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Abstract Transverse momentum dependent parton distribution functions (TMDs) characterize the
intrinsic momentum distribution of quarks inside the nucleon. However, they also encode final or initial
state interactions of the processes in which they are measured, such as semi-inclusive deep inelastic
scattering (SIDIS) or the Drell-Yan process (DY). Consequently certain TMDs are process-dependent
and predicted to be equal but opposite in sign for SIDIS and DY. Extending our method on the
lattice to non-local operators with U-shaped Wilson lines, we can study these naively time-reversal
odd TMDs, in particular the Sivers- and the Boer-Mulders function. We express our results in terms
of Fourier-transformed TMDs that appear naturally in the Fourier transformed cross section of, e.g.,
SIDIS, and in Bessel-weighted asymmetries. We discuss the method, its limitations and preliminary
results from an exploratory calculation using lattices generated by the MILC and LHP collaborations.
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1 Introduction

Processes such as Drell-Yan (DY) or in semi-inclusive deep inelastic scattering (SIDIS) can be used to
study the intrinsic motion of quarks inside protons or neutrons, described by non-perturbative objects
called transverse momentum dependent parton distribution functions (TMDs), see chapter 2 of [8] for a
review. In SIDIS it is the measurement of a momentum Ph of one of the produced hadrons that allows us
to extract this information, see Fig. 1 and, e.g., Ref. [5] for a review of SIDIS and its kinematics. Due to

Fig. 1 Kinematics of the SIDIS process. The in- and out-going lepton momenta are l and l′, respectively.
The momentum transfer is q. The target nucleon carries momentum P and its transverse spin components are
labelled S⊥. The momentum of the measured hadron Ph has transverse components P h⊥, which define an
angle φh with the lepton plane.
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initial state interactions (in DY) or final state interactions (in SIDIS) [10] whose theoretical explanation
is deeply connected to the principle of gauge invariance, the operator definition of TMD PDFs is to a
certain extent process-dependent. This leads to the prediction that so-called naively time-reversal odd
(T -odd) TMD PDFs differ in sign for SIDIS and DY [12]. The T -odd distributions at leading twist are
thought to be responsible for large single-spin asymmetries observed in experiment, see, e.g., [1]. Here
we address them using lattice QCD. In previous lattice studies of TMD PDFs [20; 26], a simplified,
“process-independent” operator geometry was chosen that does not strictly correspond to the definition
of TMD PDFs appearing in the description of SIDIS or DY, and that does not feature T -odd TMD
PDFs. Here we go beyond this simplification and show preliminary results obtained with a “process-
dependent” operator geometry that may ultimately allow quantitative comparisons to experimental
SIDIS or DY results. Before discussing the method and preliminary results of our calculations, we show
that the distributions in Fourier space obtained on the lattice could also be accessed fairly directly in
phenomenology and appear naturally, e.g., in the context of Bessel-weighted asymmetries [7].

2 The SIDIS cross section and Bessel-weighted asymmetries

To convert the convolutions of TMD PDFs and TMD FFs in the SIDIS cross section into products, one
can perform a multipole expansion and a subsequent Fourier transform of the cross section with respect
to the transverse components P h⊥ of the hadron momentum. In general, we can write a transverse
momentum dependent coss section σ(|P h⊥|, φh) in the form

σ(|P h⊥|, φh) =

∫
d2bT

(2π)2
e−iP h⊥·bT σ̃(bT )

=

∫
d|bT |

2π
|bT |

∫ 2π

0

dφb

2π
e−i|P h⊥||bT | cos(φh−φb)

∞∑

n=−∞

einφb σ̃n(|bT |)

=

∞∑

n=−∞

einφh

∫
d|bT |

2π
|bT | (−i)nJn(|P h⊥||bT |) σ̃n(|bT |) . (1)

where σ̃(bT ) =
∑∞

n=−∞ einφb σ̃n(|bT |) is a two-dimensional multipole expansion of the cross section in

Fourier space. The nth harmonic in φh is accompanied by the nth Bessel function of the first kind Jn.
Rewriting the cross section of SIDIS (see, e.g., Ref. [5]) in this form, we get (similar as in the work of
Ref. [21] but in polar coordinates)

dσ

dx dy dφS dz dφh |P h⊥|d|P h⊥|

≈
α2

yQ2

(
1 + (1 − y)2

) ∑

a

e2
a

∫
d|bT |

(2π)
|bT | Sσ(b2

T )

