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Abstract

Several topics in the theory of generalized parton distributions
(GPDs) are reviewed. First, we give a brief overview of the basics of
the theory of generalized parton distributions and their relationship
with simpler phenomenological functions, viz. form factors, parton
densities and distribution amplitudes. Then, we discuss recent devel-
opments in building models for GPDs that are based on the formalism
of double distributions (DDs). A special attention is given to a careful
analysis of the singularity structure of DDs. The DD formalism is ap-
plied to construction of a model GPDs with a singular Regge behavior.
Within the developed DD-based approach, we discuss the structure of
GPD sum rules. It is shown that separation of DDs into the so-called
“plus” part and the D-term part may be treated as a renormalization
procedure for the GPD sum rules. This approach is compared with
an alternative prescription based on analytic regularization.

1 Introductory remarks

The basic role played by the generalized parton distributions (GPDs) [1, 2,
3, 4, 5, 6, 7] is to access the fundamental physics related to the structure of
hadrons. This is a rather general statement, and one may wish to confront
it with a more specific one. A classic example of such a specific case is
the celebrated search for the Higgs boson (HB) performed currently at the
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Large Hadron Collider (LHC). The motivation for the search is that HB is
supposed to be responsible for generation of fermion masses, in particular,
quark masses.

Now, with the announced discovery [8, 9] of the Higgs particle, can we
say that the problem of generation of visible mass is completely solved?
Unfortunately, no! In fact, by far the largest part of the visible mass is due
to the nucleons, and out of 940 MeV of the nucleon mass, the origin of less
than 30 MeV (current quark masses) may be related to the Higgs boson. The
remaining more than 97% of the nucleon mass is due to gluons – which are
represented as massless fields in the QCD Lagrangian !
This is a characteristic illustration of the situation in hadron physics:
i) All the relevant particles are already established: no “higgses” to find.
ii) The QCD Lagrangian is known.
iii) However, we still need to understand how QCD works,
i.e., to understand hadronic structure in terms of quark and gluon fields.

The evident thing to do is to project quark and gluon fields q(z1) , q(z2) , . . .
onto hadronic states |p, s〉. This gives matrix elements:

〈 0 | q̄α(z1) qβ(z2) |M(p), s 〉 , 〈 0 | qα(z1) qβ(z2) qγ(z3)|B(p), s 〉 (1)

that can be interpreted as hadronic wave functions. In particular, in the light-
cone (LC) formalism [10], a hadron is described by its Fock components in
the infinite-momentum frame. For the nucleon, one can schematically write:

|P 〉 = Ψqqq|q(x1P, k1⊥)q(x2P, k2⊥)q(x3P, k3⊥)〉+ ΨqqqG|qqqG〉
+ Ψqqqq̄q|qqqq̄q〉+ . . . , (2)

where xi are momentum fractions satisfying
∑

i xi = 1; ki⊥ are transverse mo-
menta,

∑
i ki⊥ = 0. In principle, solving the bound-state equation H|P 〉 =

E|P 〉 one should get the wave function |P 〉 that contains complete infor-
mation about the hadron structure. In practice, however, the equation (in-
volving an infinite number of Fock components) has not been solved yet in
the realistic 4-dimensional case. Moreover, the LC wave functions are not
directly accessible experimentally.

The way out in this situation is the description of hadron structure in
terms of phenomenological functions. Among the “old” functions used for
a long time we can list form factors, usual parton densities, and distribu-
tion amplitudes. The “new” functions, generalized parton distributions (for
reviews, see Refs.[11, 12, 13, 14, 15]), are hybrids of form factors, parton
densities and distribution amplitudes. Furthermore, the “old” functions are
limiting cases of the “new” ones.
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Figure 1: Hadron-to-quarks matrix elements.

The relation of GPDs to more simple “old” functions is an essential ele-
ment in constructing realistic models of GPDs. One of the most restrictive
constraints is imposed by the formula [2] relating GPDs to the usual parton
densities, which may be treated as a “forward” limit of GPDs. A nontrivial
observation here is that GPDs contain contributions which are “invisible” in
the forward limit, such as the D-term [16]. In addition to the requirements of
reproducing “old” functions in specified limits (“reduction relations”), such
models should satisfy other constraints, such as polynomiality [11], and cor-
respondence with Regge behavior of usual parton densities in the region of
small parton momenta.

The polynomiality constraint is highly nontrivial, but it is automatically
satisfied if GPDs are built from so-called “double distributions” [1, 4, 6].
However, imposing on DDs the constraints dictated by correspondence with
the Regge behavior one faces rather singular functions, and this raises a lot
of questions related to the singularity structure of GPDs in general.

The goal of the present paper is, first, to give a brief overview of the
basics of the theory of generalized parton distributions and their relationship
with previously used phenomenological functions, and, second, to describe
a recent development [17] in modeling GPDs based on their formulation in
terms of double distributions, with emphasis on careful disentangling their
singularity structure. To this end, in Section 2 we start with an overview,
of “old” phenomenological functions. Their relation with generalized parton
distributions is discussed in Section 3 . The formalism of double distributions
is outlined in Section 4. Before switching to the discussion of more technical
issues related to modeling GPDs within DD formalism, a brief summary
of the content of Sections 2–4 is given in Section 5. A specific problem
of building model GPDs with a Regge behavior is addressed in Section 6.
The model described there provides a particular example of singularities
that one may encounter in GPD construction. It also gives a nontrivial
example of a situation when the part of the D-term (that is formally invisible
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in the forward limit), comes from a term generated by the correspondence
with the usual (“forward”) parton densities. As shown in recent papers
[18, 19, 20, 21, 22], the D term also appears as a subtraction constant in
dispersion sum rules for GPDs. In Section 7, we study these sum rules
within the DD formalism used in previous sections, in particular, we show
that separation of DDs into the so-called “plus” part and the D-term part
may be treated as a renormalization procedure for the GPD sum rules. In
Section 8, we compare it to the alternative prescription based on analytic
regularization used in Refs. [20, 23, 24]. Our conclusions are formulated in
Section 9.

2 “Old” phenomenological functions

Form factors. The form factors are defined through matrix elements of elec-
tromagnetic (EM) and weak currents between hadronic states. In particular,
the nucleon electromagnetic form factors are given by

〈 p′, s′ | Jµ(0) | p, s 〉 = ū(p′, s′)

[
γµF1(t) +

rνσµν

2mN

F2(t)

]
u(p, s) , (3)

where r = p− p′ is the momentum transfer and t = r2. The electromagnetic
current is given by the sum of its flavor components:

Jµ(z) =
∑
f

ef ψ̄f (z)γµψf (z) . (4)

The nucleon helicity non-flip form factor F1(t) can also be written as a sum∑
f efF1f (t). A similar decomposition holds for the helicity flip form factor

F2(t) =
∑

f efF2f (t). At t = 0, these functions have well known limit-
ing values. In particular, F1(t = 0) = eN =

∑
f Nfef gives total electric

charge of the nucleon (Nf is the number of valence quarks of flavor f) and
F2(t = 0) = κN gives its anomalous magnetic moment. The form factors

are measurable through elastic eN scattering.

Usual parton densities. The parton densities are defined through forward
matrix elements of quark/gluon fields separated by light-like distances. In
particular, in the unpolarized case we have

〈 p | ψ̄a(−z/2)γµψa(z/2) | p 〉
∣∣
z2=0

= 2pµ
∫ 1

0

[
e−ix(pz)fa(x)− eix(pz)fā(x)

]
dx .

(5)
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In the local limit z = 0, the operators in this definition coincide with the
operators contributing into the non-flip form factor F1. Since t = 0 for the
forward matrix element, we obtain the sum rule for the numbers of valence
quarks: ∫ 1

0

[fa(x)− fā(x)] dx = Na . (6)

The definition of parton densities has the form of the plane wave decom-
position. This observation allows one to give the momentum space inter-
pretation: fa(ā)(x) is the probability to find a (ā)-quark with momentum xp
inside a nucleon with momentum p. The classic process to access the usual
parton densities is deep inelastic scattering (DIS) γ∗N → X.

z/2−z/2

p p

xpxp

pp

Figure 2: Matrix element defining parton densities, their momentum-space inter-
pretation and lowest order pQCD factorization for DIS.

Using the optical theorem, the γ∗N → X cross section is given by the
imaginary part of the forward virtual Compton scattering amplitude. The
momentum transfer q is spacelike q2 ≡ −Q2, and when it is sufficiently large,
perturbative QCD factorization works. At the leading order, one deals with
the so-called handbag diagram, see Fig. 2. Through simple algebra,

1

π
Im 1/(q + xp)2 ≈ δ(x− xB)

2(pq)
,

one finds that DIS measures parton densities at the point x = xB, where
the parton momentum fraction equals the Bjorken variable xB = Q2/2(pq).
Comparing parton densities to form factors, we note that the latter have a
point vertex instead of a light-like separation and p 6= p′.

Distribution amplitudes Another example of nonperturbative functions de-
scribing the hadron structure are the distribution amplitudes (DAs). They
can be interpreted as light cone wave functions integrated over transverse
momentum, or as 〈0| . . . |p〉 matrix elements of light cone operators. In the
pion case, we have

〈 0 | ψ̄d(−z/2)γ5γ
µψu(z/2) |π+(p) 〉

∣∣
z2=0

= ipµfπ

∫ 1

−1

e−iα(pz)/2ϕπ(α) dα , (7)
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with x1 = (1+α)/2, x2 = (1−α)/2 being the fractions of the pion momentum
carried by the quarks. The distribution amplitudes describe the hadrons in
situations when the pQCD hard scattering approach is applicable to exclusive
processes. The classic example is the γ∗γ → π0 transition; its amplitude is
proportional to the 1/(1− α2) moment of ϕπ(α), see Fig. 3, right.

