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Résumé en Français

L’intérêt de la physique subatomique est de réveler la structure sous-jacente de la matière
dont nous sommes fait et qui nous environne, à des echelles qui sont en deça de l’echelle
atomique. À ces echelles, notre niveau de connaissances actuelles est le suivant :

� Les atomes sont fait de noyaux, entourés d’un nuage d’électrons. Les interactions
entre noyaux et électrons sont decrites, à toute les echelles d’énergie enviseageables,
des très basses aux très hautes énergies, par l’électro-dynamique quantique (Quan-
tum Electro Dynamics ou QED), qui est une theorie complètement comprise.

� Ces noyaux sont constitués de nucléons (protons et neutrons). Les interactions
entre nucléons au sein du noyau sont assez bien comprises dans le cadre de theories
approximées (ou effectives) impliquant l’échange de mésons.

� Les nucléons (ainsi que les mésons) sont constitués de quarks. Les interactions
entre quarks sont décrites par la chromo-dynamique quantique (Quantum Chromo
Dynamics ou QCD), dont certains aspects restent à éclaircir.

La QCD est une théorie de gauge non-abelienne, ce qui signifie que les messagers de
l’interaction, les gluons, peuvent interagir avec eux mêmes. Étant donné que les glu-
ons n’ont pas de masse, la qualité non-abelienne de la QCD entraine des propriétés
particulières. Considérons deux quarks qui s’éloignent l’un de l’autre. L’amplitude de
l’interaction entre ces deux quarks augmente, jusqu’à l’infini quand les distances con-
sidérées sont infinies. Un quark ne peut jamais etre observé complètement libre, il est par
conséquent toujours confiné dans un hadron (méson ou nucléon). C’est ce que l’on appelle
le confinement des quarks. Considérons maintenant deux quarks qui s’approchent l’un
de l’autre. Dans ce cas, l’amplitude de l’interaction entre eux diminue, jusqu’à s’annuler
complètement pour deux quarks infiniment proches. C’est ce que l’on appelle la liberté
asymptotique.

À cause de ces propriétés, la structure du nucléon qui est gouvernée par la QCD
n’est pas encore complètement comprise. Un certain nombres de techniques existent pour
etudier la structure du hadron dans le contexte de la QCD. À haute énergie, la structure
du nucléon peut etre étudiée par le biais de la QCD perturbative, qui exploite la propriété
de liberté asymptotique, de grandes énergies équivalent à de petites distances. À basse
énergie, la structure des hadrons peut être étudiée grâce à la QCD sur réseau. Cette
technique utilise aussi la propriété de liberté asymptotique, en remplaçant le continuum
d’espace temps par un espace temps discret, de maille finie. Malgré tout, la meilleure
manière d’acceder à la structure du hadron reste l’expérience. Le type d’expérience le
plus courant est la diffusion électron-nucléon, et ceci pour deux raisons. La première
est que l’on prefère étudier la diffusion lepton-nucléon, a cause de l’élémentarité du lep-
ton, qui prévient de toute ambigüıté lors de l’étude de la reaction de diffusion. Ensuite,
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parmi les leptons, les électrons sont les plus aisés à obtenir et à manipuler sous forme de
faisceau. Un grand nombre d’installations ont été dédiées a l’étude de reactions électron-
nucléon, comme par exemple l’accélérateur SLAC (Stanford Linear Accelerator Center,
à Stanford, Californie, USA), le collisionneur électron-proton DESY (Deutsches Elektro-
nen Synchrotron, à Hambourg, Allemagne), ou, plus recemment, l’accélérateur CEBAF
(Continuous Electron Beam Accelerator Facility, à Newport News, Virginie, USA).

Actuellement, et par la grâce des nombreuses expériences qui ont été dédiées a la
structure du nucléon, celle-ci est relativement bien comprise, que ce soit en termes de dis-
tribution spatiale des composants du nucléon (les facteurs de forme, obtenus par diffusion
élastique électron-proton), ou en termes de distribution d’impulsion des composants du
nucléon (les fonctions de distribution de partons, obtenues par diffusion électron-proton
profondément inélastique). Malheureusement, ces informations ne permettent pas une
description complete du nucléon. La somme des spins de l’ensemble des partons (quarks
et gluons) au sein du nucléon ne represente qu’une fraction du spin total du nucléon.
C’est ce que l’on appelle la “crise du spin” ou “spin crisis”.

La solution à ce problème reside vraisemblablement dans le manque de connaisance
du moment orbital des partons au sein du nucléon, qui est susceptible d’apporter la con-
tribution manquant au spin total du nucléon. La connaissance du moment orbital des
partons revient à une représentation tridimensionnelle de la structure du nucleon.

La dernière décennie a connu une grande evolution dans l’étude de la structure du
hadron, par le biais de l’étude des processus exclusifs qui permettent l’accès a la structure
tridimensionnelle des hadrons. Les processus exclusifs englobent la diffusion compton
profondement inélastique (Deeply Virtual Compton Scattering ou DVCS)

γ∗p → γp (1)

et la production exclusive de méson

γ∗p → mp (2)

Ce document est dédié à l’étude du second processus, et plus particulièrement à la pro-
duction exclusive de pions neutres

γ∗p → π0p (3)

dans le regime profondément inélastique, ou la virtualité du photon virtuel, Q2 est su-
perieure a 1 GeV2 et l’énergie dans le centre de masse proton-photon virtuel, W est
superieure à 2 GeV.

Nous présentons des mesures de sections efficaces différentielles pour l’électroproduction
exclusive de la réaction ep → epπ0 par l’absorption de photons virtuels. Un diagramme de
ce processus, incluant les définitions des variables cinématiques, est présenté Figure 1. Ces
resultats vont être présentés pour quatre cinématiques. Deux de ces cinématiques sont
caractérisées par la même valeur moyenne de xBj = 0.36 à deux Q2 différents, 1.9 GeV2 et
2.3 GeV2 (nommées respectivement Kin2 et Kin3). Cela permet d’étudier la dépendance
en Q2 de la section efficace. Les deux autres cinématiques sont caractérisées par la même
valeur moyenne de Q2 = 2.1 GeV2 à deux xBj différents, 0.33 et 0.40 (nommées respec-
tivement KinX3 et KinX2). Cela permet d’étudier la dépendance en xBj.

Les sections efficaces et leurs dépendances vont être comparées aux différents modèles
disponibles pour decrire l’électroproduction exclusive de π0, de la théorie effective de
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Figure 1: Diagramme de la réaction d’électroproduction de π0 (en haut), et du mode de
décroissance dominant de ce dernier (en bas). Les invariants cinématiques sont définis
comme suit: Q2 = −(k−k′)2, xBj = Q2/(2p·q), t = (q−q′)2, W 2 = s = Mp+Q2(1/xBj−1),

et tmin = (Q2−m2
π)2

4s
− (|qCM | − |q′CM |)2, avec |qCM | et |q′CM | les normes de ~q, ~q′ dans le

referentiel de centre de masse de l’état initial γ ∗ p.

Regge au formalisme des distributions de partons généralisées (Generalized Parton Dis-
tributions, ou GPDs).

La photoproduction vers l’avant à énergie asymptotiquement grande peut être décrite
par la théorie de Regge, qui exploite les propriétés analytiques de l’amplitude de diffusion
dans la limite t/s → 0. De précédentes analyses ont appliqué la phénoménologie de Regge
à la photo- et électro-productions exclusive dans le domaine cinématique présenté ici. Des
calculs récents avec des modèles inspirés de la phénomenologie de Regge existe pour nos
cinématiques. Ces modèles incluent les échanges de mésons ρ, ω, et b dans la voie t,
ainsi que que la rediffusion de π±. Parmi ces modèles, on retiendra particulièrement le
modèle d’échange de mésons dans la voie t de J. M. Laget. Une breve description de
ce modèle est disponible dans la publication des travaux de R. De Masi sur la mesure
d’assymetrie d’hélicité de faisceau dans le domaine exclusif. Des résultats d’expérience du
Hall C étudiant la dépendance en Q2 de la section efficace d’électroproduction exclusive
de pions chargés, avec une séparation transverse longitudinale. Ce modèle a récemment
été amélioré par l’inclusion de la production de ρ chargés avec rediffusion sur le nucléon.

Dans la limite de Bjorken, à Q2 →∞ et t/Q2 ¿ 1 à xBj fixé, l’amplitude de diffusion
se limite aux premier ordre (ou “leading twist”) des GPD, convolué avec l’amplitude de
distribution du pion. Les GPD sont les elements de matrices bilinéaires des operateurs de
quarks et de gluons considérés sur le cône de lumière, et qui unifient les facteurs de formes
électrofaibles et les fonctions de distributions de partons longitudinales. Des prédictions
de section efficace longitudinale σL existent dans le cadre du modèle des GPDs. Dans la
convention la plus courante (utilisée par M. Vanderhaeghen, P. Guichon et M. Guidal),
la prediction de dépendance en Q2 est σL ∼ 1/Q6 pour la section efficace longitudinale
et σT ∼ 1/Q8 pour la section efficace transverse. Ceci implique la dominance de σL par
rapport à σT à grand Q2. C’est pour tester cette dépendance en Q2 que nous avons
effectué des mesures de section efficace à deux Q2 différents pour une même valeur de
xBj.

Une interpretation de données d’électroproduction exclusive grâce à des mécanismes
semi-inclusifs existent également pour expliquer la section efficace transverse d’électroproduction
exclusive de pions chargés.
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Quleques détails de l’experience vont être donnés, et je m’attarderais un peu sur la
calibration du calorimètre. Le formalisme d’électroproduction de pions que nous avons
utilisé (de D. Drechsel et L. Tiator) sera explicité, et j’insisterais sur l’expression des
tenseurs hadroniques. J’expliquerais la méthode d’extraction des sections efficaces, et
j’aborderais les corrections à effectuer sur ces sections efficaces, ainsi que l’évaluation des
erreurs systématiques. Finalement, je présenterais les resultats et les comparerais aux
différents modèles disponibles.

Conditions expérimentales

Les données présentées ont été acquises grâce à l’instrumentation de l’expérience DVCS
du Hall A. Nous analysons les événements en triple coincidence H(e, e′γγ)X. Un faisceau
d’électrons de 5.75 GeV était envoyé sur une cible d’hydrogène liquide longue de 15 cm,
pour une luminosité typique de 1037 cm−2s−1. Les électrons diffusés étaient détectés
dans un spectromètre de haute résolution (High Resolution Spectrometer ou HRS); et les
photons par un calorimètre élctromagnétique comptant 132 éléments de fluorure de plomb
PbF2, chacun de ces éléments mesurant 3 × 3 cm2 × 20X0. Les résolutions, excellentes,
permettent de définir, avec une grande précision :

� le photon virtuel, avec les cinématiques centrées à xBj = 0.36 et deux valeurs de
Q2 = 1.9 et 2.3 GeV2.

� la direction des photons réels, grâce à la résolution sur le vertex du HRS combiné à
la résolution en position du calorimètre.

Le seuil de validation du calorimètre pour le système de déclenchement de l’acquisition
de données est de 1 GeV environ pour chaque photon. Afin d’assurer que l’événement
est bien exclusif, il convient d’apporter une information sur le proton de recul qui n’est
pas mesuré. Celle ci est donnée par la masse manquante carrée reconstruite M2

X =
(k − k′ + p − q1 − q2)

2. De même, il est nécessaire, pour assurer que les deux photons
soient bien issus d’une désintegration de π0, de reconstruire la masse invariante des deux
photons mγγ =

√
(q1 + q2)2. Ces deux quantités etant corrélées par la résolution du

calorimètre, nous avons la possibilité d’améliorer sensiblement la distribution en masse
manquante par un ajsutement empirique :

M2
X |Corr = M2

X |Raw + C × (mγγ −mπ0) (4)

avec C = 13 GeV.
L’analyse repose sur deux qualités spécifiques à l’expérience :

� grâce à la résolution du spectromètre et du calorimètre, on peut utiliser une simple
coupure sur la masse manquante carrée pour assurer l’exclusivité;

� pour les événements exclusifs, la reconstruction de la norme du quadrimoment de
transfert au proton, t, et son minimum, tmin, reposent sur la position du photon
reconstruit, dont la résolution est meilleure que celle de l’énergie. Toutes les données
sont présentées en fonction de tmin− t, qui est directement relié à l’angle de produc-
tion du pion par rapport au photon virtuel dans le centre de masse proton-photon
virtuel θCM

π : tmin − t = 2qCMq′CM(1− cos θCM
π ).
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Calibration

Nous avons effectué des calibrations élastiques (grâce à la réaction H(e, e′∈Calo p∈HRS)) au
début, au milieu et à la fin de l’expérience. Le calorimètre était reculé à une position
de 5.5 m de la cible, dans le but d’optimiser la couverture angulaire de l’électron dans
le calorimètre avec le proton dans l’acceptance du spectromètre. Après cette calibration
la résolution en énergie du calorimètre est de 2.4 %, et la résolution en position est de
2 mm. Les données élastiques ont aussi fourni un test d’efficacité des détecteurs et de
l’électronique associée grâce à l’analyse de la section efficace élastique, en accord avec la
paramétrisation récente des facteurs de forme de Kelly à 1.1 % près.

Pendant l’expérience, la lumière produite par effet Čerenkov dans les cristaux de PbF2

a été atténuée par jusqu’à 20 % pour certains blocs. De plus, l’amplitude de cette diminu-
tion de lumière produite est très corrélée avec la position des blocs dans le calorimètre.
Ceci est attribué à l’endommagement des blocs dû aux radiations. Nous avons donc ajusté
la calibration de chaque bloc, en faisant l’hypothèse d’une dose linéairement proportion-
nelle à l’atténuation de la lumière. Outre les dommages dûs aux radiations, chaque cristal
recevait une accumulation d’électrons de basse énergie, qui résulte en une dégradation de
la résolution en énergie et un décalage de la calibration en fonction de la distance à la
ligne de faisceau. Cet effet est pris en compte grâce aux opérations suivantes :

� Pour chaque bloc la position de la masse manquante reconstruite est centrée sur
celle du proton, par la calibration en énergie des données expérimentales.

� Pour la simulation GEANT de l’expérience, la résolution en masse manquante pour
chaque bloc a été choisie meilleure que la résolution observée pour les données.
Pour chaque bloc, une dégradation de la résolution en énergie a été effectuée simul-
tanément avec la calibration, dans le but d’égaliser les resolutions respectives de
la simulation et des données em même temps que l’on centre la position du pic de
masse manquante sur la masse du proton.

Cette calibration effectuée grâce à la masse manquante permet de reconstruire la distri-
bution de la masse invariante des deux photons en accord à mieux que 2 MeV avec la
masse physique du π0, et la résolution sur cette distribution est en dessous de 10 MeV.

Extraction des sections efficaces

Pour extraire la section efficace différentielle, il est avantageux d’incorporer toutes les
dépendances cinématiques du formalisme de section efficace différentielle dans la simu-
lation experimentale. Dans ce but, nous exprimons la section efficace differentielle en
termes de fonction de structure telles que décrites dans l’article de Drechsel et Tiator.

Nous définissons les espaces de phase différentiels, d3Φe = dQ2dxBjdφe et d5Φ =
d3Φed[tmin − t]dφπ, et également l’énergie equivalente d’un photon réel dans le centre
de masse kCM

γ = (W 2 − M2)/2W . Ces quantités sont définies dans les conventions de
Drechsel et Tiator :

� l’axe ẑ défini le long du photon virtuel.

� ŷ = (k̂i ∧ k̂f )/ sin θe orthogonal au plan leptonique.

� x̂ = (ŷ ∧ ẑ)
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Au premier ordre en α, la constante de structure fine, la section efficace différentielle
pour un électron d’hélicité h est :

dσ(h)

d5Φ
= Γ

d2σv(h)

dtdφπ

(5)

avec kγ = (W 2 − M2)/2M . La section efficace d’absorption de photons virtuels est
décomposée comme :

d2σv(h)

dtdφπ

=
1

2π

{
dσT

dt
+ εL

dσL

dt
+

√
2εL(1 + ε)

dσTL

dt
cos φπ + ε

dσTT

dt
cos 2φπ

+
√

2εL(1− ε)
dσTL′

dt
sin φπ

} (6)

avec ε = 1/[1+2(q2/Q2) tan2 θe/2] le degré de polarisation linéaire et εL/ε = 4M2x2
Bj/Q

2.
On definit les tenseurs hadroniques usuels W µν comme :

d2σv(h)

dtdφπ

=
1

qCMkCM
γ

{
Wxx + Wyy

2
+ εLWzz −

√
2εL(1 + ε)<eWxz

+ ε
Wxx −Wyy

2
−

√
2εL(1− ε)=mWyz

}
.

(7)

Les termes d’interférence <eWxz, =mWyz possèdent une dépendance en sin θCM
π , et le

terme d’interférence (Wxx −Wyy)/2 possède quant à lui une dépendance en sin2 θCM
π .

Pour cette raison, nous définissons les fonctions de structure réduites rΛ, qui enlèvent
cette dépendance d’espace de phase :

Wxx + Wyy

2
= rT ;

Wzz = rL;

Wxx −Wyy

2
= rTT sin2 θCM

π cos 2φπ;
( <eWxz

=mWyz

)
= sin θCM

π

(
cos φπrTL

sin φπrTL′

)
.

(8)

Étant donné que nos cinématiques couvrent une large plage de valeurs de xBj ainsi
que de Q2, il nous faut également inclure les dépendances en Q2 et en W du tenseur
hadronique (Wxx + Wyy)/2 + εLWzz = rT + εLrL. Comme nous ignorons a priori ces
dépendances, nous devons effectuer une extraction préliminaire de la section efficace aux
deux points cinématiques à xBj fixé (respectivement Q2 fixé) pour obtenir une estimation
de la dépendance en Q2 (respectivement en W ) du tenseur hadronique. Ces dépendances
peuvent ensuite être introduites explicitement dans le formalisme pour effectuer une nou-
velle extraction “définitive”. La section efficace totale, ainsi que les dépendances en Q2

et en W du tenseur hadronique peuvent changer de quelques pourcents de la première
à la seconde extraction. Néanmoins, La variation de la section efficace totale doit être
négligeable entre l’extraction “définitive” et une troisième extraction qui inclueraient les
nouvelles dépendences en Q2 et en W du tenseur hadronique dans le formalisme. Ainsi,
l’integration sur une large plage en Q2 et en xBj d’une quantité dépendante de Q2 et W
affecte la section efficace par moins de 0.3 %.
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On divise l’acceptance en 24 bins égaux en φπ ∈ [0, 2π] et huit bins en tmin −
t ∈ [0, 0.3] GeV2, que ce soit pour les composantes de la section efficace indépendantes
et dépendantes de l’helicité. Le taux de comptage experimental Nd dans ces bins jd

avec le taux de comptage obtenu avec une simulation complete de l’expérience, incluant
l’acceptance et la réponse des détecteurs, Ns, qui depend des valeurs de rΛ moyennées sur
ces bins. Les valeurs des fonctions de structure réduites rΛ sont celles qui minimisent

χ2 =
∑
jd

(
Nd −Ns(rΛ)

σd

)2

, (9)

avec σd l’erreur expériementale de chaque bin.
Les résultats vont être présentés suivant la décomposition habituelle disponible dans

la litterature donnée dans l’équation (6).

Corrections radiatives

On compte trois types d’effets radiatifs :

� les effets radiatifs externes, qui ont lieu dans un champ électromagnetique différent
de celui dans lequel a lieu l’interaction principale;

� les effets radiatifs internes réels, qui ont lieu dans le champ électromagnetique de
l’interaction principale, mais se propagent à l’infini;

� les effets radiatifs internes virtuels, qui ont lieu dans le champ électromagnetique de
l’interaction principale et sont réabsorbés dans le même champ.

Les effets radiatifs externes sur l’électron incident ainsi que les effets radiatifs internes réels
sont traités dans l’approximation du radiateur équivalent. La pré-radiation est modelée
en générant une perte d’énergie ∆Ein événement par événement, suivant la distribution
(b ' 4/3)

Iin(E0, ∆Ein, tin) =
btin + δS/2

∆Ein

[
∆Ein

E0

]btin+δS/2

, (10)

avec

δS =
2α

π

[
ln

Q2

me

− 1

]
(11)

et tin l’épaisseur de cible (en longueurs de radiation) traversée par l’électron avant la
diffusion. Le terme de Schwinger δS modèle la pré-radiation interne. L’énergie diffusée
au vertex est E ′

v = E0−∆Ein−Q2/(2MpxBj). La post-radiation interne est modelée par
une distribution similaire de la perte d’énergie après diffusion ∆Eout

Iout =
δS/2

∆Eout

[
∆Eout

E ′
v

]δS/2

. (12)

La post-radiation externe est modelée avec la simulation GEANT3 décrite dans les sections
précedentes. Les radiations internes virtuelles sont prises en compte par un coefficient
multiplicatif de correction de la section efficace, calculée pour nos cinématiques par Marc
Vanderhaeghen et al..

10

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



Erreurs systématiques

Deux types de canaux hadroniques inclusifs sont en concurrence avec la reaction H(e, e′π0)p :
les canaux de production de plusieurs pions H(e, e′π0)Nπ, Nππ, ..., à un seuil en masse
manquante M2

X = (Mp + mπ)2 = 1.15 GeV2, et le canal H(e, e′π0)pγ. Le premier type
inclut la production résonante (N∗) et non résonante de Nπ dans l’état final et la pro-
duction diffractive de ρ+ donnant π+π0. Le canal H(e, e′π0)pγ vient de la production
diffractive ep → epω, avec la désintegration du ω en π0γ avec un rapport de branchement
de 8.5 %. Dans notre acceptance, le seuil de production de l’état final (e, e′π0) a partir de
l’électroproduction exclusive de ω est de 1.0 GeV2, un peu en dessous du seuil de produc-
tion de plusieurs pions. Néanmoins, grâce à des mesures d’électroproduction de ω dans
nos cinématiques, on estime la contamination de ce canal pour des masses manquantes
inferieures à 1.15 GeV2 à moins de 1 % pour l’ensemble des bins en tmin − t.

Les erreurs systématiques dans la méthode d’extraction sont dues aux coupures en
masse manquante et au seuil du calorimètre EThr. La stabilité des résultats selon ces
coupures sont verifiées en variant ces deux coupures l’une après l’autre. L’estimateur
suivant :

R =
6∑

Bin=0

(rT + εLrL) (13)

doit être stable avec la variation de chaque coupure, aux erreurs expérimentales près, au
moins sur un certain intervalle, dit de stabilité. La coupure optimale est prise au milieu
de l’intervalle ou cette stabilité est observée effectivement. Si la stabilité de R n’est pas
verifiée sur l’intervalle de stabilité aux erreurs expérimentales près, l’erreur systematique
est donnée par la deviation de R par rapport à sa valeur moyenne sur la totalité de
l’intervalle. Les fonctions de structure réduites rΛ sont extraites aux valeurs optimales de
ces coupures.

Les sources instrumentales d’erreurs systematique sont disponibles, avec les erreurs
systématiques dues à l’analyse, dans le tableau 1. Toutes ces sources d’erreurs systématiques
étant indépendantes entre elles, elles ont été ajoutées quadratiquement.

Résultats

La section efficace totale d’électroproduction exclusive de π0, ainsi que les différentes
composantes dépendantes de φπ ont été extraites pour Kin2, Kin3, KinX2 et KinX3. La
statistique disponible permet d’obtenir une précision statistique pour la section efficace
totale de 3 % pour xBj = 0.36 (Kin2, Kin3) et de 5 % pour Q2 = 2.1 GeV2 (KinX2,
KinX3). Cette différence est due au fait que la totalité de la statistique est utilisée
pour xBj = 0.36, tandis que moins de la moitié de cette statistique est utilisée pour
Q2 = 2.1 GeV2.

Les figures 2 (a) et 3 (a) montrent σT + εLσL en fonction de tmin − t, respectivement
pour xBj = 0.36 et Q2 = 2.1 GeV2. Ces sections efficaces ne montrent pas de dépendances
très marquées en fonction de tmin − t.

Les figures 2 (b) et 3 (b) montrent quant à elles les rapports des deux sections effi-
cacesdifferentielles en tmin− t à xBj = 0.36 et des deux sections efficaces differentielles en
tmin − t à Q2 = 2.1 GeV2 respectivement, indiquant respectivement les dépendances en
Q2 et en W de la section efficace, qui se comporte comme 1/Q4.5 et 1/W 3.5.

11

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



Kin3 Kin2
KinX3 KinX2

Coupure d’exclusivité 1.0 % 3.0 %
Acceptance du HRS 2.2 %
Corrections radiatives 1.5 %
Seuil du calorimètre 1.0 %
Longueur de cible 0.5 %
Integration du tenseur hadronique 0.3 %
Corrections multi-traces 0.1 %
Corrections 3-clusters 0.1 %
Luminosité 0.1 %
Temps mort 0.1 %
dentification des particules 0.1 %
Erreur quadratique totale 3.1 % 4.2 %
Polarization du faisceau 2.0 %
Erreur quadratique totale 3.7 % 4.6 %

Table 1: Erreurs systématiques expérimentales. La première ligne “Erreur quadratique totale” donne
l’erreur systématique pour les sections efficaces indépendantes de l’hélicité. La seconde ligne “Erreur
quadratique totale” donne l’erreur systématique pour la section efficace dépendant de l’hélicité.
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Figure 2: (a) Composante σT + εLσL de la section efficace H(e, e′π0)p, en fonction de tmin − t
pour xBj = 0.36. les barres d’erreurs representent les erreurs statistiques uniquement. (b): Rapport
σT + εLσL pour les deux cinématiques en fonction de tmin − t. L’ajustement de ce rapport (ligne
pointillée) donne la dépendance en Q2 de la section efficace.
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Figure 3: (a) Composante σT + εLσL de la section efficace H(e, e′π0)p, en fonction de tmin − t
pour Q2 = 2.1 GeV2. les barres d’erreurs representent les erreurs statistiques uniquement. (b):
Rapport σT + εLσL pour les deux cinématiques en fonction de tmin − t. L’ajustement de ce rapport
(ligne pointillée) donne la dépendance en W de la section efficace.

