
A SELF CONSISTENT MULTIPROCESSOR SPACE CHARGE
ALGORITHM THAT IS ALMOST EMBARRASSINGLY PARALLEL∗

E. Nissen, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606,
B. Erdelyi, S. Manikonda, Argonne National Laboratory, Argonne, IL, 60439,

Abstract

We present a space charge code that is self consistent,
massively parallelizeable, and requires very little commu-
nication between computer nodes; making the calculation
almost embarrassingly parallel. This method is imple-
mented in the code COSY Infinity where the differential
algebras used in this code are important to the algorithm’s
proper functioning. The method works by calculating the
self consistent space charge distribution using the statis-
tical moments of the test particles, and converting them
into polynomial series coefficients. These coefficients are
combined with differential algebraic integrals to form the
potential, and electric fields. The result is a map which
contains the effects of space charge. This method allows
for massive parallelization since its statistics based solver
doesn’t require any binning of particles, and only requires
a vector containing the partial sums of the statistical mo-
ments for the different nodes to be passed. All other cal-
culations are done independently. The resulting maps can
be used to analyze the system using normal form analysis,
as well as advance particles in numbers and at speeds that
were previously impossible.

INTRODUCTION

The study of intense charged particle beams often re-
quires an understanding of the effects of space charge, the
effect of the electrostatic fields of the many particles com-
prising the beam on each other. A large number of compu-
tational methods have been created to analyze the manner
in which these effects manifest themselves in the beam [1].
Since space charge is a collective effect, in order to accu-
rately model the motion of one particle in the beam, it must
have information about the motion of every other particle
in the beam. This will require information about the po-
sition of every particle to be communicated to every other
particle.

The use of distributed, parallel computations has greatly
sped up some aspects of modeling charged particle beams.
Moving non-interacting particles through a magnetic ele-
ment is an example of what is known as an embarrass-
ingly parallel system. Since the particles don’t communi-
cate with each other they can be placed on separate com-
puter nodes and allowed to move completely separately;
two computers could literally finish in half the time of one.

∗Notice: Authored by Jefferson Science Associates, LLC under U.S.
DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce this manuscript for U.S. Government purposes.

Much progress has been made to adapt space charge
solvers for use in parallel systems. Most solvers sort parti-
cles by their position into groups, a process known as bin-
ning, which provides a logical way to spread the particles
out to the different nodes. However, both the communica-
tion of the positions of the particles to other nodes, and the
possibility that particles can move between bins, requires
extensive communication between the nodes, keeping it
from being embarrassingly parallel. Furthermore, in some
methods such as the FFT the number of useable nodes are
constrained.

PARALLEL MOMENT METHOD
We have developed a type of space charge algorithm that

is both self consistent [2], and can be made parallel to as
many nodes as desired [3]. With one communication be-
tween the nodes, it can be as close to embarrassingly par-
allel as desired. The serial version of this code is outlined
in Fig. 1. This version models the transverse space charge
effect, though conceptually longitudinal is no different.

Figure 1: An outline of the serial moment method

The parallelized version of the code is shown in Fig. 2.
The changes are made in the original moment method at
the point where the moments are calculated.

As is seen in Fig. 1 and Fig. 2 the method begins with
a distribution of test particles. In the parallel version they



Figure 2: Example of the parallelized moment method. The Distribution is sent to the nodes only once, since they do not
need to be sorted in any way they will stay on the node they are placed for the duration of the calculation, This is the
communication shown at point a). The only other communication is shown after the moments have been calculated, at
point b). This information can then be used to advance the particles under the influence of space charge.

must be distributed to the different nodes. One of the ad-
vantages of this method is that no sorting is required, we
want the different nodes to have distributions that are all
roughly representative of the distribution as a whole. This
means that there is no need to have particles transfer be-
tween different bins, and thus no need to move them be-
tween nodes.

The moment method works by transforming the test par-
ticles into a Taylor series representation of the potential and
electrostatic fields which are combined with the map of the
machine element that the beam is passing through using
Strang splitting. The moments are defined as,

Mnm =
NParticles∑

i=1

xn
i ym

i . (1)

We assume that the distribution can be modeled using
wth order polynomial series, of the form,

ρ(x, y) =
w∑

i=0

w−i∑
j=0

Cijx
iyj (2)

We can then link the moments to the distribution,

Mnm =
w∑

i=0

w−i∑
j=0

∫ ∫
Cijx

n+iym+jdxdy, (3)

The integrals can be trivially solved, leading to a matrix
equation, which is solved using truncated Singular Value
Decomposition methods. This gives the Taylor coefficients

of the distribution which are combined with pre-stored in-
tegrals to find the potential and electrostatic fields of the
system.

