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Abstract

A measurement of the electric form factor of the neutron, Gn
E , was performed at Q2 = 1.3, 1.7, 2.4,

and 3.5 GeV2 at Thomas Jefferson National Accelerator facility. This was done using a double
polarization technique by measuring the helicity dependent quasielastic cross section asymmetry
from the semi-inclusive reaction 3 ~He(~e, e′n)pp. This asymmetry can then be directly related to the
ratio of the electric and magnetic form factors of the neutron.In this analysis we present results for
two of the measurements performed in this experiment, Q2 = 1.7 and 3.5 GeV2, which represent
the first points analyzed for this experiment. The 3.5 GeV2 point is of particular interest due to the
lack of previous precision data above 2.0 GeV2. We find the value for our lower momentum transfer
point, Q2 = 1.7 GeV2, Gn

E = 0.0342±stat 0.0023±sys 0.0040, consistent with existing world data and
our highest point, Q2 = 3.5 GeV2, Gn

E = 0.0117±stat 0.0030±sys 0.0010, consistent with the Galster
parametrization.
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Chapter 1

Introduction

Particle physics represents the field of study which attempts to mathematically model the funda-
mental constituents and interactions of matter. These attempts date as far back as ancient Greece
where it was hypothesized that matter was made up of indivisible units, which represents an early
picture of the atom. By the end of the 19th century, a periodic table of over 100 elements had been
developed classifying these basic building blocks of matter. In the late 19th and early 20th century,
it was discovered that atoms themselves have structure.

The modern model of the atom began with Ernest Rutherford in the early 20th century, whose
famous experiments showed that the atom was comprised of a dense, charged core surrounded by
an electron cloud. Rutherford determined that this core, or nucleus, itself is comprised of smaller
particles. Protons (hydrogen nuclei) were identified to be a fundamental component, as hydrogen is
the lightest of all atomic nuclei and nuclear masses appear in near integer multiples of the proton
mass. The neutron was discovered in 1932 by James Chadwick as another component, which earned
him the 1935 Nobel Prize in physics. This discovery confirmed the existence of a particle close to the
mass of the proton, but without charge, needed to reconcile the mass and the charge of the nuclei.

However, the nucleons themselves are found to have structure, as the measurements of their
magnetic moments suggested. It was found that the proton and neutron had magnetic moments, µ,
different from the prediction for point-like spin 1/2 particles

µ = g
( e

2m

) ~
2

(1.1)

where g is the g-factor, close to 2 for a spin 1/2 point particle and predicted by quantum elec-
trodynamics, e is the particle’s charge, m is the mass of the particle, and ~ is Planck’s constant
divided by 2π. The proton was found to have a value of µp = 2.79 and the neutron, µn = −1.91,
(in the units of nuclear magnetons, µN = e~

2Mp
). These were different from the predicted values of 1

and 0, respectively, indicating that the nucleons are not point particles. Further evidence mounted
from the elastic scattering cross section from protons, which was not in agreement with theoretical
expectations for a point particle, which earned Hofstadter the Nobel prize in 1965.

The idea of describing the structure of hadrons in terms of point-like particles, called quarks, was
first layed out by Gell-Mann in 1964 motivated by the organization of quantized values of properties
such as isospin and strangeness. Reinforcement of the idea of point-like constituents was found in
observations of scaling predicted in deep inelastic scattering hypothesized by Bjorken. Here, the idea
of smaller constituents, called partons, each carrying some fraction of the momentum of a particle
in the infinite momentum frame would produce a predictable behavior of the cross sections in deep
inelastic scattering. Combined with the idea of asymptotic freedom by Gross, Wilczek, and Politzer,
the connection of quarks and partons was made. As the momentum transfer from an electron to the
quark becomes sufficiently high, the quark behaves as if it was a free particle, producing the scaling
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behavior.
Today we have a theory of the strong nuclear force, the force which binds the protons and

neutrons together in the nucleus as well as governs interactions between quarks, called quantum
chromodynamics (or QCD). In this model, an intermediate boson called the gluon is the force
carrier, analogous to the photon in quantum electrodynamics (QED). Each quark is assigned a
quantum number called ‘color’, red, green, or blue. Through the idea of confinement, a composite
system of quarks (called a hadron) must be a colorless object, either through the combination of all
three colors (i.e. baryons) or through a color and its anti-color (i.e. mesons). Attempts to separate
a quark from the system and create a new system with color requires an energy that is greater than
a quark mass (Table 1.1) which is sufficient to produce additional quarks and subsequently colorless
hadrons. To date, no isolated quark has been found.

The idea of color was motivated by the existence of hadronic states composed of three identical
quarks. By the Pauli exclusion principle, such a state could not contain three identical fermions,
so an additional quantum number had to be generated. Perhaps the strongest evidence of only
three color states comes from the measured ratio of the high momentum-transfer electromagnetic
production cross sections of e+e− → hadrons and e+e− → µ+µ−

σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

=

∑
f σ(e+e− → qf q̄f )
σ(e+e− → µ+µ−)

= 3
∑

f

z2
f (1.2)

where f is the flavor of a quark and zf is the charge of a quark of flavor f . The strength of the
electromagnetic interaction of each of these production channels is identical except for the charge
of the product. The factor of 3 arises from the degeneracy of each flavor of quark from the three
values of color.

QCD, when formulated in a perturbative fashion, has some significant differences from QED.
Perhaps the most significant difference is the strength of the coupling for the two forces. For QED,
the strength of the coupling is defined by the hyperfine coupling constant, α ≈ 1/137. Because this
constant is much less than unity, one can successfully expand the QED Lagrangian in powers of
α to perform tractable calculations of electromagnetic interactions. This has proven to be wildly
successful in describing electromagnetic interactions, such as the successful calculation of various
differential cross sections and the anomalous magnetic moment of the electron (the difference of the
Landé g-factor from the leading order value of 2).

QCD, on the other had, suffers from a large coupling constant, αs, (at least at lower energies)
which prevents the calculation of strong interactions characterized by energies smaller than several
GeV in terms of a series expansion in αs. This prevents the calculation of the masses of the lighter
hadrons, such as the proton and neutron and proves to be one of the most difficult outstanding
problems of physics. At higher momentum transfer due to the running of the coupling constant and
asymptotic freedom, αs becomes smaller allowing for the successful treatment using perturbative
QCD (pQCD).

Six types (or flavors) of quarks have been identified and can be found in Table 1.1. The lightest
quarks, up (u) and down (d), comprise the two nucleons, the proton and neutron, which can be
modeled as being made up of three quarks in the combinations uud and udd. It is important to
note that these are not the only particles found in the nucleon and it is more appropriate to refer
to them as ‘valence quarks’.

Due to the large coupling constant of QCD and the non-Abelian nature of the gluon fields,
QCD interactions are much more complicated than those of QED. The gluons exchanged by the
quarks will frequently split into quark-antiquark pairs, especially for lower energy gluons. These
virtual quark pairs, generally referred to as ‘sea quarks’, may also interact. Gluons, unlike their
QED counterparts, also carry color and may interact with each other. It has been shown that some
properties of the nucleon, such as the total nucleon spin, are products more of these interaction
by-products than from the valence quarks themselves [1].
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Up Down Charm Strange Top Bottom
u d c s t b

Charge 2/3 -1/3 2/3 -1/3 2/3 -1/3
Spin 1/2 1/2 1/2 1/2 1/2 1/2
Isospin Iz 1/2 -1/2 0 0 0 0
Strangeness S 0 0 0 -1 0 0
Est. Current-quark 1.5 - 3 MeV 3 - 7 MeV 1.25 GeV 70 - 120 MeV 170 GeV 4.5 GeV

Mass

Table 1.1: Properties of quarks.

The structure of the nucleon is therefore very complicated and also difficult to predict from first
principles. One of the simplest experimental tests of structure can be done using an electron as a
probe. As QED is well understood, tests of the charge and magnetic moment distributions can be
done experimentally. The downside to using such a probe is that it is insensitive to a portion of
the structure, that of the gluons, because the electron does not interact strongly. However, a great
deal of information can be obtained using such a method. We wish to produce a mathematical
description of these distributions which can then be obtained from the data.

1.1 Quantum Electrodynamics and Scattering Theory

Quantum electrodynamics provides a relativistic quantum field theory of electromagnetic interac-
tions. One of its most powerful features is the fact that the interactions may be expanded in a
perturbative series in terms of the coupling constant, α. This allows practical calculations to be
done to an arbitrary degree of accuracy and also gives a very powerful method to describe the pro-
cesses in terms of Feynman diagrams. It has been very successful in describing observable phenomena
and provides a useful tool with which to study other interactions.

While a fully rigorous treatment of this subject is far beyond the scope of this work, we will
cover some useful results relevant to our analysis. In particular we will closely follow the description
presented by Halzen and Martin [2]. We are mainly interested in the scattering of a point-like
spin 1/2 charged particle from an arbitrary target. For such a particle in the absence of any other
interaction, the wavefunction is governed by the Dirac equation

(iγµ∂µ −m)ψ = 0 (1.3)

where m is the mass of the particle, ψ is the four component Dirac wavefunction, µ runs from 0..3,
and γµ are a set of 4 × 4 matrices which satisfy the relations

γµγν + γνγµ = 2gµν (1.4)

where gµν is the metric tensor for Minkowski space. While the choice is not unique, the four matrices
may be written

γ0 =
(
I 0
0 −I

)
(1.5)

~γ =
(

0 ~σ
−~σ 0

)
(1.6)

where the components of ~σ are the Pauli matrices. Using this equation, a charge-current density,
jµ, can be associated with ψ with

jµ = −eψ̄γµψ (1.7)
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pi,1 pf,1

pi,2 pf,2

q

Figure 1.1: Two body scattering diagram.

where
ψ̄ ≡ ψ†γ0. (1.8)

To describe an interaction, we represent the free wavefunction for a particle of four momentum
p as

ψ = u(p)e−ip·x (1.9)

where u is the four component spinor. Inserting in the Dirac equation, Eq. 1.3, the derivative is
associated with the momentum

(γµpµ −m)ψ = 0. (1.10)

For an electron in an electromagnetic field, represented by the 4 potential Aµ, we perform a trans-
formation

pµ → pµ + eAµ (1.11)

which then gives us the equations of motion for a particle in a potential. To first order, the transition
amplitude of a particle from initial state i to final state f is

Tfi = ie

∫
ψ̄fγµA

µψid
4x = −e

∫
jfi
µ A

µd4x (1.12)

where we have defined the transition current, jfi
µ . For our purposes we’re interested in the scattering

of one particle from another, and not a fixed potential, as shown in Fig. 1.1. For simplicity we will
assume that they are both spin 1/2. In this case, the four potential, Aµ, associated from a charge-
current distribution, jµ, can be related through Maxwell’s equations

�2Aµ = jµ (1.13)

For jfi
µ = ūfγµuie

i(pf−pi)·x, it is easy to check that the solution for Aµ is

Aµ = −
jfi
µ

(pi − pf )2
= −

jfi
µ

q2
(1.14)

where we have defined the four momentum transfer q = pi−pf . Using this formalism, the transition
amplitude for scattering between two currents jµ

1 and jµ
2 is

Tfi = −i
∫
jµ
1

1
q2
jµ2d

4x = −ie2
∫
ψ̄f,1γµψi,1

1
q2
ψ̄f,2γ

µψi,2d
4x. (1.15)
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This transition amplitude can then be related to a differential cross section which contains the
information about our scattering probability into particular final states. The transition rate per
unit volume, Wfi, is

Wfi =
|Tfi|2

TV
(1.16)

where T is the time interval for the interaction and V is the interaction volume. The differential
cross section, dσ, is then

dσ =
Wfi

Φ
dQ (1.17)

where dQ is the Lorentz invariant phase space, Φ is the initial flux of particles. The results for many
processes, at least to leading order, are quite well known, so we will avoid repeating the calculations
here. For the scattering of two (distinguishable) spin 1/2 point particles in the lab frame, the
differential cross section (including target recoil) is

dσ

dΩ
=
dσ

dΩ

∣∣∣∣
Mott

E′

E

(
1− q2

2M2
tan2 θ

2

)
(1.18)

where the Mott cross section which describes scattering of an electron from a structureless, spinless
target

dσ

dΩ

∣∣∣∣
Mott

=
α2 cos2 θ

2

4E2 sin4 θ
2

(1.19)

and θ is the scattering angle of the electron, M is the mass of the target, E is the initial energy of
the electron, and E′ is the final energy of the electron.

1.2 Particles with Structure

We now have a start on modeling the scattering of an electron from a target. This model must be
extended to include targets with arbitrary structure so that we may parametrize the cross section of
the nucleons. We start with Eq. 1.15, which describes the transition amplitude for two interacting
currents

Tfi = −i
∫
jµ 1
q2
Jµd

4x. (1.20)

We will take jµ to be the current for our electron and Jµ to be the current for our nucleon. We are
interested in the most general form for Jµ, which is a Lorentz 4-vector, so we must come up with
an exhaustive list of linearly independent 4-vector quantities which can describe the interaction.
We have already seen γµ, pµ, and p′µ, but combinations with the contracted quantities pµγµp

ν ,
etc. must also be considered. All possible 4×4 matrices can be constructed from the 16 linearly
independent matrices

I, γµ, γ5, σµν , γµγ5 (1.21)

where we have introduced two new objects

γ5 = iγ0γ1γ2γ3 (1.22)

σµν =
i

2
(γµγν − γνγµ) . (1.23)

γ5 has the property of anticommuting with the parity operator and is therefore a pseudoscalar. The
only remaining available 4-vectors are the incoming momentum, p, and the outgoing momentum,
p′. We can quickly eliminate terms involving γ5, as the electromagnetic interaction conserves parity.
Any coefficients must be functions of Lorentz scalars, however q2 is the only independent scalar
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(scalars involving combinations with p and p′ can be reduced in terms of m and q). Taking these
into account, the most general form for the hadronic current, Jν , is

Jν = eū(p′)
[
K1(q2)γν + (pν + p′ν)K2(q2) + (pν − p′ν)K3(q2)

+iσνµ(pµ − p′µ)K4(q2) + iσνµ(pµ + p′µ)K5(q2)
]
u(p)ei(p−p′)·x. (1.24)

From the Gordon decomposition identity, we can equate

ūγµu =
1

2M
ū (pµ + p′µ + iσµν (p′ν − pν))u (1.25)

so any (p + p′)µ terms can be put into other terms. Enforcing current conservation, ∂µJ
µ = 0 (or

qµJ
µ = 0 in our case), any terms which do not vanish for an arbitrary K must have K = 0. For the

K1 term,
γµqµ = γµ(pµ − p′µ) = (m−m) = 0 (1.26)

where we have utilized the Dirac equation, Eq. 1.3. For the K4 term, because the tensor σµν is
antisymmetric (Eq. 1.23)

qµσ
µνqν = −qµσνµqν = 0. (1.27)

The K3 term does not vanish, as we have q2K3, so to have current conservation for Jν there can
be no (pν − p′ν) term. Rewriting the remaining K functions in different terms, this leaves

Jν = eū(p′)
[
F1(q2)γν +

κ

2M
qµσ

νµF2(q2)
]

(1.28)

where κ is the anomalous magnetic moment of the target. There are two independent functions
of q2 which parametrize the structure of our nucleon, F1 and F2, also called the Dirac and Pauli
form factors, respectively. The differential cross section for electron nucleon scattering can then be
written

dσ

dΩ
=

α2

4E2 sin4 θ
2

E′

E

[(
F 2

1 −
κ2q2

4M2
F 2

2

)
cos2

θ

2
− q2

2M2
(F1 + κF2)

2 sin2 θ

2

]
. (1.29)

This is also known as the Rosenbluth formula. In the limit of q2 → 0 we are not sensitive to the
structure of the nucleon and only see a particle having the total charge and having magnetic moment
expected for that particle plus κ. This puts the limiting values on F1 and F2 for the proton and
neutron

F p
1 (0) = 1, F p

2 (0) = 1 (1.30)
Fn

1 (0) = 0, Fn
2 (0) = 1. (1.31)

In the case of κ = 0 and unit charge, we recover Eq. 1.18 as expected.
Eq. 1.29 parametrizes our observations of the differential cross section for a general spin 1/2

particle with structure. In Chapter 2 we will provide interpretations of the form factors in terms of
the electric charge and magnetic moment distribution. Modeling and measurements of these form
factors will be discussed. In Chapter 3, a discussion of experiment E02-013 will be given and the
experimental technique and setup used will be presented. In Chapter 4, results from the calibrations
of our newly constructed detector set for that experiment will be presented. In Chapters 5 and 6
methods for analysis and results for two of four kinematic points will be given.
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Chapter 2

Electromagnetic Form Factors and
Gn

E

In the last chapter we discussed how to parametrize electron scattering off a general spin-1/2 particle
with structure. We arrived at Eq. 1.29 which contained two independent functions, the Dirac and
Pauli form factors, for four-momentum transfer, q2. In this chapter we will discuss how these
form factors are related to the electric charge and magnetic moment distributions in the nucleon,
examine techniques that the electric form factor of the neutron is measured, and compare previous
measurements of this form factor to theoretical predictions and fits.

2.1 Sachs Form Factors

Sachs first suggested rewriting the form factors in two linear combinations such that they were
related to the electric charge and current distributions inside the nucleon [3]. Hand, Miller, and
Wilson showed that two functions, GE and GM , could be related to the Fourier transforms of the
charge and magnetic moment distributions [4]. These functions are also known as the electric and
magnetic form factors

GE = F1 +
κq2

4M2
F2 (2.1)

GM = F1 + κF2. (2.2)

Rewriting Eq. 1.29, this gives the differential cross section

dσ

dΩ
=
dσ

dΩ

∣∣∣∣
Mott

E′

E

(
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2 θ

2

)
=

α2 cos2 θ
2

4E2 sin4 θ
2

E′

E

(
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2 θ

2

)
.

(2.3)
GE and GM can be physically interpreted best in the the frame of zero energy transfer, also known
as the Breit frame. Here, they are closely related to the Fourier transforms of their respective
distributions [5], [2]. This leads to difficulties in producing three dimensional representations of the
distributions because the definition of the Breit frame is different for each q2.

However, in the non-relativistic limit of q2 → 0, it simply is the Fourier transform in the nucleon
rest frame. In this case, we may perform an expansion of the charge distribution transform in terms
of ~x
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GE =
∫
d3xei~q·~xρ(~x) =

∫
d3xρ(~x)

(
1 + i~q · ~x− (~q · ~x)2

2
+ ...

)
=
(∫

d3xρ(~x)
)
− 1

6
|~q|2〈r2charge〉+ ...

(2.4)
The first term in the expansion is simply the total charge of the particle. Performing an expansion
of GE in terms of q2 and matching terms of q2, the mean-square charge radius is related to the first
derivative of GE in the limit as q2 → 0.

〈r2charge〉 = −6
dGE

dQ2

∣∣∣∣
Q2=0

. (2.5)

This provides a useful method to define a gross structure property of the nucleons.

2.2 Previous Gn
E Measurements

For this experiment we are interested in measuring Gn
E , the electric form factor of the neutron. Of

the four nucleon form factors, it has traditionally been the most difficult to measure, as the neutron
is an overall neutral particle and there are no free neutron targets. We will now review previous
measurements and measurement techniques for Gn

E .

2.2.1 Rosenbluth Separation

The first measurements for Gn
E were done through measurement of elastic electron-deuteron cross

section. For the cross section for a spin 1 particle, the form of which is given by Gourdin [6] in terms
of three form factors

dσ

dΩ
=
dσ

dΩ

∣∣∣∣∣
Mott

[
A(Q2) +B(Q2) tan2

(
θ

2

)]
(2.6)

where A(Q2) = G2
C(Q2) + 8

9η
2G2

Q(Q2) + 2
3η(1 + η)G2

M (Q2), B(Q2) = 3
4η(1 + η)2G2

M (Q2), and
η = Q2/(4M2

d ). These three form factors can then be related to the isoscalar electric and magnetic
form factors of the nucleon, GES and GMS

GC = 2GESCE (2.7)
GQ = 2GESCQ (2.8)

GM =
MD

Mp
(2GMSCS +GESCL) (2.9)

where

GES =
1
2

(Gp
E +Gn

E) (2.10)

GEM =
1
2

(Gp
M +Gn

M ) (2.11)

and CE , CQ, CS , and CL are related to the deuteron wavefunction. The determination of Gn
E is done

by measuring the deuteron elastic cross section and using the Rosenbluth separation technique by
varying the electron scattering angle, θ, for a fixed Q2 to separate the functions A(Q2) and B(Q2).
Gn

E is then isolated using calculations for the four C functions and previous electromagnetic form
factor data. This type of analysis is very dependent on the choice of wavefunction and requires a
number of corrections for relativistic effects, meson exchange currents, delta isobar contributions,
and final state interactions. One of the earliest measurements of this type was performed at DESY
in 1971 by Galster et. al [7] and measured Gn

E up to Q2 = 0.6 GeV2 with good accuracy.
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Figure 2.1: Selected world data and theory curves. The F2/F1 ratio curve has been scaled to the
Madey Q2 = 1.45 GeV2 point.

2.2.2 Polarization Observables

Separation using the Rosenbluth method is inherently difficult due to the small values of Gn
E and

is further complicated by corrections from higher order effects. However, longitudinally polarized
electron beams with 2H and 3He targets have proven to provide more accurate measurements by mea-
suring either the polarization transfer or cross section asymmetry using quasi-free kinematics. These
types of methods were proposed shortly after the discovery of structure in the proton [8],[9],[10].
The advantage of such methods is the lack of sensitivity to the choice of nuclear wavefunctions and
the suppression of higher order effects, such as final state interactions, for low missing momenta.

To relate these quantities to the form factors, modifications to the formalism presented in Chap-
ter 1 must be done. There, in the calculation of the cross section in terms of the structure functions,
sums were taken over the spin states producing the spin-independent cross sections. To relate
polarization observables to the form factors, this sum does not take place to account for specific
polarizations.

For longitudinally polarized electrons on an unpolarized nucleon target, the polarization compo-
nents for the nucleon after scattering are [11]

I0Px = −2
√
τ(1 + τ)GEGM tan

θ

2
(2.12)

I0Pz =
Ebeam + Ee′

M

√
τ(1 + τ)G2

M tan2 θ

2
(2.13)

I0 = G2
E(Q2) +

τ

ε
G2

M (Q2) (2.14)

where Px is the polarization component perpendicular to the momentum transfer in the scattering
plane, Pz is the polarization component along the momentum transfer, τ = Q2

4M2 , M is the mass of
the nucleon, ε is the longitudinal polarization of the exchanged virtual photon, θ is the scattering
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angle of the electron, Ebeam is the initial energy of the beam, and Ee′ is the energy of the scattered
electron. The ratio of GE/GM can then be obtained directly

GE

GM
= −Px

Pz

Ebeam + Ee′

2M
tan

θ

2
. (2.15)

This technique was employed for a number of measurements at MIT-Bates [12], MAMI [13] [14],
[15], and JLab [16] and provided data up to Q2 = 1.45 GeV2.

The reaction 2~H(~e, e′n)p can be measured in quasielastic kinematics for access to Gn
E through the

spin-correlation parameters AV
ed, as done by Passchier [17] and in experiment E93-026 at JLab [18].

This yielded points at Q2 = 0.21, 0.5, and 1.0 Gev2.
Double polarization experiments using a polarized target and polarized beam can be used to

extract GE when GM is known through measuring the cross section asymmetry from the two lepton
helicity states [19]. In 1984 Blankleider and Woloshyn proposed using a polarized 3He target as the
effective polarized neutron target, which would then allow this technique to extract Gn

E [20]. Several
experiments successfully utilized this method starting in the early 1990s at MAMI through the
reaction 3 ~He(~e, e′n)pp [21], [22], [23], [24]. This provided data for a range of Q2 = 0.31 to 0.67 GeV2.
This is also the technique chosen for our measurement [25] and a more detailed description can be
found in Chapter 3.

2.2.3 Deuteron Quadrupole Form Factor

Due to a lack of higher Q2 Gn
E data, Schiavilla and Sick calculated this form factor utilizing the world

data of the deuteron quadrupole form factor, FC2(q) [26]. Using theoretical predictions for this form
factor in conjunction with the data, a set of Gn

E data points up to about 1.6 GeV2 was obtained.
These points showed rough agreement with the Galster parametrization, shown in Fig. 2.1.

2.3 Nucleon Models and Parametrizations

Many models and parametrizations of the nucleon form factors have been developed to fit and predict
the measured data. These models have not had any influence from Gn

E at high Q2 due to the dearth
of data. With this analysis, it is then interesting to see how well the predictions from these models
agree with new measurements.

2.3.1 pQCD

Due to the size of the coupling constant of the strong force at Q2 < ΛQCD ∼ 1 GeV, αs ∼ 1 − 10,
perturbative techniques are not applicable in this regime. However, at higher energies αs becomes
smaller through the running of the coupling constant and pQCD starts to become applicable. For
this experiment we are near energies where the transition to pQCD starts to become relevant, so it
is interesting to examine some predictions.

For many years, the behavior of the ratio of the Dirac and Pauli form factor was expected to
scale as F2/F1 ∼ Q2 at large Q2. However, the measurements in Hall A of Gp

E showed a strong
drop off in this ratio contradicting the previously observed behavior [27]. More recent calculations
showed that when including one unit of quark orbital angular momentum, pQCD predicts [28]

F2(Q2)
F1(Q2)

∝
log2

(
Q2

Λ2

)
Q2

(2.16)

where Λ ≈ 300 MeV. This can be related to the Sachs form factors using Eq. 2.1 and Eq. 2.2

GE

GM
=
Q2 − κτα log2

(
Q2/Λ2

)
Q2 + κα log2 (Q2/Λ2)

(2.17)
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Figure 2.2: The VMD model describes an electromagnetic interaction through the intermediate
coupling with vector mesons.

where α is a constant. This type of behavior was confirmed in the available proton data for Q2 >
3 GeV.

2.3.2 Vector Meson Dominance

The vector meson dominance model (VMD) was first hypothesized to explain electromagnetic in-
teractions with hadrons through coupling with intermediate vector mesons. In this model, a virtual
photon will transform into a lower-lying vector meson, such as the ρ(770), ω(782), and φ(1020),
which have the same quantum numbers as the photon, and then interact with the target hadron,
Fig. 2.2. The motivation for such a model is through the process e−e+ → hadrons where these
mesons show up as as prominent resonances. The contributions due to these resonances (poles) to
the space-like diagrams for eN scattering processes can then be evaluated and predictions can be
made.

In these models the strength of the couplings, which are left as free parameters, are fit to existing
form factor data. Early VMD fits were developed by Iachello et al. [29] and then improved upon
by Gari and Krümpelmanm [30] which included pQCD effects at higher Q2. More recently, the
Gari-Krümpelmanm model has been extended to include more mesons in a fit by Lomon [31], which
also included the ρ′(1450) and ω′(1420). A phenomenological addition including the quark structure
of the hadron was added by Bijker and Iachello [32]. Such models have had great success in fitting
data as it is measured, but have not had great predictive power [33].

2.3.3 Constituent Quark Model

Constituent quark models take the structure of the nucleon to be comprised of the three valence
quarks. In this model, the quarks are taken to have masses of about mN/3 ≈ 300 MeV and are
placed in a confining potential. The ground state of such a system is then taken to describe the
nucleon. Relativistic effects are taken into account such that these models can be used to describe
scattering at Q2 on the order of the constituent quark masses. These types of models have had
general success in the description of the form factors at higher Q2, but the lower Q2 data includes
additional degrees of freedom, such as in the form of pion clouds or local structure of the constituent
quarks.

Recently, calculations by Miller were performed using light front dynamics and a model called
the light front cloudy bag model (LFCBM) was developed [34]. In this model, an additional cloud
of pions was added which then allows for a virtual photon to interact with these pions as well as the
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Figure 2.3: Selected data for Gp
M divided by the dipole parametrization.

bare constituent quarks. This model has had success in describing all of the electromagnetic form
factors, with the exception of Gn

M at low Q2.

2.3.4 Dipole

The scaled dipole parametrization has enjoyed considerable success in describing the magnetic Sachs
form factors Gp

M , and Gn
M . In this parametrization the form factors take the form

Gp
M (Q2)
µp

=
Gn

M (Q2)
µn

= GD(Q2) =
(

1 +
Q2

0.71 GeV2

)−2

(2.18)

where GD(Q2) is the dipole form factor, µp = 2.79, the magnetic moment of the proton, and
µn = −1.91, the magnetic moment of the neutron. These all demonstrate the appropriate Q2 → 0
behavior since limQ2→0GD(Q2) = 1. Form factor data relative to these fits can be found in Figs. 2.3
and 2.4. Traditionally, this form had also been used for the form factor Gp

E , though with the recent
Hall A Gp

E measurement [27] which shows the form factor dropping at a faster rate than previously
observed, this fit is no longer good. This is seen in Fig. 2.5, where the ratio Gp

E/G
p
M is not constant

in Q2.
In the low Q2 Fourier transform interpretation, the dipole form corresponds to a charge or mag-

netic moment distribution that is exponentially decaying. Using this parametrization to determine
the RMS radius through Eq. 2.5,

√
〈r2dipole〉 = 0.81 fm, which is near the measured nucleon size.

2.3.5 Galster

The dipole parametrization is inappropriate for Gn
E , since limQ2→0G

n
E(Q2) = 0. However, a similar

parametrization by Galster [7] has been quite successful in describing the data. This takes the form

Gn
E(Q2) = − µnτ

1 + 5.6τ
GD(Q2) (2.19)

where GD(Q2) is given by Eq. 2.18, µn = −1.91 is the magnetic moment of the neutron, and
τ = Q2

4m2
n
. Despite having been proposed over three decades ago, this form continues to be remarkably

successful in describing the data, shown in Fig. 2.1. This parametrization corresponds to a charge
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Figure 2.4: Selected Gn
M world data divided by the dipole (from [35]). Red + are from a recent

measurement by CLAS [35] and statistical uncertainty. Systematic uncertainty for that analysis is
in the grey band. The green line represents the dipole parametrization.
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Figure 2.5: Ratio of the electric and magnetic form factors for the proton. Gp
E does not exhibit a

dipole form, unlike Gp
M .
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radius 〈r2n〉 = −0.112 fm2. The minus sign indicates the charge distribution is more positively
charged near the neutron center and negatively charged at larger radii. This type of distribution
would coincide with the simple model of the neutron as a proton with a π− cloud.

2.3.6 Kelly

A recent phenomenological fit by Kelly [36] attempts to parametrize the form factors using current
data. This model is useful in producing continuous values of the form factors and their uncertainties
with a greater accuracy than that of the dipole. The Sachs form factors, except for Gn

E , are assumed
to have the form

G(Q2) ∝
∑n

k=0 akτ
k

1 +
∑n+2

k=1 bkτ
k
. (2.20)

The limiting behavior as Q2 → 0 for G is taken to be 1 for Gp
E and the respective magnetic mo-

ments for the magnetic form factors, fixing a0. For Gn
E , he continued to use the Galster parametriza-

tion form, which has two free parameters

Gn
E(Q2) =

Aτ

1 +Bτ
GD(Q2). (2.21)

A fit was performed using a wide set of world data for n = 1. For each of these fits he achieved
a χ2/N of approximately 1 except for Gn

M , which was about 0.5.
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Chapter 3

Hall A Experiment E02-013

The E02-013 experiment ran at Jefferson Lab in experimental Hall A from February to May 2006.
Its goal was to measure the electric form factor of the neutron at momentum transfers, Q2, of 1.2,
1.7, 2.7, and 3.5 GeV2 by measuring cross section asymmetries using alternating beam helicities
on a polarized 3He target, the so-called “double polarization technique” measuring the reaction
3−→He(~e, e′n)pp. To allow for the accumulation of sufficient statistics, a large angular and momentum
acceptance spectrometer, named ‘BigBite’, was employed to measure the momentum of the scattered
electron. Since it is also necessary to identify the charge of the scattered nucleon from the 3He
nucleus, as well as help identify quasielastic scattering events, a large wall of scintillator, called the
‘neutron arm’ was constructed to match the acceptance of BigBite. Furthermore, as the sensitivity of
the measurement is dependent upon the degree of polarization in the target, a new type of 3He target
was constructed for this experiment which allows for higher degrees of polarization than previously
realized.

In this chapter we will cover how our experiment was performed and give an overview of the anal-
ysis considerations in the design of the experiment. We will also describe the equipment, detectors,
and software that were necessary for our measurement.

3.1 Experimental Technique

Shown in Chapter 2, the differential cross section for an unpolarized electron scattering off of an ar-
bitrary spin 1/2 target with structure in the lab frame using the one photon exchange approximation
and accounting for recoil of the nucleus can be parametrized as 2.3

dσ

dΩ

∣∣∣∣
LAB

=
dσ

dΩ

∣∣∣∣
Mott

E′

E

(
G2

E + τG2
M

1 + τ
+2τG2

M tan2 θ

2

)
=

α2 cos2 θ
2

4E2 sin4 θ
2

E′

E

(
G2

E + τG2
M

1 + τ
+2τG2

M tan2 θ

2

)
(3.1)

where dσ
dΩ

∣∣
Mott

is the Mott cross section, which describes scattering off of a structureless target, α
is the electromagnetic coupling constant (≈ 1/137), E is the incoming electron energy, E′ is the
scattered electron energy, θ is the scattering angle of the electron, τ = − q2

4m2 , q2 is the absolute
value of the square of the 4-momentum transfer, m is the mass of the target nucleon, and GE and
GM are the electric and magnetic form factors as described in Chapter 2. The four momentum
transfer, q, is

q = pe,i − pe,f (3.2)

where pe,i is the initial four-momentum of the electron and pe,f is the final momentum of the electron.
We can also define the differential cross section in terms of the beam helicity

σh = Σ + h∆ (3.3)
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Figure 3.1: Quasielastic scattering kinematics

where h is the sign of the helicity represented as +1 or −1. We will refer to Σ as the unpolarized
part and ∆ as the polarized part. The asymmetry of this cross section, assuming a 100% polarized
target and 100% polarized electron, is taken to be

Aphys =
σ+ − σ−
σ+ + σ−

=
∆
Σ
. (3.4)

Using the definition of the Mott cross section (Eq. 1.19), the unpolarized part can simply be repre-
sented by

Σ =
dσ

dΩ

∣∣∣∣
Mott

(
G2

E + τG2
M

1 + τ
+ 2τG2

M tan2 θ

2

)
. (3.5)

It should be noted that Eq. 3.5 is calculated by summing over all electron and nucleon spins. By
repeating the calculation for a specific target polarization, the difference between the differential
cross section for each helicity can be described as [37]

∆ = −2
dσ

dΩ

∣∣∣∣
Mott

√
τ

1 + τ
tan

θ

2

[√
τ(1 + (1 + τ) tan2(θ/2))(q̂ · T̂ )G2

M + n̂ · (q̂ × T̂ )GMGE

]
(3.6)

where q̂ is the direction of the three momentum transfer, ~q, T̂ is the direction of the target polar-
ization, and n̂ is the vector normal to the scattering plane (defined as ~e× ~e′). See Fig. 3.1.

Using equation (3.4) and taking the ratio of equations (3.6) and (3.5), we find the expression
for our asymmetry

Aphys = −
2
√
τ(τ + 1) tan(θ/2)Λn̂ · (q̂ × T̂ )

Λ2 + (τ + 2τ(1 + τ) tan2(θ/2))

−2τ
√

1 + τ + (1 + τ)2 tan2(θ/2) tan(θ/2)(q̂ · T̂ )
Λ2 + (τ + 2τ(1 + τ) tan2(θ/2))

(3.7)

where Λ = GE/GM , the ratio of the electric and magnetic form factors. From this expression it
is easy to see that given the scattering angle of the electron, θ, the four momentum transfer, q,
and the target polarization, the only remaining unknown quantities are the asymmetry, A and the
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Kin Q2 (GeV2) Ebeam (GeV) θBigBite (deg) θNA (deg) dNA (m) Run Time (days)
1 1.3 1.519 -56.3 35.74 8.23 8
2 2.4 2.642 -51.6 30.25 10.94 19
3 3.5 3.291 -51.6 25.63 10.97 33
4 1.7 2.097 -51.6 35.74 8.23 9

Table 3.1: Settings for the four measured kinematic points for E02-013.

ratio Λ. Since the first term contains a factor of Λ in the numerator, we wish to maximize it with
kinematics for which the target polarization is close to perpendicular to the momentum transfer. If
GM is known for the value of q2, then measuring the asymmetry can yield a value of GE . We also
note that the asymmetry is also frequently written in terms of a transverse and longitudinal part

Aperp = −
2
√
τ(τ + 1) tan(θ/2)Λ

Λ2 + (τ + 2τ(1 + τ) tan2(θ/2))
(3.8)

Along = −2τ
√

1 + τ + (1 + τ)2 tan2(θ/2) tan(θ/2)
Λ2 + (τ + 2τ(1 + τ) tan2(θ/2))

. (3.9)

These equations apply for a 100% polarized neutron target and a 100% polarized beam. Of course,
these conditions are not present in our laboratory and corrections must be made. Furthermore, the
quasielastic sample of events identified as scattering from a neutron will not be wholly comprised
of neutrons and other effects such as accidental background and misidentification of protons and
neutrons will occur. False asymmetries may be introduced from supplying asymmetric beam charges
across the two helicities and also from the electronics and analysis code by biasing towards events of
one helicity. All of these factors must be taken into account to accurately reconstruct the “physical
asymmetry” from the “raw asymmetry” produced in the data.