La section efficace totale σT + εLσL, ainsi que la composante dépendante de l’hélicité
σTL′ sont décrites, pour xBj = 0.36 de façon satisfaisante par le modèle d’échange de
mésons dans la voie t de J.M. Laget. En revanche, les deux autres composantes montrent
un net désaccord, que ce soit en amplitude pour σTT , voire en signe pour σTL, et ce pour
ces mêmes cinématiques.

La section efficace totale σT +εLσL se comporte donc comme 1/Q4.5, qu’il faut comparer
au comportement asymptotique σT + εLσL ∼ 1/Q8. De plus, dans l’hypothèse du régime
perturbatif, où σL À σT , on obtiendrait σL ∼ 1/Q3, ce qui est très loin du comportement
asymptotique à très haute énergie prédit par le formalisme des GPDs. Les données que
nous avons extraites nous conduisent à deux conclusions vis-à-vis des modèles disponibles :

� le modèle de J.M. Laget est capable de décrire correctement les composantes σT +
εLσL et σTL′ , mais échouent a décrire σTL et σTT ;

� la dépendance en Q2 de la section efficace (Fig. 2) démontre que nous sommes
éloignés de la prédiction à l’ordre dominant en QCD perturbative de dσL/dt, qui se
comporte comme 1/Q6. En revanche, cette dépendance est similaire à la dépendance
en Q2 de la section efficace transverse d’électroproduction de pion chargés publiée
par le Hall C.

De plus, le π0 n’ayant ni charge ni spin, un couplage direct entre le photon virtuel et un
pion neutre est très supprimé, ce qui enlève la contribution du pôle du pion à la section
efficace longitudinale. Cela suggère que la section efficace transverse σT est vraisemblable-
ment dominante devant σL. D’autre part, la section efficace transverse d’électroproduction
de π+ a déjà été décrite par un mécanisme de fragmentation de quark habituellement
utilisé pour décrire les processus semi-inclusifs.

T. Horn et al. ont mesuré la section efficace d’électroproduction exclusive de π+

à Q2 = 1.60 et 2.45 GeV2, avec une séparation transverse-longitudinale. Le modèle
de J.M. Laget reproduit bien la composante σL, mais la composante σT n’est pas bien
reproduite par ce même modèle. Kaskulov, Gallmeister et Mosel ont effectué des calculs
utilisant PYTHIA-JETSET basé sur le modèle de Lund appliqués à la section efficace
transverse d’électroproduction de π+ aux cinématiques du Hall C. Ces calculs sont en
excellent accord avec les données de section efficace transverse de ep → enπ+ du Hall C.
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Figure 4: Rapport
√

2εL(1 + ε)σTL/(σT + εLσL) pour xBj = 0.36, en fonction de l’impulsion
transverse du pion pπ⊥. L’ajustement du modèle à cette quantité est representée par la courbe
pointillée pour Q2 = 1.9 GeV2 et par la courbe pleine pour Q2 = 2.3 GeV2.

Cela donne une forte indication que la section efficace transverse de production exclusive
de π+ à Q2 > 1 GeV2 au delà de la région de resonance peut être décrite de par un
processus partonique. Cela suggere également que les données π0 presentées ici peuvent
être décrites de façon similaire par un processus de diffusion incoherente du photon virtuel
sur la structure partonique du nucléon.

Pour ces raisons, nous considerons nos données dans le contexte de la diffusion pro-
fondément inelastique semi-inclusive (“Semi-Inclusive Deep Inelastic Scaterring”, ou SIDIS).
Nous avons tenté d’ajuster à nos données un formalisme de SIDIS écrit par M. Anselmino
et al.. Ce formalisme fournit l’expression, valable à O(k⊥/

√
Q2), de la section efficace de

production semi-inclusive de n’importe quel hadron ainsi que la contribution dépendante
de cos φπ de cette section efficace (“effet de Cahn”). L’idée de cette analogie est d’ajuster
le rapport entre cette contribution en cos φπ (identifiée à σTL) et le terme constant (iden-
tifié à σT + εLσL), avec comme paramètre d’ajustement 〈p2

⊥〉/〈k2
⊥〉 :

√
2εL(1 + ε)σTL

σT + εLσL

=
4(2− y)

√
1− yzπpπ⊥( 〈p2

⊥〉
〈k2
⊥〉

+ z2
π

) √
Q2(1 + (1− y)2)

(14)

Le résultat de cet ajustement est montré figure 4. Nos données exclusives (où la multi-
plicité de particules produites est 1) sont reproduites par ce modèles si 〈p2

⊥〉/〈k2
⊥〉 ∼ 5.0,

tandis que pour les données inclusives (où la multiplicité est grande), on obtient plutôt
〈p2
⊥〉/〈k2

⊥〉 ∼ 0.8.

Conclusions

La première experience DVCS/π0 du Hall A à Jefferson Lab fournit des résultats de sec-
tion efficace d’éléctroproduction de π0 avec une haute précision statistique, en dépit d’un
énorme bruit experimental environnant dû à une forte luminosité (1037 cm−2s−1) et à un
appareillage expérimental proche du faisceau d’électrons incident. Ceci est attribuable au
spectromètre de haute résolution combiné à notre calorimètre, qui permettent une excel-
lente resolution sur la masse manquante des événements en triple cöıncidence H(e, e′γγ)X
ainsi que sur la masse invariante des deux photons, facilitant la sélection des événements
ep → epπ0 parmi les événements bruts. La statistique que nous avons enregistrée permet
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d’obtenir une incertitude statistique sur la section efficace de 3 % pour xBj = 0.36 et de 5
% pour Q2 = 2.1 GeV2. L’instrumentation très précise qui a été utilisée donne une erreur
systematique totale d’environ 3 à 5 % sur la section efficace totale. Ces données ne sont
pour autant pas simples à interpreter. Récapitulons, parmi les modèles disponibles, ce
que donne leur comparaisons respectives avec les données :

� nous sommes loin du régime de Bjorken, et le comportement en Q2 données n’obéit
pas à la prédiction au premier ordre de la QCD perturbative. Cependant, rien
n’interdit que σL uniquement obéisse à cette prédiction, mais sans séparation trans-
verse/longitudinale, rien ne permet de l’affirmer;

� le modèle d’échange de mésons dans la voie t de J.M. Laget est capable de reproduire
la section efficace totale σT +εLσL ainsi que la section efficace dépendante de l’hélicité
σTL′ , mais reste à parfaire pour les composantes restantes;

� la tentative d’interprétation de nos données exclusives avec un formalisme semi-
inclusif donne une description du rapport σTL/(σT + εLσL).

Une meilleure comprehension de ces données passe par la séparation des deux composantes
σT et σL. Pour cela, il est nécessaire d’effectuer une séparation de Rosenbluth.

C’est pourquoi une nouvelle expérience DVCS/π0 pour le Hall A a été mise au point.
Cette expérience a beaucoup de points en commun avec la précendente, et quelques dif-
ferences. Résumons en quelques points ce qui restera et ce qui changera de l’ancienne
expérience à la nouvelle.

� La couverture cinématique étudiée sera similaire, bien qu’un peu plus réduite en
Q2 (1.5 à 2.0 GeV2 en Q2 à xBj équivalent), la faute a une énergie de faisceau
disponible plus faible. Cependant, nous prendrons des données à plusieurs énergies
pour chaque cinématique, afin de permettre la séparation de Rosenbluth.

� Le calorimètre a été agrandi, passant de 12 × 11 = 132 blocs à 16 × 13 = 208 blocs
de PbF2, essentiellement pour améliorer l’acceptance des événements H(e, e′π0)X.
De plus, un blindage a été concu afin de proteger le calorimètre contre le bruit de
fond de particules de basse énergie.

� Le système de déclenchement a été modifié pour enregistrer, en plus des événements
DVCS et π0, des événements de bruit de fond afin d’améliorer la connaissance de
ce dernier. Le seuil de déclenchement du calorimètre a en outre été abaissé afin
d’augmenter la statistique d’événements π0.

Toutes ces modifications devraient permettre d’obtenir des sections efficaces DVCS et π0,
dans un domaine cinématique similaire avec une séparation transverse/longitudinale. La
précision statistique sur ces nouvelles mesures devraient être du même niveau de precision
que les anciennes mesures. En outre, l’incertitude systematique devrait être inferieure à
celles des anciennes mesures. Ces nouvelles données, mises en relation avec les données
presentées dans ce document, devraient en ameliorer sensiblement la comprehension, et
peut être même être utilisables pour l’étude des GPDs.
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Introduction

The interest of subatomic physics is to reveal the underlying structure of the matter we
and our environment are made out of, at the level which is below the atomic structure.
At this level, here is what we understand:

� the atoms are built out of a nucleus, with electrons orbiting around it. The inter-
action between the electrons and the nucleus are described, at every energy scale
from low to very high energy, by Quantum Electro-Dynamics (QED), which is a
well understood theory;

� this nucleus is constituted of nucleons (protons and neutrons). The interaction
between nucleons in the nucleus (or at least at reasonable energy scales) are rather
well understood within approximate theories implying exchange of mesons;

� the nucleon is constituted of quarks. The interaction between these quarks are
described by Quantum Chromo-Dynamics (QCD), which remains to be fully studied.

The QCD theory is a non-abelian gauge theory, which means the carriers of the interac-
tions, the gluons, can couple to themselves. Since gluons have no mass, the non-abelian
property of QCD leads to a particular behavior. On the one hand, considering two quarks
getting further to each other, the amplitude of the interaction between them grows to
infinity with infinite distances. This implies a quark cannot be observed completely free,
it is always confined into a hadron (nucleon or meson). This is what we call the quark
confinement. On the other hand, considering two quarks getting closer to each other, the
amplitude of the interaction between them decreases to vanish at infinitely close distances.
This is what we call the asymptotic freedom [Wilczek(1974)].

Because of this, the nucleon structure, which is governed by QCD still remains to be
understood. Several techniques, such as lattice QCD, are available to study QCD and the
structure of hadrons, but the best and most reliable information for the nucleon structure
is the experiment. Among the large variety of experiments which could be imagined to
study the nucleon structure electron-nucleon reaction is prefered by many experimentalists
for these reasons:

� lepton-hadron reactions are prefered because of the elementarity of the lepton.

� among all leptons, the electron has always been easier to get and to handle in beams.

Several facilities (including the Continuous Electron Beam Accelerator Facility (CEBAF)
at Jefferson Lab) have been dedicated to electron-nucleon reaction studies, allowing plenty
of experiments to study the nucleon structure.
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Nowadays, and thanks to the numerous experiments which allowed to study it, the
structure of the nucleon is actually rather well understood, either in terms of form fac-
tors (spatial distributions of the nucleon components) or in terms of parton distribution
functions (momentum distribution of the nucleon constituents). Unfortunately, these in-
formations do not allow a complete description of the nucleon. For instance, the sum of
the spins of all quarks and gluons which are in the nucleon are only a fraction of the total
nucleon spin (spin crisis). The rest of the spin may come from quark and gluon orbital
momenta contributions.

The solution to the spin crisis requires new informations on the nucleon which may be
provided by a three-dimensional description of the proton [1, 2]. Fortunately, in the late
90s, new quantities for the study of the nucleon structure appeared. These quantities,
called the Generalized Parton Distributions (GPDs) contains the structural information
of the Parton Distribution Functions (PDFs) correlated with the spatial information of
the Form Factors (FF). They are accessible through exclusive processes such as Deeply
Virtual Compton Scattering (DVCS),

γ∗p → γp, (15)

or Deeply Virtual Meson Production (DVMP).
In the present document, we are interested in deeply virtual π0 production,

γ∗p → γπ0, (16)

and more particularly in the π0 electroproduction experiment performed at Jefferson Lab,
Hall A. This experiment was complementary to the Jefferson Lab Hall A DVCS experiment
and was recorded with the same apparatus. We measured exclusive π0 electroproduction
cross sections in the deep inelastic regime (Q2 > 1 GeV2, W > 2 GeV), for several Q2 at
xBj fixed, to extract a Q2 dependence.

In the first chapter are reviewed the different models that are available to describe π0

production. The second chapter is dedicated to the description of the experimental setup.
The calibration of the electromagnetic calorimeter which is specific to our experiment is
available in chapter three. The analysis methods we used to extract the cross section are
detailed in the fourth chapter. In the fifth chapter, the results are finally provided and
confronted with some of the models reviewed in chapter one. Finally, I will conclude on
π0 experiment and results, and give an outlook on further experiments.
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Chapter 1

Phenomenology of pion
electroproduction

To probe the structure of the hadrons, we collide the hadrons with other particles we
use as probes. These particles can be other hadrons, leptons or photons. It is more
convenient however to use structureless probes such as leptons or photons. The electron
is the most widely used, because the electron-nucleon interaction is governed by quantum
electro-dynamics, which is perfectly known. Moreover, the electron is the easiest lepton
to handle in beams.

Among the large number of electron-nucleon scattering experiments, a large part are
dedicated to elastic scattering, which allows to access the nucleon form factors. In the non-
relativistic approximation, the nucleon form factors are Fourier transforms of the charge
and current distributions in the proton [3]. Another broad part of these experiments have
been devoted to deep inelastic scattering (DIS), to study the PDFs. The PDFs are the
probability for a parton to carry a momentum fraction x of the total proton momentum p
in the so-called Infinite Momentum Frame (IMF). The IMF is defined as the frame where
the momentum of the proton is infinite.

On the side of these two kind of experiments, other kinds of experiments, such as
meson electroproduction, were studied. The pion is the lightest of the broad family of
hadrons. Moreover, it has the simplest content in terms of constituent quarks, and it has
no spin. Thanks to this, the pion electroproduction always had a particular place among
all electron-nucleon scattering processes [4].

This chapter is dedicated to the description of the different models available for pion
electroproduction. In the first section of this chapter, we write the formalism of pion
electroproduction cross section. We emphasize on the expression of the hadronic tensors.
The second section is dedicated to pion electroproduction related to hadron form factors.
The Regge phenomenology is treated in the third section. We present the principle of
Regge phenomenology and we focus on the most recent developments of Regge-inspired
models. In the fourth section, we give some generalities on the GPDs, and its supposed
role in pion electroproduction. Finally, the fifth section is devoted to the description of
the formalism of Semi-Inclusive Deep Inelastic Scattering (SIDIS).

1.1 Formalism of pion electroproduction

We present the general expression of pion electroproduction. Particularly, we give the gen-
eral decomposition of this cross section in terms of angular dependences. The expressions
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of the hadronic tensors are also provided.

1.1.1 Kinematic variables

We show a Feynman diagram of the pion electroproduction on Fig. 1.1. This figure

Figure 1.1: Diagram of the forward π0 electroproduction reaction (above), and of the dominant π0

decay mode (below). Notations attached to the propagators have to be understood as quadrimo-
menta, and write, for any quadrimomentum v: v = (v0,v ≡ ~v)

defines the following kinematic quantities:

� Q2 = (k − k′)2 is the virtuality of the virtual photon carrying the interaction;

� W 2 ≡ s = (p + q)2 = M2 + 2p · q − Q2 is the invariant mass of the total hadronic
system; this quantity is also the square of the total energy available in the center of
mass frame;

� θe is the polar angle of the scattered electron with respect to the incident electron;

� t = (q − q′)2 is the momentum transfer to the nucleon;

� the minimal value of t for each event, defined by the electron kinematics, is tmin =
(Q2−m2

π)2

4s
− (|qCM | − |q′CM |)2;

� the DIS variable xBj = Q2/(2p · q) is the momentum fraction carried by the inter-
acting parton in DIS limit.

We also define, within the following conventions of Drechsel and Tiator [5]:

� ẑ axis along the virtual photon;

� ŷ = (k̂i ∧ k̂f )/ sin θe orthogonal to the leptonic plane;

� x̂ = ŷ ∧ ẑ;

the angular variables of pion production. θπ is the polar angle of the produced pion with
respect to the virtual photon direction. We also define θCM

π which is the same variable
considered in the virtual-photon proton center of mass frame. φπ is the azimuthal angle
of the pion relative to the leptonic plane i.e. the scattered electron.
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1.1.2 Cross sections

The general expression of the 5-fold unpolarized pion electroproduction cross sections
is, in the conventions of Drechsel and Tiator [5], and in the One-Photon-Exchange-
Approximation (OPEA):

d5σ

d cos(θe)dφedk′d cos(θπ)dφπ

= Γ
dσv

dΩπ

(1.1)

In this expression, most of the electron kinematic dependence is contained in Γ, the virtual
photon flux, defined as:

Γ =
α

2π2

k′

k

kγ

Q2

1

1− ε
(1.2)

where kγ = (W 2 −M2)/(2M) is the energy a real photon might have to give the same
W 2, and

ε =

(
1 + 2

q2

Q2
tan2 θe

2

)−1

(1.3)

is the degree of linear polarization of virtual photons. Note that ε is also the degree of
longitudinal polarization.

The remaining term in Eq. (1.1) is the reduced cross section, which contains the cross
section components

dσv

dΩπ

∣∣∣∣
unpol

=
dσT

dΩπ

+ εL
dσL

dΩπ

+
√

2εL(1 + ε)
dσTL

dΩπ

cos φπ + ε
dσTT

dΩπ

cos 2φπ (1.4)

where εL = εν2/Q2. The σT and the σL are respectively the transverse and longitudinal
cross section, corresponding to target response to respectively transverse and longitudinal
polarization of the virtual photon. The σTL is the interference between the longitudinal
and transverse responses. It contains a leading dependence in sin θCM

π . The σTT is the
interference between the target responses of the two possible transverse polarizations of
the virtual photon. It contains a leading dependence in sin2 θCM

π . The superscript CM
correspond to the variable evaluated in the γ∗ − p center-of-mass frame.

The expression of the polarized cross section differs from the unpolarized cross section
by the expression of the reduced cross section, which becomes (h = ±1 the electron
helicity):

dσv

dΩπ

∣∣∣∣
pol

=
dσv

dΩπ

∣∣∣∣
unpol

+ h
√

2εL(1− ε)
dσTL′

dΩπdφπ

sin φπ (1.5)

where σTL′ correspond to the helicity-odd transverse-longitudinal interference. It contains
a dependence in sin θCM

π .

1.1.3 Hadronic tensors

To get information on the nucleon structure, it is generally more convenient to use
hadronic tensors instead of separated cross sections. In [5], D. Drechsel and L. Tiator
write the π electroproduction cross section in terms of hadronic tensors. To this end,
they express the electroproduction cross section first in terms of leptonic and hadronic
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currents, using the conventions of Bjorken and Drell [6]:

dσ =
k0

|k|
me

k0

M

p0

me

k′0
d3k′

(2π)3

1

q′0
d3q′

(2π)3

MX

p0
X

d3pX

(2π)3
(2π4)δ4(p + q − q′ − pX)

×
∣∣∣∣〈p′, q′ |Jµ| p〉 1

Q2
〈k′ |jµ| k〉

∣∣∣∣
2 (1.6)

where Jµ is the hadronic current and jµ is the leptonic current. In this expression the
contribution of the weak interaction have been neglected.

In this formalism, we define the hadronic tensor:

Wµν =

(
M

4πW

)2

〈χi |Jµ|χf〉〈χf |Jν |χi〉 (1.7)

where |χi,f 〉 are the Pauli spinors of the nucleon in the initial and final state.
The reduced cross section, in terms of these hadronic tensors, becomes, in the polarized

case:

dσv

dΩCM
π

=
q′CM

kCM
γ

[
Wxx + Wyy

2
+ εLWzz −

√
2εL(1 + ε)<eWxz + ε

Wxx −Wyy

2

− h
√

2εL(1− ε)=mWyz

] (1.8)

where kCM
γ = kγ × M/W is the energy a real photon might have to give the same W 2

evaluated in the CM frame and q′CM is the norm of q′ evaluated in the CM frame.
The cross sections and the hadronic tensors are only the observable quantities encap-

sulating the underlying physics. Pion cross section measurements allow to parameterize
several models of the nucleon content.

1.2 Pion electroproduction and hadron form factors

In this section, we discuss pion electroproduction within the form factor framework. This
part concerns more precisely charged pion electroproduction at low −t. We give generali-
ties on hadron form factors, and we give the description of ep → enπ+ in terms of hadron
form factors. See [7] for a more complete review.

1.2.1 Hadron form factors

As said in the introduction of this chapter, the form factor of the hadron is related with the
charge distribution in this hadron. It is actually the two dimensional Fourier transform of
the charge distribution ρ(b) with respect to the impact parameter b [8], meaning it gives
the scattering amplitude of an electromagnetic probe on the hadron (see Fig. 1.2) as a
function of the probe momentum |q|:

F h(|q|) =

∫
ρ(b)e−q·bd3b (1.9)

The form factor is normalized as F (0) = 1. For spin 1/2 baryons such as the proton and
the neutron, there are two electromagnetic form factors, denoted F1 and F2. For the pion
which is a spinless quark-antiquark bound state, there is only one form factor Fπ.

24

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



k k’

p’p
)b(ρ

q

Figure 1.2: Charge distribution inside the hadron probed by a virtual photon.

The elastic cross on a given unpolarized hadron is a bilinear combination of the hadron
form factors [9]. For the proton for instance, we have:

dσep→ep

dΩ

∣∣∣∣
lab

= σMott

[(
(F p

1 )2 + (κp)2τ(F p
2 )2

)
cos2 θ

2
+

(
2τ(F p

1 + κF p
2 )2

)
sin2 θ

2

]
; (1.10)

with τ = Q2/(4M2
p ), κp the proton anomalous magnetic moment and:

σMott

(
α2

4k2 sin4 θ
2

)
k′

k
(1.11)

the electron scattering cross section on a structureless i.e. point-like particle of mass M
(α is the fine structure constant).

However, if electron-proton elastic scattering experiments can be performed directly,
electron-neutron scattering, and a fortiori electron-meson scattering can only be per-
formed indirectly. Electron-neutron scattering can be implemented with nuclei, but then
one needs to take into account of the nuclear effects. Direct electron-pion scattering data
have been obtained by colliding pion beams on atomic electrons [10, 11], but this technique
is limited to a very small Q2 coverage.

This is why people have always found more convenient to use pion electroproduction
to determine pion form factors. The next sub-section deals about methods to extract
form factors from pion electroproduction.

1.2.2 Hadron form factors in pion electroproduction

Several charged pion electroproduction experiments were designed to extract pion form
factor (for example [12, 13] for old experiments, and [14, 15] for a very recent experiment).

In the Born term model, the interaction ep → enπ+ is modeled by a pion exchange.
Actually, in this model, the virtual photon interacts with a charged pion from the pion
cloud of the nucleon. The pion becomes real, and the nucleon isospin flips. Thanks to
this, ep → enπ+ contains information on the pion form factor, as well as the proton and
the neutron form factors. According to [4], the transverse and longitudinal cross sections
of the reaction ep → enπ+ in the Born approximation (OPEA) is expressed as:

σep→epπ+

T

∣∣∣
B.A

∝
∣∣∣∣

1

2M + mπ

[
F p

1 (Q2)− mπ

2M
F p

2 (Q2)
]

− 1

2M2 + mπM −Q2

[
(mπ + M)F n

1 (Q2)− Q2 + mπM

2M
F n

2 (Q2)

]∣∣∣∣
2 (1.12)
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σep→epπ+

L

∣∣∣
B.A

∝
∣∣∣∣

1

2M + mπ

[
mπ

Q2
F p

1 (Q2)− 1

2M
F p

2 (Q2)

]

− 1

2M2 + mπM −Q2

[
(1 +

mπM

Q2
)F n

1 (Q2)− mπ + M

2M
F n

2 (Q2)

]

+
Q2 −m2

π

Q2(2Mm2
π + m3

π −MQ2)
Fπ(Q2)

∣∣∣∣

(1.13)

Thus, cross sections with transverse-longitudinal separation allow with a good nucleon
form factor parameterization to extract the pion form factor. The authors of [4] even pro-
pose to get independent neutron form factor measurements compared to electron neutron
scattering on nuclei.

This method, known as the Born term model method, knew a first improvement with
the model of Gutbrod and Kramer [16]. In the Born term model, the nucleon form fac-
tors are considered to be the on-shell nucleon form factors, whereas at the nucleon-pion
vertex, the nucleon is off-shell. Gutbrod and Kramer allow in their model the nucleon
form factor to be different from the on-shell nucleon form factor. Brauel et al. [12] and
Ackermann et al. [13] use this model to extract the pion from factor from separated
longitudinal cross section at Q2 = 0.70 GeV2, W = 2.19 GeV, |t| < 0.28 GeV2 and
Q2 = 0.35 GeV2, W = 2.10 GeV, |t| < 0.05 GeV2 respectively.