{

J0(|bT ||P h⊥|)HUU,T (Q2) f̃
(0)
1,a(x, z2b2

T ) D̃
(0)
1,a(z, b2

T )

− |S⊥| sin(φh − φS)J1(|bT ||P h⊥|)H
sin(φh−φS)
UT,T (Q2) zM |bT | f̃

⊥(1)
1T,a (x, z2b2

T ) D̃
(0)
1,a(z, b2

T )

+ 〈16 more terms〉

}
, (2)

where we have used the kinematic variables Q2 ≡ −q2, M2 = P 2, x ≈ xB ≡ Q2/P · q, y = P · q/P · l,
and z ≈ zh ≡ P · Ph/P · q and assume M ≪ Q, |P h⊥| ≪ zQ. The sum

∑
a runs over quark flavors

a and ea is the corresponding electric charge of the quark. Note that there is only a finite number of
multipoles in the SIDIS cross section; the Bessel function of highest order is J3. Here we show only two
terms in the cross section and omit for now regularization parameters needed beyond tree level, see

Ref. [7] and references therein for more details. The functions f̃
(0)
1,a and f̃

⊥(1)
1T,a are examples of Fourier

transformed TMD PDFs, while D̃
(0)
1,a is a Fourier transformed fragmentation function. For a TMD PDF
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generically called f and a TMD FF generically called D the quantities in Fourier space are defined as

f̃ (n)(x, b2
T ) =

2π n!

(M2)n

∫
d|pT ||pT |

(
|pT |

|bT |

)n

Jn(|bT ||pT |) f(x, p2
T ) ,

D̃(n)(z, b2
T ) =

2π n!

(z2M2
h)n

∫
d|KT ||KT |

(
|KT |

|bT |

)n

Jn(|bT ||KT |) D(z, K2
T ) . (3)

The soft factor Sσ(b2
T ) accounts for the collective effect of soft momentum gluons not associated with

either the distribution or fragmentation part of the process [15; 13; 16; 22; 23; 3]. Depending on the
factorization framework, it appears explicitly in the cross section as in, e.g., Refs. [22; 23] and as shown
in Eq. (2), or it is completely absorbed in the definition of TMD PDFs and TMD FFs, see Refs. [13; 3].
At tree level, the soft factor and the hard parts H ...

XY,Z(Q2) are unity.
An application of this formalism that could be phenomenologically useful are Bessel-weighted asym-

metries. Projecting on suitable Fourier-Bessel modes and spin-polarizations, we can access individual
terms in the cross section Eq. (2). In ratios of such terms the soft factor Sσ(bT ) cancels, along with
other multiplicative renormalization factors. In general, Bessel-weighted asymmetries are of the form

AW1 ≡ 2

∫
d|P h⊥| dφh dφS W1(φh, |P h⊥|) dσ∫
d|P h⊥| dφh dφS W0(φh, |P h⊥|) dσ

(4)

where the weight W0 in the denominator is in general chosen to be W0(φh, |P h⊥|) = J0(|P h⊥||bT |)
in order to project onto the unpolarized monopole contribution. As an example, the Bessel-weighted
Sivers asymmetry is given by

A
2 sin(φh−φs) J1(|P h⊥||bT |)/(zM|bT |)
UT = −2

∑
a e2

a H
sin(φh−φS)
UT,T (Q2) f̃

⊥(1)
1T,a (x, z2b2

T ) D̃
(0)
1,a(z, b2

T )
∑

a e2
a HUU,T (Q2) f̃

(0)
1,a(x, z2b

2
T ) D̃

(0)
1,a(z, b2

T )
, (5)

Note that |bT | enters the weights W0 and W1 as a free parameter that we can scan over a whole
range in order to compare the transverse momentum dependence of the distributions in the numerator
and denominator relative to each other (in Fourier space). As we will see later, on the operator level,
|bT | controls the space-like distance between quark fields in the correlation functions we measure. The
Bessel-weighted asymmetries are a natural extension of conventional weighted asymmetries [24; 6] with
weights W1 proportional to powers of |P h⊥|. For the above example, the weights become in this limit
W0 = 1, W1 = sin(φh−φs) |P h⊥|/(zM), and the Fourier transformed TMD PDFs and TMD FFs at
|bT | = 0 coincide with conventional transverse momentum moments:

f̃ (n)(x, 0) = f (n)(x) ≡

∫
d2pT

(
p2

T

2M2

)n

f(x, pT ) . (6)

An analogous equation holds for the fragmentation functions D.
One reason why it can be advantageous to analyze Bessel-weighted asymmetries at non-zero |bT |

rather than conventional asymmetries is the observation that in very important cases the defining
integrals of transverse momentum moments f (n)(x) in the above equation are divergent due to the
perturbatively predictable contribution from the tail of the TMD PDFs at large |pT | [4]. The use of a
non-zero |bT | can be understood as a natural way of regularizing these divergences. A second, related
advantage is that the Fourier-Bessel transform of the cross section at non-zero |bT | puts more emphasis
on the low-|P h⊥| contributions than the traditional weights. Moreover, as we will see in the following,
the quantities in Fourier space are more suitable to compare with results from lattice QCD.