It is clear that a strongly polarized neutron source is required to measure Gn
E . Although there are

no free neutron targets due to the short half-life of the neutron (λ = 14.8 minutes), 3He has properties
that make it a suitable replacement. Using spin-exchange optical pumping (SEOP) techniques, E02-
013 was able to achieve a polarized 3He target with polarization of up to 50% and calculations using
a variety of techniques find that the neutron carries about 86% of this polarization as a target ([38],
[39], [40], [41], [42], [43], [44]).

Using a target where the neutron is bound in a nucleus introduces several complications in
interpreting the results of scattering. These effects include Fermi motion, the possibility of scattering
off of meson-exchange currents (MEC), and other off-shell effects. Furthermore, contributions from
delta-isobar states and final-state interactions may also affect the final results. By carefully choosing
kinematics that emphasize quasielastic events one can attempt to minimize many of these effects.

3.2 Measurements

E02-013 was originally proposed to measure three kinematic points, however, due to circumstances
during the experiment, four points were measured. The kinematic settings, the positions of the
detectors, and the amount of time for each setting can be found in Table 3.1.

3.3 Experimental Setup

Experiment E02-013 took place at Thomas Jefferson National Accelerator Facility inside experi-
mental Hall A, one of three experimental halls. Much of the equipment used for the experiment
involving production and measurement of the incoming beam was developed for use during previous
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Figure 3.2: E02-013 Experimental Setup

experiments. However, due to the nature of producing a double coincidence experiment requiring
large acceptance detectors, new equipment was necessary for this experiment. Furthermore, a target
capable of the sustainably high polarizations was also developed.

Two major detectors were used to perform E02-013 (Fig. 3.2). BigBite, a large angular and
momentum acceptance spectrometer with a newly constructed detector array, was assembled to
detect scattered electrons and the neutron arm, a large wall of scintillator was constructed to detect
the recoiling nucleon in coincidence.

BigBite measures the magnitude and direction of the momentum of the scattered electron. This
spectrometer was chosen as it would provide adequate statistics through its large momentum bite
and angular acceptance. Obtained from NIKHEF, the BigBite magnet is capable of providing a
maximum field of 1.2 T with a field integral of approximately 1.0 T · m. Combined with a newly
developed detector package for this experiment, BigBite was able to provide an RMS resolution
of approximately σ δp

p
= 1%. This portion of the experiment presented the challenge of providing

accurate and efficient tracking in a high luminosity environment.
For the neutron arm, the chance of detecting neutrons by a hadronic shower is greatly increased

by including lead and iron plates in between the planes of scintillator. An additional two layers of
scintillator are placed at the front of the detector without these plates, known as the “veto layers”.
One may identify the charge of the nucleon from the target through the signals produced in these
layers. Ideally, a proton will produce a signal while a neutron will not. More advanced schemes for
charge identification will covered in Chapter 5.

3.3.1 CEBAF

The continuous electron beam accelerator facility (CEBAF, [45], [46]) is a medium energy electron
accelerator capable of delivering continuous beams of electrons at energies up to about 5.7 GeV
at currents up to about 150 µA. This energy provides the opportunity to study the properties of
matter in the regime where hadronic and quark degrees of freedom overlap. By using the electron
as an electromagnetic probe, an interaction that is well understood through perturbation theory
due to the small electromagnetic coupling between charges, we can study the properties of hadrons
through the interaction with the charged quarks.

The accelerator features a pair of superconducting radio frequency linacs which utilize recircula-
tion to achieve the necessary energies. Each linac contains 160 superconductor accelerating cavities
housed in 20 cryomodules, that resonate near 1497 MHz and have field gradients of 5 MV/m. Each
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Figure 3.3: Schematic of the CEBAF accelerator

linac produces an energy gain of about 600 MeV in each pass and can recirculate up to 5 passes.
Electrons are initially created at the injector using three RF-gain-switched lasers focused on a

single photocathode to produce 100 keV electrons through a process analogous to the photoelectric
effect and an electric field gradient. The injector is capable of providing separate beams for the three
experimental halls by interlacing light from three diode lasers pulsed at 499 MHz onto a strained
GaAs photocathode at a wavelength of 780 nm such that it produces a 1497 MHz train of electrons.
The spin direction of the electrons is determined by the polarization of the light on the photocathode,
which is controlled by a Pockels cell. The injector is capable of routinely producing polarizations
greater than 80%.

A Mott polarimeter is employed at the injector to measure the polarization of the beam as it
is produced. This polarimeter measures the asymmetry of counting rates in elastic Mott scattering
(electrons on nuclei). This asymmetry is proportional to the beam polarization.

The electrons then are sent to a cryounit (a two-superconducting-cavity module) where they are
accelerated to just over 5 MeV and then accelerated in two cryomodules to 45 MeV. These then
enter the main accelerator system where they recirculate to the desired energy.

To provide beam to each of the three halls, the three 499 MHz bunches, created by each injector
pulse, can be pulled out using RF separators after any linac pass. This beam is approximately 80 µm
RMS in the transverse direction and has an RMS relative energy spread of 2.5×10−5 when it enters
the hall.

Information about the beam, such as the measured energy, is available through the EPICS data
system. Furthermore, a phase-locked clock generates a signal in time with the production of each
electron bunch produced by the accelerator at a frequency of 499 Hz and is sent to the CODA
system for each event. This signal can then be used to associate events in the detectors with a
specific bundle.

Helicity Determination

The helicity of the beam is produced according to a known pseudo-random algorithm and is changed
at a rate of 30 Hz. This produces a series of beam pulses of a specific helicity that last for 33.3 ms.
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These individual states are generated in patterns of four, known as quads, and may follow the
pattern of either + − −+ or − + +−. For each state transition, an inverted “master pulse signal”
(MPS) at the same rate is sent to the hall electronics. These signals are put into the CODA data
stream and a copy of the transition signal is sent to the E02-013 trigger supervisor. These events
are then synchronized in software to determine which helicity state was present for a given event.
The absolute sign of the helicity must be independently determined, such as from the Hall A Møller
polarimeter. This style of running is referred to as “G0” mode, after the Hall C experiment which
designed it.

Due to the fact that the helicity signal sent from the accelerator is delayed by some fixed amount
of time, 8 quads, there are two options to determine the helicity when decoding an event. First, one
may try to “read ahead” in the data stream to try and find the signal corresponding to the event of
interest, which may be problematic depending on how one records the data. The other solution is
to use a predictable pattern. By examining some number of events, typically on the order of 1000,
it is possible to then determine where in the sequence of helicities one is at and all knowledge of
helicity states at all times is then known.

To check for possibly lost MPS signals, an additional 105 kHz clock signal fed into a scaler is
implemented into the system. This scaler provides a time-stamp for each event which then provides
a method to check when events occurred relative to each other, such as the time difference from the
last MPS. For example, if this time difference becomes too large, attempts to reconstruct the helicity
when a lost MPS occurred can be made. This signal is also sent to the E02-013 trigger supervisor.
A description of this process is in Fig. 3.4.

For each transition, there is a 500 µs transition period during which the Pockels cell used to
determine the photon helicity may be in an undetermined state. The 30 Hz MPS is logically ‘0’ for
the duration of this transition period and is used to gate the helicity readout. When an event occurs
in this period the helicity is undefined and is rejected for use in determining asymmetries.

Using the pseudo-random method is useful in controlling systematic uncertainties in the deter-
mination of the asymmetry. By using this method it is much easier to control the relative amounts
of beam charge for each helicity state (which to this point we have assumed to be equal) as well as
analyzing portions of the experiment which may drift over time, such as the target polarization.

3.3.2 Hall A Beamline

The Hall A Beamline contains the necessary magnetic, electronics, and instruments to transport the
beam onto the target as well as measure various properties of the beam. For E02-013, the properties
of particular interest are the beam position, direction, current, and polarization.

Beam Current Equipment

Two beam current monitors (BCMs) are employed to determine the current and integrated charge
over a period of time. They consist of two RF cavities, tuned to a frequency of 1497 MHz, which
produce an RF signal which is then demodulated to produce a voltage output proportional to the
beam current and an Unser monitor [47]. In addition, instrumentation at the injector section of the
accelerator provides a reference for calibration. The Unser monitor itself only acts as an absolute
reference for calibration and cannot be used for extended periods of time due to signal drift over the
period of several minutes.

The RF cavity outputs are sent to both a high precision voltmeter and several copies to a
voltage to frequency converter (VTOF). The voltmeter provides an updated signal every 1-2 s
which is recorded in the EPICS data stream. The signals to VTOF are sent through a set of
amplifiers providing gains of 1,3, and 10 for both of the cavities, such that a total of six signals
are present for both BCMs. Each of these six signals is sent to 200 MHz VME scalers, which also
provide helicity-gated information, and the accumulated output gives a number proportional to the
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Figure 3.4: Helicity Timing Diagram
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integrated charge. Calibrations of the BCMs using the Unser monitor and a Faraday cup at the
injector are done through separate runs and are performed every 2-3 months.

Beam Position Equipment

Two beam position monitors are employed to determine the position and direction of the beam.
These are each composed of a four-wire strip-line antenna system and are located 7.52 m and
1.29 m upsteam of the target. They provide an accuracy of about 100 µm through ADC readout
of the monitors. Their absolute positions are calibrated by using a set of wire scanners known as
harps, which are surveyed relative to the hall regularly to provide known positions. By moving the
harp wires through the beam at a known rate, the absolute positions provided by BPMs can be
determined. The average position recorded by the BPMs over 0.3 s is logged into EPICS at 1 Hz
and the position for each event is stored into the CODA data stream.

Polarimetry

The Hall A beamline also provides two beam polarimeters to determine beam polarization through
two different methods, one using Møller scattering and another using Compton scattering. The
Møller polarimeter consists of a magnetized ferromagnetic foil, providing a target of polarized atomic
electrons, a magnetic spectrometer, and two lead-glass calorimeters [48]. Longitudinal beam polar-
ization is determined by measuring the scattering cross sections for two different orientations of the
foil. The asymmetry of these measurements depends on the beam polarization in a known way. This
method provides a statistical accuracy of about 0.2% for about one hour of data taking, and about
3% systematic uncertainty. This type of measurement is invasive and must be performed separately
from an experiment.

The Compton polarimeter works on the principle of scattering electrons off of polarized photons.
By measuring the cross section asymmetry between the two beam helicity states, the overall beam
polarization can be determined. The Hall A Compton polarimeter consists of a magnetic chicane,
a photon source, an electromagnetic calorimeter, and an electron detector [46]. The entire beam is
deflected into the chicane where it interacts with a photon beam in a Fabry-Pérot cavity, used to
enhance the photon density. To maximize the luminosity, the photons and electrons intersect at the
smallest possible angle while the cavity mirrors do not interfere directly with the beam. For the
Hall A polarimeter, this is at an angle of 23 mrad. The scattered electrons and photons are detected
in coincidence and their energy is reconstructed from the electron detector and calorimeter for
calibration. For normal polarization measurements the polarimeter runs in “single arm” independent
of the electron arm. This method is non-invasive and provides a statistical accuracy of about 1%
for 30 minutes of running.

Raster

The Hall A beamline also incorporates a set of fast rastering field coils located 23 m upstream to
produce small deviations in the beam position at the target. This technique is often useful to prevent
significant amounts of heating on small areas on the target which can reduce usable lifetimes, cause
permanent damage, or rupture a target.

This system operates by producing small transverse magnetic fields for the beam to pass through.
These fields produce deviations of several millimeters in both directions at the target locations. It
is able to sweep across the range at a rate of 17 to 24 kHz. The current supplied to the raster is
read into the CODA data stream for each event for use in calculation of the beam position.
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Foil Type Position vz (m)
1 C -0.133
2 C -0.067
3 BeO 0.000
4 C 0.067
5 C 0.133

Table 3.2: Types and positions of (visible) foils for the carbon foil target.

3.3.3 Target

The hybrid 3He target and associated equipment were newly developed by Alan Gavalya and the
polarized 3He target groups at the University of Virginia, College of William and Mary, University
of Kentucky, and Jefferson Lab Hall A. This target used the spin-exchange optical pumping method
of polarizing the target with the novel use of combining two alkaline vapors (instead of one) in the
optical pumping scheme to provide high, sustained polarizations. Associated equipment built for
the experiment included an iron target box, target ladder system for switching between different
types of targets, a set of Helmholtz coils, lasers to be used for optical pumping, an oven to maintain
fixed temperatures of the pumping chamber, and various readout electronics. Both nuclear magnetic
resonance (NMR) and electron paramagnetic resonance (EPR) techniques were employed to measure
and monitor the polarization of the target during the running of the experiment.

For this experiment, two additional target types were employed for use in calibration of the
experiment. These were a carbon foil target, which consists of a set of four carbon foils and a BeO
foil at known positions along the beam line. Table 3.2 describes the type and position of the foils
visible for this target.

The other additional target was a glass reference cell, which could be filled either with H2 or N2

to pressures of about 150 psig, or evacuated. The length of the reference cell was approximately
40 cm.

Polarized 3He as a Polarized Neutron Target

Because there are no free neutron targets of sufficient density due to the relatively short lifetime of
a neutron outside of a bound nucleus, a substitute must be employed to act as an effective neutron
target. Using the double polarization technique in E02-013, an experiment where the measurement is
sensitive to the degree of the polarization of the neutron, a target that provides the highest practical
polarization is desired. 3He is a natural candidate, as about 86% of the nuclear spin is carried by
the neutron. The degree of this polarization, as well as any residual spin carried by the two protons
is well understood and has been accurately calculated using a variety of techniques ([38], [39], [40],
[41], [42], [43], [44]).

The contributions of various states are represented in Fig. 3.5. A majority of the time, the
nucleus is in a configuration where the two proton spins oppose each other. However, there is a
small contribution of the protons of roughly 3% which must be taken into account when considering
the contamination of protons in the asymmetry of a quasielastic neutron sample.

Polarized 3He Target Principles

The method of spin-exchange optical pumping [49] was used to put the 3He gas into a polarized
state. In the past, this technique involved exposing circularly polarized light on a single alkali metal
vapor, such as 85Rb, contained within a magnetic field. For this discussion we will take the projected
spin direction to be in the direction of the angular momentum carried by the photon.
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Figure 3.5: Contribution of different states to the spin of the 3He nucleus.

The alkali vapor and 3He gas are placed together in magnetic holding field in the same direction.
This produces an energy level splitting in the valence electron of the alkali vapor, separating the
ms = −1/2 and ms = 1/2 levels. The circularly polarized light is tuned to the transition of the
valence electron in a spin down S state (ms = mj = −1/2) to a spin up sublevel in a P state
(mj = 1/2) (Fig. 3.6). This transition follows from the conservation of angular momentum when
the photon is absorbed, i.e. ∆j = 1 and ∆mj = 1.

This new excited state will either decay by some path back down into a spin up S sublevel
(ms = 1/2), or through collisional mixing with other atoms move to spin down P sublevel mj = −1/2
and then decay. The probability of ending in either S state after the final decay is about 50%, which
results in a net gain of angular momentum for the target. Angular momentum is then transferred
from the polarized alkali valence electron to the 3He nucleus via a hyperfine interaction between the
polarized alkali vapor valence electron and the 3He nucleus [50], resulting in a polarized 3He nucleus.

In these decays, the radiation released is generally unpolarized which may cause the problematic
effect of depolarizing neighboring atoms. In high pressure systems, as is often desirable for polarized
target experiments, a single photon may be absorbed and reradiated several times before it escapes
the system causing the depolarization of many atoms. This effect can be quenched by the inclusion of
nitrogen gas into the system. The effect of the gas is to radiationlessly quench the excited electrons
back to the ground state, such as through transfer of energy through kinetic collisions. Introducing
sufficient quantities of nitrogen, typically of densities on the order of 2% relative to the number of
3He, decreases the amount of depolarizing photons.

The target cells used in E02-013 are known as hybrid target cells, meaning they contained two
alkali metal vapors, in our case Rb and K. This creates a slightly different scenario when polarizing
our nuclei. The purpose of having two different vapors is to decrease the amount of time necessary
to polarize a cell by exploiting how angular momentum is transferred to different components in the
target.

The mechanism for this is understood to be the exploitation of the relaxation cross section of K,
which is a factor of 15 smaller than that of Rb [51]. The spin exchange between K and Rb atoms
transfers the Rb polarization to K very efficiently [52], such that their polarizations are practically
equal for the time scales of the other angular momentum transfer processes.

Using only Rb, the “spin up time” or amount of time required to polarize the cell to certain
polarization, is typically on the order of 15 hours whereas a hybrid cell will have a spin up time
close to 8 hours. This not only decreases the amount of time necessary to have a cell attain a useful
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Figure 3.6: The process of optically pumping an alkali gas. Circularly polarized photons cause the
transition between the ms = mj = −1/2 level to the mj = 1/2 level. This excited state then decays
by some path (possibly involving interactions with other atoms) back down to the S level. The final
state will be roughly equally distributed between the ms = −1/2 and ms = 1/2 level, resulting in a
net gain of half a unit of angular momentum for each absorbed photon.

polarization, but also allows for higher polarizations to be achieved and for those polarizations to
remain more stable during depolarizing beam effects and polarimetry measurements.

K, however is difficult to polarize by itself due to the frequency of the 5S1/2 → 5P1/2 transition
near a depolarizing frequency. Using a mixture of Rb and K, one is able to quickly polarize the K
using the Rb as a proxy, and take advantage of the enhanced spin exchange of K. With a much
larger density of K compared to the Rb, 3He should polarize much more efficiently than through Rb
alone.

Polarization Measurement Techniques

Two separate methods were used to measure the polarization of the target. One using nuclear
magnetic resonance (NMR) and the other using electron paramagnetic resonance (EPR). Both of
these methods provide complementary ways to access the polarization.

NMR and AFP

An NMR measurement is done by taking a set of nuclei and placing them in a magnetic field and then
applying a radio frequency field. When resonance conditions are met, a signal can then be measured
that is proportional to the polarization of the target. To find the proper resonance conditions in
E02-013, we looked for this resonance through adiabatic fast passage (AFP) [53].

AFP is the method of reversing the spins of the 3He nuclei by changing the magnetic holding
field while applying a radio frequency magnetic field. If the field change is slow enough, the spins
of the nuclei will change to the opposite direction. However, it must be fast enough such that the
spins do not have time to relax. The reversal will sweep through a resonance, which produces an
EMF signal that is proportional to the polarization of the target in a separate set of coils known as
the pickup coils.

Looking at the problem classically, placing the polarized nuclei in a holding field, ~H0, with which
the spins are aligned, and then applying a perpendicular rotating field, ~H1, of frequency ω, the nuclei
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Figure 3.7: AFP of the nuclei magnetic moments in the rotating frame as the holding field is swept
through the resonance condition (resonance occurs at the center figure).

will begin to precess. This is given by the formula [53]

d ~M

dt
= γ ~M × ( ~H0 + ~H1) = γ ~M × ~He (3.10)

where ~M and γ are the magnetic moment and gyromagnetic ratio of the nucleus, respectively, and
~He is the total effective field. For convenience, we take ~H0 to be in the ẑ direction and transform to
a rotating frame of frequency −ω0 about the z axis. The effective field becomes

~He =
(
H0 −

ω0

γ

)
ẑ + ~H1. (3.11)

It is this effective field that the polarization of the spins follow under AFP conditions, Fig. 3.7.
Applying adiabatic fast passage, the angle between the effective field and the holding field in the
rotating frame, θ, is given by

tan θ =
H1

H0 − (ω/γ)
. (3.12)

Using this method, the resonance condition can be met by either sweeping the holding field or
the frequency of the RF field. In E02-013, the holding field is linearly swept from about 25 to 32 G
using an RF frequency of 91 kHz and RF field of about 90 mG.

The strength of the signal from the induction in the pickup coils due to the rotating spins is
dependent on several factors

SNMR = P · n3He · Φ · µ3He · Celectric (3.13)

where P is the polarization of the target, n3He is the density in the 3He cell, Φ is the flux of the
signal through the coils, µ3He is the magnetic moment of the 3He nuclei, and Celectric is a constant
dependent upon the electronics and coils used to measure the signal.

Due to the fact that the spins will change direction with the field, a sweep of the holding field
is done by moving past the resonance and then back again, moving to the original holding field
position (a “double sweep”). In the case that it is desired to have the spins of the 3He nuclei flipped
to the opposite direction, a single sweep may be performed (that is, leaving the holding field on the
“other side” of the resonance), as was done periodically during the experiment. This change also
required a change in the direction of polarization of the laser light to maintain the pumping process.
To completely destroy the polarization, the holding field may be left at the resonance condition.

When performing an NMR measurement small depolarizations will occur. These were measured
to be on the order of 1%, but are considered to be minimally invasive.
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EPR

EPR, electron paramagnetic resonance, measures the shift in electron energy levels when in a mag-
netic field (the Zeeman effect). For E02-013 this was measured in the electrons of the K atoms.
While there are several magnetic contributions to the energy levels, such as the holding field and a
shift due to the spin exchange mechanism, a small and measurable contribution will result from the
polarization of the 3He nuclei.

By performing a measurement of the shifts with opposite target polarizations, we can isolate the
shift due to the nuclei polarization away from other contributions. AFP provides a useful method
to change the direction of the spin of the nuclei while causing only small amounts of depolarization.
In the EPR measurement however, the frequency of the applied field is varied to achieve the flip
while the holding field is kept constant (in NMR we sweep the holding field using a constant applied
field frequency). This is due to the fact that holding field, which contribute the splitting in the EPR
measurements must be kept constant to successfully isolate the small shift due to the field from our
nuclei.

By sweeping through an electromagnetic frequency range near the energy splitting of about
58 kHz, a resonance can be detected when this frequency is exactly the splitting. By determining
the shift when the spins are aligned or anti-aligned with the holding field, the shift due to 3He
polarization can be isolated:

∆ν+ = ∆ν3He + ∆νB0 + ∆νother (3.14)
∆ν− = −∆ν3He + ∆νB0 + ∆νother (3.15)

2∆ν3He = ∆ν+ −∆ν− (3.16)

where ∆ν3He is the splitting contribution from the polarization of 3He, ∆νB0 is the contribution
from the holding field, and ∆νother is the sum of contributions from all other effects. The frequency
splitting can then be related to the polarization by [54]

∆ν3He =
dνEPR(F,M)

dB
Cn3Heµ3HeP (3.17)

where ∆ν3He is the signal shift, dνEPR(F,M)
dB is obtained by other experiments and is available in

the literature, and C is a dimensionless quantity that depends on the shape of the sample. For a
spherical cell

∆ν3He =
8π
3
dνEPR(F,M)

dB
κ0µ3HeP (3.18)

where κ0 is a constant that must be determined experimentally and is dependent on temperature [55].
As it only varies in the EPR signal, it can be mapped out by performing repeated NMR and
EPR measurements at various pumping chamber temperatures. ∆ν3He for a polarization of 52%
corresponds to about 16 MHz.

As a side note, the holding field (assuming other effects are small), can also be determined by
the sum

∆νB0 =
∆ν+ + ∆ν−

2
(3.19)

where

B0 = −h∆νB0

µB
(3.20)

h is Planck’s constant, and µB is the Bohr magneton.
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Figure 3.8: 3He target for E02-013 [56].

Target Setup

The target for E02-013 was housed in an iron box which featured all the necessary equipment to
provide a holding field, measure the polarization through EPR and NMR techniques, polarize the
target, and provide other targets relevant to the experiment.

The target itself was constructed from hand-blown glass and featured two chambers (Fig. 3.8).
The upper, spherical chamber, known as the pumping chamber, is the region where the circularly
polarized laser light is focused and polarization occurs. It has a diameter of approximately 3.5 in.
This chamber must be kept at a temperature of approximately 240◦C to maintain a gaseous state
of the alkali metals which was achieved by placing the pumping chamber inside an oven. The lower
chamber is roughly cylindrical and is approximately 40 cm long. This is the target chamber where
the beam passes and scattering occurs.

Several sets of coils were present around the target, (Fig. 3.10). The first set provides a holding
field of approximately 25 G. A second set was introduced to drive an RF signal transverse to the
holding field for NMR and EPR measurements. The two remaining sets of coils, called pickup coils,
were used to measure the NMR signals (Fig. 3.9) and to excite the EPR transition.

All of these components are housed within an iron target box with a remotely controllable
mechanical target ladder which allows for different targets to be put into the beamline. These
include the empty glass reference cell, which can be filled with nitrogen, hydrogen gas, or evacuated
and the carbon foil target of six carbon foils and one BeO foil, separated at known intervals.

3.3.4 Neutron Arm

The neutron arm is a relatively simple detector in concept. To detect recoiling nucleons resulting
from a quasielastic collision between the electron beam and our 3He target, a large wall of scintillator
is employed. This acts as a crude sort of hadronic calorimeter. Placing lead and iron plates (known
as converter plates) in between many layers of scintillator enhances the possibility of measuring
a hadronic shower caused by nucleons regardless of charge (Fig. 3.11). The desired information
we wish to extract from this detector is to identify if the particle is charged associated with the
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Figure 3.9: Position of the pickup coils relative to the target [57].

Figure 3.10: Conceptual position of holding field relative to target and beam [58]. Top down view.
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cluster, the direction of the momentum, determined by the position of the hit, and magnitude of the
momentum through time of flight.

The charge may be determined by measuring a scintillator signal before any type of nuclear
interaction can take place (or at least in an attempt at minimal interaction), Fig. 3.12. To achieve
this, two layers of scintillator, called the veto layers, are placed before any of the converter plates.
Any signals in these planes are associated with signals behind the converter layers to identify charge.
If there is a signal, we say that the particle was charged, otherwise a neutral particle is assumed.
Care must be taken in the analysis to account for dead times and efficiencies of the detectors. For
example, some veto signals may be masked by dead times producing false neutron identifications.

There were two main considerations taken in the design of this detector. As the electronics for
the neutron arm are of finite timing resolution and the momentum is determined through time of
flight, the distance between the target and neutron arm determines the overall resolution of the
momentum, as given in the equation

δp =
∣∣∣∣mcβ2

l

[
1

(1− β2)3/2

]∣∣∣∣ δt (3.21)

where δp is the neutron momentum resolution, δt is the time of flight resolution, c is the speed of
light, l is the flight distance, m is the mass of the particle, and β = l/(ct). Clearly, maximizing the
distance is crucial for a given β, which is determined by the kinematics. However, the overall active
area of the detector must match that of the electron spectrometer to ensure coincidence. For larger
areas, this can become prohibitive in both structural design and cost. By choosing l ≈ 10 m and
the active area of approximately 8 m2, we achieve a good balance between the two. For the most
restrictive kinematic of 3.5 GeV2, we have a β = 0.95. Given a RMS timing resolution of 300 ps
defined by the timing resolution of the electronics and the quality of timing calibration between
scintillator bars, we expect to have a momentum resolution of approximately 200 MeV/c.

The neutron arm has dimensions of width, depth, and height of 4.2 × 2.0 × 6.2 m3, which
has an aspect ratio designed to match that of the BigBite spectrometer. When placed 8 m from
the target it subtends approximately 100 msr. Each scintillator bar is connected to at least one
photomultiplier tube (PMT), which is in turn connected to an analog-to-digital converter (ADC)
to provide information about the amplitude of the signal present in the scintillator. A copy of the
signal is also sent to a discriminator and then a time-to-digital converter (TDC) to provide timing
information. When a PMT is connected to each end of the scintillator, the difference between the
two times recorded can provide information of where along the bar the signal originated.

Structurally, the neutron arm is composed of two veto layers and seven scintillator layers. The
veto layers consist of two scintillator bars per horizontal row, each with a photomultiplier tube on the
end. Each bar on one side has dimensions 11.0×70.0×2.0 cm3 (veto short) and 11.0×110.0×2.0 cm3

(veto long) on the other. Each veto plane consists of 48 rows which are offset between each other by
5.1 cm. Because each row is physically separated into left and right segments, the time difference
between the left and right PMT cannot be used to reconstruct the position along the bar of the hit,
as is done with the other neutron arm layers.

Planes 1-4 of the neutron arm are comprised mainly of “CMU” scintillator bars (as they were
provided by Carnegie Mellon University). Each bar has dimension 15.0 × 180.0 × 5.0 cm3. Planes
1 and 3 also contain four and five “Glasgow” bars of dimension 20.0× 180.0× 10.0 cm3 located at
the top of the planes. Planes 5-7 contain 40 “UVA” bars of dimension 10.0× 180.0× 10.0 cm3 with
5 Glasgow bars at the top.

Additionally, four vertical “marker counters” were also employed to aid in calibration of the
horizontal positions of each bar. Each counter consisted of plastic scintillator of dimension 2.54 ×
2.54× 304.8 cm3. These ran vertically from the top to bottom of the neutron arm, perpendicular to
the direction of the other scintillator bars, spanning the entire height.

The readout signal for the neutron arm electronics is formed using the sum of the amplitudes of
bars reaching some threshold value which is then generated by the trigger supervisor. These sums
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Figure 3.11: Cross section of the neutron arm, showing the layers of scintillator, converter plates,
and veto layers. Bars of the same color are included in the same sum to form the neutron arm
trigger [59]. White bars are not connected to any sum.
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Figure 3.12: Interaction of charged and uncharged particles in the neutron arm.

are generated by a sum over either left or right PMTs across a group of bars. These groups are
shown by bars of the same color in Fig. 3.11. A diagram of the electronics for these sums can be
found in Fig. 3.13.

Calibration of the timing of all the scintillators is done by using the known time of flights from
the elastic scattering of protons in a H2 target and from quasielastic scattering from the 3He target.

3.3.5 BigBite Spectrometer

The BigBite spectrometer represents the electron arm of the coincidence measurement. It is designed
as a high-resolution spectrometer with a field integral using high-resolution drift chambers to provide
electron track reconstruction. Its goal is to measure the direction and momentum of the electron as
it leaves the target. This is done by having the electron first pass through a magnetic field where it
will deflect some amount based upon its momentum, the depth of the field, and the strength of the
field. After deflection the path of the electron is measured by a set of multiple wire drift chambers
which provide high-resolution hit-based tracking. Once the path is known, the momentum and
direction of the electron as it left the target can be inferred.

BigBite itself is a large angular-and momentum-acceptance spectrometer, subtending for this
experiment approximately 76 msr and accepting electrons of momenta from 0.6-1.8 GeV. It is
capable of reconstructing momenta with a resolution of approximately σδp/p = 1%. It consists of a
large iron dipole magnet capable of field integrals of about to 1.0 T ·m. The opening at the front
face of this magnet is 0.95 m× 0.25 m and sits approximately 1.15 m from the target.

The detector package for this experiment was newly constructed. It consists of three multiple
wire drift chambers, a layer of scintillator, and two lead-glass calorimeters, known as the shower and
preshower, Fig. 3.14.

Coordinate Systems

There are three different coordinate systems used in reference to the BigBite spectrometer. The
standard lab coordinate system, the target coordinate system, and the detector coordinate system.

The lab coordinate system or hall coordinate system has an origin at the center of the target,
y goes against gravity (“up”), z is in the nominal direction of the beam, and x is to the left when
looking down the beam.

The target coordinate system has the origin at the intersection of the BigBite central ray with
the lab z axis, x goes with gravity (“down”), z is parallel to the ground to point along the BigBite
central ray, and y forms a right handed coordinate system.

The detector coordinate system origin is specified by the center of the first plane of the drift
chambers. The x axis is perpendicular to the direction of the wires in the X wire plane and resides
in that plane. Positive x is in the magnetic dispersion direction. z is in the nominal direction of
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Figure 3.13: Diagram of the electronics used for neutron arm sums that form the trigger [60].
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Figure 3.14: The BigBite Spectrometer [61].
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Figure 3.15: Wire orientation relative to detector coordinate axes.

particles perpendicular to the first drift chamber plane. It is therefore at an angle with the lab x− z
plane equal to the pitch of the drift chamber stack (approximately 10◦). The projection of zdet into
the lab x− z plane is at an angle with the zLAB axis equal to the central angle of the spectrometer.
y is defined such that a right-handed coordinate system is formed. This is described in Fig. 3.15,
looking down z.

Optics

The purpose of the spectrometer is to measure the momentum of a charged particle scattered from
the target. To do this, one must have an understanding of how the particle trajectory depends on
the magnetic field and how that trajectory relates to what is measured in the drift chambers. In
this section we will discuss the method of determining the momentum assuming that tracks have
already been found.

Given a track in the chambers, we assume an effective bend plane model, represented in Fig. 3.16,
where all interaction in the magnet is treated as occurring at the magnetic mid-plane. The track
reconstructed in the chambers, or “back track” is taken to be the track after deflection. Making the
assumption that there is no dispersion in the ydet direction and that the particle originated along
the electron beam, we can reconstruct the “front track” or the track before it entered the magnet
as it was leaving the target.

This is done by first interpolating the back track to the bend plane, which uniquely defines a
point on the plane. With our assumptions that dispersion only occurs in the xdet direction, the
family of potential front tracks defines a plane. The intersection of this plane with the beam then
defines a unique point on the beam which we take to be our naive vertex reconstruction. Corrections,
discussed below, are made to the vertex based on the reconstructed back track parameters. The
front track is then defined to be the vector from the corrected vertex to the point on the effective
bend plane where the back track made an intersection.

Several coordinates are defined which are useful in making corrections and calculations from the
optics. The track reconstructed in the drift chambers can be defined by four parameters in the
detector coordinate system: x and y, the xdet and ydet coordinates at the intersection of the track
with the plane zdet = 0. The two coordinates which describe the direction of the back track are x′
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Figure 3.16: The effective bending plane model (side view, not to scale). Axes are in target coordi-
nates.

and y′ (occasionally referred to as θtarg and φtarg, respectively) are defined as:

x′ =
dxdet

dzdet
(3.22)

y′ =
dydet

dzdet
. (3.23)

Two other useful coordinates are xbend and ybend, the xdet and ydet coordinates where the track
intersects the effective bend plane.

The corrections applied to the vertex position take the form

vz,LAB = c0v0 + cxx+ cx′x
′ + cyy + cy′y

′ + a(xbend, ybend) (3.24)

where vz,LAB is our z coordinate of the vertex in the lab coordinate system, v0 is the naive vertex
position determined as above. In the extreme vertical positions of the magnet, or the highest and
lowest xbend, corrections must be made which deviate from outside of this model. The a term in
Eq. 3.24 is introduced to account for these corrections. These corrections are found by fitting to
data taken on carbon foils of a known position.

The model used to reconstruct momentum gets its leading term from a small-angle approximation
of a charged particle moving through a uniform magnetic field. Empirical first order corrections are
made based on various track variables. The formula currently used is

p =
c0(xbend, ybend) + cxxbend

ϑdef
+ cϑϑtarg + cyydet + cϕy

′
det + a (3.25)
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where xbend is the x coordinate of the intersection of the bending plane in detector coordinates, ϑtarg

is the out of plane angle (“theta target” in Fig. 3.16), and ydet and y′det are the two respective track
coordinates in the detector coordinate system. ϑdef is the deflection angle made by the particle in
the field defined as:

ϑdef = cos−1

(
~xfront · ~xback

|~xfront||~xback|

)
(3.26)

where ~xfront is the vector representing the track as it leaves the target and ~xback is the vector
representing the track as it passes through the drift chambers. The leading term is based upon the
relationship of momenta and deflection angles for small angle scattering

p ∝
∫
B⊥dl

θ
(3.27)

where
∫
B⊥dl is the field integral for the path of the electron and θ is the deflection angle.

The purpose of the xbend term is primarily to correct for the differing field integral in the magnetic
field volume due to the trapezoidal shape. The remaining detector plane variables are first order
corrections to this model. Due to deviations from this model in the extreme vertical positions of the
magnet, c0 is allowed to vary over xbend and ybend in these regions.

To provide a consistent model over a wide range of momenta, the a term in Eq. 3.25 gives a degree
of freedom to allow for a linear transformation in p. This transformation is necessary to develop a
model that provides accurate reconstruction for all of our kinematics at a single spectrometer angle.
(See Section 4.4.5)

All calibrations of these coefficients are determined by selecting elastic events on H2, where the
momentum of the particle can be determined solely from the scattering angle, θe′ , defined as the
polar angle of the front track with the beam.

Multiple Wire Drift Chambers

The drift chambers of the spectrometer consist of three separate horizontal drift chambers spaced
approximately 35 cm apart. The drift chambers are the first set of detectors after the magnet and are
the highest-spacial-resolution detectors in the detector stack. The approximate configuration of the
three chambers is found in Table 3.3. These chambers were newly constructed for this experiment
by the University of Virginia [62].

To achieve the ability to resolve tracks in three dimensions, three different types of planes are
used, called U, X, and V. All three plane types are designed to reside in a plane of constant zdet. X
wires run parallel to the ydet axis and U and V wires are ∓30◦ to that axis (Fig. 3.15). In each plane,
the sense wires are spaced 1 cm apart, with a field-shaping wire in between each pair. Planes of the
same type, when next to each other, are staggered 0.5 cm relative to one another. Cathode planes
(held at the same voltage as the field wires) are located 3 mm above and below each wire plane.
This configuration provides a roughly symmetric potential around the sense wires (Fig. 3.17). The
chambers are filled with a 50% argon-50% ethane gas mixture bubbled through 0◦ C ethyl alcohol
and are kept slightly above atmospheric pressure.

The sense wires detect the electrons released when a charged particle ionizes the gas as it passes
through the chamber. Since the wires are held at some potential difference, the liberated charges drift
towards the wires, eventually causing ionization themselves and forming a small cascade, generating
an electrical signal which is then sent to an amplifier/discriminator and a pulse is sent to a time-
to-digital converter. The amount of time it takes to drift from the track to the wire can then be
converted into a distance.