The Born term models are valid when the energy W involved in the reaction is not too
large (typically at W < 2 GeV, [17, 18]). When this energy increases, other contributions
from the ρ meson for instance contribute to the reaction. To take all these contributions
into account, Vanderhaeghen, Guidal, and Laget [18] recently developed a model including
the exchange of Regge trajectories instead of exchange of particles (see next section for
details on Regge models).

Horn et al. [14, 15] used this model to extract the pion form factor from separated
cross sections at Q2 = 1.60 and 2.45 GeV2 and Q2 = 2.15 and 3.80 GeV2. Huber et al.
[7] used this method to extract the pion form factor from separated cross sections from
Q2 = 0.6 GeV2 to Q2 = 2.45 GeV2, and to reanalyze Brauel data and Ackermann data.
These very recent analysis found that in the scanned Q2 range, the pion form factor is
likely dominated by non-perturbative contributions (See Fig. 1.3).

Nowadays, the pion form factor extraction from charged pion electroproduction process
relies on Regge phenomenology. Regge phenomenology is also able to describe neutral
pion electroproduction processes. We treat Regge models in the next section.

1.3 Regge phenomenology

This section deals with the Regge phenomenology. We give the basic principles of Regge
phenomenology and explicit formulae. Then we summarize the description of the old π0

data with the Regge phenomenology.

1.3.1 Principle and formalism of Regge phenomenology

The interaction between two particles is usually modeled by the exchange of a virtual
boson. Considering the example of γ(∗)p → π+n, (Fig. 1.4), the amplitude of the
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Figure 1.3: Figure extracted from [15]. Charged pion form factor measurements from [12, 13] (black
markers), [10, 11] (green markers), and [14, 15] (yellow and red markers). These measurements are
in reasonable agreement with non-pertubative models (blue and red curve), but are in complete
disagreement with perturbative models (magenta and black curves).

reaction depends on the particle exchanged, depending on the energy available for the
reaction. The diagram of Fig. 1.4 can be decomposed in three main Feynman sub-

p n

+π
*γ, γ

Figure 1.4: Diagram of the reaction γ(∗)p → π+n.

diagrams (Fig. 1.5), representing the three Mandelstam variables channels (respectively
the “annihilation” diagram for s-channel, the “forward scattering” diagram for t-channel,
and the “backward scattering” for u-channel).

The Regge phenomenology is an approximate formalism in the sense that this param-
eterization uses a tree-level Lagrangian based on hadronic degrees of freedom, instead of
quark and gluons. For instance, for the exchange of a π+ in the t-channel, the current is
[19]:

Jµ
π (γ(∗)p → π+n) = −i

√
2e

fπNN

mπ

N̄f (q − pπ)µP0
/qγ

5Ni. (1.14)

where P0 is the propagator of the particle, and fπNN is the pion-nucleon coupling constant.
The idea of the Regge phenomenology is to model the interaction, in the t-channel,

with an exchange of families of particles instead of particles themselves. Indeed, a given
process involves more and more exchanged particles in the t-channel as the available
energy in this channel grows. These families of particles are characterized by the same
quantum numbers (except the spin which increases by two units for each new particle), and
are called trajectories. The trajectory describes in an elegant way the t-dependence of a
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s-channel t-channel u-channel

*γ, γ

*γ, γ *γ, γ

+π

+π

+πp p pn n

n

*
N *

N
+π

e
e e

 N Nπf
 N Nπf  N Nπf

Figure 1.5: Diagrams of the reaction γ(∗)p → π+n in the s-channel (left), t-channel (middle), and
u-channel (right).

process, since it aims to give a relevant relation between the value of the quadrimomentum
transfer t and the amplitude of the process in the t-channel, depending on the number of
particles involved. Notice that a given process possibly involves several trajectories.

The notion of trajectory corresponds analytically to replace, in equation (1.14) the
propagator of a single boson (see Fig. 1.5 for our example) with the propagator of a
trajectory (see [19, 20] for recent sources). The trajectory propagator for a scalar S, or a
pseudoscalar PS such as the π+ is:

PRegge =

(
s

s0

)αS,PS(t) πα′S,PS(t)

sin(παS,PS(t))

SS,PS + e−iS,PSαS,PS(t)

2

1

1 + Γ(αS,PS(t))
, (1.15)

where s0 is a reference mass scale, taken conventionally as 1 GeV2 and SS,PS = +1 is the
signature of the trajectory. The Regge trajectory αS,PS(t) is the “exchanged” spin in the
t channel, as a function of t which is the squared mass of the trajectory. It is empirically
found to be approximately linear αS,PS(t) = α′S,PS × (t −m2

S,PS). Note the trajectory is
materialized by a particle when the spin J is equal to J = 2N +J0, N integer, and J0 the
spin of the first particle of the trajectory (0 for scalars, pseudoscalars, and 1 for vectors,
pseudovectors).

For a vector meson V , such as the ρ and the ω, or a pseudovector meson PV such as
the b1, the propagator is:

PRegge =

(
s

s0

)αV,PV (t)−1 πα′V,PV (t)

sin(παV,PV (t))

SV,PV + e−iπαV,PV (t)

2

1

Γ(αV,PV (t))
, (1.16)

where SV,PV = −1, and α(t) = α0 + α′ × t, with α0 the intercept of the trajectory. The
intercept is by definition α(t = 0).

The propagator of a particle trajectory has the property to reduce to the Feynman
propagator of the particle itself at the neighborhood of the particle pole (i.e when t → m2).
Since the propagator expression comes in the scattering matrix element M(s, t), the t-
dependent cross section is given by:

dσ

dt
∝ 1

s2
× |M(s, t)|2 ⇒ dσ

dt
∝ s2α(t)−2, (1.17)
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which gives the deep inelastic scattering cross section behavior with the optical theorem

σDIS ∝ 1

s
×=m{M(s, t = 0)} ⇒ σDIS ∝ sα0−1. (1.18)

In other words, the intercept of a trajectory carries the energy dependence of the total
cross section. In an interaction, which generally involves more than one trajectory, the
energy dependence of the total cross section is given by the trajectory with the highest
intercept.

At asymptotically high energies, the inclusive scattering is dominated by the exchange
of the “Pomeron” trajectory. The Pomeron has been created as an effective object which
carries the quantum number of the vacuum. Its intercept is α0 = 1.08. Some theoretical
hypotheses state it would be actually instantiated as glue-balls, which are gluon-gluon
bound states [21, 22].

To describe a considered channel, one should generally include several trajectories.
For reasons of completeness, one should have to consider channels where a particle is
produced and then rescattered in the nucleon field. In the most general case, the particle
initially produced may be different from the particle produced in the final state. In the
case the particle initially produced is the same as the particle in the final state, the par-
ticle exchanged for the rescattering is a pomeron. The trajectory corresponding to such
a channel is called a “cut trajectory”.

After this short description of the Regge phenomenology, let us review the achieve-
ments of Regge-based models for pion photoproduction, and recent developments for
electroproduction data.

1.3.2 Old neutral pion results, and Regge interpretation

The Regge phenomenology used to give successful results, mostly for the description of
photoproduction processes. In this summarized review, we focus on π0 production.

For the study of neutral pion production, one used to consider the trajectories of the
ω and the ρ added with the b1(1235) [23, 24, 25]. Notice there is no π0 trajectory, since
the π0 does not carry any charge or spin, and then cannot couple to a photon, real or
virtual. The charged pion trajectory does not contribute as well, since it does not even
have any hadronic decay channel. The contribution of the ρ has been quickly minimized
because of the very weak ρ → π0γ branching ratio. Braunschweig et al. in [23, 24] fitted
their photoproduction data at 4 and 5.8 GeV photon energy. Their fit includes Primakoff
effect, which is the production of a neutral pion by the interaction of the real photon with
a virtual photon from the target (γγ∗ → π0). They showed the invalidity of a fit including
only the Primakoff effect and the ω and b1 trajectories for −t > 0.4 GeV2. However, they
successfully fitted all their data with a model including an effective cut trajectory taking
into account the Pomeron exchange in pion elastic rescattering (Fig. 1.6).

Anderson et al. also minimized the role played by the b1 trajectory based on their
measurements of photoproduction asymmetries with linearly polarized photons on an
overall beam energy range running from 4 to 18 GeV [26, 27, 28]. The asymmetry A⊥|| is
given by:

A⊥|| =
σ⊥ − σ||
σ⊥ + σ||

(1.19)

with σ⊥(σ||) the cross section with photons normally (parallelly) polarized with respect
to the reaction plane. The natural parity trajectories (i.e. vectors JP = 1− such as ω)
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Figure 1.6: Figure extracted from [24] showing dσγp→π0p/dt. The dashed curves represent the fit
including ω and b1 trajectories. The solid curves represent the fit with the ω and the effective cut
trajectories. The data show better agreement with the solid curves.

contribute to σ⊥, whereas the unnatural parity trajectories (i.e. pseudovectors JP = 1+

such as b1) contribute to (σ||). Their measurements at beam energies of 4, 6 and 10 GeV
give asymmetries between 0.8 and 1 at their kinematic coverage. This clearly indicates a
dominance of the ω trajectory, and a negligible contribution to b1.

All these previous data show a dip around t = −0.5 GeV2. The trajectory of the ω has
been pointed out to be responsible for the dip. However, the ω alone would have given a
null cross section. The fact it is not zero is due to the contributions of other trajectories.

Goldstein and Owens [30] fitted π0 photoproduction data with a global model based
on SU(3) invariance, and vector meson dominance, including the ω and ρ trajectories,
the b1 and the h1 trajectories. This model also takes into account an effective trajectory
cut generated by elastic rescattering on the nucleon. This cut is parameterized by πN
elastic scattering, instead of just being an effective trajectory cut as in [24]. Their fit
to the model is in agreement with the individual conclusions of Braunschweig et al. and
Anderson et al..

Brasse et al. [31] and Berger et al. [32] measured π0 electroproduction cross section
at very low Q2 (below 1 GeV2) in order to make the connection with π0 photoproduction.
Brasse et al. measured cross sections at three values of Q2: 0.22, 0.55, and 0.85 GeV2.
They observed a big gap between photoproduction cross section and the cross section at
Q2 = 0.22 GeV2. After this huge gap, their behavior in Q2 is surprisingly rather smooth
(see Fig. 1.9). These measurements also point out the disappearance, even at the lowest
Q2, of the cross section dip at t = 0.5 GeV2. This is due to the appearance of the longitu-
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Figure 1.7: Figure extracted from [28] showing A⊥|| versus −t. The curve is a prediction from
Frøyland [29] including ω, ρ and respective cut trajectories.

Figure 1.8: Figures extracted from [30]. Left panel shows dσγp→γpπ0

v /dtdφπ data. Right panel
shows the asymmetry A⊥||. The curves represent the fit of Goldstein and Owens.

dinal contribution and the growing contribution of σ||. Although these contributions are
small, they might be large enough to fill in the dip. Berger et al. also provide asymmetries
measurements, at Q2 = 0.275 GeV2. These asymmetries are lower than photoproduction
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Figure 1.9: Figure extracted from [31] showing dσep→epπ0

v /dtdφπ. The vertical scale has been offset
for each kinematic for legibility reasons. The data points from one kinematic to another at the same
−t are actually rather close to each other. In contrast to this rather smooth Q2 dependence, the
cross section falls quickly from the photoproduction point to the lowest Q2 electroproduction point,
in exception with the accidental agreement in the dip region of the real photon data

asymmetries, giving further evidence of a growing contribution of σ||.

After a golden age in the 1960s and the 1970s, and despite of all its successes, Regge
phenomenology has been more and more abandoned. There are several reasons to that.
First of all, it deals with hadronic degrees of freedom, so the link with QCD is not
easy. Moreover, the advantage of Regge models, which used to be the relative simplicity
and the relatively low numbers of needed parameters, is reduced as one tries to describe
more and more accurately the data. Finally, more powerful tools, such as generalized
parton distributions appeared in the late 1990s. This tool deals with partonic degrees
of freedom (i.e. quarks and gluons) instead of hadronic degrees of freedom, what makes
them integrated by construction in the QCD framework. Mostly, GPDs propose a new
three-dimensional information on the nucleon. The following section is dedicated to the
description of GPDs.

1.4 Generalized Parton Distributions

This section is dedicated to GPDs. GPDs are a new tool to explore the nucleon structure
in terms of quarks and gluons. Particularly, they give a three-dimensional information
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on the nucleon structure, allowing to get some information on the orbital momentum of
the partons. We give a reminder about Deep Inelastic Scattering (DIS) and PDFs. We
build the link between PDFs and GPDs via the optical theorem and Compton Scattering.
We introduce the GPDs and we give their properties, particularly in the forward limit
and their sum rules. We finally give a description of Deeply Virtual Meson Production
(DVMP) within the GPD framework.

1.4.1 Deep inelastic scattering and parton distribution functions

Before to treat the GPDs, let us do a short reminder about parton distributions functions.
PDFs are involved in DIS cross sections. DIS experiments focus on the electron scattering
on the nucleon at high energy, without measuring the hadronic final state. A diagram of
this process is shown in Fig. 1.10(a).

k

p

k’

q

}X }X

x

(a) (b)
Bjorken

limit

p

k’
k

q

Figure 1.10: Feynman Diagram for Deep Inelastic Scattering ep → eX: (a) most general Feynman
diagram for inelastic scattering; (b) Feynman diagram for DIS in the Bjorken regime.

The Bjorken regime is defined by a large virtuality Q2 of the virtual photon, a large
energy ν of the virtual photon, and the Bjorken variable xBj = Q2/2p · q fixed. In this
Bjorken regime, the virtual photon selects in the proton a single quark, which momentum
is xp in the Infinite Momentum Frame (IMF) of the nucleon. The perturbative dynamics
of the reaction forces x = xBj. This mechanism is illustrated by Fig. 1.10(b).

This figure also illustrates the fact that this kind of process can be decomposed in a
hard part and a soft part. The hard part is the interaction of the virtual photon with the
asymptotically free quark, and can be computed in perturbative QCD (pQCD). The soft
part is, in deep inelastic scattering, the sum of processes which transforms the nucleon
into any final state accessible at the given W of the interaction. It cannot be computed
by pQCD, and must be experimentally determined. The ability of such a process to be
described by a soft and a hard part is called factorization.

Thus, the unpolarized DIS cross section can be written as a sum of elementary inter-
actions between two point-like particles, the electron and the single quark:

dσDIS

dk′dΩe

=
∑

q

dσeq→eq

dk′dΩe

× fq(x). (1.20)
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where the fq(x) are the PDFs. The parton distribution function fq(x) corresponds to the
probability for a parton q to carry the momentum fraction x of the proton. Similarly,
the polarized DIS cross section will depend on ∆qi(x) which is the helicity distribution
function for the parton i.

The normalization of the PDFs is given by:

∑
i∈q,g

∫
xfi(x)dx = nv (1.21)

with nv = 0, 1, 2 the number of valence partons of flavor i. In the case of deep inelastic
scattering, the momentum fraction of the proton x is precisely the Bjorken variable xBj.

The unpolarized DIS cross section can also be written in the classic form, with hadronic
tensors [9]:

dσDIS

dk′dΩe

=
α2

4k2 sin θe

2

4

[
W2(xBj, Q

2) cos
θe

2

2

+ 2W1(xBj, Q
2) sin

θe

2

2]

=
α2

4k2 sin θe

2

4

[
1

ν
F2(x) cos

θe

2

2

+ 2
1

M
F1(x) sin

θe

2

2]
,

(1.22)

with the structure functions F1(x) and F2(x), given in the Q2 →∞ limit by

F2(x) = 2xF1(x) =
∑
i∈q,g

e2
i xfi(x), (1.23)

which encapsulate the soft processes.

1.4.2 From PDFs to GPDs, Optical theorem and handbag dia-
gram

The link between parton distribution functions and generalized parton distributions is
provided by the Compton scattering amplitude. Forward Compton process corresponds
to the interaction of the virtual photon with a quark with a momentum fraction x of the
nucleon. The quark becomes excited off its mass-shell and soon re-emits a virtual photon.
This virtual photon is reabsorbed by the scattered lepton, and the quark is reabsorbed
by the nucleon with the same momentum. The diagram of this process, known as the
handbag diagram, is available on the right part of Fig. 1.11.

The optical theorem states that the DIS cross section at a given x is given by the
imaginary part of the forward Compton amplitude (Fig. 1.11). Formally, if we write the
DIS cross section into its most general form:

σDIS ∝ α2

q4
LµνW

µν , (1.24)

with Lµν the leptonic tensor and W µν the hadronic tensor, then the optical theorem states:

W µν =
1

4π

∫
d4zeiq·z ∑

X

〈p |jµ(z)|X〉〈X |jν(0)| p〉

=
1

2π
=mT µν

(1.25)
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p p
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q
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k’ 2
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q

k
k’

q

Figure 1.11: Diagram representation of the optical theorem. The right diagram is the so-called
handbag diagram, and is the amplitude of forward Compton scattering.

with:

T µν = i

∫
d4zeiq·z〈p |T{jµ(z), jν(0)}| p〉. (1.26)

Thanks to this theorem, we have access to the forward Compton scattering amplitude
in terms of parton distribution functions. Forward Compton scattering is only a particular
case at very small t of off forward Compton scattering. To be described however, this
process may require more sophisticated objects that simple PDFs.

1.4.3 Generalized parton distributions (GPDs)

In analogy with forward Compton scattering which would allow to access parton distri-
bution functions, off-forward Compton scattering could allow to access to the so-called
off-forward parton distributions [1, 33, 2], now called Generalized Parton Distributions.
The process is similar, but the momentum of the quark reabsorbed by the nucleon is
different from the quark emitted by the nucleon (Fig. 1.12).

ξ = x+1x
ξ = x-2x

p p’

q
q’

Figure 1.12: Off-forward Compton scattering diagram.
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The amplitude of this process is expressed considering quadrimomenta of the involved
particles in light cone coordinates, i.e. as a function of two light-like vectors (t, x, y, z).
Let us use Ji conventions [2] for the light-like vectors of the coordinates: pµ

l.l. = Λ(1, 0, 0, 1)
and nµ

l.l. = (1, 0, 0,−1)/(2Λ), with Λ fixed arbitrarily. The z-component is taken along the
direction of the virtual photon. These two vectors verify p2

l.l. = 0 = n2
l.l. and pl.l. ·nl.l. = 1.

We define from Fig. 1.12 ∆µ = (p′ − p)µ = (q − q′)µ (with ∆2 ≡ t) and P µ = (p + p′)µ/2,
and we choose qµ and P µ collinear and in the z direction. Then we expand these vectors
according to pl.l., nl.l., and when necessary, transverse components:

P µ = pµ
l.l. +

M̄2

2
nµ

l.l., (1.27)

qµ = −ξpµ
l.l. +

Q2

2ξ
nµ

l.l., (1.28)

∆µ = −ξ(pµ
l.l. +

M̄2

2
nµ

l.l.) + ∆µ
⊥, (1.29)

with M̄2 = M2 − ∆2

4
and the skewedness variable ξ defined by:

ξ =
Q2

2P · q
Bjorken limit−→ xBj

2− xBj

. (1.30)

The Off-forward Compton Scattering amplitude has the form [2]:

T µν(P, q, ∆) = i

∫
d4zeiq·z〈p′ |T{jµ(z), jν(0)}| p〉

= −1

2
(pµnν + pνnµ − gµν)

∫
dx

(
1

x− ξ + iε
+

1

x + ξ + iε

)

×
[
H(x, ξ, t)Ū(p′)/nU(p) + E(x, ξ, t)Ū(p′)

iσαβnα∆β

2M
U(p)

]

− i

2
εµναβpαnβ

∫
dx

(
1

x− ξ + iε
+

1

x + ξ + iε

)

×
[
H̃(x, ξ, t)Ū(p′)/nγ5U(p) + Ẽ(x, ξ, t)

ξ

2M
Ū(p′)γ5U(p)

]

(1.31)

with U(p) the proton spinor, /n = γ · n, and H, H̃, E, Ẽ, functions of Q2, x, ξ and t the
GPDs, which describe the amplitude for a parton picked in the proton with an momentum
x + ξ to return into it with a momentum x− ξ. It is important to note that in this case
xBj 6= x.

H, E are the unpolarized GPDs i.e. parton helicity insensitive and H̃, Ẽ are the
polarized GPDs i.e. parton-helicity dependent relative to the proton spin direction. They
provide correlated informations on the spatial distributions of partons in the proton, and
on the momentum distribution of these partons in the proton [8]. There are actually four
chiral-even GPDs for each type of parton q, g in the Bjorken limit.

The GPDs are theoretically constrained at some limits by the nucleon form factors,
and by the parton distribution functions. These constraints have been introduced first by
Ji in [2].

At t = 0 and ξ = 0 (forward limit), we recover the usual helicity independent and
helicity dependent PDFs:

Hg,q(x, 0, 0) = fg,q(x), (1.32)

H̃g,q(x, 0, 0) = ∆qg,q(x). (1.33)
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On the other hand, the GPDs obey to the following sum rules.
∫ 1

−1

dxHg,q(x, ξ, t) = F g,q
1 (t), (1.34)

∫ 1

−1

dxEg,q(x, ξ, t) = F g,q
2 (t), (1.35)

∫ 1

−1

dxH̃g,q(x, ξ, t) = gg,q
A (t), (1.36)

∫ 1

−1

dxẼg,q(x, ξ, t) = gg,q
P (t), (1.37)

with F1(t), F2(t) the nucleon form factors as introduced in the second section of this
chapter, and gA(t), gP (t) respectively the axial vector and pseudoscalar form factors
(accessible with weakly interacting probes for example).

In addition to these constraints, Ji introduced an additional sum rule, now known
as Ji sum rule, expressing the total angular momentum of a parton as a function of its
corresponding GPDs:

∫ 1

−1

dx x [Hq,g(x, ξ, t) + Eq,g(x, ξ, t)] = Aq,g(t) + Bq,g(t) (1.38)

with
Aq,g(0) + Bq,g(0) = 2Jq,g. (1.39)

As we already know the spin contribution to the total angular momentum from DIS, the
Ji sum rule is a way to access the parton orbital momentum contribution to the total
nucleon spin.

1.4.4 GPDs in Deeply Virtual Meson Production (DVMP)

The GPDs are designed to describe all exclusive leptoproduction processes on the nucleon
[34, 35]. Among these processes, the most studied is the Deeply Virtual Compton Scat-
tering (DVCS), which is a particular case of off-forward Compton scattering with a real
photon in the final state. The data we analyze in this document is the by-product of a
DVCS experiment [36] and have been recorded with the same apparatus. Details on the
DVCS cross sections in terms of GPDs are given in [34, 35, 37] for instance.

Our actual interest is the Deeply Virtual Meson Production (DVMP), which are de-
scribed in great detail in [34, 35]. Factorization for DVMP has been proved with a
longitudinally polarized virtual photon by Collins, Frankfurt and Strikman [38].

[34, 35] give the general structure of longitudinal cross sections for vector and pseu-
doscalar meson production in terms of GPDs. At leading order, vector meson production
amplitudes only depend on unpolarized GPDs, whereas pseudoscalar meson production
amplitudes only depend on polarized GPDs [38]. The quarks GPDs taking place in the
amplitude depends on the meson quark content.

The longitudinal amplitude for π0 electroproduction is given by [34]:

ML
π0 = −ie

4

9

1√
Q2

4παS

[∫ 1

0

dz
Φπ0(z)

z

]
1

2

∫ 1

−1

dx

[
1

x− ξ + iε
+

1

x + ξ + iε

]

×
{

H̃p
π0(x, ξ, t)Ū(p′)/nγ5U(p) + Ẽp

π0(x, ξ, t)Ū(p′)γ5U(p)
ξ

2M

}
,

(1.40)
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where:

H̃p
π0(x, ξ, t) =

1√
2

{
2

3
H̃u/p +

1

3
H̃d/p

}
, (1.41)

Ẽp
π0(x, ξ, t) =

1√
2

{
2

3
Ẽu/p +

1

3
Ẽd/p

}
(1.42)

and Φπ0(z) is the Distribution Amplitude (DA) of the pion, experimentally parameterized
by:

Φπ0(z) =
√

2fπ6z(1− z), (1.43)

with fπ = 0.0924 GeV and z = (p · q′)/(p · q). The longitudinal cross section then scales
as 1/Q6 within the conventions used by [34, 35]. On the other hand, the transverse cross
section scales as 1/Q8 in the Bjorken regime.

These GPDs need to be extracted from the experiments and parameterized. The
deeply virtual π0 production experiments allows to access the GPDs of quarks. In the
Appendix 2 of this document, I describe a proposal for a deeply virtual φ(1020) production
on the proton, which allows to access the GPDs of gluons. Several GPD ansätze (i.e.
preliminary parameterizations) already exist to make predictions on DVCS and DVMP
cross sections, such as in [34, 35], or to compute vector mesons cross sections such as
Goloskokov and Kroll model [39, 40].

1.5 Semi-Inclusive Deep Inelastic Scattering

Even though we study an exclusive reaction, we study it in the DIS regime (W 2 >
4 GeV2), so this reaction, as well as any other exclusive reaction in the DIS regime, can
be seen as the limit of SIDIS, where the typical multiplicity of the measured particle
is unity. Semi-Inclusive Deep Inelastic Scattering (SIDIS) describes electroproduction
processes such as ep → ehX where only the produced hadron h and the scattered electron
are measured (see Fig. 1.13(a)). They allow to extract quark transverse momentum
dependent structure functions called Transverse Momentum Distributions (TMDs). We
give a detailed description of semi inclusive process, as well as the achievements on SIDIS
phenomenology for pion production. We introduce TMDs, particularly the Cahn effect
and the Sivers function.

