and a scintillator bar of 160
cm × 10 cm × 10 cm.

scintillator bar ADC threshold are discussed in Section 8.7. As a result, a neutron

detection efficiency of ε=9.5% (corresponding to 10.7 MeVee threshold) is used for

single detector plane and a 9.5% neutron beam flux reduction after each plane was
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used. For protons, 100% detection efficiency was assumed as long as the proton fell

into the detector physical acceptance (determined by the first bar plane). For the

neutrons, the physical acceptance was checked first, followed by a determination of

whether the neutron fired the detector. For a neutron entering the detector accep-

tance, if the probability of firing each detector plane is ε, then the firing probability

for a neutron entering the physical acceptance of detector plane n is given by:

εn = ε(1.0 − ε)n−1. (7.7)

The neutron detector time (position) resolution of 5.9 cm was incorporated by

rotating the momentum vector of the knocked-out neutron by an angle of αh in

horizontal direction and an angle of αv in vertical direction. αh and αv are angles

randomly chosen according to Gaussian distributions with a sigma of ∼0.014 radian

(corresponding to 5.9 cm position resolution in horizontal) and with a sigma of ∼0.007

radian (corresponding to a position resolution of 10√
12

cm, which is the sigma of a

uniform distribution with width of 10 cm), respectively.

7.3.3 D(e, e′n) Cross Section

Much of the comparison between our data and the theoretical models relies on

Arenhövel’s asymmetry calculations. For consistency, instead of using the “CC1” pre-

scription together with the deuteron momentum distribution, we have incorporated

Arenhövel’s deuteron electro-disintegration coincidence cross sections for D(e, e′n)

reaction. Arenhövel’s calculations provide cross sections for different reaction mech-

anisms, hence we can inspect the reaction mechanism dependence of the spin corre-

lation parameters (and Gn
E) as well.

We first obtained calculations of (e, e′n) coincidence cross sections on kinematical

grid from Arenhövel. The grid points we chose are uniformly distributed across the

phase space distributions of three kinematical quantities: the electron scattering en-

ergy (E′), the electron scattering angle (θe) and the angle of n-p relative momentum
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with respect to q in the n-p center of mass system (θcm
np ). The distributions of these

kinematical variables were first generated and weighted by the existing “CC1” pre-

scription for the e−N cross section and a parametric fit to the deuteron momentum

distribution of Bernheim [124] in MCEEP. The phase space and cross section weighted

distributions of θe against E′ are shown in Figure 7.5 at E93-026 kinematics.
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Figure 7.5: E′ versus θe distribution of D(e, e′n) scattering. The left panel is the phase
space distribution and the right panel is the cross section weighted distribution.

Based on Figure 7.5, we chose to calculate the D(e, e′n) coincidence cross section

as function of E′, θe and θcm
np over the range of 2280 MeV < E′ < 2580 MeV, 13.8o <

θe < 17.8o and 0o < θcm
np < 180o, with 15 MeV step size in E′, 0.4o step size in θe and

2.5o step size in θcm
np , as listed in Table 7.4.

Table 7.4: Kinematical grid for D(e, e′n) cross section calculations.

Variable E′ (MeV) θe θcm
np

Range 2280 – 2580 13.8o − 17.8o 0o − 360o

Step size 15 0.4o 5o

The cross sections were obtained over these kinematical grids for three Gn
E values:

Gn
E = 0.5 × (Gn

E)Galster, Gn
E = (Gn

E)Galster and Gn
E = 1.5 × (Gn

E)Galster. Various

reaction mechanisms were assumed, and the dipole model of Gn
M was used. The

effect of different values of Gn
E on the cross sections is never greater than 2%, hence
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the cross section of Gn
E = (Gn

E)Galster for the full calculations (N+MEC+IC+REL)

was used for the D(e, e′n) simulation. This cross section was loaded into MCEEP

program as a look-up table, and during the simulation, the cross section for a D(e, e′n)

event was taken directly from the table. A three dimensional linear interpolation to

the cross section was made for event whose kinematics fell between the tabulated

kinematic grid points. If a given cell contains the kinematics of the event, repeated

linear interpolation with respect to variable E′, θe and θcm
np were performed. To

illustrate how the linear interpolation was done, we take an example for the case

of two dimensions, with (E′, θe) replaced by (x, y) for clarity. The interpolating

procedure is equivalent to the following: let a1, a2 · · · be the tabulated value of x

and b1, b2 · · · be the tabulated value of y, let i and j be the subscripts for which

ai ≤ x < ai+1, bj ≤ y < bj+1, and for the given event it has E′ = a, θe = b, then

compute cross section σappr(a, b):

t = (x − a)/(ai+1 − a),

gi = (1 − t)σ(ai, bj) + tσ(ai+1, bj),

gj+1 = (1 − t)σ(ai, bj+1) + tσ(ai+1, bj+1), (7.8)

u = (y − b)/(bj+1 − b),

σappr(a, b) = (1 − u)gj + ugj+1,

where σ(x, y) contains the value of cross sections at grid (x, y).

For the cross sections for electron scattering from other target components (ni-

trogen, helium, aluminum, etc.), we used the prescription of “CC1” together with

corresponding momentum distributions discussed earlier.

The averaging procedures for the electron-deuteron vector asymmetry (AV
ed) over

the detector acceptance is rather similar to the cross sections interpolation. It will be

discussed in Section 9.3.
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7.4 Simulation Results

In this section, we will present results of various kinematical variable distributions

from the simulation. A set of cuts was optimized for the data analysis based on

these kinematical distributions. A rate estimation for both (e, e′n) and (e, e′p) is also

presented.

7.4.1 Kinematical Spectra and Cuts Optimization

The kinematical variable distributions we will present include: the knocked-out neu-

tron momentum; the time of flight (TOF) of the knocked-out neutron at the neutron

detector first bar plane; the invariant mass (W ) of the final state; neutron detec-

tor horizontal hit coordinate (ypos); the knocked-out neutron (proton) emission angle

with respect to momentum transfer q (θnq); the angle of the n-p relative momentum

with respect to q in the n-p center of mass system (θcm
np ), and the distribution of θ∗

and φ∗ which characterizes the target polarization vector in the coordinate system

defined by q vector. The simulation included both the radiative and target magnetic

field effects.

Neutron Momentum Spectra

The momentum of the knocked-out neutrons is used to convert θnq to θcm
np . Figure

7.6 shows the momentum spectra of the knocked-out neutrons in laboratory frame

for electron scattering from 15ND3 target for each target component.

Neutron Time of Flight Spectra

Figure 7.7 shows the typical time of flight (TOF) of the knocked-out neutrons from

ND3(e, e
′n) at the neutron detector first bar plane (see Figure 6.35). The results

imply that with a ±4 ns mean time cut window around the deuterium peak, nearly

all of the D(e, e′n) events are within acceptance.
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Figure 7.6: Simulation results for (e, e′n) scattering for different target components,
plotted against the knocked-out neutron momentum in GeV.
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Figure 7.7: Simulation results for (e, e′n) scattering for different target components,
plotted against time of flight (TOF) in ns.
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Cuts Optimization

We have studied three kinematical variables and optimized the cuts for (e, e′n) event

selection. These kinematical variables are the invariant mass (W ), the horizontal hit

coordinate in the neutron detector first bar plane (ypos), and the neutron emission

angle with respect to q (θnq).

The invariant mass is defined as:

W =
[
m2

N + 2mNω − 4EE′ sin2(θe/2)
]1/2

, (7.9)

where mN is the nucleon mass, E and E′ are the incident and scattered electron

energy, and ω = E − E′. The (e, n) final state invariant mass spectra from the

simulation for each target material are shown in Figure 7.8.
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Figure 7.8: Simulation results for (e, e′n) scattering for different target components,
plotted against invariant mass in MeV/c2.

The result shows that a cut on W at |W − 0.939| < 0.050 GeV would keep more

than 75% of D(e, e′n) while significantly reducing e−N scattering events from other
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target materials and hence improving the dilution factors. Since the invariant mass

distribution from the data contains inelastic processes which are not included in this

simulation. A W cut should eliminate the inelastic contributions. Hence, an invariant

mass cut of |W−0.939| < 0.050 GeV is extensively used throughout the data analysis.

ypos is defined as the horizontal intersection of the knocked-out nucleon with the

neutron detector first bar plane. Figure 7.9 shows the (e, e′n) ypos distributions with

invariant mass cut of |W − 0.939| < 0.050 GeV for each target component. The

results suggest that in order to maximize the dilution factors while still retaining

good statistics, a ypos cut at |ypos| < 40 cm is necessary.
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Figure 7.9: Simulation results for (e, e′n) scattering for different target componemts,
plotted against ypos in cm, with invariant mass cut at |W − 0.939| < 0.050 GeV.

The distributions of neutron emission angle with respect to q (θnq) from (e, e′n)

scattering for each target component with |W − 0.939| < 0.050 GeV cut are shown

in Figure 7.10. In order to optimize the cut on θnq, we have calculated the run

time required to obtain expected measurement uncertainty for various θnq and δ cuts,

where δ is defined as δ = p′−p′c
p′c

, p′ is the scattered electron momentum and p′c is the
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Figure 7.10: Simulation results for (e, e′n) scattering for different target components,
plotted against θnq in radian, with |W − 0.939| < 0.050 GeV and |ypos| < 40 cuts.

HMS central momentum. The minimization of the run time is based on the fact

that the run time required is a compromise between event rate and dilution factors.

Figure 7.11 shows the run time required to achieve the expected relative measurement

uncertainty for Gn
E over a set of (δ, θnq) cuts. The effect of ypos cut is to cut events at

high θnq and is heavily overlaped to the θnq cut. The W cut was not applied. Figure

7.10 says that the required run time is very sensitive to the cut on θnq. In order to

achieve the expected measurement uncertainty with minimum run time possible, the

θnq cut was chosen to apply at θnq < 0.110 radians. This cut also restricts the missing

momentum (Pm) to be less than ∼ 180 MeV/c, as discussed earlier, the asymmetry

is nearly model independent at low missing momentum.

After applying cuts on the kinematical variables W , ypos and θnq, the remain-

ing (e, e′n) events from our 15ND3 target are dominated by electron scattering from

deuterium. The objective of suppressing (e, e′n) from other target materials to the

maximum degree while still retaining a good statistics for D(e, e′n) scattering can
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Figure 7.11: θnq cut optimization. The plot shows the run time required to achieve
expected relative Gn

E statistical uncertainty with various (θnq, δ) cuts.

then be achieved.

θcm
np Spectra

For ND3(e, e
′n) scattering, the yield versus the angle of the relative n-p momentum

in the n-p center of mass system with respect to the momentum transfer vector q

(θcm
np ) subjected to the cuts |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110

radian is shown in Figure 7.12 for each target component. θcm
np angle is obtained by

boosting θnq from the laboratory frame to the n-p center of mass system (shown in

Figure 5.2) using the measured knocked-out neutron momentum:

θcm
np = 180o − tan−1


sin(θnq)

(
ω + MD

Ec
T

cos(θnq) −
qEn

Ec
T Pn

)−1

 , (7.10)

where, ω and q are energy and momentum transfer, MD is the mass of deuteron, En

and Pn are knocked-out neutron energy and momentum, and Ec
T = [(ω + MD)2 − q2]

1/2
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is the total energy in the center of mass system. θcm
np =0 corresponds to proton emission

in the direction of q and neutron emission opposite to q and vice versa for θcm
np = 180o.
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Figure 7.12: Simulation results for (e, e′n) scattering for different target components,
plotted against θcm

np in degree, with |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and
θnq < 0.110 rad cuts.

θ∗ and φ∗ Spectra of �D(�e, e′n)

Due to the presence of the target magnetic field, the scattered electrons were bent

toward the floor. In order for electrons to pass the HMS collimator, the initial electron

momentum at the target on average must have a small vertical component. This

results in the average momentum transfer vector q directed toward the floor and

hence the scattering plane is tilted. As shown in Figure 5.1, θ∗ and φ∗ are defined

as the usual polar and azimuthal angle of the polarization vector in an coordinate

system defined as the z axis along the q vector, the y axis given by ŷ = Ê×Ê′

|Ê×Ê′| , where

Ê is the unit vector along the incident electron and Ê′ is the unit vector along the
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scattered electron, and the x axis is given by x̂ = ŷ × ẑ. Figure 7.13 and Figure 7.14

show the simulation results of these two angles for �D(�e, e′n) scattering with positive

and negative target enhancement, respectively.
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Figure 7.13: θ∗ and φ∗ distributions of �D(�e, e′n) scattering with positive enhancement
(target polarization vector parallel to the magnetic field). The top two panels are
without any cut while the bottom two panels are with |W − 0.939| < 0.050 GeV,
|ypos| < 40 cm and θnq < 0.110 radians cuts.

The impact of the θ∗ and φ∗ on Gn
E measurement can be illustrated by Equation

5.2. For instance, at θ∗ = 91o and φ∗ = −3o, with τ = 0.1418 and tan2(θe/2) = 0.0191

for our quasi-elastic kinematics (E′=2.453 GeV, θe = 15.7o) and using Gn
E = τGn

M

(the dipole relation for Gn
E), the relative contribution between the first term (which

we want to suppress) and the second term (which we want to maximize) in Equation

5.2 is:

√
τ [1+(1+τ) tan2(θe/2)] cos θ∗(Gn

M )2

Gn
EGn

M sin θ∗ cos φ∗ = 0.047
0.998

= 4.7%. Although φ∗ has a very small
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Figure 7.14: θ∗ and φ∗ distributions of �D(�e, e′n) scattering with negative enhancement
(target polarization vector anti-parallel to the magnetic field). The top two panels
are without any cut while the bottom two panels are with |W − 0.939| < 0.050 GeV,
|ypos| < 40 cm and θnq < 0.110 radians cuts.
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effect on Gn
E (< 0.1%), θ∗ has an big impact on Gn

E. As we will discuss in Section

9.3, the effect of θ∗ has been taken into account in the theoretical calculations of the

electron-deuteron vector asymmetry (AV
ed).

7.4.2 Event Rate

In this section, we will present the rate estimates for the ND3(e, e
′n) and the ND3(e, e

′p)

reactions. Target field and radiative effects were taken into account. Nucleon flux

attenuation in the neutron detector shielding system were not taken into account.

Estimation of the neutron flux attenuation in the shielding can be found in Section

9.1.

(e, e′n)

For the E93-026 neutron detector configuration, we estimated the (e, e′n) event rate.

The contribution to the rate from deuterium utilizes the full calculations of Arenhövel.

The contributions from other target species were calculated in PWIA together with

estimates of effects from nuclear transparency and correlations. The rates given in

Table 7.5 are for simulations subjected to the optimal set of cuts. These cuts are

|W − 0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110 radians.

Table 7.5: Estimated 15ND3(e, e
′n) scattering event rate for different target compo-

nent. η is the PWIA normalization factor.

Target Deuteron Helium Nitrogen Aluminum Carbon
d (cm) 1.50 2.50 1.50 0.025 0.69
η 1.0 0.85 0.55 0.50 0.55
Rates (Hz) 5.24 1.16 1.05 0.06 1.95

(e, e′p)

Since protons were bent up in the E93-026 target magnetic field, as a result, nearly

half of the protons from E93-026 ND3(e, e
′p) were deflected out of the proton detector
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acceptance. Table 7.6 lists (e, e′p) event rate for all target components with target

magnetic field off and on. Rates given in Table 7.6 are subject to |W − 0.939| <

Table 7.6: Estimated 15ND3(e, e
′p) scattering event rate for different target compo-

nent.

Target Deuteron Nitrogen Helium Aluminum Sum
d (cm) 1.50 1.50 2.50 0.025
η 1.0 0.55 0.85 0.50
Without field (Hz) 75 49 34 2 160
With field (Hz) 32 27 15 1 75

0.050 GeV and |ypos| < 40 cm cuts. The momentum distribution of Bernheim [124]

along with the “CC1” prescription of de Forest was used for D(e, e′p) cross section.

Radiative effects were included.

Figure 7.15 demonstrates the target magnetic field effect to the x−y distributions

of the knocked-out protons at the first bar plane of the neutron detector.

Figure 7.16 shows the θ∗ and φ∗ spectra of �D(�e, e′p) reaction with positive en-

hancement. Due to the field effect, only the lower half of the protons were within our

detector acceptance and even these events are, on average, associated with a q vector

pointing down; therefore, the φ∗ spectrum for events accepted by the neutron detec-

tor is only half of the full spectrum (for events without neutron detector acceptance

enforcement).
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Figure 7.15: Target magnetic field effect on protons in PWIA (e, e′p) scattering from
ND3 target. The solid curves in top panels are without target field effects and the
dashed curves in top panels are with target field effects. The bottom two panels, from
left to right, are the x− y distributions at E93-026 neutron detector’s first bar plane
with target magnetic field being turned off and on.
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Figure 7.16: θ∗ and φ∗ distributions in PWIA �D(�e, e′p) scattering with positive en-
hancement. The top two panels are spectra for all events (without neutron detector
acceptance enforcement) while the bottom two panels are spectra for events within
our neutron detector acceptance. All events are subject to |W − 0.939| < 0.050 GeV
and |ypos| < 40 cm cuts.
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Chapter 8 Data Analysis and Results

8.1 Overview and Analysis Sequence

In this chapter, we will describe the offline data analysis process and present the

results of the E93-026 experimental asymmetries. The analysis for the E93-026 ex-

periment is based on the Hall C standard analysis package, the “Hall C Engine”,

in which the Short Orbit Spectrometer (SOS) tracking package was replaced by the

Neutron Detector (ND) tracking program. The target packing fraction determined

from the E93-026 inclusive data will be used during data analysis. It will be pre-

sented at the beginning of the chapter. This section begins with a general description

of the analysis engine, followed by a brief description of the prescriptions for detector

calibrations, timing corrections and reconstruction algorithm, a detailed description

of the particle identification and tracking algorithm in the neutron detector. The

(e, e′n) and (e, e′p) event selections based on the established particle identification

algorithm and event selection criteria will then be discussed and the resulting dis-

tributions of various kinematical variables from data are compared with the Monte

Carlo simulations. Finally, the physics background subtractions and proton contam-

ination corrections are discussed. The chapter concludes by extracting the measured

experimental (e, e′n) asymmetries in four kinematical variables and the preliminary

(e, e′p) average asymmetries.

There are three right-handed coordinate systems the data analysis has used: the

laboratory frame, the HMS transport coordinate system and the neutron detector

transport coordinate system. The laboratory frame z axis points along the incident

beam direction, the x axis points down and y axis is given by ŷ = ẑ× x̂. The z axis of

the transport coordinate systems point along the central optical axis of the detectors,

the x axis point down and the y axis is given by ŷ = ẑ × x̂. Figure 8.1 shows these
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coordinate systems.
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Figure 8.1: Data analysis coordinate systems.

Finally, data analysis results presented throughout the chapter are from E93-026

run 22150 (a typical medium size run), unless otherwise specified.

8.2 Target Model and Packing Fraction

8.2.1 Target Model

A target model was used to simulate the kinematical distributions, estimate the event

rate, the dilution factors and the radiative corrections. The E93-026 target model

was a modification of the one used in the SLAC E155 experiment [125]. A detailed

description about the target modifications can be found in [115]. The target materials

in the primary E93-026 15ND3 target in the order they are traversed by the electrons

are listed in Table 8.1. In the table, “flag” indicates whether the material is a true

target material (which must be corrected by packing fraction) or a wall component.
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Table 8.1: Target materials traversed by the electrons.

Material d ρ(g/cm3) X0(g/cm2) flag Z A
1 beam exit 0.0150 in 1.850 65.190 w 4 9
2 air gap 3.0000 cm .00129 36.660 w 7 14
3 OVC entr 0.0080 in 2.700 24.011 w 13 27
4 LN2 can 0.0015 in 2.700 24.011 w 13 27
5 4K shield 0.0015 in 2.700 24.011 w 13 27
6 tailpiece 0.0020 in 2.700 24.011 w 13 27
7 LHe 0.5000 cm 0.145 94.322 w 2 4
8 endcap entr 0.0015 in 2.700 24.011 w 13 27
9 tgt 15N 3.0000 cm 1.056 50.500 t 7 15
10 tgt D3 3.0000 cm 1.056 50.500 t 1 2
11 tgt He 3.0000 cm 0.145 94.322 t 2 4
12 NMR Al 0.0000 cm 2.700 24.011 w 13 27
13 NMR Cu 0.01008 cm 8.960 12.860 w 29 64
14 NMR Ni 0.00433 cm 8.760 12.680 w 28 59
15 endcap exit 0.0015 in 2.700 24.011 w 13 27
16 LHe 0.5000 cm 0.145 94.322 w 2 4
17 tailpiece 0.0020 in 2.700 24.011 w 13 27
18 4K shield 0.0015 in 2.700 24.011 w 13 27
19 LN2 can 0.0015 in 2.700 24.011 w 13 27
20 OVC entr 0.0080 in 2.700 24.011 w 13 27
21 air gap 3.0000 cm .00129 36.660 w 7 14
22 beam exit 0.0150 in 1.850 65.190 w 4 9

8.2.2 Packing Fraction

The target material consists of 1 − 3 mm diameter granules of 15ND3, sitting in the

4He bath inside the target cavity. The packing fraction is the fraction of target cell

volume filled by target material (ND3), the rest of the cell being filled with liquid

4He. The packing fraction is important for the offline simulation of the scattering

cross sections and for the determination of the dilution factor.

To determine the packing fraction, the ND3 data and either helium data or 12C

data were used. For E93-026, we have taken some 12C data with a fixed target length

of about 0.69 cm [115]. The radiation length of the carbon target (carbon plus helium)

is roughly the same as that of the deuteron target with a 50% packing fraction. The
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ratio of the HMS single event rate for the scattering from the ND3 target to the HMS

singles rate from the carbon target is given by:

r =
Rt

Rc
=

Pf · RD + Pf · R15N + (1 − Pf) · RHet + RNMR +
∑

Runpol

R12C + RHetc +
∑

Runpol
, (8.1)

where RNMR = RCu + RNi and
∑

Runpol = RAl + RHex, with

Pf : the packing fraction,

Rt: rates from polarized target,

Rc: rates from carbon target,

RD, R15N: rates from deuterium, 15N,

RHet: rates from 4He surrounding 15ND3 target,

RNMR: rates from NMR coils (Copper and Nickel),

RHetc: rates from helium surrounding carbon target,

Runpol: rates from all other unpolarized materials (Al, He, etc.).