During the experiment different voltages were used for each of the planes, shown in Table 3.4.
These voltages were chosen such that the per-plane efficiencies were at approximately 85%, a trade
off between maximizing the number of reconstructing tracks and extending the usable lifetime of the
drift chambers. Voltages on the chambers were different due to different amplifier cards placed on
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Figure 3.17: Drift chamber equipotential lines around a sense wire generated with GARFIELD.

the chambers. Chamber 1 used a newer set of cards, which were more senstive [63]. Furthermore,
these voltages may not reflect the effective voltage inside the chamber due to current drain effects.
Efficiencies were measured from tracking results by determining how frequently a wire was not used
in a reconstruction in the case a track passed through the cell containing the wire.

BigBite Scintillator

A set of 13 scintillator paddles resides between the preshower and shower providing timing infor-
mation. Each paddle is connected to two photomultiplier tubes, one on each end. The signal from
each photomultiplier tube is sent to a an amplifier and copy of the signal is sent to an ADC, which
integrates the amplitude of the signal over time, and a discriminator which sends a logical pulse to a
TDC to provide timing information. This timing, with a resolution of about 300 ps, when associated
with a track can then be used to reconstruct the time of the electron at a drift chamber plane. Since
the scintillator plane resides about 1.0 m from the first plane, timing corrections (assuming a particle
traveling at the speed of light) to the drift times can be up to a few nanoseconds, which can be seen
in tracking.

Furthermore, this timing is used in reference to the neutron arm. By calculating the difference
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Chamber Plane Number of Wires Wire Spacing Height Width zdet

Pattern Per Plane (cm) (m) (m) (m)
1 UUXXVV 142 1.0 1.40 0.35 0.00
2 UXV 200 1.0 2.00 0.50 0.36
3 UUXXVV 200 1.0 2.00 0.50 0.71

Table 3.3: BigBite drift chamber configuration.

Chamber Voltage (V)
1 -1630
2 -1770
3 -1785

Table 3.4: BigBite drift chamber voltages.

between the time of a hit in the scintillator and the time of the corresponding hit in the neutron arm,
given the path length of the electron, one can calculate the time of flight for the recoiling nucleon.

Preshower and Shower

The front face shower and preshower are located behind the drift chambers at approximately
zdet =1.0 m and zdet =0.85 m, respectively. The preshower consists of 54 lead glass blocks which
are 35 cm wide and 8.5 cm tall set in 2 columns and 27 rows. The shower consists of lead glass
blocks 189 8.5 cm× 8.5 cm set in 7 columns and 27 rows (Fig. 3.18). A charged particle entering a
block will produce an electromagnetic shower where the Cerenkov light from the shower is collected
by a photomultiplier tube. The PMT signal is sent to an amplifier and one copy is sent to an ADC
to integrate the signal amplitude and another copy is sent to a set of summing modules. A copy
of the summed signals is sent to an ADC and another to a discriminator which produces a logical
pulse sent to a TDC. The sum of the amplitudes generated by the shower is approximately linearly
dependent upon the energy of the particle. The combination of the shower and preshower gives
reconstructed energy with resolution σdE/E ≈10%.

The shower and preshower system together acts as a calorimeter and also as a robust method
to identify particle types. We can restrict ourselves to specific signatures in the preshower which
are likely to identify an electron event. xdet and ydet position information is also obtained from the
block that produced a signal in the shower. While this position resolution is quite poor (8.5 cm in
both directions) this can be used to straightforwardly fix a point of our track. Exploiting the fact
that there is a known target image for a range of momentum, we can then narrow the volume in
which it is necessary to search for an electron track in the chambers by a factor of 10.

3.3.6 Data Acquisition

Data acquisition for E02-013 involves several systems. They include the EPICS system, which gener-
ally provides slow, real-time information about the accelerator and the target, the trigger supervisor
and read-out controllers (ROCs), which handle the event-by-event retrieval of data recorded from
the detectors, and the scalers, which provide information such as rates, as well as information on
current and charge accumulation.

CODA, the CEBAF on-line data acquisition system, is the standard data acquisition system
designed for use at Jefferson Lab [65]. It provides software tools for monitoring, accumulating,
recording, and decoding data taken during experiments. This is done by providing a common
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Figure 3.18: The shower and preshower configuration [64].
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interface to manage a set of read-out controllers, which store and retrieve data from individual
modules, such as TDCs and ADCs.

CODA for E02-013 was used to accumulate data for most aspects of the experiment, except for
some target information, such as the polarization, which was recorded separately. This includes all
data from the detectors through read-out controllers, scaler data, and EPICS data.

EPICS

The Experimental Physics and Industrial Control System (EPICS) provides information about the
accelerator and the hall conditions. It is a set of software tools and applications designed to control
and operate large devices, such as particle accelerators and telescopes. It provides a method to
gather information from a large variety of subsystems, often varying greatly in design, in a concise
and standardized way.

For E02-013, EPICS provides information about the beam current, beam energy, beam position,
and the state of a half wave plate at the injector, which affects our beam helicity. This information
is stored in the CODA data stream. Its design is to provide “soft” real time information, that
is, information which is real time data but is generally recorded over time-points on the order of
seconds. While this provides information over “slow” variables that do not change frequently, such
as the beam energy, other means must be used to gather information that is specific to individual
events.

BigBite

BigBite has several components providing data. TDC information is recorded from each wire on the
three multiple wire drift chambers and TDC and ADC information are recorded from the scintillators,
preshower sums, and shower sums, and ADC information alone from the individual shower and
preshower PMTs.

Each drift chamber wire is connected to an amplifier/discriminator card which is in turn con-
nected to a set of LeCroy 1877 multihit time-to-digital converters running in common-stop mode.
These 96-channel TDCs feature a timing resolution of 500 ps and a multiple event buffer of 7 events.
Each TDC records approximately 1.5 µs of time information for each event.

These TDCs are located in a set of FASTBUS crates. Their readout is controlled by the overall
BigBite trigger. Data recording is handled by CODA.

The scintillator signal is sent to a channel of a LeCroy 1881 ADC and to a discriminator. The
discriminator output is then sent to a CAEN 775 TDC. The 1881 is located in a FASTBUS crate
while the TDC is located in a separate VME crate. The shower and preshower individual PMT
amplitudes and sums of the amplitudes are sent to the same 1881 ADC as the scintillator. A copy
of each of the sums is also sent to a discriminator and then to a LeCroy 1877 TDC located in the
same FASTBUS crate as the 1881 ADC.

The signal for BigBite arm trigger is formed by the amplitude sums over a set of overlapping
blocks of both the shower and preshower set at some predefined threshold. A diagram of the
electronics can be found in Fig. 3.19.

Neutron Arm

The neutron arm electronics record information collected by PMTs attached to the large array of
scintillators. Each of these PMTs has a signal that is sent to an amplifier and a copy is sent to an
ADC and another is sent to a discriminator which produces a logic pulse which is sent to a TDC.
Furthermore, a set of summed signals is produced that is used in the trigger logic.

Several varieties of TDC were used for this apparatus. For the veto detectors and sums, LeCroy
1877 TDCs, identical to those used for the BigBite drift chambers, were employed. For the main
scintillator planes F1 multihit TDCs were used.
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Figure 3.19: Diagram of the BigBite shower and preshower summing modules [66].
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Trigger Type Description
1 Neutron Arm Trigger
2 BigBite Trigger
3 Neutron Arm/BigBite Coincidence
7 8.5 Hz Pulser
8 105 kHz Helicity Synchronization Signal
9 30 Hz Helicity Quad Duration Signal

Table 3.5: E02-013 trigger types.

The F1 TDC is a common-stop multihit TDC developed by the Jefferson Lab electronics group.
It features a timing resolution of approximately 120 ps. This higher resolution TDC was chosen due
to the necessity of determining the neutron momentum accurately from time of flight.

LeCroy 1881 ADCs were used for measuring amplitudes produced by the PMTs. The 1881
features 64 channels per module, has a short conversion time of 12 µs, and can store up to 64 events
in its event buffer.

Triggers

Given a set of detector signals, the “trigger supervisor” determines if a readout of event data should
occur from the detector electronics. A number of different trigger conditions were used in E02-013,
given in Table 3.5.

A copy of each trigger signal is also sent to a set of general scalers and helicity gated scalers.
The trigger supervisor is also set with a prescale factor for each trigger type, which determines how
frequently to initiate a readout for each trigger signal. For example, for a trigger with a prescale
factor of 1000, only 1 of 1000 of these triggers will actually cause a readout and store the raw data.
This is useful for events that occur very frequently, but are not desirable to record in every instance
due to storage space and readout time concerns, such as the neutron arm triggers in the absence of
a BigBite trigger.

A trigger based on the coincidence between BigBite and the neutron arm requires some mecha-
nism to determine if the triggers from the two arms overlap sufficiently to be a coincidence event.
This mechanism must take three considerations into account for this experiment. First, the times
between the BigBite and neutron arm signals may vary due to differences in time of flight in both
arms and the window for coincidence must be sufficiently wide. Second, the window must not be
too large as false coincidences will be recorded when caused by random background. Third, a back-
ground event may cause an early trigger in the neutron arm, but a coincidence may still occur in the
overlapping timing window. A diagram of the electronics to generate a trigger and readout signals
is shown in Fig. 3.20.

To form the T3 coincidence signal, the T1 (neutron arm) trigger is approximately 40 ns long and
the T2 (BigBite) trigger is approximately 100 ns long, as shown in Fig. 3.21. The leading edge of
the logical AND between these two signals defines the start of the T3 (coincidence) signal, which is
approximately 40 ns long. The electronics are designed such that nominally, the T1 signal arrives
approximately 40 ns after the T2 signal. This is achieved by making signal timing adjustments for
the T1 signal for each kinematic to account for different nominal times of flight.

At the start of the T3 signal, a signal called level 1 accept (L1A) is also generated. This signal
is sent to a LeCroy 1875 TDC, which has a common stop given by the BigBite readout signal (the
signal fed to the TDC common stops and ADC gates). The time produced by this TDC channel
is then the difference between the BigBite readout and the L1A, referred to in the experiment as
ctimeL1A. The L1A is also given to the neutron arm electronics as the readout signal. A separate
module, called the retiming module, handles the generation of the BigBite readout signal. This

43



module produces a signal a fixed amount of time after the T2 trigger. However, in the case where
no T2 trigger is present (such as with a single-arm T1 event), a signal is generated a fixed amount
of time after the L1A signal. See Fig. 3.21.

To determine if a T2 signal is present for coincidence, a BigBite signal is required within some
time window smaller than the 100 ns window. This presents the possibility of a real coincidence event
occurring, but the T2 signal retiming failing as the edge is outside the smaller retiming window.
While the electronics have been set up such that under normal circumstances the T1 signal arrives
nominally 40 ns after the T2 signal, the presence of background events may trigger the neutron arm
early. This may result in a L1A signal matched to the leading edge of the T2 signal (Fig. 3.22).

Time of Flight Determination

A simplified timing diagram is presented in Fig. 3.23. We are most interested in calculating the time
of flight, ttof , using the TDC electronics readouts values. We have several such variables read out
from TDCs for any given event. Those of interest for the time of flight calculation are, tTDC

BB,hit,L and
tTDC
BB,hit,R, the left and right PMT TDC value of the scintillator hit time, tTDC

clus,L and tTDC
clus,R, the left

and right PMT TDC value of the neutron arm bar containing a hit, and tTDC
L1A , the TDC value of

the difference between the BigBite readout signal and the L1A trigger.
Each TDC time read out is the time difference measured between the signal fed into the TDC,

such as from the discriminator attached to a PMT connected to an end of a scintillator bar, and
some stop signal. For the BigBite scintillator, the stop is generated from the retiming modules and
for the neutron arm, from the level 1 accept, or L1A signal from the trigger supervisor. So,

tTDC = tread − tstop. (3.28)

The left and right values for the PMT times are generated by the light propagation from a single
hit through the scintillator reaching each end, shown in Fig. 3.24. The signal at each end then
produces a voltage signal from the PMT, which is sent to a discriminator. If the signal is above
threshold, then a logic signal is sent out to the TDC. The discriminator may produce a small time
delay, which varies on the order of hundreds of ps and as a function of the signal amplitude. This is
due to the shape of the pulse (in time) reaching the threshold value at different points of the pulse.
It is referred to as a “time-walk” effect and is denoted in the figure as ttw.

For the BigBite scintillator hit and neutron arm cluster, we can reconstruct the time of the
scintillator interaction, up to a constant, by taking the average of the left and right signals. This
removes any dependence on horizontal hit position, or y, as shown in the figure. We define this
averaged time, tTDC,avg as

tTDC,avg =
tTDC
L + tTDC

R

2
=
treadL + treadR

2
− tstop

= thit +
tL,tw + tR,tw + tL,0 + tR,0

2
+

d

2cs
− tstop

= thit +
tL,tw + tR,tw

2
+ t0,bar − tstop (3.29)

where the tL,0 and tR,0 are values are related to the cable lengths from the PMT to the TDC
input, which are in general different for each PMT. tstop is the time of the stop signal input to the
TDC. We have also defined a bar-dependent constant, t0,bar

t0,bar =
tL,0 + tR,0

2
+

d

2cs
. (3.30)

For the neutron arm the stop is tL1A + a, the level 1 accept time plus a constant for cable length
propagation. For the BigBite scintillator this is tRT, the time the retiming module issues a signal
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calculated on the inputs of the level 1 accept and the BigBite trigger. All of the constants, which
are bar dependent and do not vary on any other parameters, are summed into the constant t0,bar

which must ultimately be calculated in our calibration process. The hit time in the scintillator is
then

thit = tTDC,avg − tL,tw + tR,tw

2
− t0,bar + tstop. (3.31)

To find the time of flight of the nucleon from the target, ttof , from the hits in the BigBite
scintillator and the neutron arm cluster, we relate them to the TDC read values

ttof = tclus − tevt (3.32)
tBB,hit = te + tevt (3.33)
tTDC
L1A = tL1A − tRT + a (3.34)

where tevt is the time of the scattering event, te is the time of flight of the electron from the target
to the BigBite scintillator.

Taking the sum of Eq. 3.33 and Eq. 3.32, substituting in Eq. 3.31 for tBB,hit and tclus, and solving
for ttof we have

ttof =
(
tTDC,avg
clus − tclus,L,tw + tclus,R,tw

2
− t0,clus,bar + tL1A

)
−
(
tTDC,avg
BB,hit − tBB,hit,L,tw + tBB,hit,R,tw

2
− t0,BB,hit,bar + tRT

)
+ te. (3.35)

Using Eq. 3.34 to relate tRT and tL1A, we finally get

ttof = (tTDC,avg
clus − tclus,L,tw + tclus,R,tw

2
− t0,clus,bar)

−(tTDC,avg
BB,hit − tBB,hit,L,tw + tBB,hit,R,tw

2
− t0,BB,hit,bar) + te + tTDC

L1A − a. (3.36)

For convenience, we rewrite this using a corrected TDC time, tTDC,corr,

tTDC,corr = tTDC,avg − tL,tw + tR,tw

2
− t0,bar. (3.37)

The time of flight is then simply

ttof = tTDC,corr
clus − tTDC,corr

BB,hit + tTDC
L1A + te − a. (3.38)

From this it is apparent that the time of flight is dependent on the three TDC times, a set of
constants (which are bar dependent), the timewalk effects for each PMT, and the time of flight of
the scattered electron from the target to scintillator planes. It is worth noting that regardless of
how the L1A time is determined and with which signal the retiming is done, there is no effect on
the time of flight, provided that the electronics chosen are capable of recording the more extreme
time differences presented in this case.

For future notation, we will use tclus and tBB,s for the the TDC corrected times, tTDC,corr.

Scalers

Scalers were employed to monitor several portions of the experiment. For each scaler signal, an
additional helicity-gated scaler was employed to monitor asymmetries.

Along with trigger rates, each of the six BCMs, three different gains on two different monitors,
were also employed. A voltage to frequency converter was used to change each signal generated by
the BCMs into a scaler input.
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3.4 Analysis Software

Due to the scope of the data involved, a large amount of software is required to analyze the raw data
produced by the detectors. While most of the detectors produced a relatively simple signal, such as
an amplitude or hit time, certain detectors require a significant amount of analysis. For E02-013,
the most effort was placed in producing high-resolution tracks from a set of hits in the multiple wire
drift chambers in BigBite and analyzing clusters of hits in the neutron arm.

3.4.1 ROOT/Hall A Analyzer

ROOT is a software package developed by CERN designed to aid in the organization, analysis,
and representation of data [67]. It is distributed freely under the GNU lesser general public license
(LGPL) and GPL. Among its features, it includes well documented facilities to quickly store, retrieve,
and manipulate large arrays of data, produce histograms and graphs, and provide a number of
analysis facilities such as fitting data to curves. It also provides methods to store and retrieve
abstract data types to and from files allowing for simplified development in complex data situations.

ROOT is built around CINT, a C programming language interpreter that also allows for dy-
namic library loading. This facility allows for rapid development of software around the C++
classes included with ROOT and gives the opportunity to include outside code away from the slower
interpreted environment.

The Hall A collaboration has developed an extension of ROOT called the Hall A ROOT/analyzer [68].
This package takes advantage of the features offered by ROOT and provides abstraction for describ-
ing various detector models as well as facilities for decoding raw data produced by CODA and
producing ROOT trees. Originally designed to provide an analysis framework for the Hall A high-
resolution spectrometers (HRS), this package was modified for use in E02-013 in a package called
the AGen library.

There were two software development efforts which are important to E02-013. These were the
development of software to analyze and organize data produced by the neutron arm and the tracking
and optics code in the BigBite drift chambers.

3.4.2 Neutron Arm

The neutron arm consists of over 600 photomultiplier tubes, each connected to a block of scintillator.
For each event, scattering of incoming hadrons can cause shower induced signals which may then
span across several other scintillator blocks, leading to somewhat complex event types. Additional
concerns arise from interactions from accidental background events, which are indistinguishable from
other events.

To handle this detector, software had to be developed to take the individual signals in each
photomultiplier tube and combine them appropriately to attempt to reconstruct each individual
interaction. These interactions are intended to span across several layers, so some type of clustering
of hits together must be used.

Coordinates are defined as the x axis running against gravity, z normal to each scintillator plane
in the nominal direction of recoiling nucleons, and y such that it forms a right handed coordinate
system. The x position of each hit is determined solely by the central vertical position of the
scintillator log. z is defined by the plane that the log resides in. Both of these must be found by
surveying relative to the experimental hall.

Raw Analysis

As described in Section 3.3.6, for each PMT signal one time is recorded in a TDC. This time is
subject to timewalk effects, which must be corrected for, similar to the corrections discussed in the
previous section. Furthermore, the amplitude measured by the PMTs are sent to a set of ADCs.
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The ADC value is assumed to be proportional to the amount of light collected, offset by a pedestal
value, Aped, which is constant for a given ADC channel. The pedestal-subtracted signal which we
say is proportional to the amount of light, A, can be written

A = AADC −Aped (3.39)

The value of the pedestal can be determined by examining sets of data where no amplitude is
expected. We will assume that all amplitudes have had the pedestal already subtracted.

Continuing the notation presented in Section 3.3.6, the left or right PMT time in the TDC is
given by

tTDC = thit + tprop − CAP + t0 − tL1A (3.40)

where thit is the time the hit occurred, with corrections for signal propagation time and timewalk
effects, tprop is the propagation time of light through the scintillator from the cluster to the PMT,
t0 is a constant related to the signal propagation time from the PMT to the TDC, A is the sum
produced by the ADCs, which is proportional to the integrated amplitude of the signal, and C and
P are constants calibrated for each PMT. tL1A is the time of the stop signal for the TDC electronics.
The amplitude term, CAP , is a model used to handle the time-walk effects.

By using the left and right PMT TDC time differences, the position along the bar where the
signal originated can be reconstructed. The propagation times for the left and right PMTs are
tprop,L = d/2−y

cs
and tprop,R = d/2+y

cs
, where y is the position along the scintillator log as was shown

in Fig. 3.24, d is the total length of the scintillator log, and cs is the effective speed of light in the
scintillator.

Ignoring time-walk effects, the horizontal, or y, position as measured by the scintillator log
relative to the equidistant point between the PMTs can be reconstructed by taking the difference
between the two times

y =
tTDC
L − tTDC

R

2cs
− tL,0 + tR,0

2cs
. (3.41)

This measurement requires knowledge of the effective speed of the light in the scintillator, cs, and
a constant related to the difference in the cable lengths from the PMTs to the TDC. For E02-013,
this was determined by using marker scintillators running parallel to the x axis at known positions,
described in Section 4.3.1.

The amplitude for each signal is subject to attenuation through the scintillator medium. This
attenuation can be modeled as an exponential decay dependent upon the y position of the hit

AL = AL,0e
d/2−y

Γ

AR = AR,0e
d/2+y

Γ (3.42)

where AL,0 and AR,0 are the raw amplitudes measured in the ADCs, Γ is the attenuation constant
for the scintillator, which has units of length and AL and AR are the amplitudes measured at the
PMTs.

For each event, several measurements from the PMTs are required to reconstruct a hit. However,
there is the possibility for the generated signals to be below threshold of the discriminators for the
PMTs, resulting in hits that are not recorded. These events are discarded and are not used in
analysis. In all events, ADC information is recorded as the gate for the ADCs is given by the
neutron arm trigger.

Cluster Finding

The interactions of the nucleons in the neutron arm frequently provide reconstructed hits across
several layers. Given a set of individual hits for an event, the analysis software attempts to find hits
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that were likely caused by a single particle and to combine them into a single object known as a
“cluster”. These clusters will then be used to identify coincidence events using BigBite.

The software first takes all combinations of left and right hits on a scintillator, and places a cut
upon the reconstructed horizontal y position, such that

|yhit| <
d

2
(3.43)

where d
2 is half the length of the scintillator bar. This ensures that the two hits used for this

reconstruction were likely from a particle passing through position y. Reconstructed hits that have
neighboring hits on adjacent scintillators in the same plane that are matched in time (within 10 ns)
are combined. Hits in neighboring scintillator planes of similar x positions (within 1.5 bar spacings)
and within 10 ns are also considered to be in the same cluster.

The time of flight and position for this cluster are determined by the hit closest to the front
(smallest z value) of the neutron arm. An amplitude-weighted position is used in the case of adjacent
multiple hits on the same plane by

xweighted =

∑
hits

Ahitxhit

Acluster
. (3.44)

3.4.3 Veto Matching

Matching clusters to veto hits is used to determine the charge of the particle which caused the
cluster. To determine a match between a veto hit and a given cluster, all veto hits are considered
and are compared by examining the difference in position and time. First, a veto hit on each plane
is sought to fit the requirement

|xclus − xveto − x0| < ∆x (3.45)

where xclus is the reconstructed x position of the cluster and xveto is the x position of the veto bar
that fired. x0 is a constant alignment offset that must be determined from the data. ∆x is on the
order of 30 cm.

The time of each veto hit is subject to propagation distortion due to the fact that we cannot
compare “left” and “right” hits on the same bar. However, attempts to correct this can be made
using knowledge from the y position of the cluster. The time difference between a veto hit and a
neutron arm hit is given by

∆t = tveto − tclus +
|yclus − y0|

cs
+ t0 (3.46)

where tveto is the TDC time read for the veto, tclus is the reconstructed, corrected cluster time, given
in Section 3.3.6, yclus is the reconstructed y position of the cluster. cs, y0, and t0 are constants to
be determined from the data.

There are three distinct possibilities to consider. If ∆t is within some reasonable time window
(the charged window), we consider that to be a charged hit. If there is a hit on the veto in a
given window before the start of the charged window and that hit is within the dead time for the
electronics, we consider the time to be unrecordable and we are blind to the charge. These events
must be discarded. If we find no hits in either of these regions then we consider the particle to have
been neutral. The size and placement of these windows must be determined from the data. See
Fig. 3.25.

If both planes are considered blind in the cluster timing region, the cluster is discarded. Other-
wise, if a veto hit is then found to match these criteria in either plane, a charged particle is assumed.
Finally, all other clusters are assigned a neutral charge.
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3.4.4 BigBite Tracking

The BigBite tracking code works mainly with the wire hits in the MWDCs, using the rest of the
detector set to help reduce noise and computation time. Noise becomes a significant factor in
doing tracking as additional hits that must be considered when fitting tracks contribute to the
computation time. The noise to signal ratio can be determined by examining the number of hits
above a background that is flat in time. It has been observed to be on the order of 10 for a production
environment. This presents a significant challenge to perform sufficiently efficient and fast tracking.

The purpose of the tracking code is to find straight lines by using signals from the BigBite
detector stack. Primarily, these signals come from the drift chambers, but information from the
shower, preshower, and scintillator is also used. By exploiting how the electron trajectories depend
on the magnetic field of BigBite and using the position given by the shower to fix one point of the
track, we can narrow volumes of interest in the spectrometer detectors down considerably. Then,
using a reduced set of hits in the drift chambers, we can then apply some algorithm to find the best
straight line representing the trajectory of our particle that caused the trigger.

The ultimate challenges of the tracking code are to:

1. Identify the subset of hits that represent our signal, eliminating noise as well as possible.

2. Identify the combination of hits which represents the trajectory of the track.

3. Identify which left/right configuration of the hits is the most likely configuration.

Once a track is found, using the knowledge that it originated from the electron beam and how
it travels through the magnetic field, we can then measure the momentum of the electron to an
accuracy of σ δp

p
≈ 1%.

General Algorithm

The general algorithm to find tracks is as follows:

• Decode

1. Identify hits in the drift chamber

2. Remove hits that are outside of a specific time window

• Coarse Process

1. Identify a cluster in the shower

2. Remove hits that are outside a volume between the magnetic target image and the shower
block

3. Find all valid combinations of wires across all active planes

4. Fit for straight trajectories for each hit combination using a minimum χ2 fit using only
the wire positions for each combination and save a subset which are potentially real tracks

BigBite Configuration for Gn
E

Distance from target to magnet face 1.09 m
Distance ztarg from target to drift chamber 1 center 2.25 m
Height difference (yLAB) from target to drift chamber 1 center 0.17 m
Detector stack pitch 10◦

Table 3.6: Nominal geometrical configuration of BigBite for E02-013.
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5. Tracks that are sufficiently similar are identified as the same track and the poor χ2

combinations are removed

• Fine Process

1. Find the associated scintillator hit from the coarse tracking and correct the drift time

2. For our coarse tracks, find the drift distance from each wire from the drift time

3. From the best combinations sorted by χ2 identify the proper left/right differentiation,
and refit the tracks using the drift distances

4. Tracks that are sufficiently similar are identified as the same track and the poor χ2

combinations are discarded

A set of timing window cuts are performed on all hits recorded in the TDCs to remove hits that
cannot be associated with the trigger. The width of these cuts are defined by the maximum drift
time, about 200 ns. In theory, the window is variable for each plane due to differing voltages across
chambers and thus different maximum drift times. However, examination of the drift time spectrum
proved the distributions widths were practically identical. Typically, this type of cut reduces the
number of hits to consider by about a factor of 10 for a production run.

Shower clusters are currently determined by identifying the shower block with the largest signal.
A more sophisticated method involving the weighted sums of the block positions will likely be
implemented in the future, but was not performed for this analysis. The block face normal to the
electron tracks is 8.5 cm× 8.5 cm, which is then the accuracy of the position reconstruction. After
the shower clusters are determined, a window around the cluster position and the target image is
used to define two ends of a volume. The target image is the result of track deflection in the magnet
and is spread out in the dispersive direction due to the range of possible momenta of the tracks
(Fig. 3.26 and Fig. 3.27). The projection of rectangular slices of the volume onto each plane defines
the area of valid wires to be considered in tracking, Fig. 3.28. If any portion of a wire with a recorded
hit enters in this area, that hit is considered valid and available to the tracking algorithm.

In effect, these cuts place a very coarse momentum cut on the data. To determine the proper
parameters for these cuts, rough analysis must be done on real or Monte Carlo data to look at the
wire distributions around some line drawn between the center of the target image and the cluster
center.

Valid Wire Combinations and χ2 Fitting

The determination of wire combinations that form a valid, straight track through the chambers
and then fitting them is one of the more difficult tasks for tracking. The tracking code developed
approaches the problem by finding all reasonable combinations and then finding the most likely
combinations based on the χ2 values from the fit. While this approach lacks any elegance, it has
the desirable feature of a high efficiency of finding a track.

A set of matrices is generated to be used to produce the four parameters necessary to describe a
track, x0, y0, x′, and y′. The goal of fitting is to find rλ, a column representation of the four track
variables and represents the minimum χ2 fit based upon the points di. We wish to find a matrix
Fλi such that

rλ = Fλidi. (3.47)

where di is the position in the coordinate system measured by the ith plane. For each plane, this is
the axis running perpendicular to the wires, e.g. for the X planes, this is directly the xdet coordinate.
These were originally defined in Section 3.3.5 and are x, y, x′, and y′, the (x, y) detector coordinate
at the first drift chamber plane and the two slopes. We adopt the convention that Greek indices run
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from 0 .. 4 and Roman indices run from 1 .. N where N is the number of planes to fit. Summation
over Greek indices is implied. χ2 is then

χ2 =
∑

i

1
σ2

i

(di − fi)2 (3.48)

where σi is the resolution of the ith plane and fi is the intercept of the track described by rλ in the
plane coordinate system of the ith plane. There is just a linear relationship between fi and rλ, so
we can define a matrix, Miλ

fi = Miλrλ (3.49)

where a summation over λ is implied. We wish to minimize χ2 with respect to the four track variables

∂χ2

∂rη
= 2

∑
i

1
σ2

i

(di −Miλrλ)Miη = 0 (3.50)

Let
αλη =

∑
i

1
σ2

i

MiλMiη. (3.51)

Then, multiplying both sides by rη and implicitly summing over η and γ

αληrη =
∑

i

1
σ2

i

MiλMiγrγ . (3.52)

Using Eq. 3.50,

αληrη =
∑

i

di

σi

Miλ

σi
=
∑

i

MT
λi

σi

di

σi
. (3.53)

Since α is a square matrix, if its determinant is non-zero, we can invert it

rη = α−1
ηγ

∑
i

MT
γi

σi

di

σi
. (3.54)

We now have a matrix that, when multiplied by the column vector, di, gives us our minimum χ2

track, so

Fηi = α−1
ηγ

MT
γi

σ2
i

. (3.55)

Since the drift distance, di, is measured in our drift chambers, this gives a simple way to quickly
calculate a track given a set of points across several planes. There are a few interesting things to
note: first, the matrix M is easy to calculate, as it is just a rotation given x and y projected onto a
plane (for example, for an X plane this is trivially fX = x0 + x′zX).

All of these fitting matrices for each potential plane combination are calculated each time the
code is initiated (typically once for a given replay). The amount of time necessary for the calculation
is on the order of one second on modern computers and is not a concern. The calculation of the
intermediate matrix, α, allows us to identify which plane combinations can be used to fit a track.

If the number of planes to fit to is less than 4, α is singular. Therefore, it is necessary (but
not sufficient) to have at least four planes to reconstruct a track. If the matrix α is singular, we
cannot invert it and therefore we cannot fit a track. For example, this occurs in the cases where the
planes used do not constrain the problem appropriately to find a unique track. For example, if a fit
is attempted using only X planes, we do not have any information on the y positions and therefore
cannot generate a track with y information. In the generation of the these matrices we immediately
find which combinations of planes can be used in reconstruction and which combinations cannot.
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Left/Right Differentiation

The need for left-right differentiation comes from our ignorance on the direction of drift. Since the
drift time just provides a magnitude, a method is necessary to determine which side of the wire the
track passed on for each hit used in the fit. There are several methods that were considered for this
code.

The simplest method is to first fit using just the wire positions themselves and then look at which
sides of the wires the fit track fell on. This method works well with a large number of planes, since
the spacial resolution achieved will becomes better. However, if this coarse track passes sufficiently
near a wire position, the left/right resolution becomes difficult to determine and may choose the
wrong side.

In the other extreme, a brute force method can be used to test all possible left/right combinations
and choose the one that produces the best χ2. This method uses all available information, can be
considered to be fairly accurate, and works well with a small number of planes. However, as the
number of planes in the fit increases, it quickly becomes bogged down in combinatorics, as the
number of combinations it must try is 2N where N is the number of planes.

A variation of the second method is used, where the minimum χ2 is chosen but for subsets of
the hits. The natural way to divide the problem is across planes of the same type, so all left/right
combinations of the U planes will be done separately from the V and X planes. In the cases where
there are not sufficient degrees of freedom to compare χ2s (i.e. two or fewer planes), the other plane
types are calculated first. Then all combinations of planes that have not been fixed left/right are
combined with the fixed planes, and the differentiation is chosen by the minimum χ2.

Similar Tracks and Geometry Checks

The tracking algorithm is designed to check all combinations of hits that can be considered a possible
signature for a track. However, the criteria for determining what is likely a real track and what is
simply fitted noise is not trivial. For the most part, χ2 and physical considerations give a useful
guide to determining these criteria.

χ2 is the first thing calculated when a set of hits is fit and while placing a tight cut on χ2 would
cause inefficiencies in the tracking, a loose cut appears to be reasonable. Therefore, any combinations
that give a χ2 above some minimum value are immediately discarded. This minimum value is on
the order of 50 independent of the number of degrees of freedom.

Geometrical considerations are also taken into account. Any track must stay within the active
area of all planes whether or not that plane was used in the fit. This removes tracks that did not
originate from the electron beam and false combinations we do not wish to consider.

Any track must stay near the wires it was fit with, so a track is required to have all wires within
some fixed distance. The intention of the design of the drift chambers was to have a single wire
firing due to a track. It is unlikely that more than a pair of wires in the same plane will fire due to
the same track.

Finally, considerations must be made regarding subgroups of the hits used for a track. For a track
fully described by hits across 15 planes, there are many subgroups of these hits that will also yield
a valid (and identical) track, but at a reduced resolution. In this light, we would with to maximize
the number of hits used to describe a track. However, with the addition of noise, care must be taken
to exclude it from fitting. To do this, we identify all similar tracks as tracks that share a similar
intercept across a minimum number of planes. They are then sorted by χ2 per degree of freedom
and the best track is chosen. All other tracks that were similar to the one with the minimum χ2 per
degree of freedom are discarded.
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Processing Time

The time it takes to process an event appears to go linearly with the number of calls to a specific
function used to build all groups to be fit. The amount of time spent in tracking can be represented
by

ttracking ≈ (10 µs)×
∑

c∈{plane combinations}

nplanes(c)∑
n=0

n∏
m=0

nhits(planem). (3.56)

There are several checks that are done to not spend unreasonable amounts of time on individual
events. First, we compute a number that roughly represents a measure of the processing time for a
given event, as represented by the Eq. 3.56. A cut is placed on this number and events that do not
pass this cut are identified as “too busy” and are skipped.

There is also a soft and hard maximum on the number of groupings to consider as the code
searches for them. When the soft maximum is reached, the code finishes up looking for groups with
that number of planes to be considered and stops. As the groups are considered in descending order
of number of planes, this halts looking for any smaller subgroups. The hard maximum halts looking
for groups as soon as it is reached. The values for these cuts are determined from the data given
desired constraints on processing times.

3.4.5 Dead Time and False Asymmetries

For this experiment it is important to be able to determine the number of events lost to dead time
in our electronics and data acquisition, as well as determine if these effects, or any other portion of
the analysis, introduce false asymmetries into our data. These false asymmetries can occur due to
helicity-dependent inefficiencies or background and ultimately bias our calculation of Gn

E .
Electronic dead time deals with the masking of signals in the front-end electronics, such as PMTs

and discriminators, due to the recovery times. This effect with regard to the trigger electronics can
be measured to determine the number of events lost to this effect. It should be noted that other dead
times still remain in the data, such as in the readout of individual PMTs. To evaluate the fraction
of events lost to these effects, a pulser signal of 8.5 Hz was sent to the BigBite and neutron arm
trigger electronics as an artificial T3 event. This signal was also recorded by the trigger supervisor
as a T7 event.

By examining the number of T7 events that do not have a corresponding T3, the quantity
rdead,elec = 1−NT7&T3/NT7 is a measure of the fraction of events lost to electronic dead time of the
trigger, where NT7&T3 is the number of events with a T3 and T7 and NT7 is the number of events
with a T7 but no T3.

The data acquisition (DAQ) dead time correction, is the fraction of events lost due to data
acquisition electronics, the readout controllers, being in a “busy” state. In this state these electronics
are in the process of reading the data from the TDC and ADC modules at the request of the trigger
supervisor and all other requests by the trigger supervisor for readout are discarded, resulting in a
lost event. The length of these periods is around 300-500 µs.

To determine this dead time, the number of T3 events written to the data file is compared to
a scaler connected to the T3 signal. This scaler provides the “true” number of T3 events. If the
number of T3 events is prescaled, this must also be taken into account. The dead time is then

rDAQ,dead = 1− cprescaleNT3,data

NT3,scaler
(3.57)

where cprescale is the prescale factor for T3 events. False asymmetries can be introduced through
dead times affecting one helicity state more than the other. In such a case the number of events for
one state becomes skewed, producing incorrect raw asymmetries, and ultimately affecting the value
for Gn

E .
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For the case of dead time asymmetries, dead time is calculated for each helicity state. By then
correcting the number of events in each state for the dead time, artificial asymmetries by the dead
time are then removed. Corrections are done by dividing the counts for a given helicity, h, by the
efficiency for that helicity, 1− rdead,h, to be discussed in Section 5.8.

Two other potential sources for false asymmetries come from the beam charge asymmetry and
from the BigBite tracking code. The beam charge asymmetry is determined by examining the
helicity-gated totals from the BCM scalers, which keep helicity-gated totals of the beam charge.
Beam charge, while examined post-running, was also carefully and continually monitored during the
experiment. To correct for beam charge asymmetries, an artificial efficiency, ε for each helicity, h, is
constructed, where

εQ,h =
2Qh

Q
(3.58)

where Qh is the accumulated charge for helicity state h and Q is the accumulated charge for both
helicity states.