1.5.1 General description of semi-inclusive deep inelastic scat-
tering processes

The phenomenology of SIDIS describes a process of leptoproduction of a hadron h on a
nucleon. It differs from exclusive leptoproduction by the fact that any other particle can
be produced in the interaction. A diagram of such a process is available on Fig. 1.13(a).
The produced hadron has a quadrimomentum q′ = (q′0,q′), and carries a fraction of the
total energy

z =
p · q′
p · q

lab.
=

q′0

ν
(1.44)

of the reaction. It is characterized by a transverse momentum q′T relative to the virtual
photon direction. At asymptotically high Q2, ν, and q′T ∼

√
Q2, the process factorizes.

It even factorizes when the transverse momentum of the hadron q′T is low relative to
√

Q2

[41, 42]. This factorization is illustrated by Fig. 1.13(b).
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(a) (b)
∞ → ν, 2Q

Figure 1.13: Feynman Diagram for Semi Inclusive Deep Inelastic Scattering ep → ehX: (a) most
general Feynman diagram for SIDIS; (b) Feynman diagram for SIDIS in the Bjorken regime. fq is
the structure function, and Dh

q is the fragmentation function i.e. the probabilities for each quark
flavor q to hadronize into a hadron h.

Under the factorization hypothesis, the cross section has the form

d5σ

dxBjdQ2dzd2q′T
∝

∑
q

α2e2
q

Q4
fq(xBj, kq⊥)Dh

q (z, q′⊥) (1.45)

with

fq(xBj, kq⊥) =
fq(xBj)

π〈k2
q⊥〉

e
− k2

q⊥
〈k2

q⊥〉 , (1.46)

and

Dh
q (z, q′⊥) =

Dh
q (z)

π〈q′2⊥〉
e
− q′2⊥
〈q′2⊥〉 . (1.47)

This gives for Eq. 1.45

d5σ

dxBjdQ2dzd2q′T
∝

∑
q

α2e2
q

Q4
fq(xBj)D

h
q (z)be−bq′2T (1.48)

where fq(xBj) are the classical PDFs, Dh
q (z) are the so-called fragmentation functions,

which gives the probability for a struck quark of flavor q to yield the hadron h carrying
the energy fraction z, and b is the slope parameter of the q′2T distribution, presumed to
be exponential. Integrated on the transverse momentum of the hadron, the cross section
can be written under the following convenient form:

d3σep→ehX

dxBjdQ2dz
=

d2σDIS

dxBjdQ2
×Dh

q (z), (1.49)
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which allows to write the fragmentation functions:

Dh
q (z) =

1

σDIS(xBj, Q2)

d3σep→ehX

dxBjdQ2dz

=
1

NDIS

dNh

dz

(1.50)

where NDIS is the predicted DIS counting rate, and dNh is the number of counts of the
hadron h carrying a fraction of the energy reaction comprised between z and z + dz.

Fragmentation functions are generally extracted from e+e− annihilation. Their pa-
rameterization frequently takes the form [43, 44]

Dh
q (z) ∝ zβ1(1− z)β2 , (1.51)

and they are normalized by ∫
dzDh

q (z) = 〈Nh〉, (1.52)

with 〈Nh〉 the average multiplicity of the hadron h in inclusive process or in e+e− annihi-
lation process.

1.5.2 Achievements for semi-inclusive pion production

Due to the theoretical ingredients it includes, SIDIS is a strong test for quark-parton
model. Let us review in this sub-section experimental achievements and improvements of
SIDIS. We focus on this review on semi-inclusive electroproduction of pions.

The work of McPharlin et al. [45], studying inclusive π0 production in the kinematic
range 1.8 < Q2(GeV2) < 8.5 and 0.06 < xBj < 0.25, clearly gives credit to the quark
model. On one the hand, their data confirms the factorization illustrated on Fig. 1.13
and in equations (1.49) and (1.50). On the other hand, their data exhibit a Q2 and a xBj

scaling of the fragmentations functions in their kinematics. Their data are summarized
on Fig. 1.14 (extracted from [45]).

On contrast with these data, the work of Aubert et al., which scanned very wide kine-
matics (2.0 < Q2(GeV2) < 100.0 and 0.02 < xBj < 0.4) for charged hadron production
with muons [46] exhibits scaling and factorization violations. These results however do
not put Quark Parton Model in question, since these violations of scaling and factor-
ization were qualitatively compatible with higher order QCD calculations. This work is
summarized on Fig. 1.15.

The left (resp. right) panel of Fig. 1.15 shows (1/σDIS)dσµp→µhX/dz as a function of
Q2 (resp. xBj). The dashed curve is the leading order scaling quark-parton model, the
solid curve is the quark-parton model with scaling violation given by next-to-leading order
QCD calculations. Both figures show the leading order quark parton model is violated by
higher order QCD contributions.

The same collaboration published neutral pion production at Q2 > 3.0 GeV2, and
50.0 < W 2(GeV2) < 350.0 [47]. These data exhibits the role of transverse momentum
contributions (q′T ). Indeed, according to equation (1.48), SIDIS cross sections depend on
the transverse momentum of the hadron. This dependence has several sources:

� soft and hard higher order QCD contributions;

� the intrinsic transverse momentum of partons kq⊥;
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Figure 1.14: (1/σDIS)dσep→ehπ0X/dz data from [45] as a function of z. Plot (a) demonstrates
the factorization of the process, plots (b) and (c) exhibits the Q2 and the xBj scalings respectively.

Figure 1.15: Part of the data from Aubert et al. published in [46]. On the left panel is plotted
(1/σDIS)dσµp→µhX/dz as a function of Q2. On the right is plotted (1/σDIS)dσµp→µhX/dz as a
function of xBj . In both cases the curves are the predictions of the quark-parton model at leading
order (dashed curves) and next-to-leading order (solid curves).

� a transverse momentum transfer occuring with the quark hadronization q′⊥.

These two last quantities are generally modeled by gaussian distributions GT writing
GT (pT ) ∝ exp−p2

T /〈p2
T 〉 for any transverse momentum distibution pT implied in a SIDIS

process. As well, the parameter b in equation (1.48) could be identified as b = 1/〈q′2T 〉.
The work published in [47] emphasizes the need of intrinsic transverse momentum
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of the partons. Fig. 1.16 shows (1/σDIS)dσµp→µπ0X/dq′T as a function of q′T , with its
different contributions estimated with the Lund model [48]:

Figure 1.16: (1/σDIS)dσµp→µhπ0
/dq′T as a function of q′T extracted from [47]. The solid curves

represent the calculations of the Lund model model including different contributions to the global
q′T dependence (see text).

� (I) contribution of q′⊥;

� (II) contribution of q′⊥ plus QCD soft and hard processes;

� (III) contribution of q′⊥ plus QCD soft and hard processes plus kq⊥.

The slopes of the gaussian distributions of kq⊥ and q′⊥ were fixed, respectively, to 〈k2
q⊥〉 =

0.19 GeV2 and 〈q′2⊥〉 = 0.31 GeV2. Thus, the non-Gaussian behaviour is given essentially
by hard QCD contributions, but the intrinsic transverse momentum of the parton cannot
be neglected for a good description of the data. According to the authors, (III) is equiv-
alent to the contribution of q′⊥ added only to hard QCD processes and kq⊥ , but with
〈k2

q⊥〉 = 0.64 GeV2.
Assuming isospin invariance, the charged pion production cross section on the proton

should be equal to the neutral pion production cross section on the proton, or, in other
words, the study of `p → `π0X should be equivalent to `p → `π±X. Airapetian et
al. [49] measured electroproduction of charged and neutral pions at k = 27.5 GeV,
1.0 < Q2(GeV2) < 7.5, and 0.04 < xBj < 0.25 in order to test isospin invariance. They
compared their data to [45] and [46, 47] with the help of Q2 evolution. They also compared
the relative multiplicities in order to test isospin invariance.
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Their data are in qualitative agreement with [45, 47]. Their conclusions concerning
scaling and factorization violations are the same as [46]. The interesting result they point
out is the violation of isospin invariance at z > 0.7, where charged pion multiplicities
become significantly higher than neutral pion multiplicities (Fig. 1.17). This violation

Figure 1.17: Data from Airapetian et al., extracted from [49]. On the left are the multiplicities of
charged (solid triangles) and neutral (solid circles) pions, as a function of z. The curves are different
fragmentation models. Charged pions data starts to disagree with these models when z > 0.7
whereas neutral pion remains in rough agreement with these models as long as z < 0.8. The ratio
2dNπ0

/(dNπ+
+dNπ−) (right) appears to be in perfect agreement with 1 for z < 0.7, and decreases

significantly beyond.

of isospin invariance at high z is similar to the scaling violation which is observed in the
same kinematics.

To reproduce experimental data at high-z, Berger introduced a high-z scale-breaking
term, which modifies the fragmentation functions in the following way [50]:

Dh
q (z, Q2) = Dh

q (z) +
2

9

〈k2
q⊥〉

Q2
. (1.53)

At high z, the fragmentation function becomes very small (see equation (1.51)), and the
scale-braking term dominates.

After this description of semi-inclusive processes, let us focus on the information this
type of process could bring about proton structure. We will see in the next sub-section
that SIDIS enables to access richer information on proton structure than simple DIS.

1.5.3 An introduction to transverse momentum distributions

This sub-section is devoted to the observables of the nucleon structure which can be
accessed via SIDIS.

The previous subsection pointed out that only models with intrinsic transverse mo-
menta of quarks could reproduce experimental results. Starting from this statement,
SIDIS could then be described in the following way (we took the example of the SIDIS
modelization by Anselmino et al. in [51]):
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� the virtual photon strikes a quark with a transverse momentum kq⊥; the probability
of this interaction is given by fq(x, kq⊥);

� the struck quark hadronizes into the hadron h, and this hadronization occurs with
a transfer of transverse momentum q′⊥ relative to the direction of the struck quark
after its interaction with the virtual photon; the probability of this hadronization
is, assuming a quark of flavor q, Dh

q (z, q′⊥);

� the hadron h is finally measured with a transverse momentum q′T relative to the
direction of the virtual photon.

A scheme of this process is available on Fig. 1.18.

p

q

q’ (h)

qk

qk’

q k

q k

T
q’

q’

xy

z

Figure 1.18: Schematic description of SIDIS, as modelized in [51]. Note the momentum transfer
relevant of the hadronization occurs with respect to the direction of the struck quark.

The interesting information for the hadron is extracted from the primordial virtual
photon-quark interaction. Indeed, the probability is not given by the classical parton
distributions fq(x), but by a modified parton distribution, fq(x, kq⊥), which takes into
account the transverse momentum of the quark. This quantity is precisely the Transverse
Momentum Distribution (TMD) evoked above.

TMDs give access to a three-dimensionnal picture of the proton. They provide corre-
lated informations on transverse and longitudinal momentum of the quark. TMDs could
for instance give tomographic pictures of the nucleon [52].

There are several TMDs (eight at leading twist), which are accessible through pro-
cesses with different polarization states of the quark and the nucleon [52]. We give in
Table 1.1 all possible polarization states and the corresponding TMD which could be
accessed. In the following, we only focus on TMDs which are accessible with unpolarized
quarks, i.e. f1 and f⊥1T , which are the most studied TMDs to date.

The unpolarized TMD f1 gives the leading order of SIDIS process with both quark
and nucleon unpolarized. The total unpolarized quark distribution fq/p(x, kq⊥) is given
by the unpolarized TMD f1:

fq/p(x, kq⊥) = f q
1 (x, kq⊥). (1.54)

Integrated on quark transverse momentum, f1 yields the parton distribution
∫

d2kq⊥f q
1 (x, kq⊥) = fq(x). (1.55)
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pol. q
state U L T

U f1 h⊥1
N L g1 h⊥1L

T f⊥1T g1T h1 h⊥1T

Table 1.1: Twist-2 TMDs expressed referring to the quark q and nucleon N polarization states
(columns, and rows, respectively; U: Unpolarized, L: Longitudinal, T: Transverse).

This is why the 5-fold differential SIDIS cross section (which is integrated on transverse
momenta of partons) is written in terms of PDFs in equation (1.48). This doesn’t mean
however that the information on the initial parton is lost, it is integrated in the global q′T
dependence. The initial transverse momentum of the parton has even some supplementary
consequences on the expression of the 5-fold differential SIDIS cross section. Indeed, such
as in DIS (see equation (1.20)), SIDIS processes can be expressed as a sum of elementary
electron-single quark interactions. This elementary interaction actually keeps the memory
of the initial transverse momentum, and calculations (which are well detailed in [51])
naturally introduce a dependence in cos φh. This dependence in cos φh is called Cahn
Effect [53]. We finally get the following expression for the SIDIS cross section, which is
valid at the order of O(kq⊥/

√
Q2):

d5σep→ehX

dxBjdQ2dzd2q′T
=

∑
q

2πα2e2
q

Q4
fq(xBj)D

h
q (z)

[
1 + (1− y)2

− 4
(2− y)

√
1− y〈k2

q⊥〉zq′T
〈q′2T 〉

√
Q2

cos φh

]
1

π〈q′2T 〉
e
− q′2T
〈q′2

T
〉

(1.56)

with y = (p · q)/(p · k) and where 〈q′2T 〉 = 〈q′2⊥〉+ z2〈k2
q⊥〉 gives the gaussian dependence of

the cross section relative to the transverse momentum of the measured hadron.

The nucleon-polarized TMD f⊥1T , the so-called Sivers function is accessed through
semi-inclusive deep inelastic scattering on a transversely polarized nucleon [54]. The total
unpolarized quark distribution is given, for a polarized nucleon p↑:

fq/p↑(x, kq⊥) = f q
1 (x, kq⊥) +

1

2
f q⊥

1T (x, kq⊥)ST · (p̂× k̂q⊥) (1.57)

where, within [51] conventions, p̂ is the direction of the proton (tri)momentum, k̂q⊥ is the
direction of the quark in the transverse plane, and ST is the proton transverse polarization
vector. Note that ST · (p̂ × k̂q⊥) isolates the component of the parton function which is
dependent on the component of the quark momentum perpendicular to the plane defined
by the proton momentum and spin. It introduces the azimuthal dependence of the hadron,
relative to the struck quark plane. Eq. (1.57) implies that to access the Sivers function,
we need to measure:

f⊥1T (x, kq⊥)ST · (p̂× k̂q⊥) = fq/p↑(x, kq⊥)− fq/p↓(x, kq⊥). (1.58)

Thus the Sivers function can be accessible with SIDIS proton spin asymmetry, also called
Target Spin Asymmetry (TSA). The TSA is given by:

A =
dσ↑ − dσ↓

dσ↑ + dσ↓
(1.59)
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with dσ↑(↓) the SIDIS cross section on a up (down) polarized proton. Note that in con-
trast with the unpolarized TMD f1, the Sivers function vanishes when integrated over
quark transverse momentum.

For more details on TMDs, one can refer to [41, 42], and [51, 52, 53, 54].
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Chapter 2

Experimental Setup

The π0 data we analyse in this work have been recorded with the Hall A DVCS apparatus
[55] at Jefferson Laboratory. We recall that this experiment is an electron-proton scat-
tering on a fixed target, with production of a single π0 which decays in two photons. We
have in the final state a scattered electron, a π0 giving two photons, and a recoil proton,
making a total of three particles. Thus we need at least a double arm experiment to get
enough constraints in the final state. A very accurate measurement of two particles out of
three will give the quadri-momentum of the missing particle within a good experimental
precision. The choice which has been decided for this experiment is to measure very accu-
rately the electron and the two photons i.e. the π0, and to detect the recoil proton, even
though this information has not been used in this analysis. This choice was motivated by
the optimization of the missing mass squared resolution which requires to measure the
most energetic particles.

The first section is dedicated to the description of the electron accelerator of Jefferson
Lab, which supplies the electron beam. In the second section, we give some details on
the beam line instrumentation, which allows to monitor this beam. The target system
which provides the fixed proton target is described in the third section. The fourth
and fifth sections deal respectively with the spectrometer, its detector package and the
electromagnetic calorimeter. A few informations are given on the proton array. These
two detectors are dedicated to measure respectively the scattered electron and the two
photons issued from the π0 decay. Finally, we give few details on the data acquisition and
the triggering of this experiment in section six.

2.1 Continuous electron beam accelerator facility

In this section, we are interested in the electron accelerator facility available at Jefferson
Lab, also called Thomas Jefferson National Accelerator Facility (TJNAF). TJNAF site is
located in Newport News, Virginia (USA). Since its creation in 1984, Jefferson Lab has
been devoted to the study of the nuclear matter at intermediate energies (up to 6 GeV),
at the interface between nuclear and particle physics. It includes several facilities, such as
the Continuous Electron Beam Accelerator Facility (CEBAF), which we are particularly
interested in, the Free Electron Laser (FEL) facility, and the Computer Center (CC)
dedicated to on-site data analysis and lattice QCD calculations.

CEBAF is a continuous wave accelerator, able to deliver a high-current electron beam
to three experimental halls (Hall A, B, and C) simultaneously. We give some details
about the setup and the specifications of this machine which make it an ideal tool to
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study physics with high-precision. A more complete and detailed review of CEBAF is
available in [56].

The basic arrangement of CEBAF is a pair of identical linacs positioned “head-to-tail”,
and connected together with half-circle shaped recirculation arcs. Each linac is composed
of 20 cryomodules, and each cryomodule is composed of 8 radio-frequency cavities cooled
by superfluid 4He. Each recirculation arc is composed of several dipoles and quadrupoles.
The schematic layout of CEBAF is available in Fig. 2.1. This pair of linacs is served

Figure 2.1: Schematic overview of CEBAF setup. A more detailed view of a cryomodule is available
on the left top of this figure. Sectional views of the cryomodules (bottom right) and the recirculation
arcs (top right) are also available.

by a 67 MeV/c injector. This primary beam is accelerated by the so-called north linac,
recirculated by a first “north to south” arc, and re-accelerated by the so-called south linac,
thus executing one pass. At the end of the south linac, the beam can either be distributed
to the experimental halls (A, B, and C) or recirculated. Thanks to four “south to north”
and five “north to south” recirculation arcs at total, the beam is able to execute up to
five pass, reaching at most ten times the energy of what would provide a single linac. The
maximal energy achieved so far is slightly above 6 GeV. The beam energy delived during
our experiment was 5.7572 GeV.

Each hall receives its own beam, with the desired number of passes, independently of
the beams received by the other halls. The superposition of the three individual beams
to merge them into one is implemented at the injector level. The injector is made out of
a photocathode gun which delivers photo-electrons from strained Ga-As illuminated with
three polarized lasers (one per hall) working at 499 MHz each, for a total machine rate of
1497 MHz. These lasers create, at a 499 MHz rate, three interlaced bunches of electrons
separated from each other by a 120° phase. These bunches have their owns properties
(charge, . . . ) generally different from their immediate neighbours, but which is repeated
every three bunches. Thus, and thanks to a system of adequately phased radio-frequency
separators, the beam can be separated into three beams at the end of each pass, allowing
to send the required energy and the required current for each hall. Hall A and C are
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allowed to receive from 1 to 150 µA, whereas Hall B is allowed to receive from 1 to 200
nA. Our experiment ran at 2.5 µA.

CEBAF, besides its high duty, is also remarkable for the high beam polarizations it
proposes. The beam polarization is generated by using a circularly polarized laser on the
strained superlattice GaAs photocathode. The initial electron polarization is measured at
the injector level with a 5 MeV Mott polarimeter. This polarization can then be oriented
with a Wien filter. Thanks to this, the beam polarization can reach up to 85 %. For our
experiment, the achieved polarization was about 75 %.

2.2 Hall A beamline instrumentation

Hall A is an experimental hall of TJNAF, dedicated to very high precision measurements.
In order to minimize systematic errors on cross section measurements and more generally
on any experimental observable, we need to have very precise information on the delivered
beam including: position and direction, current, energy, and polarization. These informa-
tions are provided by the beamline instrumentation located on the beam path upstream
the target. The layout of Hall A, with the relative location of the beam line instruments,
is available on Fig. 2.2. We describe the standard beam monitoring, ensured by the Beam

Figure 2.2: Schematic view from the top of Hall A with the layout of beamline instrumentation.

Current Monitor (BCM) and the Beam Position Monitors (BPMs). We give some details
about the beam energy measurement, allowed by the ARC method on the one hand, and
the “electron-Proton” (eP) device on the other hand. We finally focus on the polarimetry,
which is also ensured by two independent polarimeters, the Compton polarimeter, and
the Møller polarimeter. The beamline instrumentation is described within more details
in [57].
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2.2.1 Beam monitoring

We describe here the instruments providing information on the beam current and on the
beam position and direction.

Beam Current Monitor

The measurement of the beam current is provided by the Beam Current Monitor (BCM).
The BCM is composed of two radio-frequency cavities tuned to the same frequency as the
beam (1497 MHz). The cavity is used in a passive mode in this case. The current passes
through the cavity and excites the cavity modes, resulting in cavity responses i.e. voltage
levels at the cavity outputs proportional to the current which passed through.

The BCM also includes a Unser monitor, which is a Parametric Current Transformer
[58]. The Unser monitor can be calibrated by a wire passing through it where a known
current is sent, making it able to provide an absolute reference. For unstability reasons
however, this calibration cannot be performed continuously.

This apparatus, well enclosed in a temperature-stabilized magnetic shielding, provides
a stable, low noise, non-invasive and absolute measurement of the beam current, at the
5 · 10−3 accuracy level for currents as low as 1 µA.

Beam Position Monitors

The measurement of the position and the direction of the beam is ensured by two identical
Beam Position Monitors (BPMs), which are located 7.524 m and 1.286 m upstream of the
target. Each BPM is composed of four parallel antenna wires, parallel to the beam, and
each in a plane at ± 45° to horizontal. Each pair of antennas provide a relative position
information, thanks to the difference of current induced by the beam in each of the two
antennas. With usual Hall A currents (from 1 µA), the measurement precision for the
relative beam position is 100 µm.

To give absolute measurements of the beam position and direction, the BPMs need to
be calibrated against complementary apparatus. These complementary devices are wire
scanners called superharps, and located nearby the BPMs, and more precisely at 7.353
m and 1.122 m upstream of the target. They are surveyed absolutely with respect to the
Hall A coordinates.

The full setup including BPMs and superharps provide absolute, non-invasive mea-
surements with a typical accuracy of 140 µm for the beam position, and 30 µrad for the
beam direction.

Note the beam position at the target can be changed by the raster, composed of two
dipoles, in order to deviate the beam horizontally and vertically. Each dipole can change
its polarity independently of the other, which makes the beam “scanning” the target. In
this case, the beam is said to be rasterized.

2.2.2 Energy measurement

We focus in this subsection on the absolute beam energy measurement. There exist two
independent methods to measure the beam energy. The so-called ARC method, which
is a magnetic method, and the eP instrument, which was not used at the time of the
experiment.
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The ARC method is a magnetic method using the 34.3° deviation arc, which is nec-
essary to bring the beam to Hall A, to measure precisely the beam energy [59, 60]. To
drive smoothly the beam from the beam switch yard at the end of the south linac to
the entrance of Hall A, there is a total of eight deviation dipoles, plus correction dipoles,
quadrupoles and sextupoles, to make the deviation arc achromatic. The idea of the ARC
method is to switch off the correction magnets, to have a dispersive arc which can be used
as a spectrometer. The momentum (and the energy, assuming ultra-relativistic electrons)
of the beam is thus given by

pbeamc =
ec

∫
~B × ~dl

θ
, (2.1)

with θ the actual bend angle of the beam and
∫

~B × ~dl the field integral over the eight
dipoles.

The measurement of the actual bend angle of the beam is provided by a set of wire
scanners, such as the ones used for beam position measurement. The field integral over
the eight dipoles is accessed by the measurement of the field integral of a ninth dipole,
which is strictly identical to the eight magnets of the deviation arc.

The arc method thus provides an absolute beam energy measurement up to 5 · 10−4

accuracy. Note there exists more accurate modes for the ARC energy measurement, but
there are either invasive (2 · 10−4 accuracy) or relative (1 · 10−4 accuracy).

2.2.3 Polarization measurement

This subsection is dedicated to the polarimetry. Since a large part of the Hall A physics
program uses polarized beams, very accurate polarization measurements are required. We
give the main specifications and performances of the Møller and the Compton polarime-
ters. The first uses Møller scattering of the beam electrons on atomic electrons, whereas
the second uses Compton scattering of the beam electrons on a photon beam.

Møller polarimeter

As its name denotes, the Møller polarimeter exploits Møller scattering of the polarized
electrons of the beam on a magnetized target with polarized atomic electrons [61]. It
includes, in addition to the target, a collimator composed of a steel plate, a spectrometer
composed of three successive quadrupoles and a dipole at the end, followed by a lead
glass calorimeter splitted in two arms which measure the scattered and recoil electrons in
coincidence. A schematic view of the Møller polarimeter is available in Fig. 2.3.