Solving for the packing fraction yields:

Pf =
Rt

Rc
(R12C + RHetc + RAl + RHex) − (RHet + RCu + RNi + RHex + RAl)

RD + R15N − RHet
. (8.2)

The rate can be expressed as Ri = Ib

e
niσi, where, e is the electron charge, ni =

NAρid
Ai

is the number density, Ib is beam current, ρi is target material density, d is

target thickness, NA is the Avogadro number, Ai is atomic number and σi is the cross

section. For our ND3 and carbon targets, the relative number densities of all target

materials are listed in Table 8.2.

In order to get the packing fraction, a model of cross sections for all materials in

the target is required. To match data, this also requires the modeled cross sections

to be radiative corrected. The Born cross sections were generated by Lightbody

and O’Connell’s QFS code [126], and the results were then internally and externally

radiated.
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Table 8.2: Relative number densities of the target materials.

Material ni/nD

Deuterium 1.0
Nitrogen 0.3333
Carbon 0.2860

Target Helium 0.2403
External Helium 0.0801

Aluminum 0.0146
Copper 0.0031
Nickel 0.0014

The packing fraction was extracted as a function of the scattered electron energy.

It is a constant as a function of scattered electron energies, but it can differ from

target cavity to target cavity and run period. Results for the Q2 = 0.5 (GeV/c)2

data set are shown in Figure 8.2. The average packing fraction for E93-026 Q2 = 0.5

(GeV/c)2 kinematics is determined to be 0.504 ± 0.007 [115].
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Figure 8.2: Polarized target packing fraction measured for different run periods. The
top 5 points on the right are for the bottom cavity, all other points are for the top
cavity. Both cavities belong to the same insert.

In this analysis, the average packing fraction was used for all runs. Taking 3.5%
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relative uncertainty for the packing fraction (the full width half maximum of the

distribution of the packing fraction results) and the measured event rates for helium,

carbon and ND3 targets, this contributes 1.7% relative uncertainty to the dilution

factor.

8.3 Run Selection

During the E93-026 data taking period, the experimental conditions were monitored

continuously by various means. Runs with potential problems were excluded from this

analysis. Sources of problems during the data taking included the data acquisition

system, HMS and neutron detector performance, accelerator Machine Control Center

(MCC), beam conditions, and target control. All problems were recorded in the run

sheets. The following critieria were used to exclude bad runs:

• Data acquisition problem: read-out controlers for the HMS and neutron detector

(most frequently, ROC2 and ROC3) were dead during the run and the run was

forced to abort.

• Detector problems: HMS dipole and quadrupole magnet trips during the run;

HMS hodoscope or neutron detector high voltage trips or runs with wrong high

voltage (HV) settings; shower counter HV being turned off; SEM problems

during the run, etc.

• Beam quality problems: large beam current fluctuations; low beam polarization;

bad beam position on target (from BPM and online analysis); sudden loss of

beam during the run, etc.

• Target problems: low target polarization; loss of target control; loss of mi-

crowave power; sudden polarization drop; cryogenic supply problems.

• Miscellaneous: corrupted data files causing analysis problem.

• Test and calibration runs were excluded.
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At the E93-026 Q2 = 0.5 (GeV/c)2 kinematic, there are 310 runs that pass these

criteria. A list of good runs with run number, number of coincidence events, accu-

mulated charge, beam current, beam and target polarization, HMS single prescale

factors, etc. is presented in Appendix B.

8.4 Hall C Analysis Engine

8.4.1 Overview

The Hall C analysis engine uses the CEBAF Online Data Acquisition (CODA) rou-

tines to read and unpack raw detector information for physics, scaler and control

events. The detector parameters and calibration constants are read in by the engine

from separate input files. The engine then does particle identification and recon-

structs the tracks based on detector information. Histograms are generated using the

CEBAF Test Package (CTP), as are report files which contain scaler and detector

information.

8.4.2 CEBAF Test Package

The CEBAF Test Package (CTP) [127] was written by Steve Wood at CEBAF to

provide a flexible way of allowing the analysis code to receive parameter settings,

define cuts and histograms through ASCII files. The CTP is modeled very loosely on

the LAMPF Q test, histogram and dynamic parameter packages [128]. It allows one

to change the parameters of the data analysis without recompiling. CTP includes a

variable registration system which allows the same variable name to be used in the

data acquisition system and in the definition files. In the Hall C engine, all variables

are defined in .cmn files and stored in common blocks. At the beginning of the run,

all common blocks are parsed and all variables are registered. The CTP then shares

the variable names with the Fortran code through registration. CTP uses remote

procedure calls (RPC) to access these variables. In addition, variables that are not
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part of the engine’s Fortran code can be defined in the input files and used to create

tests and define histograms. The primary usage of CTP is to input parameters and

run time flags into the analysis engine, define histograms and output scaler reports.

The input parameters are read into the analysis code at the beginning of the analysis

from ASCII files. At the end of each event, the CTP tests are evaluated, histograms

are filled and software scalers are incremented.

8.4.3 The Analysis Engine

The flow chart of the analysis code is shown in Figure 8.3. The engine begins by read-

ing in the configuration file defined by the environment variables. This file contains

run flags, parameters and output files. Some of the files set the parameters defining

locations, calibrations and decoding maps relevant to detector elements, and others

are used to define CTP histograms, cuts, tests, and scalers. Kinematics parameters

and other quantities which vary from run to run are contained in a separate file. After

all of the run parameters are defined, the initialization for output data files, such as

HBOOK and NTUPLE files, are executed and the raw data file is opened. The engine

then loops over the first few events in the data bank in order to analyze the beginning

of run information. These include the CODA status events, ADC threshold readback

values, run time options and run kinematics. The engine then goes on to the main

event loop once these initialization events are analyzed.

In the main loop, each event is processed according to its event type. For scaler

events, the total counts and the change in counts are recorded for each hardware scaler

together with the time and accumulated charge since the last event. For EPICS and

LabView events, the EPICS values and target polarizations are read and stored.

Physics events are analyzed according to event type. At the beginning of each run,

1000 pedestal events generated by a pulser are analyzed. The ADC values from

pedestal events are used to determine the pedestal value of each ADC channels as

well as threshold values (∼ 15 channels higher than the pedestal values). The cal-

culated pedestal values are then subtracted from the ADC values for each event.
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engine Initialization routines
(read in kinematics, detector calibrations, run-time flags,...)

Hall C analysis engine routine flow

End of run routines
(analyze detector efficiency information,
output histogram, test, and scaler reports,
close output files,...)

Analyze Pre-data events.
(read in Prestart, Go, and Run Information events before main event loop begins.)

Main Event Loopg_analyze_scalers
(for scaler readout events)

g_examine_epics_events
(for EPICS events - analyze slow control readout)

g_analyze_pedestal
(for the first 1000
  ’pedestal’ events)

h_analyze_ped

N_analyze_ped

g_calc_pedestal h_calc_ped

N_calc_ped

h_reconstruction
(decode data, generate tracks,
  calculate PID quantities, and
  calculate physics quantities for
  triggers in the HMS)
N_reconstruction
(similar to
  h_reconstruction)

c_reconstruction
(calculate coincidence quantities using
  tracking and PID information from
  h_reconstruction and N_reconstruction)

g_reconstruction
(all physics triggers)

g_decode_event_by_banks
(fastbus decoding)

Figure 8.3: Hall C analysis engine flow chart.
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The generated threshold files for each run are then used to update the programmed

threshold values in the data acquisition system. For physics events, the raw data hits

are read in and passed on to main reconstruction routines for both arms separately.

The event is reconstructed, particle identification is performed and the information

is stored and the physics quantities are calculated. Then, CTP tests are evaluated

and histograms and scalers are incremented. Finally, the output and report files are

created. A detailed description of the Hall C analysis engine can be found in [129]

and [105].

8.5 HMS Tracking

The flow chart of the HMS tracking algorithm is shown in Figure 8.4. The trajectory

of the tracks at the focal plane is measured with two drift chambers, each with 6

planes. The HMS tracking algorithm includes the following steps: (i) identify space

points in each drift chamber; (ii) for each space point, resolve left-right ambiguities;

(iii) link space points from each chamber to form a track; (iv) choose the best track

combination.

The space points are identified from the drift chamber hits. Events with too few

or too many hits are rejected. The position of a particle at which it passes through

a plane is determined by the position of the wire which detects the particle plus

the closest distance between the track and the wire. This distance is determined by

measuring the time difference between the time the particle passes through the focal

plane trigger counters and the time recorded by the wire detecting the particle. It is

assumed that the particle passes through the drift chamber nearly perpendicular.

For each space point in the front chamber, a “stub” track is fit by using the

hits in the front chamber which satisfy the space point criterion (distance between

the two intersections). The left-right ambiguity for a wire in the space point is

determined by fitting a stub through the space point for each left-right combination

(26 combinations for each space point) and choosing the fit with the lowest χ2. The
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h_trans_cal

h_trans_dc
h_track

h_fill_scin_raw_hist

h_fill_dc_fp_hist

h_fill_dc_tar_hist

h_fill_dc_dec_hist

solve_four_by_four

h_dc_trk_eff
h_scin_eff

[finds and fits tracks in fp]

h_trans_scin [gets corr scin times, hit pos, start time; calc initial beta, fit beta if enough times]
h_strip_scin [finds scin w/ real hits (good tdc), converts raw hits to arrays over hits]

h_tof_init [initializes track-indep qties for tof fit]

h_tof_fit [fits beta from t and z]

h_reconstruction (called once per event)

h_trans_misc [fills hms_decoded_misc common block]

h_sparsify_cal [computes energy dep using only cal info]
h_fill_cal_hist [translates raw drift and start times to decoded info]

h_pattern_recognition [gets space points]
find_space_points [finds points within DC by looking at non-parallel planes]
h_choose_single_hit [handles case where one sp has multiple hits in one plane]
select_space_points [keeps sp only if it has good # hits, good # combinations]

h_left_right [fits stubs to all poss L-R combinations of drift distances]
h_find_best_stub [fits line to sp’s in single chamber (assumes yp = 0?)]

h_track_fit [finds track residuals]
h_link_stubs [looks at sp stubs and links them into tracks]

h_targ_trans [transforms tracks from focal plane to target including beam offset and target magnetic field]

h_tof [finds t, tof, beta w/ ph, vel, and time offset corrections (uses track info)]

h_cal [computes cal PID qties; corrects energy dep for impact point dependence]
h_clusters_cal [finds clusters and computes size, pos, and uncorrected energy dep]

h_tracks_cal [matches clusters to dc tracks]
h_select_best_track [selects best track based on chi-sq, dE/dx, Etot, and beta]

h_physics_stat [calculates statistics and efficiencies]
h_physics [performs final physics analysis of HMS qties]

h_tof_fit [fits beta from t and z]

h_cal_eff
h_cer_eff

Figure 8.4: HMS tracking algorithm flow chart.
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small angle approximation is used for the HMS y, y′ planes. This approximation

assumes that for any two parallel planes, the wires are offset by 0.5 cm and the wires

within each plane are separated by 1.0 cm. If there are hits in any two parallel planes,

one can choose the left-right combination that makes the particle go in between the

two wires. For planes that are close to each other this is a very good approximation

if the incoming particles are nearly perpendicular to the plane. The stub tracks for

the rear drift chamber are also fit.

For each combination of stubs in the front and rear chambers, a full track is fit if

the two stubs are consistent (slope, etc.). The particle trajectory is expressed in terms

of a pair of coordinates and a pair of angles in the spectrometer reference system. Cuts

are applied to reject bad fits caused by missing wires and noise. The reconstructed

trajectory can also determine which hodoscope elements and which calorimeter blocks

will be intercepted, and cuts are applied on particle velocity, energy deposition in the

calorimeter, and hodoscope dE/dx as measured in the appropriate elements.

If multiple tracks pass the criteria, the one with the lowest χ2 is chosen. The

true probability of multiple particles in the HMS is less than 0.1%. Most likely, fake

multiple tracks are caused by noisy wires or multiple hits in the same plane. Tracking

inefficiency is caused by the inefficiency of the detectors and the inefficiency of the

tracking algorithm. Typical tracking efficiency is above 90%.

8.6 HMS Reconstruction

8.6.1 Standard HMS Reconstruction

The reconstruction process for charged particles in HMS was accomplished by trans-

porting the particle from known focal plane quantities to the target, as shown in

Figure 8.5.

The focal plane of the HMS was defined half way between the two wire chambers

and perpendicular to the central trajectory. The focal plane position of a track

was described by its x − y position (xfp, yfp) and x − y angle (x′
fp, y

′
fp) in the HMS
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Figure 8.5: Schematic view of HMS focal plane.

transport coordinate system. (xfp, x
′
fp) corresponds to the dispersive plane, while

(yfp, y
′
fp) corresponds to the non-dispersive plane (scattering plane). From the focal

plane quantities of an event, one can reconstruct the relative particle momentum ∆P
P

(≡ δ), and the position and angle of the event at the target (ytar, y
′
tar, x

′
tar). The beam

offset in the dispersive plane can not be reconstructed and is used as input in order

to reconstruct the δ.

The target quantities can be expressed in terms of focal plane quantities in the

matrix formalism of Penner [130]:

qi
tar =

∑
jklm

M i
jklm(xfp)

j(x′
fp)

k(yfp)
l(y′

fp)
m, i = 1, 2, 3, 4, (8.3)

where, i=1,2,3,4 corresponding to target quantities x′
tar, ytar, y

′
tar and δ, and M i

jklm is

the transport coefficient matrix:

M i
jklm =< qi

tar|(xfp)
j(x′

fp)
k(yfp)

l(y′
fp)

m > . (8.4)

The mid-plane symmetry about the center of the focal plane implies that the target

coordinates in the dispersive plane (δ and x′
tar) can only have even powers of l + m

and the target coordinate in the non-dispersive plane (ytar and y′
tar) can only have

even powers of j + k. The combinations in the transportation matrix not meeting
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these criteria are said to be forbidden. Given sufficiently accurate magnet informa-

tion, the reconstruction coefficient matrix can be calculated by the COSY INFINITY

program from MSU [106] which models the magnetic components of the spectrometer.

However, due to the imperfections in the magnetic modeling, the calculated trans-

portation matrix does not describe exactly the optical properties of the spectrometer.

To overcome this problem, optical runs are taken by using the sieve slit, which has

an array of holes for which the target quantities are well defined. Traditionally, a

series of runs are taken with a 12C target for optical studies. The elastically scattered

electrons were recorded in the HMS spectrometer with the central momentum of the

spectrometer adjusted to position the elastic peak at different locations in the ±10%

of the HMS momentum acceptance; the set of these runs is called “delta scan”. With

the sieve slit in, the data were used to optimize the δ transport coefficients. By raising

and lowering the beam and target position in the vertical direction (with sieve slit

in), the data were used to optimize the ytar, x
′
tar, y

′
tar transport coefficients. Details of

the optimization procedure can be found in [131]. The “delta scan” data taken for

E93-026 has not yet been fully analyzed.

8.6.2 Reconstruction with Vertical Beam Offset and Target

Magnetic Field

The procedure of the reconstruction was complicated due to the presence of the target

magnetic field and the relatively large vertical beam offset (± 1 cm) caused by beam

rastering. The two complications are considered separately. The particle transport

through the target magnetic field was done in the HMS spectrometer coordinate

system (z along HMS central axis). Details of the procedures described below can be

found in [119].

The vertical beam position offset can not be distinguished from a shift in the scat-

tered electron energy. E93-026 had a typical beam rastering diameter of 2 cm. An

uncorrected beam offset of 1 cm corresponds to an energy shift of 1%. The beam po-
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sition was measured by monitoring the raster magnetic current. The measured beam

position was used to correct the measured focal plane quantities. Once the focal plane

quantities were corrected for the offsets of the vertical beam position, one can use the

standard reconstruction procedure with no beam position offset described above. The

procedure to correct vertical beam offset is described below (for convenience, upper

case variables represent target coordinates, while lower case ones represent focal plane

quantities):

(i) Apply the standard reconstruction transportation matrix to the measured focal

plane quantities to get the target coordinates:

|X = 0, X ′, Y, Y ′, δ >i=1= M|x, x′, y, y′ >, (8.5)

where M represents the standard reconstruction matrix;

(ii) Apply the forward transportation to the target coordinates for both X=0 and

X = Xbeam to calculate the anticipated deviation of the focal plane quantities caused

by the measured vertical beam offset, Xbeam:

|dx, dx′, dy, dy′ >i= F|X = X0, X
′, Y, Y ′, δ >i −F|X = 0, X ′, Y, Y ′, δ >i, (8.6)

where, F represents forward transportation, X0 = Xbeam − ZX ′ is corrected beam

offset due to the z coordinate of the intersection point;

(iii) Apply the standard reconstruction to the corrected focal plane quantities to

get a better estimate for the target coordinates:

|X = 0, X ′, Y, Y ′, δ >i+1= M|x − dx, x′ − dx′, y − dy, y′ − dy′ >; (8.7)

(iv) Repeat step (ii) and (iii) until the δ satisfies the convergence conditions:

|δi − δi+1| < ε. (8.8)
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where ε = 0.0005.

The iterative approach has the advantage that it allows one to use the standard

(and well understood) HMS optics. It does rely on the availibility of a good, consistent

HMS forward transport map [119], which has not been used in the standard HMS

optics.

Since the target magnetic field bends electrons down (toward the floor), the real

vertical beam offset Xbeam − ZX ′ and the virtual beam offset X0 (no target field)

differ by about 1 mm. To find the virtual beam offset in the presence of the target

magnetic field, the following procedure was developed. In the following, V represents

the reconstruction procedure with beam vertical offset as described above:

(i) Apply the reconstruction procedure V to the measured focal plane quantities

to get the first estimate for the virtual target coordinates:

|X = X0,i=1, X
′, Y, Y ′, δ >V,i=1= V|x, x′, y, y′, X0,i=1 = Xbeam >; (8.9)

ii) Transport the electron from the target field free region(e.g. Z=1 m, by Runge-

Kutta integration (RK)) back to the intersection with the beam to get a first estimate

for the real target coordinates:

|X, X ′, Y, Y ′, Z, δ >i=1= RK|X − X ′Z, X ′, Y − Y ′Z, Y ′, Z, δ >V,i=1; (8.10)

(iii) Transport the electron to z = 0 plane to get a better estimate for the virtual

beam offset:

X0,i=1 = (Xbeam − (Xi − Xbeam)) − ziX
′
i = (2Xbeam − Xi) − ziX

′
i; (8.11)

(iv) Apply reconstruction V to the corrected focal plane quantities with corrected

beam offset to get the estimated virtual target coordinates:

|X = X0,i+1, X
′, Y, Y ′, δ >V,i+1= V|x, x′, y, y′, X0,i+1 >; (8.12)
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(v) Transport the electron from the target field free region (e.g. Z=1 m, by

Runge-Kutta integration) back to the intersection point with the incident beam to

get a better estimate for the real target coordinates:

|X, X ′, Y, Y ′, Z, δ >i+1= RK|X − ZX ′, X ′, Y − ZY ′, Y ′, Z, δ >V,i+1; (8.13)

(vi) Repeat step (iii) to (v) until Xi+1 and the vertical beam offset Xbeam satisfy

the convergence condition:

|Xi+1 − Xbeam| < ε. (8.14)

where ε = 0.2 mm.

The event distributions for a variety of the reconstructed target quantities in the

laboratory coordinate system for (e, e′n) events are shown in Figures 8.6 and 8.7.

Cuts applied are |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110 radian.

Details of these cuts are described earlier in this thesis.

8.7 Detector Calibrations

For the HMS, a series of calibrations had to be performed in order to match the

timing of each individual scintillator elements, to match the gain of the calorimeter

and Čerenkov signals, and to convert drift chamber TDC values to drift distance.

Details of the HMS detector calibrations can be found in [105]. All the HMS detector

calibration constants were adopted from the previous Hall C experiment. No new

calibrations have been performed during E93-026.

On the neutron detector side, before determining the neutron detection efficiency

in the scintillator bars, we need to know the scintillator bar ADC threshold during

the experiment. The threshold is customarily measured in the units of MeV electron

equivalent (MeVee). The electron equivalent energy to a particle is the electron energy

that produces the same light output from the scintillator counter as the particle.
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Figure 8.6: Event distribution of various reconstructed kinematical variables (I). From
top left panel to bottom right panel: Hsxptar and Hsyptar are the target x′ and y′

coordinate, the rotation and shift of Hsxptar and Hsyptar distributions compared
with that of standard HMS optics is due to target magnetic field effect; Hsxtar and
Hsytar are target x and y coordinate; Hstheta and Hsphi are the electron scattering
angles (θ, φ) in spherical coordinates; δ is the percentage deviation from central HMS
momentum; W is the invariant mass (without ypos and θnq cuts), where the inelastic
processes have higher W .
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ThetaqL and PhiqL are the in-nplane and out-of-plane angles of q; ThetaqT and
PhiqT are spherical coordinates of q in the neutron detector transport coordinates;
and qx and qy are components of the unit vector of q.
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The scintillator bar threshold was determined in two independent methods described

below.

In the first method, we have used the ADC spectra from the E93-026 cosmic runs.

The energy deposition of the cosmic rays in a 160 cm × 10 cm × 10 cm scintillator

was measured by Brown and Lindgren [120]. Their result shows that the equivalent

energy deposition for the cosmic peak is ∼22 MeVee. A typical cosmic ADC spectrum

from an E93-026 cosmic run is shown in Figure 8.8. The result shows that the cosmic
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Figure 8.8: Typical pedestal subtracted ADC spectrum of cosmic rays during E93-
026.

peak is sitting at ADC channels 550 and the threshold is at ADC channels 220. With

the measurement result of Brown and Lindgren, this indicates that the scintillator

bar threshold was 220
550

× 22 = 8.8 MeVee during E93-026.

