
DESIGN AND IMPLEMENTATION OF THE CEBAF ELEMENT
DATABASE *

T. Larrieu, M. Joyce, C. Slominski, JLAB, Newport News, VA 23606, U.S.A.

Abstract
With the inauguration of the CEBAF Element Database

(CED) in Fall 2010, Jefferson Lab computer scientists
have taken a step toward the eventual goal of a model-
driven accelerator. Once fully populated, the database
will be the primary repository of information used for
everything from generating lattice decks to booting
control computers to building controls screens.

A requirement influencing the CED design is that it
provide access to not only present, but also future and
past configurations of the accelerator. To accomplish
this, an introspective database schema was designed that
allows new elements, types, and properties to be defined
on-the-fly with no changes to table structure. Used in
conjunction with Oracle Workspace Manager, it allows
users to query data from any time in the database history
with the same tools used to query the present
configuration. Users can also check-out workspaces to
use as staging areas for upcoming machine
configurations.

All Access to the CED is through a well-documented
Application Programming Interface (API) that is
translated automatically from original C++ source code
into native libraries for scripting languages such as perl,
php, and TCL making access to the CED easy and
ubiquitous.

BACKGROUND
Previous efforts to compile a comprehensive

configuration database for the Jefferson Lab CEBAF
accelerator and use it to automate the setup or restoration
of the electron beam have foundered on the complexity of
accommodating the constantly evolving hardware
installed in the accelerator and the multiplicity of
elements whose properties vary with the increasing
energy of each pass through the recirculating LINACS.
The progress of the 12GeV upgrade project has, however
focused renewed emphasis upon solving these problems
by developing a central authoritative configuration
database available to existing or future tools needed to
operate the revamped accelerator. The resulting product
has been coined the CEBAF Element Database (CED).

DATABASE DESIGN

Design
The CED has been implemented using a modified

Entity-Attribute-Value with Classes and Relationships

(EAV/CR) data model [1]. This design choice is
appropriate because the types of information to be stored
in the CED will vary from system to system. The
database will necessarily evolve over time to support
additional configuration attributes for existing systems as
well as to model the yet-unknown parameters of the new
hardware to be installed for the 12GeV upgrade.

In a traditional database schema, adding support for
new accelerator hardware would involve adding
additional tables and columns to the database. Such
changes impose a burden by requiring software updates
before the new schema can be used. In contrast, the
EAV/CR data model employed by the CED is
introspective – defining a new class of accelerator
hardware in the CED simply involves adding rows to the
already-existing metadata “catalog” tables (fig. 1). Once
defined in the catalog, existing software is fully capable
of interacting with the new entities after discovering their
properties from the metadata tables.

Versioning
In addition to its flexibility in accommodating future

data requirements, the CED schema was also designed to
make use of the Oracle Workspace Manager toolkit [2].
Oracle Workspace Manager is used to version-enable the
table rows in the CED, and permit simultaneous access to
present, proposed, and historical versions of data.

 Oracle Workspace Manager accomplishes this feat for
a table by renaming it to table name_LT, adding a few
columns to the table to store versioning metadata, creating
a view on the version-enabled table using the original
table name and defining INSTEAD OF triggers on the
view for SQL DML operations. Clients of the CED do not
need to incorporate any special logic in order to
interoperate with the different versions stored in the
database other than to specify which save point or
workspace they wish to access.

Workspaces
A key version-enabling feature of the Oracle

Workspace Manager is the ability to compartmentalize a
collection of database changes into a logical construct
called a workspace.

The primary workspaces is by definition the LIVE
workspace and represents the current configuration of the
CEBAF accelerator. Additional workspaces may be
“checked out” from LIVE and used to stage upcoming
configurations or to perform what-if scenarios (fig. 2).
The contents of these workspaces can be merged
(committed) into LIVE when appropriate. *Notice: Authored by Jefferson Science Associates, LLC under U.S.

DOE Contract No. DE-AC05-06OR23177. The U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce this manuscript for U.S. Government purposes.

Figure 1. The core CED schema illustrating the “Catalog” tables that store the metadata defining accelerator
elements. Element values stored in the “Inventory” tables as strings, floats, integers, etc. are mapped via the
metadata into meaningful attributes. New types of elements may be added to the CED on-the-fly by defining
their metadata – changes to the database schema are not required.