The Møller scattering cross section depends of the polarization of the beam P beam and
of the target P target:

σ~e~e→ee ∝
[
1 +

∑
i=X,Y,Z

(AiiP
beam
i P target

i )

]
; (2.2)

with X,Y, Z the projections of the polarizations in the laboratory coordinates, and Aii the
analysing power in these directions, depending on the scattering angle in the ~e~e center-of
mass frame θCM

scat . The polarization is measured taking advantage of analysing power AZZ .
The analysing power AZZ is maximal at θCM

scat = 90°, and is equal to Amax
ZZ = 7/9. The

spectrometer selects a kinematic range 75° < θCM
scat < 105°, and an azimuthal angle φCM

scat

range -5° < φCM
scat < +5°.
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Figure 2.3: Schematic view of the Møller polarimeter, (a) shows a right side view, (b) a top view.
The two displayed trajectories correspond to a simulated Møller scattering at θCM

scat = 80° and φCM
scat

= 0° (see text for definitions) in the spectrometer.

The Møller polarimeter provides absolute measurement of the polarization, and has
the benefit of a very good analysing power within its kinematic range. This allows to get
0.2 % statistical uncertainity within one hour data taking. However, the basic layout of the
polarimeter (a target on the beam path) makes this measurement invasive. A rather large
uncertainity comes from the target polarization. Moreover it is only able to run at very
low current (0.5 µA typically). This forces to reduce the beam intensity at the injector,
which might affect the beam polarization, thus increasing systematic uncertainities on the
polarization measurement. Finally, the total accuracy provided by the Møller polarimeter
on a polarization measurement is about 3 %.

Compton polarimeter

The Compton polarimeter exploits Compton scattering of the polarized electrons of the
beam on a circularly polarized photon beam [62]. It is composed of a 0.85 m long optical
Fabry-Perot cavity which contains the photon beam [63, 64]. A magnetic chicane of four
dipoles is used to deflect the electron beam from the regular beam path to the cavity
axis. The two beams cross over each other at the interaction point at the center of the
cavity. An electron detector and a photon detector measure the scattered electron and
the backscattered photon in coincidence. A schematic view of the Compton polarimeter
is available in Fig. 2.4.

The photon beam is given by a Nd:YaG laser beam (λ = 1064 nm) delivering 230 mW
of power. The polarization of this primary photon beam can be reversed by a rotable
quarter-wave plate, and is better than 99 % for both positive and negative polarization.
The Fabry-Perot cavity amplifies the power of this beam increasing the probability of an
interaction. In optimal conditions, i.e. when the laser frequency is equal to the cavity
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Hall A

Dipoles 

Deflected beam line 

Optical cavity 

Direct beam line 

Photon detector 

Electron detector 

Figure 2.4: Schematic layout of the Compton polarimeter.

resonance frequency, the primary beam power is multiplied by up to 7300.
The magnetic chicane is composed of two dipoles upstream of the cavity to deflect the

beam, and two dipoles downstream of the cavity to merge the beam back to the regular
beam path. The third dipole plays the role of a spectrometer for the scattered electrons,
which have transfered a part of their energy to the photon. They are more deviated by the
dipole than the spectator electrons, and are measured by the electron detector, composed
of four silicon micro-strips detectors, which reconstruct the electron trajectories, thus
giving access to their momentum. The backscattered photons are measured by a lead glass
calorimeter. The beam polarization is accessed by the Compton counting rate asymmetry
between positive and negative photon polarizations.

The Compton polarimeter gives an absolute, non invasive measurement of the beam
polarization. It is able to run at usual beam currents without perturbing the beam. Thus,
despite a very low analysing power, the statistical uncertainity can be brought to a neg-
ligible level, since continuous measurements can be done while running the experiments.
However, on the one hand, the Compton counting rate asymmetry is very sensitive to the
beam position, and on the other hand, the detectors resolutions can easily be degraded
by a huge background resulting, for example, from a bad beam tune. Finally, in usual
conditions, the total achieved polarization measurement accuracy is 2 % [65].

2.3 Target system

Several targets are available in Hall A, for different physics purposes. For proton physics,
there are liquid hydrogen targets. To study neutron physics, liquid deuterium targets and
gaseous helium targets are available. The study of the 16O nucleus is also possible thanks
to a Waterfall target.

For the DVCS/π0 experiment, only the liquid hydrogen and deuterium targets were
used. We briefly describe the scattering chamber specific to DVCS/π0 experiment, and
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we give some details about the cryogenic target system.

2.3.1 Scattering chamber

The role of the scattering chamber is to provide a vacuum space around the target in order
to minimize electromagnetic interactions of the outgoing particles, especially the electron,
with the air. For the DVCS/π0 experiment, we used a custom scattering chamber. The
DVCS scattering chamber is a 1 cm thick aluminum 63.5 cm radius spherical shell. This
thickness allows low energy protons down to 305 MeV/c to go through it. To minimize
the interactions of the scattered electron with the chamber wall a 500 µm thick kapton
window replaces the aluminum in front of the left HRS angular coverage used for DVCS.
The angular coverage of this window is between 16.5° and 49.5° in the horizontal plane
taking the downstream beam axis as 0°, and±4° in vertical relative to the horizontal plane.
The spherical form of this chamber respects the spherical symmetry of the reaction, and
makes the energy loss independent of the scattering angle, within the angular dependence
of the particle momentum.

2.3.2 Cryogenic target system

The cryogenic target system is composed of three independent cryogenic loops. The first
loop is filled with liquid hydrogen (LH2), the second with liquid deuterium (LD2), and the
third with gaseous 3He or 4He. Each of the cryogenic loops provide its cryogenic fluid to
a target ladder, containing several targets stacked vertically, and which can be remotely
moved to put in beam the desired target. The target ladder is composed of the following
targets:

� a 4 cm long and a 15 cm long target cells filled with LH2, which circulates continu-
ously;

� another 4 cm long and another 15 cm long target cells filled with LD2;

� a multifoil target, with seven 1 mm thick carbon foils, to calibrate the spectrometer
optics;

� a 4 cm long and a 15 cm long dummy targets, identical to the standard targets but
with no fluid circulating, to study the target wall effects;

� a cross hair 1 mm thick aluminum target to measure the beam position with respect
to the target;

� a BeO target to visualize the beam spot at the target thanks to a camera;

� a 1 mm thick carbon foil;

� and an “empty target”, which actually corresponds to put nothing on the beam
path, to reduce radiation on the detectors when the beam is tuned, or when the
beam characteristics are measured by invasive measurements.

The standard and dummy cryotargets cells are 63.5 mm in diameter and are made out of
aluminum. The side walls of the cells are 178 µm thick and the entrance and exit windows
are respectively 71 µm and 102 µm thick. The operating temperatures and pressures of
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the LH2 and LD2 are 19 K, 0.17 MPa and 22 K, 0.15 MPa, respectively. Under these
conditions, the respective densities of the LH2 and LD2 are 0.0723 g · cm−3 and 0.167
g · cm−3.

These targets can operate up to a beam intensity of 130 µA without boiling. For such
high currents however, the beam has to be rasterized to avoid local boiling. Given the
following expression of the luminosity L:

L =
I

e
Ltarg

NA

MH

ρH , (2.3)

with I the beam current, Ltarg the target length, NA the Avogadro number, MH the
atomic mass number of the hydrogen atom, and ρH the density of the hydrogen, the
maximal luminosity with the hydrogen target is 5 ·1038 cm−2s−1. With the 2.5 µA current
used for DVCS/π0 experiment, the raster is not needed, and the achieved luminosity is
1.0 · 1037 cm−2s−1.

2.4 High Resolution Spectrometers (HRS) and de-

tector package

The High Resolution Spectrometers (HRS) are part of the standard Hall A instrumenta-
tion. There are two identical HRS (see Fig. 2.2):

� the electron arm (or left HRS or HRS-L), on the left side of the Hall, is usually
dedicated to the electron three-momentum measurement;

� the hadron arm (or right HRS or HRS-R), on the right side of the Hall, is usually
dedicated to the proton three-momentum measurement.

In the DVCS/π0 experiment, the left HRS has been used to provide a very accurate
measurement of the scattered electron. The right HRS has been used to register single
counting rates for a relative monitoring of the luminosity.

We give the broad lines of the design of the HRS, and we list their characteristics and
performances. We also characterize the spectrometer optics. The detector package used
to equip the electron arm in order to identify and measure the electron three-momentum
is finally described.

2.4.1 Design, characteristics and performances

The spectrometers are composed of four superconducting magnets, three quadrupoles Q
and one indexed dipole (with field gradient) Dn, in the configuration QQDnQ (see Fig.
2.5). These magnets are laid on a motorized support, which can be moved circularly
relatively to the center of the Hall. This support also carries on top of the HRS the shield
hut which hosts the detector package and shields it against radiations.

The first quadrupole, Q1, focusses the trajectories in the vertical plane. The second
one, Q2, focusses the trajectories in the horizontal plane. The contribution of both ex-
pands the spectrometer acceptance. The dipole is here to provide the dispersion which
is necessary to measure the particle momentum. This dispersion is improved by a 45°
bending angle of the dipole. The magnetic field gradient of the indexed dipole focusses in
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Figure 2.5: Schematic layout of the spectrometer magnets with their measurement.

the dispersive plane, thus giving the system a focal plane. The last quadrupole, Q3, defo-
calizes the trajectories in the dispersive plane to maximize magnification in the dispersive
plane. These magnets are described within extensive details in [66].

The presence of this quadrupole after the dipole also allows to achieve simultaneously
a good horizontal position and angular resolution. The optical length (i.e. the length of
the central ray) is 23.4 m, and the achieved dispersion at the focal is (12.4 m)/(δp/p). All
these characteristics allow the spectrometers to achieve the performances listed in Table
2.1. This table reveals the excellent resolutions on the particle momentum (O(10−4))
and direction (O(10−3) rad), that allows to reconstruct the electron three-vector very
accurately.

2.4.2 Optics

The optics of the spectrometer defines the path of a particle through the magnets from
the target (where the particle is “produced”) to the focal plane (where the particle is
detected). As in light optics, the central ray is defined by the minimal path which could
be taken by a particle.

Optics description

The trajectory of a particle in the spectrometer is defined, in the TRANSPORT formalism
[67], by the following vector:

x =




x
θ
y
φ
l
δ




, (2.4)

with x the displacement in the dispersive plane of the trajectory relative to the central
ray, θ = px/pz is the tangent of the angle the trajectory makes with the central ray in the
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Momentum
Range 0.3 GeV < pHRS < 4.0 GeV
Acceptance -4.5 % < δp/pHRS < 4.5 %
Resolution 1.0 · 10−4

Direction
Range 12.5° < θHRS < 150°
Acceptance ±30 mrad (Horizontal)

±60 mrad (Vertical)
Resolution 0.5 mrad (Horizontal)

1.0 mrad (Vertical)
Vertex

Acceptance (±5.0 cm)/ sin θHRS

Resolution (1.0 mm)/ sin θHRS

Table 2.1: HRS-L characteristics and performances. pHRS is the “central” momentum, defined by
the field generated by the dipole. δp = pmeas. − pHRS, with pmeas. the measured momentum of the
particle. θHRS is the angle of the HRS central trajectory relative to the beam line direction.

dispersive plane, y and φ are homologous to respectively x and θ in the non-dispersive
plane, l is the difference between the trajectory length and the central ray length, and
δ = δp/pHRS, defined in the previous subsection. If one considers the coordinates of this
trajectory at a precise point, the quantity l is the result of the integration over trajectory
before, and thus is not available directly.

The trajectory vector of the particle at the target xtg is transfered to the trajectory
vector at the focal plane xfp by a transfer matrix Ttg, fp: xtg = Ttg,fpxfp. The explicit
first order representation of this equation is




xfp

θfp

yfp

φfp

δfp




=




−2.48 0 0 0 12.4
−0.15 −0.40 0 0 2.04

0 0 −0.40 −1.30 0
0 0 0.54 −0.78 0
0 0 0 0 1.0



×




xtg

θtg

ytg

φtg

δtg




, (2.5)

where all coefficients are in “natural units” (meters, radians, fractions of δ or dimension-
less). Note that at first order the dispersive variables (x, θ, δ) are completely decorrelated
from the non dispersive variables (y, φ). In the dispersion plane, the spectrometer optics
is point-to-point, that means to a xtg corresponds only one xfp at δ constant, or, in other
words, xfp does not depend on θtg. In the non-dispersive plane, the optics is neither point-
to-point nor parallel-to-point (yfp independent of ytg), in order to obtain simultaneously
a good resolution on y and φ.

In practice, the spectrometer measures xfp, θfp, yfp, φfp, but δfp is not measured. The
variables at the vertex are accessed by inversing T −1

tg, fp. However, we have five variables
to determine, and we have four measured quantities. To resolve this, we fix xtg, and we
compute the other variables at the target, including ytg which gives access to the vertex.
With the vertex and the beam direction determined by the BPMs, we compute the “real”
value of xtg, which allows to perform some corrections on the other dispersive variables.

To minimize the systematic errors on such a procedure, one needs to consider the
spectrometer optics beyond the first order. The complete spectrometer optics is written
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under the following tensorial form [68]:

ytg =
∑

j,k,l

Yj,k,lθ
j
fpy

k
fpφ

l
fp; (2.6)

θtg =
∑

j,k,l

Tj,k,lθ
j
fpy

k
fpφ

l
fp; (2.7)

φtg =
∑

j,k,l

Pj,k,lθ
j
fpy

k
fpφ

l
fp; (2.8)

δtg =
∑

j,k,l

Dj,k,lθ
j
fpy

k
fpφ

l
fp; (2.9)

where Yj,k,l, Tj,k,l, Pj,k,l and Dj,k,l are polynomials in xfp. If one considers, for example,
Yj,k,l:

Yj,k,l =
M∑
i=1

C
Yj,k,l

i xi
fp (2.10)

which gives for ytg:

ytg =
∑

j,k,l

M∑
i=1

C
Yj,k,l

i xi
fpθ

j
fpy

k
fpφ

l
fp; i + j + k + l ≤ 4. (2.11)

The C
Yj,k,l

i are determined experimentally by various procedures of optics calibration and
are accessibles through databases.

Optics calibration

Several calibrations procedures have to be done for the full optics determination. We will
give only two of these procedures, although they are several others. The procedures for
optics calibrations are decribed in detail in [68]. The calibration of the transport tensor
is done by the sieve slit. The sieve slit is a tungsten plate with a 2-D lattice of holes (Fig.
2.6 on the left). During a sieve slit calibration, the slit is put in the so-called sieve plane,
and stop all electrons except at the location of the holes. The distribution of holes in the
sieve plane then may be seen in the focal plane (Fig. 2.6 on the right). Since we know
their location in the sieve plane, these data bring some constraints on the transportation.
Some holes have different sizes, for anambiguous identification in the focal plane.

Other constraints on the optics may be obtained via the multifoil target calibration.
This target is composed of seven 1 mm-thick foils of carbon (see last section), which
position relative to the center of the hall is known very precisely. One may than recon-
struct the vertex distribution. This distribution shows very acute peaks (Fig. 2.7). The
comparison of the reconstructed positions of these peaks and the actual positions of the
foils gives other constraints on the optics tensor. Again, these are only two examples of
procedures for the optics calibration.

2.4.3 Detector package for HRS-L

The detector package is located on top of the spectrometer, after the magnets. Its purpose
is to measure and identify the particles. It is composed of many subdetectors which can
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Figure 2.6: Left: Drawing of the sieve slit. Note the two large holes that allow an unambiguous
identification of each hole. Right: reconstruction of the sieve slit holes in the focal plane.

Figure 2.7: Vertex distribution obtained with the multifoil target, at a 16° angle from the beam
line. The vertical lines are the expected reconstructed positions of the foils.

be different from one experiment to another, depending on the specific requirements of
the experiment. An overall picture of the detector package is shown on Fig. 2.8.

We describe the detector package we used for the left HRS during the DVCS/π0

experiment, in order to measure the electrons and to separate them from pions. This
package includes Vertical Drift Chambers (VDCs), two planes of scintillators S1 and S2,
a CO2 gas Čerenkov counter, and the so-called pion rejector. The right HRS was just
equiped with the VDCs and S1 and S2m.
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Central trajectory

VDCs
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Scintillator
paddles

S2m
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Figure 2.8: Schematic layout of the Left HRS detector package as we used it for the DVCS/π0

experiment.

Vertical drift chambers

The Vertical Drift Chamber (VDCs) provide information on the particle trajectory. They
are called “vertical” beacuse their purpose is to measure the dispersion in the vertical
plane. Their are two VDCs in each spectrometer, and each VDC is composed of two
wire planes in UV configuration. The wire planes are oriented 90° from each other, and
their orientations are rotated 45° with respect to the dispersive and non-dispersive planes.
They are set up in the horizontal plane, thus making a 45° angle with the spectrometer
central ray. The layout of the VDCs is shwon Fig. 2.9.

Each plane is composed of 368 sense wires, spaced 4.24 mm apart. They are immersed
in a gas mixture of argon (62 %) and ethane (38 %). The electric field applied between the
anaode wires and the cathod planes are 4.0 kV. We owe to these specifications a position
resolution σx, y of about 100 µm and an angular resolution σθ, φ of about 0.5 mrad. More
details on the VDCs are available in [69, 70].

Scintillators S1 and S2m

The role of the scintillators is to deliver a trigger signal for the spectrometer. To this
purpose, there are two scintillators, S1 and S2m planes separated 2 m from each other
and laid perpendicularly to the spectrometer central ray. S1 is composed of 6 overlapping
5mm thick plastic scintillator paddles, and each paddle is read by two photomultipliers
tubes (PMTs), i.e. one on each side of the paddle. S2m is composed of 16 plastic
scintillator paddles. The combined fast responses of the plastic scintillator and of the
photomultipliers give a time resolution of about 0.30 ns per plane. The trigger is given
by the coincidence of S1 and S2m. Note that in order to measure the ineffiencies of the
trigger given by the two scintillators, it is possible to do the coincidence between one of
the scintillators and the Čerenkov counter.
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Figure 2.9: Schematic layout of the VDCs. Side view of the wire planes setup (top). Top view
showing the orientation of the wire planes. On both views are available the projection of the central
ray (bottom).

Gas Čerenkov counter

The purpose of the gas Čerenkov counter is the electron identification. It is located
between S1 and S2. It is filled with CO2 at atmospheric pressure, with a refraction index
of n = 1.000449 at 589.2 nm (sodium D line). The threshold of this counter for electron
detection is 0.017 GeV, whereas it is 4.8 GeV for pion detection, allowing a 99 % efficiency
for electron identification. The light produced by an electron passing through the gas is
collected by ten spherical mirrors, each read by a PMT. In the left HRS, the particle has
to cross 80 cm of gas, leading to an average of seven photoelectrons by event. The signal
of this counter is obtained by summing the signals of all PMTs. More details on the CO2

Čerenkov counter can be found in [71].

Pion rejector

The pion rejector is made of two layers of 34 lead glass blocs, used as shower detectors.
The lead glass blocks are 15×15×30(35) cm and laid perpendicularly to the spectrometer
central ray (see Fig. 2.10). The rejection is based on the difference of energy deposited
by an electron or a pion in the lead glass.

The combination of the pion rejector and of the Čerenkov counter provides a pion
suppression at the order of 105.
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Figure 2.10: Schematic setup of the pion rejector of left HRS.

2.5 PbF2 electromagnetic calorimeter, plastic scintil-

lator proton array

The PbF2 electromagnetic calorimeter and the proton array are specific to the DVCS/π0

experiment. The purpose of the calorimeter is to reconstruct the two photons issued from
the π0 decay (or the DVCS photon). The proton array has been conceived to detect the
recoil proton.

To obtain good constraints on the reaction kinematics, the calorimeter has to have
a good resolution on both energy and position. To maximize the acceptance within
reasonable costs and channel multiplicities, this calorimeter has to be located as close
as possible to the target (actual distance was 1.1 m from the target). The kinematics
constrained the calorimeter to be very close to the beam line (down to 14.8° for Kin3).
To fit in the small space available close to the beam and near the target, the calorimeter
needs to be very compact. At small angles relative to the beam line, the calorimeter is
exposed to a high flux of Møller electrons. Because of this, the calorimeter needs to be
resistent to radiation, and to be as much insensitive as possible to both electromagnetic
and hadronic low energy background.

We give the respective geometries of the electromagnetic calorimeter and of the proton
array. We briefly describe the setup which supports the calorimeter and the proton array.
Then, we focus on the calorimeter. We highlight the properties of lead fluoride, and
give a detailed description of a single calorimeter element. We also describe the custom
electronic device which has been developed for an accurate readout of the signals issued
from each calorimeter channel.

2.5.1 Electromagnetic calorimeter and proton array geometries

The calorimeter meets the requirements of compactness thanks to the use of lead fluoride
(PbF2). The electromagnetic calorimeter is a 11 (horizontal) × 12 (vertical) matrix (132
at total) of 3× 3× 18.5 cm3 lead fluoride (PbF2) elements. The overall transverse dimen-
sions are 33× 36 cm2. These dimensions allow a global acceptance in tmin− t < 0.3 GeV2

for H(e, e′π0)p.

The proton array is composed of one hundred 30 cm long organic scintillators blocks,
arranged in five layers following a “3/4 crown” geometry (see Figs. 2.11 and 2.12). This
geometry has been adopted to ensure compatibility with the beam line. The angular
coverage is (relative to the virtual photon direction) from 18° to 38°. The minimal angle
is imposed by the compatibility with the calorimeter, whereas the maximal angle ensures
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the acceptance in t to be roughly the same as the calorimeter acceptance.

2.5.2 Calorimeter/proton array support and setup

The calorimeter support lays on the BigBite stand, which allows the circular motion of
the calorimeter. It is composed of a steel support equiped with rails, in order to allow
the retraction of the calorimeter (Fig. 2.11). This device is long enough to move back

Figure 2.11: Schematic view of the calorimeter and the proton array support. We distinguish (from
bottom to top) the Bigbite stand (which carries the patch rack), the rail support, and the black box.

the electromagnetic calorimeter front surface to a 5.5 m distance from the target. The
possibility of retraction is essentially used for calibration purposes. The photomultipliers
gain monitoring uses the so-called XY table, a plane equiped with Light Emitting Diodes
(LED), to illuminate every single block of the calorimeter. For several reasons, this device
may not be in front of the calorimeter during data taking. The XY table is moved in
front of the calorimeter during beam-off periods, but the calorimeter has to be pulled
45 cm away from its usual position to perform this operation. The elastic calibration of
the calorimeter (see Chapter 4) also requires it to be retracted as much as possible from
the target to be performed in optimal conditions. Note that the calorimeter support also
carries the patch panel, where are plugged all high-voltage and readout cables.

The calorimeter and the XY table are hermetically enclosed in a black box in order
to isolate them from the ambient light (Fig. 2.12). This black box carries the proton
array, and slides on the rails for the calorimeter motion. To maximize the hermeticity,
the high-voltage and the readout cables are passed through a S-shaped cable tray

2.5.3 PbF2 properties and block design

As we pointed out before, the calorimeter owes its compact dimensions to the use of lead
fluoride (PbF2). The physical properties of the PbF2 are listed in table 2.2. Referring
to this table, the blocks are 20 PbF2 radiation lengths long. The Molière radius being
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Calorimeter in running
            position

Calorimeter in monitoring
               position

Cable tray

Proton Array

      Black box
(walls not shown)

     Signal patch panel for
proton array and calorimeter

Figure 2.12: Schematic backside view of the calorimeter and the proton array setup in the black box,
with the cable tray. The calorimeter is shown in running and monitoring position. Note the patch
panel shown on this early version of the design has been removed to be put behind the Calorimeter
support (Fig. 2.11)

density ρ 7.77 g · cm−3

refraction index n 1.818
radiation length X0 0.93 cm
Molière radius RM 2.22 cm

Table 2.2: Physical properties of the lead fluoride. The refraction index is given at 400 nm wave-
length.

slightly inferior to the block width, the electromagnetic shower is generally included in 9
blocks at most. Thus, for a photon which goes in an inner calorimeter block, 99 % of the
shower energy is contained in the calorimeter.

The lead fluoride is also a pure Čerenkov radiator. Compared to scintillation which has
a certain decay constant, Čerenkov radiation is immediate. This allows a fair improvement
of the response width compared to a mixed scintillator/Čerenkov radiator such as the
lead tungstate PbWO4. The direct consequence of this feature is a better resolution and,
coupled with the fast electronics (see next subsection) a better separation of the pile-up.
Moreover, the refraction index of n ∼ 1.8 “naturally” cuts particles with β < c/n = 0.56
such as, for instance, electrons of less than 345 keV, leading to a drastic reduction of the
sensitivity to low energy background (Fig. 3.8).

The average radiation hardness of the PbF2 blocks produced by SICCAS is acceptable
[72], with a transparency level above 60 % after a dose of 105 Gy in the 400-600 nm
wavelength range (Fig. 2.13). However, during the experiment, some blocks at random
positions in the calorimeter showed to be more affected by the radiation, with a huge
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Figure 2.13: Transparency of a PbF2 block as a function of the wavelength at different levels of
radiation doses (104 Gy and 105 Gy with a 60Co source); figure extracted from [72]).

decrease of the transparency (darkening). This is probably due to a poorer block quality
for some particular batches of crystals.

The granularity of the calorimeter allows to reconstruct the photon position with an
accuracy of 2 mm (see Chapter 4.1.2). To prevent the optical light generated by Čerenkov
radiation to go from one block to another, the blocks are wrapped in Tyvek© (internal
wrapping) and Tedlar© (external wrapping). The amount of light collected by the PMT
is about 1000 photoelectrons per GeV deposited in a block (estimated by Monte Carlo
simulations).

The Čerenkov light are read by Hamamatsu R7877 10 dynode stages PMTs, based
on R5900U/R7600U [73]. These PMTs are very fast with a rise time of about 1 ns, and
very compact, with overall dimensions of 25.7× 25.7× 22mm3, with a sensitive surface of
18× 18 mm2. The quantum efficiency is about 15 %.