On the other hand, the scintillator bar ADC threshold can also be determined by

comparing the proton ADC spectra with the calculated proton energy deposited in

the scintillator. A typical proton ADC spectrum is shown in Figure 8.9. The result

shows that the proton ADC spectrum peaked at ADC channel of ∼1200 and the

threshold is shown at ADC channel of ∼250.

In order to convert proton ADC channels into MeVee, the energy deposition
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Figure 8.9: Typical pedestal subtracted ADC spectrum of protons during E93-026
measured in plane 3 bar 2.

(dE/dx) of protons in the elements between target and the first bar plane has been

calculated in Monte Carlo for the D(e, e′p) reaction at E93-026 kinematics using the

well-known Bethe-Bloch formula [122] given by:

−dE

dx
= 2πNAr2

emec
2ρ

Z

A

z

β2

{
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2

C

Z

}
, (8.15)

where dE/dx is the mean energy loss per unit path length, re is the classical electron

radius (2.818 fm), mec
2 is the electron rest energy (0.511 MeV), NA is the Avogadro

number, I is mean excitation potential of material, Z, A and ρ are atomic number,

atomic weight and density of the target respectively, z is the charge of incident par-

ticle, β = v/c, γ = 1/
√

1 − β2, δ and C are density and shell corrections, Wmax is

the maximum energy transfer in a single collision. Wmax can be well approximated

for protons by Wmax = 2mec
2β2γ2. The mean excitation potential (I) is given by an
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empirical fit to Z by:

I

Z
=




12 + 7
Z

eV Z < 13,

9.76 + 58.8Z−1.19 eV Z ≥ 13.
(8.16)

δ is given by the formula of Sternheimer:

δ =




0 X < X0

4.6052X + C + a(X1 − X)m X0 < X < X1

4.6052X + C X0 > X1.

(8.17)

where X = log10(βγ), X0, X1, C, a and m are absorbing material dependent, and

C is defined as C = −
(
2 ln I

hνp
+ 1

)
, with the plasma frequency of the material of

νp =
√

NAρZe2

πAme
. The materials in the order they were traversed by the protons during

E93-026 are target materials (15ND3, Aluminum, etc.), scattering chamber window,

air gap, lead shielding, CH2 plastic absorber, two veto planes and finally the bar

planes. For compound materials such as 15ND3, the dE/dx is given by the weighted

sum of each element according to Bragg’s Rule:

1

ρ

dE

dx
=

w1

ρ1

(
dE

dx

)
1

+
w2

ρ2

(
dE

dx

)
2

+ · · · , (8.18)

where, wi = aiAi

Am
, ai is the number of atoms in the ith element in the molecule, Ai

is the atomic weight of ith element, and Am =
∑

aiAi. The average energy loss for

protons at the quasi-elastic peak in each element is shown in Table 8.3.

Table 8.3: Estimated proton energy losses on the way to neutron detector.

Elements 15ND3 Target Air Pb CH2 Vetos Bar
Eloss (MeV) 8.25 1.58 38.05 11.34 8.65 46.70

The calculated energy deposited in a 160 cm × 10 cm × 10 cm NE-102 scintillator

was converted to the electron equivalent based on the empirical formula of Madey et
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al. [121]:

Te = −8.0
[
1.0 − exp

(
−0.10T 0.90

p

)]
+ 0.95Tp, (8.19)

where, Tp is the proton energy deposited in the scintillator in MeV and Te is the

electron energy in MeV that gives the same light output. This gives a proton energy

deposition of 43.6 MeVee at the quasi-elastic peak. The bar hardware threshold is

then 250
1200

×43.6 = 9.1 MeVee. The values for the ADC threshold measured from both

cosmic runs and proton data are in good agreement.

8.8 Neutron Detector Tracking

The neutron detector is used to identify neutrons that have been knocked-out from

the target. A good (e, e′n) event requires a good electron track in HMS and at least

one valid neutron hit in the neutron detector within a reasonable coincidence time

window. Neutron hits are distinguished from proton hits, gamma hits and other

charged particles. The hit position was determined by using the timing information

from photomultipliers mounted at each end of each detector element. The neutron

hit position in the first bar plane of the neutron detector (ypos), the neutron emission

angle with respect to momentum transfer vector q (θnq), and the angle of the n-p

relative momentum with respect to q in the n-p center of mass system (θcm
np ) are

calculated.

The sequence of the neutron detector tracking algorithm is shown in Figure 8.10.

The tracking begins by locating those bars with hits in both PMTs. This requires that

for both sides of the chosen counter, the raw TDC values came within 200 nanoseconds

of the TDC start time and that the pedestal subtracted ADC geometrical mean value

(square root of the product of left ADC and right ADC) of that detector was greater

than 50 channels (or 1.8 MeVee) for the paddles and 300 channels (or 10.7 MeVee) for

the bars 1. This eliminates most of the low energy noise. Single events for which only

1The neutron detector PMTs were gain matched using the laser pulser during the experiment.
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one of the PMTs fired were discarded, since for those single events, the determination

of the hit position in the neutron detector is impossible.

n_reconstruction(called once per event)

n_raw_tdcdiff 

n_strip_singles 

n_tof_init   

n_walkcorrect   

n_meantimecut   

n_qvector   

n_track

n_linefit

n_padhit

n_thetapq_1p 

n_thetapq_2p

n_counting

 [ apply rough TDC and ADC cut, generate TDC and ADC hit arrays ]

  [ calculate left-right offset TDC difference ]

[ setup neutron detector geometry and various parameters ]

[ remove HMS start time jitter, left-right TDC offset, TDC pulse height walk
 corrections, and calculate hit ND horizontal position and TDC mean time ]

[ apply mean time cut, calculate hit patter, energy deposit, etc. ]

[ calculate q vector from HMS reconstruction in ND spectrometer coordinate ]

[ linear fit ND bar plane hits to a straight line, along with vertex ]

[ find intersection with paddle planes and find out if there is paddle firing ]

[ calculate theta_pq, hadron momentum, etc. for one-prong event ]

[ calculate theta_pq, hadron momentum, etc. for two-prong event ]

[ count neutrons and protons, form asymmetry ]

Figure 8.10: Neutron detector tracking flow chart.

8.8.1 Time Corrections

The TDC values, for both the left and right PMTs, must be corrected before they

can be used to calculate hit positions in the detector. These corrections include:

(i) a constant timing offset for each left-right pair of PMT due to cable length or

intrinsic delays; (ii) a pulse height walk correction; (iii) the HMS focal plane start

time correction.

PMT Left-Right Time Offset

Each PMT on either side of the neutron detector element has a different cable length

(PMT to counting house), high voltage, intrinsic transit time, and delay cable. In

The gain matching was checked using cosmic ray runs.
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order to calculate the hit position in the detector appropriately, a left-right timing

offset needs to be applied. This offset was obtained by centering the distribution of

the time difference between left and right TDC (TDCL–TDCR) at zero, as shown in

Figure 8.11.
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Figure 8.11: The spectrum of the TDC left-right time difference (TDCL–TDCR)
at neutron detector plane 3 counter 8 in ns. The left-right TDC offset have been
subtracted.

Pulse Height (Walk) Correction

Just as for the HMS hodoscope, the neutron detector walk correction is caused by

the fact that analog signals fire discriminators at different times depending on their

amplitude. The time correction was fit using the following formula as a function of

ADC channels, where c1 and c2 are two arbitrary fitting parameters:

∆T =

∣∣∣∣∣ c1

1/
√

200 − 1/
√

c2

∣∣∣∣∣×
(

1√
ADC

− 1√
c2

)
. (8.20)

Figure 8.12 shows the distribution of ADC versus TDC for typical detector element

before and after pulse height walk correction.
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Figure 8.12: The distribution of ADC (channel) versus TDC (ns) before (left) and
after (right) walk correction.

Focal Plane Time Correction

The start time of the neutron detectors was set by the HMS hodoscope trigger, which

was generated if 3 out of 4 hodoscope planes fired. The HMS hodoscope element

which sets the timing can vary from event to event. Each counter has a different

offset (including cable length, intrinsic delays, etc), thus the start time for the neutron

detectors could vary from event to event. The timing variation caused by this effect

could be a few ns which is much greater than the neutron detector timing resolution.

This effect is taken into consideration by the so called “focal plane timing correction”.

This correction takes out the timing difference between the time the HMS hodoscope

sets and the time the electron passes through the HMS focal plane (focal plane time).

As this information is used for other purposes, the HMS reconstruction code already

provides this information for each event.

Once all the corrections (focal plane time, PMT left-right time offset and walk)

are applied to the TDC values, the horizontal hit position in the detector can be

calculated based on the time difference between left and right TDCs. The corrected

mean time distribution (containing both protons and neutrons) was then shifted by
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a constant in order to center the peak at zero. A typical mean time distribution

is shown in Figure 8.13. The main peak represents the nucleon hits (protons and

neutrons) and the small peak on the left arises from photons.
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Figure 8.13: Typical mean time spectrum for hits (proton + neutron) in neutron bars
at plane 3 counter 8. The main peak is due to the nucleon hits while the small peak
on the left is from v = c particles.

8.8.2 Veto Efficiency

The veto plane efficiency lies at the heart of the particle identification technique.

Particles that gave a signal in the veto planes are identified as protons, those which

didn’t are tagged as neutrons. An inefficiency of the veto plane could cause protons

to be misidentified as neutrons. High veto efficiency is desired since the higher the

veto efficiency, the lower the possibility for protons to be misidentified as neutrons.

A good veto efficiency is especially important for two reasons: the number of protons

detected far exceeds the number of neutrons detected and the the proton asymmetry

is much larger than the neutron asymmetry.

In order to measure the veto efficiency for the first veto plane, we chose a sample
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of events that fired the second veto plane as well as the first two bar planes. By

fired, we mean the mean time of the hit is within −3 ns < t̄ < 5 ns. These events

were limited to the solid angle acceptance of the last bar plane (the smallest). The

inefficiency of the first veto plane is then the number of events that did not fire the

first veto plane divided by the total number of events in the sample. Vice versa, to

measure the veto efficiency of the second veto plane, we chose a sample of events

which fired the first veto plane as well as the first two bar planes.

Table 8.4 lists the measured average single layer proton veto inefficiency (ε̄ = 1
2
(ε̄1+

ε̄2), where ε̄1 and ε̄2 are the average veto inefficiency for plane 1 and 2 respectively)

for three runs with different beam current. The results are plotted in Figure 8.14,

where it shows clearly that the veto inefficiency increases linearly with the count rate.

Table 8.4: Single plane proton veto inefficiency measured from three runs.

Run Number 22287 22150 22167
Ibeam (nA) 92.1 110.8 144.6
ε̄ (%) 3.1 ± 0.02 3.8 ± 0.03 4.9 ± 0.04

A typical paddle raw TDC spectrum is shown in Figure 8.15. The timing peak

appears at ∼ 67 ns in the TDC range. Presumably, the veto inefficiency is due to

accidental stops in the TDCs. At 100 nA, a typical paddle rate was 0.57 MHz. One

would then observe a 67 ns × 0.57 MHz = 3.8% veto inefficiency. From Figure 8.14,

the veto efficiency for each single veto plane is determined to be 3.5% at a beam

current of 100 nA. With two veto planes in front of the neutron detector, the overall

veto inefficiency is roughly (3.5%)2 = 0.12%.

8.8.3 Particle Identification

The primary goal for the particle identification is to distinguish neutrons from other

particles, such as protons, pions and gammas. The goal is to identify all true neutron

events while keeping the neutron sample as clean as possible. It is straightforward for
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Figure 8.14: Single plane proton veto inefficiency versus beam current. Data points
are from runs 22287, 22150 and 22167. A linear relationship is inferred between the
veto inefficiency and the beam current.
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Figure 8.15: Typical raw TDC spectrum from plane 1 counter 3. The timing peak
appears at ∼ 67 ns.
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events with only one hit in the neutron bars since the veto planes distinguish neutrons

from charged particles (photons can be recognized by timing). Things get complicated

for multiple hit events where tracking becomes more important. Fortunately, events

with multiple tracks are very few. We will now turn to a survey of our data samples,

the categorization of events, and from there, a particle identification algorithm is

developed.

Only hits which satisfy the timing requirement participated in the particle iden-

tification. The timing requirement for these hits is a mean time cut of −3 ns < t̄ <

5 ns. The purpose of the cut is to eliminate the gamma flash and to set a fairly

tight coincidence timing window for events from ND3(e, e
′n) scattering. The mean

time cut is based upon the width of the nucleon mean time distribution from data as

well as the simulated time of flight (TOF) distribution of knocked-out nucleons from

ND3(e, e
′n) as shown in Figure 7.7.

Due to the target magnetic field effect, the protons suffer an average bend angle of

∼ 17 degrees and are located mostly in the top half of the neutron detector. There are

no detector elements behind the top 5 elements of the neutron detector plane 3, and

therefore these “top 5” elements were exclusively used to identify protons. A track

was defined by the combination of hits in different neutron detector planes. Events

from the data after the mean time cut can generally be classified into the following

categories based on hit patterns:

• The majority of the events are single-track events, having only one clean track

in the detector, and are either protons or neutrons;

• A small fraction of events have two separate tracks in the detector.

For a single-track events, the hit pattern can be categorized by studying a sample of

1000 consecutive events. The distribution of the number of events for each category

is given below:

• Events that have only paddle hits (7.2%). Due to the finite width of the mean

time cut window, hits located in the tail of the bar mean time distributions can
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be cut out, this leaves only the paddle hits. The origin of these events has been

verified by enlarging the mean time cut window.

• Events where the top 5 detectors of the first bar plane fired and there are one

or more paddle hits (35.0%);

• Events where top 5 detectors of the first bar plane fired but there are no paddle

hits (3.6%);

• Events with hits in the rest of the bars and paddle hits on the track (36.2%);

• Events with hits in the rest of the bars but paddle hits not on track (2.0%);

• Events with hits in the rest of the bars but no paddle hits (13.4%). This is the

primary signature of our (e, e′n) events.

For the two-track events, the hit pattern generally falls into the following categories:

• Event with hits in the top 5 of the first bar plane and hits in the rest of the bar

array, plus paddle hits (0.4%);

• There are two tracks in the bar planes: one has paddle hits and the other does

not (0.6%);

• There are two tracks in the bar planes and both have paddle hits (0.4%);

• There are two tracks in the bar planes and neither has paddle hits (0.8%);

• There are more than one track, either a proton or a neutron track plus cosmics

or beam background or both (0.4%).

Figure 8.16 shows the typical proton, neutron, two-track and background events

in the neutron detector.

For single-track events, hits in the bars were fit to a straight line with the as-

sumption that the particle came from the target. For two-track events, hits in the

bar planes were classified into two clusters if their vertical separations exceeded 20
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Figure 8.16: Typical E93-026 events. Shown are proton (top left), neutron (top mid-
dle), two-track (top right), proton plus beam background (bottom left), and cosmic
background (bottom right) events.
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cm. Two straight lines are fit in this case. For each fitted track, its intersection

(xpos, ypos) with the first bar plane was calculated. By connecting (xpos, ypos) with

the target coordinate (0, 0), the intersection with the paddle plane was determined.

Paddles firing within a full paddle width at the intersection were associated with the

track.

Due to the target magnetic field, the protons were bent upward. Fortunately, the

target field strength is concentrated within a 30 cm distance around the center of

the target (with
∫

B · dl � 80 T · cm in the first 30 cm, also see Figure 7.2). At the

Q2 = 0.5 (GeV/c)2 kinematics the deflection of the proton can be approximated as a

∼ 4.4 cm deflection in the first 30 cm of flight from the target followed by a straight

line to the detector. A 4.4 cm systematic shift at the target only results in a ∼ 0.3

cm shift at the first veto plane, and thus it is negligible. Hence, a straight line fit to

the proton track with the target as a fixed point is a good approximation.

The particle identification algorithm was then developed to discriminate protons

from the neutrons based on the veto information. For single-track events, if there

were paddle hits on the track, the track was designated as a proton, otherwise it was

a neutron. If the hits were located on the top 5 bars of the first bar plane, regardless

of the presence of paddle hits, they were classified as proton hits, and no further

identification proceeded for this kind of event. For two-track events, if both tracks

had no associated paddle hits, the one closer to q was chosen as a neutron track; if

both tracks had paddle hits, then the average hit position was taken and the event

was called a proton event; otherwise, they were discarded. Finally, events for which

only the paddles fired were classified as protons. Once an event was determined to

be an (e, e′p) event or an (e, e′n) event, the counter for proton events and neutron

events was incremented accordingly.

8.8.4 Results for 15ND3 data

The results of the particle identification algorithm are shown in what follows. Figure

8.17 shows the typical number of hits in each neutron detector plane for both (e, e′n)
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and (e, e′p). Figure 8.18 shows the pedestal subtracted ADC spectra for protons and

neutrons. A typical ypos distribution for (e, e′n) events with W and θnq cuts is shown
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Figure 8.17: Distributions of the paddle and bar hit multiplicities for (e, e′n) and
(e, e′p) events. The left two panels are for (e, e′n) and the right two panels are for
(e, e′p).

in Figure 8.19 and compared with the Monte Carlo simulation. Typical mean time

spectra for proton hits and neutron hits in all neutron bars with |W − 0.939| < 0.050

GeV and |ypos| < 40 cm cuts are shown in Figure 8.20. Note, a 0.8 ns shift for the

neutron mean time spectrum is observed. The origin of the 0.8 ns remains unknown.

Once the neutron (proton) track position was determined, the angle between q

and neutron (proton) momentum (nucleon emission angle with respect to q) can then

be calculated to form the angle θnq (θpq). The typical θnq (θpq) distributions are shown
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Figure 8.18: The ADC spectra of the identified protons and neutrons. The top two
panels are proton hits in all paddles, the middle two panels are proton hits in all bars
and the bottom two panels are neutron hits in all bars. The peak energy deposited
by protons in the bars is roughly � 44 MeV electron equivalent. Events were subject
to |W − 0.939| < 0.050 GeV and |ypos| < 40 cm cuts.
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Figure 8.19: Comparision of the ypos distribution for (e, e′n) between data and simu-
lation, with W and θnq cuts.
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Figure 8.20: Typical mean time spectra for proton hits and neutron hits. The left
panel is for proton and the right panel is for neutron. The mean time was cut at [-7
ns, 15 ns]. Events shown were subject to |W − 0.939| < 0.050 GeV and |ypos| < 40
cm cuts.
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in Figure 8.21, both with |W − 0.939| < 0.050 GeV and |ypos| < 40 cm cuts. The

θpq distribution peak at 0.3 radian is due to the target field deflection to protons.

For (e, e′n), comparison is also made between the measured θnq and the Monte Carlo

simulation. Radiative effects and the detector position resolution (2.9 cm vertically

and 5.9 cm horizontally) were included in the simulation.
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Figure 8.21: The measured knocked-out nucleon emission angle w.r.t. q (θnq). The
left panel shows neutron emission angle w.r.t. q from data compared with the simu-
lation result. The right panel shows proton emission angle w.r.t. q from (e, e′p) data.
All events were subject to |W − 0.939| < 0.050 GeV and |ypos| < 40 cm cuts.

The momentum of the knocked-out nucleon can be estimated in two ways. One

of the methods is to utilize the momentum and energy transfer and the hadron emis-

sion angle θnq, and calculate the knocked-out nucleon momentum assuming elastic

scattering and zero nucleon initial momentum. Another method is to determine the

knocked-out nucleon momentum through time of flight (TOF) information. To deter-

mine the TOF, two steps are required. First, for each plane, the mean time difference

(t0) between β = 1 particles and quasi-elastic knocked-out nucleons from the target

to the center of the specific plane are calculated in the Monte Carlo; second, with the

distance from the target to the known hit position (d), the absolute time of flight for

the knocked-out nucleon from the target to the hit position can be calculated. This
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is given by the difference between the measured mean time (tm) and the mean time

difference (t0) plus the time it takes for gammas to travel from the target to this hit

position (tγ), i.e., TOF= tm − t0 + tγ . The momentum of the knocked-out nucleon

can then be calculated from the TOF value. Note that the neutron mean time has

to be shifted by 0.8 ns in order to be centered at zero. The measured neutron and

proton momenta from both methods are compared in Figure 8.22.
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Figure 8.22: The measured knocked-out nucleon momentum. Comparison between
neutron momentum spectra measured by elastic scattering calculation using nucleon
hit position (denoted by “calc”) and by nucleon TOF (denoted by “TOF”) were
made. The left panel is for neutrons and the right panel is for protons. All events
were subject to |W −0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110 radian cuts.

Once the momentum of the knocked-out nucleon is known, the angle θnq is then

boosted to the center of mass of the final hadron system using the momenta calculated

in the two methods described above. The angle between the relative momentum of

proton and neutron with respect to the momentum transfer vector, θcm
np is then calcu-

lated. The typical θcm
np distribution is shown in Figure 8.23 along with the simulation

results. For all remaining figures, θcm
np was calculated using the momentum determined

from the time of flight.
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Figure 8.23: The measured angle of n-p relative momentum w.r.t. q in n-p center of
mass system for (e, e′n) events (θcm

np ), with |W − 0.939| < 0.050 GeV, |ypos| < 40 cm
and θnq < 0.110 radian cuts. The boost from laboratory frame to n-p center of mass
system uses the knocked-out neutron momentum calculated from measured momen-
tum transfer and the neutron hit position (left) as well as the neutron momentum
measured from neutron TOF (right).

8.8.5 Results for Helium and Carbon data

We will discuss in a later section how we have used Monte Carlo simulations to

evaluate the dilution factors. Therefore it is important to know how well the Monte

Carlo expectations for the electron scattering from helium and 15N agree with data.

For helium, data taken with the target in the “hole” position (with the tail piece

full of helium) were used for this investigation. For 15N, there is no direct data taken

from a 15N target, nevertheless, the carbon data can serve as a substitute. Figure 8.24

and 8.25 show the comparisons between Monte Carlo and data from helium target

and carbon target for (e, e′n) events in kinematical variables of E′, ypos, θnq and θcm
np .