Save points
Because the Oracle Workspace Manager saves a history

of all changes to a row in addition to information about its
workspace membership, it is possible to query historical
data simply by specifying the date and time as of which
the query is being issued. To assist users, so that they
don’t have to specify exact dates and times, the CED
provides named save points for the LIVE workspace
corresponding to key configuration milestones such as the
beginning or end of an experimental run or of an
accelerator maintenance period (fig. 2).

Figure 2 CED Workspaces showing historical save
points and staging workspaces used to prepare
upcoming changes to LIVE.

In contrast to the typical approach to preserving data
history using triggers and a history table containing prior
values, where accessing the history requires special one-
off queries or custom reports, accessing CED historical
data requires no different software and no more effort
than accessing the current configuration.

Configuration Control
Workspaces are also used in the CED to effect a level

of configuration control. With the exception of a very
few properties explicitly identified as live-editable, the
CED does not permit users to update data in the LIVE
workspace. All updates to the CED must be performed in
a staging workspace and audited for validity before being
committed to LIVE.

INTERFACE
The generalized nature of the EAV/CR data model

employed by CED requires a robust API to interpret the
contents of the metadata tables and translate the abstract
database storage into recognizable attributes useful to
programs and users. The API is also responsible for
enforcing much of the data validation and domain logic
embodied in the metadata catalog.

For the CED, a shared library was written in C++ to be
the sole interlocutor for applications that will access its
information. Native versions of the API are available not
only to C++ programs, but also to scripts written in Perl,
PHP, and Tcl. The script language versions are generated

automatically from the original library via the open
source SWIG (Simplified Wrapper and Interface
Generator) tool [3,4]. Having the API natively available
makes it easier to update the many tools used by JLAB
operators that have been written in these scripting
languages over the years, as well as to develop new ones.
Because they stem from the same source library, all the
languages have the same functionality available and
benefit from the development effort that went into testing
and documenting the original compiled library.

On top of the core API, two general purpose user
interfaces to the CED have also been built around the
C++ library and its scripting language derivatives: a
RESTful web interface and a full-featured command-line
tool usable from JLAB Linux workstations.

Figure 3. CED Web Interface provides access to CED
data in HTML (shown), XML, or plain text format via
simple to construct URL patterns.

IMPLEMENTATION
The CED was rolled out to the JLAB community in

September 2010 initially populated with data for the
Magnet and Input Output Controller (IOC) systems. Data
for the RF and BPM systems were added soon thereafter.

In May 2011, CEBAF entered a six months duration
shutdown period during which time more than the 200
large dipole magnets were removed from the accelerator
to be measured and calibrated. The CED is being used to
capture and disseminate key information (such as new
field maps for the magnets, locations where shims are
installed, etc.) generated during that process. During the
same time period, software developers and operators
updated many high-level applications (such as the
Interactive Elegant Explorer shown in figure 4) and
control system screens to draw upon the CED for their
configuration when operations resume.

The focus of the CED implementation is now shifting
to development tools for system owners who will
maintain the data and of processes (preferably automated)
that will keep the information up-to-date and accurate. In
the case of the IOC information this will include building
the DHCP server configuration files directly from the
CED information as well as a program that crawls and
inspects the IOCs periodically to verify their
configuration against the database.

Figure 4. The Interactive Elegant Explorer now uses
the CED to create a focusing lattice from a CEBAF
configuration for the purpose of modeling accelerator
beam transport.

REFERENCES

[1] Nadkarni, MD, Prakash M.; Marenco, MD, Luis;
Chen, MD, Roland; Skoufos, PhD, Emmanouil;
Shepherd, MD, DPhil, Gordon; Miller, MD, PhD,
Perry (1999), "Organization of Heterogeneous
Scientific Data Using the EAV/CR Representation",
Journal of the American Medical Informatics
Association 6 (6): 478–493, PMID 10579606

 [2]“Oracle workspace Manager Overview”.
http://www.oracle.com/technetwork/database/twp-
appdev-workspace-manager-11g-128289.pdf

[3] Beazley, David M (1996), “SWIG : An Easy to Use
Tool For Integrating Scripting Languages with C and
C++” Proceedings of the Fourth Annual Tcl/Tk
workshop. Monterey, CA July 6-10.

[4] http://www.swig.org/