The PMTs and the blocks are held together with a system composed of a cubic carved
copper piece which receives the PMT and a front hole plate linked together with two brass
foils. The front plate is equiped with two screws to fit to the actual PbF2 block length.

2.5.4 Analog ring samplers

It is important to achieve both a high timing resolution and a high background rejection
power. A 1 GHz digitizing circuit was constructed at Clermont Ferrand for this experi-
ment. The Analog Ring Samplers (ARS) [74] have been conceived in order to achieve an
accurate readout of the calorimeter (and of the proton array) signals, which rise time is
at the order of few nanoseconds. These devices allow to record the analog waveform of
the PMT output signal as it would be available on a 1 GHz oscilloscope (see Fig. 2.14).

An ARS consists in an array of 128 capacitors cells, which continuously samples the
signal. The signal is successively integrated over a short period δt by each of the cells.
When 128 δt have been sampled, the new signal is overwritten on the “128-δt old” signal.
The sampling frequency is fixed at 1 GHz, but the front-end electronics has a bandwidth
of about 300 MHz.

To record the signal sampled by the capacitor cells, a stop signal must be sent to
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Figure 2.14: Example of ARS output with a two-pulse pile-up in the calorimeter.

the ARS, and the cells switch from the “track state” (continuous sampling) to the “hold
state” (the sampling is stopped and the last recorded signal is held in the capacitor).
Then, the following depends on the signal sent to the ARS by the trigger:

� if the ARS receives a valid signal, the signals in the capacitors are read and dig-
itized. For the ARS used for the DVCS experiment, this digitization times is 128
µs;

� if the ARS receives a clear signal, the capacitors are fastly cleared. This operation
lasts 500 ns.

The output signal of an ARS can be fitted offline. This is particularly useful for
multipulse separation (see Fig. 2.14). The minimal ∆t between two pulses to achieve
separation depends on the separation algorithm accuracy (see Chapter 4). In practice,
two pulses arriving with 6 ns delay can be separated.

2.6 Data Acquisition, DVCS Trigger

This section is devoted to data acquisition (DAQ) at CEBAF, and the specific trigger
which has been developped for DVCS. Optimization of both is necessary to minimize the
dead time and the data volume.

We describe the data acquisition at CEBAF within CEBAF Online Data Acquisition
system (CODA) framework. We give the principle of the DVCS trigger, particularly at
the calorimeter level.

2.6.1 Data acquisition with CEBAF online data acquisition sys-
tem

The data acquisition has two main purposes. The first is to decide whether the event has
to be recorded or not i.e. to manage the trigger. The second is to read out the detector
signals and to record them. All these operations have to be performed as fast as possible
to minimize the dead time.
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At the software level, the DAQ is implemented, at Jefferson Lab, by CODA. CODA is
able to handle most of commercially available electronic components, such as Fastbus, and
VERSAModule Eurocard (VME) digitization devices (Analog Digital Converters (ADCs),
Time-to-Digital Converters (TDCs), scalers), VME computer units (crates), Ethernet net-
works, and a Mass Storage tape Silo (MSS) for long-term data storage. The supported
commercial software is the VxWorks operating system, which runs on Unix/Linux work-
stations.

The custom softwares needed to achieve DAQ goals are the Read Out Controllers
(ROC), the Event Builders (EB), Event Recorders (ER) and Event Transfers (ET). The
EBs, ERs and ETs are common to one experiment. The ROCs have to be implemented
for each of the detectors we wish to use (one ROC per detector), and each ROC runs on its
own VME crate. The ROC used for the left HRS has been fully implemented and tested
years before the experiments, but we had to develop our own ROCs for the calorimeter
and the proton array, including procedures that are able to read out ARS signals. Each
VME unit running a ROC is connected, via a trigger interface, to the Trigger Supervisor
(TS), which orders data read-out to the VME crate.

The trigger supervisor is a multifunction VME board that receives up to eight external
trigger entries, T1 to T8. One can configure the trigger supervisor to order data read-out
for a defined combination of triggers. While the ROCs process, the trigger supervisor tags
the DAQ as busy. When the process is finally done, its new status is directly exchanged
to the trigger supervisor, which inhibits all triggers to synchronize them with the ROCs.
After this operation, the DAQ is ready to record a new event (DAQ enable).

2.6.2 DVCS Trigger

The DVCS trigger is basically given by the coincidence of an electron (measured by the
HRS) and at least one high energy photon (measured by the calorimeter). We describe
the overall trigger scheme for DVCS, and we focus on the algorithm used to perform a
good photon selection in the calorimeter.

DVCS trigger logic

The DVCS trigger scheme is represented in figure 2.15. The first step for DVCS event
selection is the selection of the electron in the HRS. For this reason, we kept as much as
possible from the standard trigger logic to build our own trigger logic.

As we already specified in subsection 2.4.3, the electron is detected by a and coinci-
dence between S1 and S2m (“T1” for the trigger supervisor), and a signal in the Čerenkov
counter. The coincidence between one of the scintillators and the Čerenkov counter (“T2”
for the trigger supervisor) is also considered. The timing of the event is given by the right
PMT of S2m. In the DVCS experiment, the HRS trigger took about 150 to 160 ns to
take a decision.

The and of the spectrometer is submitted at the same time to the trigger supervisor
and to a logic unit to which the calorimeter trigger module is enslaved. The calorimeter
trigger module sends the stop signal to the ARS, and the photon candidates are searched
(see next subsubsection). If there is at least one good photon candidate, the DVCS trigger
is sent to the trigger supervisor, which orders the read out. Else, the calorimeter trigger
module sends the clear signal to the ARS, forcing them to a fast clean up.
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Figure 2.15: Overview of the DVCS trigger logic. The standard Hall A DAQ is represented in black.
The modifications to the standard DAQ performed for this experiment are represented in red.

Since the selection of a good DVCS event depends uppermost on the electron selection,
the signals issued from the calorimeter have to be delayed. This delay is implemented by
57 m long cables that go from the patch panel behind the calorimeter to the calorimeter
trigger module, located in the shield hut at the top of the spectrometer.

DVCS/π0 photon selection

We focus on the selection of pertinent physicis signal in the calorimeter. The position of
the calorimeter, near the target and at a close angle from the beam line leads it to face
a large electromagnetic background. Fortunately, this background is mostly composed of
low energy particles, whereas the signal (high energy π0 decay photons, DVCS photons)
is at rather high energy. However, to fix an energy threshold on a single block does not
suit. Indeed, the shower created by a photon of energy above 1 GeV is usually extended
on 9 blocks. Even though 90 % of this energy will be located in the central block, the
measurement of the amount of energy collected in the neighboring blocks is necessary to
reduce the uncertainties on the photon on the one hand, and to improve the reconstruction
of the photon position (see chapter 4) on the other hand. Thus, the threshold is not fixed
on a single block, but on a 4-block cluster (see Fig. 2.16).

Practically, the photon trigger generation is made in two steps:

� the calorimeter channels are all digitized individually, using a 7 bit Fast ADC, which
provides very fast digitized signals, with a time jitter which is smaller than 100ns;

� when all signals are digitized, the pedestals are subtracted on each channel, and
neighbors channels are compared 4 by 4 (see Fig. 2.16).

If a group of four blocks collected an energy above 1.2 GeV (which is equivalent to 60
ADC channels), the and signal is generated and sent to the trigger supervisor, in order to
read out the corresponding ARS. Note that we used to read only the ARS corresponding
to the hit cluster in order to save data volume and dead time due to the ARS read out.

68

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

9

9

9

9

9

9

9

9

9

9

11

9

8

10

9

9

10

8

8

8

9

8

10

9

9

10

8

9

9

8

8

8

10

9

11

8

9

9

8

9

15

9

9

10

9

9

11

10

9

9

9

10

9

9

9

9

8

9

9

9

9

9

10

9

9

10

9

10

9

8

12

10

10

9

8

9

12

11

8

8

7

8

11

8

7

8

10

7

9

8

9

8

8

8

9

9

8

7

10

14

41

8

5

7

9

9

9

8

8

9

8

12

15

7

4

17

10

6

8

8

8

9

12

10

5

10

12

8

9

9

9

10

9

9

9

9

9

9

9

9

9

9

11

9

8

10

9

9

10

8

8

8

9

8

10

9

9

10

8

9

9

8

8

8

10

9

11

8

9

9

8

9

15

9

9

10

9

9

11

10

9

9

9

10

9

9

9

9

8

9

9

9

9

9

10

9

9

10

9

10

9

8

12

10

10

9

8

9

12

11

8

8

7

8

11

8

7

8

10

7

9

8

9

8

8

8

9

9

8

7

10

14

41

8

5

7

9

9

9

8

8

9

8

12

15

7

4

17

10

6

8

8

8

9

12

10

5

10

12

8

9

9

9

10

Figure 2.16: Left: example of two overlapping 4-blocks clusters, in blue and red. Right: example
of an event in the calorimeter. The energies of each channel are expressed in ADC channels. In this
case, 4 clusters (highlighted by a yellow border) total more than 60 ADC channels, thus satisfying
the trigger conditions.
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Chapter 3

Calorimeter calibration

This chapter treats the calibrations of the PbF2 electromagnetic calorimeter. There are
two main types of calibrations: the hardware calibrations to ensure a good response of the
PMTs of the calorimeter, and the software calibrations, which were necessary to correct
some experimental effects such as, for instance, the background noise.

In the first section are described all calibrations methods which were applied during
the experiment in order to optimize the calorimeter response. In the second section is
presented the specific calorimeter calibration that I implemented for π0 analysis. The third
section is devoted to the calorimeter calibration issues for the next DVCS/π0 experiment
in Hall A.

3.1 Calorimeter calibration methods for the experi-

ment

The main concern of this section is the “first order” calibration of the calorimeter block,
mostly at the hardware level. To have a good and exploitable response for a calorimeter,
one shall deal with:

� the tuning of the relative gains of the PMTs in order to have for all channels the
same response for a signal of same magnitude;

� the determination of the relation between the PMT response and the actual energy
of the signal.

For the DVCS/π0 experiment, the first has been performed by a cosmic calibration and
a LED calibration. The second used an elastic calibration.

All these methods are sequentially detailed in the following. More details on these
methods can be found in the thesis manucripts of A. Camsonne [75], C. Muñoz-Camacho
[76], and M. Mazouz [77].

3.1.1 Cosmic calibration

The cosmic calibration uses the flux of cosmic rays passing through the calorimeter. The
cosmic rays have been chosen for the following reason. The energy deposit depends only
on the quantity of matter traversed. Thus, a bunch of cosmic muons going in the same
direction in a block will leave the same energy. It is therefore an excellent reference signal.
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The cosmic calibration just requires the identification of the cosmic muon. The appa-
ratus used for identification is composed of two pairs of plastic scintillator paddles, placed
on the top and the bottom of the calorimeter. The setup is available on Fig. 3.1. For

PMTs

(a)

calorimeter

Calorimeter

PMTs(b)

Figure 3.1: Schematic setup of the scintillators for the cosmic trigger. (a): seen from the calorimeter
front face. (b): seen from the calorimeter top. Note the PMTs and the scintillator width are not on
scale with the calorimeter dimensions.

the calibration, we consider only the events which arrived vertically on the block, i.e. the
muons which deposited energy on all blocks of the same column. The crossed path in
the lead fluoride corresponds to a 35 MeV deposit in each block, which is equivalent to
35 Čerenkov photons, according to Monte Carlo. To record a sufficient statistics (about
300 events per column), one calibration run has to last 10 hours. A relevent energy dis-
tribution is obtained with such statistics. These distributions are fitted individually by a
gaussian, and the voltage applied to the block PMTs are adjusted in order to center all
distributions at the same value. Several iterations are necessary to perform the calibra-
tion. At the end of the calibration (Fig. 3.2), the dispersion of the energy deposit known

Figure 3.2: Distribution of mean energy deposit (in ARS channels) in all blocks at the end of the
cosmic calibration.
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with an accuracy of 2.7 %.

3.1.2 LED calibration

The LED calibration consists in illuminating the front of all PbF2 blocks with a LED
pulser, to measure the response of the block. In order to be sure to have the same signal
for all blocks, we take exactly the same LED and move it in front of all blocks thanks
to the XY table (see section 2.5). To be reproducible, this method requires the LED
to be put exactly at the same place for each block. To this purpose, a survey of the
calorimeter relatively to the XY table has been performed. It consists in scanning the
blocks with the LED, by steps of 1 mm × 1 mm, and to measure the response of the
block. The center is located where the maximal response is recorded. The four corner
blocks positions are determined with this procedure, and the positions of all other blocks
are deduced. Actually, three measures are enough, the fourth is performed to cross-check
the method.

The LED calibration gives results which are in agreement within 9 % with the cosmic
calibration alone. Fig. 3.3 shows the LED calibration performed with the high voltages
determined with cosmic calibration.

Figure 3.3: Calorimeter cross-calibration measured with LED, with the high voltages provided with
the cosmic calibration.

This calibration method has the advantage to be greatly faster than the cosmic cali-
bration. For instance, it allows to monitor the stability of the PMTs gains (Fig. 3.4) in
time after switch on. This also offered the possibility to perform a frequent monitoring
of the PMT gain.

However, during the experiment data taking, the LED monitoring became less and
less reliable, at least for some blocks. Indeed, because of the low energy background, some
crystals were darkening at the surface facing the target, absorbing a part of the LED light,
and mimicking a loss of gain for the PMT. The shower of an high energy particle develop
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Figure 3.4: PMT relative gain variation as a function of the time after switch on.

at a certain depth in the crystal, behind such an effective screen due to the darkening.
The risk is therefore to overestimate the energy deposit for these particular channels.

3.1.3 Elastic calibration

The purpose of the elastic calibration is to provide an absolute calibration of the calorime-
ter response. To achieve this, we use the elastic ep reaction, which is a two-body reaction,
thus easier to constrain.

For the elastic calibration, the proton was measured with the HRS, which gives a
very accurate measurement, implying a very good constraint on the scattered electron
measured by the calorimeter. The elastic calibration runs require specific settings. In
order to cover all the vertical acceptance of the calorimeter, it was moved back from 1.1
m to 5.5 m. Three HRS settings are necessary to cover the horizontal acceptance (Fig.
3.5). This choice resulted of an optimization of the data taking time for elastic calibration

Figure 3.5: Distribution of elastic events in the [φtg : pHRS ] plane (left) and in the [xcalo, ycalo]
plane (right) for the three settings (materialized in three different colors). The red lines on the left
figure materialize the HRS collimators.

(see section 3.3.1).
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The calibration with elastic data is detailed below. Let us consider an elastic event j,
with the energy of the electron Ej determined by the proton energy measurement:

Ej = Eb + M − Ej
p (3.1)

and Aj
i the signal amplitude recorded by the block i. The relation between Ej and Aj

i is
given by

Ej = CiA
j
i (3.2)

with Ci the calibration coefficient. To determine the Ci, the following χ2 is built

χ2 =
N∑

j=1

(
Ej −

∑
i

CiA
j
i

)2

(3.3)

which is minimized by the following linear set of equations

∑
i

[
N∑

j=1

Aj
kA

j
i

]
Ci =

N∑
j=1

EjAj
k k ∈ 0, 131 (3.4)

which yields

Ci =

[
N∑

j=1

Aj
kA

j
i

]−1 N∑
j=1

EjAj
k. (3.5)

A first elastic calibration was made at the beginning of the experiment, and another
one was made at the end, in order to evaluate the evolution of the calibration coefficients.
The result of these calibrations are shown on Fig. 3.6. A non-negligible variation of the

Figure 3.6: Energy resolution reconstructed over all the calorimeter with elastic calibrations. The
dotted histogram shows the elastic data taken for the second calibration with the coefficients obtained
for the first calibration. Note between the beginning and the end of the experiment, the calibration
coeffecients experienced large variations (brick-red distribution, energy resolution at second calibra-
tion with first calibration coefficients).

calibration coefficients was observed.
In spite of its elegance, this calibration is not the most optimized calibration for the

analysis. In the elastic setting, the calorimeter is at wider angles from the beam line
and larger distances from the interaction point than during data taking. This implies
different background conditions and an optimized calibration method to take this noise
into account. This calibration method is developed in the next section.
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3.2 Optimized calorimeter calibration for π0 analysis

In constrast with the calibration methods described in the previous sections, this cali-
bration is an analysis calibration, developped and optimized for π0 analysis. The data
sample used for this calibration is basically the one we wish to analyse (refer to Chapter
4.2 for the description of this data sample). It has been recorded with the calibration
coefficients obtained from the combinations of all calibration procedures described above.
In addition, these calibration coefficients have been corrected a posteriori from the radia-
tion damage due to the physical background. This calibration is applied only in the inner
calorimeter blocks (Fig. 3.7).

hxcyc
Entries  23303

Mean x  0.2303

Mean y  0.1167

RMS x   1.708

RMS y   2.055

hxcyc
Entries  23303

Mean x  0.2303

Mean y  0.1167

RMS x   1.708

RMS y   2.055

0
1

9

10 80

89

*γ

0π

1
γ

2
γ

Figure 3.7: Projection on the calorimeter of the virtual photons γ∗ within cuts for Kin3. Also shown
is the block relabeling used for the calorimeter calibration described in the text. The calorimeter is
viewed from the rear, with the downstream beam passing to the right.

The necessity of this supplementary calibration is explained further. Meanwhile, the
physical background which motivated it is briefly described. The calibration method is
then developed within details and the results are exposed.

3.2.1 Necessity of another calibration

The calibration coefficients obtained with the elastic calibration are valid only at first order
during data taking. In experimental conditions indeed, the physical background distorts
measurements of the photon energies. This background is composed of low energy particles
issued from the electromagnetic interactions of the beam on the target. In addition to the
distortion of the physical signal due to parasitic energy deposit, it is also responsible of
the radiation damage on the crystals. This background highly depends on the scattering
angle (Fig. 3.8), so the distortion of energy measurement depends on the position of the
photon in the calorimeter. Fig. 3.9 shows the missing mass distribution for block 5 and
85. For block 85 which is very close to the beam, the proton peak is shifted to the right
and smeared compared to block 5 which is very far from the beam.

These distortions may have consequences on the analysis. The shift in missing mass
squared peak position and resolution observed close to the beam (Fig. 3.10) leads to an
artificial depletion of events when an exclusivity cut (i.e. in missing mass squared) is
applied, implying spurious contributions in the φπ dependence of the cross section.

3.2.2 Calibration method

The method developed for this calibration is based on the fact that the reconstructed
missing mass squared for each block must be equal to the proton mass squared, which is
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Figure 3.8: Total electron flux for different energies as a function of the scattering angle, computed
by the DINREG code of P. Degtiarenko [78].
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Figure 3.9: Missing mass squared distribution for block 5 (upper panel) and 85 (lower panel). The
proton mass is materialized by the red line.

the only particle whose momentum is not measured.

The first step of this calibration is the reconstruction of the missing mass squared
distribution of every inner block of the calorimeter. These distributions are built with the
full data sample within the analysis selection cuts (see Chap. 4.2), and the correlations
between the missing mass squared and the invariant mass distributions are corrected.
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Figure 3.10: Resolution of missing mass squared in each block as a function of the block number.
The resolution broadens as we get closer from the beam (large block numbers)

For each event, the missing mass squared can be written

M2
X = E2

X − ~P 2
X , (3.6)

with
E2

X = k + M − k′ − qµ − qν and ~P 2
X = ~k − ~k′ − ~qµ − ~qν (3.7)

where qµ and qν are the two photons issued from the decay of electroproduced π0, respec-
tively measured in the block µ and ν. We assert this under the hypothesis that the energy
of the photon is driven by the block where the electromagnetic shower makes the largest
energy deposit.

For each event, the missing mass squared value is computed, and fills up both missing
mass squared distributions of the two hit blocks with the larger energy deposit. This
induces correlations between missing the mass squared distributions of all blocks. Then,
we fit each missing mass block distribution by a gaussian, between 0.62 < M2

X < 1.09.
This fit gives the missing mass squared position and resolution for each block. The
deviation of this missing mass to the proton mass gives the correction to apply to the
considered block.

Considering the block µ, the correction of each photon ∆qµ hitting it is related with
the missing mass squared deviation of the block ∆M2

X |µ. One could access the relation
between the photon energy correction and the missing mass squared deviation by a M2

X

derivation relative to qµ:

∂M2
X

∂qµ

=
∂E2

X

∂qµ

− ∂ ~P 2
X

∂qµ

= 2EX
∂EX

∂qµ

− 2 ~PX
∂ ~PX

∂qµ

= −2EX + 2
~PX . ~qµ

qµ

(3.8)

As EX is more than 1 GeV and
~PX . ~qµ

qµ
is less than half a GeV, we decide to neglect the

term depending on ~PX in (3.8), that gives, applied to the block µ:

∆M2
X |µ

∆qµ

= −2EX . (3.9)
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As an expression of ∆qµ as a function of ∆M2
X we finally get

∆qµ = −∆M2
X |µ

2EX

. (3.10)

With such a correction applied to both photons qµ and qν , the missing mass squared
is reconstructed event by event. However, the resulting reconstructed missing mass M2

X |µ
for the block µ has some contributions from all other blocks ν 6= µ via the corrections
of the photons ∆qν , depending on the missing mass squared deviations ∆M2

X |ν . Because
the block missing mass squared distributions -and calibration coefficients are correlated,
and also because of the apprixmations lying in the method, several iterations have to be
proceeded for calibration. We express the correction of the photon energy at iteration n,
with the error ∆M2

X at iteration n− 1:

∆qµ|n = +
∆M2

X |n−1
µ

2EX

(3.11)

here ∆M2
X |n−1

µ = 〈M2
X |n−1〉 −M2

P .

When the calibration has been performed for the data, we apply the same method
on the simulation. In addition to the photon energy calibration however is performed
a simultaneaous smearing of the simulation resolution. For this purpose the simulation
resolution has been set sharper than data. The goal of this smearing is to equate for each
block the missing mass squared resolutions for the simulation and the data. It is made
according to a gaussian distribution with deviation for each block ∆σµ obeying to the
following relations

∆σµ =
√

(σµ)2
data − (σµ)2

simu, (σµ)data > (σµ)simu; (3.12)

∆σµ = 0 , (σµ)data < (σµ)simu. (3.13)

This can be summarized by the following formula

(~qµ)i
n =

(~qµ)i
n−1

|qµ|in−1

Gauss

(
(qµ)i

n, mean,
∆σµ√

2

)
(3.14)

where

(qµ)i
n, mean = |qµ|in−1 +

〈(M2
X)µ〉simu − 〈(M2

X)µ〉data

4Ei
X

. (3.15)

Note that in this case, the correcting term is ponderated by another factor 2, which gives
4Ei

X in the denominator instead of 2Ei
X in the case of the data calibration. This relative

coefficient compensates the calibration coefficients correlations, which are not compen-
sated by the weaker statistical fluctuations.

In order to verify the calibration convergence, we build, for instance for data calibra-
tion, the following estimators:

� the average over all blocks of the missing mass peak positions;

� the RMS of the distribution of missing mass peak positions compared to this average.
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Figure 3.11: Evolution during the iterating process (from iteration 0 to 15) of the missing mass
squared averaged over all blocks for Kin3. Notice that it oscillates around the reference value defined
by M2

p .
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Figure 3.12: Evolution during the iterating process (from iteration 0 to 15) of the missing mass
squared RMS regarding to the mean missing mass squared for Kin3.

For data calibration, the average and the RMS of the distribution of individual block
missing mass squared peak position are plotted as a function of the iteration number on
Figs. 3.11 and 3.12, respectively.

The selection of the “good” iteration (i.e. the iteration for which the calibration has
converged) is based on a compromise between a good agreement between both computed
estimators and their expected value, and a reasonable number of iterations. For the
simulation similar estimators are built for the missing mass peak position and resolution.
This makes four estimators, which computed values have to be close to expected values
all together.

The results of this method for data and calibration in terms of individual blocks
reconstructed missing mass squared and on global reconstructed missing mass squared
and pion mass are given in the following subsection.

3.2.3 Calibration results

The result of the data calibration is shown on Fig. 3.13. This figure shows the recon-
structed missing mass squared peak position as a function of the block number before and
after iteration. After calibration, the average missing mass squared peak position agrees
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Figure 3.13: Reconstructed missing mass squared value for iteration 0 (red crosses) and iteration
14 (open blue circles) for data, Kin3.
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Figure 3.14: Difference (data − simulation) of missing mass peak position (upper panel) and
resolution (lower panel) before calibration (crosses), after calibration (open circles), and at a random
iteration during calibration (asterisks), for Kin2.

with the proton mass at a level better than 0.01 %. The dispersion of the missing mass
squared peaks positions for all blocks around this average is better than 0.01 GeV2, RMS.

The result of the simulation calibration is shown on Fig. 3.14. This figure shows the
difference (data − simulation) for the missing mass squared peak position on upper panel
and the resolution on lower panel. The calibration gives an average difference (data −
simulation) for missing mass squared position below 0.02 %, and the dispersion around
this average is better than 4·10−4 GeV2, RMS. The average (data − simulation) resolution
is below 0.1 %, and the RMS is below 0.01 GeV2, RMS.