Figure 3: Left: baryon and meson distribution amplitudes. Right: lowest-order
pQCD factorization for γ∗γ → π0 transition form factor.

3 Generalized parton distributions

The classic process that requires the description of the hadron structure in
terms of the generalized parton distributions is the deeply virtual Compton
scattering (DVCS) γ∗N → γN . It is convenient to visualize DVCS in the γ∗N
center-of-mass frame, with the initial hadron and the virtual photon moving
in opposite directions along the z-axis. When the momentum transfer t is
small, the hadron and the real photon in the final state also move close to
the z-axis. This means that the virtual photon momentum q = q′ − xBp has
the component −xBp canceled by the momentum transfer r. In other words,
the momentum transfer r has the longitudinal component r+ = xBp

+, where
xB = Q2/2(pq) is the DIS Bjorken variable. One can say that DVCS has
a skewed kinematics in which the final hadron has the “plus” momentum
(1 − ζ)p+ that is smaller than that of the initial hadron. In the particular
case of DVCS, we have ζ = xB.
Nonforward parton distributions. The parton picture for DVCS has some
similarity to that of DIS, with the main difference that the plus-momenta
of the incoming and outgoing quarks in DVCS are not equal; they are Xp+

and (X − ζ)p+, see Fig. 4. Another difference is that the invariant momen-
tum transfer t in DVCS is nonzero: the matrix element of partonic fields is
essentially nonforward.

Thus, the nonforward parton distributions (NFPDs) Fζ(X, t) describing
the hadronic structure in DVCS depend on X (the fraction of p+ carried by
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Figure 4: Lowest-order DVCS in terms of nonforward parton distributions.

the outgoing quark), ζ (the skewness parameter characterizing the difference
between initial and final hadron momenta), and t (the invariant momentum
transfer). In the forward r = 0 limit, we have a reduction formula

Faζ=0(X, t = 0) = fa(X) (8)

relating NFPDs with the usual parton densities. The nontriviality of this
relation is that Fζ(X, t) appear in the amplitude of the exclusive DVCS
process, while the usual parton densities are measured from the cross section
of the inclusive DIS reaction. The local limit relates NFPDs to form factors:∫ 1

0

Faζ (X, t) dX = F a
1 (t) (1− ζ/2) . (9)

Off-forward parton distributions. The description in terms of NFPDs has
the advantage of using the variables most close to those of the usual parton
densities. However, the initial and final hadron momenta are not treated
symmetrically in this scheme. X. Ji [2] proposed to use symmetric variables
in which the plus-momenta of the hadrons are (1 + ξ)P+ and (1 − ξ)P+,
and those of the active partons are (x + ξ)P+ and (x − ξ)P+, P being the
average momentum P = (p + p′)/2, see Fig. 5. The relevant functions were
called originally “off-forward parton distributions” (OFPDs). At present,
most researchers use OFPDs, referring to them simply as GPDs. (When
the NFPDs conventions are used, the functions are still called GPDs, but
specifying that the variables X, ζ correspond to definitions of Ref. [6].) In the
simplified case of scalar fields, the GPD parametrization of the nonforward
matrix element is

〈P + r/2|ψ(−z/2)ψ(z/2)|P − r/2〉 =

∫ 1

−1

e−ix(Pz)H(x, ξ) dx+O(z2) . (10)
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To take into account the spin properties of hadrons and quarks, one needs
four generalized parton distributions H,E, H̃, Ẽ, each of which is a function
of x, ξ, and t. The skewness parameter ξ ≡ r+/2P+ can be expressed in
terms of the Bjorken variable, ξ = xB/(2−xB), but it does not coincide with
the latter.

( 1     ) p (1     ) P

( x    ) P( X    ) p ( x +    ) P

(1 +    ) P

Xp

p

Figure 5: Comparison of NFPDs and OFPDs.

Depending on the value of x, each GPD has 3 distinct regions. When ξ <
x < 1, GPDs are analogous to usual quark distributions; when −1 < x < −ξ,
they are similar to antiquark distributions. In the region −ξ < x < ξ, the
“returning” quark has a negative momentum and should be treated as an
outgoing antiquark with momentum (ξ− x)P . The total qq̄ pair momentum
r = 2ξP is shared by the quarks in fractions r(1 + x/ξ)/2 and r(1− x/ξ)/2.
Hence, a GPD in the region −ξ < x < ξ is similar to a distribution amplitude
Φ(α) with α = x/ξ.

4 Double distributions

Double distributions as hybrids of parton densities and distribution ampli-
tudes. The main idea behind the double distributions [1, 4, 5, 25, 26] is a
“superposition” of P+ and r+ momentum flows, i.e., the representation of
the parton momentum k+ = βP+ + (1 + α)r+/2 as the sum of a component
βP+ due to the average hadron momentum P (flowing in the s-channel) and
a component (1 + α)r+/2 due to the t-channel momentum r, see Fig. 6. In
the simplified case of scalar fields, the DD parametrization reads

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉 =

∫
Ω

F (β, α) e−iβ(Pz)−iα(rz)/2 dβ dα

+O(z2) . (11)

Thus, the double distribution f(β, α) (we consider here for simplicity the
t = 0 limit) looks like a usual parton density with respect to β and like a
distribution amplitude with respect to α. The support region Ω is specified
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P  ( 1     ) r / 2

P  r / 2 P + r / 2

P + ( 1 +   ) r / 2

P  r / 2 P  r / 2 

( x +    ) P ( x    ) P

(1 +    ) P (1     ) P

+

Figure 6: Comparison of GPD and DD descriptions.

by |β| + |α| ≤ 1. The connection between the DD variables β, α and the
GPD variables x, ξ is obtained from r+ = 2ξP+, which results in the basic
relation x = β + ξα. The formal connection between DDs and GPDs is

H(x, ξ) =

∫
Ω

F (β, α) δ(x− β − ξα) dβ dα . (12)

Local operators and DDs. The definition of DDs may also be given through

parameterization of symmetric-traceless part ψ(0){
↔
∂µ1 . . .

↔
∂µn}ψ(0) (denoted

by { }) of the composite local operators resulting from the Taylor expansion
of the bilocal operator used in the definition given above. For a scalar target,
one may write

〈P + r/2|ψ(0){
↔
∂µ1 . . .

↔
∂µn}ψ(0)|P − r/2〉

=
∞∑
n=0

[n−1∑
l=0

Anl{Pµ1 . . . Pµn−lrµn−l+1
. . . rµn}+ Ann{rµ1 . . . rµn}

]
. (13)

In the momentum representation, the derivative
↔
∂µ converts into the av-

erage k̄µ = (kµ + k′µ)/2 of the initial k and final k′ quark momenta. After
integration over k, (k̄)n should produce the P and r factors in the r.h.s. of
the equation above. In this sense, one may treat (k̄)n as (βP + αr/2)n and
define DDs through

n!

(n− l)! l! 2l

∫
Ω

F (β, α)βn−lαl dβ dα = Anl (14)

as a function whose βn−lαl moments are proportional to the coefficients Anl.

D-term, scalar quarks. Parameterizing the matrix element (13), one may
wish to separate the Ann terms that are accompanied by tensors built from
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the momentum transfer vector r only (and, thus, invisible in the forward
r = 0 limit), and introduce the D-term [16]∫ 1

−1

D(α) (α/2)n dα = Ann (15)

as a function whose (α/2)n moments giveAnn. Within the DD-parameterization,
the separation of the D-term can be made by simply using

e−iβ(Pz) = [e−iβ(Pz) − 1] + 1 .

The D-term is then given by

D(α) =

∫ 1−|α|

−1+|α|
F (β, α) dβ , (16)

and the DD-parameterization converts into a “DD plus D” parameterization

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉 =

∫
Ω

[F (β, α)]+ e
−iβ(Pz)−iα(rz)/2 dβ dα

+

∫ 1

−1

D(α) e−iα(rz)/2 dα +O(z2) , (17)

where

[F (β, α)]+ = F (β, α)− δ(β)

∫ 1−|α|

−1+|α|
F (γ, α) dγ (18)

is the DD with subtracted D-term. Mathematically, [F (β, α)]+ is a “plus
distribution” with respect to β. It satisfies the condition∫ 1−|α|

−1+|α|
[F (β, α)]+ dβ = 0 , (19)

guaranteeing that no D-term can be constructed from [F (β, α)]+.

