

Muon RLA – Design Status and Simulations

Kevin Beard

Muons Inc.

Alex Bogacz, Vasiliy Morozov, Yves Roblin Jefferson Lab

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Linac and RLAs – IDS

- IDS Goals:
 - Define beamlines/lattices for all components
 - Matrix based end-to-end simulation (machine acceptance) (OptiM)

Kevin Beard

- Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline
- Error sensitivity analysis
- Component count and costing
- Two regular droplet arcs replaced by one two-pass combined function magnet arc

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

Muons, Inc.

C. Bontoui

Linear Pre-accelerator – 0.9 GeV

2 Tesla solenoid

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Muons, Inc.

Kevin Beard

Transit time effect – G4BL

Linear Pre-accelerator – Longitudinal dynamics $\pi \mathcal{U}$

Kevin Beard

Operated by JSA for the U.S. Department of Energy

Pre-Linac - Longitudinal phase-space

Injection/Extraction Chicane

Acce/e

Multi-pass Linac Optics – Bisected Linac π^{2}

'half pass' , 900-1200 MeV

initial phase adv/cell 90 deg. scaling quads with energy

1-pass, 1200-1800 MeV

mirror symmetric quads in the linac

Multi-pass bi-sected linac Optics

Mirror-symmetric 'Droplet' Arc – Optics

Alternative multi-pass linac Optics

Arcs 'Crossing' - Vertical Bypass

i = 14	E _i [GeV]	p _i /p ₁	cell_out	cell_in	length [m]
Arc1	1.2	1	2×2	10	130
Arc2	1.8	1.43	2×3	15	172
Arc3	2.4	1.87	2×4	20	214
Arc4	3.0	2.30	2×5	25	256

- Fixed dipole field: B_i =10.5 kGauss
- Quadrupole strength scaled with momentum: $G_i = \frac{p_i}{p_1} \times 0.4$ kGauss/cm
- Arc circumference increases by: (1+1+5) × 6 m = 42 m

Kevin Beard

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

NuFact'11, Univ. of Geneva, Aug. 1-6, 2011

Muons, Inc.

i = 14	E _i [GeV]	p _i /p ₁	cell_out	cell_in	length [m]
Arc1	4.6	1	2×2	10	260
Arc2	6.6	1.435	2×3	15	344
Arc3	8.6	1.870	2×4	20	428
Arc4	10.6	2.305	2×5	25	512

- Fixed dipole field: B_i = 40.3 kGauss
- Quadrupole strength scaled with momentum: $G_i = \frac{p_i}{p_1} \times 1.5$ kGauss/cm
- Arc circumference increases by: (1+1+5) × 12 m = 84 m

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Muons, Inc.

Component Count

beamline	RF cavities		solenoids	dipoles	quads	sext
	1-cell	2-cell				
pre-accelerator	6	62	25			
inj-chic I				8+3	16	3
RLAI						
linac		24			26	
arc1				35	43	
arc2				49	57	
arc3				63	71	
arc4				77	85	
inj-chic II				8+3	16	3
RLAII						
linac		80			42	
arc1				35	43	
arc2				49	57	
arc3				63	71	
arc4				77	85	
Lambertson				1		

Thomas Jefferson National Accelerator Facility

Muons, Inc.

Operated by JSA for the U.S. Department of Energy

Kevin Beard NuFact'1

Two-pass Arc Layout

- Simple closing of arc geometry when using similar super cells
- 1.2 / 2.4 GeV/c arc design used as an illustration can be scaled/optimized for higher energies preserving the factor of 2 momentum ratio of the two passes

Large Acceptance Super-cell (2 passes)

Each arc is composed of symmetric super cells consisting of linear combined-function magnets (each bend: 2.5⁰)

'Droplet' Arc – Spreader/Recombiner

First few magnets of the super cell have dipole field component only, serving as Spreader/Recombiner

Summary

- Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes)
 - Solenoid linac
 - Injection chicane I (new more compact design)
 - RLA I + Injection chicane II + RLA II
- Alternative multi-pass linac optics
- Currently under study... GPT/G4beamline
 - End-to-end simulation with fringe fields (sol. & rf cav.)
 - Engineer individual active elements (magnets and RF cryo modules)
 - µ decay, background, energy deposition
- Strong synergy with muon collider program

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Muons, Inc.

Chicane - Double Achromat Optics

