First Operation of an FEL in Same-cell Energy Recovery Mode*

G. R. Neil, S. Benson, G. Biallas, C. L. Bohn, D. Douglas, R. Evans, J. Fugitt, J.
Gubeli, R. Hill, K. Jordan, G. Krafit, R. Li, L. Merminga, D. Oepts, P. Piot, J.
Preble, M. Shinn, T. Siggins, R. Walker, and B. Yunn
TINAF, 12000 Jefterson Ave., Newport News, VA 23606 USA

Abstract

The driver for Jefferson Lab’ kW-level infrared free-electron laser (FEL) is a superconducting, recirculating
accelerator that recovers 75% of the electron-beam power and converts it to radio frequency power. As reported
in FEL98, the accelerator operated "straight-ahead" to deliver 38 MeV, 1.1 mA cw current for lasing at
wavelengths in the vicinity of 5 microns. The waste beam was sent directly to a dump, bypassing the recirculation
loop. Stable operation at up to 311 W cw was achieved in this mode. The machine has now recirculated cw
average current up to 4.4 mA, and has lased cw with energy recovery up to 1720 W output at 3.1 microns. This
is the first FEL to ever operate in the "same-cell" energy recovery mode. Energy recovery offers several
advantages (reduced RF power and dramatically reduced radio-nuclide production at the dump) and several
potential problems (potential for instabilities and difficult beam transport due to large energy spreads). Solutions
to these problems will be described. We have observed heating effects in the mirrors which will be described.
We will also report on the additional performance measurements of the FEL that have been performed and
connect those measurements to standard models.
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1. Introduction can each deliver up to 8 kW. This available power limits the
cw average current to a maximum of 1.1 mA in the straight-
ahead mode. However, once recirculation with energy
recovery is established, the decelerated beam powers the
accelerated beam, and the recirculation mode thereby
provides for currents up to 5 mA limited by the gun power

supply.

Thomas Jefferson National Accelerator Facility has
commissioned a cw, kW-level, 3-6 pm free-electron laser
(called the IR Demo). The design of the machine is
discussed in [1], and the layout is shown in Figure 1.

The IR Demo incorporates a superconducting accelerator
comprising a 10 MeV injector and a 38 MeV linac to
produce a 48 MeV electron beam for kW-ievel cw lasing,. It
is designed to achieve the top-level electron-beam
requirements listed in Table 1 while transforming 75% of the
beam power back into rf power.

Last year we reported first lasing of the machine in the
straight-ahead mode with beam deposited in the 42 MeV
dump. Subsequently the machine was run in the
“recirculation” mode with pulsed beam and with energy
recovery from the pulses, first without lasing, then with
lasing. In this mode, the beam lands in the “10 MeV dump” recirculation loop are roughly 49m x 6m.
after decelerating through the cryomodule.

The eight klystrons powering the eight cryomodule cavities

Figure 1. Schematic of IR Demo; dimensions of the

2. Energy Recovery

The use of energy recovery was incorporated as a
key feature in the design in order to demonstrate
the efficient and cost effective scalability of the
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Table 1: Beam Requirements at Wiggler for First
Lasing.

minimization of coherent synchrotron radiation induced
emittance growth. These were all successfully handled by
design opimizations as discussed in the references [4,5,6,7].

3. FEL performance

At FEL 98 we reported the power reached 311 W with 1.1
mA current into the straight ahead dump without energy
recovery [8]. We repeat the FEL design parameters in Table
2 for reference.

Table 2: FEL performance parameters

Parameter Required Measured
Kinetic Energy 48 MeV 48.0 MeV
Average current 5mA S mA

Bunch charge 60 pC Up to 80 pC
Bunch length (rms) <ips 04 +/-0.1ps
Peak current 22A Upto 60 A
Trans. Emittance (rms) <8.7 mm-mr 7.5 +/-1.5 mm-m¢
Long. Emittance (rms) 33 keV-deg 26 +/-7 keV-deg
Pulse repetition frequency | 18.7 MHz, x2 18.7 MHz, x0.25,
(PRF) X015, x2, and x4

average powers [3]. Because of the low electron beam
energy it does not yet substantially improve the wall plug
efficiency (only 2x to 3x). It should be emphasized that the
following systems have not been optimized for low power
consumption but except where noted we report actual AC
powers used:

AC Wall Plug Powers
Injector RF 220 kW
Linac RF 175 kW
He refrigerator 70 kW (est.)
Magnets, Computers, etc. 43 kW
Total 508 kW

In the absence of energy recovery the AC power for linac
RF would have been increased by 700 to 900 kW at the
same efficiency of the injector RF supply. Energy recovery
has thus improved system performance by 58% to 64%. The
benefits will be even more striking at higher beam energies
and powers. For our planned scaleup to 10 mA, 160 MeV,
energy recovery will improve system performance by
roughly 78%, reducing power draw from ~4750 kW to
~1025 kW. The required R¥F generation will be reduced by
over 1700 kW with substantial capital cost benefits.