The data and simulation missing mass squared spectra reconstructed with these cal-
ibrations are available on figure 3.15. On this figure is also available the effect of the
calorimeter threshold, EThr on the missing mass spectrum. To help the visualization of
this effect, the missing mass is plotted for three values of EThr, and the yields are cor-
rected by a factor 1/(1− 2(EThr/| ~pπ|)) which estimates the number of π0 missed because
of the cut. For a calibration cross check purpose, we recompute the γ − γ invariant mass
distribution using this calibration, compared to the physical pion mass. This comparison
is available in Table 3.1.
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Figure 3.15: Upper panel: Raw H(e, e′π0)X missing-mass distribution for Kin3 (solid histogram),
compared to the simulation (dashed histogram), and the difference between the two (dotted his-
togram). Lower panel: H(e, e′π0)X missing-mass distribution for different values at the calorimeter
threshold. This correction adds to the distribution all π0 events missed because of the threshold
value.

〈m−mπ0〉 (GeV)
√
〈(m−mπ0)2〉 (GeV)

KIN 3
data -0.00081 0.0088
simulation +0.00072 0.0089

KIN 2
data -0.00017 0.0079
simulation +0.00191 0.0085

Table 3.1: Mean deviation and resolution width of the π0 → γγ reconstruction of the data and
simulation. Events are selected by M2

X < 1.15 GeV2 and a calorimeter threshold EThr = 1.0 GeV.

Comparison with Malek Mazouz’ results

Malek Mazouz performed similar calibrations during last DVCS experiments. The details
on these calibrations are exposed in his thesis manuscript [77]. The main difference lies
on the selection cuts we applied on the data sample to perform our calibration.. The
samples used for these two different methods are selected with the same cuts, except for
the calorimeter threshold, which has been ignored by Malek. However, a cut in missing
mass squared to select the elastic peak naturally selects higher energy photons, so the
influence might not be significant. On the other hand, in his method, Malek does not
correct the M2

X/mγγ correlation.
To perform a pertinent comparison between missing mass squared and invariant mass

spectra obtained with the two different calibrations, it is better to apply my calibration
coefficients on the sample selected by Malek’s cuts. The result of this comparison is
available in Table 3.2. The accidentals were subtracted for both distributions, and none
of the distributions were corrected with the M2

X/mγγ correlation. Note that on invariant
mass spectra, the invariant mass cut was not applied.

There are small discrepencies between these results. They may lie in the fact that
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This method Method described in [77]
Kin2

M2
X (GeV2) 0.880 0.885

σM2
X (GeV2) 0.152 0.145

mγγ (GeV) 0.1357 0.1350
σ(mγγ) (GeV) 9.02× 10−3 8.61× 10−3

Kin3
M2

X (GeV2) 0.908 0.872
σM2

X (GeV2) 0.197 0.193
mγγ (GeV) 0.1340 0.1349
σ(mγγ) (GeV) 1.024× 10−2 1.011× 10−2

Table 3.2: Characteristics of missing mass squared and invariant mass distributions, corrected with
the two calibration methods.

the calibration method described in this document includes M2
X/mγγ correlation correc-

tion and is applied on a sample which is not corrected from this effect. However, these
discrepencies are small enough so that these distributions remain compatible. This gives
credit to both methods, although the method described in this chapter generally gives
worse results.

3.3 Calorimeter calibration issues for the next DVCS/π0

experiment

This section explores different issues for the calorimeter calibration of the next DVCS/π0

experiment. The calorimeter will be similar to the one used in this experiment, except
that the number of channels grows from 132 (12 × 11) blocks to 208 (16 × 13). Several
methods have to be combined in order to calibrate the calorimeter and to monitor these
calibrations.

Prior to data taking, the calibration methods we used for this experiment would be
the same. Because of the larger calorimeter, the elastic settings for this experiment have
to be determined again. The optimization of the elastic setting has been performed, and
the possibility to use the π0 calibration either as a substitution to elastic calibration or a
monitoring of the calibration has been explored.

3.3.1 Elastic calibration

As specified above, the calorimeter will be extended from 11 blocks to 13 in width (+6
cm wide) and mostly from 12 blocks to 16 in height (+12 cm), so we have to determine
other settings which would optimize the beam time spent to take elastic calibration data.
This optimization is made by a Monte Carlo simulation.

The Monte Carlo simulation generates elastic events ponderated by the elastic cross
section (refer to Chapter 1.2.1) in the acceptance of the detectors. Spectrometer accep-
tance cuts are available on Table 3.3.
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|xHRS plane| < 2.8 cm
(Horizontal collimator)
|yHRS plane| < 6.0 cm
(Vertical collimator)
|p′ − pHRS|/pHRS < 4.5%

Table 3.3: Spectrometer cuts for elastic simulation.

For efficiency reasons, the kinematics are determined by the proton, which is mea-
sured in the spectrometer. We compute the tightest bounds of the proton solid angle
corresponding to the spectrometer, to maximize the efficiency of Monte Carlo genera-
tion. The proton direction is generated in this solid angle, and the proton momentum
is generated in the spectrometer acceptance. The electron direction and momentum are
then computed thanks to two body kinematics relations, and the elastic cross section is
computed for the cross section ponderation.

The cross section ponderation uses the Metropolis method. This method consists in
the following. Prior to the simulation, a “reference” cross section value is fixed, as a
starting point. For the first event, the cross section is computed. If the value of the event
cross section is above the reference cross section, the event is kept and the cross section
value replaces the reference for the next event. Else, a random variable is generated
between 0 and the reference cross section. If this variable is below the cross section value
of the event, this event is kept and the cross section value replaces the reference for the
next event. If it is above, the event is rejected, and the reference is conserved for the next
event.

During the event generation the cross section is summed in order to compute the
integrated luminosity of the simulation, given by:

[∫
Ldt

]
= M/∆σ. (3.16)

with M the number of counts in the simulation, and ∆σ the integrated cross section:

∆σ =

∫
dσ(Ω)

discrete
=

[
N∑

i=1

σi

]
×∆Ω (3.17)

with N the number of generated events and ∆Ω the simulation phase space fixed here by
the proton solid angle. With the integrated luminosity, the required beam time ∆tbeam to
get M counts for the elastic run is:

∆tbeam(s) =

[∫ Ldt
]
(nb−1)

Lbeam(cm−2s−1)
× 1033. (3.18)

The coefficient 1033 converts nb−1 into cm−2s−1.

This simulation will be peformed for two beam energies, at 4 passes and 5 passes of
the accelerator (as DVCS/π0 data taking), assuming 1.11 GeV par pass. It will have for
main advantage to obtain a energy dependence on the energy resolution of the calorime-
ter. In addition to that, the energy range covered by the scattered electron will be, at 4

83

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



Figure 3.16: Elastic settings for next DVCS/π0 experiment for 5 passes beam (left panels) and 4
passes beam (right panels). Each panel shows the individual block counting rates above 300 events
for one setting. Beam time estimation has been made on the basis of a beam current of 2.5 µA.

pass, more representative of the typical energy of a signal photon. The choice of three
settings for the illumination of all the calorimeter has been made. The results of these
simulations are shown on Fig. 3.16. The settings have been fixed in order to get a min-
imal statistics of 300 electrons per block in at least one of the three settings for each block.

To monitor more frequently this calibration, we will use a method, described in the
following, which is derived from the π0 calibration method.

3.3.2 Calibration with π0

The calibration method which is discussed here has for purpose to substitute elastic
calibration for calibration monitoring. Elastic calibration indeed requires specific settings
which are very time consuming to set up. For instance, the inversion the magnetic field
in the HRS dipole (required to measure the proton in the HRS) takes about 4 hours. A
substitution to elastic calibration would thus allow a more regular calibration monitoring.

This calibration method is inspired from the π0 analysis calibration method exposed in
the latter section. The main difference is that we use the invariant mass of the two photons
mγγ instead of the missing mass squared. The reason is the following: in the event that
the blocks experience a huge gain variation (25 % for instance, which was typically the
total average gain shift for the duration of the previous DVCS experiment), the missing
mass squared distribution would be smeared enough that the exclusive peak would be
merged with the inclusive distribution (see upper panels of Fig 3.17). The resulting peak
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then includes a large fraction of inclusive events, and the calibration coefficients required
to center this distribution to the proton mass would be highly biased. On the other

Figure 3.17: Upper panels: reconstructed missing mass squared distributions with elastic calibration
(left) and smeared by 25 % (right). Lower panels: reconstructed invariant mass distributions with
elastic calibration (left) and smeared by 25 % (right). The smearing method is explained in the
text. The comparisons of left and right panels allows to remark that a huge smearing has much less
incidence on the invariant mass than on the missing mass.

hand, the fraction of non-resonant events in the invariant mass distribution is really weak
(lower panels of Fig. 3.17), so the reliability of the method is much less sensitive to the
magnitude of the gain variation.

Other than that, the method is very similar to the method described in section 3.2.
The expression of the photon energy variation becomes:

∆qµ = +
∆mγγ|µ√

qν√
qµ

sin(
θqµqν

2
)

= +2
∆mγγ|µ

mγγ

qµ (3.19)

where θqµqν is the angle between the two photons qµ and qν .
To perform a frequent monitoring, we would like to test the method on data samples

which are as small as possible. The old DVCS/π0 experiment ran 400 hours at a beam
current of 2.5 µA, including 106 hours for Kin2, and 183 hours for Kin3. The average
dead time was ∼ 15 %. Assuming a similar beam current, a similar dead time, and 12 h of
effective data taking per day, one day could allow to record 11.3 % of the total statistics
of the previous experiment for Kin2 6.6 % of the total statistics for Kin3. The method
has been tested for one-day long (i.e. 12 h data taking), one-and-a-half-day long (i.e.
16 h data taking) and two-days long (i.e. 24 h data taking) data samples, for Kin3. To
ensure a smoother convergence for such low statistics, the expression of the photon energy
correction has to be multiplied by a factor λ < 1. For this study, λ is set to 1/8, which
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turns Eq. (3.19) into

∆qµ = +
1

4

∆mγγ|µ
mγγ

qµ. (3.20)

Fig. 3.18 and Fig. 3.19 show respectively the calibration convergence for a 16-hours
long and a 24-hours long data sample respectively. Both samples have been selected from
Kin3 data sample. Fig. 3.18 shows that the convergence is not really smooth for the 16-

Figure 3.18: Upper panel: Evolution during the iterating process of the average invariant mass peak
position over all blocks for a 16-hours long data sample selected from Kin3. Lower panel: evolution
during the iterating process of the invariant mass position RMS relative to the average for the same
sample.

hours long data sample. Indeed, if the average invariant mass peak position is generally
around the pion mass, the RMS of the invariant mass peak position distribution over all
block around this average sometimes “jumps” to very high values. This is due to the
failing of the gaussian fit of a single block invariant mass distribution. The obvious cause
of this gaussian fit fail is a lack of statistics in this single block. This figure demonstrates
then that the calibration method is not reliable with only 16 hours of data taking. On the
other hand, Fig. 3.19 shows a smooth convergence is realized with 24 hours data taking.
Of course this figure only shows the convergence behavior for one sample, but we verified
that this behavior was the same for all independent 24-hour long data samples we could
select from Kin3. This means that the calibration method is pretty reliable with 24 hours
of data taking. Calibration convergence for 12-hours samples shows the same behavior as
16-hours samples.

To complete this study, we wish to verify if this method is able to correct a gain vari-
ation. To simulate the gain variation, an event-by-event smearing of the photons energies
is performed within the following procedure. If one considers an event for which the two
photons hit the block µ and ν, respectively. The energy of the photon 1 (respectively 2)
is smeared by:

qµ(ν) smeared = qµ(ν)(1 +
Gµ(ν)

10
), (3.21)

where Gµ(ν) is the “decalibration” coefficient (i.e. the gain variation) of the block µ
(respectively ν), generated in a reduced centered gaussian distribution.
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Figure 3.19: Upper panel: Evolution during the iterating process of the average invariant mass peak
position over all blocks for a 24-hours long data sample selected from Kin3. Lower panel: evolution
during the iterating process of the invariant mass position RMS relative to the average for the same
sample.

The calibration convergence for a 24-hours long Kin3 data sample smeared by 10 %
on average is displayed on Figure 3.20. The influence of such a calibration procedure on
the reconstructed invariant mass and missing mass squared distributions are available on
Table 3.4.

mγγ (GeV) M2
X (GeV2)

before calibration
Mean 0.1364 0.947
σ 0.01335 0.292

after calibration
Mean 0.1350 0.882
σ 0.0096 0.164

Table 3.4: Results of the gaussian fit of the mγγ and M2
X distributions for a 24-hours long Kin3

data sample, smeared by 10 % on average, before and after calibration.

The two clusters calibration is able to monitor the gain variation for a 24-hours data
sample, or, in other words, every two days in average. However, it could not replace
completely the elastic calibration. Indeed, at the beginning of the experiment, the π0

calibration takes more time. For the next DVCS/π0 experiment, elastic calibration would
take, with reasonable beam currents, 16 hours in the worst case. The two cluster calibra-
tion would take at least 24 h of data taking µA, implying that we could get a reasonable
calibration within about two days. Moreover, the resolution on the missing mass squared
is better for elastic calibration than for two cluster calibration.

The two clusters calibration should then be used complementary to elastic calibration
though. A weekly based recalibration after the first elastic calibration at the beginning of
the experiment performed with the data recorded during one week would be very helpful
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Figure 3.20: Upper panel: Evolution during the iterating process of the average invariant mass peak
position over all blocks for a 24-hours long data sample selected from Kin3. Lower panel: evolution
during the iterating process of the invariant mass position RMS relative to the average for the same
sample.

for a frequent calibration monitoring. In addition to this, these recalibrations would
include background noise effect.
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Chapter 4

Data analysis methods

The main concern of this chapter is the description of the analysis methods which were
developped to reconstruct an event from the raw detector signals, and to extract the cross
sections from the reconstructed events.

We focus first on the raw calorimeter data analysis, including ARS pulse analysis
and clustering. We briefly describe the final data sample we recorded. We give the
actual extraction method of the cross sections. The radiative corrections are detailed,
and the systematic errors are evaluated. Finally, a cross-check method for cross section
is described.

4.1 Raw calorimeter data analysis

This section treats the analysis of the raw calorimeter signal. There are two main issues
for the analysis methods described here. First, we need to extract information such as
the energy from the signal recorded by the ARS. This is the purpose of the waveform
analysis. The second and final step is to reconstruct the photon energy and position with
the informations provided by each recorded block. This is the purpose of the clustering
algorithm.

The waveform analysis is described for all possible scenarios including multipulse anla-
ysis. We describe the different steps of implementation of the clustering algorithm. These
methods are also described within extensive details in the respective thesis manuscripts
of A. Camsonne, C. Muñoz Camacho, and M. Mazouz [75, 76, 77].

4.1.1 Waveform analysis

The main goal of the waveform analysis is to extract from the ARS output the energy,
the arrival time and other information relevant for a further reconstruction of the event.
It consists of a fit of the energy distribution recorded by the ARS. Many scenarios can
occur:

� no significant energy is recorded, a baseline which includes electronic noise and
“continuous” background is fitted;

� a significant signal is recorded by the ARS, a baseline and the pulse amplitude are
fitted;

� many significant signals arrive at close times, and are recorded by the ARS, then a
multipulse fit is performed.
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All these scenarios are considered sequentially for each of the ARS output from the most
simple to most sophisticated, until the considered scenario describes the reality in a sat-
isfying way. In the case of a one pulse or a multipulse fit, each of the pulses are compared
to a reference pulse shape under the assumption that the pulse shape is independent of
the pulse energy.

Defining the following notations, the ARS output as xi the value of the energy regis-
tered in the capacitor i, with i ∈ {0, 127}. A single pulse may then be parameterized as
xi = a× hi where hi is the reference pulse shape.

Baseline fit (No pulse)

In the case there is no significant energy, the signal is fitted by a constant. The constructed
χ2 for this fit is:

χ2 =
imax∑

i=imin

(xi − b)2 (4.1)

minimized by

1

imax − imin

imax∑
i=imin

xi (4.2)

where [imin; imax] is the analysis window which can be configured differently for each ARS,
as long as it meets the following condition 0 ≤ imin < imax ≤ 127. This possibility of
a different analysis window for each channel was required to compensate slight offsets in
the time of flight due to the spatial location of the crystal. A test χ2 (= χ2

t ) is defined as:

χ2
t =

χ2
max∑

i=χ2
min

(xi − b)2, (4.3)

where χ2
min and χ2

max satisfy imin ≤ χ2
min < χ2

max ≤ imax. If χ2
t < χ2

0 with χ2
0 fixed, the

baseline fit is considered to be satisfied, and is recorded. Else, the one-pulse scenario is
considered.

One-pulse fit

If χ2
t > χ2

0, the one-pulse fit is necessary. We construct the following time dependent χ2

χ2(t) =
imax∑

i=imin

(xi − a(t)hi−t − b(t))2 (4.4)

with t the arrival time of the signal, included between tmin and tmax, corresponding to the
analysis window limits imin and imax. For fixed t, This χ2 is minimized by the following
relation: (∑imax

i=imin
xihi−t∑imax

i=imin
xi

)
=

(∑imax

i=imin
h2

i−t

∑imax

i=imin
hi−t∑imax

i=imin
hi−t

∑imax

i=imin
1

) (
a(t)
b(t)

)
. (4.5)

Inverting this 2× 2 matrix, we obtain

(
ā(t)
b̄(t)

)
=

(∑imax

i=imin
h2

i−t

∑imax

i=imin
hi−t∑imax

i=imin
hi−t

∑imax

i=imin
1

)−1 (∑imax

i=imin
xihi−t∑imax

i=imin
xi

)
. (4.6)
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First, one finds the t that gives the minimum χ2(t). Then, if the value of the test χ2:

χ2
t (t) =

χ2
max∑

i=χ2
min

(xi − ā(t)hi−t − b̄(t))2 (4.7)

is not larger than a certain fixed value χ2
1, the one pulse fit is considered to be acceptable.

Else, a more sophisticated fit is performed.

Multipulse fit

If χ2
t (t) > χ2

1, the ARS output has to be fitted with a two-pulse fit algorithm. The
constructed χ2 for this particular fit has the following structure:

χ2(t) =
imax∑

i=imin

(xi − a(t, t′)hi−t − a′(t, t′)hi−t′ − b(t))2 (4.8)

with a′ the amplitude of the second signal, and t′ the arrival time of the second signal
included between tmin and tmax. To minimize this χ2, the amplitudes a, a′, and b have to
obey the following relation




∑imax

i=imin
xiht+i∑imax

i=imin
xihi−t′∑imax

i=imin
xi


 =




∑imax

i=imin
hi−thi−t

∑imax

i=imin
hi−thi−t′

∑imax

i=imin
hi−t∑imax

i=imin
ht+ihi−t′

∑imax

i=imin
hi−t′hi−t′

∑imax

i=imin
hi−t′∑imax

i=imin
ht+i

∑imax

i=imin
hi−t′

∑imax

i=imin
1







a(t, t′)
a′(t, t′)
b(t, t′)


 .

(4.9)
The test χ2 for a two-pulse fit is defined by

χ2
t (t, t

′) =

χ2
max∑

i=χ2
min

(xi − ā(t, t′)hi−t − ā′(t, t′)hi−t′ − b̄(t, t′))2. (4.10)

If χ2
t (t, t

′) < χ2
2 (χ2

2 fixed), the two-pulse fit is considered good enough. Else, a specific
decision has to be taken for these events. Fortunatelly, in almost all cases, the two-pulse
fit was good enough to describe the signal recorded by the ARS. Note that if the time
between t and t′ is below the time separation of the algorithm ∆τ ∼ 6 ns, the one-pulse
fit is then kept as the good one, even though χ2

t (t) > χ2
1.

4.1.2 Clustering

The purpose of clustering is to reconstruct the photon characteristics (energy, position,
etc. . . ), from the energy information extracted from all recorded channels. If the energy
reconstruction is straightforward (it is the simple sum of each block of the cluster), the
reconstruction of the photon position to a resolution level which is better than the block
size requires a more sophisticated algorithm. Moreover, in the two-cluster event case,
the configurations where the two clusters are neghbors is likely to happen, and a specific
method has to be applied to disentangle them.

We present the method used to separate two distinct neighboring clusters, and par-
ticularly the photon reconstruction algorithm with the information of the blocks in a
reconstructed cluster.
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Cluster separation

The algorithm of cluster separation is based on the cellular automata algorithm devel-
opped extensively in [79]. The principle of this algorithm is a step-by-step “contamina-
tion” of the blocks by a “virus”. At the end of the algorithm, all blocks infected by the
same “virus” belong to the same cluster.

The full implementation of the algorithm starts by the identification of local maxima
in the group of blocks selected by the trigger. The local maxima are the “sources of
infection”. The “contamination” spreads to each block from its most energetic neighbor,
meaning that the value of the local maxima is affected to their neighboring blocks. In
case a block is the first neighbor of two local maxima, the highest of the two values is
affected. When a block has been affected a value of a local maxima, it cannot be changed
anymore. Then, the contamination spreads step by step following the two rules set above
until all selected blocks have been infected. This process is summarized in Fig. 4.1.

Figure 4.1: Illustration of the different steps of the cellular automata procedure. On the upper
left panel, the local maxima are identified. On the upper right panel is shown the first step of the
contamination, and the lower panel shows the two final clusters.

To discriminate two clusters, this algorithm requires the two maxima of each of the
cluster to be separated by at least one calorimeter block, implying ∼ 6 cm between the
centroids of the two clusters. For a π0 at Kin3, the typical angle between the two photons
in the laboratory is 5°, implying a separation distance between the two photons at the
front face of the calorimeter nearly 10 cm, safely above the minimal distance required for
cluster separation.

Photon reconstruction

When all clusters are defined, it is possible to reconstruct the photon. The photon energy
is the sum of the energies of all blocks. If we write the energy deposited in a block Ei as
a function of the recorded signal Ai

Ei = AiCi, (4.11)

where Ci is the calibration coefficient, then the photon energy is

Eγ =
∑

i∈Blocks

AiCi. (4.12)

92

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



The shower centroid is reconstructed by building the barycenter of all the blocks of
the cluster logarithmically ponderated by the energy deposited on these blocks:

x =

∑
i∈Blocks wixi∑
i∈Blocks wi

(4.13)

where xi is the geometric position of the block i and

wi = max

{
0;

[
W0 + ln

Ei

Eγ

]}
, (4.14)

with W0 a parameter which allows the tuning of the relative respective block weights, as
well as it defines, inside the cluster, the deposited energy threshold under which the block
has to be neglected, thus defined by Ei = Eγe

−W0 . Large values of W0 allows blocks with
small energy losses and increase their relative weights, whereas small values of W0 favours
the contributions of blocks with large energy deposits. The most pertinent value of W0

has been determined thanks to Monte Carlo simulations and elastic calibrations.
The reconstructed position x given by Eq. (4.13) has to be corrected for the extended

target effect, and for the shower centroid depth in the calorimeter d, which is supposed
to be independent of the energy in our energy range:

xcorr = x

(
1− d√

L2
vc + x2

)
(4.15)

where L2
vc is the actual distance between the vertex and the calorimeter front face at the

photon position.
This algorithm is able to determine the photon position within a 2 mm resolution for

a 4.2 GeV particle (determined with the elastic calibration), which is compatible with the
3 mm resolution for a 3 GeV particle determined by Monte Carlo. This resolution is at
least 10 times better than an individual block size.

4.2 Data sample

As already pointed out in chapter 2, the present data were acquired as part of Jefferson
Lab Hall A DVCS experiment E00-110 [55]. Three kinematic points were considered
for DVCS, all defined at the same xBj = 0.36, and at three different Q2: 1.5 GeV2

(Kin1), 1.9 GeV2 (Kin2) and 2.3 GeV2 (Kin3). Instead of DVCS we consider the triple
coincidence H(e, e′γγ)X events. The 5.75 GeV electron beam was incident on the 15 cm
liquid hydrogen target, for a typical luminosity of 1037 cm−2 ·s−1. Electrons were detected
in the left High Resolution Spectrometer (HRS), and the photons in PbF2 electromagnetic
calorimeter.

The high resolution of the spectrometer allows to accurately define the virtual photon.
The virtual photon footprint on the calorimeter can be seen on Fig. 3.7. The vertex
resolution of the HRS together with the the position resolution of the electromagnetic
calorimeter allow a good reconstruction of the real photon momentum direction. The
validation threshold for the data acquisition trigger was set to about 1 GeV equivalent for
each photon cluster for most of the data taking period. However, during few days of data
taking, meanwhile in Kin2 settings, the threshold has been set fairly higher (about 1.6
GeV instead of 1 GeV) in order to solve temporary issues (Fig 4.2). Such a high threshold
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Figure 4.2: Threshold for the individual 4-block tower number 55, plotted as function of the run
number. Whereas for most of the runs the threshold is around 1 GeV, it is more than 1.6 at the
beginning of the period.

compared to the typical pion energy (a little bit less than 3 GeV) removes most of the π0

statistics. For this reason, these runs were not considered in the π0 analysis. For similar
reasons, the π0 analysis was not performed for Kin1. At the lowest Q2, the energy of the
produced particle is generally below 2.5 GeV. The fixed threshold of 1 GeV per photon
also cuts a large part of the statistics.