3 TMD PDFs on the operator level

The correlator that defines TMD PDFs for SIDIS and DY can be written in general as

Φ[Γ ] ≡
1

2

∫
d4b

(2π)4
eip·b

≡ Φ̃
[Γ ]
unsubtr.(b, P, S, ηv, µ)

︷ ︸︸ ︷
〈P, S| q̄(0)Γ U [0, ηv, ηv + b, b] q(b) |P, S〉

S̃Φ(b2, . . .)
(7)
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Fig. 2 Geometry of the staple shaped gauge link. On the lattice, we compute the SIDIS/DY limits η → ±∞
by increasing the extent of the staple step by step, as indicated by the dashed lines and the arrow.

where P and S are momentum and spin of the nucleon, p is the quark momentum, Γ is a Dirac matrix
and µ is a renormalization scale. Note that b corresponds to the variable l in the notation of Refs.

[20; 26]. The precise definition of the soft factor S̃Φ varies in different theory frameworks, see, e.g.,
[23; 11; 3]. However, it cancels explicitly in the quantities for which we show results.

We use light cone coordinates and consider a fast nucleon, P⊥ = 0, P+ ≫ M . Integrating over
the suppressed component p− of the intrinsic quark momentum, the decomposition of the correlator
[25; 19] yields ∫

dp− Φ[γ+] = f1(x, p2
T ; ζ̂, η, . . .) −

ǫijpiSj

mN
f⊥
1T (x, p2

T ; ζ̂, η, . . .) (8)

for a projection Γ = γ+ on leading twist and for transverse nucleon polarization ST . Here f1 and
the Sivers function f⊥

1T [27] are the two TMD PDFs that describe the corresponding distribution of
quarks with respect to the longitudinal momentum fraction x ≡ p+/P+ and the transverse momentum
pT of the quark. The Wilson line U in Eq. (7) ensures gauge invariance and effectively represents
gluon exchanges in initial or final state interactions. As illustrated in Fig. 2, it is composed of two
parallel straight sections along the direction v ≈ n̂− and a gauge link bridging the (transverse) gap
at the far ends. For SIDIS, the extent η of the staple is +∞, while for DY the staple extends in
the opposite direction, η = −∞. The T -odd Sivers function f⊥

1T differs for SIDIS and DY, f⊥
1T (η= +

∞) = −f⊥
1T (η= − ∞), while f1(η= + ∞) = f1(η= − ∞) exhibits T -even behavior. Another leading-

twist T -odd TMD PDF is the Boer-Mulders function h⊥
1 [6], which describes correlations in p × s

of quarks polarized transversely along sT in an unpolarized nucleon. For brevity, we focus on the
Sivers function in this article. Employing a direction v off the light cone n̂− direction is one way to
regularize rapidity divergences in the correlator, see, e.g., Refs. [17; 23]. Taking v space-like [16; 3; 14]
also opens up the possibility to perform lattice calculations. The TMD PDFs in this framework depend

on additional parameters ζ̂, η, . . . not shown in the previous section. Important for our work is the
parameter describing the direction v of the gauge link, here introduced as a dimensionless quantity

ζ̂ ≡ v·P/
√
|v2|P 2. At large enough values of ζ̂, the ζ̂-dependence of TMD PDFs can be obtained from

evolution equations, see, e.g., Refs. [21; 3]. Dependencies of the TMD PDFs on further regularization
or renormalization scales have been indicated by the dots and cancel in the quantities we consider.