The parallelization of the system is introduced in Eq. 1.
This is the point where all of the information about the dis-
tribution of the particles is determined; everything else can
be done separately from that. Therefore, if we have split
the distribution into several nodes then we can re-imagine
Eq. 1. as,

M(j)nm =
N(j)P articles∑

i=1

xn
i ym

i , (4)

where j indicates which node this set of moments repre-
sents. These M(j)nm terms form an array that is passed to
the other nodes using MPI. Once this passing has occurred,
each node will perform the operation,

Mnm =
NNodes∑

j=1

M(j)nm. (5)

Each node now has all of the information it needs to deter-
mine the field of its own particles combined with those of
the other nodes, after only one communication.

THE METHOD IN OPERATION
This method has been implemented using the MPI ver-

sion of COSY Infinity 9.0 [4]. This package uses the mes-
sage passing interface for parallel computing. This package
was installed on the Northern Illinois University Beowulf



cluster, which had 24 dual core computer nodes available
for this test, for a series of trial computations.

The first trial used lower numbers of particles to de-
termine the parallel speedup factor of the method. The
speedup factor is defined as,

SP =
TSerial(N)

TParallel(N, P )
(6)

where SP is the speedup factor, TSerial(N) Is the execu-
tion time of the serial algorithm, while TParallel(N, P ) is
the execution time of the parallel algorithm with N par-
ticles using P nodes. An example of the speedup factors
for 50,000 and 100,000 particles over a single kick using a
uniform distribution is shown in Fig. 3.

Figure 3: A plot of the speedup factor of the parallel
method for 50,000 and 100,000 particles.

The speedup factor in an embarrassingly parallel system
would increase perfectly linearly with a slope of P . It is
reduced by the need to pass information about the distri-
bution between the nodes. In the case of the parallel mo-
ment method however, the size of the data being exchanged
between the nodes depends only on the order of the Tay-
lor expansion, so as the number of particles increases the
speedup will increase as well.

The true abilities of the moment method are shown when
they are applied to very large numbers of particles, as can
be seen in Fig. 4 the execution time of the method increases
linearly with the number of particles, up through the tens
of millions. If we are using two variables to eighth order
we would be passing 45 moments per CPU, independant
of partcle number. Assuming 8 bytes per moment on 24
CPUS, the all to all type communication is passing 8640
bytes.

Since determining the execution time of 1×107 particles
was computationally prohibitive, the speedup factor can be
estimated using different numbers of CPUs with a fitline
applied to it. The results of these experiments are shown
in Fig. 5. The fitline gives an expected speedup of SP =
P 0.987 for 1 × 107 particles.

Figure 4: The execution time as it scales with the number
of particles for four different sets of numbers of CPUs.

Figure 5: The execution time for different numbers of par-
ticles as they scale with the number of CPUs.

CONCLUSIONS
Using the moment method for parallelized space charge

calculations allows a space charge method that can be par-
allelized across as many nodes as are available, and gets
very close to being embarrassingly parallel. Since only one
communication is required for each space charge evalua-
tion, and the size of the array passed between each node
depends on the order of the evaluation, the method is ex-
ceptionally suited to very large numbers of particles. This
method combined with larger distributed computer net-
works will allow the possibility of one to one simulation
of particles in charged particle beams.

REFERENCES
[1] A. Adelmann. “3d Simulations of Space Charge Effects in

Particle Beams,” Ph.D. Thesis, Paul Scherrer Institut (2002).

[2] E. Nissen and B. Erdelyi, “A New Paradigm for Model-
ing, Simulation, and Analysis of Intense Beams,” Proceed-
ings of the High Brightness High Intensity Beams Workshop,
Morschach Switzerland (2010)

[3] E. Nissen, “Differential Algebraic Methods for Space Charge
Modeling and Applications to the University of Maryland
Electron Ring,” Ph.D. Thesis, Northern Illinois University,
(2011).

[4] Y. Kim and M. Berz, “Parallel Constructs in COSY Infin-
ity,” Tech. Rep. MSUHEP-060805, Michigan State Univer-
sity (unpublished) (2006).