Spin-1/2 quarks: two-DD representation. In the simple model with scalar
quarks discussed above, one may just use the original DD F (β, α) without
splitting it into the “plus” part and the D-term. In models with spin-1/2
quarks, it is more difficult to avoid an explicit introduction of extra functions
producing a D-term. The basic reason [16] is that the matrix element of the
bilocal operator, even in the case of spin-0 hadrons, should have two parts

〈P − r/2|ψ̄(−z/2)γµψ(z/2)|P + r/2〉|twist−2

= 2Pµf
(
(Pz), (rz), z2

)
+ rµg

(
(Pz), (rz), z2

)
. (20)
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This suggests to introduce a parametrization with two DDs corresponding
to f and g functions [16]. For the matrix element (20) multiplied by zµ –
which is exactly what one obtains doing the leading-twist factorization for
the Compton amplitude [27] – this gives

zµ〈P − r/2|ψ̄(−z/2)γµψ(z/2)|P + r/2〉

=

∫
Ω

e−iβ(Pz)−iα(rz)/2

[
2(Pz)F (β, α) + (rz)G(β, α)

]
dβ dα +O(z2). (21)

The separation into F - and G-parts in this case is not unique: expanding the
exponential in powers of (Pz) and (rz), one may obtain the same (Pz)m(rz)l

term both from the F -type and G-type parts. This leads to possibility of
“gauge transformations”: one can change [28]

F (β, α)→ F (β, α) + ∂χ(β, α)/∂α , (22)

G(β, α)→ G(β, α)− ∂χ(β, α)/∂β , (23)

using a gauge function χ(β, α) that is odd in α. Still, the terms (Pz)0(rz)l

cannot be produced from the F -type contribution. The maximum of what
can be done is to absorb all m 6= 0 contributions into the F -type term. As
a result, Eq. (21) is converted into a “DD plus D” parameterization [16] in
which the term in the square brackets is substituted by the

2(Pz)FD(β, α) + (rz)δ(β)D(α) (24)

combination, with D(α) given by the β-integral of G(β, α) and FD(β, α)
related to the original DDs through the gauge transformation (cf. Refs.[28,
?]).

Spin-1/2 quarks: single-DD representation. In fact, since the Dirac index µ

is symmetrized in the local twist-two operators ψ̄{γµ
↔
∂µ1 . . .

↔
∂µn}ψ with the

µi indices related to the derivatives, one may expect that it also produces
the factor βPµ+αrµ/2. As shown by the authors of Ref.[29], this is precisely
what happens. In their construction, not only the exponential produces
the z-dependence in the combination β(Pz) + α(rz)/2, but also the pre-
exponential terms come in the β(Pz) + α(rz)/2 combination, i.e., the result
is a representation in which

2(Pz)F (β, α) + (rz)G(β, α) = [2β(Pz) + α(rz)]f(β, α) , (25)

that corresponds to F (β, α) = βf(β, α) and G(β, α) = αf(β, α). Thus, for-
mally, one deals with just one DD f(β, α). In principle, though, this single
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function may be a sum of several components, e.g., δ(α)f(β)/β+δ(β)D(α)/α
(the result of the pioneering D-term paper [16] for the pion DD in an effective
chiral model corresponds to f I=0(β, α) = δ(α)/|β| − δ(β)/|α|).

In the two-DD approach, GPDs are introduced through

H(x, ξ) =

∫
Ω

[
F (β, α) + ξG(β, α)

]
δ(x− β − ξα) dβ dα , (26)

which converts into

H(x, ξ) = x

∫
Ω

f(β, α) δ(x− β − ξα) dβ dα (27)

in the “single-DD” formulation. The D-term in the single-DD case is given
by

D(α) = α

∫ 1−|α|

−1+|α|
f(β, α) dβ , (28)

and one may write f(β, α) as a sum

f(β, α) = [f(β, α)]+ + δ(β)D(α)/α (29)

of its “plus” part [f(β, α)]+ (cf. Eq.(18) ) and D-term part δ(β)D(α)/α.

Getting GPDs from DDs. The relation between DDs and GPDs can be
illustrated on the DD support rhombus |β|+ |α| ≤ 1 (see Fig. 7).

xξ
−ξ

x

α

β

f(x)

H(x, ξ)

H(ξ, ξ)

H(−ξ, ξ)

H(x, ξ)

Figure 7: Support region for double distributions and lines producing
f(x), H(x, ξ) (for x > ξ and x < ξ), H(ξ, ξ) and H(−ξ, ξ).

The delta-function in Eq. (27) specifies the line of integration in the
{β, α} plane. To get H(x, ξ; t), one should integrate f(β, α) over α along a
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straight line β = x−ξα. Fixing some value of ξ, one deals with a set of parallel
lines intersecting the β-axis at β = x. The upper limit of the α-integration
is determined by intersection of this line either with the line β + α = 1 (this
happens if x > ξ) or with the line −β+α = 1 (if x < ξ). Similarly, the lower
limit of the α-integration is set by the line β − α = 1 for x > −ξ or by the
line β+α = −1 for x < −ξ. The lines corresponding to x = ±ξ separate the
rhombus into three parts generating the three components of H(x, ξ; t):

Ha(x, ξ; t) = θ(ξ ≤ x ≤ 1)

∫ 1−x
1−ξ

− 1−x
1+ξ

fa(x− ξα, α) dα

+θ(−ξ ≤ x ≤ ξ)

∫ 1+x
1+ξ

− 1−x
1+ξ

fa(x− ξα, α) dα

+θ(−1 ≤ x ≤ −ξ)
∫ 1+x

1+ξ

− 1+x
1−ξ

fa(x− ξα, α) dα. (30)

For x > ξ > 0, the integration lines lie completely inside the right half of
the rhombus. The line producing GPD at the “border” point x = ξ starts
at its upper corner, while the lines corresponding to |x| < ξ cross the line
β = 0. Thus, one deals with the “outer” regions x > ξ and x < −ξ (in this
case, the whole line is in the left half of the rhombus) and the central region
−ξ < x < ξ, when the integration lines in the (β, α) plane lie in both halves
of the rhombus and intersect the β = 0 line.

The forward limit r = 0 corresponds to ξ = 0, and GPD H(x, ξ) converts
into the usual parton distribution f(x). Using DDs, we may write

f(x) =

∫ 1−|x|

−1+|x|
F (x, α) dα = x

∫ 1−|x|

−1+|x|
f(x, α) dα . (31)

Thus, the forward distributions f(x) are obtained by integrating DDs over
vertical lines β = x in the (β, α) plane. For nonzero ξ, GPDs are obtained
from DDs through integrating them along the lines β = x − ξα having 1/ξ
slope, i.e. the family of H(x, ξ) functions for different values of ξ is obtained
by “scanning” the same DD at different angles.

In GPD variables (x, ξ), the momentum fraction x−ξ carried by the final
quark is positive for the right outer region, and negative for the central region,
i.e., in the latter case it should be interpreted as an outgoing antiquark rather
than incoming quark [4], i.e. GPD in the central region describes emission
of a quark-antiquark pair with total plus momentum r+ shared in fractions
(1 + x/ξ)/2 and (1− x/ξ)/2, like in a meson distribution amplitude.
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From this physical interpretation, one may expect that the behavior of a
GPD H(x, ξ) in the central region is unrelated to that in the outer region.
But, since the GPD in both regions is obtained from the same DD, one may
expect, to the contrary, that the set of GPDs for all “outer” x’s and all ξ’s
contains the same information as the set of GPDs for all central x’s and all
ξ’s. This “holographic” picture (cf. Refs.[20, 23]) may be violated by terms
contributing to GPDs in the central region and not contributing to GPDs in
the outer regions: by the terms with support on the β = 0 line, i.e., those
proportional to δ(β) (and, in principle, its derivatives), in particular, by the
D-term. For this reason, the usual approach is to build separate models for
the D-term and for the remaining part of DD.

Recall that integrating the DD f(x, α; t = 0) over a vertical line gives the
usual parton density f(x). To get the t = 0 GPDs one should scan the same
DD along the lines having a ξ-dependent slope. Thus, one can try to build
models for SPDs using information about usual parton densities. Note, how-
ever, that the usual parton densities are insensitive to the meson-exchange
type contributions HM(x, ξ; t) coming from the singular x = 0 parts of DDs.
Thus, information contained in GPDs originates from two physically differ-
ent sources: meson-exchange type contributions HM(x, ξ; t) and the functions
HM(x, ξ; t) obtained by scanning the x 6= 0 parts of DDs f(x, α; t). The sup-
port of exchange contributions is restricted to |x| ≤ ξ. Up to rescaling, the
function HM(x, ξ; t) has the same shape for all ξ, e.g., ϕM(x/ξ; t)/|ξ|. For
any nonvanishing ξ, these exchange terms become invisible in the forward
limit ξ → 0. On the other hand, interplay between x and ξ dependences
of the component resulting from integrating the x 6= 0 part of DDs is quite
nontrivial. Its support in general covers the whole −1 ≤ x ≤ 1 region for
all ξ including the forward limit ξ in which they convert into the usual (for-
ward) densities fa(x), f ā(x). The latter are rather well known from inclusive
measurements. at small t.

Factorized DD Ansatz. The reduction formula (31) suggests a model

f(β, α) = h(β, α) f(β)/β , (32)

where f(β) is the forward distribution, while h(β, α) determines DD profile
in the α direction and satisfies the normalization condition∫ 1−|β|

−1+|β|
h(β, α) dα = 1 . (33)

Since the plus component of the momentum transfer r is shared between
the quarks in fractions (1 + α)/2 and (1− α)/2, like in a meson distribution
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amplitude, it was proposed [25, 26] to model the shape of the profile function
by

hN(β, α) ∼ [(1− |β|)2 − α2]N

(1− |β|)2N+1
, (34)

that vanishes at the sides of the support rhombus |α|+ |β| ≤ 1, with N being
a parameter governing the width of the profile.