Tracking asymmetries are introduced by the tracking code having different efficiencies on recon-
struction of one helicity over the other. Such an effect could occur due to an asymmetry in the
rate dependent tracking efficiency. This number is more difficult to evaluate because of natural
asymmetries in the data, so the naive attempt to identify one helicity state more frequently recon-
structed than another is incorrect. However, by examining how frequently events are skipped due to
being “too busy” in proportion to the number reconstructed for a given helicity state, h, a number
analogous to dead time can be determined

rtrack,h =
Nskip,hel

Nrecon,hel +Nskip,hel
. (3.59)

A total correction can be determined by taking the product of the live times and effective live times.
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Figure 3.20: E02-013 trigger diagram [66].
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Figure 3.21: Neutron Arm/BigBite coincidence trigger timing schematic for a typical event.
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Figure 3.22: Neutron arm/BigBite coincidence timing schematic. T1 signal arrives before T2 signal
causing L1A aligned with T2.
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Figure 3.23: Simplified Trigger/Electronics Diagram as described in Section 3.3.6.
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Figure 3.24: Propagation of the signal from a hit to the left and right PMTs.
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Figure 3.25: Veto timing regions

Figure 3.26: Diagram of how shower cuts are formed (side view, not to scale). Axes are in target
coordinates.
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Figure 3.27: Diagram of how shower cuts are formed (top view, not to scale). Axes are in target
coordinates.

Figure 3.28: Shower Cut wire selection. Green wires are selected to be used in tracking. Red are
not.
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Chapter 4

Detector and Target Calibrations

As with any experiment, a careful calibration of all detectors must be performed to ensure the
accuracy of our measurements. For E02-013, this is especially important due to the fact that almost
all of the detectors in the experiment were newly built and untested in a production environment.
In this chapter we will cover the calibrations for the beamline, target, neutron arm, and BigBite
spectrometer. We will also examine the performance of the track reconstruction for the BigBite
spectrometer software.

Considerable effort was employed to measure the target polarization magnitude, which will be
shown to be a larger contribution to the systematic uncertainty of our measurement. Also, measure-
ments of the target polarization direction, calibration the neutron arm timing, and calibrations of
the BigBite tracking, optics, and detector subsystems were performed. Furthermore, the identifica-
tion and calibration of detector positions relative to each other to provide reliable coincidence data
was also a strong focus.

4.1 Beam

4.1.1 Polarization

Beam polarization was measured using both Mott polarimeter (Section 3.3.1) and the Hall A Møller
polarimeter (Section 3.3.2). Data from the Compton polarimeter was not analyzed for this work,
though it was available through most of the experiment, with the exception of kinematic 4, where
high background rates prevented reliable data taking.

Two Mott measurements were taken during E02-013. One on March 30, 2006 and April 13,
2006. These results can be found in Table 4.1. The Møller polarimeter was employed during
several periods through E02-013. The results of these measurements are in Table 4.2. Taking the
uncertainty-weighted average of these two polarization measurements, a beam polarization of 83.5

Date Time Polarization (%) Stat Err Sys Err
March 30, 2006 18:44 83.32 1.45 1.00
March 30, 2006 18:50 81.62 1.45 0.98
April 13, 2006 09:43 84.12 1.11 1.01
April 13, 2006 09:49 83.25 1.11 1.00
Average 83.08 0.65 1.00

Table 4.1: Mott polarimeter measurement results.
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Date Time Polarization (%) Stat Err Sys Err
February 28, 2006 18:03 88.8 0.2 3.0
February 28, 2006 18:03 86.8 0.2 3.0
March 4, 2006 22:42 88.2 0.14 3.0
March 9, 2006 20:15 86.5 0.15 3.0
March 25, 2006 21:37 82.2 0.3 3.0
Average 86.5 0.09 3.0

Table 4.2: Møller polarimeter measurement results.

± 1.1% is obtained. For this analysis the beam polzarization is assumed to remain constant.

4.1.2 Energy

Beam energies were supplied from the accelerator group using the Tiefenbach method. This method
is a variation of the ARC method by measuring the bend of the beam through known magnetic
fields. The principle method of measurement for the ARC method is through measuring the bend
of the electron beam through a known magnetic field and relating the field integral,

∫
B⊥dl and

deflection angle, θ to the momentum

p = e

∫
B⊥dl

θ
. (4.1)

The Tiefenbach energy is the result of such a calibration and is performed separately by the CEBAF
accelerator group.

4.1.3 Position

Beam position monitors were calibrated by using a set of HARP measurements, which are surveyed
relative to the experimental hall. However, the readout for the BPMs is bandwidth limited which
leads to measurements producing delayed values when the raster is active. To find the position of
the beam when the beam is rastered a separate method must be used to calculate the beam position
for a specific event. The beam raster currents are recorded and can then be mapped to the beam
position to provide an accurate reconstruction.

An analysis of the BPM and raster current data was performed by University of Virginia graduate
student Brandon Craver [69]. In this section we will present the results of this calibration.

The BPMs are connected to an ADC readout, which can then be related to position assuming
a linear transformation from ADC channels to position. To perform this transformation, several
numbers must be determined to convert this to a position measurement:

• The physical z positions of the BPMs

• Gain coefficients giving conversion of ADC channels to position.

• x and y offsets to correct the central value of the measured positions to known points

• Pedestal values to be subtracted from each ADC readout

The z positions of the BPMs are provided from the survey group while, the remaining constant
must be determined from data. The results are found in Table 4.3.

To determined the position for a given event, a calibration involving the readout of the raster
magnet current after the BPMs have been well calibrated must be done. The beam position at the
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BPM A
Offsets X Y Z
(m) 0.00110 0.00086 -7.517
Pedestal 1 2 3 4
(chan) 691 719 693 729
BPM B
Offsets X Y Z
(m) -0.00030 0.00240 -2.378
Pedestal 1 2 3 4
(chan) 668 650 670 661

Table 4.3: BPM calibration results.

target, assuming a linear conversion between the raster current and position, can be given by the
formula

ri = 〈ri〉+mi · (Ii − 〈Ii〉) (4.2)

where ri is true the beam position, i an index representing the x or y position, 〈ri〉 is the time-
averaged beam position, mi is a constant that relates raster current to position, Ii is the measured
raster current, and 〈Ii〉 is the time-averaged raster current.

The value of 〈ri〉 can be determined from BPM data as the time average is insensitive to the
readout delay. For the calibration for a given event, the last 1000 values were used in the average.
This number is sufficient given a raster frequency of 25 kHz and a trigger frequency of the order of
1 kHz.

The determination of mi is calculated in different ways for the x and y calculations. For the x
(horizontal) component, the deviation of the horizontal position from average position of the tracks
found in the spectrometer can be observed. By using a thin BeO foil target, a fixed point along the
beam line is chosen. This correlation can be fit to the formula

mx =
dytarg(ztarg = 0)

Ix

1
cos θ

(4.3)

where dytarg(ztarg = 0) is the deviation of the average y coordinate at z = 0 in target coordinates,
Ix is the x direction raster current, and θ is the angle of the target coordinate system z axis with
the lab z axis (Fig. 4.1. This dependency and fit can be seen in Fig. 4.2.

The value of my is more difficult to measure due to this direction being the dispersive direction
of the spectrometer. To work around this, the measured width given by the BPM is compared to
the width of the raster current, such that

my ≈
σy(BPM)
σy(Raster)

. (4.4)

Given two BPMs spaced along the beamline, the direction, dri may be determined using a small
angle approximation, from the formula

dri = 〈dri〉+
mi(Ii − 〈Ii〉)
ztarg − zraster

(4.5)

where 〈dri〉 is the average direction measured by the BPMs, ztarg is the zLAB position of the target,
and zraster is the zLAB position of the raster magnet. The results for these calibrations for the x
direction are 〈Ii〉 = 2400 and m = −3.36× 10−6(m/chan).
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Figure 4.1: Horizontal raster contribution.

Figure 4.2: y deviation dependence on raster current [69].
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4.2 3He Target

The 3He target has several parameters that must be determined for the experiment. The magnitude
of the polarization must be determined as well as the direction of the polarization (through the
holding field). Both of these quantities are directly incorporated into the calculation of Gn

E (Eq. 3.7).
Several other parameters involved with the cell are important as well. The thicknesses of the

glass of the cell itself is needed for radiative correction calculations. Also, there is a small presence
of N2 gas in the cell which contributes some amount in the quasielastic cross sections which must
be determined.

4.2.1 Polarization Magnitude

To determine the polarization magnitude a number of measurements must be made to calibrate the
measurement technique [57]. Most of these measurements are required to relate the absolute EPR
measurement to the more frequently done and less invasive NMR measurement. However, as these
two measurements are taken at two physically different locations in the cell, polarizations measured
using the EPR technique do not directly reflect the polarization given by the NMR signal. However,
by taking into account phenomena such as polarization gradients and varying temperatures, a reliable
technique can be constructed.

Target Density and Temperature

Target density and temperature become important when determining the target polarization in
Eq. 3.13 and in the comparisons to absolute cross sections. While the total number of atoms in
the cell (i.e. the total volume) remains constant, the density in portions of the cell change due to
localized heating by the lasers in the pumping chamber.

Several resistive temperature devices are employed to measure the temperature on the outside
of the cell, but they do not provide information about localized temperatures inside of the cell.
By performing a set of NMR measurements under different conditions, changes in density can be
determined and then temperatures can be extracted.

The NMR signal can be expressed as a product of several factors given in Eq. 3.13. By performing
signal measurements at various temperatures the density can be determined. The density in the
target chamber can be expressed

nt =
n0

1 + Vp

V0
( Tt

Tp
− 1)

(4.6)

where nt is the density of particles in the lower target chamber, n0 is the overall average density,
Vp is the volume of the upper pumping chamber, V0 is the total volume inside of the cell, Tt is the
temperature in the target chamber, and Tp is the temperature in the pumping chamber.

To determine the density when the lasers are on, a measurement of the ratio of the NMR signal
strengths when the lasers are on to when they are off is performed. The temperature in the target
chamber remains constant under different laser conditions. We then have

Son

Soff
=
non

noff
=

1 + Vp

V0
( Tt

Tp,on
− 1)

1 + Vp

V0
( Tt

Tp,off
− 1)

(4.7)

where Son is the measured NMR signal when the lasers are on and Soff is the signal when the
lasers are off. However, special consideration must be paid due to depolarization of the target from
repeated NMR measurements, also known as adiabatic fast passage loss. To account for this, tests
at constant temperature can be done and then fit to a decaying exponential curve, Fig. 4.3. The
polarization losses were determined to be 1.24% for a field “up sweep” and 1.27% for a “down sweep”.
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Figure 4.3: AFP loss due to repeated NMR measurements [57].

Parameter Value
Tt 35.62◦C
Tp,off 234.23◦C
Tp,on 242.96◦C
V0 377.73 mL
Vp 292 mL
Son 122.67 mV
Soff 115.45 mV

Table 4.4: Cell parameters for determining the pumping chamber temperature.

The change in relative density is determined to be 1.0625 between the laser on and off states,
Fig. 4.4. This corresponds to a temperature change of about 40◦C.

Polarization Gradient

The calibrating EPR signal measures the polarization in the pumping chamber while the frequently
measured NMR signal measures the polarization in the target chamber. To compare the two mea-
surements, the polarization gradient in the connecting tube between the two must be determined.
This gradient arises from the fact that depolarization occurs in the target chamber due to the fact
that there is no alkali metal vapor to spin-exchange with (the temperature is too low to maintain
the gaseous state) and the presence of depolarizing beam exposure.

The relation between the two polarizations was calculated by the polarized 3He target group at
UVA and William and Mary [70].
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Figure 4.4: NMR signal changes due to temperature differences when the lasers are on or off. AFP
loss has been corrected for this plot. [57]

Polarization

The relation between the polarization measured by the EPR method, PEPR, and the NMR signal
can be determined by using the NMR measurements to fix the constant c in the relation

c =
SNMR

PEPR(npΦp + ntΦt + nttΦtt)
(4.8)

where SNMR is the signal measured from the pickup coils during an NMR measurement, PEPR is
the polarization measured by an absolute EPR measurement, np, nt, and ntt are the number of
particles in the pumping chamber, target chamber, and transfer tube, respectively, and Φ are the
corresponding fluxes of the NMR signal (which do not change for a given cell). Once c is fixed,
NMR measurements can then be performed to identify the polarization in the pumping chamber.
Correcting for the polarization gradient then gives the polarization in the target chamber, the
quantity of interest.

Contributions of uncertainty to the target polarization are in Table 4.5. κ0 is a constant measured
experimentally, as introduced in Eq. 3.18. The EPR measurement uncertainty is an estimation of
systematic uncertainties through repeated measurements. The flux and density uncertainties are
due to uncertainty of the temperature (through density measurements) as described in Section 4.2.1.
NMR fit uncertainty is the uncertainty of the resonance location from the Breit-Wigner fit. Other
density uncertainty is in the uncertainty from the density in its contribution in Eq. 3.17.

Polarizations between 45% and 50% were routinely observed throughout the experiment as shown
in Fig. 4.5.

4.2.2 Magnetic Field Measurement

For E02-013 it is necessary to determine the the magnetic holding field direction to better than
0.1◦ such that the uncertainty contributions from the angle between the three-momentum transfer
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Source Relative Error
κ0 4.11%
EPR Measurement 1.32%
Flux and Density 1.00%
NMR Fit 0.6%
Other Density 0.25%
Overall 4.47%

Table 4.5: Relative uncertainty contributions to polarization calculations.
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Figure 4.5: Polarizations of the target for final three kinematics [57].
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Figure 4.6: Schematic of the compass used for field direction measurements [58].

and target polarization are small. As shown in Section 3.1, we wish to maximize the perpendicular
asymmetry, Aperp, Eq. 3.8, which contributes with a factor sin θ, θ being the angle between the
target polarization and the three-momentum transfer. The central angle of the neutron arm is
approximately 30◦ from the beamline, so the field is then chosen to be at approximately 120◦ in the
scattering plane.

A measurement of the field inside the target box was carried out and analyzed by Vladimir
Nelyubin, et. al [58]. A precision magnetic compass was used to measure the deviations of the field
from the nominal direction. It consists of an iron rod on a disk mounted on a base which floats on
flowing pressurized nitrogen under the base, as in Fig. 4.6.

An aluminum reference bar was installed on the outside of the target box and the compass was
placed at the target center. A small mirror was affixed to the bar and a laser was set up outside of
the box such that the laser light, reference bar mirror, and compass mirror were collinear (though
the mirrors not necessarily parallel, Fig. 4.7). By measuring the spot reflected by the reference bar
and compass on a transparency at a known position, the relative angles between the two can be
determined. By then surveying the reference bar relative to the hall, an absolute measurement is
then obtained.

Relative measurements were then performed by doing 1 in. shifts along the beam line using
several “spacers”. These 3 in., 4 in., and 5 in. wide bars were placed flush against a guide bar to
provide a fixed distance and keep the 1 in. shifts running in the same direction. For each position
of the compass, the position of reflected laser light was measured on a cardboard screen (Fig. 4.8).
This method then maps out the direction of the magnetic field on a grid around the target area.

Fitting the direction measurements to a second order polynomial in the beamline vertex position
vz, Fig. 4.9, the angle of the field along the target can be expressed by

θfield = 117.8◦ + ((1.78× 10−5)◦/mm2) · (vz + 7.0 mm)2 (4.9)

where vz is the z position in lab coordinates along the nominal beam axis. These measurements
were performed before, during and after the experiment and analyzed by Vladimir Nelyubin [58].
The holding field was found to be stable for each measurement.

An out-of-plane angle measurement was done using a separate compass setup and that angle was
found to be less than 1 mrad. This deviation is of much less importance, as it only contributes to
the asymmetry on the order of δφ2.
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Figure 4.7: Absolute compass measurement relative to the hall [58].

Figure 4.8: Relative compass measurements scanned across the region where the target resides [58].
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Figure 4.9: Field angle vs. position along the beamline [58].

4.2.3 Geometry and Construction Parameters

The hybrid target cells are constructed of hand-blown glass, which is prone to variations in thickness
in the target wall size. Knowledge of these thicknesses is necessary to perform calculations such as
contributions of radiative effects. Measurements of these thicknesses were done using laser interfer-
ometry at 12 places along the cell: each of the two end caps and five points along each side. Results
of these measurements can be found in Table 4.6, Table 4.7, and Table 4.8 [57].

4.3 Neutron Arm Timing and Position

The neutron arm requires careful analysis to determine the position and relative timing offsets of
each bar and PMT. To do this, careful surveying was performed such that each position of the
neutron arm throughout the experiment was well known and timing calibration was done using both
elastic H2 data and quasielastic 3He data [71].

4.3.1 Survey Analysis

Two survey reports were produced containing the position of several markers on the outside of the
neutron arm relative to the experimental hall and target.

The neutron arm itself was placed on a set of rails allowing it to change positions to match the
acceptance of BigBite for various kinematic settings. These rails were surveyed such that resurveying
of the neutron arm was not necessary for each kinematic change. A summary of the positions during
the experiment is given in Table 4.9.

The y position along each scintillator bar can be determined by the left and right PMT time
difference given by Eq. 3.41. This equation, however, has an additional bar-dependent constant
based on the differences between the two timing offsets, tL,0 − tR,0. To accurately determine the y
position and identify the value of this constant, vertical marker scintillators were placed at known
positions on the face of the neutron arm. These bars ran such that when a hit occurred on the
marker bars, the horizontal position of the successive hits behind it was determined.

The shift of the central value of the reconstructed y positions from the known position of the
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Right/Left From Distance(cm) Thickness (mm)
n/a Upstream 0 0.1278
Left Upstream 2.8 0.708

11.5 0.815
18.7 0.852

Downstream 13.3 0.859
3.5 0.944
Average 0.8356

Right Upstream 4.1 1.10
12.2 0.84
19.4 0.812

Downstream 10.9 0.784
4.3 0.8766
Average 0.8766

n/a Downstream 0 0.122

Table 4.6: Cell wall thicknesses for reference cell.

Right/Left From Distance(cm) Thickness (mm)
n/a Upstream 0 0.121
Left Upstream 3.5 1.65

12.11 1.71
19.3 1.72

Downstream 12.2 1.62
4.2 1.54
Average 1.648

Right Upstream 4.0 1.49
11.3 1.60

Downstream 19.6 1.56
13.4 1.66
3.7 1.61
Average 1.584

n/a Downstream 0 0.152

Table 4.7: Cell wall thicknesses for target Dolly.
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Right/Left From Distance(cm) Thickness (mm)
n/a Upstream 0 0.1263
Left Upstream 3.6 1.64

11 1.60
20 1.60
27.3 1.62

Upstream 3.0 1.59
Average 1.610

Right Upstream 3.8 1.55
Downstream 27.0 1.64

19.5 1.65
12.3 1.64
3.9 1.59
Average 1.610

n/a Downstream 0 0.1378

Table 4.8: Cell wall thicknesses for target Edna.

Kinematic Start Date End Date Distance (m) Angle (deg)
1 03/05/06 03/08/06 8.23 35.74
2a 03/09/06 03/21/06 10.94 30.25
3a 03/24/06 04/17/06 10.97 25.63
2b 04/17/06 04/24/06 10.94 30.25
3b 04/24/06 05/03/06 10.97 25.63
4 05/03/06 05/12/06 8.23 35.74

Table 4.9: Position of the neutron arm for E02-013. Distance is measured from the target center to
the center of the neutron arm. Angle is measured by the polar angle of the neutron arm ztarg axis
with respect to the nominal beam direction.
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Figure 4.10: Vertical marker bars were used to calibrate the y positions of the horizontal scintillator
bars. With a hit on the marker bar, the reconstructed y distribution for each horizontal bar then
has a known central value.

marker bars is determined and subtracted, removing any artificial offset due to PMT timing differ-
ences as well as any spatial position offsets. When well calibrated, events where the marker bar was
hit will yield a narrow y distribution centered on identical y values on the scintillators responding
to the same particle. The markers near the top of the neutron arm were offset slightly in y from the
bottom markers, producing a small difference in the y position measured by the marker bar. This
calibrated state is represented in Fig. 4.10.

4.3.2 Attenuation

For calibration of attenuation, events were selected such that five or more consecutive bars were
triggered in a single event and both left and right PMTs had a signal. Amplitudes were corrected
for attenuation as given in Section 3.4.2. By taking the log of the ratios of the two amplitudes in
Eq. 3.42 we get

ln
AR

AL
= −2y

Γ
. (4.10)

By taking a fit of this quantity, Γ can be obtained as in Fig. 4.11.

4.3.3 Timing Calibration

Timing calibration of all PMTs in the neutron arm is critical to the accurate reconstruction of nucleon
momentum from the time of flight. This analysis was carried out by University of Maryland graduate
student Jon Miller and College of William and Mary postdoctoral associate Robert Feuerbach [59].
To achieve a resolutions on the order of 100 MeV, a timing resolution of better than a few hundred
ps is required, as given by Eq. 3.21.

To perform this calibration, elastic scattering on H2 as well as quasielastic events on 3He are
used. While using elastic protons would be ideal, these events do not sufficiently cover the entire
acceptance of the detector. Quasielastic scattering from the 3He target is used to supplement the
data as the nominal time of flight will be the same as in the elastic case. Furthermore, H2 is used
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Figure 4.11: Fitting for the attenuation constant Γ [71].
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only to calibrate the first scintillator plane, while 3He data is used to calibrate timings between
planes to provide sufficient statistics.

To calibrate the first layer of scintillator, elastic events are selected from a H2 run. These are
events identified as electrons by BigBite, which are within the elastic peak in the invariant-mass
spectrum (|W − 0.94 GeV| < 0.05 GeV, shown in Fig. 4.12), and have a corresponding coincidence
hit in the neutron arm near the expected position. Assuming elastic kinematics, the time of flight of
the proton or neutron may then be determined by the three-momentum transfer, ~q, and the distance
from the reconstructed vertex to the cluster position, d, from the formula

ttof =
d

c

√
1 +

(
m

|~q|

)2

(4.11)

where m is the mass of the nucleon.
The neutron arm measures the time difference between the BigBite trigger and neutron arm trig-

ger as detailed in Section 3.3.6. Assuming the BigBite scintillator calibrations have been completed,
which are independent of the neutron arm, the remaining calibrations for time of flight are apparent
from Eq. 3.38

ttof = tTDC,corr
clus − tTDC,corr

BB,hit + tTDC
L1A + te + a

and, tTDC,corr
clus , te, and a, remain to be determined.

For now, we will assume we do not care about the overall constant a, which will be determined
later in Section 5.4. Determination of the path-length correction, te, is discussed in Section 4.5.
This leaves the time tTDC,corr

clus , described by Eq. 3.37

tTDC,corr = tTDC,avg − tL,tw + tR,tw

2
− t0,bar.

Time walk effects can be determined by using the model presented in Eq. 3.40

tTDC = thit + tprop − CAP + t0 − tL1A.

For this experiment, only a crude calculation for time walk effects was performed by observing
amplitude dependent deviations in time of flight from that predicted by ~q after a calibration ignoring
these effects. This was performed for the detector as a whole and not for individual bars and provided
corrections up to a few hundred ps.

The bar-dependent term t0,bar, comes from different propagation times from the PMTs to the
TDC inputs for each scintillator bar. By removing the bar dependence (that is, by adjusting t0,bar

such that any overall offset is independent of the bar producing a signal), we can then calculate the
time of flight up to an overall constant. This is done by solving Eq. 3.38 for t0,bar for each bar using
elastic scattering kinematics and then determining the central value of the time distribution. This
central value is then to be subtracted from future time of flight calculations for that particular bar.

Intra-plane calibrations are done using the abundant 3He data. Events are selected such that the
particle is identified as charged by the vetos, is within 30 ns of the coincidence region expected for
an elastic event (which acts as a sanity cut ), and is found within 0.08 m of the expected position on
the neutron arm from as an elastic event. A hits in each plane of the neutron arm is required. The
time expected for each plane is determined by assuming the momentum is constant as it traverses
through the neutron arm. A plot showing the stability of these calibrations is shown in Fig. 4.13.
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Figure 4.12: The invariant mass spectrum for a H2 target run. The cuts used to select on the elastic
peak, found at the nucleon mass, for scintillator time of flight calibration is shown by red lines.
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Figure 4.13: Results of neutron arm timing calibrations applied to later runs [59]. An artificial
2 ns×n offset is added to each plane to produce separation for each plane in the plot. ‘×’ represents
the position of the timing offset for each bar, which ideally would be centered around 0 nsbetween
(apart from any offset).
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4.4 BigBite Spectrometer

The BigBite spectrometer provides measurements of the direction and momentum of the scattered
electron by measuring the trajectory of the electron after it passed through a magnetic field. BigBite
is designed to have properties close to those of an ideal dipole magnet, that is, to have a uniform
magnetic field throughout the volume of the magnet. However, it does contains measurable devi-
ations which can be observed in the data. While the field of the magnet is not measured directly
throughout the volume, by exploiting properties of the magnet and applying empirical corrections to
deviations from the effective bend plane model, a sufficiently accurate reconstruction of the electron
deflection and momentum can be obtained.

To perform this measurement, several subsystems of the spectrometer must be accurately cali-
brated. These subsystems include the set of multiple wire drift chambers, the lead glass calorimeter,
and a layer of scintillator paddles.

4.4.1 Shower and Preshower

The BigBite lead glass shower and preshower is an electromagnetic calorimeter that also provides
some facility for particle identification. The sum of the amplitudes over the PMTs in both detectors
is roughly proportional to the total energy carried by the incident particle. This sum can then be
calibrated using particles of known energies. For E02-013, elastic events from a H2 target were used
for this calibration.

The energy deposited in a calorimeter block is assumed to be linear in the integrated charge
measured by the ADCs connected to the shower and preshower block PMTs

Eblock = Cg(APMT
block −Aped

block) = CgAblock (4.12)

where Eblock is the energy deposited in the block, Cg is the gain coefficient, having units of energy
per channel, APMT

block is proportional to the integrated amplitude from the ADC for the block, and
Aped

block is the pedestal value for that block, a constant offset which can be measured by taking data
with no signal. We will use Ablock as the pedestal-subtracted amplitude.

The high voltages on the photomultiplier tubes for both the shower and preshower have been
selected to provide similar gain coefficients by selecting high voltages that yield similar pedestal-
subtracted ADC spectra. (Although the overall gain coefficients for portions of the calorimeter are
in theory different, and this has not been taken into account for this analysis and a single gain
coefficient is used for all blocks.) To obtain the overall gain coefficients, a minimum-χ2 fit is done
for a sum of linear contributions from the pedestal-subtracted shower and preshower amplitudes
using cosmic ray events. The total energy is then determined to be

E = (3.57−4GeV/channel)Aps + (5.10−4GeV/channel)Ash (4.13)

where Aps is the sum of pedestal-subtracted preshower amplitudes over all preshower blocks and Ash

is the sum of pedestal-subtracted amplitudes for the shower (both in units of channels). By fitting
a Gaussian to the energy difference between the calorimeter and the energy given by the optics, a
resolution of σ dE

E
= 8.5% can be determined (Fig. 4.14).

Position reconstruction of the track can be performed by taking an amplitude weighted sum of
block positions. This technique was not used for this analysis and instead the position of the block
that had the largest amplitude was used.

Basic electron/pion differentiation can be done by examining the preshower signal. Lower energy-
depositions are identified as pions while the higher energy-depositions are electrons. This electron
distribution becomes more pronounced as one selects on the elastic peak in momentum, while if one
looks in the spectrometer for purely positively charged particles (which are identified to be bending
in an opposite direction), the pion peak becomes enhanced (Fig. 4.15 and Fig. 4.16).
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Figure 4.14: Energy difference of the energy measured by the calorimeter and the energy of the
electron as measured by the deflection angle of the electron for electron events divided by energy.
Fitting this to a Gaussian yields an energy resolution of about σ = 8.5%.
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Figure 4.15: Two distributions are identified in the preshower energy spectrum associated with pions
and electrons. Curves were reproduced by fitting plots similar to those found in Fig. 4.16.
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(a) (b)

Figure 4.16: Preshower energy spectrum distributions separate when a) selecting on elastic scattering
events with H2 data and |W − 0.94 GeV| < 0.05 GeV, electron enhancement and b) selecting on
positively charged particles, pion distribution enhancement.

Selecting preshower energy deposition greater than 500 channels will eliminate most of the pions
in the data and this cut is used as an electron selection. This causes a loss of approximately 7% of
the electron data.

4.4.2 Drift Chambers

The multiple wire drift chambers are the most crucial portion of the BigBite spectrometer in regards
to providing accurate reconstructions of the electron track after it has passed through the magnetic
field. At the lowest level, the drift chambers provide a time of a hit relative to a trigger which can
then be interpreted as some function of the distance of the track to the wire. These hits over all
chambers can then be reconstructed into a single track (as described in Section 3.4.4).

However, there are sets of calibrations that must be done to determine parameters that will
provide accurate reconstructions in software. These include individual timing offsets of each of the
drift chamber wires, accurate knowledge of all drift chamber wire positions and orientations relative
to one another, and determination of the functional dependence of drift time on drift distance.

t0 Offsets

Each wire of each drift chamber is connected to a channel in a common-stop TDC whose readout is
controlled by the BigBite trigger (as described in Section 3.3.6). The readout time for a wire, i, can
be described as

tTDC = tdrift + tdelay,i − tpath − ttrig ≈ tdrift + t0,i (4.14)

where tdrift is the drift time, tdelay,i is an offset particular to the wire which is the propagation
time of the signal to the TDC, tpath is the amount of time the electron takes to propagate to the
trigger detectors, and ttrig is the time it takes for the trigger to occur and be sent to the TDC as
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the common stop signal. The last three terms modifying the drift time are taken into a single offset,
t0,i.

The value of t0,i for each wire must be determined such that tdrift can be extracted from the
measured quantity, tTDC. We take this to be a constant for any given event as ttrig is not expected
to vary between events and the variation of the path lengths is sufficiently small. Given a distance
between the front drift chamber plane and trigger calorimeter plane of about 1 m, an active area of
the drift chamber plane of 1.40 m×0.35 m, and an active area of the calorimeter of 2.30 m×0.60 m,
a maximum track length variation of 1.16 m is found. This implies into a 3.9 ns difference in tpath

between the most extreme events. With an average drift distance resolution of σddrift = 350 µm and
a drift velocity on the order of 5 × 10−5m/ns, the drift time resolution is effectively σtdrift = 7 ns.
This track variation effect is small compared to a nominal drift time resolution and is not taken into
account.

To measure and build a set of databases containing the values of t0,i for each wire, a time spectrum
for each wire is produced. To minimize the amount of background signal for the time spectra, data
from cosmic trigger events are used (which are collected at rates on the order of Hz). The use of
cosmic events is not necessary, as a flat background can be assumed and the rate determined by
looking at times before the true spectrum begins given sufficient statistics, and the background can
then be subtracted.

For each time spectrum two points are determined: the earliest times when the (background
subtracted) spectrum is 80% of the maximum and 20% of the maximum. These two points then
define a line for which the offset is given by time at which the line intersects the axis defining no
signal. See Fig. 4.17.

Offsets are generally determined to be similar (within 5 ns) for each 16 channel discriminator card.
To help enhance statistics and simplify the calibration, offsets for individual cards were determined
using the same technique as described above rather than for each individual wire. An example of
the values of these offsets for a single plane is shown in Fig. 4.18.

Survey Analysis

Two surveys were performed of the BigBite spectrometer magnet and three drift chambers relative
to the experimental-Hall center, before and after the experiment. These will be referred to as
the Kin. 1 survey and the Kin. 2-4 survey, the interpretation of which will be the focus of this
section. In addition an independent survey was performed by Eugene Chudakov before and after
the experiment [72]. These measured the spectrometer at the two central angles, −56.26◦ and
−51.59◦. These providing confirmation of the alignment done in Section 4.4.2 as well as provide
information about the normal vectors for each plane relative to one another and about rotations of
the chambers about the zdet axis. Raw values from the BigBite surveys can be found in Appendix A.

Given the positions of the four corners and the center of each drift chamber, cross products can
be taken to find the normal vector for each chamber. Since only three coordinates are necessary to
define a plane, there is an amount of redundant data provided. By taking the cross product of vectors
from the drift chamber center to points lying on a common edge (calling these cross products top,
bottom, left, and right), the survey should provide four identical vectors. Tables 4.10 and 4.11 list
the angles between these redundant vectors from the surveys and show they are in good agreement.

The spectrometer central angle was found by minimizing the angle between the unit vector along
the zdet axis and the unit chamber normal. Since we have not yet calculated the pitch, −10.0◦ was
assumed. The points to minimize are shown in Figs. 4.19 and 4.20. Results for the final angles of
-56.26◦ and -51.59◦ for the kin. 1 and kin. 2-4 survey respectively are shown in Tables 4.12 and 4.13.
These results were deemed to be in agreement with the surveys performed by Eugene Chudakov [72].

Using the central angle found, we then adjust the pitch to, once again, minimize the arc cosine
of the dot product between the unit vector along the zdet axis and the unit chamber normal. The
points to minimize are shown in Figs. 4.21 and 4.22.
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Figure 4.17: t0 offsets are determined by extrapolating the leading edge of the time distribution to
the background level. Plotted is an example of this fit using 3He data, which has a considerable
background. The black line represents the background level, the blue lines are the 20% and 80%
signal strength marks, and the green line represents our fit to the leading edge of the signal. The
red dot indicates the position of the offset.
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Figure 4.18: t0 offsets calculated for each wire in a plane.

Chamber 1 (mrad)
Top Right Bottom Left

Top —– 0.000 0.050 0.050
Right 0.000 —– 0.050 0.050
Bottom 0.050 0.050 —– 0.000
Left 0.050 0.050 0.000 —–

Chamber 2 (mrad)
Top Right Bottom Left

Top —– 0.136 0.099 0.117
Right 0.136 —– 0.117 0.234
Bottom 0.099 0.117 —– 0.136
Left 0.117 0.234 0.136 —–

Chamber 3 (mrad)
Top Right Bottom Left

Top —– 0.005 0.043 0.046
Right 0.005 —– 0.046 0.049
Bottom 0.043 0.046 —– 0.005
Left 0.046 0.049 0.005 —–

Table 4.10: Angular difference between cross products generated by adjacent corners on a common
side (identified by the side) for the kin. 1 survey.
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Chamber 1 (mrad)
Top Right Bottom Left

Top —– 0.079 0.177 0.115
Right 0.079 —– 0.115 0.086
Bottom 0.177 0.115 —– 0.079
Left 0.115 0.086 0.079 —–

Chamber 2 (mrad)
Top Right Bottom Left

Top —– 0.033 0.077 0.050
Right 0.033 —– 0.050 0.035
Bottom 0.077 0.050 —– 0.033
Left 0.050 0.035 0.033 —–

Chamber 3 (mrad)
Top Right Bottom Left

Top —– 0.267 0.501 0.277
Right 0.267 —– 0.277 0.209
Bottom 0.501 0.277 —– 0.266
Left 0.277 0.209 0.266 —–

Table 4.11: Angular difference between cross products generated by adjacent corners on a common
side (identified by the side) for the kin. 2-4 survey.

Figure 4.19: Angular difference for several assumed central angles for the three chambers for the
kin. 1 survey. The minimum of chamber 1 is taken as the true central angle.
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Figure 4.20: Angular difference for several assumed central angles for the three chambers for the
kin. 2-4 survey. The minimum of chamber 1 is taken as the true central angle.

BigBite Central Angle: -56.26◦

Chamber Angular Difference (mrad)
1 1.073
2 1.064
3 1.073

Table 4.12: Angular difference between chamber normal vectors and central ray for the best central
angle of −56.26◦ for the kin. 1 survey . A pitch of -10.0◦ was assumed.

BigBite Central Angle: -51.59◦

Chamber Angular Difference (mrad)
1 1.649
2 1.840
3 1.432

Table 4.13: Angular difference between chamber normal vectors and central ray for the best central
angle of −51.59◦ for the kin. 2-4 survey. A pitch of -10.0◦ was assumed.

BigBite Pitch: -10.06◦

Chamber Angular Difference (mrad)
1 0.007
2 0.222
3 0.112

Table 4.14: Angular difference between chamber normal vectors and central ray for the best pitch
from the kin. 1 survey. A central angle of -56.26◦ was used.
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Figure 4.21: Angular difference for several pitches for the three chambers for the kin. 1 survey. The
minimum of chamber 1 is taken as the true pitch.

Figure 4.22: Angular difference for several pitches for the three chambers for the kin. 2-4 survey.
The minimum of chamber 1 is taken as the true pitch.

BigBite Pitch: -10.09◦

Chamber Angular Difference (mrad)
1 0.009
2 0.223
3 0.404

Table 4.15: Angular difference between chamber normal vectors and central ray for the best pitch
from the kin. 2-4 survey. A central angle of -51.59◦ was used.
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Chamber Top Left Bottom Right Average
1 0.039 0.049 0.042 0.041 0.043
2 -0.050 -0.050 -0.050 -0.047 -0.049
3 -0.162 -0.139 -0.163 -0.150 -0.153

Table 4.16: Necessary angular adjustments to wire orientation from the kin. 1 survey. Units are
degrees.

Chamber Top Left Bottom Right Average
1 0.040 0.043 0.041 0.046 0.042
2 -0.064 -0.064 -0.064 -0.064 -0.064
3 -0.18 -0.196 -0.181 -0.197 -0.189

Table 4.17: Necessary angular adjustments to wire orientation from the kin. 2-4 survey. Units are
degrees.

The roll of each chamber is determined by calculating the central point of each side of the
chamber. These points were found by averaging adjacent vectors defined by the center of the chamber
to a corner, and looking at the deviation of the azimuthal angle φ from the ideal orientation. Results
are in Tables 4.16 and 4.17. Applying these corrections produced systematically smaller χ2 in all fit
tracks.