Data were subject to the invariant mass cut of |W − 0.939| < 0.050 GeV and the

simulations have taken the radiative effects and the target field effect into account.

The results show the data and the simulation agree fairly well.
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Figure 8.24: Comparisons between data and simulation in four kinematical variables
for (e, e′n) scattering from helium target. From top left panel to bottom right panel
are spectra of E′, ypos, θnq and θcm

np , respectively. Radiative effects and target field
effect were included in the simulation. Data were subject to |W − 0.939| < 0.05 GeV
cut.
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Figure 8.25: Comparisons between data and simulation in four kinematical variables
for (e, e′n) scattering from carbon target. From top left panel to bottom right panel
are spectra of E′, ypos, θnq and θcm

np , respectively. Radiative effects and target field
effect were included in the simulation. Data were subject to |W − 0.939| < 0.05 GeV
cut.
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8.9 Event Selection

We wish to separate our (e, e′n) and (e, e′p) events into two categories: (1) electron

scattering from deuterium; (2) electron scattering from non-deuterium target mate-

rial. The asymmetry of the events in the first category is the one we will use to deter-

mine Gn
E, while by measuring the asymmetry of the events in the second category we

can estimate background contributions to the asymmetry. Table 8.9 summarizes the

cuts we used to select (e, e′n) and (e, e′p) events. Event type I are mostly D(e, e′N)

events and event type II are mostly (e, e′N) events from other target materials, such

as nitrogen, helium, aluminum, etc.

Cuts (e, e′n)(I) (e, e′n)(II) (e, e′p)(I) (e, e′p)(II)
|W − 0.939| < 0.050 GeV × × × ×

θnq < 0.110 radian ×
|ypos| < 40 cm × ×
|ypos| > 40 cm × ×

8.10 Electronics and Computer Dead Time

One of the most important corrections to the measured (e, e′n) asymmetry is the

correction for dead time due to the hardware inefficiency and data acquisition com-

puter dead time. The electronics dead time arises from the finite time required for

the hardware to form the trigger. During this time, it is possible to miss triggers.

The computer dead time similarly results in lost triggers during the period the data

acquisition system is busy processing a previous event.

The data acquisition system (DAQ) appears to have a constant dead time, τ , for

each event – thus it is a fixed dead time system. For such a system, let m be the true

count rate and assign k to be the counts registered during time T . During time T ,

the true number of counts is:

mT = k + mkτ, (8.21)



182

so that the fixed dead time of the system can be expressed as:

τ =
mT − k

mk
. (8.22)

In order to see the impact of the dead time on the measured asymmetry, let T =

1 second and let m+ (m−) be the true count rate for positive (negative) helicity, At

and Am be the true asymmetry and the raw asymmetry. We can then estimate the

correction to the raw asymmetry by:

At − Am

At
=

m+−m−
m++m−

− Am

m+−m−
m++m−

=
m+ − m− − Am(m+ + m−)

m+ − m−
. (8.23)

Further, if we let k− and dt− be the observed count rate and the dead time for the

negative helicity, then we can express m+ and m− as:

m+ =
k+

1 − k+τ
, m− =

k−

1 − dt−
, (8.24)

where τ is the fixed dead time of the system given by Equation 8.22, or τ = m−−k−
m−k−

,

and k+ is the observed count rate for positive helicity which can be determined from

the measured asymmetry Am, k+ = k−(1+Am)
(1−Am)

.

Therefore, for given observed count rate k−, dead time dt− for negative helicity,

and raw asymmetry Am, we can estimate the corrections to the measured raw asym-

metry Am. For example, given k−=200 Hz, dt−=10%, and Am=3%, we arrive at

At−Am

At
=10.3%. The corrections to the measured asymmetry due to the fixed dead

time is about the same size of the dead time. We see why the dead time correction

is very important.
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8.10.1 Electronics Dead Time

The electronics dead time during E93-026 was caused primarily by the high rate in

the neutron bars. Referring to Figure 6.39, the discriminators were running in a

non-updating mode which induced a certain probability that a real event would be

eliminated by a preceding random pulse, resulting in a lost coincidence trigger with

the electron.

In order to find out the e−N coincidence dead time of our electronics due to the

high event rate in the neutron bars, a post experiment system [133] was set up to

simulate a random rate of 4 MHz of nucleon signals and an e − N coincidence rate

of 400 Hz. These were the rates during the experiment. The electronics dead time

was studied as a function of the e − N coincidence event rate, the nucleon-rate, the

nucleon gate width (nominally 60 ns) before going into the PS706 discriminators and

the nucleon gate width (nominally 19 ns) at the 8LM, where the e − N coincidence

is formed.
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Figure 8.26: Electronics dead time measurement setup.

The results of these tests can be seen in Figure 8.27 which shows that the dead

time dependence on the event rate can be expressed as deadtime [%] � 0.5 × Bar

Rate [MHz].

As long as the bar rate does not have a helicity dependence, the impact of the
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Figure 8.27: The event rate dependence of electronics dead time. The top left plot
shows the electronics dead time as a function of the random nucleon rate; the nucleon
rate was varied from 3 MHz to 5 MHz. The top right plot shows the electronics dead
time as a function of the e − N coincidence rate. There are 3 samples of data there
taken at nucleon rates of 3, 4 and 5 MHz. The bottom left plot shows the electronics
dead time as a function of the nucleon rate of channel 10, which is the channel into
which the e − N coincidence triggers were fed. The bottom right plot shows dead
time for various gate width.
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electronics dead time on the physics asymmetry is zero since both helicity states are

affected equally. However, an asymmetry in the bar rate can be caused by both the

beam current asymmetry and the physics asymmetry in the production of the bar

single triggers. As shown in Figure 8.28, the average beam current asymmetry is

Figure 8.28: Beam current asymmetry and bar pretrigger rate asymmetry versus run
number. The plot shows beam current asymmetries (top panel) and bar pretrigger
rate asymmetries (bottom panel) versus run number. The two lines indicate the
average for the positive and negative target polarization, respectively.

of the order of 6.5 ×10−4 and is the same for both signs of the target polarizations,

while the count rate asymmetry depends on the orientation of the target polarization.

The averages are (−7.6 ± 0.2) × 10−5 for positive target polarization and (−1.134 ±
0.002) × 10−3 for negative target polarization. The impact of the helicity dependent
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electronics dead time is determined to be roughly two orders of magnitude smaller

than the statistical error of the measured asymmetry [134].

8.10.2 Computer Dead Time

The computer dead time is determined from the number of triggers that were formed

(pretriggers) and the number of the triggers that were accepted by the trigger super-

visor. The computer dead time was helicity dependent and was calculated for each

helicity. The measured counts of each helicity were corrected by the computer dead

time. The computer dead time varied during the experiment due to different HMS

prescale factors for HMS singles and because we ran at different beam currents. The

prescale factor varied from 1 to 8 throughout the entire E93-026 data set, but most

of the runs had a prescale factor of 4 (A detailed list can be found in Appendix B).

The computer dead time averaged ∼ 10% for the entire data set. The coincidence

event rate dependence of the computer dead time is plotted in Figure 8.29. Data were
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Figure 8.29: Coincidence rate dependence of the computer dead time. Statistical
errors are also shown, but are very small, all three points have relative statistical
error of 0.2%.

obtained from run 21971, 21978 and 22076, these runs have the same HMS prescale
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factors but different beam currents. The plot indicates that the measured dead time

is linear in the event count rate. The relative uncertainty of the dead time measure-

ment is determined by the statistics of the pretriggers and triggers and for typical

run it is better than 0.1%.

8.11 Physics Background

There are three physics background sources that may contribute to the measured

(e, e′n) asymmetry: the asymmetry in (e, e′N)π reaction which contaminates our

sample, the charge exchange reaction, and asymmetry of (e, e′n) from nitrogen, he-

lium, aluminum and other target materials.

8.11.1 Elastic Pion Electroproduction

Two pion electroproduction processes were studied: p(e, e′π+)n and p(e, e′p)π0. There

are several hit identification and event selection criteria available to ensure that there

is no pion electroproduction contamination to the selected (e, e′n) events. First, there

is a large TOF difference between quasi-elastically produced neutrons and both π+

from p(e, e′π+)n and photons from the decay of the πo produced through p(e, e′p)π0.

The photons (the gamma flash) occur at some 8 ns earlier than the quasi-elastic

neutrons. Second, charged pions were completely deflected out of the neutron detector

acceptance by the target magnetic field. Third, as can be seen in the simulated

scattered electron energy spectra from both pion production processes (Figure 8.30),

the invariant mass (W ) cut limits δ to roughly −3% < δ < 3% (δ = 0 corresponds to

E′=2.453 GeV), and will eliminate the processes.

8.11.2 Quasi-free Pion Electroproduction

As shown in the previous section, the contribution of pion production from a free

nucleon can be virtually eliminated from our event sample. Figure 8.31 shows the

missing energy (Em = ω−TN) spectrum for selected (e, e′n) events from data. Possible
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Figure 8.30: Simulated scattered electron momentum spectra for p(e, e′π+)n (left)
and p(e, e′p)π0 (right) processes.

contamination from quasi-free pion production (e.g. D(e, e′n)π0p and D(e, e′n)π+n)

appears to be negligible (Events satisfying Em > mπ account for ∼ 1%) and is still

under investigation.

8.11.3 Charge Exchange Reactions

Not all of the events identified as a coincidence between electron and neutron are

(e, e′n) events. One can have (e, e′p) reactions followed by charge exchange (p, n)

which produces a similar signature. Two types of charge exchange processes occur:

(i) within the nucleus; (ii) within the target and shielding around the detector. These

processes are much reduced by cuts on invariant mass W , ypos and θnq. The former

process is indistinguishable from D(e, e′n). Its effect is included in the final state in-

teractions of Arenhövel. Its effect is estimated to be less than 2% in these kinematics.

The latter effect is estimated by extrapolation from measured A(p, n) cross section.

The estimated contribution to the asymmetry for our target is less than 0.24% [132].

At this time no correction has been made to the asymmetry. This is one of the ad-

vantages of E93-026 compared with a recoil polarization experiment such as E93-038.
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Figure 8.31: Missing energy spectrum of the selected (e, e′n) events.

A 12 cm of lead curtain in front of the neutron detector may give rise to significant

charge exchange contributions.

8.11.4 (e, e′n) Scattering from Other Target Materials

The (e, e′n) background is dominated by scattering from nitrogen, helium and other

target materials (aluminum, etc.). Fortunately, these background effects are greatly

reduced by applying invariant mass, ypos and θnq cuts. These are not entirely removed

by applying these cuts, but the remaining contributions were accounted through the

dilution factor in the measured experimental asymmetry.
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8.12 Raw Experimental Asymmetries

8.12.1 Definition

The raw experimental (e, e′n) asymmetry for each run is defined as:

Ai =
εi

P i
t hi

=

N i
+

Qi
+(1−dti+)

− N i
−

Qi
−(1−dti−)

N i
+

Qi
+(1−dti+)

+
N i

−
Qi

−(1−dti−)

1

P i
t hi

, (8.25)

where N i
+, Qi

+, dti+ and N i
−, Qi

−, dti− are the number of (e, e′n) events, total charge

and dead time of positive and negative helicity for a given run, respectively. P i
t is the

corrected charge weighted average deuteron polarization (signed) and hi is the beam

polarization during the run. As previously discussed in Section 6.4, the absolute sign

of helicity was determined by Møller polarimetry. The helicity information was stored

in a latch. The highest bit in the latch, bit 15, was set for negative helicity. Positive

helicity set bit 13. The value of the latch is stored in the variable g tslatch which is

defined as g tslatch ≡ 2bitnumber. After the correction for the absolute sign from the

Møller was made, the positive helicity in the analysis code was defined by g tslatch

< 32768 and the negative helicity was defined by g tslatch ≥ 32768.

Assuming the target and beam polarizations remained constant during each run

(or its variation was negligible compared to their error), the asymmetry measurement

error was calculated for each run and defined as (also see Appendix C):

δAi = δ

(
εi

P i
t hi

)
=

1

P i
t hi

2
√

N i
−N i

+

(N i
− + N i

+)3/2
, (8.26)

The average asymmetry is the average of all runs weighted by the measurement

error from each run:

Ā =

∑n
i=1 Ai/(δAi)

2∑n
i=1 1/(δAi)2

, δĀ =

√
1∑n

i=1 1/(δAi)2
, (8.27)

where n is the total number of good runs (n=310).
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8.12.2 Results

The statistics and the average measured (e, e′n) raw experimental asymmetries
(

εi

P i
t hi

)
defined in 8.25 for two sets of event selection criteria (described in Section 8.9) are

listed in Table 8.5, where ε/P+
t /h is for the positive target polarization and ε/P−

t /h

Table 8.5: (e, e′n) statistics and the average raw experimental asymmetries.

|W − 0.939| < 0.050 GeV |W − 0.939| < 0.050 GeV
Cuts |ypos| < 40 cm |ypos| > 40 cm

θnq < 0.110 radian
Number of Events 2,215,727 1,682,540
Average ε/P+

t /h 0.03020 ± 0.00520 –
Average ε/P−

t /h 0.02360 ± 0.00640 –
Average ε/Pt/h 0.02750 ± 0.00400 -0.00410 ± 0.00460

is for negative target polarization. The average target polarization P̄t was � 20.58%,

with a relative uncertainty of � 5% [103], and the average beam polarization is 77.64%

± 0.21%(stat.).

For events subjected to |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110

radian cuts, the average (e, e′n) raw asymmetry is 0.0275 ± 0.0040 (stat). We will

discuss this asymmetry as a function of four kinematical variables: E′, ypos, θnq and

θcm
np . These variables are chosen because the asymmetries in these variables are very

sensitive to Gn
E and they rely on different aspects of the experimental apparatus. E′

is a single arm (HMS) dependent variable, ypos only relies on the neutron detector

position resolution, θnq depends on both HMS and neutron detector quantities, while

θcm
np depends not only on θnq, but also on the momentum for the knocked-out neutron.

The results from different kinematical variables give us information on the internal

consistency of our data.

The numerical results of the measured (e, e′n) raw asymmetry as function of E′,

ypos, θnq and θcm
np are listed in Table 8.6, and the graphic presentations are shown

in Figure 8.32. The results of the asymmetries in terms of θcm
np calculated from two

independent methods (described in Section 8.8) are very similar and the result of the
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Table 8.6: The E′, ypos, θnq and θcm
np dependence of the measured (e, e′n) raw experi-

mental asymmetries.

Var Range ε/Pt/h Range ε/Pt/h

2.350 – 2.375 -.02016±.03636 2.450 – 2.475 .02522±.00756
E′ 2.375 – 2.400 .02108±.01556 2.475 – 2.500 .03100±.01048

(GeV) 2.400 – 2.425 .03420±.00996 2.500 – 2.525 .04591±.02029
2.425 – 2.450 .02574±.00750 2.525 – 2.550 .02795±.08540

-40 – -30 .00188±.01513 0 – 10 .02990±.00966
ypos -30 – -20 .04000±.01222 10 – 20 .00998±.01036
(cm) -20 – -10 .03877±.01050 20 – 30 .03043±.01210

-10 – 0 .03152±.00970 30 – 40 .03064±.01531

0.00 – 0.01 .01023±.03695 0.06 – 0.07 .04282±.01169
0.01 – 0.02 .04917±.01835 0.07 – 0.08 .02299±.01206

θnq 0.02 – 0.03 .04068±.01388 0.08 – 0.09 .01227±.01251
(radian) 0.03 – 0.04 .03033±.01232 0.09 – 0.10 .02544±.01310

0.04 – 0.05 .02066±.01168 0.10 – 0.11 .01662±.01373
0.05 – 0.06 .02824±.01156

164o − 168o .01632±.01658 180o − 184o .03867±.01378
θcm

np 168o − 172o .02394±.00941 184o − 188o .04195±.00946
172o − 176o .02197±.00903 188o − 192o .01779±.01031
176o − 180o .03453±.01347 192o − 196o .02066±.01743

asymmetries in terms of θcm
np calculated from TOF and θnq is presented below.

For events with |W − 0.939| < 0.050 GeV and |ypos| > 40 cm cuts, the measured

average (e, e′n) raw asymmetry is −0.0041±0.0046 (stat.). The value is also indicated

in Figure 8.32.

Table 8.7 lists the statistics and the average measured (e, e′p) experimental asym-

Table 8.7: (e, e′p) statistics and the average raw experimental asymmetries.

Cuts |W − 0.939| < 0.050 GeV |W − 0.939| < 0.050 GeV
|ypos| < 40 cm |ypos| > 40 cm

Number of Events 21,786,615 7,215,027
Average ε/P+

t /h -0.08573 ± 0.00166 –
Average ε/P−

t /h -0.08033 ± 0.00202 –
Average ε/Pt/h -0.08360 ± 0.00128 -0.02968 ± 0.00223

metries (with the same definition as for (e, e′n)) under two sets of event selection
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Figure 8.32: E′, ypos, θnq and θcm
np dependence of the measured (e, e′n) raw experi-

mental asymmetries (ε/Pt/h), with |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and
θnq < 0.110 radian cuts. The square point is the average (e, e′n) asymmetry with
|W − 0.939| < 0.050 GeV and |ypos| > 40 cm cut.
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criteria.

8.13 Proton Contamination Corrections

The asymmetry of the �D(�e, e′p)n and �D(�e, e′n)p reactions have opposite sign and the

magnitude of the proton asymmetry is three times larger than the neutron asymmetry.

In addition to this, the (e, e′p) cross section is much larger than that of the (e, e′n)

reaction. The proton contamination to the (e, e′n) reaction due to neutron detector

proton veto inefficiency could become important and must be corrected. In principle,

the (e, e′p) and (e, e′n) strength can be determined experimentally. Together with

the knowledge of the relative magnitude of (e, e′p) and (e, e′n) asymmetries and the

proton veto inefficiency, one can determine the (e, e′p) contributions to the measured

(e, e′n) asymmetry.

Under our event selection criteria, let’s assume the (e, e′p) event rate is Rp and the

(e, e′n) event rate is Rn. Further take the measured (e, e′p) asymmetry to be Ap and

the measured (e, e′n) asymmetry to be An. The corrections to the (e, e′n) asymmetry

due to proton contamination is then:

∆An = −Ap ×
Rp

Rn

× εineff , (8.28)

where εineff is the proton veto inefficiency, which was determined to be 0.12%.

At Q2 = 0.5 (GeV/c)2 kinematics, the average raw experimental (e, e′n) and (e, e′p)

asymmetries and statistics are listed in Table 8.5 and Table 8.7. Using the above

formula, the corrections to the (e, e′n) asymmetry with |W − 0.939| < 0.050 GeV,

|ypos| < 40 cm and θnq < 0.110 radian cuts, due to proton contamination is:

∆An = −Ap ×
Rp

Rn
× εineff = 0.08794 × 1, 165, 324

2, 215, 727
× 0.12% � 0.00006, (8.29)

where Rp and Ap are the number of (e, e′p) event and the (e, e′p) asymmetry subjected

to |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110 radian cuts (note: Ap
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and Rp are under a complete set of cuts and hence differ from the results shown in

Table 8.7). Compared with the raw experimental (e, e′n) asymmetry, the correction

is about 0.2% ± 0.02%, which is very small. The correction was applied to the final

asymmetry.

The correction to (e, e′n) asymmetry with |W−0.939| < 0.050 GeV and |ypos| > 40

cm cut due to proton contamination is:

∆An = −Ap ×
Rp

Rn
× εineff = 0.02968 × 7, 215, 027

1, 682, 540
× 0.12% � 0.00015. (8.30)

The correction is much bigger, roughly 3.8%. The large correction is due to the

absence of the θnq cut and the very small (e, e′n) asymmetry with |W −0.939| < 0.050

GeV and |ypos| > 40 cm cuts. This large proton contamination partly explains why

the measured asymmetry for these (e, e′n) events is slightly negative (contrast to the

sign of the asymmetry under |W−0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110

radian cuts). Nevertheless, the (e, e′n) asymmetry subjected to this set of cuts is not

of our primary interest and is essentially zero within the statistical uncertainty.
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Chapter 9 From Asymmetry to Gn
E

In this chapter, we will proceed to convert the measured (e, e′n) experimental asym-

metry to electron-deuteron vector asymmetry AV
ed. To do this, we will need the

dilution factor, which takes into account the dilution to the �D(�e, e′n) asymmetry due

to scattering from other target materials. The dilution factor is estimated by Monte

Carlo simulations. The Monte Carlo event rates were compared with the E93-026

data rate from three independent targets and normalized appropriately. Once AV
ed

is obtained, a procedure to average the theoretical AV
ed over the E93-026 detector

acceptance in terms of four kinematical variables is developed and incorporated into

the Monte Carlo. Next we attempt to unfold the radiative effects and make the cor-

rections to the measured asymmetry due to the accidental background events. The

results of the corrected AV
ed will be presented in terms of four kinematic quantities.

Finally, the neutron electric form factor is extracted by comparing the final experi-

mental AV
ed to the detector acceptance averaged theoretical AV

ed. Comparisons were

made for both the PWIA and the full calculations (N+MEC+IC+REL).

9.1 Comparison of Data Rate to Simulation

During E93-026, data were not only taken with the 15ND3 target. We have also taken

data with a helium target and a carbon target at the same kinematics. This allows

us to cross check our event rate consistency using three independent targets. The

helium target is 4.0 cm thick and the carbon target is 0.69 cm carbon plus 3.31 cm

helium (see Figure 6.19). Table 9.1 lists the (e, e′n) and (e, e′p) event rates during the

experiment for three independent targets: the helium (hole) target, the carbon target,

and the ND3 target. The event rates are corrected for dead time, tracking efficiency

and beam current. The (e, e′n) rate was subject to our (e, e′n) event selection criteria,
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i.e., |W − 0.939| < 0.050 GeV, |ypos| < 40 cm and θnq < 0.110 radian. The (e, e′p)

event rate was subject to (e, e′p) event selectrion criteria, i.e., |W − 0.939| < 0.050

GeV and |ypos| < 40 cm.