4 Lattice calculations

In previous lattice studies of TMD PDFs [20; 26], a direct, straight gauge link U [0, b] was employed,
corresponding to η = 0 in Eq. (7). We make use of the same lattice at mπ ≈ 500 MeV [2] and the same
techniques as in these earlier works, except that we now implement the staple-shaped operator geometry
of Fig. 2. We also improve our statistics using the new arrangement of nucleon sources and coherent

sinks of Ref. [9]. In essence, we calculate Φ̃
[Γ ]
unsubtr.(b, P, S, ηv, µ) directly for a large selection of lattice

vectors b, P and ηv. As before, we restrict the operator to have no extent in Euclidean time direction.
Consequently, b and v can only have spatial components on the lattice. For a given lattice nucleon three-

momentum P lat, the regularization parameter ζ̂ is thus limited by ζ̂ ≤ |P lat|/M2. The translation of the
results obtained in the lattice frame to the TMD PDF language is established through a parametrization

of Φ̃
[Γ ]
unsubtr. in terms of Lorentz-invariant amplitudes Ãi and B̃i, analogously to Ref. [19] but in b-space.

These amplitudes can then be converted to the TMD PDFs in Fourier space already encountered in
section 2. As argued before, in the limit |bT | → 0 we obtain moments of TMD PDFs, which sometimes

have an intuitive interpretation. For example, the quantity 〈py〉TU (x) ≡ M f
⊥(1)
1T (x)/f

(0)
1 (x), has an

interpretation as the average transverse momentum in transverse y-direction carried by the quarks
inside a nucleon polarized in transverse x-direction. Similar quantities, generalized to non-zero |bT |,

are accessible on the lattice. Here we restrict ourselves to x-integrated TMD PDFs f̃ [1](n)(b2
T ) ≡
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a) b)

Fig. 3 Generalized Sivers shift of up−down quarks (isovector) on the 203 × 64 lattice at a pion mass mπ ≈
500 MeV and a lattice spacing of a ≈ 0.12 fm. a) results as a function of the staple extent η. A simple estimate
of the SIDIS/DY values at η → ±∞ is obtained from a fit of an odd but otherwise constant function to the
data at |ηv| ≥ 7a. Potentially significant systematic uncertainties in this procedure have not been taken into

account in this preliminary analysis. b) Extracted SIDIS results for several values of ζ̂.

∫ 1

−1
dx f̃ [1](n)(x, b2

T ), which can be obtained from the amplitudes at b·P = 0:

1

2
Φ̃

[γ+]
unsubtr.

∣∣∣∣∣∣
b·P=0

S=0

= P+
(
Ã2 + R(ζ̂)B̃1

)

︸ ︷︷ ︸
S̃Φ(b2, . . .) f̃

[1](0)
1 (b2

T )

− iMP+ǫijbiSj

(
Ã12 − R(ζ̂)B̃8

)

︸ ︷︷ ︸
S̃Φ(b2, . . .) f̃

⊥[1](1)
1T (b2

T )

, (9)

where R(ζ̂) ≡ 1 − (1 + ζ̂−2)1/2. We thus can construct a ratio which looks similar to the average
momentum 〈py〉TU (x), but is formed from x-integrated distributions and generalized to non-zero bT ,
in the following called the (generalized) Sivers shift:

〈py〉TU (|bT |) ≡ M
f̃
⊥[1](1)
1T (b2

T )

f̃
[1](0)
1 (b2

T )
= −M

Ã12 − R(ζ̂)B̃8

Ã2 + R(ζ̂)B̃1

∣∣∣∣∣
b·P = 0

. (10)

Analogously, the “Boer-Mulders shift” can be constructed using h̃
⊥[1](1)
1 instead of f̃

⊥[1](1)
1T . The soft

factor and multiplicative renormalization factors cancel in the above ratio. However, the dependence

on the rapidity cutoff parameter ζ̂ (not shown in the arguments) survives. Figure 3 a) demonstrates
how the SIDIS or DY Sivers shift can be read off from the plateau reached at large positive or negative
η, respectively. The extraction of these asymptotic values is still preliminary and lacks an estimate

of systematic errors. In Fig. 3 b), we plot the extracted SIDIS results as a function of ζ̂ and find

indications of a strong ζ̂-dependence at the rather low values of ζ̂ presently accessible to us. A major

future challenge is to generate statistically well-determined results at higher values of ζ̂ and to make

contact with the ζ̂-evolution predicted by perturbative QCD.

5 Conclusion

We have shown preliminary results of a lattice study for the ratio f̃
⊥[1](1)
1T /f̃

[1](0)
1 of the Sivers function

to the unpolarized distribution in Fourier-space, albeit currently only available for rather small values

of the Collins-Soper evolution parameter ζ̂ and at a pion mass mπ ≈ 500 MeV. The lattice results
are obtained in Fourier space. Bessel-weighted asymmetries and related quantities might ultimately
provide an interface to compare these results rather directly to phenomenology.
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