The center of the BigBite magnet relative to the hall was measured once at the beginning of the
experiment (Appendix A). Although we have now calculated the central angle of the spectrometer,
we can determine the distance center of the magnet from the target center in the target reference
frame. We are only interested in the ztarg position for the effective bend plane model we use. This
was determined to be 1.415 m. The distance from the front face to the magnetic mid-plane along
the median line was taken to be 0.325 m (Fig. 3.14).

Drift Chamber Positions

The positioning of the drift chambers relative to the first chamber can be checked using reconstructed
tracks from any data set and examining the central values of the residuals. The zdet positions of
the second and third plane can be check by looking for dependencies of residuals on the track angle
orthogonal to the wire direction (for example, the x′ coordinate for X planes) (Fig. 4.23). The
relation between the deviation of the coordinate measured by the plane, ∆r, and the deviation of
the assumed plane position from reality ∆z, is simply:

∆z = 〈∆r
r′
〉 (4.15)

where r′ = dr
dz .

To minimize convolution of uncertainties between chambers, determination of deviations in cham-
ber 3 is done without using hit information from chamber 2 (as chamber 2 gives the least tracking
information as it only has 3 planes). Chamber 2 deviations can then be determined from examining
hits near the tracks and adjusting positions until they agree. This technique was used before sur-
vey information was available and was based purely on data and course measurements with a tape
measure. The results of the survey when compared to this calibration agreed extremely well, within
10−4 m.

Adjustments to positions of the second and third chamber relative to the first were done by
making adjustments such that residual peaks became centered and had no dependence on track
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Figure 4.23: Track residuals vs. out of plane angle.

88



Chamber Plane x1 Position (m) zdet (m)
1 U1 -0.7025 0.0000
1 U2 -0.6975 0.0064
1 X1 -0.7025 0.0128
1 X2 -0.7075 0.0224
1 V1 -0.7025 0.0288
1 V2 -0.6975 0.0352
2 U3 -0.9927 0.3598
2 X3 -0.9975 0.3662
2 V3 -0.9939 0.3825
3 U4 -1.0023 0.7444
3 U5 -0.9973 0.7385
3 X4 -1.0136 0.7316
3 X5 -1.0085 0.7178
3 V4 -1.0031 0.7109
3 V5 -0.9981 0.7050

Table 4.18: A list of plane z positions and starting wire positions.

angle. These values cannot be obtained by the survey, as they are dependent on the positions of
the wires inside the chamber housing themselves. These corrections were produced by minimizing
the track residuals. A list of plane zdet and first wire positions, taken to be the radial distance from
(xdet, ydet) = (0,0) in the plane, can be found in Table 4.18.

Corrections can be made to the ztarg origin using carbon foils data by adjusting ztarg such that
the center foil reconstructs to zLAB = 0. This has been done for the final three kinematics and the
origin for the target detector system in lab coordinates determined to be ztarg = 0.005 m.

Overall shifts of the vertical position of the BigBite spectrometer were made by comparing
coincidence data with the known position of the neutron arm. An adjustment of the vertical position
of the detector stack was made such that the out of plane angles of the electron and proton were in
agreement for elastic H2 data (Fig. 4.24). The lab y coordinate of the origin of the target detector
system was set to ytarg=1.8 cm compared to 0 cm from the survey. This was the only deviation from
the survey data found.

Drift Time to Distance Conversion

To determine drift distances, the (background-subtracted) drift time distribution was mapped to drift
distances such that the resulting drift distance spectrum was flat. Drift-time to distance conversion
is then handled by using an empirical formula which fits the data. To generate the flat mapping, we
use the condition that sampling some number of events in the time spectrum in a window ∆t will
map proportionally to some drift distance range, ∆d

f(t)∆t = ∆d (4.16)

where f(t) is a function that describes the drift time spectrum. Taking this to the continuum limit,
recognizing that t = 0 should correspond to a drift distance of 0, and integrating from t = 0 to some
time t, we have ∫ t

0

f(t′)dt′ = d(t) (4.17)

where c is some constant and d(t) is the drift distance for drift time t. To find c we recognize that
the maximum drift time tmax must correspond to the maximum drift distance dmax. Solving for c

89



Figure 4.24: Coplanarity check for the scattered electron and recoiling nucleon for H2 data.
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Figure 4.25: Drift distance vs. drift time relation and two methods fit to them.

in this case the drift distance for a given drift time is then

d(t) = dmax

∫ t

0
f(t′)dt′∫ tmax

0
f(t′)dt′

. (4.18)

In our case, dmax is half the cell width for each plane, which is 0.5 cm. The maximum drift time
we consider is taken to be 250 ns, sufficiently beyond the nominal 200 ns range as shown in Fig. 4.18.
The results of the calculation for d(t) are in Fig. 4.25.

Using a constant drift velocity appears to be a good approximation up to a certain point where
the average drift velocity begins to slow down (at roughly 4.0 mm). This approximation is shown
in Fig. 4.25 as the dashed red line.

A more accurate method is to fit the time vs. distance relation to some function or polynomial.
The function

ddrift = c0 tanh
(
v(tdrift − t0) + c2(tdrift − t0)2

c0

)
(4.19)

fits to longer drift times better than assuming a constant drift velocity. This is shown in Fig. 4.25
as the solid black line. This function has the two features that a) the function is linear at low drift
times and b) the function asymptotically reaches a specified maximum drift distance.

Calibration can be performed on any set of data, as a uniform distribution of tracks across
individual cells is expected. Separate calibrations are done for each individual plane and are not
expected to be identical for different chambers due to differences in supplied voltages. Typical values
used in the experiment are found in Table 4.19.

A typical reconstructed drift distance spectrum is shown in Fig. 4.26. The distribution is expected
to be flat if the function fits the data exactly, but contains some apparent deviations at smaller drift
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c0 0.005 m
v 5.02×10−5 m/ns
t0 6.1 ns
c2 1.95×10−7 m/s2

Table 4.19: Drift time to distance conversion parameters used for track reconstruction.

distances. The peak at 0.005 m is due to “asymptotic build-up” due to the model at drift times
greater than 200 ns.

Crosstalk

Crosstalk between wires occurs when a sense wire acquires a signal and another signal is induced
in the adjacent wire in the associated electronics. Fortunately, the signal appears to be induced
consistently at about 7±2 ns after the original signal (Fig. 4.27). In theory, the second signal can
be removed from the data, though this has not been implemented. The first chamber appears to
be more sensitive to this effect (due to different amplifier/discriminator cards). Roughly 12% of the
hits in the first chamber are a crosstalk signal compared to 5% of the other two chambers.

4.4.3 Scintillator Calibrations

The BigBite scintillator plane requires the same type of calibration necessary for that of the neutron
arm timing described in Section 4.3.3. Individual offsets for each of the scintillator paddles, as given
in Eq. 3.37 must be determined. Furthermore, the time walk corrections must be determined for
the PMTs.

To determine the offsets, events are used for which the electron tracks are determined to be
near an edge of two adjacent paddles, for which both paddles fire, and both paddles have an energy
deposition above the mean. Energy-dependent timing effects should be minimized by requiring high
energy deposition in both paddles. Light propagation path length differences should be minimized
as the propagation should be approximately symmetric by choosing tracks near the edges and these
events should have PMT signals that occur at the same time. By determining the offset differences
between all paddles, offsets relative to one paddle can be determined.

To determine energy-dependent effects (time walk corrections), these effects can be isolated to a
single paddle when the signal in the adjacent paddle is large, minimizing the effect in the adjacent
paddle. By examining the time difference between the two paddles versus energy deposition, these
corrections can be determined and removed. In Fig. 4.28 these corrections seem to be linear in
inverse energy deposition.

4.4.4 Tracking Results

Basic results from tracking provide information on the performance of the spectrometer in the areas
of resolution and reconstruction efficiency, but is also an invaluable aid in examining the performance
of related detectors in determination of their efficiencies.

Plane and Tracking Efficiency

Individual plane and wire efficiency can be determined from reconstructed track data. As the
tracking algorithm does not require each plane to have a hit, instances in which a track is determined
to pass near a wire, but does not cause a hit, indicate inefficiency. Optimizing the efficiency of drift
chamber planes by adjusting the high voltages of the field wire and cathode planes is important to
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Figure 4.26: Drift distance spectrum using phenomenological model.
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Figure 4.27: Crosstalk peak shown by the hit time differences on adjacent wires.
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Figure 4.28: Determination of timewalk effects by examining time difference dependence against
inverse energy deposition.
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(a) (b)

Figure 4.29: Track reconstruction efficiencies as a function of plane efficiency for a minimum of a)
12 and b) 13 planes required in reconstruction.

provide sufficient information to reconstruct high resolution tracks, but also to help maximize the
lifetime of the chambers by running at less damaging lower voltages.

The distribution of the number of planes firing for each event can be described using a binomial
distribution given the efficiency of the planes. Given n planes, the probability of k planes firing
when all planes have efficiency ε is

P (k, n) =
(
n

k

)
εk(1− ε)n−k. (4.20)

The fraction of the tracks which are reconstructed, Ptrack, given the chamber inefficiencies can be
described by the formula

Ptrack =
nmin∑
i=n

P (i, n) (4.21)

where nmin is the minimum number of planes required to reconstruct a track. This is chosen based
on considerations of reconstruction speed and, for E02-013, is generally either 12 or 13 of 15. Plots
of the track reconstruction efficiency as a function of plane-efficiency are shown in Fig. 4.29. For
production runs, plane efficiency was tuned by adjusting chamber high voltages to a value measured
to give a plane efficiency of about 85%. This gives reconstruction efficiencies of 0.88 for a minimum
of 12 planes in the reconstruction and 0.60 for 13 planes. It should be noted that for the lower
beam-current H2 runs, identical voltages produce efficiencies consistant with 100% efficiency due to
the lower rates of incident particles on the chambers.

Tracking and Spectrometer Resolution

Tracking resolution for the four measured parameters that describe the position and slope of a track
as it passes through the first drift chamber plane, x, y, x′, and y′, can be immediately obtained
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Figure 4.30: Typical residual for a plane, fit to a Gaussian defining resolution. The residual is found
by measuring the difference in position of the fit track and the predicted position from the drift
time to distance (assuming accurate L/R differentiation). Planes are required be used in the fit
when calculating residual. No restrictions on planes used in the entire fit are placed. The average
resolution is σ = 350µm.

from the reconstruction matrix described in Section 3.4.4 and Appendix B. As each of the four
parameters is simply a linear combination of the measuring positions on each plane, the resolution
for parameter r is then

δr =
√ ∑

i∈planes

(cr,iσi)2 (4.22)

where cr,i is the matrix element for parameter r and σi is the spacial resolution for plane i. The
spacial resolution for each plane can be found by fitting the residual distribution for each plane,
as shown in Fig. 4.30. This is found to be about σ ≈ 350 µm. The matrix used for a 15 plane
reconstruction can be found in Appendix B. Following Eq. 4.22 we arrive at the resolutions in
Table 4.21.

Estimates of the momentum, track direction, and vertex position can then be made using the
track resolutions given in Table 4.21. We use only a few parameters to describe the spectrometer,
the four track variables describing the position and slope of the track at the first drift chamber in
detector coordinates:

• θdef , the deflection angle of the track after it passes through the magnetic field

• x0, the distance between the point of intersection of a track described by the line x = 0 and
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Number/Type U X V
1 385 289 338
2 353 358 299
3 483 375 388
4 324 323 348
5 356 348 335

Table 4.20: Resolutions, σ, for each plane. Units are µm.

Param. Resolution (σ)
x 150 µm
x′ 0.303 mrad
y 346 µm
y′ 0.688 mrad

Table 4.21: Resolutions of the four track parameters.

x′ = 0 with the magnetic mid-plane and the point of intersection of the line x′targ = 0 (parallel
to the ground) from the center of the target to the magnetic mid-plane

• dpc, the distance between the origin of the detector coordinate system and the intersection of
the line x = 0 and x′ = 0 with the magnetic mid-plane

• dtp, the distance between the center of the target and the intersection of the line x′targ = 0
with the magnetic mid-plane

• θBB, the central angle of the BigBite spectrometer

• θ0, the pitch of the BigBite spectrometer detector stack

The values of the distances and angles are given in Table 4.22 and shown in Fig. 4.31. Nominal
values used in uncertainty estimations are given in Table 4.23.

The out-of-plane (parallel to the ground) angle in the target coordinate system, θtarg, from the
target can be described as

θtarg = tan−1

 cos θ0
dtp

x0−x+dpcx′ − sin(θ0)

 ≡ tan−1(X ). (4.23)

The uncertainty for this is then

δθtarg =
X nom

1 + Xnom2

1
dtp
x0
− sin θ0

dtp

x2
0

(δx2 + d2
pcδx

′2)1/2. (4.24)

Param. Value
dtp 1.45m
dpc 0.81m
x0 0.05m
θ0 10◦

θBB 51.6◦

Table 4.22: Distances and angles used to determine resolutions.
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Param. Value
x 0.0m
y 0.0m
x′ 0.0rad
y′ 0.0rad
X 0.034
θdef 0.264 rad
p 1.1 GeV

Table 4.23: Nominal values used to determine resolutions.

x

target

dtp

dpc

x o

Drift
Chamber

θ0

bend =0

Figure 4.31: Approximate distances and positions for the BigBite spectrometer. Not to scale.
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Variable Resolution (σ)
δθtarg 0.358 mrad
δφtarg 0.688 mrad
δvz 0.002 m
δp/p 0.2%

Table 4.24: Expected resolutions for the BigBite spectrometer.

Deflection angle can be described as

θdef = θtarg − tan−1(x′) + θ0 (4.25)

and
δθdef = (δθ2targ + δx′2)1/2. (4.26)

In-plane angle in the target coordinate system, φtarg, is approximately

φtarg = − tan−1(y′) + θBB (4.27)

so,
δφtarg = δy′. (4.28)

The vertex position along the beamline, vz, is approximately

vz =
y + (dtp + dpc)y′

sin θBB
(4.29)

and

δvz =
(δy2 + (dtp + dpc)2δy′2)1/2

sin θBB
. (4.30)

The scattered electron momentum, p, is approximately

p =
(0.29 (GeV/c)/rad) + (0.1 (GeV/c)/(rad ·m))x

θdef
(4.31)

and

δp =
(

((0.29 (GeV/c)/rad)δθdef)2

θnom
def

4 +
((0.1(GeV/c)/(rad ·m))δx)2

θnom
def

)1/2

. (4.32)

Solving for the uncertainty given by these equations, the expected resolutions are then given in
Table 4.24.

4.4.5 Optics Calibration

Optics calibration involves determining the most accurate vertex and momentum reconstruction by
examining known scattering processes on different targets. This also involves allowing for deviations
in the magnetic field that vary over the face of the magnet.

Target Image

Identification of the target image is done by examining data at each given kinematic setting to
determine the central position of the image and width of the volume to search for drift chamber
hits. This is done empirically by examining the wire chamber hit distribution on the X wire chamber
planes about some central path line defined by the straight line between the central position of the

100



Figure 4.32: Distribution of the differences in drift chamber hit position and the line defining the
center of the shower cut region.

target image and the hit found in the shower. By varying the image central position such that
the distributions become centered about the projected point of the line, the image position can be
determined.

Working in detector coordinates, the projected position of the central path line is

xpath =
xBB,sh − (xbeam − ximg)

zBB,sh − zbeam
zi (4.33)

where xpath is the projected point of the central path line on plane i, xBB,sh is the x position of the
BigBite shower cluster, xbeam is the x position of the beam at ydet = 0, ximg is the central position
of the target image relative to the beam, zBB,sh is the z position of the BigBite shower, zbeam is the
z position of the beam at ydet = 0, and zi is the z position for drift chamber plane i.

We define the difference between the projected point of the central line xpath and the drift
chamber hit, xd.c.hit to be ∆x

∆x = xd.c.hit − xpath. (4.34)

ximg is adjusted until the distributions of ∆x for each X drift chamber plane is roughly centered.
The volume around the central line used to accept hits is chosen to grossly overestimate the width
of the distribution of ∆x, such as to minimize the number of good hits excluded in tracking. An
example of the distribution can be seen in Fig. 4.32. Typical values of the path width are ±20 cm.
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(a) (b)

Figure 4.33: Vertex reconstruction, vz vs. magnet vertical position, xbend for a) ybend < 0 and b)
ybend > 0. Antisymmetric, nonlinear deviations in xbend are observed in the reconstruction in the
extreme vertical regions of the acceptance which are also antisymmetric ybend.

Vertex

Vertex reconstruction was calibrated using a set of carbon and BeO foils at known positions. For
kinematics 1 through 3, a target with foil pattern of 3 carbon foils, a BeO foil, and 3 more carbon
foils 0.067 m apart were placed in the beamline with the BeO foil placed near the lab origin. For
kinematic 4, the carbon foil at vz = −0.067 m was damaged and removed. The first and last foil
cannot be seen in any data sets due to collimators blocking scattered electrons in those regions.
The resulting peaks can be observed in the data using a naive model and then corrections can
be determined by examining the vertex dependencies on several track parameters. These can be
described by the model given in Section 3.3.5.

A single set of parameters for Eq. 3.24 is not sufficient, as is readily apparent in Fig. 4.33. The
vertex reconstruction has very dramatic non-linear behavior in xbend, corresponding to the extreme
vertical regions of the acceptance, xbend < −0.2 m and 0.3 m < xbend. These regions account for
roughly 40% of the acceptance with more than one third of the statistics falling into a problematic
region. These deviations follow a pattern where they are roughly antisymmetric in both xbend and
ybend and is consistent with deviations created by the vertical portions of the coils of the magnet,
shown in Figs. 4.34 and 4.35.

To account for this, the constant term, a, in Eq. 3.24 is allowed to vary over the acceptance of
the magnet. This is then fit by binning the reconstructed vertex of the central foil in equal sized
rectangular acceptance regions in the magnetic mid-plane. For simplicity, we do not allow a to vary
over the momentum of the electron, though some dependence is likely present. This method is only
valid when the variation is linear over the acceptance region and therefore fails for the most extreme
vertical regions where the deviations are rapidly changing.

The value of the peak location of this distribution is then taken as the correction to be applied,
creating a discrete grid of values Ai,j , where i, j are indices corresponding to the acceptance bin.
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Figure 4.34: a) Magnetic field lines caused by BigBite magnet coils as viewed looking up ztarg axis
(from chambers to target). b) Expected deflection pattern for negatively charged particles. Not to
scale.
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Figure 4.35: Deflections caused by field deviations for high xbend, high ybend. a) For this region it is
predicted to have a reconstructed image at higher vz. b) This type of deflection is observed in the
data. Not to scale.
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Figure 4.36: Corrected reconstructed vertex vs. vertical track position at the bend plane. All but
the most extreme regions have no dependence on vz.

To allow for smooth variations over acceptance of the magnet, a bilinear interpolation scheme is
employed, where the value for a at coordinates (xbend, ybend) is found using

a(xbend, ybend) = Ai,j
(xi+1 − xbend)

∆xbend

(yj+1 − ybend)
∆ybend

+Ai+1,j
(xbend − xi)

∆xbend

(yj+1 − ybend)
∆ybend

Ai,j+1
(xi+1 − xbend)

∆xbend

(ybend − yj)
∆ybend

+Ai+1,j+1
(xbend − xi)

∆xbend

(ybend − yj)
∆ybend

(4.35)

where xi and yj are the (xbend, ybend) coordinate of the center of acceptance bin (i, j), and ∆x and
∆y are the spacings between the grid points.

After these corrections are applied the dependence on xbend is removed except in the most
extreme regions and no dependence is observed for ybend, shown in Figs. 4.36, 4.37, and 4.38.
The reconstruction appears to be valid for -0.35 m < xbend < 0.45 m, or about 90% of the total
acceptance.

Fitting the vertex z-position for the central foil to a Gaussian, a resolution along the beamline
of σvz = 0.0046 m is found. This is a factor of two worse than the predicted value of 2 mm from the
drift chamber resolutions.

Momentum

Momentum reconstruction follows a similar procedure to the vertex reconstruction discussed above.
Calibration of momentum is done using a H2 target and selecting on elastic events. These events
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Figure 4.37: Corrected reconstructed vertex, vz, vs. horizontal track position at the bend plane,
ybend.
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Figure 4.38: Corrected carbon foil beamline vertex reconstruction. The central foil is physically
placed to have a position of 0.0m. Resolution of about σvz = 4.6mm is observed.
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have a well defined momentum that is only dependent on scattering angle, given by the formula

Eelas =
mpEb

mp + Eb(1− cos θe)
(4.36)

where mp is the mass of the proton, Eb is the energy of the beam, and θe is the scattering angle
of the electron. Once the vertex has been well calibrated, the scattering angle of the electron can
be reliably reconstructed and the momentum can then be calibrated. If there are deviations in
the vertex reconstruction, these will translate directly into changes in the scattering angle (seen in
Fig. 4.35 (a)), so it is imperative to perform the vertex calibration first.

Elastic events are chosen in the H2 data by first requiring rough coincidence between a hit in the
neutron arm and an electron track in the spectrometer. Electron tracks are selected by requiring
preshower signals greater than 500 channels and by selecting on vertices that originate within the
target chamber, −0.17m < vz < 0.17m. For coincidence, it is useful to define

∆coplane =
pNA

y

pNA
x

−
pe

y

pe
x

(4.37)

where ~pNA is the momentum vector of the proton measured by the neutron arm and ~pe is the
momentum vector of the electron measured by BigBite and components are evaluated in the Hall
coordinates. This gives a measure of the “coplanarity” of the event, as the electron and neutron
should be in a single scattering plane by conservation of momentum. It should be noted, that since
we are just interested in ratios of momenta, they are simply functions of the direction of the track
and momentum does not have to be well calibrated.

For timing coincidence, a pseudo-time of flight is examined

tcoinc = tTDC,corr
clus − tTDC,corr

BB,hit + tTDC
L1A (4.38)

where tTDC,corr
clus is the corrected reconstructed time of a neutron arm cluster, tTDC,corr

BB,hit is the corrected
reconstructed time of a BigBite scintillator hit, and tTDC

L1A is the TDC time of the level 1 accept, given
in Eq. 3.38. This provides a flight time up to a constant, neglecting electron path length differences,
which is acceptable when placing a cut on the order of several ns. Even with such a wide cut, a
significant amount of accidental background and other events can be removed, greatly improving
the elastic signal.

The values of the cuts vary between kinematics (especially the timing cut), and are chosen
through examination of the data. An example for kinematic 4 is given in Figs. 4.39 and 4.40.

The quantity of interest when doing a momentum calibration is the difference between the mo-
mentum provided by the optics model, pfit, (the value we are calibrating) and the reference momen-
tum, pelas obtained using the scattering angle and the assumption that it is an elastic event, which
we call δp

δp = pfit − pelas. (4.39)

Ideally when calibrated, this quantity will be zero. However, due to the finite resolution of the
spectrometer and radiative effects, there will be some spread about δp = 0 once the optics model is
correctly calibrated.

The formula described in Eq. 3.25 is used and is fit to pelas. However, problems similar to
those of the vertex reconstruction become apparent when the fit is extended into the same extreme
vertical regions of the magnet. In these regions, deviations are slightly more complicated as shown
in Fig. 4.41. Similar antisymmetric effects that were present in the vertex reconstruction appear not
to be as well defined in the momentum distributions.

Furthermore, when examining the central region of the acceptance, −0.25 m < xbend < 0.35 m,
it is apparent that a single set of parameters are insufficient to describe the optics. When calibrating
for a single kinematic (and allowing for the constant a term in Eq. 3.25 to be taken as 0), applying
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Figure 4.39: Coplanarity selection for elastic events.
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Figure 4.40: Pseudo-time of flight selection for elastic events.

(a) (b)

Figure 4.41: δp vs. xbend for a) ybend < 0 and b) ybend > 0 using a constant set of parameters.
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Figure 4.42: Difference of momentum calibration to pelas when using identical coefficients over several
kinematics. Ideally all distributions would be centered about 0.

those parameters to other kinematics yields δp distributions that are not centered around 0, as in
Fig. 4.42.

A corrected value of the momentum, p′, is obtained from the uncorrected value, p, by assuming
a correction of the form

p′ = cp+ b (4.40)

where the parameters c and a are determined by the following approach:

1. One kinematic has a set of optics parameters fit with the constant term, a taken to be 0.

2. This set of parameters is then applied to all kinematics and the shift in δp is determined.

3. A linear transformation is determined such that the central value of δp for all kinematics is
centered around 0. That is,

p′ = cp+ b.

4. The in-plane dependent coefficients of the momentum function, y and y′, are refit to optimize
resolution

The refitting of the in-plane dependent coefficients is included to correct for resolution degra-
dation due to the linear transformation. There will be little initial dependence on p for the first
set of parameters and additional dependencies will be introduced when the linear transformation is
taken since p is highly correlated with the in-plane parameters y and y′. Adjusting the associated
coefficients will remove these dependencies.

To resolve discrepancies in the extreme vertical region, an approach similar to the vertex cor-
rections is taken. The leading coefficient in Eq. 3.25, c0, is allowed to vary over coordinate (xbend,
ybend). The remaining parameters are fit in the central region, −0.25 m < xbend < 0.35 m where a
constant set of parameters is sufficient. We note that for simplicity we do not allow this constant
to have any p dependence, though it is likely that some would be present. To determine the values,
the acceptance is broken into 10× 6 identically sized rectangles on the effective bend plane. For all
elastic events in each bin, c0 is determined
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Figure 4.43: δp vs xbend after c0 is allowed to vary over the acceptance. This scheme fails for the
most extreme regions of the magnet and we restrict ourselves to −0.35 < xbend < 0.45 m.

c0 = (pelas − cϑϑtarg − cyydet − cϕy
′
det − a)ϑdef − cxxbend. (4.41)

The central value of the resulting c0 distribution is then identified with a grid value, Ci,j at position
(xi, yj), the xbend and ybend coordinates for the center of the acceptance bin. A bilinear interpolation
scheme is then used to provide a smooth variation of c0 over the acceptance. As with the vertex
procedure, this method is only valid when the variation of c0 over the acceptance bin is small and
therefore fails for the most extreme regions, namely xbend < −0.35 m and 0.45 m < xbend, the same
regions where the vertex reconstruction fails, shown in Fig. 4.43.

These deviations have been seen before in BigBite analysis during experiments when the magnet
was at NIKEF. While the magnet was run with smaller fields, similar deviations occurred in the
same manner as observed in our data. Previous corrections were applied in a manner similar to ours
by performing an interpolation of the momentum deviation along the vertical angle [73].

Once these parameters are determined, they can then be applied to all other kinematics. By
examining the central values of δp distributions, a linear transformation can be done and the col-
lective in-plane terms refit. The results are a set of parameters that are then consistent across all
kinematics. Fig. 4.44.

Resolution can be determined by fitting the δp distribution to a Gaussian and first order polyno-
mial. The polynomial is necessary to help account the asymmetric radiative tail of the distribution.
A resolution of about σp = 10 MeV is found, or about 0.9% (Fig. 4.45). This is about a factor of 5
worse than the predicted value of 2 MeV based on the plane resolutions.

4.4.6 Field Simulation Results

To obtain insight to the behavior of charged particles passing through the BigBite magnetic field, a
TOSCA simulated magnetic field model was developed for a 12 kG field. This simulation was done
before the experiment and the software has since become unavailable due to monetary restrictions.
While results from this simulation do not prove to be useful in accurately determining the optics
coefficients in our model, the simulation does provide some qualitative insight into some features of
the data as well as provide confirmation that our optics model accurately reconstructs track vertices
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Figure 4.44: δp vs p for all kinematics using a single set of optics parameters.

Figure 4.45: Momentum resolution fit. A resolution of about 10 MeV is found.
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and momenta. The field map produced covered a volume of ytarg = −5.5 cm to 5.5 cm, xtarg = -
70cm to 80 cm, and from 40 cm in front of the face of the magnet to 130 cm behind the face of the
magnet. A 3-vector of the magnetic field is given on a 2 cm× 2 cm× 2 cm spaced grid.

Using this model, simulated tracks were propagated numerically through the field and the de-
flected track that would be measured in the drift chambers was recorded. By using such a model,
comparisons can then be made directly to the data.

A fourth order Runge-Kutta method was employed to provide iterative numerical propagation
of the scattered electron track through the magnetic field. This provides numerical solutions to the
Lorentz force

d~p

dt
= q~v × ~B + q ~E (4.42)

For each position, ~xi, and momentum, ~pi, at a given iteration in time, ti,

~pi+1 = ~pi +
∆t
6

(~k1 + 2~k2 + 2~k3 + ~k4) (4.43)

~xi+1 = ~xi + ∆t
~pic√

|~pi|2 +m2
e

(4.44)

ti+1 = ti + ∆t (4.45)

where

~k1 =
d~p(~xi, ~pi)

dt
(4.46)

~k2 =
d~p(~xi + ∆t

2
~pic√

|~pi|2+m2
e

, ~pi + ∆t
2
~k1)

dt
(4.47)

~k3 =
d~p(~xi + ∆t

2
~pic√

|~pi|2+m2
e

, ~pi + ∆t
2
~k2)

dt
(4.48)

~k4 =
d~p(~xi + ∆t ~pic√

|~pi|2+m2
e

, ~pi + ∆t~k3)

dt
. (4.49)

Tracks were generated using the Born approximation on a proton target using the dipole ap-
proximation (introduced in Section 2.3.4) for the electric and magnetic form factors. This gives a
differential cross section, the same in Eq. 3.1, equal to

dσ

dΩ
=

α2

4E2 sin4 θ
2

1
1 + E

M (1− cos θ)

(
G2

E + τG2
M

1 + τ
cos2

θ

2
+ 2τG2

M sin2 θ

2

)
(4.50)

where

GE(Q2) =
(

1 +
Q2

0.71GeV2

)−2

, (4.51)

GM (Q2) = µp

(
1 +

Q2

0.71GeV2

)−2

, (4.52)

E is the initial beam energy, θ is the scattering angle of the electron, M is the mass of the proton,
τ = Q2

4M2 , q2 = −Q2 is the 4-momentum transfer, and µp is the magnetic moment of the proton,
approximately 2.792.

Tracks are generated according to this distribution by using the “acceptance-rejection method” [74]
using a fixed beam energy. Furthermore, the track vertex along the beamline was uniformly dis-
tributed along a “target” of some length. After generation, if the tracks are determined to enter the
opening of the magnet, the they are propagated through the field and are otherwise thrown away.
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Parameter Value
Magnet face from target 1.1 m
Magnet opening width 0.11 m
Magnet opening height 0.9 m
Magnet central angle -51.59◦

Target Length 0.4 m
Detector stack pitch 10◦

Detector from target ztarg 2.25 m
Detector from target xtarg -0.17 m
Detector height 1.4 m
Detector width 0.35 m
Beam Energy 2.079 GeV
Time Step 5× 10−12 s
σx 150 µm
σx′ 0.30 mrad
σy 340 µm
σy′ 0.69 mrad

Table 4.25: Field simulation parameters.

Param. Simulation Data
c0 0.225 0.272
cx 0.125 0.130
cθ 0.0 0.0
cy 1.05 0.17
cφ -0.35 -0.12

Table 4.26: Fit momentum parameters for simulated field and kinematic 4 data. These fits assumed
the a term was 0 and the fit was only done for the central region.

After propagation the deflected track at the position of the drift chambers is calculated. Gaussian
smearing of x, x′, y, and y′ can be specified to simulate finite drift chamber resolution. The same
optics method as done for BigBite is then applied and the track before scattering is reconstructed.

Tracks were generated using the parameters given in Table 4.25. Of note is the field volume
generated is smaller than the actual size of the magnet, which may be the cause of deviations from
reality.

Unfortunately, serious deviations from the data were immediately discovered using the provided
field map. Notably, the optics coefficients after performing a fit for the momentum in the central
region using a perfect vertex reconstruction was significantly different compared to performing the
same analysis on real data, as shown in Table 4.26. The most significant difference is in the leading
coefficient, suggesting that the field integral for a track is smaller in the simulation than in reality.
Resolution for the simulation of about σp = 10 MeV was comparable to real data (Fig. 4.46).

This suggests that the field provided differs from the field used for the experiment, but lends
strong credence to the optics model chosen. Also, several qualitative results were found from the
simulation that compare well to the data. Namely, the extreme region deviations in the vertex and
momentum reconstruction are also seen in the simulation.

For the vertex reconstruction, deviations in the extreme vertical regions manifest themselves
in similar regions in xbend with identical behavior in relation to ybend > 0, Fig. 4.47. However,
the ybend < 0 behavior is not present, suggesting the field simulation is not complete and only
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Figure 4.46: Simulation momentum resolution is about σp = 10 MeV.
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Figure 4.47: vz vs xbend for simulated field with no cuts on ybend. Only the ybend > 0-type behavior
that is seen in the data appears to be present in the simulation.

represents one side of the magnet (compare to Fig. 4.33). (As a side note, this can be taken into
account by symmetry considerations but was not done.) For the momentum reconstruction, using
a perfect vertex reconstruction (forcing the vertex to be the true vertex to simulate an already
corrected vertex position), once again deviations in the same regions are found, Fig. 4.48. Compare
to Fig. 4.41. Both of these results show qualitative agreement with the data and provide confirmation
that the deviations in the vertical regions seen in the data are expected from the design of the magnet.

4.4.7 Carbon Foil Reconstruction Amplitudes

The reconstructed counts as a function of vertex position for the foil targets should be predictable
given the acceptance of the spectrometer as a function of beamline vertex, the material of the
foils, and the thicknesses of the foils. As we have two different materials, C and BeO, the ratio of
amplitudes can be calculated without calculation of the absolute cross section.

We expect this ratio to be
R =

ρBeOwBeO

ρCwC
(4.53)

where ρ is the density of the material, and w is the thickness, as traversed by the beam. Given the
densities and widths provided in Table 4.27, we predict a ratio of 3.28.

To determine the relative amplitudes in the data, a histogram of the vertex reconstruction is
produced. For each foil an integral over a set of bins for the region ±2 cm around the foil central value
is used to measure the reconstructed amplitude. To account for acceptance variations over vz, the
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Figure 4.48: δp vs xbend for a simulated field. Strong deviations in the extreme regions are present
similar to those in the data.

Material Density Width Thickness
(g/cm3) (cm) (mg/cm3)

C 2.2 0.025 55.0
BeO 3.01 0.060 180.6

Table 4.27: Thicknesses and densities of foil target.
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Foil Integral NH2 Normalized Integral
Kin 3 Kin 4 Kin 3 Kin 4

1 2.039 3.434 1202 1.764 2.971
2 2.032 - 1288 1.641 -
4 0.976 1.829 772 1.315 2.464
5 0.613 1.121 450 1.417 2.591
Average 1.534 2.675
BeO 5.140 8.295 1050 5.140 8.295
Ratio 3.350 3.100
Predicted 3.284 3.284
Frac. Error 0.02 0.06

Table 4.28: Analysis of foil target reconstruction amplitude ratios.

empirical variation of the vertex reconstruction due to acceptance for a H2 target is used to normalize
the counts since this distribution without acceptance effects should be flat. This distribution is shown
in Fig. 4.49. By measuring the relative number of counts in the H2 distribution at the foil position
relative to the value at vz = 0, a normalization constant is obtained. The corrected amplitude for
each foil is then

Nnorm
i =

∑
vz,i±2 cmN

foil
i NH2(vz = 0)

NH2(vz,i)
(4.54)

where Nnorm
i is the normalized number of counts for foil i, vz,i is the position of foil i, NH2(vz = 0)

is the number of counts in the H2 spectrum for the histogram bin at vz = 0, and NH2(vz,i) is the
number of counts in the H2 spectrum for the histogram bin at vz,i. Integrals of the foils are presented
in Table 4.28.

The ratios are within a few percent of the predicted values for kinematic 3 and kinematic 4. This
acts as a check of reconstruction along the vertex for the new tracking code.

4.4.8 Radiative Effects

Radiative effects can have a significant effect on the elastic momentum distribution. These effects
arise from electron interaction with the target cell wall before or after scattering via the emission
of a real photons and also from internal radiative effects where the electron will emit a photon
while interacting with the target nucleus. These effects are of great importance in the calculation
of absolute cross sections, but for E02-013 they are mostly only of passing interest. Given the δp
distribution given by Eq. 4.39, the number of particles having radiated a photon in addition to
scattering can be measured and then compared to theory. This is not critical to the determining
the asymmetry.

Ultimately, we wish to calculate the change in the measured cross section due to these effects.
We can write this as

σmeas(∆E) = K int(∆E)Kext(∆E)σ (4.55)

where we take ∆E to be the half-width of the elastic peak, K int(∆E) and Kext(∆E) are the internal
and external correction factors such that the fraction K of scattering events reside in the measured
peak between initial energy Ei and Ei −∆E. That is to say, the fraction 1−K(∆E) electrons lose
an amount of energy more than ∆E.

The internal radiative corrections were first calculated by J. Schwinger [75] for potential scat-
tering. Here it was found that, for highly relativistic electrons, the fraction of events losing energy
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Figure 4.49: Vertex distribution for H2 target. Varying spectrometer acceptance along the beamline
produces a non-uniform distribution.
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greater than ∆E is [76]

δint ≈ −2α
π

[(
log

Ei

∆E
− 13

12

)(
log

Q2

m2
− 1
)

+
17
36

]
. (4.56)

One problem associated with this calculation is in the limit as ∆E → 0, δ diverges logarithmically.
This problem is associated with neglecting processes where more than one low frequency photon is
emitted and is corrected by replacing 1−δ with e−δ as was explicitly proven by Yennie and Suura [77].
However, in cases where δ is small, such corrections are unnecessary.