Table 9.1: Event rate for three independent targets.

Target ND3
4He 12C

(e, e′n) data rate (Hz) 4.91 ± 0.00 1.25 ± 0.04 2.36 ± 0.03
(e, e′n) MC rate (Hz) 7.51
(e, e′p) data rate (Hz) 48.30 ± 0.00
(e, e′p) MC rate (Hz) 75

Comparing Table 9.1 with Table 7.5 of the event rate from the simulation results

for the ND3 target, the data rate shows a substantial depletion. The reduced (e, e′n)

event rate is partly due to the neutron flux attenuation in the shielding in front of the

neutron detector. The shielding consisted of a 16.7 mm layer of lead and a 25.4 mm

CH2 absorber. The amount of neutron attenuation in lead can be estimated based

on the calculations of Eden, et al. [135]. The neutron beam intensity before (I0) and

after (I(x)) lead shielding of thickness x can be expressed as:

I(x) = I0e
−x/λ, (9.1)

where, λ is the absorption mean free path, i.e., λ = 1/ρpb
n σpb

abs, σpb
abs is the absorption

cross section and ρpb
n = NAρpb

A
. For neutrons with kinetic energy of 267 MeV (which is

the quasi-free knocked-out neutron kinetic energy in our kinematics), the estimated

cross section is σpb
abs � 2.8 E-24 cm−2. With ρpb = 11.35 g/cm2, the mean free path

of λ=14.03 cm is obtained [136]. With a 16.7 mm thick lead shielding, we find:

ηpb =
I

I0

= e−1.67/14.03 = 0.888 ± 0.006, (9.2)

or approximately ∼11.2% of neutron flux was absorbed in the lead shielding alone.

The 25.4 mm of plastic absorber may account for another ∼ 2.5%.

Attenuation in the shielding alone is not enough to explain (e, e′n) data rate
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depletion. Taking the lead shielding attenuation into account, the data rates for all

three independent targets are still found to be off by a global factor, as we will discuss

below. The origin of this rate depletion is not fully understood.

We refer to this global factor of the rate depletion as the additional yield normal-

ization factor. It can be determined for each of the three targets as follows, where

the R’s are the rates (where MC designates rates from the Monte Carlo), the L’s are

the lengths of the helium in the targets and ηpb is the loss of flux due to the shielding

of the detector:

αHe =
Rhole target

He

RMC
He in ND3

· ηpb · LHe hole target

LHe in ND3

. (9.3)

Taking values from Tables 7.5, 8.1, and 9.1 (the total length of the He hole target is

4.0 cm and the effective length of the He in ND3 is 2.5 cm) we get (for Rhole target = 1.25

Hz, RMC
He in ND3

= 1.16 Hz, and ηpb = 0.88):

αHe =
1.25

1.16 · 0.88 · 4.0
2.5

= 0.758. (9.4)

Once the additional yield normalization factor for helium is determined, we can

determine the additional yield normalization factor for carbon (αC) by comparing the

carbon target (e, e′n) data rate to the Monte Carlo PWIA carbon rate. We find the

additional yield normalizations factor for carbon as:

αC =
RCarbon target

includes He − RHe hole target · LHe in carbon

LHe hole target

RMC
Carbon × ηpb

. (9.5)

Taking the rates from the tables as before we find:

αC =
2.36 − 1.25 × (3.32

4.00
)

1.95 × 0.88
= 0.764. (9.6)

We assume that 15N has the same additional yield normalization factor as carbon

so that we can determine the additional yield normalization factor for deuterium (αD)
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from the 15ND3 (e, e′n) data rate and the MC simulation:

αD =
RND3 target

includes He, Al, Nitrogen − RMC
(N)C × α(N) C − RHe hole target · LHe in ND3

LHe hole target − RMC
Al

RMC
ND3

× ηpb
. (9.7)

Taking the values for these rates and additional yield normalization factors we

find:

αD =
4.91 − 1.05 × 0.764 − 1.25 × (2.50

4.00
) − 0.06

5.24 × 0.88
= 0.708. (9.8)

Table 9.2 lists together the additional yield normalization factors for the E93-026

target components. The results from Table 9.2 indicate that the additional yield

normalization factor given by our three independent targets are consistent within

∼8%. With more statistics on helium and carbon targets, the event rate consistency

can be better checked in the future running at JLAB.

Table 9.2: Measured additional yield normalization factor for the E93-026 target
components from (e, e′n) events.

Target Deuteron Helium Carbon
α 0.708 0.758 0.764

Further investigation shows the rate ratio (data over MC) for (e, e′p) events is

48.30
75

= 0.64 which is comparable with the rate ratio for (e, e′n) events before shielding

attenuation correction, e.g. 4.91
7.51

= 0.65. (e, e′p) suffers the same yield depletion as

(e, e′n). This indicates that the (e, e′n) event rate depletion is not due to the neutron

detection efficiency.

In summary, the relative count rate for three independent targets are consistent.

The count rate for all three targets compared to that of Monte Carlo predictions are

depleted by a global factor of ∼ 0.74 (after taking the lead shield attenuation into

account). The dilution factor only depends on the rate ratios, see Equation 9.11. In

Figures 8.24 and 8.25, it was shown that the Monte Carlo model did a reasonable

job of reproducing the observed distributions. As the Monte Carlo reproduces the
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distributions of the data with a common normalization factor for all components, we

can use the simulation to reliably determine the dilution factors.

9.2 Dilution Factors

The rates we measured during the experiment are the sum of (e, e′n) rates from all

target materials. The asymmetry we are interested in is that due to the scattering

from polarized deuterium. Because of the presence of target materials other than

deuterium, the asymmetry will be effectively diluted by a factor due to contributions

from these materials (including other polarizable and unpolarizable materials in the

target). The dilution factor accounts for these materials. We show below how the

dilution factors were determined.

In 15ND3, the nitrogen is 98% 15N nuclei and 2% 14N nuclei, and both isotopes

are polarizable. In what follows, take the percentage of the total nitrogen which is

14N to be ηN . There are events from the small amount (1.5%) of residual protons in

ND3, and we indicate the percentage as ηp. The measured rates are then given by:

L(R) = Φ

{∑
i

niσi + (1 − ηp)nDσD(1 ± ADhPt) + ηpnDσp(1 ± AphPp)

+(1 − ηN)nNσ15(1 ± A15hP15) + ηNnNσ14(1 ± A14hP14)

}
, (9.9)

where, L and R represent the rates for the positive and negative helicity, Φ accounts

for the flux of the incident electrons and the detector acceptance, nD and nN are

the number densities of deterium and nitrogen, the subscripts 14 and 15 represent

14N and 15N. Ap, AD, A14, and A15 are the asymmetries and Pp, Pt, P14, and P15 are

the polarizations for proton, deuteron, 14N and 15N, respectively. Pp, Pt, P14, and

P15 can be estimated by the Equal Spin Temperature (EST) hypothesis. The sum

over niσi represents contributions from all unpolarizable materials. The measured
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experimental asymmetry can be written as:

∆ =
L − R

L + R
= hPtf

{
AD(1 − ηp) + ηp

Pp

Pt

σP

σD

Ap

+(1 − ηN )
nN

nD

P15

Pt

σ15

σD
A15 + ηN

nN

nD

P14

Pt

σ14

σD
A14

}
, (9.10)

where f is the dilution factor defined as ratio of the deuterium rate to the total event

rate from all target materials [137]:

f =
nDσD

(1 − ηp)nDσD + ηpnDσp + (1 − ηN)nNσ15 + ηNnNσ14 +
∑

i niσi
. (9.11)

In this experiment, the dilution factors were obtained by PWIA Monte Carlo sim-

ulations with modeled coincidence cross sections for all the target materials, including

deuterium, nitrogen, helium and aluminum. The cross sections were radiatively cor-

rected and the target field was taken into account. The ratio of the event rate for

electron scattering from deuterium D(e, e′n) to the sum of the event rate for electron

scattering from all target materials A(e, e′n), gives the dilution factors for the specific

target. The target packing fraction obtained from inclusive data [115] taken during

this experiment. The dilution factors are estimated in terms of four kinematic vari-

ables: the scattered electron energy (E′), the neutron horizontal hit position (ypos),

the neutron emission angle with respect to q (θnq) and the angle of n-p relative mo-

mentum with respect to q in the n-p center of mass system (θcm
np ). The estimated

dilution factors from Monte Carlo are subject to the (e, e′n) event selection criteria

of |W − 0.939| < 0.005 GeV, |ypos| < 40 cm and θnq < 0.110 radian.

The numerical values of the measured dilution factors and their statistical uncer-

tainties as function of E′, ypos, θnq and θcm
np are listed in Table 9.3. The statistical

uncertainties for the dilution factors come from the finite Monte Carlo sample size.

It is estimated to be 1.5% in the worst bin and the combined statistical error for the

averaged dilution factor is 0.4%. The systematic uncertainties of the dilution factor

are due to the uncertainties in the PWIA yield normalization factors for each target
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component. Taking the uncertainties of the normalization factors for helium, nitrogen

and deuterium to be 10% will result in 1.5%, 1.4% and 2.8% relative uncertainties

in the dilution factor, respectively. The combined dilution factor measurement un-

certainty (the quadrature of the statistical and systematic uncertainties) is � 3.5%.

Table 9.3: The E′, ypos, θnq and θcm
np dependence of the (e, e′n) dilution factors.

Var Range f Range f

E′ 2.350 – 2.400 0.647 ± 0.010 2.450 – 2.500 0.710 ± 0.005
(GeV) 2.400 – 2.450 0.679 ± 0.004 2.500 – 2.550 0.673 ± 0.009

ypos -40 – -20 0.615 ± 0.006 0 – 20 0.727 ± 0.006
(cm) -20 – 0 0.730 ± 0.006 20 – 40 0.669 ± 0.007

θnq 0.0 – 0.0275 0.850 ± 0.013 0.0550 – 0.0825 0.670 ± 0.005
(radian) 0.0275 – 0.0550 0.783 ± 0.007 0.0825 – 0.1100 0.523 ± 0.004

θcm
np 164o − 172o 0.570 ± 0.004 180o − 188o 0.798 ± 0.008

172o − 180o 0.798 ± 0.008 188o − 196o 0.545 ± 0.004

The dilution factors are plotted against four kinematical variables in Figure 9.1.

9.3 AV
ed Averaging Procedure

We obtained theoretical calculations of AV
ed from Arenhövel for a set of fixed kine-

matics. While the measured asymmetries are the detector acceptance averaged quan-

tities, in order to compare the measured asymmetry to the theoretical calculations,

one needs to average theoretical calculations over the experiment specific detector

acceptance.

In Figure 8.6 mid-left panel and Figure 8.7 top-left panel, we have shown the dis-

tributions of the electron scattering angle (Hstheta) and the four momentum transfer

squared (Q2) for experimental (e, e′n) data used to extract Gn
E. The detector accep-

tance averaged and yield weighted mean value of Q2 is < Q2 >= 0.495 (GeV/c)2,

which is slightly lower than the central value of Q2 = 0.5 (GeV/c)2. The result can

be explained by the fact that the scattering has a larger cross section at smaller scat-
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Figure 9.1: Monte Carlo estimated E′, ypos, θnq and θcm
np dependence of the (e, e′n)

dilution factors. A second order polynomial fit to the dilution factor in θnq is also
shown.
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tering angles and at lower values of Q2. The AV
ed averaging procedure takes these

kinematical distributions into account.

To average the theoretical AV
ed over the detector acceptance, we obtained from

Arenhövel calculations of AV
ed as a function of a set of kinematical variables. A look-

up table of AV
ed as a function of these kinematical variables was generated. The Monte

Carlo program then sampled D(e, e′n) events and generated AV
ed for each event from

the look-up table based on its kinematics.

The kinematical variables chosen to calculate AV
ed are those variables most sensitive

to the (e, e′n) asymmetry. In the E93-026 experiment, these variables were chosen

to be the scattered electron energy (E′), the electron scattering angle (θe), the polar

angle of the target polarization vector in the coordinate system defined by q vector

(θ∗), and the angle of n-p relative momentum with respect to q in the n-p center of

mass system (θcm
np ). The D(e, e′n) cross section in the Monte Carlo used Arenhövel’s

full calculations (N+MEC+IC+REL) for Gn
E = (Gn

E)Galster. Figure 9.2 shows the

phase space distributions and cross section weighted distributions of θ∗ as a function

of E′ from the D(e, e′n) scattering.
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Figure 9.2: Distribution of E′ versus θ∗ for D(e, e′n) scattering. The left panel is the
phase space ditribution and the right panel is the cross section weighted distribution.

Summarizing Figures 7.5 and 9.2, Table 9.3 lists the grid points formed by these
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kinematic variables on which AV
ed was calculated.

Table 9.4: Kinematical grid for calculations of AV
ed of D(e, e′n) scattering.

Variable E′ (MeV) θe θ∗ θcm
np

Range 2280 – 2580 13.8o − 17.8o 70o − 100o 0o − 360o

Step size 15 0.4o 10o 2.5o

For events whose kinematics falls between the grid points listed in Table 9.3, the

value of AV
ed is linearly interpolated in these four kinematical variables using the tab-

ulated values and a four-dimensional linear interpolation routine. The interpolation

procedure has already been described in Section 7.3.3.

The AV
ed calculations were done for three Gn

E values: Gn
E=0.5 ×(Gn

E)Galster, Gn
E =

(Gn
E)Galster and Gn

E=1.5 ×(Gn
E)Galster. These calculations used a realistic NN-potential

and included subnuclear degrees of freedom via meson exchange currents (MEC) and

isobar configurations (IC). The Bonn [79] (r-space version) potential model was used

in the calculation. The effects of various reaction mechanisms on AV
ed have also been

investigated. In this section, we will only present the results from detector averaged

AV
ed for the full calculations of Arenhövel.

The detector aceptance averaged AV
ed is defined as:

< AV
ed >=

∑√
3
2
AV

ed(E
′, θe, θnq, θ

cm
np )σeenw

phwr∑
σeenwphwr

, (9.12)

where, the factor
√

3
2

arises from the definition of the density matrix in the spherical

coordinate system, σeen is the (e, e′n) coincidence cross section, wph is the phase

space weighting factor and wr is the radiative weighting factor. Radiative effects

were turned off for the results presented in this section. Figures 9.3 and 9.4 show

the distributions of AV
ed in terms of E′, ypos, θnq and θcm

np for Gn
E = (Gn

E)Galster and

Gn
E = 1.5 × (Gn

E)Galster, respectively.
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Figure 9.3: Detector acceptance averaged simulation of AV
ed for Gn

E = (Gn
E)Galster.

From top left to bottom right panel are E′, ypos, θnq and θcm
np dependence of the AV

ed.
Events shown are subject to W , ypos and θnq cuts.
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9.4 Radiative Corrections

9.4.1 General Description

Electrons can interact with the electric field through the Coulomb interaction and the

radiation which results changes of the electron velocity; such a process is known as

bremsstrahlung. There are two types of bremsstrahlung for the e−N scattering pro-

cess: internal and external bremsstrahlung. The incoming electron and the scattered

electron can interact with the Coulomb field of the nucleus involved in the scattering

process, which results in the emission of real photons, such a process is known as the

internal bremsstrahlung. The electrons can also interact with the Coulomb field of

the nuclei other than the one involved in the scattering process and radiate photons,

this process being known as external bremsstrahlung. Both internal and external

processes are higher order processes in terms of the fine structure constant α.

The measured cross sections for the e − N scattering process have contributions

from these higher order processes in addition to the Born Approximation (of order

α) as shown in Figure 2.1. The theoretical calculations of the asymmetry used to

derive the neutron electric form factor are only for one photon exchange scattering

process or Born Approximation with final state interaction (FSI), meson exchange

currents (MEC), isobar configurations (IC), and relativistic corrections (REL). In

order to compare the measured asymmetry to the theoretical calculations, one needs

to either unfold these higher order contributions in the data or radiate the theoretical

calculations. Results of this exercise are the “radiative corrections”.

The Feynman diagrams for the α3-order processes are shown in Figure 9.5. The

hadronic radiative corrections are neglected due to the large nucleon mass compared

to the electron mass. Based on these diagrams, one can write down the e − N cross

sections as:

σ = σ0 + σR + σV , (9.13)
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where, σ0 is the one photon exchange from Figure 2.1; σR is the bremsstrahlung

contributions from diagrams 1) and 2); and σV is the contribution due to virtual

photon exchange from diagrams 3), 4), 5) and 6). The soft photon contributions

from the above processes were first calculated by J. Schwinger [138], and were later

modified by Mo and Tsai [139] and Tsai [140].

e

N N’

2) 3)

e’

4)

γ

5) 6)

1)

γ

Figure 9.5: Feynman diagrams of radiative corrections for e−N scattering, hadronic
radiations are not shown: 1) and 2) bremsstrahlung, 3) vacuum polarization, 4) and
5) self-energy, and 6) vertex correction.

The radiative effects have been studied in the MCEEP simulation [109] which we

briefly describe below. In MCEEP, the internal radiative effects include the radiative

tail (hard photon emission) and the Schwinger correction (soft photon contribution

and the virtual photon and vacuum polarization contribution). The external effects

include the energy loss of the electron due to ionization and external bremsstrahlung

in the target and scattering chamber windows and the collision energy loss of the

hadron.

In MCEEP, the radiative photon energy, k, is sampled according to 1/k distribu-
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tion and is chosen according to:

k = ∆

(
kmax

∆

)x

, (9.14)

where x is a uniform distribution between 0 and 1, kmax is the upper limit of the

photon energy chosen to be the lower edge of the scattered electron momentum bite,

and ∆ is the photon cut-off energy.

The prescription of Borie and Drechsel [141] is used for the calculations of the

bound state radiative tail in the peaking approximation. This gives the n+1–fold

differential cross section, including photon emission, in terms of n–fold differential

cross section. For a bound state, the cross section is given by:

d6σ

dkdωdΩedΩp
=

α

πk

{
(e′ + k)2 + e′2

(e′ + k)2

d5σ(e, e′ + k)

dωdΩedΩp
ln

2e′

me

+
e2 + (e − k)2

e2

d5σ(e − k, e′)

dωdΩedΩp
ln

2e

me

}
, (9.15)

where the first (second) term corresponds to radiation after (before) primary scatter-

ing. In MCEEP, only one of the two terms is calculated per event.

The Schwinger correction uses the form from Penner [142]:

CSchwinger = e−δr(1 − δv), (9.16)

where δr is the soft photon contribution and δv is the virtual photon contribution.

For elastic scattering they are given by:

δr =
α

π

(
ln

Q2

m2
e

− 1

)
ln

(
e2

ξ3

1

∆2

)
,

δv =
α

π

[
28

9
− 13

6
ln

Q2

m2
e

+
π2

6
− L2 cos2(θe/2)

]
, (9.17)

where ξ = 1 + e
MT

(1 − cos θe) and L2(x) = − ∫ x
0

ln(1−y)
y

dy is the Spence function.

The ionization energy loss of electrons is calculated from the Bethe-Bloch formula
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of:

−dE

dx
= 2πNAr2

emec
2ρ

Z

A

1

β2

{
ln

(
T 2(T + 2)

2(I/mec2)2

)
− F (T ) − δ − 2

C

Z

}
, (9.18)

where T is the kinetic energy of the electron in mec
2, and F (T ) is a function given by

F (T ) = 1−β2 + T 2/8−(2T+1)ln2
(T+1)2

. The above formula gives the mean energy loss. Either

Landau, Vavilov, or Gaussian distributions were used depending on the ratio of the

mean energy loss to the maximum energy transfer in a single collision to obtain the

actual energy loss due to statistical fluctuation in the number of collisions and in the

energy lost in each collision. The small angle deflection due to Coulomb scattering

from nuclei was also taken into account and was described by the Moliere scattering

formula.

The kinetic energy loss of the electrons due to the interaction with the Coulomb

field of the nuclei (external bremsstrahlung) was calculated in terms of the radiation

length (X0) of the material. The radiation length was calculated by:

1

X0
= 4αre

NA

A

{
Z2 [Lrad − f(Z)] + ZL′

rad

}
, (9.19)

with

Lrad = ln(184.15Z−1/3), L′
rad = ln(1194Z−2/3), (9.20)

and

f(Z) = a2
(

1

1 + a2
+ 0.20206 − 0.0369a2 + 0.0083a4 − 0.002a6

)
. (9.21)

where a = Zα. The probability distribution for a particle of energy E to radiate

an energy ∆E when traversing t radiation lengths in a material of radiation length
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X0 = 1
b

is given by:

I(E, ∆E, t) =
bt

Γ(1 + bt)

(
∆E

E

)bt
{

1

∆E

[
1 − ∆E

E
+

3

4

(
∆E

E

)2
]}

. (9.22)

An accept-reject technique was used to generate the above external radiation (see

details in Ref. [109]). For the E93-026 target, the full length of the target material

(ND3) is about ∼1.5 cm (taking the packing fraction into account), this is equivalent

to an ∼ 0.022X0. Therefore, the material the electron traversed in terms of radiation

length before scattering is roughly an uniform distribution between 0 and ∼ 0.022X0.

9.4.2 The E93-026 Treatment

In the traditional treatment of radiative corrections, a model for the Born cross

sections is radiated and compared to the measured cross section. The measured cross

section is then multiplied by the ratio of the non-radiated model to the radiated model

in order to remove the radiative effects from the measured cross sections. By adjusting

the theoretical cross section model, the procedure is iterated until the modeled cross

section and the measured cross section become identical.

In E93-026, we have model calculations for the asymmetries on a grid of kinemat-

ical variables. We can express the radiated asymmetry (AV
ed)

r as:

(AV
ed)

r =
σr

+ − σr
−

σr
+ + σr

−

1

hPtf
,

σr
± = σr

Born

[
1 ± (AV

ed)
r
]
. (9.23)

The radiative effect to the Born cross section exactly cancels out in the asymmetry

and therefore we directly radiated the asymmetry. In the following text, we will

describe the details of radiating the theoretical AV
ed and how we obtained radiative

correction factors for E93-026. The internal radiative correction and the external

radiative correction were considered separately.
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Internal Radiative Correction

The principal effect of the radiative corrections is that the virtual photon-nucleon

vertex kinematics calculated from the measured scattered electron energy do not

reflect the “true” vertex kinematics. The physics asymmetry is a function of the

“true” vertex kinematics. This redistribution of the asymmetry was modeled by

Monte Carlo.