Such a factorized DD Ansatz (FDDA) was originally applied [25, 26] to an
analog of the F (β, α) function of the two-DD formalism, which corresponds
to a model F (β, α) = f(β)h(β, α) and G(β, α) = 0. Later, it was corrected by
addition of the D-term [16], which formally corresponds to the “gauge” (23)
in which G(β, α) → GD(β, α) = δ(β)D(α), and F (β, α) → FD(β, α). Note
that if F = βf and G = αf , the model FD(β, α) = f(β)h(β, α) does not
coincide with the model f(β, α) = f(β)h(β, α)/β, since the gauge function
χD(β, α) (see Eq. (22)) is nontrivial.

Thus, there is a question whether the FDDA should be applied to FD(β, α)
(as it was done so far) or to the DD f(β, α) of the single-DD formulation.
It should be confessed that no enthusiasm has been observed to use FDDA
in the form of the single-DD formula (32). This observation has a simple
explanation: the function f(β)/β is not integrable for β = 0, even if f(β)
is finite for β = 0. The reason is that the DVCS amplitude contains sin-
glet GPDs, which are odd functions of β. Hence, f(β)/β should be an even
function, and the principal value prescription does not work. Moreover, for
small β one would expect that the forward distribution f(β) has a singular
f(β) ∼ 1/βa Regge behavior, which makes the problem even worse. We will
address these questions in the second part of our review. Before proceeding
to it, we give below a brief summary of the first part.

5 GPDs and phenomenological functions

Hadronic structure is a complicated subject, and it requires a study from
many sides and in many different types of experiments. The description of
specific aspects of hadronic structure is provided by several different func-
tions: form factors, usual parton densities, distribution amplitudes. Gener-
alized parton distributions provide a unified description: all these functions
can be treated as particular or limiting cases of GPDs H(x, ξ, t).

Usual parton densities f(x) correspond to the case ξ = 0, t = 0. They
describe a hadron in terms of probabilities ∼ |Ψ|2. However, QCD is a
quantum theory: GPDs with ξ 6= 0 describe correlations ∼ Ψ∗1Ψ2. Taking
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only the point t = 0 corresponds to integration over impact parameters b⊥
— information about the transverse structure is lost.

Form factors F (t) contain information about the distribution of partons
in the transverse plane, but F (t) involve integration over momentum fraction
x — information about longitudinal structure is lost.

A simple “hybridization” of usual densities and form factors in terms of
NPDs F(x, t) (GPDs with ξ = 0) shows that the behavior of F (t) is governed
both by transverse and longitudinal distributions. GPDs provide adequate
description of nonperturbative soft mechanism. They also allow to study
transition from soft to hard mechanism.

Distribution amplitudes ϕ(x) provide quantum-level information about
the longitudinal structure of hadrons. In principle, they are accessible in
exclusive processes at large momentum transfer, when hard scattering mech-
anism dominates. GPDs have DA-type structure in the central region |x| < ξ.

Generalized parton distributions H(x, ξ, t) provide a 3-dimensional pic-
ture of hadrons. GPDs also provide some novel possibilities, such as “mag-
netic distributions” related to the spin-flip GPD E(x, ξ, t). In particular, the
structure of nonforward density E(x, ξ = 0, t) determines the t-dependence of
F2(t). Recent JLab data give F2(t)/F1(t) ∼ 1/

√−t rather than 1/t expected
in hard pQCD and many models — a puzzle waiting to be resolved. The for-
ward reductions κa(x) of E(x, ξ, t) look as fundamental as fa(x) and ∆fa(x):
Ji’s sum rule involves κa(x) on equal footing with f(x). Magnetic proper-
ties of hadrons are strongly sensitive to dynamics providing a testing ground
for models. Another novel possibility is the study of flavor-nondiagonal dis-
tributions, e.g., proton-to-neutron GPDs accessible through processes like
exclusive charged pion electroproduction, proton-to-Λ GPDs (they appear
in kaon electroproduction), and proton-to-∆ GPDs — these can be related
to form factors of proton-to-∆ transition. The GPDs for N → N + soft π
processes can be used for testing the soft pion theorems and physics of chiral
symmetry breaking.

An interesting problem is the separation and flavor decomposition of
GPDs. The DVCS amplitude involves all four types of GPDs, H,E, H̃, Ẽ, so
we need to study other processes involving different combinations of GPDs.
An important observation is that, in hard electroproduction of mesons, the
spin nature of produced meson dictates the type of GPDs involved, e.g., for
pion electroproduction, only H̃, Ẽ appear, with Ẽ dominated by the pion
pole at small t. This gives an access to (generalization of) polarized parton
densities without polarizing the target.

Summarizing above discussion, we want to emphasize that the structure of
hadrons is the fundamental physics to be accessed via GPDs. GPDs describe
hadronic structure on the quark-gluon level and provide a three-dimensional
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picture (“tomography”) of the hadronic structure. GPDs adequately reflect
the quantum-field nature of QCD (correlations, interference). They also pro-
vide new insights into spin structure of hadrons (spin-flip distributions, or-
bital angular momentum). GPDs are sensitive to chiral symmetry breaking
effects, a fundamental property of QCD. Furthermore, GPDs unify existing
ways of describing hadronic structure. The GPD formalism provides nontriv-
ial relations between different exclusive reactions and also between exclusive
and inclusive processes.

6 Modeling GPDs

Preliminaries. The general idea of extracting GPDs from experiments is
to build some models for GPDs, and fix the parameters of such models by
comparing their predictions with experimental data.

There are two approaches used to model GPDs. One is based on a direct
calculation of parton distributions in specific dynamical models, such as bag
model [30], chiral soliton model [31], light-cone formalism [32], etc. Another
approach [25, 33, 34] is a phenomenological construction based on reduction
formulas relating GPDs to usual parton densities f(x),∆f(x) and form fac-
tors F1(t), F2(t), GA(t), GP (t). The most convenient way to construct such
models is to start with double distributions f(β, α; t).

Let us concentrate on the limiting case t = 0. As we discussed earlier, the
interpretation of the β-variable as the fraction of the P momentum and the
reduction formula (31) stating that the integral of fa(β, α) over α gives the
usual parton density fa(β) suggests the factorized DD Ansatz (32) in which
f(β, α) = h(β, α) f(β), where the function h(β, α) describes the α-profile
normalized to 1 according to Eq.(33) The profile function should be sym-
metric with respect to α → −α because DDs f(β, α) are even in α [33, 26].
For a fixed β, the function h(β, α) describes how the longitudinal momentum
transfer r+ is shared between the two partons. Hence, the shape of h(β, α)
should look like a symmetric meson distribution amplitude ϕ(α). Recalling
that DDs have the support restricted by |α| ≤ 1−|β|, to get a more complete
analogy with DAs, it makes sense to rescale α as α = (1 − |β|)γ introduc-
ing the variable γ with β-independent limits: −1 ≤ γ ≤ 1. The simplest
model is to assume that the γ–profile is a universal function g(γ) for all
β. Possible simple choices for g(γ) may be δ(γ) (no spread in γ-direction),
3
4
(1− γ2) (characteristic shape for asymptotic limit of nonsinglet quark dis-

tribution amplitudes), 15
16

(1 − γ2)2 (asymptotic shape of gluon distribution
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amplitudes), etc. In the variables β, α, this gives

h(∞)(β, α) = δ(α) , h(1)(β, α) =
3

4

(1− |β|)2 − α2

(1− |β|)3
,

h(2)(β, α) =
15

16

[(1− |β|)2 − α2]2

(1− |β|)5
. (35)

These models can be treated as specific cases of the general profile function

h(N)(β, α) =
Γ(2N + 2)

22N+1Γ2(N + 1)

[(1− |β|)2 − α2]N

(1− |β|)2N+1
, (36)

whose width is governed by the parameter N .

Simple models. Let us analyze the structure of GPDs obtained from these
simple models. In particular, taking f (∞)(β, α) = δ(α)f(β) gives the sim-
plest model H(∞)(x, ξ; t = 0) = f(x) in which OFPDs at t = 0 have no
ξ-dependence.

In case of the b = 1 and b = 2 models, simple analytic results can be
obtained only for some explicit forms of f(x). For the “valence quark”-
oriented ansatz h(1)(β, α), the following choice of a normalized usual density

f (1)(β) =
Γ(5− a)

6 Γ(1− a)
β−a(1− β)3 (37)

is both close to phenomenological quark distributions and produces a simple
expression for the double distribution since the denominator (1−β)3 factor in
Eq. (35) is canceled. As a result, the integral in Eq. (30) is easily performed
and we get [34]

H1
V (x, ξ)||x|≥ξ =

1

ξ3

(
1− a

4

){[
(2− a)ξ(1− x)(x2−a

+ + x2−a
− )

+ (ξ2 − x)(x2−a
+ − x2−a

− )
]
θ(x ≥ ξ) + (x→ −x)

}
(38)

for x| ≥ ξ and

H1
V (x, ξ)||x|≤ξ =

1

ξ3

(
1− a

4

){
x2−a

+ [(2− a)ξ(1− x) + (ξ2 − x)] + (x→ −x)
}

(39)
in the middle −ξ ≤ x ≤ ξ region. We use here the notation

x+ = (x+ ξ)/(1 + ξ) , x− = (x− ξ)/(1− ξ) . (40)
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To extend these expressions onto negative values of ξ, one should substitute
ξ by |ξ|. One can check, however, that no odd powers of |ξ| would appear in
the xN moments of H1

V (x, ξ). Furthermore, these expressions are explicitly
non-analytic for x = ±ξ. This is true even if a is integer. Discontinuity at
x = ±ξ, however, appears only in the second derivative of H1

V (x, ξ) i.e., the
model curves for H1

V (x, ξ) look very smooth (see Fig. 8).