External radiation can be modeled using the formalism presented by J. Friedrich [78]. The
probability of an electron with initial energy, Ei, and final energy, Ef , radiating a single photon of
energy ∆E = Ei −Ef , after distance t in a material with radiation length X0, can be described by
the formula

f rad =
t

X0

1
∆E

[
1− η

Ef

Ei
+
(
Ef

Ei

)2
]

(4.57)

where

η =
2
3
− 1

9

(
log 183 Z−1/3

)−1

(4.58)

and Z is the atomic number of the nuclei in the material.
This leads to a fractional loss in the cross section of

δext =
t

X0

[
−
(

3
2
− η

)
+ (2− η) log

(
Ei

∆E

)
+ (2− η)

(
∆E
Ei

)
− 1

2

(
∆E
Ei

)2
]
. (4.59)

However, this also leads to unphysical results as ∆E → 0 as the model does not account for multiple
low photon emission. For simplicity, the same replacement of 1 − δ → e−δ made by Schwinger is
done once again. We note that in our case, δ will be small because of our intrinsic resolution and
these substitutions will make little difference on the final result. To relate Eq. 4.56 and Eq. 4.59 to
Eq. 4.55,

K = e−δ. (4.60)

To compare to our data, an examination of a portion of the radiative tail relative to the elastic
peak is of interest. To determine the size of the radiative tail, successive corrections to the cross
section and radiative tail are calculated for

1. External radiation from entering the target.

2. Internal radiation from elastic scattering.

3. External radiation from leaving the target.

Furthermore, we expect some contribution from non-Gaussian tails seen in the superelastic region
(δp > 0) of the δp spectrum. We assume these to be symmetric about δp = 0 and subtract them
from the radiative tail. This produces three regions in the δp spectrum we are interested in, shown
in Fig. 4.50.

We expect the number we find in the elastic peak, N0, and radiative tail, R, region to be

N0 = Kext,inKext,outK intN (4.61)

R =
[
δext,in
R K int

tailK
ext,out
tail + δint

R Kext,inKext,out
tail + δext,out

R Kext,inK int

]
N (4.62)
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Figure 4.50: Three regions in H2 elastic scattering to consider radiative corrections, the radiative
tail region, elastic region, and superelastic region.

where N is the number of elastically scattered particles and the fraction falling into our tail region
δR due to radiative effect x,

δx
R = Kx(∆E + 2∆Etail)−Kx(∆E) (4.63)

and the radiative correction for the tail region due to the radiative effect x is Kx
tail,

Kx
tail = Kx(∆Etail)). (4.64)

For our analysis, we choose the bounds of the radiative tail region to be between −70 MeV and
−30 MeV. This gives us ∆E = 0.03 GeV, and ∆Etail = 70 MeV−30 MeV

2 = 0.02 GeV. Performing
this analysis on H2 data for kinematic 4, we use the parameters given in Table 4.29 to describe our
kinematics and target. We then calculate
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Parameter Value
Ei 2.08 GeV
Ef 1.14 GeV
Q2 1.75 GeV2

m 511 keV
X0 12.3 cm
Zeff 10
tin 0.01 cm
tout 0.16 cm
η 0.64

Table 4.29: Parameters used to determine radiative corrections describing our kinematics and target.

δext,in
R = 1.16× 10−3

δint
R = 5.79× 10−2

δext,out
R = 4.18× 10−3

1−Kext,in = 6.08× 10−3

1−K int = 2.18× 10−1

1−K int
tail = 2.45× 10−1

1−Kext,out = 5.38× 10−2

1−Kext,out
tail = 6.06× 10−2.

Due to the thinness of our target wall, the radiative corrections are dominated by internal
radiation. Using the formula given in Eq. 4.62, this yields a value of N0/N = 0.735 and R/N =
0.058. The expected ratio of the number in the radiative tail region to the elastic region is then
0.079.

Selecting on elastics, we find N0 = 5349 events in the elastic peak, R+Ns = 775 in the radiative
tail region, and Ns = 372 in the superelastic region. This gives a ratio of R/N0 = 0.075, within 5%
of the predicted value of 0.079.

4.4.9 Comparison to Absolute Cross Section

While the measurement of the absolute cross section for of H2 is not necessary for the analysis of
E02-013, it is of interest when evaluating the performance of the spectrometer in the reconstruction
of elastic and quasielastic events.

The number of scattered electrons in solid angle ∆Ω for a total beam charge Q is

Nelas ≈ Q
nHl

dσ
dΩ∆Ω
e

(4.65)

where dσ
dΩ is given by Eq. 3.1 using the central angle of BigBite, θBB; nH is the number of protons

per volume; l is the length of the target; and ∆Ω is the solid angle subtended by the spectrometer.
For GE and GM , the dipole approximation is used (as given in Eqs. 4.51 and 4.52).

The differential cross sections at the central angle of BigBite and the expected yields for kinematic
3 and 4 are given in Table 4.30. To determine the density of protons in the target, the ideal gas law
was used

N

V
=

p

kBT
. (4.66)

122



Param. Kin. 3 Kin. 4
Ebeam (GeV) 3.29 2.08
θBigBite (rad) -0.90 -0.90
∆Ω (msr) 76 76
E′ (GeV) 1.41 1.13
Q2 (GeV2 3.52 1.78
Gp

E 0.0282 0.0813
Gp

M 0.0786 0.2269
dσ(θBigBite)

dΩ (fm2msr−1) 1.615×10−12 4.974×10−11

l (m) 0.4 0.4
pH2 (psig) 135 135
TH2 (K) 305 305
Np/V (m−3) 4.91 ×1026 4.91 ×1026

Nelas/Q (mC−1) 150.8 4644.7

Table 4.30: Predicted elastic yields per charge for H2 targets in kinematics 3 and 4.

To compare to the data, the number found in the elastic peak must be corrected for effects such
as dead times, tracking inefficiencies and radiative corrections. Furthermore, due to prescaling of
the T2 triggers the number of elastics must be counted properly.

There are two event types we are interested in: T3 triggers, signifying a BigBite - neutron arm
coincidence, and T2 triggers where no T3 trigger was present, which are the prescaled BigBite
singles. The number of corrected elastics seen in the data is then

Nelas,true =
NT3 + kT2,psNT2,noT3 +Ntails

εDAQεelecεtrackεtrack,skipKrad
(4.67)

where Nelas,true is the corrected number of elastics, NT3 are the number of elastics for T3 events,
kT2,ps is the prescale factor for T2 triggers, and NT2,noT3 is the number of elastics with a T2 trigger
but no corresponding T3. Ntails is the number of elastic events lost into the long non-Gaussian tails
from resolution effects, estimated by assuming a distribution symmetric in δp measured by counting
the number in the superelastic region (as done for when comparing radiative correction calculations).
εDAQ is the DAQ live time, εelec is the electronic live time, εtrack,skip is the effective tracking live time
due to skipping tracks due to excessive combinatorics, εtrack is the efficiency of tracking due to plane
inefficiencies given by Eq. 4.21, and Krad is the radiative corrections as determined by Eqs. 4.59
and 4.56. For H2 runs which were generally at a much lower current than production runs (usually
by a factor of 10), the drift chamber plane efficiency was generally consistent with 100%, so we will
assume no tracks were lost based on minimum number of plane constraints for this portion of the
analysis (i.e. an elastic event will always produce hits on at least the minimum number of planes
required for tracking).

The comparison between Nelas,true and the predicted calculation is in Table 4.31. The corrected
numbers appear to be about 10% lower than predicted by the cross section, which suggests the
reconstruction of tracks is being performed by the tracking code better than 90%. These numbers
are very acceptable given the crudeness in the calculation of the cross section and acceptance of the
calculation and the fact the experiment is not designed to measure an absolute cross section.

Furthermore, this analysis also yields an upper limit for the neutron-arm trigger efficiency. This
efficiency we define as the ratio of the number of elastic events when the neutron-arm gives a trigger to
the number of elastic events measured by BigBite regardless of neutron-arm trigger. This efficiency,
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Kin. 3 Kin. 4
Runs 3368,3369 4427
Q (mC) 7.80 2.71
Npeak, T3 149 11327
Npeak, T2 73 321
kT2,ps 1 20
Ntails 20 2800
εDAQ 0.98 0.93
εelec 0.98 0.92
εtrack,skip 0.97 0.93
ε̄plane 0.98 0.99
εtrack 1.0 1.0
Krad 0.73 0.74
Nelas,true 356 34895
Nelas,pred 408 36229
Nelas,true/Nelas,pred 0.87 0.96

Table 4.31: Comparison of elastic yields from data to predicted yields.

barring any accidental coincidence events is

εNA,upper =
NT3

NT3 + kT2,psNT2,noT3
. (4.68)

In light of accidental coincidences, this gives an upper bound, as the number of T3 events will be
artificially inflated. For kinematic 3, εNA,upper = 0.67 and for kinematic 4, εNA,upper = 0.63.

4.5 Coincidences

A final step must be done to calibrate the timing of the neutron arm relative to BigBite and
to correctly calculate the time of flight up to a constant. As shown in Eq. 3.36, the time of flight
calculation also requires knowledge of the time of flight of the electron from the target to the BigBite
scintillators (up to a constant). To determine this number, we use a 499 MHz signal generated by
the accelerator to determine a known time when the electron is at some fixed position relative to
the target (modulo a pulse bin).

Following the formalism set in Section 3.3.6, the RF signal measured in an F1 TDC with the
L1A signal as a readout, can be described as

tTDC
RF = vz/c+ tevt − b− tL1A − a (4.69)

where b is a constant. Using Eqs. 3.33, 3.34, 3.31, and 3.37, the time of flight for the electron, te
can be determined

te = tTDC,corr
BB,hit − tTDC

RF − tTDC
L1A + vz/c− a− b. (4.70)

This quantity is dependent on the path length, which in the effective bend plane model, is expected
to be between 2.0 and 2.2 m. However, tTDC

RF is only a number modulo 2 ns, so some arbitrary (event
independent) constant is still present.

To obtain tTDC
RF from the data, a reference time (which represents the readout signal) and the

TDC resolution must be applied, such that:

tTDC
RF = (creadRF − cstop) · αres (4.71)

124



where creadRF and cstop are the raw channels read from the TDC. To calculate the time width per
channel of the F1 TDC, αres, successive pulses in the RF time signal, which have a fixed time
difference can be used. Every 79th RF pulse is recorded and pulses are generated at a frequency of
f = 499 MHz, so

αres =
79

499 MHz ·∆T
. (4.72)

Where ∆T is the number of channels between pulses. The resolution is determined to be about
118.3 ps/channel.

Calculations of te modulo 2 ns can also be made by examining dependencies of te calculated
through the RF timing and track variables such as vz, xdet, and p. After determining such depen-
dencies, te modulo 2 ns can be represented as

te,data = (−1.8(ns/m)xbend + (2.3 ns/m)vz − (0.8 ns/GeV) · (p− 1.0 GeV). (4.73)

Furthermore, it should be noted that the resolution of the F1 TDC measuring the RF time is about
a factor of 2 better than that of the TDC measuring the scintillator time, though can only give this
time modulo 2 ns. It is possible to then correct the scintillator time, tTDC,corr

BB,hit using the RF timing
correction. The amount to add to tTDC,corr

BB,hit to correct it, ∆tTDC,corr
BB,hit , is

∆tTDC,corr
BB,hit = fmod(te,data − tTDC,corr

BB,hit + tTDC
RF + tTDC

L1A − vz/c+ a+ b, 2 ns). (4.74)

This is known as the RF correction. This correction can be up to several hundred ps, shown in
Fig. 4.51, which can give a substantial improvement in resolution at the higher Q2 kinematics, as
given by Eq. 3.21.
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Figure 4.51: RF correction for BigBite scintillator timing.

126



Chapter 5

Analysis

Ultimately, the goal of E02-013 is to extract the value of Gn
E for the four kinematic points by

examining the cross section asymmetry of 3He nuclei for different beam helicities. Once calibrations
of our detectors are performed, analysis of quasielastic events can be done.

For this work, two kinematic data sets are analyzed, the highest Q2 = 3.5 GeV2 point and the
Q2 = 1.7 GeV2 point. To perform this analysis, careful cuts on the 3He target data must be done
to select quasielastic events cleanly, modeling of the background must be done, analysis of charge
misidentification must be done, and other factors that could ultimately change the asymmetry must
be taken into account. Furthermore, some scheme must be developed to take the finite acceptance
of the spectrometer into account.

In this chapter, a description of the analysis procedure will be provided as well as some basic
results motivating our choices for the analysis. A full presentation and discussion of the results can
be found in Chapter 6. In particular, the portions of the analysis which require special attention will
be the corrections for final state interactions and the proton contribution to the quasielastic sample
identified as neutrons, as they will be some of the largest contribution to the final systematic error.
Contributions from accidental background and scattering from N2 in the target will be shown to
play a smaller role.

5.1 Analysis Flow

Analysis for E02-013 is done over several stages to help optimize the amount of time required to
perform an analysis. During the course of the experiment, several terabytes of data were accumulated
and stored in a raw CODA format. To process all of the data in this form would require on the
order of several weeks of processing time given the computing farm resources at Jefferson Lab.
This amount of time is prohibitive when several iterations of the processing become necessary as
calibrations and the analysis of the data become more refined.

Each stage of the analysis is designed to successively take shorter periods of time to perform an
analysis over an entire kinematic set. To optimize analysis time and reduce the number of iterations
over the data, calibrations that are not expected to significantly change over the course of a full
analysis are placed earlier in the analysis stages.

The conversion of raw data into ROOT trees and basic interpretations of that data are provided
by the Hall A ROOT/analyzer facility, which provides a strong framework for detector abstraction
as well as useful methods for data interpretation. E02-013 specific contributions to this framework
were included in the AGen library, which contains the code necessary to perform analysis specific
to our detectors, such as the BigBite tracking and optics and neutron arm cluster reconstruction.
Further stages in the analysis, which include more data refinement and the calculation of Gn

E , were
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also built using the ROOT package, though are generally in the form of smaller scripts and individual
classes.

5.1.1 E02-013 Analysis Flow

Analysis for E02-013 is broken into three stages, first pass, second pass, and final calculations, as
depicted in Fig. 5.1. The first pass includes all work done by the Hall A ROOT/analyzer, which
performs all the raw event decoding, tracking, cluster finding, and optics. This process is fairly
complicated and is discussed by itself in Section 5.1.2.

The second pass involves the calculation of nucleon momentum, coincidence kinematic variables
such as ~q, and charge identification by the veto layers. While charge identification and neutron
momentum could both be done in the first pass, these two calibrations were determined to be “soft”
and were left to pass two to allow flexibility in the event that different methods of calibration were
chosen. The output of this stage is in the form of ROOT trees similar to the original output. The
second pass also has the AGEn library available, so calculations such as the BigBite optics can
be re-performed on the data, which may be desirable as more refined optics calculations are made
available.

Time of flight can be determined, up to a constant, after the first pass of the data, but there
may be cases were this calculation may not be stable across large sets of runs and a set of different
offsets may be necessary. These can be determined separately and given as input for the second
pass. Time of flight and charge identification are both extremely important calculations with respect
to selecting neutral quasielastics, so by allowing these to be flexible, great amounts of time can be
saved when examining the effects of varying these methods.

Run characteristics are also calculated during the second pass as gross properties of individ-
ual runs. These include calculation of the dead times and effective dead times, veto rates, and
accumulated charge.

The final calculation stage involves taking the ROOT trees from the second pass and the run
characteristics and then calculating the raw asymmetries, physical asymmetries, and performing the
calculation for Gn

E .

5.1.2 Hall A Analyzer/AGen Library Flow

The Hall A analyzer was used as a strong framework for the base E02-013 raw data decoding and
basic detector analysis. Several changes were made to enhance or modify this framework specifically
for E02-013. This included the development of tracking and optics code, but also changing the
hard-coded order in which detectors were analyzed. This was necessary mainly to accommodate the
BigBite tracking code so that it could take advantage of other detectors.

The Hall A analyzer is based heavily around object oriented code, which lends itself naturally
to data analysis by providing abstraction of physical objects such as a spectrometer composed of
several detector systems. Each detector and collection of detectors has three general stages in the
analysis:

1. Decoding, where raw data for an event is interpreted as physical values. An example of
decoding is taking raw TDC values for drift chamber wires and converting them into drift
times or associating an ADC signal with an integrated amplitude.

2. Coarse processing, where the decoded data is processed and refined, usually in a way that is
faster and more crude than what is desirable for a final analysis, but may be useful in the later
stages of analysis.

3. Fine processing, calculation of final values for a detector in a given event. Here, for example,
electron tracks to be used in the rest of the analysis are finalized and neutron arm clusters are
combined.
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Figure 5.1: Depiction of the stages of E02-013 analysis.

Additionally, arbitrary code can be executed at the end when all detector packages are finished
processing to perform additional calculations. These packages, known as physics modules, are useful
for determining kinematic parameters such as invariant mass W and three-momentum transfer, ~q.
Additionally, scaler output is performed in parallel with this analysis and separate ROOT trees are
generated with their output.

The standard analyzer performs all analysis in such a way that all detectors and objects would
be done in each stage together. For E02-013, this behavior was not desirable, so an abstraction of
the ordering was integrated into the AGEn library such that any of the stages listed above for any
detector or collection of detectors could be performed in an arbitrary order. Here, five stages of
detector processing were defined:

1. Beam Helicity Analysis, where the helicity information is decoded and interpreted. The first
1,000 events in a given run are used to determine the placement in the pseudo-random helicity
generation scheme. Here all three detector analysis stages are performed successively.

2. Decoding, where all remaining detector systems pass through the decoding stage.

3. Coarse processing, where all detector systems pass through the coarse processing stage, with
exception of the BigBite calorimeter. The calorimeter also goes through the fine processing
stage to produce the positions of energy-deposition clusters. The BigBite coarse tracking is
performed after the calorimeter to utilize these positions, but is only done using wire positions
ignoring drift times.

4. Fine processing, all remaining detector systems pass through the fine processing stage. BigBite
tracking is re-performed using drift times.
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First Pass
Discard first 1000 events from a run
Discard non-coincidence trigger events
Preshower signal must be above specific threshold (400 channels)

Second Pass
Discard events with no helicity data
Preshower signal must be above specific threshold (500 channels)
Track must be reconstructed in BigBite
Track beamline vertex, vz, −0.2 < vz < 0.2 m
Track momentum, p, 0 < p < 2.0 GeV
Invariant mass W , 0.6 < W < 1.8 GeV

Table 5.1: Base cuts placed on the data for each stage of analysis.

5. Physics analysis, where basic kinematic parameters are calculated using only the BigBite
spectrometer and beam information, such as direction and energy.

5.1.3 Event Reduction Cuts

For each stage in processing, very crude and basic cuts are done on the data to cull events from our
sample which are clearly not quasielastic. These cuts are left very loose and are chosen so they have
little effect on the final analysis. They are in place strictly to reduce the amount of data storage
required for output. A table of these cuts can be found in Table 5.1.

For the first pass of the analysis, the first 1000 events are discarded after decoding helicity
information as no helicity will be determined for these events. As the typical run size is on the
order of hundreds of thousands or millions of events, this is only a small subset. Events in which
only one of BigBite or the neutron arm fired are discarded, as no coincidence information can be
reconstructed from these events (though for calibration analysis they can be useful, so these are
typically kept for H2 runs). BigBite events where the preshower had an amplitude sum of less than
400 channels are discarded, selecting on electron signatures (discussed in Section 4.4.1). Events
where BigBite completed tracking and no track was found are discarded. Events where the tracking
was preemptively skipped or terminated early are saved for accounting purposes.

In the second pass of analysis the helicity is required to be well defined. Undefined helicity events
correspond to events when the helicity is in a brief transition period where the voltage supplied to
the Pockels cell changes. Preshower signal must be above a specific level, determined in Section 4.4.1,
strongly selecting on electrons, and a track must be found and must be within the regions where the
vertex and momentum are well reconstructed (see Section 4.4.5). Reconstructed momenta must be
between 0 and 2 GeV, which is larger than the kinematic region for quasielastic scattering for all of
our beam energies. The reconstructed track vertex along the beam line must be within the range
of the target, eliminating extraneous events that may have originated elsewhere in the beamline.
Coincidence is also required, eliminating other trigger types from the data, such as the MPS for the
helicity. Furthermore, a loose cut on invariant mass W is also put in place to reduce the number
of events written out. This is generally 0.6 GeV < W < 1.8 GeV, which is much wider than the
anticipated quasielastic peak in W on the order of mn±200 GeV due to Fermi motion in the nucleus.

It should be noted that during the second pass analysis, the run characteristics which depend
on events in the data that are discarded at this stage are calculated before discarding the data. For
example, to determine the helicity-dependent effective efficiency of the drift chamber tracking, the
events where tracking was skipped must be counted. These are made available for this purpose at
this stage, but the events are not considered for the quasielastic sample at later stages.
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Type Accum. Charge (mC)
Kin. 3 Kin. 4

3He 12022 2027
H2 165 22
N2 32 4

BeO/C Foils 4 2

Table 5.2: Total usable accumulated charge of the four target types for kinematics 3 and 4 used for
this analysis.

5.2 Kinematics and Data Sets

Four types of runs were taken during E02-013 that are relevant to the analysis. The 3He runs from
which we measure our quasielastic asymmetry, and the H2, N2, and carbon foils targets that we use
for calibrations. During the experiment, occasional problems would occur in the data acquisition
system resulting in lost information. Furthermore, problems in the detectors would also cause
problems in data taking, such as the BigBite drift chamber’s current would become too large due
to extremely high background rates. This would trip the high voltage supply leaving the chambers
unpowered. This caused a number of runs to contain poor data or very little data.

Runs determined to have less than 100 µC of integrated beam are identified and are removed
from the data set. Runs where the BigBite drift chambers were inactive for any period of time
(determined by examining numbers of hits in all chambers) are kept, but the amount of beam
charge accumulated during these periods is subtracted to determine an accurate total usable charge
accumulation.

The total amount of charge for each of the four target types for the two kinematic periods 3 and
4 are presented in Table 5.2.

5.3 Charge Identification

The process for charge identification was described in Section 3.4.3. However, there is a choice on
where to place limits on the difference between the cluster position and veto hit position and the
time difference to associate a veto hit with a neutron arm cluster. To make these choices data is
examined to produce not only these limits but also to determine the effective speed of light in the
scintillator in Eq. 3.46, cs. The limits are generally chosen with the intention to reduce the number
of misidentified protons in the neutral sample and are thus left intentionally wide.

The spacial association of veto hits to neutron arm clusters is modeled by Eq. 3.45

|xclus − xveto − x0| < ∆x

where xclus is the reconstructed x position of the cluster and xveto is the x position of the veto bar
that fired. x0 is an offset that must be determined from the data. By examining this spectrum, a
reasonable value of the limit ∆x can be deduced and must be repeated for both veto layers. While
any data set may be used for this calibration, H2 data is used as they generally have a lower amount
of accidental background due to running at lower beam currents. W cuts of |W − 0.94 GeV| <
0.1 GeV and a preshower cut of Aps > 500 channels were used to select on elastic events for which
have protons, which should leave a strong signal in the veto scintillator. These spacial difference
distributions and the limits for hit association for both veto planes are shown in Fig. 5.2.

Time differences between the neutron arm clusters and veto hits are more complicated due to
the fact that light propagation times for veto hits must be taken into account. These effects, which
are eliminated for the neutron arm clusters, must be corrected for the vetos since veto hits do not
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(a) (b)

Figure 5.2: Spacial difference distributions of the vertical positions between hits in the veto layers
and neutron arm clusters in a) veto layer 1 and b) veto layer 2. The limits to associate these hits
with neutron arm clusters are shown by red lines.

have the benefit of relying on PMTs at each end of the scintillator to reconstruct the position along
a scintillator bar. However, by utilizing this reconstructed y position of the cluster and by finding
the propagation time of the light in the veto scintillator, the veto time can be corrected and better
matched to the cluster time. This effect is clearly shown in Fig. 5.3, where the dependency of the
the time difference on the yclus is dramatic.

Taking this effect into account, the corrected time difference can then be modeled by Eq. 3.46

∆t = tveto − tclus +
|yclus − y0|

cs
+ t0

where tveto is the time read by the veto TDC, tclus is the corrected reconstructed time of the cluster
defined in Section 3.3.6, and yclus is the reconstructed y position of the cluster. Once again, by
examining the data (using the same events for the spatial difference calibration) the offsets y0 and
t0, as well as the effective speed of light in the scintillator, cs, can be determined. A plot of the
corrected time spectrum and the limits for veto hit association is shown in Fig. 5.4. A list of all
values used to associate veto hits to neutron arm clusters can be found in Table 5.3.

Finally, individual electronic dead times of each detector channel must be taken into account for
proper charge identification. Due to the fact that a signal from a charged particle can be masked by
an earlier signal producing a false neutral identification, individual dead times must be taken into
account. To determine these dead times, the time difference between successive hits on each PMT
is examined. What is observed is a minimum time gap between the two hits, corresponding to the
dead time as shown in Fig. 5.5.

While these numbers can be calculated for each PMT channel, for ease of analysis the dead time
is treated to be the maximum of all dead times in the software. This has the side effect of reducing
statistics while making the calculation of proton contamination in the quasielastic neutral sample
more straightforward (see Section 5.7). While the median dead time for all channels was found to
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Figure 5.3: Time differences between veto hits and neutron arm clusters vs. the y position of the
neutron arm cluster. This dependency is due to the time of the propagation of light in the veto
scintillator.

Value Veto 1 Veto 2
x0 -0.05 m 0.05 m
∆x 0.55 m 0.55 m
t0 1.8 ns 1.8 ns
y0 -0.35 m -0.35 m
cs 0.14 m/ns 0.14 m/ns
∆t 10 ns 10 ns

Table 5.3: Values used for veto layers 1 and 2 to associate hits with neutron arm clusters for charge
identification.
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(a) (b)

Figure 5.4: Time differences between veto hits and neutron arm clusters after correction for the
propagation of light in the veto scintillator for a) veto layer 1 and b) veto layer 2. Limits for the
association of veto hits with neutron arm clusters are shown by red lines.

be about 40 ns, the maximum was roughly 100 ns. For this analysis then, a dead time of 100 ns
is enforced for all PMT channels. The number of events lost to dead time increases by roughly a
factor of two due to this technique. For kinematic 4, 3.2% of quasielastic events were lost to this
dead time. For kinematic 3, 13.1% were lost.

5.4 Absolute Time of Flight Calibration

The calculation of the time of flight of the recoiling nucleon up to a constant was described in
Section 3.3.6 and Section 4.5. However, for the nucleon momentum to be calculated, this constant
must first be found. There are several ways to calibrate this timing. The first is to use a H2 run and
select upon elastic events where the momentum (and time of flight) of the nucleon is well known
from measuring the scattered electron. The second method, which can be done for any given run,
is to select upon events in the neutron arm which correspond to β = 1 from photons.

For elastic events from our H2 target, the three-momentum transfer ~q corresponds to the nucleon
momentum that we are interested in calibrating. The relation between the momentum, ~q, and time
of flight, ttof , is

ttof =
d

c

√
1 +

(
mp

|~q|

)2

(5.1)

where c is the speed of light, d is the path length from the target vertex to the cluster position, and
mp is the mass of the proton. Using this equation as the true time of flight, any overall offset can
then be determined by taking the difference of the time of flight calculated above and the time of
flight given in Eq. 3.36.
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Figure 5.5: The time difference between two successive hits on the same veto scintillator bar. The
time gap corresponds to the dead time of the electronics for this channel.
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Figure 5.6: The photon peak is found immediately before the quasielastic peak and can be resolved
from it by selecting on invariant mass, W , W > 1.15 GeV and on neutron arm clusters associated
with a veto hit.

An alternate method to determine the time of flight is to select on the photon peak in the time
of flight distribution, Fig. 5.6. In this case, the time of flight for a β = 1 particle is:

ttof =
d

c
(5.2)

where d is the distance between the target vertex and the cluster position. This peak is present in
all runs and therefore can be immediately determined. It generally requires looking into higher W
regions and selecting on charged clusters.

For this analysis, the H2 method is employed, but shifts in the position of the quasielastic peak
over a larger set of runs are taken into account (usually on the order of less than 100 ps). Fitting a
Gaussian to the difference of the time of flight spectrum and the time of flight predicted by Eq. 5.1,
we arrive at a resolution of about σt,NA = 500 ps for both kinematic 3 and kinematic 4. Given
Eq. 3.21, this predicts a momentum resolution, σp,NA, of 280 MeV for kinematic 3 and 49 MeV for
kinematic 4.

5.5 Event Selection

Event selection, beyond the basic cuts described in Section 5.1.3, must be done carefully to maximize
the number of quasielastic events while reducing the number of other events that would be present
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in the sample. To determine these cuts, the variables missing parallel and perpendicular momentum
are useful to define. They are

pmiss,‖ = q̂ · (~q − ~pNA) (5.3)
pmiss,⊥ = |~q − ~pNA − q̂pmiss,‖| (5.4)

where ~pNA is the momentum measured by the neutron arm, ~q is the three momentum transfer
of the electron measured by BigBite, and q̂ is the unit vector of the three momentum transfer. In
many respects, the physical interpretation of these two variables is straightforward. pmiss,‖ correlates
closely to how well the momentum measured agrees with that predicted by ~q, and pmiss,⊥ represents
how far radially the cluster position is from the position predicted by ~q.

W , the invariant mass, is used to select quasielastic events. It is defined as

W 2 = (pi,nucl + q)2 (5.5)

where pi,nucl is the four-momentum of the initial nucleon target and q is the four-momentum transfer.
This variable comes with a strong caveat, however. We do not truly know the initial momentum of
the nucleon since it is bound in a nucleus. To calculate this variable, pi,nucl is taken to be (mp, ~p = 0)
where mp is the mass of the proton and q is the four-momentum transfer. For the remainder of this
analysis, when we refer to invariant mass in regards to 3He scattering, we will really be referring to
the pseudo-invariant mass where the initial nucleon is assumed to be at rest.

In the case of elastic scattering, such as the case for our H2 target, the final momentum of the
nucleon is simply pi,nucl + q and therefore W is the mass of the nucleon (barring any resolution
effects).

Using this technique, quasielastic scattering from these nucleons will not produce an invariant
mass at the nucleon mass, but will instead have some width. It should also be noted that the mass
difference between protons and neutrons, mp −mn ≈ 1 MeV, is small compared to the momentum
resolution of the neutron arm and the resolution of BigBite and the two masses are taken to be
approximately the same for this analysis.

5.5.1 Inelastic Contribution

To help suppress the inclusion of inelastic events caused by π0 and π± electroproduction, a final cut
on missing mass for the reaction 3He(~e, e′)X is included. Missing mass is defined as

m2
miss = (Pi + q − pf )2 (5.6)

where Pi is the initial 4 momentum of the 3He nucleus, taken to be at rest in the lab frame, pf is
the measured final four-momentum of the nucleon, and q is the four momentum transfer. This mass
represents the mass of the unmeasured final hadronic system. In the case of quasielastic scattering in
the impulse approximation, this is simply the mass of the remaining two nucleon system. However,
in the case of pion electroproduction, this will also include the contribution from an additional pion.
This allows us to define a minimum missing mass necessary for pion production, which is the mass
of two nucleons plus the mass of a pion, about 2 GeV. A plot of mmiss vs. W can be found in
Fig. 5.7. Quasielastic events clearly show up near W = mn and mmiss = 2mn.

This quantity is highly dependent on the calculation of nucleon momentum through time of flight,
so there are some redundancies when placing this cut in addition to our other quantities. However,
it provides a useful tool to explicitly suppress inelastic events in our sample.

Due to resolution effects, this distribution will be smeared, so placing a cut at 2 GeV will not
fully suppress all pion production. To help determine the contributions of inelastic events to the
neutral quasielastic sample, a simple Monte Carlo simulation was developed. The quasielastic cross
section for scattering from neutrons is described using elastic scattering, Eq. 3.1, on an neutron using
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(a) (b)

Figure 5.7: Missing Mass vs. W for kinematics a) 3 and b) 4. Quasielastic events are clearly visible
in W around the nucleon mass and mmiss around two nucleon masses. A cut is placed selecting on
mmiss < 2.0 GeV.

a realistic initial momentum state, with the dipole parametrization introduced in Section 2.3.4. To
parametrize the cross sections for pion electroproduction from electron scattering on nucleons, data
provided by the MAID project from Mainz [79] was used for the production channels

ep → e′pπ0

ep → e′nπ+

en → e′nπ0

en → e′pπ−.

The MAID data consists of fits done to experimental results and is available through a web
interface which gives cross sections in terms of various observables in the form of tables. The five-
fold differential cross section for each channel was put into a smooth interpolation using fitting
software developed by Gregg Franklin and then integrated into the Monte Carlo simulation.

Resolution effects were determined by introducing Gaussian smearing on the momenta of final
measured electron and nucleon states. The width of the Gaussian smearing was determined by
comparing the data to H2 scattering data. The initial nucleon momentum distribution was de-
termined by generating a three-dimensional Gaussian momentum distribution. The widths of the
Gaussian distributions were determined by the results of a calculation by Rocca Schiavilla [80]. See
Section 5.7.4.

It should be noted that this simulation is somewhat crude in that it includes only a simple
acceptance test, which was done by testing the polar angle of the electron and nucleon with respect
to the beam; if the track for a simulated event was within the nominal acceptance of BigBite
and the neutron arm the event was accepted. This simulation does not include any out-of-plane
acceptance checks. Furthermore, this simulation does not include additional physics phenomena
such as radiative effects or charge exchange.
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(a) (b)

Figure 5.8: Relative comparison of a) data to b) simulation with pion production for kinematic 3
with cuts of pmiss,⊥ < 0.5 GeV and |pmiss,‖| < 0.5 GeV. Vertical axis units are arbitrary.

Despite these shortcomings, this simple model describes the data qualitatively well for kinematic
4. Comparisons of the simulation to kinematics 3 and 4 data can be found in Figs. 5.8 and 5.9. In
the case of kinematic 3 the simulation seems to overpredict the number of pion production events
at higher W . In this case it will overestimate the production and provide a result which should
be an upper bound. Cuts wider than the quasielastic cuts in pmiss,‖ and pmiss,⊥ were placed on
the data and with identical cuts on the simulation. For both kinematics, the relative amplitude of
quasielastics to inelastic events are qualitatively in agreement. For kinematic 4, a minimum between
the two peaks occurs at approximately identical W .

5.5.2 Chosen Cuts

We will now choose a set of cuts on the data to select our neutral quasielastic sample using a
2 GeV missing-mass cut (approximately the mass of two nucleons and a pion) to help suppress any
pion production. By examining pmiss,‖ and pmiss,⊥ vs. W , the quasielastic region is clearly seen
in Figs. 5.10 and 5.11. For each of the three cuts other than mmiss, placing cuts on the remaining
two variables results in the distributions seen in Figs. 5.12, 5.13, and 5.14. The pmiss,‖ distribution
for kinematic 3 is wider than that for kinematic 4, as expected, due to the degraded momentum
resolution. A table of the cuts can be found in Table 5.4.

Placing these same cuts on the pion-production simulation, we see that the contributions from
pion production are small in Fig. 5.15. Comparing to Fig. 5.16, we see they are qualitatively
in agreement. The W cut upper limit for kinematic 3 is placed lower at 1.05 GeV to help the
suppression of leaking from resolution effects. Integrating these histograms between the W values
included by our cuts, the contribution is about 2% for kinematic 4 and 3% for kinematic 3. Inspecting
the raw asymmetry values against invariant mass for both kinematics, Fig. 5.17, the values for the
asymmetry in the regions of W > 1.1 GeV are roughly on the same order of magnitude and sign
as those where quasielastics are expected to dominate. We infer that any asymmetry contributions
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(a) (b)

Figure 5.9: Comparison of a) data to b) simulation with pion production for kinematic 4 with cuts
of pmiss,⊥ < 0.5 GeV and |pmiss,‖| < 0.5 GeV.

Cut Kin. 3 Kin. 4
W 0.7 < W < 1.05GeV 0.7 < W < 1.15GeV
pmiss,‖ |pmiss,‖| < 400MeV |pmiss,‖| < 250MeV
pmiss,perp pmiss,⊥ < 150MeV pmiss,⊥ < 150MeV
mmiss mmiss < 2.0 GeV mmiss < 2.0 GeV

Table 5.4: Cuts used for the selection of quasielastic events.
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(a) (b)

Figure 5.10: pmiss,‖ vs. W for kinematics a) 3 and b) 4. The chosen cuts are shown in the red boxes.
For a) an artificially low upper limit on W is used to suppress pion production events as shown in
Section 5.5.1.

(a) (b)

Figure 5.11: pmiss,⊥ vs. W for kinematics a) 3 and b) 4. The chosen cuts are shown in the red boxes.
For a) an artificially low upper limit on W is used to suppress pion production events as shown in
Section 5.5.1.
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(a) (b)

Figure 5.12: pmiss,‖ for kinematics a) 3 and b) 4. Cuts in pmiss,⊥ and W have been applied. Chosen
cuts are shown by red lines.

(a) (b)

Figure 5.13: pmiss,⊥ for kinematics a) 3 and b) 4. Cuts in pmiss,‖ and W have been applied. Chosen
cuts are shown by red lines.
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(a) (b)

Figure 5.14: W for kinematics a) 3 and b) 4. Cuts in pmiss,‖ and pmiss,⊥ have been applied. Chosen
cuts are shown by red lines.

for pion production in our sample will then be suppressed and will be subsequently ignored for this
analysis. Furthermore, to help confirm the suppression of these events, the value of Gn

E should not
vary significantly as cuts are varied, as will be shown in Section 6.3. We make a final note that with
these stronger cuts, the data (Fig. 5.16) is still qualitatively described by the Monte Carlo.