For internal radiation, using the MCEEP simulation program, we can generate

D(e, e′n) events with radiative corrections being turned off, and plot detector accep-

tance averaged AV
ed(x

nr
i ) versus xnr

i , where xi represents kinematical variable E′, ypos,

θnq or θcm
np and xnr

i denotes the non-radiated value. On the other hand, we can also

generate D(e, e′n) events with radiative corrections being turned on and plot detec-

tor acceptance averaged AV
ed(x

nr
i ) versus xr

i , where xr
i denotes one of the radiated

kinematical variables. For each kinematical variable, we have two curves: curve 1 is

AV
ed(x

nr
i ) versus xnr

i and curve 2 is AV
ed(x

nr
i ) versus xr

i . The ratio of curve 1 to curve 2

gives the radiative correction factors across the entire spectrum of variable xi. Note

that the external bremsstrahlung and the ionization energy loss of the electrons before

and after scattering were turned off during the internal radiative correction studies.

The distributions of the four kinematical variables versus the radiated photon

energy for the pre-radiation (radiation from the incident electron) and for the post-

radiation (radiation from the scattered electron) processes are shown in Figures 9.6

and 9.7, respectively. Since the scattering angle is small at this kinematics and

the radiated photon was generated by the peaking approximation, these distributions

show a rather similar pattern for both pre- and post-radiation events. We further see

that there is no acceptance for events which radiated photons with an energy greater

300 MeV. Bremsstrahlung photons have a 1/k energy spectrum, therefore the mean

energy is a strong function of both low and high energy cut-offs. The average radiated
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Figure 9.6: Distributions of four kinematical variables against pre-radiated photon
energy.
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photon energy is:

k̄ =

∫ EH
EL

k · 1
k
dk∫ EH

EL

1
k
dk

=
EH − EL

ln EH

EL

, (9.24)

where EL = 1 MeV and EH � 300 MeV are the low and high cut-offs of the radiated

photon respectively. The average value of photon energy is approximately 50 MeV.

Table 9.5 compares the measured and vertex values of several kinematic quantities for

pre- and post-radiation. The kinematics are given in the table caption. It is clear that

both pre- and post-radiation move strength in the same direction by similar magni-

tudes. Hence it is appropriate to use the post-radiation events only in order to obtain

Table 9.5: Comparison of measured and vertex kinematics for pre- and post-radiated
events.The measured E′ = 2.420 GeV and the scattering angle θe = 15o. Beam energy
E = 2.721 GeV, and k = 50 MeV.

Pre-rad θq W (GeV) |q| (GeV/c) Q2 (GeV/c)2

Vertex 61.97o 0.940 0.710 0.441
Measured 58.50o 0.998 0.734 0.487

Post-rad θq W (GeV) |q| (GeV/c) Q2 (GeV/c)2

Vertex 62.33o 0.945 0.722 0.458
Measured 58.50o 0.998 0.734 0.487

the correct value of AV
ed(x

nr). This is convenient as AV
ed was calculated for a fixed

incident electron beam energy. Under this circumstance, the radiative correction fac-

tor in the kinematical variable xi is then defined as Rc =
[
AV

ed(x
vtx
i )

]nr
/
[
AV

ed(x
vtx
i )

]r
,

where xvtx
i is the vertex value of variable xi.

Due to the cut-off energy, there are events which were not affected by the internal

radiation and these events have the same average AV
ed as those events without radiation

being turned on. At the cut-off energy of 1 MeV we used in the Monte Carlo, suppose

we have a0 events with radiated photon energy below the cut-off energy and these

events have average AV
ed = A0. a1 events are pre-radiation events and have an average

AV
ed = A1. a2 events are post-radiation events and are assumed to have an average

AV
ed = A1. The measured radiative correction factor using post-radiation events is
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Rc = A0/A1. While the true radiative correction factor is given by:

Rc
c =

(a0 + a1 + a2)A0

a0A0 + (a1 + a2)A1

, (9.25)

the corrections to the Rc measured from post-radiation events is then given by:

Rc
c

Rc

=
a0 + a1 + a2

a0Rc + a1 + a2

. (9.26)

Simulation results show that at a cut-off energy of 1 MeV, the ratio between a0, a1, a2

is approximately a0 : a1 : a2 = 4 : 1 : 1, therefore, the correction to Rc is about

Rc
c/Rc = 6/(4Rc + 2). The correction factor to the measured radiative correction

factor is about 1.07 for Rc = 0.9 and about 0.94 for Rc = 1.1.

The final internal radiative correction factor Rc
c can be directly applied to the

measured AV
ed in any of four kinematical variables to unfold the internal radiative

effects in the data. Table 9.6 lists the internal radiative correction factor Rc
c with

statistical uncertainties and Figure 9.8 graphically presents the internal radiative cor-

rection factor Rc
c in E′, ypos, θnq and θcm

np for Gn
E = 0.5× (Gn

E)Galster, Gn
E = (Gn

E)Galster

and Gn
E = 2.0 × (Gn

E)Galster, respectively. Results show the internal radiative correc-

tion factor increases with decreasing Gn
E. The overall internal radiative correction for

Gn
E = (Gn

E)Galster is about 2%. The combined statistical uncertainty for the averaged

radiative correction factor is ∼ 0.4%.

The pre-radiation events account for ∼ 1
6

of the total number of events. Although

it is a good approximation that the pre- and post-radiation have the same correction,

the uncertainty on pre-radiation effect adds another ∼ 0.2% of uncertainty on top of

the statistical uncertainty of the radiative correction.

External Radiative Correction

The external radiative correction includes the effect of the electron energy loss due

to external bremsstrahlung and ionization energy loss. Figure 9.9 shows the electron

energy loss before and after scattering due to ionization and external bremstrahlung,
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Figure 9.8: Internal radiative correction factors (Rc
c) to AV

ed of (e, e′n) for Gn
E =

0.5 × (Gn
E)Galster, Gn
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E)Galster and Gn

E = 2.0 × (Gn
E)Galster. From top left

to bottom right panel are the radiative correction factors in E′, ypos, θnq and θcm
np ,

respectively. A second order polynomial fit to the radiative correction factors in θnq

for Gn
E = (Gn

E)Galster is also shown in the bottom left panel.



219

Table 9.6: Estimated internal radiative correction factors.

Var Range Rc
c

Gn
E = 0.5(Gn

E)G Gn
E = (Gn

E)G Gn
E = 2.0(Gn

E)G

2.350 - 2.400 – 0.891 ± 0.013 0.962 ± 0.014
E′ 2.400 - 2.450 0.894 ± 0.006 0.967 ± 0.006 0.989 ± 0.006

(GeV) 2.450 - 2.500 0.990 ± 0.006 1.004 ± 0.006 1.011 ± 0.007
2.500 - 2.550 1.042 ± 0.015 1.038 ± 0.014 1.033 ± 0.015

-40 - -20 1.003 ± 0.010 0.999 ± 0.010 0.997 ± 0.010
ypos -20 - 0 0.972 ± 0.007 0.984 ± 0.008 0.988 ± 0.008
(cm) 0 - 20 0.959 ± 0.008 0.980 ± 0.008 0.989 ± 0.008

20 - 40 0.964 ± 0.010 0.980 ± 0.009 0.988 ± 0.010

0.0 - 0.0275 0.980 ± 0.005 0.985 ± 0.005 0.988 ± 0.005
θnq 0.0275 - 0.0550 0.997 ± 0.009 1.004 ± 0.009 1.007 ± 0.009

(radian) 0.0550 - 0.0825 0.952 ± 0.008 0.985 ± 0.007 0.998 ± 0.008
0.0825 - 0.1100 0.921 ± 0.006 0.970 ± 0.007 0.989 ± 0.007

164o − 172o 0.855 ± 0.006 0.942 ± 0.008 0.973 ± 0.007
θcm

np 172o − 180o 0.954 ± 0.010 0.982 ± 0.009 0.994 ± 0.010
180o − 188o 1.010 ± 0.010 1.009 ± 0.010 1.008 ± 0.010
188p − 196o 1.027 ± 0.009 1.022 ± 0.008 1.020 ± 0.008

respectively. The energy losses before and after scattering show a rather similar

pattern because the amount of material the electron traversed is approximately the

same. Therefore the radiative corrections due to the electron energy loss before and

after scattering were considered to be the same.

For the same reason that AV
ed was calculated for fixed incident electron energy, to

derive the radiative correction factors due to external radiation, we have turned off

the external energy loss before scattering and only calculated the effect of the post-

scattering external energy loss. The radiative corrections due to ionization energy loss

and external bremstrahlung were considered separately. The procedure of deriving

the correction factors is the same as for the internal radiation described above, where

two curves were generated and the ratio of the two curves give the radiative correction

factor. Similar weighting factors, as were employed for the internal bremstrasshlung,

due to a cut-off energy for soft photons (100 KeV), must be applied to external

bremsstrahlung when only post-radiation is included. The correction factors obtained
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Figure 9.9: Distributions of electron energy loss due to ionization and external brem-
strahlung before and after scattering.
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due to ionization energy loss required no weighting factors. The internal radiation

was turned off during the derivation of the external radiative correction factors.

Table 9.7 lists the combined external radiative correction factors (ionization and

external bremsstrahlung) with statistical uncertainties and Figure 9.10 graphically

presents the combined external radiative correction factor in E′, ypos, θnq and θcm
np for

Gn
E = 0.5 × (Gn

E)Galster, Gn
E = (Gn

E)Galster and Gn
E = 2.0 × (Gn

E)Galster, respectively.

The obtained external radiative correction factors can be directly applied to the data

to unfold the external radiative effects. The overall corrections due to the external

radiation is about 0.5%. The statistical error for the external radiative correction is

about 0.4%.

Table 9.7: Estimated external radiative correction factors.

Var Range Rc
c

Gn
E = 0.5(Gn

E)G Gn
E = (Gn

E)G Gn
E = 2.0(Gn

E)G

2.350 - 2.400 – 0.977 ± 0.014 0.988 ± 0.014
E′ 2.400 - 2.450 0.977 ± 0.007 0.993 ± 0.007 0.997 ± 0.006

(GeV) 2.450 - 2.500 1.010 ± 0.007 1.007 ± 0.006 1.005 ± 0.007
2.500 - 2.550 0.996 ± 0.014 0.998 ± 0.017 0.998 ± 0.013

-40 - -20 0.978 ± 0.009 0.992 ± 0.010 0.997 ± 0.010
ypos -20 - 0 0.995 ± 0.008 1.000 ± 0.009 1.002 ± 0.009
(cm) 0 - 20 0.994 ± 0.008 0.998 ± 0.009 0.999 ± 0.008

20 - 40 1.002 ± 0.010 1.004 ± 0.010 1.004 ± 0.011

0.0 - 0.0275 0.991 ± 0.005 0.999 ± 0.005 1.003 ± 0.005
θnq 0.0275 - 0.0550 1.005 ± 0.009 1.005 ± 0.009 1.005 ± 0.009

(radian) 0.0550 - 0.0825 0.998 ± 0.008 0.999 ± 0.007 1.000 ± 0.008
0.0825 - 0.1100 0.978 ± 0.007 0.989 ± 0.007 0.997 ± 0.007

164o − 172o 0.976 ± 0.008 0.993 ± 0.008 0.999 ± 0.008
θcm

np 172o − 180o 0.985 ± 0.010 0.997 ± 0.009 1.002 ± 0.010
180o − 188o 1.003 ± 0.010 1.003 ± 0.010 1.003 ± 0.010
188p − 196o 0.987 ± 0.008 0.996 ± 0.009 0.999 ± 0.009

Change of Electron Polarization

For the polarized electron beam, the effect of radiation may not only be a redistri-

bution of events over the kinematic bins, but the emitted photon may change the
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Figure 9.10: External radiative correction factors (Rc
c) to AV

ed of (e, e′n) for Gn
E =

0.5 × (Gn
E)Galster, Gn

E = (Gn
E)Galster and Gn

E = 2.0 × (Gn
E)Galster. From top left

to bottom right panel are the radiative correction factors in E′, ypos, θnq and θcm
np ,

respectively. A second order polynomial fit to the radiative correction factors in θnq

for Gn
E = (Gn

E)Galster is also shown in the bottom left panel.



223

electron polarization. If Pγ is the circular polarization of the bremsstrahlung photon,

h is the longitudinal polarization of the unradiated electron beam, then [143]:

Pγ

h
=

Eγ

Ee

(
4 − Eγ

Ee

)
4 − 4Eγ

Ee
+ 3

(
Eγ

Ee

)2 , (9.27)

where Eγ and Ee are photon and electron energy, respectively. During E93-026,

Ee = 2721 MeV, h = 75%, and as previously shown, the average energy of the

radiated photons is approximately 50 MeV. At this energy, Pγ is only 1.4%. Even for

photons at the maximum accepted radiated energy, the photon polarization is found

to be ∼ 8%. The effect on AV
ed in our kinematics is expected to be small and has been

neglected.

9.5 Accidental Background Corrections

As described in Section 8.8, the neutron and proton hits used to identify (e, e′n) and

(e, e′p) events are required to be within a window of −3 ns < th < 5 ns, where th

denotes the mean time of a hit. This cut removes most of the accidental hits. Figure

8.20 shows a typical mean time spectrum for the proton hits and neutron hits over the

range of −7 ns < th < 15 ns. Figure 9.11 shows the mean time spectrum for (e, e′p)

and (e, e′n) events, tev = 1
n

∑n
i=1 tih − 0.8 ns. The 0.8 ns appearing in the definition

above is to compensate the shift of the mean time spectrum of (e, e′n) as already

described in Section 8.8.

To check if the hit mean time cut enforced before particle identification had impact

on the measured asymmetry, we have also measured the asymmetry in a different

approach. In that approach, instead of applying mean time on hits at −3 ns < th <

5 ns first, then doing particle identification, and then deriving the asymmetry, the

data have been analyzed in a way that we only cut out hits due to gammas (th > −6

ns), do the particle identification using all the remaining hits, and then derive the

asymmetry in the event mean time window of −3.8 ns < tev < 4.2 ns. The measured
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(e, e′N) asymmetries in both approaches agree within 1%.

Events in the mean time window of tev < −4 ns and tev > 10 ns (“wings”)

are mostly due to the accidental background events and might have an asymmetry

different from that of the true (e, e′p) and (e, e′n) events across the mean time window

of −3.8 ns < tev < 4.2 ns. Since the accidental background event distribution stretches

across the entire mean time spectrum, the asymmetry for events within the mean time

window of −3.8 ns < tev < 4.2 ns must be corrected. For (e, e′n) events in particular,

since the true (e, e′n) event rate is very low and most events have only one hit in

the detector, the neutrons from any source can accidentally fall into the mean time

window of −3 ns < th < 5 ns. This effectively dilutes the measured (e, e′n) asymmetry

and a correction must be made.

In order to correct the measured (e, e′p) and (e, e′n) asymmetries, one needs to

determine how the accidental background events are distributed across the nucleon

mean time peak of −3.8 ns < tev < 4.2 ns, and what is the asymmetry of these

background events. In order to determine the relative strength of the accidental

events in the region of −3.8 ns < tev < 4.2 ns, a proper fit has to be performed based

on the accidental event distributions in the wings of the mean time spectra.

One must account for the fact that the TDC is unable to accept another event

during its conversion time. After being issued a start (from a coincidence signal with

HMS timing), each TDC channel can only process 1 neutron detector stop. After the

first start has arrived, the TDC must be converted and read out before any more stops

can be accepted. Assuming that there is a uniform random stop rate, R, then the

probablity that at least one false stop is registered before time tn is just Rtn = Rn∆t,

where ∆t is the channel’s width and n is the channel number. Taking tR as the full

scale range of the TDC, if RT 
 tR
∆t

= N∆t
∆t

, where T is the total measurement time

(this just insures that the average channel count is significantly non-zero so that one

does not need to worry about the statistical fluctuations), then the population of the
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channel tn is approximately:

RT

N
− Rn∆t. (9.28)

We recognize the first term as just naive average counts anticipated per channel. The

second term shows a depletion of counts at longer times which is just proportional

to the total chance of a prior stop. With a typical bar rate of 50 kHz during E93-

026, R∆t � 5 × 10−3, so a uniform background is almost uniformly recorded. Now

to extrapolate the “uniform” background under a “true” peak we assume that the

second term continues to be proportional to the total rate:

R = Runiform + Rtrue. (9.29)

This explains the disparity in the height of uniform background before and after the

“true” peak. This can be clearly seen in the mean time spectrum of the (e, e′n) in

Figure 9.11. Under the approximation that the accidental event rate drop in the

right wing compared with that of the left wing is linearly proportional to the number

of e − N scattering events between the two wings, the accidental background event

distribution under the nucleon mean time peak can be determined. The accidental

background event distribution in the first order approximation is then replaced by a

better estimate and the iteration continues until the accidental background distribu-

tions between two consecutive steps become identical. Figure 9.11 shows the result

of the accidental background distribution for (e, e′n) across the mean time window

of −4 ns < tev < 12 ns. The result shows that the ratio of the accidental events to

the true neutron events (α) in the mean time window of −3.8 ns < tev < 4.2 ns is

α=3.95%.

To determine the accidental background asymmetry, only the accidental events

in the left wing of the mean time spectra were used. The accidental events in the

right wing were not used for two reasons: (1) the asymmetry of the (e, e′N) peak

which appeared earlier than the right wing has effectively impacted the asymmetry
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of the right wing events; (2) the radiative tail of the (e, e′N) scattering also affects

the asymmetry of the right wing events. The asymmetry for events in the mean time

window of −7 ns < th < −5 ns (left wing) is determined to be 1.46% ± 2.72% (target

and beam polarization normalized) with the same event selection criteria used for

(e, e′n) events within −3.8 ns < tev < 4.2 ns. Based on this number, the asymmetry

of the accidental background is essentially zero.
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Figure 9.11: Measured mean time spectra for (e, e′p) (left) and (e, e′n) (right) events.
A fit to the accidental background distribution in terms of mean time for (e, e′n) is
also shown.

With the above results and the measured raw experimental asymmetry of (e, e′n)

listed in Section 8.12, the accidental background correction causes the measured

(e, e′n) asymmetry to increase by a factor of 1
1−α

=1.0411, and the asymmetry er-

ror also increases by a factor of 1.0411 [144].

The same technique can be used to fit the accidental background distribution for
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the (e, e′p) events. The rate ratio of the accidental to true (e, e′p) under −3.8 ns

< tev < 4.2 ns is 2.2%, resulting in a 2.2% correction.

9.6 Results on AV
ed of (e, e′n)

We have obtained raw experimental asymmetries and the dilution factors, and we also

have estimates for the proton contamination corrections, the accidental background

corrections and the radiative corrections. It is then possible to correct the raw ex-

perimental asymmetry ε/Pt/h and derive the electron-deuteron vector asymmetry

AV
ed.

The AV
ed of D(e, e′n) is related to the corrected raw experimental (e, e′n) asymme-

try (ε/Pt/h)corr by:

(ε/Pt/h)corr = AV
ed · f, (9.30)

where Pt, h and f are target (deuteron) polarization, beam polarization and dilution

factor. The radiative correction factors were linearly interpolated from the correction

factors for Gn
E = 0.5 × (Gn

E)Galster and Gn
E = (Gn

E)Galster. An iterative procedure can

be used to choose the correct correction factors for the measured AV
ed. We fit the

value of Gn
E assuming the radiative correction factor for Gn

E = (Gn
E)Galster. We then

iterated once using the radiative correction factor for Gn
E = 0.89 × (Gn

E)Galster.

The resulting (e, e′n) experimental electron-deuteron vector asymmetries along

with measurement uncertainties in terms of four kinematics variables are shown in

Table 9.8. Errors listed are statistical errors only. The relative statistical uncertainty

of the experimental asymmetry measurement is ∆AV
ed/A

V
ed=14.6%.

9.7 Kinematic Uncertainty of Gn
E

The extraction of Gn
E from the E93-026 data is affected by the uncertainties of the

selected kinematical variables. One of the kinematic variables we have used to extract
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Table 9.8: The E93-026 measured AV
ed of (e, e′n) in four kinematical variables.

Variable Range AV
ed Range AV

ed

E′ 2.350 – 2.400 .02070±.01965 2.450 – 2.500 .04044±.00889
(GeV) 2.400 – 2.450 .04254±.00864 2.500 – 2.550 .07218±.03100

ypos -40 – -20 .04199±.01564 0 – 20 .02903±.00970
(cm) -20 – 0 .04903±.00980 20 – 40 .04682±.01424

0.00 – 0.01 .01214±.04260 0.06 – 0.07 .06444±.01722
0.01 – 0.02 .05970±.02179 0.07 – 0.08 .03692±.01891

θnq 0.02 – 0.03 .05107±.01705 0.08 – 0.09 .02129±.02111
(radian) 0.03 – 0.04 .03956±.01572 0.09 – 0.10 .04805±.02416

0.04 – 0.05 .02812±.01553 0.10 – 0.11 .03508±.02825
0.0 – 0.06 .04030±.01613

θcm
np 164o − 172o .03786±.01372 180o − 188o .05409±.01010

172o − 180o .03312±.00938 188o − 196o .03619±.01691

Gn
E is the neutron emission angle with respect to q (θnq). θnq is determined relative to

the direction of q, particularly the in-plane angle of q (θq). θq is calculated based on

the incident electron energy (E), the scattered electron energy (E′) and the electron

scattering angle (θe). Although the beam and HMS energy measurement uncertainties

are small and the angular resolution of the HMS are very good (see Chapter 6), any

deviation in the actual values of E, E′ and θe can lead to an uncertainty on θnq, as

well as the measured asymmetry AV
ed and the neutron electric form factor Gn

E.