-1 -0.5 0.5 1

2

4

6

8

10

Figure 8: Valence quark distributions H1
V (x, ξ) with a = 0.5 for several values

of ξ = xBj/(2− xBj) corresponding to values xBj = 0.1, 0.2, 0.4, 0.6, 0.8.
Lower curves correspond to larger values of xBj.

For a = 0, the x > ξ part of GPD has the same x-dependence as its
forward limit, differing from it by an overall ξ-dependent factor only,

H1
V (x, ξ)|a=0 = 4

(1− |x|)3

(1− ξ2)2
θ(|x| ≥ ξ) + 2

ξ + 2− 3x2/ξ

(1 + ξ)2
θ(|x| ≤ ξ) . (41)

The (1 − |x|)3 behavior can be trivially continued into the |x| < ξ region.
However, the actual behavior of H1

V (x, ξ)|a=0 in this region is given by a
different function. In other words, H1

V (x, ξ)|a=0 can be represented as a sum
of a function analytic at border points and a contribution whose support
is restricted by |x| < ξ. It should be emphasized that despite its DA-like
appearance, this contribution should not be treated as an exchange-type
term. It is generated by the regular β 6= 0 part of the DD, and, unlike the
ϕ(x/ξ)/ξ functions its shape changes with ξ, the function becoming very
small for small ξ.

For the singlet quark distribution, the DDs fS(β, α) should be odd func-
tions of β. Still, we can use the model like (37) for the β > 0 part, but take
fS(β, α)|β 6=0 = Af (1)(|β|, α) sign(β). Note, that the integral (30) producing
HS(x, ξ) in the |x| ≤ ξ region would diverge for α → x/ξ if a ≥ 1, which
is the usual case for standard parametrizations of singlet quark distributions
for sufficiently large Q2. However, due to the antisymmetry of fS(β, α) with
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Figure 9: Model for singlet quark distribution H1
S(x, ξ) for values of ξ cor-

responding to xBj equal to 0.2, 0.4, 0.6. Lower curves correspond to larger
values of xBj.

respect to β → −β and its symmetry with respect to α→ −α, the singular-
ity at α = x/ξ can be integrated using the principal value prescription which
in this case produces the x → −x antisymmetric version of Eqs. (38) and
(39). For a = 0, its middle part reduces to

H1
S(x, ξ)||x|≤ξ,a=0 = 2x

3ξ2 − 2x2ξ − x2

ξ3(1 + ξ)2
. (42)

The shape of singlet GPDs in this model is shown in Fig. 9.
It should be noted that explicit calculations of generalized parton distri-

butions performed within the chiral soliton model [31] show that the middle
region behavior of SPDs strongly resembles that of distribution amplitudes.

GPD model with implanted Regge behavior. The assumptions used in the
factorized DD Ansatz are based on the experience with calculating DDs for
triangle diagrams [6] and form factors in the light-front formalism models
with power-law dependence of the wave function on transverse momentum
[35] (see also Ref.[36]).

The simplest triangle diagram (see Fig.10, left) in the scalar model cor-
responding to Eq. (13) may be used as an example of a model for GPD

H(x, ξ) ∼
∫

d4k δ(x− (kn)/(Pn))

(m2
1 − k2

1)(m2
2 − k2

2)(m2
3 − (P − k)2)

. (43)

Though the ξ-dependence is not immediately visible here, it appears after
integration over k through the (rn)/2(Pn) ratio. The DD F (β, α) generated
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by this diagram is just a constant, see Ref.[6], which corresponds to a flat
N = 0 profile h(0)(β, α) ∼ 1/(1− β) and f(β) ∼ 1− β forward distribution.

P + r/2 P − r/2

k1 = k + r/2 k2 = k − r/2

P − k

δ (x − (kn)/(Pn))

P + r/2 P − r/2

T (P, r, k)

k1 = k + r/2 k2 = k − r/2

Figure 10: Left: Triangle diagram model for GPD. Right: Hadron-quark
scattering amplitude.

The calculation [35] of overlap integrals for light-front wave functions with
a power-law behavior ψ(x, k⊥) ∼ 1/(k2

⊥)1+κ resulted in expressions equiva-
lent to using DDs with N = κ profile in Eq.(34) and forward distributions
behaving like (1 − β)2κ+1. The same profile arises [35] if one differentiates
a scalar triangle diagram κ times with respect to masses (squared) of each
active quark, i.e. substitutes

1

(m2
1 − k2

1)(m2
2 − k2

2)
→ 1

(m2
1 − k2

1)1+κ(m2
2 − k2

2)1+κ
. (44)

It should be emphasized that κ 6= 0 models the softer-than-perturbative
behavior expected for the transition amplitude relating a bound state with
its constituents.

The triangle diagrams, however, do not generate the Regge f(β) ∼ 1/βa

behavior for small β. The latter may be obtained, in particular, by infinite
summation of higher-order t-channel ladder diagrams (see, e.g., Ref.[37]). A
simpler way was proposed in Ref.[38], where the spectator propagator was
substituted by a parton-hadron scattering amplitude T (P, r, k) (see Fig.10,
right) ) written in the dispersion relation representation. To avoid divergen-
cies generated by the Regge behavior, the subtracted dispersion relation

T (P, r, k)→T ((P − k)2) = T0 +

∫ ∞
0

dσρ(σ)

{
1

σ − (P − k)2
− 1

σ

}
(45)

was used. The spectral function ρ(σ) here should be adjusted to produce a
desired Regge-type behavior with respect to s = (P − k)2.

In the light-front formalism, the starting contribution corresponds to a
triangle diagram in which the hadron-quark vertices are substituted by the
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light-front wave functions ψ(x, k⊥) that bring in an extra fall-off of the in-
tegrand at large transverse momenta k⊥. The authors of Ref.[38] intended
to reflect this physics in their covariant model. To introduce form factors
bringing in a faster fall-off of the k-integrand with respect to quark virtuali-
ties k2

1 and k2
2, it was proposed to use higher powers of 1/(m2

i − k2
i ) instead

of perturbative propagators, which may be achieved by differentiating the
triangle diagram with respect to m2

i .
The model of Ref.[38] assumes spin-1/2 quarks. It was argued that the

Dirac structure of the hadron-parton scattering amplitude in this case should
be given by /k, which provides EM gauge invariance of the DVCS amplitude.
Thus, the model scattering amplitude has the structure

/k T ((P − k)2

(m2
1 − k2

1)N1+1(m2
2 − k2

2)N2+1
. (46)

To treat the two quarks on equal footing, we take m1 = m2, and the model
GPD analyzed below is given by

H(x, ξ) =
1

π2

N1!N2!

(N1 +N2)!

∫
(kn)

(Pn)

d4k δ(x− (kn)/(Pn))

[m2 − (k + r)2]N1+1[m2 − (k − r)2]N2+1[
T0 +

∫ ∞
0

dσρ(σ)

{
1

σ − (P − k)2
− 1

σ

}]
. (47)

The overall factors were introduced here for future convenience. The T0

subtraction term gives the D-term-type contribution

D0(x/ξ) =
T0

2N1+N2(N1 +N2)

(
x

|ξ|

)(
1− x

ξ

)N1
(

1 +
x

ξ

)N2

θ

(∣∣∣∣xξ
∣∣∣∣ < 1

)
(48)

that vanishes outside the central region and, hence, is invisible in the forward
limit. In what follows, we will concentrate on the terms generated by the
dispersion integral, but one should remember that the D0 term can always
be added to GPD H(x, ξ), i.e., in all formulas below one should be ready to
change H(x, ξ)→ H(x, ξ) +D0(x/ξ).

The model and DD representation. For equal N1 = N2 = N , we obtain

H(x, ξ) =
x

22N+1

∫ ∞
0

dσ ρ(σ)

∫ 1

0

dβ

∫ 1−β

−1+β

dα
[(1− β)2 − α2]N

(βσ + (1− β)m2)2N+1{
δ (x− β − αξ)− δ (x− αξ)

(1− β)2

}
. (49)
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Taking ξ = 0, one obtains the usual (forward) parton distributions:

H(x, ξ = 0) =
x

22N+1

∫ ∞
0

dσ ρ(σ)

∫ 1

0

dβ

∫ 1−β

−1+β

[(1− β)2 − α2]N dα

(βσ + (1− β)m2)2N+1

×
{
δ (x− β)− δ (x)

(1− β)2

}
. (50)

Treating xδ(x) as zero, we obtain the representation

f(x) =
(N !)2

(2N + 1)!
x (1− x)2N+1

∫ ∞
0

dσ ρ(σ)

(xσ + (1− x)m2)2N+1
. (51)

Now, using Eq.(51), we substitute the σ-integral through forward distribution
to get

H(x, ξ) =
x

22N+1

(2N + 1)!