5.6 Accidental Background

In our data, accidental background events in the neutron arm can clearly be seen when looking for
hits that occur in very early time regions which would reconstruct β > 1. These are found to occur
in the data randomly in time at some measurable mean rate. To determine the contributions of
accidental background within the quasielastic cuts, an identical analysis is done on the data after
shifting all the neutron arm data in β−1 before any quasielastic cuts such that the new quasielastic
region is entirely composed of random background events that were originally in a β > 1 region.
This β > 1 region represents events that could not have originated from the event of interest by
causality and is then populated by events uncorrelated to the scattering process measured by BigBite.
By assuming the distribution of events is symmetric under time translation, they make up a “flat
accidental background” which has contributions to the quasielastic sample.

By shifting in β−1 an equivalent shift in time is achieved. After shifting, the number of back-
ground events for any given set of cuts remains identical by invariance under time translation.
However, the number of quasielastic events (and all other events that could be associated with the
electron scattering process from the electron found in BigBite) is reduced to 0, as there cannot be
any true coincidence events related to the BigBite trigger in the region. Performing the same cuts
on this shifted data then gives a count of the background events in the quasielastic sample, within
some error due to statistics.

Fig. 5.19 shows how events in one region of β−1 are then identified as background when shifted
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(a) (b)

Figure 5.15: Simulation of elastic in black and pion electroproduction in red for a) kinematic 3
and b) kinematic 4. Cuts in Table 5.4 in pmiss,⊥ and pmiss,‖ have been applied. Contributions for
W < 1.05 GeV for kinematic 3 and W < 1.15 GeV for kinematic 4 show a suppressed presence of
pion production.

(a) (b)

Figure 5.16: Invariant mass with all cuts described in Table 5.4except for W cut for a) kinematic 3
and b) kinematic 4. Compare to simulation in Fig. 5.15. The peak is slightly shifted towards higher
W due to the presence of inelastic events.
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(a) (b)

Figure 5.17: Raw asymmetry vs. W for a) kinematic 3 and b) kinematic 4 with pmiss,⊥ < 0.5 GeV
and |pmiss,‖| < 0.5 GeV. The W spectrum is inlaid in red for relative comparison of counts between
bins; vertical axis units are arbitrary.

(a) (b)

Figure 5.18: Raw asymmetry vs. W for a) kinematic 3 and b) kinematic 4 with all quasielastic cuts
in Table 5.4 applied. Natural variations in the asymmetry from θe correlating with W are expected
from Eq. 3.7. The W spectrum is inlaid in red for relative comparison of counts between bins;
vertical axis units are arbitrary.
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Figure 5.19: β−1 spectrum with flat background from β−1 shift in red.

and can then be subtracted. Fig. 5.20 shows the background calculated for the pmiss,‖ spectrum after
pmiss,⊥ and W cuts. As confirmation of the time invariance of the spectrum, Fig. 5.21 and Fig. 5.22
shows the raw asymmetry (Section 5.7) and neutral to charged clusters ratio as a function of β−1,
respectively. The asymmetry plot is consistent with the idea that the β > 1 spectrum is invariant
with time.

However, the ratio plot, Fig. 5.22, shows that the ratio of accidental uncharged-to-charged in
the region 0.5 < β−1 < 1.0 is not constant while the region β−1 < 0.5 is. This is due to the 20 ns
window for associating veto hits with neutron arm clusters. β > 1 clusters that are sufficiently in
time to the real coincidence region are associated with real coincidence veto hits. Since these veto
hits come in locally at a higher rate and different uncharged-to-charged ratio than the accidental
background, a larger number of these background clusters are accidentally associated with veto hits
causing an artificially high count of background events identified as charged. This reduces the ratio
and causes the effect seen.

The size of this effect is consistent with the charge window size. Given a coincidence time window
size of 10 ns and a nominal distance of the neutron arm from the target of 10 m, the size of the
inverse beta region of this effect, ∆β−1 = (10 ns) · (0.3 m/ns)/(10 m) = 0.3. This is consistent with
the region where the deviations occur. This creates a problem when identifying the contributions of
charged background and neutral background that need to be subtracted from the quasielastic sample.
Fig. 5.22 shows that the ratio of uncharged-to-charged background changes when considered in the
presence of real events, which is the correct amount of background to subtract. All that can be
determined is an upper limit of the neutral background based upon the amounts seen in the far
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Figure 5.20: pmiss,‖ spectrum with background from β−1 shift in red.
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Figure 5.21: Raw asymmetry vs. β−1 with β−1 inlaid in red for kinematic 4. The asymmetry is
consistent with begin constant throughout the β−1 < 1 region.
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Figure 5.22: Ratio of number of uncharged-to-charged ratio vs. β−1 with β−1 inlaid in red. The
ratio becomes smaller between 0.5 < β−1 < 1.0 due to the time window to associate veto hits with
neutron arm clusters.
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β > 1 region where the uncharged-to-charged ratio reflects the true nature of the background. A
sufficiently large shift of β−1 → β−1 + 0.8 (about 25 ns) is used.

For ease of calculation, we will work with the assumption of no knowledge of how the background
changes in the presence of real events. That is, we will say we do not understand the fraction of
uncharged background that becomes misidentified. There are two extreme cases for how the neutral
background contributes to the signal. For the neutral background, either all the background is
unassociated with the quasielastic events or all the neutral background is mistakenly identified as
charged. In the former case, the amount of background to subtract is exactly the amount of neutral
background after shifting in β−1 after cuts. In the latter case, there is no neutral background to
subtract. While more sophisticated models of the data can be built, the background contributes a
relatively small amount of uncertainty in the final result, as will be shown in Section 6.2. In this
light, further analysis of these effects will only produce minor improvements to the measurement
and is not done for this work.

For the charged background, the situation is slightly different. All the charged background events
will produce a signal in the veto layers and contribute to the background that must be subtracted.
This places a lower limit on the amount of charged background. The two extreme cases to consider
are no neutral background is misidentified, in which case this lower limit is the background to be
subtracted, or all neutral background is misidentified and the amount of charged background to
subtract is the total amount of both types.

We identify the amount of both types of background to be subtracted with a systematic uncer-
tainty for the charged signal, Σch

back, and the neutral signal, Σback, as

Σch
back = Nback,ch +

Nback,un

2
± Nback,un√

12
(5.7)

Σback =
Nback,un

2
± Nback,un

√
12

(5.8)

where Nback,ch and Nback,un is the charged and uncharged background counts measured from the
shifted β−1 spectrum. The systematic uncertainty of N√

12
comes from the RMS value of a flat

distribution from −N
2 to N

2 normalized to 1

〈N〉RMS =

(∫ N
2

−N
2

x2

N
dx

)1/2

=
N√
12
. (5.9)

5.7 Asymmetries

One of the relevant quantities to measure from the data is the cross section asymmetry with beam
helicity. This quantity is directly related to Gn

E through Eq. 3.7. However, these equations assume
that one has a perfectly polarized neutron target and a perfectly polarized beam. Furthermore, these
equations do not take into account contributions to the neutral quasielastic sample when background
from proton charge misidentification and accidental background. Additional false asymmetries may
also be introduced from a beam-charge asymmetry, electronics, and analysis.

A table of the notation continuously used in several sections in calculating various asymmetry
contributions and dilutions can be found in Table 5.5.

5.7.1 Asymmetry Sign

During the experiment, the apparent sign of the asymmetry would change in accordance with the
insertion or removal of a half-wave plate at the injector and with the change of the sign of the target
polarization vector. These changes act as a check on the possible systematics of the asymmetry
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N± Half-wave plate and target sign corrected count for helicity ±.
Nn The number of correctly identified quasielastically scattered neutrons.
Nback The number from accidental coincidence background caused by random

hits in time.
Np The number of protons misidentified as neutrons in the quasielastic sample.
NN2 The number of events caused by scattering from N2 in the 3He target in

the quasielastic sample.
Nother All other contributions in the neutral sample.
Nback,un, Nback,ch The number of uncharged and charged accidental background hits

found by shifting in time, respectively.
Σx The sum N+

x +N−
x .

∆x The difference N+
x −N−

x .
Aphys The physical asymmetry to relate to Gn

E .
Araw The asymmetry measured in the data without corrections to asymmetry

contributions and dilutions.
P3He Polarization of the 3He nucleus.
Pn Polarization of the neutron relative to the 3He nucleus polarization.
Pbeam Polarization of the electron beam.
Dback Asymmetry dilution factor due to contributions from accidental

background.
DN2 Asymmetry dilution factor due to N2 contributions from the target.
Dp Asymmetry dilution factor due to protons misidentified as neutrons.
DFSI Asymmetry dilution factor from final state interactions.
Dch

back Proton asymmetry dilution factor due to contributions from accidental
background.

Dch
N2

Proton asymmetry dilution factor due to N2 contributions from the target.
Dch

n Proton asymmetry dilution factor due to neutrons misidentified as protons.
Dch

FSI Proton asymmetry dilution factor from final state interactions.

Table 5.5: Notation used in calculation of asymmetry contributions and dilutions.
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Figure 5.23: Asymmetry of the helicity gated T2 triggers. The change in sign corresponds to changes
in the half-wave plate setting and the target polarization direction [81].

during the experiment. The value of the asymmetry can be seen to change sign with the state of
the half-wave plate, as shown in Fig. 5.23.

The measured asymmetry, Ameas, is equal to

Ameas =
N+,rec −N−,rec

N+,rec +N−,rec
= f(T̂ ) (5.10)

where Nh,rec is the count of neutral quasielastics with recorded helicity h, f(T̂ ) (more specifically
Eq. 3.7) is a function of T̂ , the unit vector of the target polarization direction and f has the property
that f(λT̂ ) = λf(T̂ ) where λ = ±1. With the insertion of the half-wave plate, the recorded helicities
for each state are reversed, meaning Ameas will change sign. A similar effect occurs with the change
in sign of the target, or T̂ → −T̂

Ameas = PHWPPT̂Aphys (5.11)

where PHWP takes the value of +1 or −1 given the half-wave plate state and PT̂ is ±1, based on
the direction of the polarization of the target. Multiplying both sides by PHWPPT̂, the correction
on the measured asymmetry based on these states is simply

Araw = PHWPPT̂Ameas. (5.12)

With knowledge of the target polarization direction, which can be determined from the EPR
measurements, and the beam polarization, which comes from the Møller polarimeter measurement,
the sign of the asymmetry is fixed. The half-wave plate state is recorded by EPICS and is therefore
available on the order of every few seconds during data taking. The half-wave plate was occasionally
changed during a run, which is identified by examining this EPICS data over the course of the run.
In such cases the run is discarded.

For the remainder of this analysis, the correction of the asymmetry sign based on these factors
is assumed.
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5.7.2 Asymmetry Corrections

To properly account for all of the contributions and dilutions of the true asymmetry, we must
develop a formalism that allows us to take the asymmetry measured from the data, Araw and make
corrections such that we can recover the asymmetry that would be measured if these effects were
not present, Aphys. We take Araw to be the sign corrected measured asymmetry

Araw =
N+ −N−

N+ +N− (5.13)

where N± is the count in our quasielastic neutral sample for (corrected) helicity ±. Aphys is given by
Eq. 3.7. For now we will assume the false instrumental asymmetry contributions are small. These
will be treated in Section 5.8. We define our contributions to the neutral quasielastic sample that
we will consider for this analysis

1. Accidental random background

2. Protons with misidentified charge

3. Scattering from N2 present in the target

4. Final state interactions

These contribute as
N = Nn +Nback +Np +NN2 +Nother (5.14)

where Nn is the number of correctly identified quasielastically scattered neutrons, Np is the number
of protons misidentified as quasielastic neutrons, NN2 is the number of events from N2 present in
the target, Nback is the number from accidental coincidence background caused by random hits in
time, and Nother is all other contributions in the neutral sample. N+

x and N−
x will represent the

number of x for positive and negative helicity, respectively.
There are also several factors that directly dilute the asymmetry:

1. Less than full polarization of the nucleus, P3He

2. Less than full polarization of the neutron relative to the nucleus, Pn

3. Less than full polarization of the beam, Pbeam

These polarization dilutions change the asymmetry by reducing it by a factor equal to their
product

P3HePnPbeamAphys = An,meas. (5.15)

where An,meas. is the true asymmetry of the neutrons measured in the experiment from quasielastic
scattering from 3He,

An,meas. =
N+

n −N−
n

N+
n +N−

n
. (5.16)

The raw asymmetry from the data is

Araw =
N+ −N−

N+ +N− =
N+

n +N+
back +N+

p +N+
N2

+N+
other −N−

n −N−
back −N−

p −N−
N2
−N−

other

N+
n +N+

back +N+
p +N+

N2
+N+

other +N−
n +N−

back +N−
p +N−

N2
+N−

other

.

(5.17)
Defining for type x

∆x = N+
x −N−

x (5.18)
Σx = N+

x +N−
x (5.19)
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then,

Araw =
∆
Σ

=
∆n + ∆back + ∆p + ∆N2 + ∆other

Σn + Σback + Σp + ΣN2 + Σother
. (5.20)

We define four dilution factors as

Dback = 1− Σback
Σ =

Σn + Σp + ΣN2 + Σother

Σ
(5.21)

DN2 = 1− ΣN2
Σ−Σback

=
Σn + Σp + Σother

Σn + Σp + ΣN2 + Σother
(5.22)

Dp = 1− Σp

Σ−Σback−ΣN2
=

Σn + Σother

Σn + Σp + Σother
(5.23)

DFSI = 1− Σother
Σ−Σback−ΣN2−Σp

=
Σn

Σn + Σother
. (5.24)

The product of these dilutions is

DbackDN2DpDFSI =
Σn

Σ
. (5.25)

Araw can then be written

Araw = DbackDN2DpDFSI
∆n

Σn
+

∆back + ∆p + ∆N2 + ∆other

Σ

= DbackDN2DpDFSIAn,meas +
∆back

Σ
+

∆p

Σ
+

∆N2

Σ
+

∆other

Σ
. (5.26)

Taking the fact that the N2 target is not polarized and therefore has no asymmetry, ∆N2 = 0.
Combining Eqs. 5.15 and 5.26, the relation between the raw asymmetry and the asymmetry to relate
to Gn

E is

Aphys =
Araw − ∆back

Σ − ∆p

Σ − ∆other
Σ

P3HePnPbeamDbackDN2DpDFSI
. (5.27)

This leaves the four dilutions and three relative asymmetries to be calculated. Dback and ∆back can
be calculated directly from the 3He data, as the background counts can be handled by shifting in
β−1 as described in Section 5.6.

It is also useful to define similar dilutions regarding the charged quasielastic sample, such as in
determining the N2 dilution in the charged sample, as will be used in Section 6.1.4,

Σch = Σch
p + Σch

back + Σch
n + Σch

N2
+ Σch

other (5.28)

where Σch is the count of events passing the quasielastic cuts and identified as charged by the
vetos, Σch

p is the contribution by quasielastic protons from 3He nuclei, Σch
back is the contribution of

background, Σch
n is the contribution of quasielastic neutrons from 3He nuclei, Σch

N2
is the contribution

from scattering from N2 nucleons, and Σch
other is everything else. We can then define a similar set of

dilution factors for the charged spectrum

Dch
back = 1− Σch

back
Σch =

Σch
p + Σch

n + Σch
N2

+ Σch
other

Σch
(5.29)

Dch
N2

= 1− Σch
N2

Σch−Σch
back

=
Σch

p + Σch
n + Σch

other

Σch
p + Σch

n + Σch
N2

+ Σch
other

(5.30)

Dch
n = 1− Σch

n

Σch−Σch
back−Σch

N2

=
Σch

p + Σch
other

Σch
p + Σch

n + Σch
other

(5.31)

Dch
FSI = 1− Σch

other
Σch−Σch

back−Σch
N2
−Σch

n
=

Σch
p

Σch
p + Σch

other

. (5.32)
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5.7.3 Nitrogen Dilution

The contribution of N2 in the data is measured by performing the quasielastic analysis on a N2 target
and scaling the counts proportionally to the relative densities of the targets and to the integrated
beam-charge. For a given set of 3He runs and a set of N2 runs of total beam charge Q, density of
N2 in the target of ρN2 , neutral quasielastic counts Σ, and quasielastic background counts Σback,
the scaled number of N2 counts in the 3He quasielastic neutral sample is

ΣN2 = (Σ(N2)− Σback(N2))
Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)
. (5.33)

The dilution factor for N2, DN2 is then

DN2 = 1− Σ(N2)− Σback(N2)
Σ− Σback

Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)
. (5.34)

Any varying lengths of the two target cells can be neglected, as identical cuts on the reconstructed
vertex position artificially make the effective lengths of the targets equal.

5.7.4 Proton Dilution and Asymmetry

Calculating the number of protons in the neutral sample is done by examining the uncharged-
to-charged ratio across three different targets. This allows us to constrain the misidentification
probabilities based upon the expected ratios from the nuclei of the targets if there were no misiden-
tifications. Additionally, due to the fact that cuts are placed on missing momentum and due to
nuclear effects, one cannot a priori expect these ratios to be simply the ratio of neutrons to protons
in the nuclei, as covered later in this subsection.

The number of apparently observed quasielastic protons and neutrons, N (p) and N (n) can be
written generally as

N (n) = N (n)
p +N (n)

n (5.35)

N (p) = N (p)
p +N (p)

n (5.36)

where the subscript refers to the actual particle and the superscript refers to how it is identified.
We define a set of mixing coefficients, η, such that

N (n)
n ∝ σnη

(n)
n (5.37)

N (p)
n ∝ σnη

(p)
n (5.38)

N (n)
p ∝ fσpη

(n)
p (5.39)

N (p)
p ∝ fσpη

(p)
p (5.40)

where σn and σp are the single-nucleon cross sections. This definition takes into account the cuts
on missing momentum and nuclear effects by parametrizing these effects into a constant f which
depends on the target, the effective number of protons to neutrons. The remaining factors are
target independent. The ratio of observed uncharged-to-charged quasielastic events in the data can
be written

R =
N (n)

N (p)
=

σn

σp
(η(n)

n /η
(p)
p ) + f(η(n)

p /η
(p)
p )

σn

σp
(η(p)

n /η
(p)
p ) + f

. (5.41)

By using three different targets, the three ratios of mixing constants in Eq. 5.41 can be con-
strained. The dilution factor Dp is then

Dp =
N

(n)
n

N
(n)
n +N

(n)
p

=
σn

σp

(
η
(n)
n /η

(p)
p

)
σn

σp

(
η
(n)
n /η

(p)
p

)
+ f

(
η
(n)
p /η

(p)
p

) . (5.42)
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Furthermore, the dilution factor for neutrons in the charged sample, Dch
n , is given by

Dch
n =

N
(p)
p

N
(p)
p +N

(p)
n

=
f

σn

σp
η
(p)
n /η

(p)
p + f

. (5.43)

As constraints we use the (background subtracted, N2 subtracted for the 3He data) uncharged-
to-charged ratios from the H2 target, RH2 , the N2 target, RN2 , and the 3He target, R3He

RH2 = η(n)
p /η(p)

p (5.44)

R3He =
σn

σp
(η(n)

n /η
(p)
p ) + f(η(n)

p /η
(p)
p )

σn

σp
(η(p)

n /η
(p)
p ) + f

(5.45)

RN2 =
σn

σp
η
(n)
n /η

(p)
p + η

(n)
p /η

(p)
p

σn

σp
(η(p)

n /η
(p)
p ) + 1

. (5.46)

Here we have assumed that f = 0 for the H2 target, f = 1 for the N2 target (Z = N = 7), but we
have allowed that f may be unequal to the ratio of protons to neutron in 3He due to differences in
the proton and neutron momentum distributions. These differences could results in a different ratio
when cuts on missing momentum are applied. For N2 with Z = N = 7, this is not expected to be
a significant effect [80] and the momentum distributions are treated as being identical. It is then
simply a matter of solving for the three ratios given these three equations. One arrives at

η
(n)
p

η
(p)
p

= RH2 (5.47)

η
(p)
n

η
(p)
p

=
σp

σn

(
R3Hef −RN2 +RH2(1− f)

RN2 −R3He

)
(5.48)

η
(n)
n

η
(p)
p

=
σp

σn

(
fRN2

(
R3He −RH2

RN2 −R3He

)
−RH2

)
. (5.49)

Rate Dependence

The analysis above assumes that the efficiencies of detecting one particle as another is rate-independent.
However, in the data a variety of luminosities were used on different targets and the accidental back-
ground rates will change. Since these rates contribute to factors such as accidental association of
neutral particles as charged they must be accounted for when considering uncharged-to-charged
ratios of different rates.

To properly evaluate the dilution factor using the method in the previous section all ratios
must be corrected for different veto accidental rates. Furthermore, in the regions of time populated
purely by accidental hits, there is little correlation between hits in the two veto planes (only 10%
have matching hits in both veto layers) and they are treated as independent rates. To do this, we
model the rate dependency using the following scheme

Nobs
n = Nn(1− P1,deadP2,dead)−Nn[P1,acc(1− P1,dead) + P2,acc(1− P2,dead)

−P1,acc(1− P1,dead)P2,acc(1− P2,dead)] (5.50)
Nobs

p = Np(1− P1,deadP2,dead) +Nn[P1,acc(1− P1,dead) + P2,acc(1− P2,dead)
−P1,acc(1− P1,dead)P2,acc(1− P2,dead)] (5.51)

where Nobs
n is the number of observed neutrals, Nobs

p is the number of observed charged, Nn is the
number of neutrals if there was no accidental backgrounds, Np is the number of charged if there
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was no accidental background, Pi,dead is the probability of an accidental hit in a time window equal
to the dead time in veto plane i, and Pi,acc is the probability of an accidental hit in the charge
identification window. This model is dependent upon how these probabilities are defined. As the
accidental background events are flat in rate, a Poisson distribution can be used to describe the
probability of measuring n accidental hits of total rate r on the veto plane in some time interval ∆t

f(n, kr∆t) =
(kr∆t)ne−kr∆t

n!
(5.52)

where k parametrizes the spacial window size for accepting a veto hit for a neutron arm cluster. We
are interested in finding the probability, P , that we have one or more hits in the interval. This is

P = 1− e−kr∆t. (5.53)

The probabilities are then

Pi,dead = 1− e−kri∆tdead (5.54)
Pi,acc = 1− e−kri∆tacc (5.55)

where ri is the total rate of accidentals on the ith entire veto plane, ∆tdead = 100 ns, and ∆tacc =
20 ns as specified in Section 5.3.

Here k represents the fraction of the veto plane that is considered for any given event. The
value of k should vary between 0 and 1 and should be identical for both veto planes, as the cuts are
identical. Taking the value of k ≈ 0.2 as the veto acceptance area of ∆x = 1.1 m and the neutron
arm height of 6 m, veto rates generally less than 500 kHz, and the time windows specified above, the
amount of deviation compared to that of no veto rate is expected to be about 0.5% which is small.

The dilution analysis should then be performed at the veto rate for the given 3He runs to give an
accurate representation of the proton contribution to the quasielastic neutral sample. These rates
are typically stable for production running as there was generally little variation in beam current
during these time periods.

Missing Momentum Cut Dependence

The effective ratio of protons to neutrons for 3He for our missing-momentum cuts, f , is deter-
mined by utilizing a calculation performed by College of William and Mary graduate student Aidan
Kelleher [81] using a 3He momentum density distribution provided by Rocco Schiavilla [80]. This
calculation determines the momentum distributions of the two nucleon types in the 3He nucleus.
Placing cuts on missing-momentum alters the relative ratios measured from quasielastic scattering
for protons and neutrons due to these momentum differences.

A plot of the relative ratio of protons to neutrons given our pmiss,‖ and pmiss,⊥ cuts is shown in
Fig. 5.25. From this figure, it is clear that the neutron momentum is generally wider than that of
the protons, as the cuts are made more narrow, the relative number of protons to neutron becomes
larger. Furthermore, these distributions all have the desired property of asymptotically approaching

Z
A−Z

∣∣
3He

= 2 as pmiss,‖ →∞ and pmiss,⊥ →∞.
Effects based on the momentum resolution of the neutron arm are included to determine our

values of f , (though are not present in Fig. 5.25). For our cuts of |pmiss,‖| < 250 MeV and pmiss,⊥ <
150 MeV for kinematic 4 a value of f = 2.15 is found. For cuts of |pmiss,‖| < 400 MeV and
pmiss,⊥ < 150 MeV for kinematic 3, f = 2.14.

Proton Asymmetry

The proton asymmetry term ∆p

Σ can be calculated using the known values of Gp
E and Gp

M by doing a
calculation similar to the one used for Gn

E “in reverse”. As will be shown in Section 5.10 the physical
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asymmetry for the proton, Ap
phys, can be related to an expansion of Eq. 3.7 in terms of powers of

the ratio Λ = Gp
E

Gp
M

Ap
phys =

∑
n

TnΛn(Q2) (5.56)

where the coefficients Tn are related to the acceptance of our detectors and the direction of the
polarization of the target. These numbers are calculated for Gn

E in our analysis to n = 5 and we
will treat as known. By using the parametrization by Jim Kelly [36], Gp

E and Gp
M can be calculated

given a known value of Q2, also found during our analysis and described in Section 5.10. All that is
left is to calculate ∆p

Σ given Ap
phys.

Following an analogous formalism to Section 5.7.2,

Ap,meas =
N+

p −N−
p

N+
p +N−

p
=

∆p

Σp
= Ap

physP3HePpPbeam (5.57)

where Pp ≈ −0.03 as a result of the same calculations that give the polarization of the neutron in
the 3He nucleus, as discussed in Section 3.3.3. Using Eqs. 5.21 to 5.23

1−Dp =
Σp

Σn + Σother + Σp
=

Σp

Σ
DbackDN2 . (5.58)

Combining all of these equations, we arrive at our expression for ∆p

Σ

∆p

Σ
=

1−Dp

DbackDN2

P3HePpPbeam

∑
n

TnΛn(Q2). (5.59)

5.7.5 Other Corrections

Final State Interactions

Final state interactions (FSI) also have some effect on the final calculation of Gn
E . These interactions

are present due to the rescattering of the struck nucleon with the remaining nucleus. To account
for these effects, the Glauber approximation, which treats the nucleons as stationary objects in the
nucleus, has been shown to be a reliable theory to describe these interactions for our kinematic
regime.

For this analysis a code, called GEA [82], based on the generalized eikonal approximation, was
used to estimate the effects of FSI on our final result. While the results for light nuclei are only
preliminary, we apply these to our analysis to provide an estimation of these effects on our final result.
The preliminary calculations for 3He show that these effects will reduce the asymmetry, Aperp, the
primary contribution to our total asymmetry (see Section 3.1) by about 5% in the presence of charge
exchange effects for all of our kinematic points [83], Fig. 5.26.

We set the value for the factor DFSI = 0.95± 0.05 as an estimation of these effects. Once more
accurate and final calculations become available they may be worked into this analysis.

5.8 False Asymmetries

For this analysis false asymmetry contributions are parametrized as effective efficiencies for each
helicity state, as described in Section 3.4.5. These are calculated for each 3He run in the analysis
and are the averaged into a total false asymmetry for the run period. For each run, the effective
efficiency, εh, for a helicity state (εh = 1− rh, where rh is the dead time for a helicity state), h, is

εh =
∏

i

εh,i = εh,elecεh,DAQεh,trackεh,Q (5.60)
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Figure 5.26: The asymmetry Aperp calculated by Sargsian [83] in the generalized eikonal approxi-
mation. The upper solid line is the result for a 100% polarized neutron at rest. The lower solid line
includes a neutron polarization of 82%. The dashed line is the result of a PWIA calculation. The
dotted line is the results of a DWIA calculation. The dash-dotted line is the result of the DWIA
calcluation with charged exchange effects included.
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where the definition of each of the efficiencies is given in Section 3.4.5. For the effective efficiency
over a set of runs ε where run i has efficiency εi, event count Ni, and true number of events before
dead time effects, N t

i ,

N t
± =

∑
i

N t
i,± =

N±

ε±
=
∑

i

Ni,±

εi,±

ε =

(
1
N

∑
i

Ni

εi

)−1

. (5.61)

So, 1/ε is just the weighted average of all 1/εi for all runs. The total false asymmetry for a run
period, Af , that must be subtracted we define as

Af = A−At =
N+ −N−

N+ +N−
−
N t

+ −N t
−

N t
+ +N t

−
(5.62)

where A is the measured asymmetry, At is the “true” asymmetry in the absence of these effects, N
is the measured number in the asymmetry, N t is the “true” number, where εN t = N . For clarity,
the total efficiency, ε is

ε =
ε+N

t
+ + ε−N

t
−

N t
. (5.63)

The false asymmetry can then be written

Af =
(N+ − εN t

+)− (N− − εN t
−)

N+ +N−
=
N+

(
1− ε

ε+

)
−N−

(
1− ε

ε−

)
N+ +N−

. (5.64)

For kinematic 3 and 4 we find the false asymmetries to be Af = −0.0008 and -0.0014, respec-
tively. As will be shown in the next chapter, these quantities are small compared to the asymmetry
uncertainty and are neglected.

5.9 Run Summation

For each kinematic point all the individual runs must be combined together to calculate Gn
E for

the entire point. However, the factors for each run, such as the target polarization, are not fixed
and may continually vary over time. Here we present the scheme used to take all the 3He runs and
produce a single corrected asymmetry, Aphys.

The asymmetry Aphys for an individual run, i, we will denote as Aphys,i. For this analysis, we
take the dilutions DN2 and Dp to be constant for the experiment. This is acceptable since the
relative amount of N2 in the cell is constant over the kinematic, and the proton contribution should
not vary significantly given various background rates, as shown in Section 5.7.4. Furthermore, as
the luminosities do not generally change significantly over a kinematic, the background dilution and
asymmetry contributions are taken to be constant.

Each individual run is taken as a measurement of Aphys. To combine the measurements, Aphys,i,
with statistical uncertainty, σi, into a single measurement, we weight by the inverse uncertainty
squared

Aphys =

∑
i

Aphys,i

σ2
i∑

i
1

σ2
i

. (5.65)

This produces a minimum χ2 fit of the physical asymmetries. The statistical uncertainty for an
asymmetry of N counts goes as 1/

√
N , as will be shown in Section 6.1.1. In this case, σi ≈ 1√

N
.
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Substituting into Eq. 5.65

Aphys =
∑

iNiAphys,i∑
iNi

(5.66)

which is simply the average weighted by the counts.

5.10 Finite Acceptance

The asymmetry given by Eq. 3.7

Aphys = −
2
√
τ(τ + 1) tan(θ/2)Λn̂ · (q̂ × T̂ )

Λ2 + (τ + 2τ(1 + τ) tan2(θ/2))

−2τ
√

1 + τ + (1 + τ)2 tan2(θ/2) tan(θ/2)(q̂ · T̂ )
Λ2 + (τ + 2τ(1 + τ) tan2(θ/2))

=
∆(θ, φ)
Σ(θ, φ)

(5.67)

assumes fixed values of ~q, θ, n̂, and T̂ . However, the acceptance of our detectors allows for a range
of ~q, n̂, and θ. A scheme must be developed to accurately relate the asymmetry measured by the
entire acceptance of the spectrometer to the averaged ratio of Gn

E/G
n
M . This acceptance may also

have varying efficiencies over the acceptance which must be considered. For this analysis, we use a
method formulated by G. B. Franklin [84].

Using Eq. 5.67, we can write the quasielastic neutron asymmetry, An,meas, measured over the
acceptance of the spectrometer as an integral over the acceptance Ω

An,meas =
N+

n −N−
n

N+
n +N−

n
= PAphys = P

∫
dΩ∆(θ, φ)ε(θ, φ)∫
dΩΣ(θ, φ)ε(θ, φ)

(5.68)

where ε(θ, φ) is the acceptance of a coincidence event with an electron in BigBite and neutron in
the neutron arm. We take (θ, φ) to be the polar and azimuthal angle of the scattered electron with
respect to the nominal beam direction, the LAB coordinate z axis. P is taken as the product of the
three polarizations Pn, P3He, and Pbeam.

The efficiency can be formulated by comparing the number of events in an acceptance bin dN
to the number we would expect from the differential cross section, which is Σ(θ, φ)

ε(θ, φ) =
dN+(θ, φ) + dN−(θ, φ)

Σ(θ, φ)
. (5.69)

Inserting Eq. 5.69 into Eq. 5.68 we get

An,meas = P

∫
dΩ∆(θ,φ)

Σ(θ,φ) dN
+(θ, φ) + dN−(θ, φ)∫

dΩdN+(θ, φ) + dN−(θ, φ)
(5.70)

=
P

N+
n +N−

n

∑
QE n events

∆(θ, φ)
Σ(θ, φ)

. (5.71)

The measured asymmetry An,meas is then just the average of the asymmetries in each bin weighted
by the number of events in that bin. As a side note, we recognize that this form is independent
of acceptance effects, which allows one to do this measurement without doing measurements of the
absolute cross section. We next write Eqs. 5.67 in simplified terms

Aphys =
BΛ + C

D + Λ2
(5.72)

162



where

B = −2
√
τ(1 + τ) tan(θ/2)n̂ · (q̂ × T̂ ) (5.73)

C = −2τ
√

1 + τ + (1 + τ)2 tan2(θ/2) tan(θ/2)(q̂ · T̂ ) (5.74)

D = τ + 2τ(1 + τ) tan2(θ/2). (5.75)

Expanding this in a Taylor series in Λ about Λ = 0

Aphys ≈ (BΛ + C)(1/D − Λ2/D2 + Λ4/D2)

=
C

D
+
B

D
Λ− C

D2
Λ2 − B

D2
Λ3 +

C

D3
Λ4 +

B

D3
Λ5

= T0(θ, φ) + T1(θ, φ)Λ + T2(θ, φ)Λ2 + T3(θ, φ)Λ3 + T4(θ, φ)Λ4 + T5(θ, φ)Λ5 (5.76)

where

T0 =
C

D
(5.77)

T1 =
B

D
(5.78)

T2 = − C

D2
(5.79)

T3 = − B

D2
(5.80)

T4 =
C

D3
(5.81)

T5 =
B

D3
. (5.82)

Eq. 5.71 tells us to simply take the average of the values for the quasielastic events to get the
measured quantity. Taking this average of the Ti values to get Ti, we arrive at

An,meas = P [T0 + T1Λ + T2Λ2 + T3Λ3 + T4Λ4 + T5Λ5] (5.83)

To fifth order, Monte Carlo results show that this method is accurate to better than 1%.
There is now the question of what the average Q2 is, given the range of Q2 over the quasielastic

events. To first order, expanding the ratio Λ in Q2 about some fixed value, Q2
n, we get

Λ(Q2) = Λ(Q2
n) + α(Q2 −Q2

n) (5.84)

where α = dΛ
dQ2

∣∣
Q2=Q2

n
. Taking Eq. 5.76 just to first order and substituting Eq. 5.84 we get

∆
Σ

(Q2) = T0(Q2) + T1(Q2)(Λ(Q2
n) + α(Q2 −Q2

n)). (5.85)

The value of the asymmetry at Qn is

∆
Σ

(Q2
n) = T0(Q2

n) + T1(Q2
n)Λ(Q2

n). (5.86)

Subtracting Eq. 5.86 from Eq. 5.85 yields

∆
Σ

(Q2)− ∆
Σ

(Q2
n) = T0(Q2)− T0(Q2

n) + (T1(Q2)− T1(Q2
n))Λ(Q2

n) + αT1(Q2)(Q2 −Q2
n). (5.87)
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Taking the average over the events and recognizing that we wish the average values of ∆
Σ , T0,

and T1 to be identical with those evaluated at the mean value of Q2, and setting that value to Q2
n,

we get
0 = αT1(Q2)Q2 − αT1(Q2)Q2

n (5.88)

or

Q2
n =

T1Q2

T1

. (5.89)

5.11 Gn
E

The calculation of Gn
E from the asymmetry using our finite acceptance model requires finding the

root of a 5th order polynomial in Λ given by Eq. 5.76. To solve for this root we employ Newton’s
method, which utilizes an iterative process based on the derivatives of the function. The specific
function we wish to find the root of is

f(Λ) = Aphys − (T 0 + T 1Λ + T 2Λ2 + T 3Λ3 + T 4Λ4 + T 5Λ5). (5.90)

For each step, i

Λi+1 = Λi −
f(Λi)
f ′(Λi)

. (5.91)

As an initial value, we use the solution to the expansion in first order

Λ0 =
Aphys − T 0

T 1

(5.92)

which is generally about 10% from the value of Λ for our settings.
While the process can continue indefinitely, we choose to end it when the difference between suc-

cessive values of Λ is small. Using the dipole parametrization forGn
M and the Galster parametrization

(Section 2.3.5) for Gn
E at the highest Q2 of 3.47 GeV2, we obtain a value of Λ ≈ −0.15. Given un-

certainties on the order of 10% of Galster, choosing the convergence parameter to be 1 × 10−6 is
more than sufficient to ensure an accurate result.

The values of Gn
M to extract Gn

E from Λ are taken from the analysis by Jeff Lachniet [35] and a
linear interpolation is used to produce a smooth set of values.
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Chapter 6

Results

In this chapter we present the results of our analysis over kinematics 3 and kinematics 4 for E02-013.
We will show the various contributions of dilutions and additional asymmetries to the raw measured
asymmetry and present their contributions to the uncertainties of our measurement. In particular,
the target polarization, the contribution of final state interactions, and the proton contribution to
the identified quasielastic neutral sample will have the largest contributions to our uncertainties.
The results for our measurements of Gn

E for two of the kinematics will be shown.