The uncertainty on θq due to the beam energy measurement uncertainty, the

uncertainties on scattered electron energy and electron scattering angle measurements

can be calculated for both elastic and quai-elastic scattering. In the case of elastic

scattering, the relationship between θq, E, E′ and θe is given by:

θq = tan−1

(
E′ sin θe

E − E′ cos θe

)
≡ tan−1[f(E, E′, θe)]. (9.31)

The error propagation on θq due to the uncertainties of E, E′ and θe can be written

as:

δθq =
∂θq

∂E
δE +

∂θq

∂E′ δE
′ +

∂θq

∂θe
δθe =

∂θq

∂f

[
∂f

∂E
δE +

∂f

∂E′ δE
′ +

∂f

∂θe
δθe

]
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=
−E′ sin θeδE + E sin θeδE

′ + (EE′ cos θe − E′2)δθe

(E − E′ cos θe)2 + (E′ sin θe)2
. (9.32)

At the quasi-elastic peak, where E=2.721 GeV, E′=2.453 GeV and θe = 15.73o,

using the kinematic uncertainties of δE=10 MeV, δE′=10 MeV and δθe = 0.1o, this

results in an uncertainty on θq of δθq=0.0116 radian, 0.0129 radian and 0.0012 radian,

respectively.

For the case of quasi-elastic scattering, the error propagation on θq due to the

uncertainty of E, E′ and θe can be estimated in Monte Carlo simulations by changing

the input values of E, E′ and θe by 10 MeV, 10 MeV and 0.1o, respectively. The

average θq were obtained for each case. Figure 9.12 shows the θq distributions at

the following kinematics: (1) E=2.721 GeV, E′=2.453 GeV and θe = 15.73o; (2)

E=2.711 GeV, E′=2.453 GeV and θe = 15.73o; (3) E=2.721 GeV, E′=2.443 GeV and

θe = 15.73o; and (4) E=2.721 GeV, E′=2.453 GeV and θe = 15.63o. By comparing

the average value of θq, the result shows that a 10 MeV uncertainty on E results in a

0.011 radian uncertainty on θq; a 10 MeV uncertainty on E′ results in a 0.013 radian

uncertainty on θq and a 0.1o uncertainty on θe results in a 0.001 radian uncertainty

on θq. The overall θq uncertainty due to the uncertainties on E, E′ and θe is the

resultant quadrature sum of �0.017 radian.

By using the grid calculations of AV
ed from Arenhövel, the uncertainty on AV

ed due

to the uncertainties of E (10 MeV), E′ (10 MeV) and θe (0.1o) can be estimated with

the aid of Monte Carlo simulation. The average AV
ed was obtained by shifting each

variable by its uncertainty. The averaging procedure was performed for each variable

separately. The results were compared to the results presented in Section 9.3 and the

uncertainty for the average AV
ed caused by each variable’s uncertainty was obtained.

The results are summarized in Table 9.9.

Table 9.9: AV
ed uncertainty due to kinematic uncertainties.

∆E = 10 MeV ∆E′ = 10 MeV ∆θe = 0.1o Overall
∆AV

ed

AV
ed

1.14% 1.33% 0.11% 1.8%
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Figure 9.12: Kinematic uncertainties on the in-plane angle of q vector (θq). The plot
shows the θq distribution at the quasi-free kinematics (top left) and the effects on θq

due to a 10 MeV change in E (top right), a 10 MeV change in E′ (bottom left) and
a 0.1o change in θe (bottom right).
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In Monte Carlo, we have modeled the effect of the offset in our time difference

calibration by a shift in the neutron detector position. Figure 9.13 illustrates how

AV
ed distributions in θnq were affected by shifting the neutron detector ∼ 5.0 cm in

horizontal toward the forward direction of q for Gn
E = (Gn

E)Galster. The result indicates

that this offset will result in additional ∼ 1.3% uncertainty on AV
ed.
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Figure 9.13: The effect on AV
ed due to an offset in the neutron detector horizontal

position.

9.8 The Electric Form Factor of the Neutron

9.8.1 Extraction of Gn
E from the E93-026 Data

In this section, we will compare our experimental asymmetry to the theoretical pre-

dictions and extract the neutron charge form factor. We have compared our data

with the full calculations (N+MEC+IC+REL) of Arehhövel [113] with various as-

sumptions for Gn
E and the dipole parameterization of Gn

M . To account for the Q2

dependence of Gn
E, the Galster model [52] of Gn

E has been used. To evaluate how

well the data agree with the Gn
E models, we have fit the data to a set of Galster

parameterizations with a (see Equation 4.9) as a free parameter, and the value of a
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was determined by minimizing the χ2 between data and theoretical predictions.

A simulation of the theoretical distribution of the electron-deuteron vector asym-

metry AV
ed as a function of E′, ypos, θnq and θcm

np for three scaled Galster parameter-

izations (a =0.5, 1.0 and 1.5) were discussed in Section 9.3. We can then average

AV
ed over E′, ypos, θnq and θcm

np bins and plot the averaged AV
ed as a function of these

kinematical variables for a =0.5, 1.0 and 1.5 respectively. Figure 9.14 shows the E′,

ypos, θnq and θcm
np dependence of the detector acceptance averaged AV

ed for a =0.5, 1.0

and 1.5, along with the final results of AV
ed from E93-026.
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Figure 9.14: Comparison between data and theoretical models of AV
ed. The plot

shows theoretical AV
ed in scaled Galster parameterizations of Gn

E with a=0.5 (bottom
line), a=1.0 (middle line) and a=1.5 (top line). The experimental AV

ed from E93-026
data are shown with statistical errors. The comparison was done in four kinematical
variables.
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The detector acceptance averaged theoretical values of AV
ed at different value of a’s

can be obtained by linearly interpolating the existing curves of a =0.5, 1.0 and 1.5.

Therefore, for any value of a, we can have the theoretical distributions of AV
ed in terms

of one of the selected kinematical variables. The E93-026 measured electron-deuteron

vector asymmetries can then be compared with Galster parameterizations with a as

a free parameter, and determine a by minimizing the χ2 of the fit between data and

model:

χ2 =

∑4
i=1

{(
AV

ed

)data
−
(
AV

ed

)model
}2

(∆AV
ed)

2 . (9.33)

Figure 9.15 shows the distributions of χ2 in E′, ypos, θnq and θcm
np for Galster param-

eterizations with a as a free parameter. The χ2 was calculated with a step size for a

of 0.01.
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Figure 9.15: χ2 of the comparison between data and full calculations. The scaled
Galster parameterization with a as a free parameter was used. The fit was done in
variable E′, ypos, θnq and θcm

np .

The values of parameter a where the minimum χ2 was found in selected kine-

matical variables are listed in Table 9.10. The errors on the parameter a listed in

Table 9.10 reflect the curvature of the χ2 distributions in selected variables. Under
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the assumption of unbiased and normally distributed observations, we can find the

confidence intervals for a by seeking the intersection of the parabolic function χ2(a)

by the straight line χ2=χ2
min+1.0. The intersection distance from minimum χ2 leads

to one standard deviation intervals for a, as shown in Figure 9.15. The resulting

standard deviation of a for selected kinematical variables were listed in Table 9.10.

The average relative uncertainty of a was determined to be ∆a
a

=13.3%.

Table 9.10: The E93-026 measured Gn
E in four kinematical variables.

Variable Gn
E

E′ (0.90 ± 0.12) × (Gn
E)Galster

ypos (0.88 ± 0.11) × (Gn
E)Galster

θnq (0.88 ± 0.11) × (Gn
E)Galster

θcm
np (0.89 ± 0.11) × (Gn

E)Galster

To investigate the possible bin size dependence of the AV
ed for a selected variable,

we have rebinned AV
ed into 11 bins in terms of θnq. The results are shown in Figure

9.16. The value of Gn
E obtained from these recombined data points is still Gn

E =

0.88× (Gn
E)Galster. The result implies that the obtained AV

ed is independent of the bin

size of θnq.
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Figure 9.16: Dependence of the AV
ed on θnq bin size.
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The results for Gn
E extracted from AV

ed as function of the four selected kinematical

variables are consistent, which is what one would expect. The resulting Gn
E value at

Q2 = 0.5 (GeV/c)2 is Gn
E=0.89 ×(Gn

E)Galster = 0.04632 ± 0.00616 ± 0.00343, where

the first uncertainty is statistical and the second is systematic.

The systematic uncertainty includes (in the order they appear in Table 9.11): (1)

the Gn
M measurement uncertainty (

∆Gn
M

Gn
M

� 3.3% [16]); (2) the uncertainties of the

target [103] (∆Pt

Pt
) and beam (∆h

h
) polarizations; (3) the uncertainties of the yield

normalization factors for deuterim (∆ηD

ηD
), helium (∆ηHe

ηHe
) and nitrogen (∆ηN

ηN
); (4) the

Monte Carlo statistical uncertainty of the dilution factors (∆f
f

); (5) the uncertainty of

the packing fraction measurements (
∆Pf

Pf
); (6) the Monte Carlo statistical uncertainty

of the radiative correction factors ((∆Rc
c

Rc
c

)int for internal and (∆Rc
c

Rc
c

)ext for external);

(7) the Monte Carlo statistical uncertainty of the theoretical AV
ed averaging; (8) the

kinematic uncertainties; (9) the uncertainty due to the neutron detector position

offset; (10) the cut dependence uncertainty of the asymmetry.

To determine the cut dependence of the AV
ed, we have obtained AV

ed value subjected

to several sets of cut other than the standard cut set (|W − 0.939| < 0.050 GeV,

|ypos| < 40 cm, and θnq < 0.110 radian). The results of the AV
ed are shown in Figure

9.17 along with the applied cut set. A 2.4% cut dependence systematic uncertainty

on AV
ed is obtained.

From the systematic uncertainty of AV
ed to determine the systematic uncertainty

of Gn
E, we need to calculate the derivative of

dGn
E

dAV
ed

. Using the average values of AV
ed for

three scaled Galster parameterizations (a=0.5, 1.0 and 1.5) subjected to the standard

cut set, a polynomial fit to AV
ed as function of Gn

E was carried out. As a result, AV
ed

and Gn
E have the relationship of: AV

ed(G
n
E) = −1.8968(Gn

E)2 +1.1388Gn
E − 0.00739, as

shown in Figure 9.18. At E93-026 measured Gn
E value, this yields

dGn
E

dAV
ed

=1.0383. With(
∆AV

ed

AV
ed

)
syst

=7.3%,
AV

ed

Gn
E

=0.88 at the E93-026 measured Gn
E value, and

∆Gn
M

Gn
M

= 3.3%,

we obtain
(

∆Gn
E

Gn
E

)
syst

=



[(

∆AV
ed

AV
ed

)
syst

dGn
E

dAV
ed

AV
ed

Gn
E

]2

+
(

∆Gn
M

Gn
M

)2



1/2

= 7.4%.

The statistical uncertainty of Gn
E can be calculated by multiplying the statistical
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Figure 9.17: Cut dependence of the AV
ed. All AV

ed values were normalized to the AV
ed

value subjected to the standard cut set (the filled square).
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uncertainty of the AV
ed by the ratio of AV

ed over Gn
E at the E93-026 measured Gn

E value.

The statistical uncertainty of AV
ed is

(
∆AV

ed

AV
ed

)
stat

=14.6% (see Section 9.6). This gives(
∆Gn

E

Gn
E

)
stat

=
(

∆AV
ed

AV
ed

)
stat

dGn
E

dAV
ed

AV
ed

Gn
E

= 13.3%.

Table 9.11 summarizes contributions from various sources of errors and the result-

ing systematic and statistical uncertainties on AV
ed and Gn

E.

Table 9.11: AV
ed and Gn

E Measurement Uncertainties.

Sources Contributions
∆Gn

M/Gn
M 3.3%

∆h/h 1.0%
∆Pt/Pt 5.0%
∆ηD/ηD = ± 10% 2.8%
∆ηHe/ηHe = ± 10% 1.5%
∆ηN/ηN = ± 10% 1.4%

Systematic ∆f/f 0.4%
∆Pf/Pf 1.7%
(∆Rc

c/R
c
c)int 0.7%

(∆Rc
c/R

c
c)ext 0.5%

AV
ed Averaging 0.4%

Kinematic Uncertainties 1.8%
ND Position Offset 1.3%
Cut Dependence of AV

ed 2.4%
(∆AV

ed/A
V
ed)syst 7.3%

(∆Gn
E/Gn

E)syst 7.4%
Statistical (∆Gn

E/Gn
E)stat 13.3%

9.8.2 Comparison to Theoretical Predictions

The comparison between the E93-026 measured value of Gn
E and various theoretical

predictions is shown in Figure 9.19. The figure shows that the prediction for Gn
E from

vector meson dominance model of Höhler et al. [24], the bag model of Lu et al. [44]

with bag radius of 1.0 fm and the G-K model [37] with the inclusion of φ exchange

agree with our data well within our measurement uncertainties. All other models

overestimate the value of Gn
E at the Q2 of this experiment.
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Figure 9.19: Comparison between the E93-026 data and various theoretical predic-
tions. Our data is in good agreement with the prediction from Höhler et al., Lu et
al. and the G-K model (with Φ), while inconsistent with the other predictions.

9.8.3 Comparison to Data From Unpolarized Experiments

The value of Gn
E extracted from this experiment is compared with the Gn

E data from

unpolarized e − d elastic scattering [38] in Figure 9.20. The data from elastic scat-

tering relies heavily on the deuteron wave function which depends on the choice of

NN-potential. The results obtained from Argonne V14 [82] potential and Paris [81]

potential are most consistent with our results.

9.8.4 Comparison to Data From Polarized Experiments

The E93-026 measured Gn
E value is compared with the results of the Gn

E data from

polarized experiments in Figure 9.21. Different reaction mechanisms have been used

to measure Gn
E. As Q2 increases, the discrepancy between the results from experi-

ments using different reaction mechanisms appears to decrease. Results from Pass-

chier [72] and Herberg [66] have been analyzed with Arenhövel’s full calculations

(N+MEC+IC+REL). Results obtained by Rohe [71] have used a PWIA analysis.
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Figure 9.20: Comparison between the E93-026 data and the data from unpolarized
experiments. The curves represent Gn

E extracted from unpolarized elastic scattering
data [38] with various choices of NN-potentials.

Results obtained by Becker [70] have included the effects of FSI.

The E93-026 result is consistent with the existing data. All data from polarized

experiments are in good agreement with the Galster [52] parameterization of Gn
E. A

fit to world supply of Gn
E polarized data using the scaled Galster parameterization

with a as free parameter found the best fit at a = 0.968 ± 0.072.

Taking the data from the polarized experiments which took into account of the

reaction mechanisms beyond PWIA (thereby excluding Rohe and Eden) and the

slope of < (rn
E)2 >= −0.113 ± 0.003 ± 0.004 fm2 (or

(
dGn

E

dQ2

)
Q2=0

= −1
6

< (rn
E)2 >=

0.924 ± 0.025 ± 0.033) measured by Kopecki [14], we have made a two-parameter

fit of Gn
E with the parameterization of Platchkov [38]. The results of the fit are

a = 0.95 ± 0.07 and b = 5.0 ± 1.0, and the resulting parameterization, as shown in

Figure 9.21, is named Virginia parameterization:

Gn,V irginia
E = − 0.950µτ

1 + 5.0τ

1(
1 + Q2

0.71

)2 , Q2
[
(GeV/c)2

]
. (9.34)
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Figure 9.21: The E93-026 data point and the data from polarized experiments. The
data from E93-026 is the result of this thesis; the data from NIKHEF is from [72];
the Mainz deuterium data are from [66]. Gn

E in these three sets of data is obtained
using the full calculations of Arenhövel. The Bates deuterium data from [65] has
been extracted from a PWIA calculation. The lower Q2 Mainz 3He data is from [70]
and has been corrected for the effects of FSI. The higher Q2 Mainz 3He data is from
[71] and has been extracted from PWIA analysis. The solid curve is the Virginia
parameterization of Gn

E resulting from a fit to all data points except higher Q2 Mainz
3He data. The shaded area indicates the uncertainty of the Virginia parameterization.
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9.9 Impact of Gn
M on Gn

E Measurements

The theoretical calculations from Arenhövel have used the dipole model of the neutron

magnetic form factor Gn
M . Recently, the Gn

M has been measured via the ratio of cross
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Figure 9.22: Comparison between the measured Gn
M and the dipole model. Data were

normalized to the dipole model.

sections of D(e, e′n) to D(e, e′p) at various momentum transfers at Mainz [15] and

Bonn [16]. Figure 9.22 summarizes their results. Both experiments show a significant

deviation of Gn
M from the dipole model.

From the Bonn measurement, we took the weighted average of Gn
M values at

Q2 = 0.417 (GeV/c)2 and Q2 = 0.605 (GeV/c)2 to obtain the Gn
M value at Q2 = 0.5

(GeV/c)2. We have Gn
M = (1.120±0.036)×GD, where GD is the dipole parameteriza-

tion of Gn
M . For the Mainz measurement, we took their measured Gn

M at Q2 = 0.504

(GeV/c)2, that is Gn
M = (1.032 ± 0.012) × GD.

Calculations were performed by Arenhövel for AV
ed using Gn

M = (1.091±0.035)×GD

and Gn
M = (1.032±0.012)×GD and for Gn

E = 0.5×(Gn
E)Galster, Gn

E = (Gn
E)Galster and

Gn
E = 1.5× (Gn

E)Galster. We went through the same procedure as described in Section

9.3 to obtain the detector acceptance averaged AV
ed. Figure 9.23 shows the result of

the detector acceptance averaged AV
ed in θcm

np for three Gn
E and two Gn

M values.

The result indicates that AV
ed is directly proportional to Gn

M values, which can be
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Figure 9.23: The Gn
M dependence of the AV

ed for three Gn
E scaled Galster parameteri-

zations.

expected from Equation 5.4. Based on the Gn
E result for Gn

M = µNGD given in the

previous sections, the E93-026 measured Gn
E would be Gn

E = 0.86×(Gn
E)Galster for Gn

M

measured by Mainz and Gn
E = 0.82 × (Gn

E)Galster for Gn
M measured by Bonn. Since

we have used the larger error bars of Gn
M from Bonn to calculate the uncertainty on

Gn
E, the relative measurement uncertainties for Gn

E could only improve if the Mainz

Gn
M measurements are the correct ones.

9.10 Reaction Mechanism Dependence of Gn
E

We have compared our data with the full calculations (N+MEC+IC+REL) of Arenhövel

and extracted the value of Gn
E. To investigate the reaction mechanism effects on Gn

E,

we have also extracted Gn
E by comparing our data with the PWIA model including

relativistic correction.

The procedures to extract Gn
E in the PWIA analysis are the same as for the full

calculations. First, the electron-deuteron vector asymmetries in PWIA model were

averaged over the E93-026 detector acceptance using the PWIA cross sections in four

selected kinematical variables with radiative effects being turned off. Second, all cor-
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rections including the background correction, the proton veto inefficiency correction,

the radiative correction (internal and external corrections were treated separately as

well) were applied to data. Finally, the data were compared to the detector accep-

tance averaged AV
ed of the PWIA and the value of Gn

E was obtained by minimizing

χ2.

Figure 9.24 shows comparison between E93-026 data and the detector acceptance
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Figure 9.24: Comparison between data and theoretical AV
ed in the PWIA analysis.

The plot shows theoretical AV
ed in scaled Galster parameterizations of Gn

E with a=0.5
(bottom line), a=1.0 (middle line) and a=1.5 (top line). The experimental AV

ed from
E93-026 data are shown with statistical errors. The comparison was done in four
kinematical variables.

averaged AV
ed of PWIA model in four kinematical variables. The results of Gn

E in

four selected kinematical variables are listed in Table 9.12. The resulting Gn
E value in
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Table 9.12: The E93-026 measured Gn
E in the PWIA analysis.

Variable Gn
E

E′ (0.79 ± 0.10) × (Gn
E)Galster

ypos (0.77 ± 0.10) × (Gn
E)Galster

θnq (0.77 ± 0.10) × (Gn
E)Galster

θcm
np (0.77 ± 0.10) × (Gn

E)Galster

the PWIA analysis is Gn,PWIA
E [Q2 = 0.5 (GeV/c)2] = 0.77 × (Gn

E)Galster = 0.04007 ±

0.00533(stat.) ± 0.00297(syst.). Comparing to Gn
E obtained in full calculations, the

correction to Gn
E in PWIA analysis due to the reaction-mechanism effects is about

13%.
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Chapter 10 Summary and Conclusions

We have described the first polarized beam and polarized target experiment in Jef-

ferson Lab’s Hall C, “A Measurement of the Electric Form Factor of the Neutron

(E93-026)”. The experiment has been designed based on the mechanism of spin-

dependent quasi-elastic electron-deuteron disintergration and was carried out in the

Fall of 1998.

The E93-026 data has been analyzed and the experimental asymmetries were

determined by measuring the difference in the cross sections for opposite signs of the

product of the beam and target polarizations. These asymmetries were determined

as a function of four kinematical variables chosen for their sensitivity to the neutron

charge form factor and differing sensitivity to the experimental apparatus.

A Monte Carlo simulation model, based on MCEEP, has been used for optimizing

event selection criteria, modeling the dilution factors to account for the contribu-

tions from non-deuterium target materials, and estimating the effects of radiative

corrections.

The measured asymmetries in conjunction with the modeled dilution factors and

the measured beam and target polarizations were used to calculate the experimental

spin-correlation parameter AV
ed. Comparisons between the E93-026 experimental AV

ed

and the E93-026 detector acceptance averaged theoretical AV
ed were performed and

the value of the neutron electric form factor was extracted. The comparisons were

done for two reaction mechanisms: the PWIA analysis with relativistic correction and

the full model (N+MEC+IC+REL) calculation of Arenhövel, and using the scaled

Galster parameterization of Gn
E. The resulting Gn

E in the full model is Gn
E[Q2 = 0.5

(GeV/c)2] = 0.04632 ± 0.00616(stat.) ± 0.00343(syst.). The difference between the

analysis based on the full model and that based on PWIA is about 13%.

We have shown in this thesis that the E93-026 result on the neutron electric form
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factor is comparable in statistical and systematic precision to all other measurements.