(N !)2

∫ 1

0

dβ

∫ 1−β

−1+β

dα
[(1− β)2 − α2]N

(1− β)2N+1

f(β)

β

×
{
δ (x− β − αξ)− δ (x− αξ)

(1− β)2

}
. (52)

This trick allows one to avoid choosing a specific form of the spectral density
ρ(σ). It is easy to notice that the factor

hN(β, α) ≡ 1

22N+1

(2N + 1)!

(N !)2

[(1− β)2 − α2]N

(1− β)2N+1
(53)

is a normalized profile satisfying Eq.(33). Thus, we can rewrite Eq.(52) as

H(x, ξ)

x
=

∫ 1

0

dβ

∫ 1−β

−1+β

dα
f(β)

β
hN(β, α)

×
{
δ (x− β − αξ)− δ (x− αξ)

(1− β)2

}
. (54)

The first term here coincides with the factorized DD Ansatz for H(x, ξ)/x in
which it is reconstructed from its forward limit f(x)/x. The relevant double
distribution is given by f(β, α) = hN(β, α)f(β)/β. The total contribution is
then given by

H(x, ξ)

x
=

∫ 1

0

dβ

∫ 1−β

−1+β

dα δ (x− β − αξ)

×
{
f(β, α)− δ(β)

∫ 1−|α|

0

dγ
f(γ, α)

(1− γ)2

}
. (55)

Thus, the model of Ref.[38], first, corresponds to the single-DD represen-
tation (27), and, second, it has the structure of the factorized DD Ansatz
(32).
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Results for GPDs. For the model forward distribution

fa(β) = (1− β)3/βa (56)

and the profile function

h1(β, α) =
3

4

(1− β)2 − α2

(1− β)3
, (57)

we obtain, for x > ξ:

H(x, ξ)|x>ξ =
3

4

x

ξ

∫ β2

β1

dβ

βa+1

{
(1− β)2 −

(
x− β
ξ

)2
}

. (58)

Calculating H(ξ, ξ), i.e., the GPD at the border point x = ξ, one gets here
the [(1−β)2−(1−β/ξ)2] ∼ β factor from the profile function, and this factor
changes the strength of singularity for β = 0. As a result, the integral over
β converges as far as a < 1. This outcome is a consequence of using a profile
function that linearly vanishes at the sides of the support rhombus. In its
turn, the N = 1 profile is generated by the assumed 1/(k2

1k
2
2)2 dependence of

the k-integrand for large parton virtualities. If one takes the N = 0 profile,
the factor in the curly brackets should be substituted by 1/(1 − β)), and
the integral producing H(ξ, ξ) diverges. For small, but nonzero x − ξ, one
obtains the behavior proportional to 1/βa1 ∼ (x− ξ)−a. Turning now to the
|x| < ξ region we get, for the N = 1 profile:

H(x, ξ)||x|<ξ =
3

4

x

ξ

[
1

ξ2

∫ β2

0

dβ

βa
(2x− β) +

∫ β2

0

dβ

βa

{
1− x2

ξ2(1− β)2

}
(β − 2)

−
∫ 1−|x|/ξ

β2

dβ

βa+1

{
1− x2

ξ2(1− β)2

}]
. (59)

Note that as far as |x| is strictly less than ξ, the profile function does not
vanish at the singularity point β = 0. The mechanism of softening singularity
to 1/βa strength is now provided by the 1/σ subtraction term of the original
dispersion relation. To get a model for singlet GPDs, one should take the
antisymmetric combination

HS(x, ξ) = H(x, ξ)−H(−x, ξ) . (60)

The resulting GPDs are shown in Fig. 11, left. For positive x, they are
peaking at x = ξ. The functions HS(x, ξ) in this model are continuous at
x = ±ξ, but the derivative dHS(x, ξ)/dx is discontinuous at these points. In
a similar way, one can calculate model GPDs for the N = 2 profile. The
resulting GPDs are shown in Fig. 11, right. For positive x, they are peaking
at points close to x = ξ. In the model with N = 2 profile, both the functions
HS(x, ξ) and their derivatives dHS(x, ξ)/dx are continuous at x = ±ξ.
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Figure 11: Model singlet GPD HS(x, ξ) with N = 1 (left) and N = 2 (right)
DD profile for a = 0.5 and ξ = 0.05, 0.1, 0.15, 0.2, 0.25.

Results for D-term. In Eq.(55), we deal with the regularized double distri-
bution

f reg(β, α) = f(β, α)− δ(β)

∫ 1−|α|

0

dγ
f(γ, α)

(1− γ)2
. (61)

However, due to the 1/(1−γ)2 factor in the subtraction term, f reg(β, α) does
not coincide with f+(β, α). Their difference induces the D-term

D(α) = α

∫ 1−|α|

0

dβ
f(β)

β
h(β, α)

{
1− 1

(1− β)2

}
.

Taking the same model forward distribution f(β) = (1− β)3/βa andN = 1
profile function gives

D{N=1}(α) =
3

2
α

∫ 1−|α|

0

dβ

βa

[
1− α2

(1− β)2

]
(β − 2) . (62)

A similar expression for the D-term is obtained in the N = 2 profile model:

D{N=2}(α) =
15

8
α

∫ 1−|α|

0

dβ

βa

[
1− α2

(1− β)2

]2

(β − 2) . (63)

As one can see in Fig. 12, the two curves are rather close to each other.
The comparison of the total GPD H(x, ξ) and its D-term part is shown

in Fig. 13, left. The difference between GPD H(x, ξ) and D-term D(x/ξ)
corresponds to the term H+(x, ξ) obtained from the “plus” part [f(β, α)]+ of
DD. The shape of the difference for ξ = 0.5 is shown in Fig. 13, right. Note
that, despite the fact that the forward distribution in this model is positive,
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Figure 12: The D-terms in N = 1 and N = 2 profile models for a = 0.5.

there is a region, where the contribution to H(x, ξ) coming from [f(β, α)]+
is negative. This is due to the δ(β) subtraction term contained in [f(β, α)]+.
Also shown is the ratio H+(x, ξ)/x. Looking at the figure, one may suspect
that the x-integral of H+(x, ξ)/x vanishes. In the next section, we show that
this, indeed, is the case.
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Figure 13: Left: GPD H(x, ξ) and D-term D(x/ξ) for ξ = 0.5 and positive
x. Right: Difference between GPD H(x, ξ) and D-term D(x/ξ) in the case
of the N = 1 profile for ξ = 0.5 and positive x. The same function divided
by x is also shown.

7 GPD sum rules.

Sum rules. The D-term determines the subtraction constant in the disper-
sion relation for the DVCS amplitude [18, 19, 20, 21, 22]. In particular, it
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was shown [19] that the original expression for the real part of the DVCS
amplitude involving H(x, ξ), and the dispersion integral involving H(x, x)
differ by a constant ∆ given by the integral of the D-term function D(α):

P

∫ 1

−1

H(x, x)−H(x, ξ)

x− ξ dx = ∆ ≡
∫ 1

−1

D(α)

1− α dα . (64)

Here, P denotes the principal value prescription. In Ref.[19], this relation
was derived using polynomiality properties of GPDs. It was also pointed out
there that it can be obtained by incorporating representation of GPDs in the
two-DD formalism (which is basically again the use of the polynomiality).

Taking ξ = 0, one formally arrives at the sum rule∫ 1

−1

H(x, x)−H(x, 0)

x
dx =

∫ 1

−1

D(α)

1− α dα . (65)

Since bothH(x, 0)/x andH(x, x)/x are even functions of x, their singularities
for x = 0 cannot be regularized by the principle value prescription. Moreover,
there are no indications that singularities of these two functions may cancel
each other. On the contrary, as emphasized in Ref.[39], there are arguments
that the ratio H(x, x)/H(x, 0) does not tend to 1 for small x.

“Plus +D” decomposition. To begin with, we remind the basic formulas:

H(x, ξ)/x =

∫
Ω

f(β, α) δ(x− β − ξα) dβ dα , (66)

the expression producing GPDs from DDs, and the decomposition of DD

f(β, α) = [f(β, α)]+ + δ(β)D(α)/α (67)

into the “plus” part [f(β, α)]+ and the D-term part δ(β)D(α)/α.
Correspondingly, we split GPD into the part coming from the “plus” part

of DD

H+(x, ξ)

x
≡
∫

Ω

f(β, α)

[
δ(x− β − ξα)− δ(x− ξα)

]
dβ dα (68)

and that generated by the D-term

HD(x, ξ)

x
≡
∫ 1

−1

D(α)

α
δ(x− ξα) dα . (69)
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Another important relation

HD(x, 0)

x
=δ(x)

∫ 1

−1

D(α)

α
dα (70)

is obtained by taking ξ = 0. Now, Eq. (69) gives

HD(x, x)

x
=δ(x)

∫ 1

−1

D(α)

α(1− α)
dα . (71)

Note that both HD(x, 0)/x and HD(x, x)/x are proportional to δ(x), with
the coefficients given by integrals of D(α). This means that, unlike the
functions H(x, 0) and H(x, x), which, for x 6= 0, are insensitive to changes of
D(α) in the δ(β)D(α)/α term, the (mathematical) distributions H(x, 0)/x
and H(x, x)/x contain information about such a D-term.

Our next step is to study contributions from different parts of the GPDs
involved in the sum rule (65).