6.1 Calculations and Error Propagation

In this section we will show explicitly the calculation of the various quantities necessary to obtain
Gn

E as well as the uncertainty for each of those quantities and how it contributes to our uncertainty
of Gn

E . In the calculation of uncertainty, we take the approach that the uncertainty for quantity y
dependent on a set of (independent) quantities xi with individual uncertainties δxi is

(δy)2 =
∑

i

(
∂y

∂xi
δxi

)2

. (6.1)

As this analysis is heavily dependent on counting the number of events, we are interested in the
uncertainty of these counts. Provided that distribution of these counts form a Poisson distribution,
as will be the case if the events occur randomly in time at some fixed mean rate, we expect a Poisson
distribution of some mean N to have the variance, σ2 = N . Given this, we will take the uncertainty
of a count to be δN =

√
N .

6.1.1 Raw Asymmetry

Raw asymmetries are calculated as per Eq. 5.17

Araw =
N+ −N−

N+ +N− (6.2)

where Nh are number of identified neutral coincidence events from the data passing the quasielastic
cuts with (HWP and target sign corrected) helicity state h. For this analysis, we use the cuts defined
in Table 6.1. The uncertainty of this quantity is

δAraw =
2
√
N+N−

(N+ +N−)3/2
(6.3)
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Cut Kin. 3 Kin. 4
W 0.7 < W < 1.05GeV 0.7 < W < 1.15GeV
pmiss,‖ |pmiss,‖| < 400MeV |pmiss,‖| < 250MeV
pmiss,⊥ pmiss,⊥ < 150MeV pmiss,⊥ < 150MeV
mmiss mmiss < 2.0 GeV mmiss < 2.0 GeV

Table 6.1: Cuts used for the selection of quasielastic events.

and N = N+ +N−. We note at the limit where N± = N±

2 ± d
2 , N+ −N− = d� N

δAraw =
2
√(

N
2 + d

2

) (
N
2 −

d
2

)
N3/2

=
2
√

N2

4 − d2

4

N3/2
≈ 1√

N
− d2

N5/2
(6.4)

so the uncertainty on the asymmetry goes as 1/
√
N for small asymmetries.

6.1.2 Background

Flat background contributes to the raw asymmetry corrections in two forms, the dilution factor
Dback and the asymmetry contribution ∆back

Σ . Dback, expressed in Eq. 5.21 is

Dback = 1− Σback

Σ
. (6.5)

As explained in Section 5.6, the total amount of uncharged background contributing, Nback, is
reduced from the amount that would be naively deduced from the β−1 < 1 region. From the analysis
in Section 5.6, we obtained a value with systematic uncertainty

Σback = N+
back +N−

back =
Nback,un

2
± Nback,un√

12
. (6.6)

Combining with the statistical uncertainty of
√

Nback,un
2

δΣback =
(
Nback,un

2
+

(Nback,un)2

12

)1/2

. (6.7)

The uncertainty for the background dilution factor is

δDback =
(
δΣ2

back

Σ2
+

Σ2
back(δΣ)2

Σ4

)1/2

=
(
Nback,un

2Σ2
+

(Nback,un)2

12Σ2
+

(Nback,un)2

4Σ3

)1/2

. (6.8)

For the quantity ∆back
Σ , which describes the asymmetry contribution of the background to the

quasielastic neutral sample, using the notation of the previous chapter

∆back

Σ
=
N+

back −N−
back

Σ
. (6.9)

For the background asymmetry, there is a correlated systematic contribution. The uncertainty
taking this into account is

δ

(
∆back

Σ

)
=

(
N−

back,un

2Σ2
+

(N+
back,un −N−

back,un)2

12Σ2
+
N+

back,un

2Σ2
+

(N+
back,un −N−

back,un)2

4Σ3

)1/2

.

(6.10)
The calculations and results for these two quantities for both kinematic 3 and 4 are presented in
Table 6.2.
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Param Kin. 3 Kin. 4
+ - + -

N 7467 7858 73518 82543
Nback,un 107 121 5408 5521
Dback 0.993 0.965
δDback 0.004 0.020
δDback/Dback 0.004 0.021
∆back

Σ -0.00046 -0.0004
δ
(

∆back
Σ

)
0.0007 0.0005

δ
(

∆back
Σ

)
/∆back

Σ 1.63 1.43

Table 6.2: Calculation and results for the background dilution and asymmetry contribution and the
associated uncertainties as presented in Section 6.1.2 for kinematics 3 and 4.

6.1.3 Nitrogen Dilution

The nitrogen dilution DN2 is given by Eq. 5.34

DN2 = 1− Σ(N2)− Σback(N2)
Σ− Σback

Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)
(6.11)

where Σback is the uncharged accidental background to be subtracted from the signal, Σ, Q(x) is the
accumulated beam charge for the x target runs used for this calculation and ρN2(x) is the density
of N2 in target x. These are calculated from the runs used to obtain Σ, for both the N2 and 3He
runs. The amount of background to subtract is handled in an identical way to all other background
subtractions in this analysis.

The uncertainty is

δDN2 =

[(
Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)

)2(
δΣ(N2)2

(Σ− Σback)2
+
δΣback(N2)2

(Σ− Σback)2
+

(Σ(N2)− Σback(N2))2

(Σ− Σback)4
(
δΣ2 + δΣ2

back

))

+
(
δρN2(

3He)
ρN2(3He)

)2

(1−DN2)
2 +

(
δρN2(N2)
ρN2(N2)

)2

(1−DN2)
2

]1/2

=

[(
Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)
1

Σ− Σback

)2
(

Σ(N2) +
Nback,un(N2)

2
+
N2

back,un(N2)
12

+

(Σ(N2)− Σback(N2))2

(Σ− Σback)2

(
Σ +

Nback,un

2
+
N2

back,un

12

))
+
(
δρN2(

3He)
ρN2(3He)

)2

(1−DN2)
2

+
(
δρN2(N2)
ρN2(N2)

)2

(1−DN2)
2

]1/2

. (6.12)

The results for these calculations for kinematics 3 and 4 are given in Table 6.3.
To properly determine the proton dilution, an identical calculation must be performed for the

dilution of charged particles. This formalism is analogous to that of the neutral particles and is also
presented in Section 5.7.2. We defined the proton dilution from nitrogen to be

Dch
N2

= 1−
Σch

N2

Σch − Σch
back

(6.13)
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Kin. 3 Kin. 4
Q(3He) (mC) 113.8 99.1
Q(N2) (mC) 31.7 4.1
ρN2(

3He) (amg) 0.162 0.162
ρN2(N2) (amg) 4.41 10.09
Σ 369 13693
Nback,un 2 689
Σ(N2) 146 1979
Nback,un(N2) 14 46
δ(ρN2(

3He)/ρN2(
3He) 0.007 0.007

δ(ρN2(N2)/ρN2(N2) 0.007 0.007
DN2 0.947 0.943
δDN2 0.006 0.002
δDN2/DN2 0.006 0.002

Table 6.3: Results for the calculation of the N2 dilution as described in Section 6.1.3. The units
amg, or Amgats, is the ratio of density in the target over the target gas density at STP.

The factor needed to scale the number of N2 events to obtain Σch
N2

is analogous to that for the neutral
dilution. The dilution in terms of the counts obtained from the N2 target is then

Dch
N2

= 1−
Σch

N2

Σch − Σch
back

. (6.14)

The background contribution to the charged signal is presented in Section 5.6. The amount of
background to subtract from the charged signal is

Σch
back = Nback,ch +

Nback,un

2
. (6.15)

The uncertainty of the background taking into account statistical and systematic uncertainties
is

δΣch
back =

(
Nback,ch +

Nback,un

2
+
(
Nback,un√

12

)2
)1/2

. (6.16)

The uncertainty for the charged dilution is similar to that for the neutral dilution:

δDch
N2

=

[(
Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)

)2
(

δΣch(N2)2

(Σch − Σch
back)2

+
δΣch

back(N2)2

(Σch − Σch
back)2

+
(Σch(N2)− Σch

back(N2))2

(Σch − Σch
back)4

(
δ(Σch)2 + δ(Σch

back)
2
))

+
(
δρN2(

3He)
ρN2(3He)

)2

(Dch
N2

)2 +
(
δρN2(N2)
ρN2(N2

)
)2

(1−Dch
N2

)2
]1/2

=

[(
Q(3He)
Q(N2)

ρN2(
3He)

ρN2(N2)
1

Σch − Σch
back

)2
(

Σch(N2) +Nback,ch(N2) +
Nback,un(N2)

2

+
N2

back,un(N2)
12

+
(Σch(N2)− Σch

back(N2))2

(Σch − Σch
back)2

(
Σch +Nback,ch +

Nback,un

2
+
N2

back,un

12

))

+
(
δρN2(

3He)
ρN2(3He)

)2

(1−Dch
N2

)2 +
(
δρN2(N2)
ρN2(N2)

)2

(1−Dch
N2

)2
]1/2

. (6.17)
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Kin. 3 Kin. 4
Q(3He) (µC) 113.8 99.1
Q(N2) (µC) 31.7 4.1
ρN2(

3He) (amg) 0.162 0.162
ρN2(N2) (amg) 4.41 10.09
Σch 3649 107978
Nback,un 2 689
Nback,ch 2 55
Σch(N2) 1015 8659
Nback,un(N2) 14 46
Nback,ch(N2) 6 3
δ(ρN2(

3He)/ρN2(
3He) 0.007 0.007

δ(ρN2(N2)/ρN2(N2) 0.007 0.007
Dch

N2
0.964 0.969

δDch
N2

0.001 0.0005
δDch

N2
/Dch

N2
0.001 0.010

Table 6.4: Results for the calculation of the N2 dilution in the charged quasielastic sample as
described in Section 6.1.3.

6.1.4 Proton Dilution

The method to evaluate the proton dilution is presented in Section 5.7.4. The basic premise is to
take the (background corrected, N2 corrected) uncharged-to-charged ratios for various targets at
various veto rates, fit the ratios and determine their values at a fixed veto rate, and then use these
to constrain the various proton/neutron mixing parameters to determine the number of protons
contaminating the neutral sample. There may be some uncertainty in the ratio of uncharged-to-
charged in the target due to pion contamination, but we make the assumption that it is heavily
suppressed due to our W and mmiss cuts.

To obtain the uncharged-to-charged ratios to use in our fit, R = Σn+Σp

Σch
p +Σch

n
, we must first correct

for the amount of background in the charged and uncharged sample for each of the three targets.
Neglecting other contributions, we found

Σch
p + Σch

n = Σch − Σch
back = Σch −Nback,ch −

Nback,un

2
(6.18)

Σn + Σp = Σ− Σback = Σ− Nback,un

2
. (6.19)

In determining the uncertainty for the ratio, R, we must take care because the systematic uncer-
tainties for Σch and Σ are correlated. This is easily observed by the fact that the more uncharged
background that is misidentified, the more background that is included into the charged signal. We
can evaluate this by including a number that is misidentified deviating from the mean Nmis in the
calculation of the uncertainties

R =
Σ− Nback,un

2 −Nmis

Σch −Nback,ch − Nback,un
2 +Nmis

. (6.20)
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This yields the uncertainty

δR2 =

(
δΣ

Σch −Nback,ch − Nback,un
2 +Nmis

)2

+
1

(Σch −Nback,ch − Nback,un
2 +Nmis)4

×

[
δN2

back,un

(
1
2
(Σ− Σch −Nback,ch)−Nmis

)2

+ δN2
mis

(
Σch + Σ−Nback,ch −Nback,un

)2
+((δΣch)2 + δN2

back,ch)
(

Σ− Nback,un

2
−Nmis

)2
]
. (6.21)

Nmis takes an average value of 0, but the uncertainty is given by the systematic uncertainty of the
background, Nback,ch√

12
. Also, since we’ve separated the systematic uncertainty from the background,

their uncertainties are purely statistical

δNback,ch =
√
Nback,ch (6.22)

δNback,un =
√
Nback,un. (6.23)

This leaves us with the expression

δR =

(
Σ

(Σch −Nback,ch − Nback,un
2 )2

+
1

(Σch −Nback,ch − Nback,un
2 )4

×

[
Nback,un

(
1
2
(Σ− Σch −Nback,ch)

)2

+
(
Nback,un√

12

)2 (
Σch + Σ−Nback,ch −Nback,un

)2
+(Σch +Nback,ch)

(
Σ− Nback,un

2

)2
])1/2

. (6.24)

However, this is only valid for the N2 and H2 runs. In the case of 3He, there is an additional
contribution due to the N2 in the cell. To correct for this, an additional factor of DN2

Dch
N2

must be

included as well. R is then

R3He =
DN2

Dch
N2

Σ− Nback,un
2

Σch −Nback,ch − Nback,un
2

(6.25)

and the uncertainty is

δR3He =
DN2

Dch
N2

(
Σ

(Σch −Nback,ch − Nback,un
2 )2

+
1

(Σch −Nback,ch − Nback,un
2 )4

×
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(
1
2
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)2
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(
Nback,un√

12

)2 (
Σch + Σ−Nback,ch −Nback,un

)2
+(Σch +Nback,ch)

(
Σ− Nback,un

2

)2
]

+

(
Σ− Nback,un

2

Σch −Nback,ch − Nback,un
2

)2
[δDN2

DN2

]2
+

[
δDch

N2

Dch
N2

]2
)1/2

. (6.26)

These ratios are then given to a program using the Minuit fitter developed at CERN [85] to
extrapolate the measurement to zero veto rate. This fitter allows us to not only find the results of
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Ratio Kin. 3 Kin. 4
Veto 1 Rate (kHz) 540 220
Veto 2 Rate (kHz) 400 160
k 0.2 0.2
R3He 0.092 ± 0.002 0.121 ± 0.001
RH2 0.016 ± 0.002 0.032 ± 0.001
RN2 0.123 ± 0.028 0.214 ± 0.007

Table 6.5: Results for the calculation of the uncharged-to-charged ratios of three target types eval-
uated at nominal veto rates as presented in Section 6.1.4.

a minimum χ2 fit, but also obtain the uncertainties for our fits. Once these fits are done, we can
then extrapolate the effective uncharged-to-charged ratio for any given veto rate. The uncharged-
to-charged ratios for each of our three targets at nominal veto rates representative of the 3He runs
are given in Table 6.5. Plots of these fits are shown in Figs. 6.1 and 6.2.

A set of equations relating the target ratios to ratios of the mixing coefficients is given by Eqs. 5.47
to 5.49. These represent the rate a particle of one type, denoted as a subscript, is detected as the
type denoted in the superscript in parenthesis (for example, η(n)

p are protons detected as neutrons)

η
(n)
p

η
(p)
p

= RH2 (6.27)

η
(p)
n

η
(p)
p

=
σp

σn

(
R3Hef −RN2 +RH2(1− f)

RN2 −R3He

)
(6.28)

η
(n)
n

η
(p)
p

=
σp

σn

(
fRN2

(
R3He −RH2

RN2 −R3He

)
−RH2

)
. (6.29)

The uncertainties for these ratios are

δ

(
η
(n)
p

η
(p)
p

)
= δRH2 (6.30)

δ

(
η
(p)
n

η
(p)
p

)
=

σp

σn

([
δR3He

(1− f)(RH2 −RN2)
(RN2 −R3He)2

]2
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δRH2
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RN2 −R3He

]2

+
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(1− f)(R3He −RH2)
(RN2 −R3He)2

]2
+
[
δf
R3He −RH2

RN2 −R3He

]2)1/2

(6.31)

δ

(
η
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η
(p)
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=

σp

σn

([
δRN2

fR3He(RH2 −R3He)
(RN2 −R3He)2

]2
+
[
δRH2

(f + 1)RN2 −R3He

R3He −RN2
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+
[
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fRN2(RN2 −RH2)
(RN2 −R3He)2

]2
+
[
δf
RH2(R3He −RH2)
RN2 −R3He

]2)1/2

. (6.32)

A table of these ratios and uncertainties for kinematics 3 and 4 is presented in Table 6.6. The
ratio of the neutron cross section to proton cross section is determined by using a parametrization
of the proton form factors based on the world data for a central Q2 for each kinematic [36]. Finally,
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Figure 6.1: Fit of the three target uncharged-to-charged ratios for kinematic 3.
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Figure 6.2: Fit of the three target uncharged-to-charged ratios for kinematic 4.

173



Kin. 3 Kin. 4
f 2.14 ± 0.0 2.15 ± 0.0
Q2 (GeV2) 3.47 1.72
σn/σp 0.445 0.410
η
(n)
p /η

(p)
p 0.016 ± 0.002 0.032 ± 0.001

η
(p)
n /η

(p)
p Undetermined 0.236 ± 0.210

η
(n)
n /η

(p)
p 0.72 ± 0.95 0.496 ± 0.045

η
(n)
p /η

(n)
n 0.022 ± 0.029 0.064 ± 0.006

Table 6.6: Results for the calculation of the three proton/neutron mixing coefficients as presented
in Section 6.1.4.

Kin. 3 Kin. 4
Dp 0.905 ± 0.063 0.747 ± 0.017
δDp/Dp 0.069 0.022
Dch

n 0.552 ± 0.349 0.956 ± 0.036
δDch

n /D
ch
n 0.633 0.038

Table 6.7: Results for proton dilution in the neutral sample and neutron dilution in the proton
sample as presented in Section 6.1.4.

these mixing coefficients are related to the dilution factors Dp and Dch
n by Eqs. 5.42 and 5.43

Dp =
σn

σp

(
η
(n)
n /η

(p)
p

)
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(
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(n)
n /η

(p)
p

)
+ f

(
η
(n)
p /η

(p)
p

) =
1

1 + f
σp

σn

(
η
(n)
p /η

(n)
n

) (6.33)

Dch
n =

f
σn

σp
η
(p)
n /η

(p)
p + f

. (6.34)

The uncertainties of these two equations are

δDp =

[(
fRH2(R3He −RN2)δRH2

R3H3(RN2 −RH2)2(f − 1)

)2

+
(

fRN2RH2δR3He

(f − 1)R2
3He(RN2 −RH2)

)2

+
(
fRH2(RH2 −R3He)δRN2

(f − 1)R3He(RN2 −RH2)2

)2

+
(
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(f − 1)2R3He(RN2 −RH2)

)2
]1/2

(6.35)

δDch
n =

[(
f(RH2 −R3He)δRH2

(f − 1)(RN2 −RH2)2

)2

+
(

fδR3He

(f − 1)(RH2 −RN2)

)2

+
(
f(R3He −RH2)δRN2

(f − 1)(RN2 −RH2)2

)2

+
(

(R3He −RN2)δf
(f − 1)2(RN2 −RH2)

)2
]1/2

. (6.36)

The results for this calculation for kinematics 3 and 4 are given in Table 6.7.
The proton asymmetry contribution is defined in Eq. 5.59

∆p

Σ
=

1−Dp

DbackDN2

P3HePpPbeam

∑
n

TnΛn(Q2) (6.37)
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Param Kin. 3 Kin. 4
Pp -0.028 ± 0.004 -0.028 ± 0.004
Gp

E 0.018 ± 0.004 0.077 ± 0.007
Gp

M 0.089 ± 0.004 0.262 ± 0.006
∆p

Σ -0.00017 ± 0.00004 -0.00055 ± 0.00010
δ

∆p

Σ /
∆p

Σ 0.23 0.19

Table 6.8: Values used to obtain the proton asymmetry contribution to the quasielastic neutral
sample. Proton form factor numbers are calculated from the Kelly parametrization [36].

The uncertainty for this quantity is

δ
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E
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+
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δGp

M
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M

]2)]1/2

. (6.38)

To evaluate this we simply use an average target polarization, as it may vary over individual runs.
The parameters used in this calculation are presented in Tables 6.8, 6.9, and 6.11.

6.1.5 Aphys

The calculation of Aphys from experimental values is given in Eq. 5.27

Aphys =
Araw − ∆back

Σ − ∆p

Σ − ∆other
Σ

P3HePnPbeamDbackDN2DpDFSI
(6.39)

Since various quantities may vary over the course of each kinematic, each parameter is taken to be
constant only over individual runs. This produces a set of measurements of Aphys which must then
be combined together, as presented in Section 5.9. For each individual run, the uncertainty is

δAphys,i =

(
δA2

raw + δ
(

∆p

Σ

)2

(P3HePnPbeamDbackDN2DpDFSI)2
+A2

phys,i
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δP3He

P3He

]2
+
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δPn

Pn

]2 [
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]2
+
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δDp
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+
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δDFSI

DFSI

]2)
+ (δback)2

)1/2

. (6.40)

The uncertainty for the background, δback, has been reduced in terms of the independent counts of
N+

back and N−
back to take into account the correlated uncertainties and takes the form

δback =

[(
Aphys

Dback
− 1
P3HePnPbeamDbackDN2DpDFSI

)2(
δN+

back

2Σ

)2

+
(
Aphys

Dback
+

1
P3HePnPbeamDbackDN2DpDFSI

)2(
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back

2Σ

)2

.

+
((

Aphys(1−Dback)
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− ∆back

Σ
1

P3HePnPbeamDbackDN2DpDFSI

)
1√
12

)2
]1/2

.(6.41)
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Param Kin. 3 Kin. 4
P nucl 0.478 ± 0.020 0.485 ± 0.020
Pn 0.86 ± 0.02 0.86 ± 0.02
Pbeam 0.835 ± 0.011 0.835 ± 0.011
Dback 0.993 ± 0.004 0.965 ± 0.020
DN2 0.947 ± 0.012 0.943 ± 0.002
Dp 0.905 ± 0.063 0.747 ± 0.017
DFSI 0.95 ± 0.05 0.95 ± 0.05
∆back

Σ -0.00046 ± 0.0008 -0.0004 ± 0.0005
∆p

Σ -0.00017 ± 0.00004 -0.00050 ± 0.00010

Table 6.9: Parameters used in the calculation of Aphys as presented in Section 6.1.5.

Param Kin. 3 Kin. 4
NQE 15325 156061
Araw -0.026 -0.058
δAraw 0.008 0.003
δAraw/Araw 0.311 0.044
Aphys -0.117 -0.256
σsys 0.012 0.020
σsys/Aphys 0.104 0.077
σstat 0.036 0.011
σstat/Aphys 0.311 0.044

Table 6.10: Calculation of Aphys and statistical and systematic uncertainties as presented in Sec-
tion 6.1.5.

The statistical uncertainty is contained in Araw, so the statistical contribution in Aphys,i

σstat =
δAraw

P3HePnPbeamDbackDN2DpDFSI
. (6.42)

The remaining systematic uncertainty is

σsys =

(
δ
(

∆p

Σ

)2

(P3HePnPbeamDbackDN2DpDFSI)2
+A2

phys,i

([
δP3He

P3He

]2
+
[
δPn

Pn

]2 [
δPbeam
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]2

+
[
δDback

Dback

]2
+
[
δDN2

DN2

]2
+
[
δDp

Dp

]2
+
[
δDFSI

DFSI

]2)
+ (δback)2

)1/2

. (6.43)

There are two parameters in the systematic uncertainty that vary over the runs, the target polar-
ization P3He and the physical asymmetry Aphys. For this analysis we simply take the average of
the beam polarizations and the uncertainty weighted average of Aphys. Values for dilutions, polar-
izations, and asymmetry contributions are found in Table 6.9. The systematic uncertainty and the
final values of Aphys for kinematics 3 and 4 is presented in Table 6.10.
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Param Kin. 3 Kin. 4
T 0 0.034 -0.063
T 1 0.721 1.002
T 2 -0.019 0.086
T 3 -0.432 -1.348
T 4 0.011 -0.118
T 5 0.262 1.843
Q2 (GeV2) 3.47 1.72
Λ -0.213 -0.206
δΛ 0.057 0.028
δΛ/Λ 0.268 0.14

Table 6.11: Parameters used in the calculation of GE
n from Aphys as presented in Section 6.2.

Param Kin. 3 Kin. 4
Λ -0.213 ± 0.057 -0.206 ± 0.028
Gn

M -0.055 ± 0.001 -0.166 ± 0.003
Q2 (GeV2) 3.47 1.72
Gn

E 0.0117 ±stat 0.0030 ±sys 0.0010 0.0342 ±stat 0.0023 ±sys 0.0040

Table 6.12: Calculated value of Gn
E . For Gn

E the first uncertainty is statistical while the second is
systematic.

6.2 Results

With Aphys calculated, the remaining pieces involve evaluating the finite acceptance parameters as
described in Section 5.10 and then solving for Gn

E . This is given by Eq. 5.76

Aphys = T 0 + T 1Λ + T 2Λ2 + T 3Λ3 + T 4Λ4 + T 5Λ5. (6.44)

To evaluate the uncertainty, we first relate the uncertainty of Λ in terms of Aphys. We get

δΛ =
δAphys∣∣∣∑5

i=n nTnΛn−1
∣∣∣ . (6.45)

The values for Tn, Q2, and Λ are given in Table 6.11.
The uncertainty for Gn

E = Gn
MΛ is then

δGn
E =

(
[δGn

MΛ]2 + [Gn
MδΛ]2

)1/2

. (6.46)

The values for the final calculation of Gn
E can be found in Table 6.12. A breakdown of the various

systematic contributions can be found in Table 6.13. The value for Gn
M was produced from data

from a recent analysis from CLAS by Jeff Lachniet [35] (shown in Fig. 2.4. A plot of the world data
for Gn

E with the results of this experiment are shown in Fig. 6.3.
The uncertainty for kinematic 3 is dominated by statistical uncertainty, while the uncertainty for

kinematic 4 is mostly systematic. In both cases major contributions to the systematic uncertainty
are from the target polarization and nuclear effects based on a Glauber calculation. In kinematic 3,
the uncertainty in the proton dilution also contributes a significant amount.
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Kin. 3 (δ/Gn
E) Kin. 4 (δ/Gn

E)
δGn

E 0.268 0.135
δsys 0.087 0.118
δstat 0.253 0.067
δDFSI 0.043 0.080
δP3He 0.035 0.063
δDp 0.057 0.035
δPn 0.019 0.035
δGn

M 0.019 0.017
δPbeam 0.011 0.020
δback 0.017 0.018
δDN2 0.010 0.003
δ

∆p

Σ 0.001 0.003

Table 6.13: Contributions to the systematic uncertainty of Gn
E as a fraction of Gn

E .
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Figure 6.3: Gn
E from this work with selected world data. Inner error bars for our points are statistical

uncertainty only. Miller q-only represents his calculation in the absence of the pion cloud. The curve
for F2/F1 pQCD behavior has been scaled to match our kinematic 4 point.
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Figure 6.4: Gn
E as the W cut is varied for kinematic 3. Each cut is centered around the value of

W = 0.925 GeV. Nominal value is 0.35 GeV.

6.3 Sensitivity to Cuts

A repetition of this analysis was done varying the quasielastic cuts to observe the sensitivity of Gn
E

on these values. For each cut on W , pmiss,‖, and pmiss,⊥, the width of the cut was varied while the
remaining two cuts were kept constant. This allows us to systematically examine the effect that each
cut has upon our final result and provides a direct method to examine how the value is sensitive to
effects we attempted to minimize. For example, as the cuts are widened, it is expected that pion
electroproduction will provide a greater contribution to the quasielastic neutral sample.

For kinematic 3, shown in Figs. 6.4 to 6.6, wider cuts in W and pmiss,⊥ both produce slightly
higher values of Gn

E . This effect is likely due to the larger contributions of pion electroproduction
into the sample. A similar but weaker effect is seen as as pmiss,‖ is widened. Since the cut in mmiss

explicitly cuts out higher values of pmiss,‖, the new contributions as the cut is widened are events
with lower pmiss,‖, which are less likely to be associated with inelastic events. This explains why Gn

E

is roughly stable as cuts are widened. Tighter cuts predictably produce larger error bars and values
are within agreement with our final values.

For kinematic 4, shown in Figs. 6.7 to 6.9, pion electroproduction should play a much weaker
role, so wider cuts were generally produced more stable results than seen in kinematic 3. Reducing
statistics produces slightly different values for Gn

E , but the error bars do not increase substantially
as the uncertainty of this point is dominated by systematic uncertainties.

Overall, the data for both points appears to behave as expected as cuts are varied. The cuts
chosen to produce Gn

E should then provide a clean sample of quasielastic events while maximizing
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Figure 6.5: Gn
E as the pmiss,‖ cut is varied for kinematic 3. Each cut is centered around the value of

pmiss,‖ = 0. Nominal value is 0.40 GeV/c.
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Figure 6.6: Gn
E as the pmiss,⊥ cut is varied for kinematic 3. Each cut has a lower bound of pmiss,⊥ = 0.

Nominal value is 0.15 GeV/c.
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Figure 6.7: Gn
E as the W cut is varied for kinematic 4. Each cut is centered around the value of

W = 0.925 GeV. Nominal value is 0.45 GeV.

available statistics.

6.4 Conclusions and Future

The electric form factor of the neutron,Gn
E , was measured at Q2 = 1.7 and 3.4 GeV2. This was

done by measuring the quasielastic helicity dependent cross section asymmetry through the reaction
3−→He(~e, e′n)pp. The polarized 3He nucleus acts as an effective neutron source and was polarized
using spin exchange optical pumping. The degree of polarization was monitored using EPR and
NMR techniques. A newly developed set of detectors were constructed and calibrated to detect the
scattered electron and recoiling nucleon. For the electron arm, the BigBite spectrometer provided
a momentum resolution δp/p = 1% utilizing a 1.0 T ·m field integral magnet and set of multiple
wire drift chambers providing high-resolution hit based tracking. The hadron arm was constructed
using a multi-layered wall of scintillator matching BigBite’s acceptance. This arm measured the
momentum of the nucleon through time of flight and performed charge identification on the nucleon
to differentiate between protons and neutrons.

The result for Q2 = 1.7 GeV2, or kinematic 4, is in line with the CQM model from Miller, which
also agrees with the previous data points above 1 GeV2. This point also appears to be in rough
agreement with other data at lower Q2 and with the Schiavilla and Sick analysis.

For Q2 = 3.5 GeV, or kinematic 3, we are in agreement with Lomon’s VMD parametrization
and the Galster fit. The CQM model by Miller seems to over predict the value for our point despite
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Figure 6.8: Gn
E as the pmiss,‖ cut is varied for kinematic 4. Each cut is centered around the value of

pmiss,‖ = 0. Nominal value is 0.25 GeV/c.
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Figure 6.9: Gn
E as the pmiss,⊥ cut is varied for kinematic 4. Each cut has a lower bound of pmiss,⊥ = 0.

Nominal value is 0.15 GeV.
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Figure 6.10: Gn
M/(µnGD) with selected world data.

success at lower values of Q2. Setting the pQCD prediction for F2/F1 to our kinematic 4 point, we
do not attain agreement with our kinematic 3 point, suggesting unsurprisingly that we are not yet
in the region where pQCD applies.

Both Galster and the VMD seem to continue to have the greatest accuracy in modeling Gn
E for

a wide range of the measured Q2. It is interesting to note that Miller overpredicts the value of Gn
E

for higher Q2 while it has general success with the three other form factors, Figs. 6.10 to 6.12.

Outlook and Further Work

Improvements to this analysis can be made in the future as further efforts are made. As mentioned
before, calculations describing the final state interactions are forthcoming, which will improve the
accuracy of the correction made for charge exchange. This represents one of the larger contribu-
tions to our systematic uncertainty. Currently, work on the BigBite tracking code utilizing a more
sophisticated drift chamber hit pattern matching technique is being developed which may yield an
increase in statistics (possibly as high as 50%), which would improve the uncertainty on kinematic
3.

For E02-013, there still remain two other data points to be analyzed by other students within the
collaboration for the experiment. Their efforts and analysis will also yield independent verification
of this work before final publication.
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Appendix A

Survey Reports

   DETAILS:                                                                                Data: m:\algin\data\step2b\halla\bigbite\060207a 

 
The Hall A Gen 2 experiment Big Bite magnet and detector assemblies were surveyed 
February 7th, 2006. The assembly was located at the ideal angle of 56.5° clockwise looking 
downstream from the standard Hall A target. The magnet origin is located 1.1 meters from 
the hall target and is the front face of the steel core. The origin for the detector is the front 
face of the assembly. The coordinate system shown is in millimeters with the hall A target 
center being the origin, +z being the downstream along the main beamline, +x being 
transverse beam left and +y being up. The angular results are in degrees, with the +yaw 
being clockwise about the y axis, +pitch is positive counter clockwise about the x axis and 
+roll is clockwise about the z axis. 
 
 

 Ideal Found Deltas bfs 
 Z X Y z x y dz dx dy 
Magnet 607.1 -917.3 0.0 594.5 -913.5 -0.3 -10.1 -8.4 -0.3 

Detector 1252.8 -1892.8 151.6 1255.6 -1872.6 164.8 -15.3 13.5 13.2 

 

 Ideal Angles Found Angles Delta Angles 
 Yaw Pitch Roll Yaw Pitch Roll dYaw dPitch dRoll 
Magnet 56.50 0.00 0.00 56.26 -0.35 0.06 -0.24 -0.35 0.06 

Detector 56.50 10.00 0.00 56.21 10.05 -0.09 -0.29 0.05 -0.09 

 

 

 
Jefferson Lab Alignment Group  

Data Transmittal 
TO:  E. Chudakov, B. Wojtsekhowski, E. Folts, J. LeRose                                    DATE:  08 Feb 2006             

FROM: Kelly Tremblay                                  Checked:  # :  A1039r          
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DETAILS:                                                                                Data: m:\algin\data\step2b\halla\bigbite\060214a 
 
Given below are the results of the Big Bite detector survey carried out on February 14th, 
2006. The center of each of the three chambers is shown, together with the four corners of 
each detector plane. This information is derived from the as found location survey of the 
external fiducials (Feb 14th), and the fiducialization survey carried out  after the planes were 
shimmed on December 22nd.  Some distortion of the external fiducials was apparent 
between these two surveys. The coordinates are in millimeters, with the Hall A target as 
origin, +z being downstream along the main beamline, +x being transverse beam left, and 
+y being up with respect to gravity (not pitched).  
 
 

         Z       X       Y 
 
Ch1 Center  1256.2 -1872.4   167.1 
Ch1 Bot L  1682.0 -1776.7  -717.4 
Ch1 Top L  1506.5 -1516.4 1052.2 
Ch1 Bot R  1005.9 -2228.4  -718.0 
Ch1 Top R    830.5 -1968.1 1051.5 
 
Ch2 Center  1453.4 -2167.2   221.3 
Ch2 Bot L  1989.4 -2063.2  -970.0 
Ch2 Top L  1756.6 -1710.7 1411.8 
Ch2 Bot R  1150.4 -2623.7  -969.1 
Ch2 Top R    917.3 -2271.4 1412.6 
 
Ch3 Center  1640.2 -2450.9   289.5 
Ch3 Bot L  2174.7 -2348.2  -902.9 
Ch3 Top L  1945.5 -1993.1 1479.3 
Ch3 Bot R  1334.8 -2908.9  -900.9 
Ch3 Top R  1105.8 -2553.5 1482.3 
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DETAILS:                                                                                Data: m:\algin\data\step2b\halla\gen\060516a 
 
Note: The previous data transmittal #A1061 was incorrectly referenced to the May 10th 
survey and is actually for the May 16th survey.  A revised DT for #A1061 will be published.   
  
Given below are the results of the Big Bite detector survey carried out on May 10th, 2006. 
The center of each of the three chambers is shown, together with the four corners of each 
detector plane. This information is derived from the as found location survey of the external 
fiducials (May 10th), and the fiducialization survey carried out after the detector was shifted 
from the running position on May 16th.  The coordinates are in millimeters, with the Hall A 
target as origin, +z being downstream along the main beam line, +x being transverse beam 
left, and +y being up with respect to gravity (not pitched).  
 
 

         Z         X         Y 
 
Ch1 center                 1405.89   -1760.85        168.66 
Ch1 topbr                     988.98    -1890.52      1053.03 
Ch1 topbl                   1626.12   -1385.20    1053.73 
Ch1 botbr                   1185.66    -2136.42     -716.39 
Ch1 botbl                   1822.82     -1631.27       -715.75 
 
Ch2 center                 1626.60     -2038.74         222.40 
Ch2 topbr                   1100.28    -2185.05     1413.64 
Ch2 topbl                   1891.38     -1558.27      1412.66 
Ch2 botbr                   1361.80    -2519.17      -967.79 
Ch2 botbl                   2152.94    -1892.49      -968.91 
  
Ch3 center                 1836.25     -2306.59        290.00 
Ch3 topbr                   1312.07    -2451.56      1483.09 
Ch3 topbl                    2103.32    -1825.05      1479.51 
Ch3 botbr                    1569.20    -2788.47       -899.66 
Ch3 botbl                    2360.41    -2161.27      -902.95 
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Appendix B

Reconstruction Matrix

A 15×4 matrix used to reconstruct a track in the BigBite drift chambers for the configuration used
in E02-013. It was designed to produce four track parameters for a given set of hits such that the
χ2 is minimized.

The plane names are used to represent the position they measure. For example u1 is the position
measured by plane u1.


x
x′

y
y′

 =


0.1579 0.1563 0.0684 −0.026085 −0.024515
−0.24855 −0.2441 0.0016925 0.24905 0.24495
0.4632 0.45855 0.2025 0.0753 0.07085
−0.7265 −0.7135 −0.006545 −0.724 −0.7125




u1/σu1

u2/σu2

u3/σu3

u4/σu4

u5/σu5



+


0.1862 0.18335 0.08145 −0.02688 −0.022805
−0.28625 −0.27855 −0.003614 0.28855 0.2776
−0.01393 −0.01376 −0.006905 −0.00172 −0.001882
0.017775 0.017795 0.01851 0.02516 0.024905




x1/σx1

x2/σx2

x3/σx3

x4/σx4

x5/σx5



+


0.1636 0.1619 0.0699 −0.01875 −0.01729
−0.2451 −0.2407 −0.001144 0.2453 0.2412
−0.4659 −0.46105 −0.1975 −0.05355 −0.04924
0.6995 0.687 −0.006685 0.7005 0.689




v1/σv1

v2/σv2

v3/σv3

v4/σv4

v5/σv5


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