Combining the world data on Gn
E from polarized experiment data (JLAB E93-026,

NIKHEF, Mainz and Bates) results in Gn
E = −(0.968 ± 0.072) × µτ

1+5.6τ
1(

1+ Q2

0.71

)2 . A

two parameter fit to world supply of polarized experimental data (analyzed beyond

PWIA) on Gn
E results in the Virginia Parameterization of Gn

E:

Gn,V irginia
E = − 0.95µτ

1 + 5.0τ

1(
1 + Q2

0.71

)2 , Q2
[
(GeV/c)2

]
. (10.1)

This new data point does not reinforce the impression given by the lower Q2

polarized deuteron data that the Nijmegen potential solution for A(Q2) was favored.

Neither does it support the exclusion of the Φ in the G-K model.

The work reported here is a state of the art measurement of the neutron charge

form factor. It can be used to improve our understanding of the nucleon structure.

However, further investigations are required. E93-026 is scheduled to resume data

taking in June, 2001. Additional data will further reduce the statistical measurement

uncertainties at Q2 = 0.5 (GeV/c)2. Efforts will be made in the future runs to further

reduce the systematic uncertainty of the measurements as well. Measurements at

Q2 = 1.0 (GeV/c)2 will also be completed with good accuracy. The kinematics and

the expected measurement uncertainties for these measurements are listed in Table

10.1 [145]. We expect to have a more accurate assessment of Gn
E after the completion

of the E93-026 2001 run.

Table 10.1: The E93-026 scheduled Gn
E − 2001 measurements.

Q2(GeV/c)2 E0(GeV) θe Run Time(hr)
δAV

ed

AV
ed

0.5 2.721 15.70o 268 6.57%
1.0 4.230 14.53o 622 10.06%
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Appendix A D(e, e′n) Simulation Input

1000000 number of tries

4,4,4,4,4,4 for default ranges

939.5731,0,2.2 mejectile,zeject,embound

2721.,0.,0.,2453.,-15.73,0.,756.,61.56,0. kinematics

10.0,-10.0,50.0,-50.0 momentum acceptances

’E’,’R’,54.,140.,420.,520. nominal solid angles

0.0452,100.,1. luminosity,time,specfac

45.,2.2,2.2 for singles only

2.,1.,1.05,2,0 targ: a,z,dens,model,eloss?

-0.0075,0.0075 targ: cell start/end

1.66,4.03 drift to aperture

0.8,0.,0.,0.,0. beam: pol,vert,disp,df,tofw

0.,0.,0.,0.,0. beam: FWHM in MeV,mr,mr

0.,0.,0.,0.,0. beam: offset in MeV,mr,mr

’E’,0.020,0.020 beam raster

’E’,F,1,-90.,0.,0.,0. ELECTRON ARM

’NTU’,1,0.,’thetphie.ntu’

’P’,F,3,-90.,0.,0.,0. HADRON ARM

’DFT’,403. drift to front face of coll.

’TOF’,4.03 ToF marker

’NTU’,1,0.,’thetphih.ntu’

0 global cuts

0 specific cuts

1 plots

’NTU’,1,42,1,2,...,126,128,’mceep.ntu’

F,T T=field on, T=neutron

0.095 ND single layer eff.

5 num. of ND layers

80.,80.,20.,0. x-y dimension, x-y shift

80.,80.,20.,0.

80.,80.,20.,0.

80.,80.,20.,0.

50.,80.,20.,0.
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Appendix B Good Run List at Q2=0.5

(GeV/c)2

Table B.1: A list of good runs at Q2 = 0.5 (GeV/c)2.

Run Date Ncoin Pt Charge h Ib PS Integrity
Number [1998] [k] [%] [µC] [%] [nA] Factor

21816 09/01 198.1 17.0 100.8 76.43±0.73 85.5 2
21817* 107.5 19.3 55.3 96.2 roc2
21820 200.9 24.0 102.4 89.1
21821 46.5 23.0 24.1 71.1
21822 185.3 23.0 94.7 85.0
21823* 147.2 22.7 75.5 80.8 roc2
21824* 14.7 23.1 7.5 94.1 roc2
21825 222.7 22.8 113.5 84.5
21826* 46.8 22.6 24.4 77.4 roc2
21827 203.6 22.3 102.2 84.2
21828 203.6 22.0 104.4 91.7
21829 218.5 21.6 111.9 90.7
21830 201.1 21.3 103.0 95.0
21831 09/02 213.9 21.0 110.4 80.1
21832 206.3 20.8 106.4 92.7
21833 200.0 20.4 102.9 73.3
21834 204.4 20.1 104.8 91.6
21835 200.8 19.8 102.9 97.7
21836* 147.1 19.6 76.5 92.7 roc2
21838 203.0 22.2 104.3 88.9
21839 198.9 20.7 102.8 79.8
21840* 1.4 19.8 0.9 94.5 roc2
21849 200.7 21.0 102.7 95.6
21850 119.8 19.8 61.7 83.5
21851 199.1 19.7 102.6 86.7
21852 203.1 19.5 106.2 93.2
21853 205.4 19.3 105.7 99.4
21854 239.2 18.3 123.7 99.8
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21855 199.3 18.3 102.3 76.43±0.73 89.8 2
21856 09/02 203.5 18.2 104.9 96.8
21857 207.7 18.0 107.6 96.6
21858 199.2 17.4 102.9 97.2
21859 230.0 17.2 118.4 92.6
21860* 27.6 17.5 15.2 98.3 HMS dipole
21867* 193.6 20.0 14.8 55.8 SEM
21868* 197.4 17.8 101.9 92.3
21869* 19.2 17.3 10.4 80.1
21870 197.7 17.1 101.9 96.2
21871 198.2 17.0 102.1 90.0
21872 195.9 16.9 100.5 86.0
21873 196.8 16.7 102.0 83.4
21874 27.6 16.5 14.5 81.1
21875 195.5 16.5 100.2 84.6
21876 193.7 16.5 100.0 81.0
21881 123.1 - 4.4 60.1 95.6 1
21882* 71.6 - 5.7 41.0 95.3
21885 281.2 -13.0 140.0 94.1 4
21886 256.0 -13.0 122.3 81.1 400,000
21887 277.0 -20.0 132.2 83.8 40,000
21888 280.3 -21.8 138.6 87.8 4
21889 279.7 -22.3 138.6 81.8
21890 280.1 -22.3 139.0 87.3
21891 281.0 -22.5 138.9 88.5
21892* 107.4 -22.5 53.8 67.7 MCC
21893* 69.9 -24.7 52.3 86.5 ND
21894* 216.4 -22.6 159.7 89.0 ND
21895* 175.1 -24.7 130.0 94.3 ND
21898 09/03 280.1 -22.5 139.5 67.8
21899 279.4 -22.2 138.2 85.1
21900 280.0 -22.2 141.4 81.8
21901 281.0 -22.2 139.1 87.9
21902 281.2 -21.9 139.5 91.0
21903 280.3 -21.8 139.5 89.2
21904 279.3 -21.8 142.1 83.9
21905 279.4 -21.7 142.6 86.0
21906 279.7 -21.5 138.4 77.9
21907 279.8 -21.3 138.3 81.2
21908 280.9 -21.2 139.7 86.3
21909 280.6 -20.9 139.4 86.6
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21910 282.3 -21.7 139.6 76.43±0.73 87.4 4
21911 280.3 -20.5 140.8 92.7
21912 279.6 -20.3 140.3 86.7
21913 280.1 -20.1 140.9 87.9
21914 279.9 -19.9 141.6 87.0
21915 278.8 -19.7 140.1 85.0
21916 243.0 -19.4 121.9 84.4
21917 278.9 -19.3 140.5 86.5
21918 278.6 -19.1 140.3 84.1
21919 85.9 -18.8 43.7 67.4
21920 278.7 -18.7 140.8 88.4
21921 279.3 -18.4 240.3 88.3
21922 185.5 -18.2 93.8 86.6
21929* 201.7 12.6 101.7 86.2
21930* 55.1 16.5 27.5 94.9
21931 224.7 20.9 115.0 76.69±0.51 71.7
21932 278.1 23.7 142.2 79.3
21934 279.1 24.6 142.2 95.2
21936 278.8 24.8 142.1 84.9
21937 278.2 24.6 142.6 92.1
21938 279.0 24.3 142.3 90.7
21939 278.4 24.0 148.1 89.9
21940 278.9 23.7 143.0 94.5
21941 280.0 23.3 143.2 98.8
21942* 279.3 23.1 143.4 95.1
21943* 278.4 23.5 142.7 84.5
21944* 184.0 23.2 94.9 86.7
21945 09/04 278.9 23.5 140.8 93.0
21946 279.7 22.2 140.5 86.0
21947 280.8 22.4 144.4 92.4
21954 280.7 21.4 140.5 79.2
21955 280.9 21.0 140.9 92.8
21956* 233.7 20.9 131.7 78.0 hodo2 HV
21957 280.6 20.5 140.3 93.3
21958 280.1 20.2 140.5 92.2
21959 280.4 19.9 140.4 93.1
21960 280.0 19.7 144.1 94.6
21963* 132.5 19.6 66.8 96.8
21964 280.2 19.5 140.9 93.4
21965* 63.1 19.5 31.8 96.5
21967 280.4 19.1 141.0 85.5
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21968 166.3 19.2 83.8 76.43±0.73 91.7 4
21969 280.2 19.0 140.6 95.4
21970 279.5 18.7 140.2 85.8
21971 279.3 18.3 140.9 96.3
21972 280.1 18.0 141.0 94.4
21973* 106.7 17.9 61.9 83.7 DAQ
21975 277.7 17.7 140.1 92.0
21976* 153.2 17.7 76.9 95.0 dipole trip
21978 278.8 17.1 140.1 88.5
21979 278.5 17.0 140.4 92.8
21986 311.9 28.5 156.9 87.8
21987 280.4 28.5 142.0 90.0
21988 286.7 27.4 145.5 93.1
21989 293.7 25.5 148.9 95.0
21990 09/05 279.4 25.2 141.4 84.5
21991 186.3 24.8 94.5 93.2
21992* 236.0 24.6 123.8 87.6 hodo2 HV
21993* 272.8 24.9 138.4 87.4 hodo2 HV
21994* 280.2 26.3 142.6 92.3
21995 278.9 23.7 142.0 91.4
21996 279.4 23.5 141.8 89.5
21997 279.6 23.2 141.9 93.1
21998 279.5 23.0 142.1 93.6
21999 280.4 22.5 143.2 90.4
22000 279.5 22.3 141.8 93.7
22001 278.7 22.0 142.3 89.6
22002 280.5 21.6 143.0 93.8
22003 281.3 21.2 142.7 94.0
22004* 241.3 21.1 129.2 94.4 hodo2 HV
22005* 49.9 20.8 25.5 94.3
22006* 208.9 20.7 106.4 93.8 hodo2 HV
22007* 129.0 20.5 65.7 93.3
22008 247.9 20.2 126.2 84.2
22012 279.2 20.3 142.3 94.6
22013 278.7 19.7 142.1 92.3
22014 278.4 19.6 142.0 92.0
22015* 65.5 19.6 49.5 91.8 hodo2 HV
22019* 180.8 19.0 92.4 92.4 hodo2 HV
22020* 278.1 18.7 142.0 93.2 hodo2 HV
22046* 09/06 34.6 -22.0 21.7 77.49±0.51 92.4 hodo2 HV
22047 266.4 -22.5 145.9 90.1
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22048 266.6 -22.3 145.7 77.49±0.51 93.8 4
22049* 117.9 -22.0 65.4 95.5 ND HV
22050 278.8 -21.9 142.9 89.1
22051 279.1 -22.0 143.1 92.7
22052 278.1 -22.2 142.7 90.7
22053* 172.4 -22.0 91.8 93.7 roc3
22054 277.4 -22.3 142.3 89.3
22055 278.6 -22.3 143.0 94.2
22056 278.0 -22.3 142.7 91.3
22057 139.1 -22.3 71.7 92.6
22058 277.8 -22.3 148.9 92.6
22063 276.3 -21.2 142.5 88.0
22064 270.0 -21.2 144.4 90.4
22065* 59.1 -21.2 35.9 89.8 ND HV
22066 277.4 -21.0 142.8 92.2
22067 277.0 -20.8 142.5 91.5
22068 179.4 -20.9 94.7 91.2
22069 275.5 -20.5 142.0 74.2
22070* 137.8 -20.6 75.4 87.8 hodo2 HV
22071* 276.8 -20.6 143.0 90.3 hodo2 HV
22072* 274.1 -20.6 141.8 92.2 hodo2 HV
22073 276.5 -20.6 142.9 88.9
22074 276.0 -19.7 142.9 92.1
22075 277.5 -19.5 144.7 92.3
22076 274.9 -19.4 143.7 85.3
22077 277.2 -19.4 143.2 90.7
22078 275.4 -19.3 142.6 86.3
22079* 64.1 -19.4 39.0 89.8 hodo2 HV
22080 276.0 -18.7 143.2 91.6
22100* 09/09 50.2 11.7 25.0 78.07±0.42 108.6 raster sync
22101* 249.3 12.5 124.8 108.6 raster sync
22102 283.5 14.1 141.1 109.5
22103 283.8 14.5 143.4 110.4
22104 283.7 14.7 142.1 110.7
22105 283.7 14.5 143.0 110.5
22106 280.2 14.4 144.5 93.6
22111 275.9 17.9 139.4 87.5
22117 274.3 17.5 137.6 87.8
22118 274.6 16.8 137.8 89.6
22119 275.6 16.7 137.8 84.6
22120 275.6 16.6 138.0 85.0
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22121 191.4 16.3 95.8 78.07±0.42 88.4 4
22122 280.9 16.1 142.3 105.5
22123 280.4 16.1 141.3 107.2
22124* 281.1 16.1 141.3 107.6 hodo
22125* 341.5 8.8 162.5 86.5
22126 422.2 17.6 200.1 108.6
22127 423.2 20.6 206.1 104.7
22128* 423.4 20.9 202.2 106.2 FR off
22129 422.7 20.8 201.0 111.5
22130 423.0 19.8 201.3 107.7
22131 424.0 18.0 201.4 106.9
22132 423.3 16.0 200.7 106.8
22133 09/10 424.8 15.4 202.2 106.3
22135* 424.9 20.3 203.1 111.3
22136* 424.1 18.3 201.2 112.5
22137* 423.9 17.9 201.8 111.9
22138* 415.0 25.2 211.3 89.6
22139* 420.5 31.1 215.1 110.7
22140* 417.1 29.8 212.4 99.8
22141* 413.0 28.8 210.2 86.2
22142 421.6 27.5 215.9 110.6
22143 421.4 27.5 216.7 104.5
22144 421.9 26.2 216.4 113.4
22145 421.3 24.7 216.3 106.4
22146 108.6 24.3 55.4 112.2
22147 420.7 23.9 214.7 110.2
22148 420.4 23.4 215.1 109.0
22149 420.3 22.9 215.2 106.1
22150 421.0 22.5 215.9 110.8
22151 420.9 22.0 216.5 109.7
22152 421.0 21.6 216.8 107.7
22153 420.6 21.2 216.0 112.3
22154 421.5 20.5 215.7 111.6
22155 432.1 19.8 222.2 142.1
22156 429.6 19.5 222.0 131.9
22157 433.0 14.7 212.7 136.9
22158 64.1 21.5 31.8 124.8
22159* 434.5 24.1 214.0 139.0
22160 502.6 24.5 241.2 131.2 6
22161 502.6 23.2 241.2 139.1
22162 502.8 22.9 242.0 140.8
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22163 505.3 23.0 242.7 78.07±0.42 143.3 6
22164 505.4 21.4 242.4 144.4
22165 503.0 20.2 241.4 131.0
22166 502.3 20.0 241.1 131.2
22167 504.9 20.0 243.5 144.6
22168 502.9 19.5 242.6 126.5
22169 502.4 19.0 241.6 134.7
22170 09/11 504.7 18.0 243.0 141.8
22171 503.1 17.3 244.1 141.6
22172 629.3 17.0 302.3 142.0
22180 629.0 33.5 319.1 77.40±0.37 116.8
22181 630.3 31.2 322.3 115.0
22182 623.0 28.2 315.7 116.8
22183 306.3 27.2 153.4 109.3
22184 678.9 26.2 344.2 107.0
22185 636.3 24.8 316.9 107.7
22186 677.4 23.8 338.4 118.8
22192 676.9 22.7 337.4 112.9 8
22193* 663.8 22.4 335.5 114.8
22195 677.1 20.6 339.1 110.2
22196 677.7 20.0 340.5 115.7
22197 678.9 19.3 340.5 114.9
22198* 677.9 19.0 339.6 114.4 HV off
22199 676.5 -12.0 324.8 113.4
22200 412.2 -20.0 198.6 141.5
22201 675.9 -21.0 327.1 142.3
22202 675.6 -22.6 326.6 142.1
22203 675.4 -22.5 327.6 141.6
22204 675.2 -21.2 326.7 135.4
22205 676.8 -19.3 327.7 139.5
22206 676.4 -18.1 326.8 137.7
22207 676.2 -18.1 327.6 138.9
22209 09/12 674.6 -18.8 331.3 141.2
22212 674.4 -19.6 328.3 133.8
22213 676.7 -18.0 328.8 142.2
22218* 424.0 -10.4 205.2 78.22±0.50 117.7
22219 676.9 -22.9 328.2 138.3
22220 675.7 -25.9 327.6 140.7
22221 675.6 -26.4 327.4 144.4
22222 674.2 -26.4 327.6 144.8
22223 612.5 -27.0 298.5 134.0
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22229 673.8 -27.0 329.8 78.22±0.50 139.5 8
22230 298.5 -27.0 145.9 142.4
22233 672.3 -27.0 329.2 136.4
22234 673.1 -22.0 329.8 135.3
22235* 364.7 -21.4 179.2 119.6 low rate
22237 672.7 -19.8 328.8 140.9
22238 675.7 -19.0 330.0 138.5
22239 673.6 -18.0 329.5 139.4
22240 673.7 -27.2 351.5 135.3
22241 674.2 -24.0 350.7 136.1
22242* 673.0 -23.0 350.1 141.0 HV
22243 314.5 -22.5 164.7 124.0
22244 674.4 -22.6 351.6 128.2
22250 09/13 670.0 -31.5 328.8 140.0
22251* 210.2 -29.0 104.3 112.2 CHL crash
22260* 09/14 677.6 -17.8 329.1 92.9 SC off
22261* 677.2 -23.3 329.8 91.7
22262 475.0 -25.0 231.0 86.4
22264 640.7 -26.0 314.9 105.9
22265 672.3 -25.0 330.8 118.4
22266 211.8 -24.4 116.7 114.0
22267* 09/15 341.5 -24.1 168.9 100.6 SEM
22268 672.5 -23.3 330.9 114.4
22269 671.4 -22.9 330.4 114.0
22270* 324.9 -23.2 160.7 114.0 lost HV
22271 673.4 -21.3 332.2 113.8
22272 301.5 -20.9 149.0 120.8 tgt power
22278 469.2 33.2 248.4 109.3
22281* 557.9 30.1 294.2 83.3 ND HV
22282 674.0 25.9 352.0 92.7
22283 09/16 677.7 23.8 352.7 89.0
22284 677.5 22.3 351.5 88.7
22285 677.7 21.2 351.7 86.3
22286 678.8 20.4 351.9 94.0
22287 679.1 19.5 351.8 92.1
22288 231.3 19.1 120.2 85.4
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Appendix C Statistical Uncertainty

Assuming the total number of events to be N , in which N+ events are positive helicity

and N− events are negative helicity. The probability of having N+ positive helicity

events p obeys the binomial distribution:

B(N+, N, p) =


 N

N+


 pN+(1 − p)N−, 0 ≤ p ≤ 1, (C.1)

where


 N

N+


 = N !

N+!(N−N+)!
. The expectation value of N+ is given by:

E(N+) =
N∑

N+=0

N+B(N+, N, p)

=
N∑

N+=0

N+


 N

N+


 (1 − p)N−N+ · p

= N · p
N∑

N+=1

(N − 1)!pN+−1(1 − p)(N−1)−(N+−1)

(N+ − 1)![(N − 1) − (N+ − 1)]!
. (C.2)

Let s = N+ − 1 and m = N − 1, one has:

m∑
s=0

m!

s!(m − s)!
ps(1 − p)m−s =

m∑
s=0


 m

s


 ps(1 − p)m−s = 1. (C.3)

Hence, the expectation value of N+ becomes:

E(N+) = N · p (C.4)
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In order to evaluate the variance of N+,

V (N+) = E(N2
+) − [E(N+)]2, (C.5)

one has to determine E(N2
+). However, E(N2

+) = E[N+(N+−1)+N+] = E[N+(N+−

1)] + E(N+), and

E[N+(N+ − 1)] =
N∑

N+=0

N+(N+ − 1)
N !

N+!(N − N+)!
· pN+(1 − p)N−N+

=
N∑

N+=2

N !

(N+ − 2)!(N − N+)!
· pN+(1 − p)N−N+

= N(N − 1)p2
N∑

N+=2

(N − 2)!pN+−2(1 − p)(N−2)−(N+−2)

(N+ − 2)![(N − 2) − (N+ − 2)]!

= N(N − 1)p2. (C.6)

Therefore, V (N+) = N(N − 1)p2 + Np − (Np)2 = Np(1 − p). The expectation value

of
(

N+

N

)
is then:

V
(

N+

N

)
= E

[(
N+

N

)2
]
−
[
E
(

N+

N

)]2
=

V (N+)

N2
=

p

N
(1 − p). (C.7)

For the meassured exeprimental asymmetry ε = N+−N−
N++N−

= N+−N−
N

, we have:

V
(

N+

N

)
=

N+

N
· N−

N

N
=

N+N−

N3
, δ

(
N+

N

)
=

√
N+N−

N3/2
. (C.8)

Therefore, the statistical uncertainty for the asymmetry is:

δε = δ

(
N+ − N−

N+ + N−

)
= 2δ

(
N+

N

)
=

2
√

N+N−

(N+ + N−)3/2
. (C.9)
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