“Secondary” sum rule. One can easily see from Eq. (68) that∫ 1

−1

H+(x, ξ)

x
dx = 0 (72)

for any ξ, including ξ = 0. Since the integrand is an even function of x, the
vanishing of this integral means that we also have∫ 1

0

H+(x, ξ)

x
dx = 0 . (73)

Thus, H+(x, ξ) should be negative in some part of the central region, and
this negative contribution should exactly compensate the contribution from
the regions, where H+(x, ξ) is positive. In other words, on the (0, 1) interval,
H+(x, ξ)/x has the same property as a “plus distribution” with respect to x.
Note, that this does not mean that H+(x, ξ)/x necessarily contains singular
functions like δ(x). For finite ξ, the function H+(x, ξ)/x is pretty regular for
all x values (see Fig.14). The negative δ(x) function appears only in the ξ=0
limit, i.e.

H+(x, 0)

x
=
f(x)

x
− δ(x)

∫ 1

−1

f(y)

y
dy ≡

[
f(x)

x

]
+

. (74)

For the integral involving the border function, we get∫ 1

−1

H+(x, x)

x
dx =

∫ 1

−1

dx

∫
Ω

dβ dα f(β, α)

{
δ
[
x(1− α)− β

]
− δ(x)

1− α

}
.

(75)
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Figure 14: Function H+(x, ξ)/x in the N = 1 profile model for ξ =
0.2, 0.3, 0.5 and positive x.

The integrals coming from the two delta-functions cancel each other, and we
have ∫ 1

−1

H+(x, x)

x
dx = 0 , (76)

just like forH+(x, ξ)/x. UnlikeH+(x, ξ), however, the combinationH+(x, x)/x
explicitly contains the δ(x) subtraction term, i.e. it is a genuine “plus distri-
bution” with respect to x, namely, H+(x, x)/x = [H(x, x)/x]+ .

Summarizing, the “plus” parts of both functions entering into the sum
rule (65) separately produce vanishing contributions into the x-integral. Fur-
thermore, these zero contributions are due to the fact that H+(x, 0)/x and
H+(x, x)/x are “plus distributions”, which results in zero integrals irrespec-
tively of the form of the forward distribution f(x) and the border function
H(x, x).

Let us now turn to the D-parts. First, we have∫ 1

−1

HD(x, ξ)

x
dx =

∫ 1

−1

D(α)

α
dα (77)

for any fixed ξ, including ξ = 0. This result may be obtained by integrating
over x the δ(x− ξα) factor in the integral representation (69).

For the integral involving the border function, we use Eq. (71), which
gives ∫ 1

−1

HD(x, x)

x
dx=

∫ 1

−1

D(α)

α(1− α)
dα . (78)
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As a result, ∫ 1

−1

HD(x, x)

x
dx−

∫ 1

−1

HD(x, 0)

x
dx=

∫ 1

−1

D(α)

1− α dα . (79)

Combining this outcome with zero contributions from the “plus” parts, one
obtains the sum rule (65).

Thus, our construction confirms the sum rule. Our derivation shows also
that the “plus” parts of both terms simply do not contribute to the sum rule
whatever the shapes of f(x) and H(x, x) are. Only the D-parts contribute,
so there is no surprise that the net result can be expressed in terms of D(α).

An essential point is that both HD(x, 0)/x and HD(x, x)/x are propor-
tional to the δ(x)-function, with the coefficients given by integrals of the D-
term function D(α). In this sense, H(x, 0)/x and H(x, x)/x “know” about
the D-term.

A simple consequence is that all xj moments of HD(x, 0) and HD(x, x)
with j ≥ 0 vanish, and one cannot get the D-part of the sum rule (65)
by an analytic continuation of the xj moments of HD(x, 0) and HD(x, x) to
j = −1, i.e., using the procedure of Refs.[20, 23, 24]. In fact, xj moments
of HD(x, 0) and HD(x, x) are proportional to the Kronecker delta function
δj,−1, a non-analytic function of j.

Need for renormalization. Since H(x, 0)/x is given by integrating the DD
f(β, α) over α along vertical lines β = x, a subsequent integration over all x
gives DD f(β, α) integrated over the whole rhombus:∫ 1

−1

H(x, 0)

x
dx=

∫ 1

−1

dx

∫
Ω

dβ dαf(β, α)δ(x− β)

=

∫
Ω

f(β, α) dβ dα =

∫ 1

−1

D(α)

α
dα . (80)

On the last step, we used that the β-integral of f(β, α) formally givesD(α)/α.
However, if f(β, α) ∼ 1/β1+a, being even in β, one needs a regularization for
the β-integral. The “DD+D” separation (66), as we have seen, provides such
a regularization. It works like a renormalization: the divergent integral for-
mally giving the D-term is subtracted from the “bare” DD, and substituted
by a finite “observable” function D(α)/α.

In a similar way, we can treat the second integral:∫ 1

−1

H(x, x)

x
dx=

∫ 1

−1

dx

∫
Ω

dβ dαf(β, α)δ(x− β − xα)

=

∫
Ω

f(β, α)

1− α dβ dα =

∫ 1

−1

D(α)

α(1− α)
dα . (81)
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Again, the last step requires a subtraction of the infinite part of the β-
integral.

The advantage of using the “DD+D” separation as a renormalization
prescription is that it is applied directly to the DD. Hence, it is universal,
and may be used for other integrals involving f(β, α).

Generic sum rule. Finally, let us apply the “DD+D” separation to the
generic relation (64). For the “plus” part, representing 1/(x − ξ) = 1/x +
(ξ/x)/(x− ξ) and using Eqs. (73), (76), we have

P

∫ 1

−1

H+(x, x)

x− ξ dx =P

∫ 1

−1

ξ
dx

x− ξ

∫
Ω

f(β, α) dβ dα (82)

×
[
δ(x(1− α)− β)− δ(x(1− α))

]
= P

∫
Ω

f(β, α) dβ dα

[
ξ

β − ξ(1− α)
+

1

(1− α)

]
,

and

P

∫ 1

−1

H+(x, ξ)

x− ξ dx =P

∫ 1

−1

ξ
dx

x− ξ

∫
Ω

f(β, α) dβ dα (83)

×
[
δ(x− β − ξα)− δ(x− ξα)

]
= P

∫
Ω

f(β, α) dβ dα

[
ξ

β − ξ(1− α)
+

1

(1− α)

]
.

Thus, seemingly different delta-functions have converted 1/(x− ξ) into iden-
tical expressions (cf. Ref.[21], where a similar result was obtained for the FD
part of the two-DD representation). As a result,

P

∫ 1

−1

H+(x, x)

x− ξ dx− P
∫ 1

−1

H+(x, ξ)

x− ξ dx = 0 . (84)

In this case, we deal with the situation when the difference of two integrals
vanishes, but each integral does not necessarily vanish.

In case of the “D” part, we have, for the integral involving the border
function,

P

∫ 1

−1

HD(x, x)

x− ξ dx = P

∫ 1

−1

HD(x, x)

x

x

x− ξ dx

= P

∫ 1

−1

dx
x

x− ξ δ(x)

∫ 1

−1

D(α)

α(1− α)
dα = 0 . (85)

31



In simple words, the starting integrand in (85) vanishes for x 6= 0 since then
HD(x, x) = 0, while for x = 0 it is given by the xδ(x) distribution which
produces zero after integration with a function that is finite for x = 0, which
is the case if ξ 6= 0. The second piece is given by

P

∫ 1

−1

HD(x, ξ)

x− ξ dx = P

∫ 1

−1

HD(x, ξ)

x

x

x− ξ dx

= P

∫ 1

−1

x dx

x− ξ

∫ 1

−1

D(α)

α
δ(x− ξα) dα

=

∫ 1

−1

ξα

ξα− ξ
D(α)

α
dα = −

∫ 1

−1

D(α)

1− α dα . (86)

Again, the result above may be obtained by simply using

HD(x, ξ) = sign(ξ) θ(|x| < |ξ|)D(x/ξ)

and rescaling x = αξ. Also, though the final result of Eq. (86) does not
depend on ξ, it does not coincide with the result of the counterpart relation
(77). However, for the difference of the two integrals we obtain

P

∫ 1

−1

HD(x, x)

x− ξ dx− P
∫ 1

−1

HD(x, ξ)

x− ξ dx =

∫ 1

−1

D(α)

1− α dα , (87)

the same result as in Eq. (79). Combining the results for the “plus” and
D-parts gives Eq. (64).

8 Analytic regularization

Mellin moments. Another possibility to renormalize the β-integral in Eq.(80)
for a singular DD is to use the analytic regularization as proposed in Refs.
[20, 23, 24]. Namely, it is assumed that the positive Mellin moments (or
conformal moments, see, e.g., Ref.[40])

Φ(j) ≡
∫ 1

−1

xj[H(x, x)−H(x, 0)] dx (88)

can be analytically continued to the point j = −1. The result of such a
procedure is equivalent to analytic regularization of the x-integral. However,
the assumed analyticity properties of Φ(j) may be violated by singular or
“invisible” terms (cf. Ref.[20]) in the integrand of Eq.(88). For example, a
xδ(x) term gives a non-analytic δj,−1 contribution into Φ(j). In the model

32



with implanted Regge behavior, singular terms explicitly emerge as a result
of subtractions in the dispersion relation, so one may wish to develop a less
restrictive approach to the renormalization problem. In this connection, we
would like to stress that the derivation of the sum rule (65) given above was
based merely on separation (67) of the DDs into the “plus” part and the D-
term. No assumptions about smoothness were made. The essential moment
of the derivation was that one should not hurry up to treat xδ(x) terms in
H(x, x) as zero, since they convert into non-negligible δ(x) contributions in
H(x, x)/x. The same applies to H(x, 0)/x.