Even in the present system energy recovery reduces the
required linac RF drive power by 5x, it reduces the
dissipated power in the beam dumps by 4x, and it virtually
eliminates induced radioactivity in the dump region by
dropping the terminal energy below the photo-neutron
production threshold. However, there were several issues
that had to be addressed to utilize such an approach: stability
of the electron beam, stability of the lasing process in such
an energy recovered system, management of transport of
large energy spread beams with low beam loss, and

Parameter Design Measured

Wiggler period (cm) 2.7 2.7

Number of periods 40 405

K (rms) 1 0.98

Wiggler phase error (rms} <5° 267

Trajectory wander 100 <100

(um p-p)

Optical Cavity Length {m) 8.0105 8.0105 stable daily to
2 pm

Rayleigh range (cm) 40 40 +/- 2

Mirror radii (cm) 2.54 2,54

Misror tilt tolerance (prad) 3 ~5

Output Wavelength {pm) 36 3.0-3.2,4.8-5.3, 5.8-
6.2

Output coupler reflectivity | 98,90 97.6,90.5

(%)

HR reflectivity (%) »99.5 99.85

While we were quickly able to establish lasing with
recirculated beam, initial attempts to increase laser power
with increasing recirculated currents showed saturation of
the power output. The beam was stable and no evidence of
instabilities in the FEL transport interaction was observed in
the beam transport even during turn-on transients. By
replacing one of the CaFomirrors with a silicon mirror we
were eventually able to obtain 710 W of power output at 4.9
microns. Some power-dependent steering of the output
beam was observed but could be manually compensated
without serious difficulty.

This power limit was ascribed to heating effects in mirrors
and is not surprising given the sensitivity of electron
beam/optical mode match to mirror parameters and high
circulating power in optical cavity [9]. Even small




absorption can cause a change in the radius of curvature of
the mirror which leads to significant changes in the

Figure 2. Power versus time for two pulse repetion rates,
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power becomes identical despite twice the current in the Detuning (microns)
37.4 MHz case (see Figure 2). It should be emphasized that
these effects occur despite extraordinary measures taken to
edge-cool the mirrors in thermally stabilized, water-cooled
copper holders.

By operating at 47.8 MeV and 4.4 mA for near-maximum
electron beam power and replacing MLD coated sapphire
mirrors with exceptionally low loss mirrors from another
vendor we were able to achieve 1720 W of output power at
3.1 pm. No significant steering or distortion effects were
observed. Achieving higher power was limited by electron
beam interception of the beam pipe. The system lased stably
for hours at powers > 1000W.

A set of typical detuning curves is shown in Figure 3. Key
features to note include the transition from concave to
convex curvature at high currents and the presence of a




Figure 4. a) Typical detuning curve and b) lasing
spectrum at detunings a, b, and c.

Lasing has been achieved in three wavelength bands (3.0-3.3
microns, 4.8-5.3 microns and 5.8-6.0 microns) with narrow
or broad spectral output depending on proximity to zero
detuning (Figure 4). We have also achieved 5th harmonic
lasing at I micron which will be discussed elsewhere at this
conference.

4. Summary

The IR Demo has exceeded design specifications,
reproducibly recirculating in excess of 4 mA of cw beam
and providing up to 1720 W of stable cw laser power.
Approximately 70% of this power can be delivered to user
labs for application experiments. The electron beam can be
quickly and reproducibly set up to run with any of a set of
three available high power mirrors covering the 3 to 6
micron range. We have demonstrated the operation of same-
cell energy recovery for the production of high average
power FEL output in superconducting RF cavities.. Physics
and engineering constraints to scaling the system to higher
average power appear manageable through careful design.
Our operational efforts will now focus on providing this
light for a range of scientific and industrial applications and
using the machine to explore accelerator and FEL physics
issues, especially those relevant to our planned upgrade to
10 kilowatts output at 1 micron and kilowatt powers in the
Uv.
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