Comparison of the “plus” prescription and analytic regularization. Ana-
lytic regularization works as follows. If we need to integrate a function like
λ(x)/xa+1 with λ(x) being finite and nonzero for x = 0, we subtract from λ(x)
as many terms of its Taylor expansion as needed to remove the divergence∫ y

(0)

λ(x)

xa+1
dx =

∫ y

0

dx
λ(x)− λ(0)− xλ′(0)− . . .

xa+1

+ λ(0)

∫ y

(0)

dx

xa+1
+ λ′(0)

∫ y

(0)

dx

xa
+ . . . , (89)

and then treat the compensating integrals of xn/xa+1 as convergent, substi-
tuting them by yn−a/(n−a). So, let us consider again a DD which is nonzero
for positive β only and has the form

f(β, α) =
λ(β, α)

βa+1
θ(β + |α| ≤ 1) θ(β ≥ 0)

with a < 1. Then the analytic regularization of its integral with some refer-
ence function Φ(β) is defined by∫ 1−|α|

(0)

Φ(β)λ(β, α)

βa+1
dβ =

∫ 1−|α|

0

Φ(β)λ(β, α)− Φ(0)λ(0, α)

βa+1
dβ

− Φ(0)λ(0, α)

a(1− |α|)a , (90)

which may be rewritten as∫ 1−|α|

(0)

Φ(β)
λ(β, α)

βa+1
dβ =

∫ 1−|α|

0

[Φ(β)− Φ(0)]
λ(β, α)

βa+1
dβ (91)

+ Φ(0)

[∫ 1−|α|

0

λ(β, α)− λ(0, α)

βa+1
dβ − λ(0, α)

a(1− |α|)a

]
.
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Now, the first contribution on the r.h.s. is generated by the “plus” part of the
DD, while the second one comes from a D-term. After adding the β < 0 part
of the DD, the D-term D(α)/α corresponding to the analytic regularization
is given by

D(α)

α
= 2

[∫ 1−|α|

0

λ(β, α)− λ(0, α)

βa+1
dβ − λ(0, α)

a(1− |α|)a

]
. (92)

Thus, the analytic regularization prescription unambiguously fixes the D
term, and in this sense it may be called the “analytic renormalization”.

In the model with implanted Regge behavior, we also obtained a concrete
result for theD-term. But the specificD-term contribution we obtained there
came only from the σ-integral part of the dispersion relation for the hadron-
parton scattering amplutude subtracted at (P − k)2 = 0. As we pointed out,
one should be always ready to add to it the D0 term coming from the T0

constant in the dispersion relation (45). In principle, we had no reasons to
require that T0 = 0. In this sense, the D-term in that model is not fixed.

On the other hand, the statement, that xj moments ofH(x, ξ) are analytic
functions of j, does not explicitly mention fixing any subtraction constants:
it sounds like a general principle, and may create an impression that there
are no ambiguities in the subtraction of the β = 0 singularity. However, the
analyticity assumption was not shown so far to be a consequence of general
principles of quantum field theory. Moreover, as mentioned in Ref.[41], it is
not satisfied in the nonlocal chiral soliton model. Still, one may hope that it
is valid in QCD.

To see if the T0 = 0 model of the previous section agrees with the analyt-
icity assumption, we should just check whether its D-term is different from
that obtained via analytic renormalization. In particular, for the N = 1
model, we have

λ(β, α) =
3

4

[
(1− β)2 − α2

]
, (93)

and, hence,

D(α)

α
=

3

2

[
(1− |α|)2−a

2− a − 2
(1− |α|)1−a

1− a − 1− α2

a(1− |α|)a
]
. (94)

In Fig.15, we compare this result (for a = 0.5) with the result obtained by
single subtraction in the dispersion relation (45) with T0 = 0.

Our main point is that representingH(x, ξ) as the sumH+(x, ξ)+HD(x, ξ)
one can derive the GPD sum rule (65) without using the analyticity assump-
tion. But since our derivation, so to say, works for any D-term, it also works
for the D-term following from the analyticity assumption.
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Figure 15: The D-terms in the model with N = 1 profile and a = 0.5: D(α)
was obtained using analytic regularization, and D(α) was obtained for T0 = 0
in the model of the previous section.

Summary on sum rules. Thus, the calculation described above confirms the
generic GPD sum rule (64) derived in Refs. [19, 21]. It also supports the
ξ = 0 sum rule (65) suggested in Ref. [19]. It should be emphasized that
the integrals present in the generic sum rule have a singularity for x = ξ,
which is inside the region of integration, so the integrals may be taken using
the principal value prescription. Since H(x, 0)/x and H(x, x)/x are even
functions of x, the ξ = 0 sum rule may be written through an integral from
0 to 1, and its 1/x singularity is at the end-point of the integration region,
which means that the P -prescription cannot regulate it. Just because of this
fact alone, the sum rule (65) cannot be a straightforward consequence of the
generic sum rule (64).

In the presented derivation, the finite expressions were obtained for each
term involved. In particular, we established that thoughHD(x, x) andHD(x, ξ)
contributions to the generic sum rule (64) are ξ-independent, they do not co-
incide with their counterparts from the secondary sum rule (65), i.e., the
latter cannot be obtained by formally continuing to ξ = 0 the ξ-independent
results for each term of the generic GPD sum rule.

In our derivation, we did not make an assumption about analyticity of
the Mellin moments of GPDs. We have obtained GPD sum rules as a con-
sequence of the polynomiality of GPDs that follows from Lorentz invariance
and is encoded in the DD representation. The analyticity is a much stronger
restriction. One may try to find out whether it can be tested experimentally
and it is also worth trying to prove it in QCD.
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9 Conclusions

In Sections 6–8, we discussed some basic aspects of building models for GPDs
using the factorized DD Ansatz (FDDA) within the “single-DD” formulation.
The main difficulty in the implementation of such a construction is the ne-
cessity to deal with projection onto a more singular function f(β)/β (rather
than just onto f(β)) in the forward limit. This leads to two problems. First,
one encounters non-integrable singularities for β = 0 in the integrals pro-
ducing GPDs in the central region |x| < |ξ|. The difficulty is exaggerated
by necessity to consider forward distributions f(β) that have a singular β−a

Regge behavior at small β. Second, if there are no factors suppressing the
β ∼ 0 region for the integration line corresponding to x = ξ, the combined
1/β1+a singularity leads to a singular (x − ξ)−a behavior for GPDs in the
outer region x > ξ near the border point x = ξ. Such a behavior was found
in the model of Ref.[38].

In our analysis, we found that this model gives the single-DD-type rep-
resentation for the model GPD, and thus above reasoning is applicable to it.
But we argued, that a proper softening of the hadron-quark vertices produces
a profile function hN(β, α) that results, for x = ξ, in the O(βN) suppression
factor securing a finite value of the GPD H(x, ξ) at the border point.

However, the profile factor has no impact on the combined 1/β1+a singu-
larity on the β = 0 line inside the support rhombus, which one faces when
calculating GPDs in the |x| < |ξ| region. The advantage of the model of
Ref. [38] is that it implants the Regge behavior through a subtracted dis-
persion relation for the hadron-quark scattering amplitude. We found that
the subtraction provides the regularization necessary for the calculation of
GPDs in the central region, and illustrated the behavior of resulting GPDs
in models with N = 1 and N = 2 profiles.

We also observed that this model produces a D-term contribution, despite
the fact that it uses only the forward distribution as an input. This D-term
contribution appears because the subtraction generated by the dispersion
relation differs from the subtraction that converts the original DD into a
“plus” distribution [f(β, α)]+. The latter, by definition, cannot generate a D-
term. We have shown that the GPDH+(x, ξ) generated by the [f(β, α)]+ part
of the original DD (i.e., GPD H(x, ξ) with the D-term contribution D(x/ξ)
subtracted) has a remarkable property that the integral of H+(x, ξ)/x over
positive values 0 ≤ x ≤ 1 vanishes. As a result, H+(x, ξ) must be negative in
some part of the central region, a feature that is absent in previous FDDA
models based on two-DD formulation.

Within the single-DD formalism, it is very natural to separate the relevant
DD f(β, α) into the “plus” part [f(β, α)]+ and the D-term. We demonstrated
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that this separation can be used to rederive the GPD sum rule related to
the dispersion relation for the real part of the DVCS amplitude, and we
also gave a derivation of another sum rule proposed as the ξ → 0 limit
of that generic sum rule. Our derivation shows that this “secondary” sum
rule is not a straightforward consequence of the generic one. In particular,
the principal value prescription used in the generic sum rule needs to be
substituted by another prescription, like the “plus” prescription. The “plus”
prescription, in fact, is automatically generated by the separation of DDs into
the “plus” part and the D-term. We also demonstrated that the contributions
into the two sum rules generated by the same functions are not in a one-to-
one correspondence.

Summarizing, using (intentionally) simplified models, we developed the
basic tools that can be used in building realistic GPD models based on the
factorized DD Ansatz within the single-DD formalism. Future developments
in this direction should include the extension of the presented methods onto
the cases with a > 1 Regge behavior, which would require an extra subtrac-
tion in the dispersion relation, and building models for nucleons and other
targets with a non-zero spin.
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