The position and the central momentum of the HRS defines the kinematics of the
event. In Table 4.1 are listed the setups corresponding to the two kinematics points Kin2
and Kin3. Fig. 4.3 shows the distribution of H(e, e′π0)X events in the [xBj, Q2] plane, for

Kinematic θHRS (°) pHRS (GeV) Q2 (GeV2) xBj θCalo (°)
Kin2 19.32 2.95 1.9 0.36 18.25
Kin3 23.91 2.35 2.3 0.36 14.8

Table 4.1: Experimental setup for the two kinematics Kin2 and Kin3.
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missing mass squared M2
X = (q + p− q′)2 ≤ 1.15 GeV2. Note the “bean” shapes of these

Bjx
0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

)2
 (

G
eV

2
Q

1.6

1.8

2

2.2

2.4

2.6 2<1.15 GeV2
XM

Figure 4.3: Distribution of H(e, e′π0)X events in the [xBj , Q2] plane, for Kin2 (xBj = 0.36,
Q2 = 1.9 GeV2) and Kin3 (xBj = 0.36, Q2 = 2.3 GeV2). Events for KinX2 (xBj = 0.40,
Q2 = 2.1 GeV2) and KinX3 (xBj = 0.33, Q2 = 2.1 GeV2) are bounded by the two horizontal lines.

kinematics are due to the spectrometer acceptance. The two kinematics fully overlap in
xBj, which allows to study the Q2-dependence of the cross section at fixed xBj. They
also overlap partially in Q2, between the two lines on Fig. 4.3, allowing the study of the
W -dependence of the cross section.

On Fig. 4.4 is plotted the arrival time of each of the two clusters relative to the electron
timing. On this distribution, we select the events which are between {−3; +3} ns in x and

Figure 4.4: Distribution of the two clusters timing (the second (vertical) versus the first (horizontal))
relative to the electron arrival time.

{−3; +3} ns in y. The achieved coincidence resolving time between the scattered electron
and either photon cluster is 0.6 ns, rms. The analysis relies on two specific qualities of
the experiment:

� thanks to the resolution of the spectrometer and the calorimeter, one can use the
missing-mass squared to ensure exclusivity. The exclusive sample is selected by
putting a cut on the missing-mass squared at the proton plus the pion mass squared;

� for exclusive events, the reconstruction of the invariant momentum transfer t and
tmin relies on the positions of the reconstructed photons, leading to a resolution
in t better than the one obtained with the energy. All data are presented as a
function of tmin − t, which is directly linked to the angle of the pion production
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relative to the virtual photon direction in the center of mass θCM
π : tmin − t =

2qCMq′CM(1− cos θCM
π ).

In the ep → e′γ1γ2X reaction, there are six four-vectors, equivalent to 24 independent
kinematic variables. The measured four-vectors k, p, and k′, and four-momentum con-
servation, reduce the number of independent variables to 8. The measurement of the two
directional vectors k̂(γ1) = ~q1/q1 and k̂(γ2) = ~q2/q2 from the target vertex (reconstructed
by the HRS) to the two cluster positions in the calorimeter provides four more kinematic
constraints. Finally, the hypothesis that the observed calorimeter showers are due to pho-
tons (mq1 = mq2 = 0) provides two more kinematic constraints. It remains 2 unknowns
to constrain the reaction to an exclusive production of π0:

� m2
γγ = (q1 + q2)

2 is the invariant mass of the two photons, and should be equal to
the neutral pion mass mπ0 for π0 events;

� M2
X is the missing mass squared of the event, and should be equal to the proton

mass M in case of an exclusive event.

Both of them are determined by the previous constraints plus the energies of the two
photons. Fig. 4.5 displays the distribution of the H(e, e′γγ)X events in the [M2

X , mγγ]
plane, for Kin3. The upper left panel of this figure shows a clear correlation between the

)2 (GeV2
XM

0 1 2

 (
G

eV
)

γ γ
m

0.12

0.14

0.16

Entries  29850Entries  29850

)2 (GeV2
XM
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 (
G
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)

γ γ
m
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0
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Entries  29850

Figure 4.5: Upper panels: distribution of H(e, e′γγ)X events within cuts in [M2
X , mγγ ] plane for

Kin3. Raw distribution showing a clear correlation between these two variables (left). The same
distribution after a rotation around (M2

p , mπ0) to improve the M2
X resolution (right). Lower panels:

the projection on the M2
X axis of the [M2

X , mγγ ] distribution shown in the upper panels. The lower
right panel shows that the resolution is indeed improved by the correction given by Eq. (4.16).

two variables in the exclusive region (M2
X ' M2

p ). This is a consequence of resolution
fluctuations in the energies E1 and E2 of the two photons issued from a π0, which correlate
fluctuations in M2

X and mγγ. The missing mass in the right panels is obtained by an
empirical adjustment:

M2
X

∣∣
Corr

= M2
X

∣∣
Raw

+ C × (mγγ −mπ), (4.16)

with C = 13 GeV. This transformation produces a noticeable improvement in the M2
X

distribution (lower right panel of Fig. 4.5). The coefficient C has been found by an
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interpolation of the upper left plot on Fig. 4.5. However, a further improvement of this
coefficient can be done analytically [80].

The accidentals are subtracted from the statistics in the following way:

� The events with one cluster in coincidence with the electron and one cluster in
random coincidence are subtracted ({−11;−5} ns in x and {−3; +3} ns in y on Fig.
4.4).

� The events with the two cluster in true coincidence but random coincidence with
the electron are also subtracted ({5; 11} ns in x and {5; 11} ns in y on Fig. 4.4).

� The completely accidentals ({−11;−5} ns in x and {5; 11} ns in y on Fig. 4.4)
are added once, since they have been already subtracted twice with the two other
subtractions.

4.3 Cross-section extraction

The basic principle of this extraction method is the comparison between the number
of counts recorded within defined experimental bins, and the number of counts in the
same experimental bins of a simulation of our experiment. This simulation includes the
resolution and acceptance of the HRS, the external and internal radiative effects on the
incident and scattered electron. All the experimental setup, including the target, the
scattering chamber, and the calorimeter were modeled using GEANT3. This specific
modeling of the experiment has for goal to evaluate the acceptance and the response of
the PbF2 calorimeter.

Simulation events are generated uniformly in the target vertex v along the beam line,
and uniformly in a phase space ∆5Φ. The simulation is weighted by the cross section
defined in Chapter 1.1.

In order to extract the differential cross section, it is advantageous to incorporate
all model-independent kinematic dependences of the differential cross section into the
experimental simulation. To this end, we express the virtual cross section in Eq. (1.1) in
terms of structure functions as described in the paper of Drechsel and Tiator [5] directly
related to bilinear combinations of the CGLN helicity amplitudes [81].

We write the expression of the virtual cross section, differential in t, in terms of the
hadronic tensor

d2σv(h)

dtdφπ

=
d cos θCM

π

dt

d2σv(h)

dΩπ

=
1

2qCMq′CM

d2σv(h)

dΩπ

=
1

2qCMkCM
γ

[
Wxx + Wyy

2
+ εLWzz −

√
2εL(1 + ε)<eWxz + ε

Wxx −Wyy

2

+ h
√

2εL(1− ε)=mWyz

]

(4.17)
The transverse-longitudinal interference terms Wxz and Wyz, corresponding to σTL and
σTL′ , have a leading sin θCM

π dependence. The linear polarization interference term Wxx−
Wyy, corresponding to σTT has a leading sin2 θCM

π dependence.
For this reason, we define reduced structure functions rΛ, which are directly related

to bilinear combinations of the CGLN helicity amplitudes Fi [81], and which remove this
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phase-space dependence:

rT =
Wxx + Wyy

2
(4.18)

rL = Wzz (4.19)
(

rTL

rTL′

)
=

1

sin θCM
π

( − 1
cos φπ

<eWxz
1

sin φπ
=mWyz

)
(4.20)

rTT =
1

sin2 θCM
π

1

cos 2φπ

Wxx −Wyy

2
(4.21)

In addition to that, the Q2- and the W - dependences of the hadronic tensor (Wxx +
Wyy)/2 + εLWzz = rT + εLrL have to be included, because our kinematics cover a wide
range in xBj as well as in Q2.

We perform a preliminary extraction of the cross section on the kinematic points Kin2
and Kin3 (respectively KinX2 and KinX3) to get an estimate of the Q2 (respectively
W ) dependence of the hadronic tensor. The extracted Q2 and W dependences are then
introduced explicitly in the formalism to perform a second “definitive” extraction. The
dependence is modeled in the form (Q2)n and W δ. With the first iteration, the cross
sections changed by 3%, but with a second iteration the cross sections changed only by
0.3%.

The simulation has been generated in Q2, xBj, t, φe, and φπ. The full expression of
the five fold differential cross section in terms of the rT , rL, rTL, rTT and rTL′ is then
given by:

d5σ

dQ2dxBjdφedtdφπ

=
d cos θedk′

dQ2dxBj

d cos θCM
π

dt

d5σ

dΩedk′dΩπ

=
y

2kxBj(1− y)
× 1

2qCMq′CM
× α

2π2

k′

k

kγ

Q2

1

1− ε
× q′CM

kCM
γ

×
[
rT + εLrL +

√
2εL(1 + ε) sin θCM

π cos φπrTL

+ ε sin2 θCM
π cos 2φπrTT + h

√
2εL(1− ε) sin θCM

π sin φπrTL′

]

(4.22)

We define a compact notation that summarizes (4.22) in the form:

d5σ

d5Φ
=

∑
Λ

d3ΓΛ

d3Φe

rΛ =
∑

Λ

FΛ(xv)rΛ (4.23)

with FΛ(xv) containing all the kinematic dependence, Λ ∈ {T +εLL, TL, TT, TL′} and xv

summarizing all variables k, Q2, xBj,W, t, considered at the vertex. The notation T + εLL
reflects the fact that we used only one incident energy and consequently, we were not able
to disentangle dσT from dσL by a complete Rosenbluth separation.

The experimental data used for the analysis have the kinematical coverage shown in
Fig. 4.3. The ∆t bins are the same in the generation and experimental phase spaces, but
resolution and radiative effects can cause migration of events from one bin to the others
(Fig. 4.6). Rather than extracting average cross sections in the experimental bins, we use
the simulation and the theoretical form of Eq. (4.23) to directly extract differential cross
sections from the experimental yields.

We divide the acceptance into 24 equal bins in φπ ∈ [0, 2π] and 8 bins in tmin − t ∈
[0, 0.3] GeV2 for both the helicity dependent and independent parts of the cross section.
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Figure 4.6: Raw H(e, e′γγ)X distribution in the [tmin − t, Q2] plane with cuts for Kin3. The
vertical lines delimit the bins we chose in tmin − t for our analysis. Superimposed is the (tmin − t)
resolution for each alternate bin, showing that each bin is larger than the resolution.

A bin jd in the kinematic variables reconstructed by the detector is defined by the limits
φ ∈ [φ(jd), φ(jd) + ∆φ(jd)], (tmin − t) ∈ [(tmin − t)(jd), (tmin − t)(jd) + ∆(tmin − t)(jd)], etc
. . .
The statistics ∆N(jd) in a bin jd are determined by the physical cross section at the
vertex convoluted with the detector response:

∆N(jd) = Lu×
∫

∆xd

dxd

∫

∆xv

dxvR(xd, xv)
∑

Λ

FΛ(xv)rΛ (4.24)

where:

� xv summarizes the reaction vertex variables,

� xd summarizes the reaction vertex variables as reconstructed in the detector,

� ∆xd summarizes the range of integration for bin jd,

� ∆xv summarizes the range of integration for all bins jv,

� Lu is the integrated luminosity,

� R(xd, xv) is the probability distribution for an event originating at the vertex with
kinematics xv to be reconstructed by the detector with vertex kinematics xd. This
expresses the effects of detector resolution, internal and external radiation, detec-
tor efficiency, that could migrate events from vertex kinematics xv to the detector
kinematics xd.

For the analysis and simulation, the integral is split into a sum over the bins ∆xv in the
kinematic variables at the reaction vertex:

∆N(jd) = Lu

∫

∆xd

dxd

∑
jv

∫

∆xv∈bin jv

dxvR(xd, xv)
∑

Λ

FΛ(xv)rΛ (4.25)

Because the functions FΛ(xv) contain the main part of the dependence on the variables
at the vertex, the quantity rΛ in a bin ∆xv will be assimilated to its average 〈rΛ〉xv ≡ rv,Λ
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in this bin. Then, the last equation can be summarized in a vector notation:

∆N(jd) =
∑
jv

KΛ
jd,jv

rjv ,Λ (4.26)

with

KΛ
jd,jv

= Lu

∫

∆xd

∫

∆xv∈bin jv

R(xd, xv)FΛ(xv)dxddxv . (4.27)

The integration is replaced by a summation over the simulated events i

KΛ
jd,jv

= Lu
∑

i∈{jv ,jd}

FΛ(xv)

Ngen

∆5Φ (4.28)

where the sum is over events originating in vertex bin jv and reconstructed in bin jd. Ngen

is the number of events generated in the simulation, ∆5Φ is the total phase space factor.
The matrices KΛ

jd,jv
are constructed from simulation events, summed over all events within

cuts.
We define Nd = N+ + N− with N+ (N−) the number of counts within cuts with

positive (negative) electron helicity.
The cuts are the same for simulation and data. They are summarized in Table 4.2.

Spectrometer cuts
-6.0 cm < v < +7.5 cm
|xHRS plane| < 3.5 cm

(Horizontal collimator)
|yHRS plane| < 7.0 cm
(Vertical collimator)

|k′ − pHRS|/pHRS < 4.5%
r > +0.005 m

Calorimeter cuts
-15.0 cm < xcalo < +12.0 cm

|ycalo| < 15.0 cm
Physics cuts
105 MeV < mγγ < 165 MeV

Table 4.2: Cuts applied in the primary extraction. r is the value of the so-called r-function. The
r-function defines the distance of the particle from the acceptance bound, and is positive (negative)
if the particle is in (out of) the acceptance [82].

A χ2 is built, assuming that the statistical error on the simulation is much smaller
than the statistical error on the data

χ2 =
∑
jd

(
Nd −

∑
jv

KΛ
jd,jv

rjv ,Λ

)2

Nd

. (4.29)
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We minimize this relation relative to rjv ,Λ

0 = −1

2

∂χ2

∂rjv ,Λ

∣∣∣∣
r̄jv,Λ

=
∑
jd

KΛ
jd,jv

(∑
j′v,Λ′ K

Λ′
jd,j′v

r̄jv ,Λ′ −Nd

)2

Nd

=
∑

j′v ,Λ′
MΛ,Λ′

jv ,j′v
r̄jv,Λ′ − Y Λ′

jv

(4.30)

with:

MΛ,Λ′
jv,j′v

=
∑
jd

KΛ
jd,jv

KΛ′
jd,j′v

Nd

, (4.31)

and

Y Λ′
jv

=
∑
jd

KΛ
jd,jv

Nd

Nd

. (4.32)

The rΛ coefficients are finally given by:

r̄jv ,Λ′ =
∑

j′v ,Λ′
[M−1]Λ,Λ′

jv ,j′v
Y Λ′

jv
, (4.33)

and the covariant matrix of these quantities is given by [M−1]Λ,Λ′
jv,j′v

. Note that all vertex
bins populate experimental bins, but the detector bin at the largest experimental bin in
(tmin − t) can receive contributions from larger values of (tmin − t), not generated in the
simulation. Hence, although we extract an r̄jv ,Λ value for the last bin, we do not include
it in our results, its role is only to populate the lower (tmin − t) bins. The average values
of the kinematic variables Q2, ε, xBj, W , t, tmin, etc . . . in a bin at the vertex are

xjv =

∑
i∈∆xv

xvK
Λ
jd,jv

rjv ,Λ∑
i∈∆xv

KΛ
jd,jv

rjv ,Λ

. (4.34)

Because the rjv ,Λ are by construction constant over the bin ∆xv and the integrals of FTL,
FTT , and FTL′ cancel when integrating over φπ, we can write:

xjv =

∑
i∈∆xv

xvK
T+εLL
jd,jv∑

i∈∆xv
KT+εLL

jd,jv

. (4.35)

These values are summarized in Table 5.2 for quantities independent of the (tmin − t)
bin and in Table 5.3 for quantities depending of the (tmin − t) bin. Both of these tables
are available in Appendix 1. Finally, the cross sections at the point xjv in a bin jv are
obtained from:

dσΛ

dt
= FΛ(xjv)r̄jv,Λ (4.36)

The results will be exposed in Chap. 5.

4.4 Corrections

In this section, the corrections that were applied in the analysis to minimize systematic
errors are exposed extensively. The instrumental corrections are described. We give some
details on the radiative corrections. We evaluate the contamination of our π0 sample by
the following channel: ep → epω with ω → π0γ.
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4.4.1 Instrumental corrections

We give some comments on the instrumental corrections given in Table 4.3. In this
experiment, the errors due to instrumentation come from two principal sources:

� the spectrometer can measure more than one track for the same event.

� one of the two photons in the calorimeter can create more than one cluster.

In both cases, since these kinds of events are supposed to be small, we prefer to remove the
events from our statistics rather than to develop reconstruction algorithms. A summary
of these corrections are available in Table 4.3.

Correction Kin3 Kin2
Multi-tracks in HRS 1.079 1.096
Triple Cluster in Calo 1.035 1.020
Radiative correction 0.91 ± 0.02 0.91 ± 0.02

Table 4.3: Correction factors applied in the data analysis. The radiative correction factor is the com-
bination of the virtual radiative correction factors (vertex renormalization and vacuum polarization)
and the cut-off independent real radiation effects. These radiative effects are calculated according
to [83]. Further details on corrections are given in next section.

HRS multitracks corrections

In the event that the HRS is measuring more than one track, the event is removed from
the statistics. The probability for multitrack events to occur depends mostly on the DIS
counting rate in the spectrometer acceptance. For Kin 2, the spectrometer is nearer to
the beam than for Kin3, meaning a broader spatial acceptance. Moreover, the Q2 is lower,
meaning a larger counting rate due to the leptonic factor in the DIS cross section. Table
4.4 shows the proportion of multiple tracks events in the HRS. More technical details on
the determinations of this corrections are available in [84].

Three-cluster corrections

Most of one cluster events are DVCS, but some may be π0 events with an asymmetric
decay, thus with one photon which does not pass the threshold. Most of two clusters
events are π0, but there may be a single DVCS event with another accidental photon.
Three clusters events are mostly π0 with another accidental photon. Thanks to Monte
Carlo simulations, one can disentangle the proportion of n-cluster events owning to the
relevent category, and thus obtain the corrections to apply.

Kinematics Kin1 Kin2 Kin3
Proportion of multitracks (%) 9.38 8.72 7.32

Table 4.4: Percentage of multiple tracks in Number of tracks in the HRS for each kinematics
normalized to the same number of events for each kinematic.
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4.4.2 QED radiative corrections

The electromagnetic radiative effects on the electron affects the kinematics variables Q2,
W , xBj. When one considers a lepton-nucleon process, there are several different radiative
effects (see Fig. 4.7):

Short distance
Long distance

from vertex

k

q

k’

Figure 4.7: Diagram showing examples of the different radiative effects that could be observed in
an lepton-nucleon reaction. The dashed-dotted box materializes the “limit” between short distances
(where occur internal real and internal virtual radiative effects) and long distances (where occur
external radiative effects) from the vertex. Examples of external radiative effects are represented in
blue. Examples of internal real radiative effects are represented in red. An instance of a internal
virtual radiative correction is shown in magenta.

� the external radiative effects occur at long distances from the vertex, meaning that
the electromagnetic field neighboring the electron when it radiates is not the one
of the nucleon interacting with the electron for the considered process. A typical
example of external radiative process is the bremstrahlung;

� the internal real radiative effects occur at short distances from the vertex i.e. in
the electromagnetic field of the nucleon with which its interacts. The particles
created by such processes are real. In other words, they go from short distances
to long distances. A typical example of an internal real radiative process is the
Bethe-Heitler;

� the internal virtual radiative effects occur at short distances from the vertex. How-
ever, in constrast with internal real processes, the virtual processes create virtual
particles, that are created and reabsorbed in the neighborhood of the vertex.

External radiation corrections

For practical reasons, the external pre-radiation was simulated by the equivalent radiator
approximation [85, 86]. External pre-radiation is modeled by generating an event-by-event
energy loss ∆kin ext of the incident electron (E0) following a distribution (b ' 4/3):

Iin(k0, ∆kin ext, tin) =
btin

∆kin ext

[
∆kin ext

k0

]btin

(4.37)
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where tin is the event-by-event target thickness (in radiation lengths) traversed by the
electron before the scattering vertex. The inversion of this relation gives:

∆kin ext

k0

= U
1/btin
ext , (4.38)

where Uext is uniform between 0 and 1. External radiation by the scattered electron in
the target and the scattering chamber material is modeled by the GEANT3 simulation
described in the previous section.

Internal real radiation corrections

The internal real radiative effects at the vertex are treated by the equivalent radiator
approximation [85, 86]. Pre-radiation is modeled by generating an event-by-event energy
loss ∆kin int of the incident electron (k0) following a distribution which is similar to Eq.
(4.37):

Iin(k0, ∆kin int, δS/2) =
δS/2

∆kin int

[
∆kin int

k0

]δS/2

(4.39)

with the Schwinger term:

δS =
2α

π

[
ln

Q2

me

− 1

]
(4.40)

which models the internal pre-radiation. Again, the inversion of this relation gives :

∆kin int

k0

= U
1/btin
int , (4.41)

with Uint uniform between 0 and 1. Eqs. (4.37) and (4.39) can be combined into one:

Iin(k0, ∆kin, tin) =
btin + δS/2

∆kin

[
∆kin

k0

]btin+δS/2

(4.42)

The scattered energy at the vertex is k′v = k0 − ∆kin − Q2/(2MpxBj). Internal post-
radiation is modeled by a similar distribution in the post-radiated energy ∆kout:

Iout =
δS/2

∆kout

[
∆kout

k′v

]δS/2

(4.43)

and its inversion
∆kout

k′v
= U

1/btin
out , (4.44)

with Uout uniform between 0 and 1.
Note that the internal real radiative corrections are simulated in the event generation,

but not in the full GEANT simulation of the detector.

Virtual radiation correction

In contrast with other radiative corrections which have to be included directly in the
simulation, the application of virtual radiative corrections consists in a simple corrective
coefficient applied either to the experimental or to the simulated yields (see Table 4.3).
The internal virtual radiation was calculated by Vanderhaeghen et al. for DVCS. Their
work include an combined analytical-numerical method to compute radiative effects at
first order in αQED, including emission-reabsorption of a photon by the incident and
scattered electron, and fermionic loops in photon exchange. Extensive details on this
calculations are available in [83].
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4.4.3 Data sample contamination from ep → epω with ω → π0γ

Two classes of inclusive hadronic electro-production channels compete with the exclusive
H(e, e′π0)p reaction: the H(e, e′π0)Nπ,Nππ, ... channels, with a threshold at M2

X = (Mp+
mπ)2 = 1.15 GeV2 and the H(e, e′π0)γp channel. The first class includes N∗ and non-
resonant Nπ production in the final state, and diffractive ρ+ → π+π0 production via
the ep → eρ+n reaction. All these channels can be observed in a missing-mass squared
distribution (Fig. 3.15) and are ruled out by exclusivity cut within resolution effects.
The H(e, e′π0)γp channel originates from the diffractive ep → epω reaction, with a 8.5 %
branching-ratio decay channel [87]. In our acceptance, the (e, e′π0) missing-mass squared
threshold for exclusive ω electroproduction is 1.0 GeV2, thus slightly lower than the Nπ
threshold of 1.15 GeV2.

The purpose of this section is to evaluate the proportion of π0 events coming from
ω(782) electroproduction and decay into π0γ. The evaluation of π0 contamination by
ω → π0γ has been made possible thanks to the publication of ep → epω(782) cross
sections in [88]. We study the influence of the M2

X cut on ω contamination. We also
study the influence of the calorimeter threshold EThr, and the correlations between the
two.

We consider, for each tmin − t bin, the reaction ep → epω with ω(q0
ω,qω) produced at

the corresponding angle θCM
π . This ω decays in ω → π0γ with π0 going very forward in ω

rest frame (ω.R.F.). This leads to the following final state:

� the scattered electron and the two γ issued from the π0 which are measured;

� the recoil proton and a low energy photon pγ = (p0
γ,pγ), which are not measured.

If we compute the missing mass squared M2
X as a function of the unmeasured quantities,

we get:
M2

X = (p′0 + p0
γ)

2 − (p′ + pγ)
2

= M2 + 2p0
γ(p

′0 − |p′| cos θp′,pγ ).
(4.45)

Estimating the value of cos θp′,pγ is not easy, so we set it to 1 (maximizes estimation)

⇒ M2
X = M2

p + 2p0
γ(p

′0 − |p′|). (4.46)

The calculation of the photon energy gives:

p0
γ =

qω

mω

p0 ω.R.F
γ +

|qω|
mω

p0 ω.R.F
γ cos θω.R.F

γ . (4.47)

The proportion of ω → π0γ, noted Xω in π0 , that pass missing mass cut and contaminate
our π0 statistics, is computed To do this, it is assumed that the ω → π0γ decay is isotropic.

Xω in π0 =

∫ Θ=θω.R.F
γ

−1

∫ 2π

φ=0
1× sin ΘdΘdφ

∫ 1

Θ=−1

∫ 2π

φ=0
1× sin ΘdΘdφ

=
1− cos θω.R.F

γ

2
.

(4.48)

Now we need to know the absolute value of ω electroproduction cross section. We
use ω electroproduction cross section measurements of CLAS [88]. In this reference is
available a parametrization of ω electroproduction cross section under the form

dσ(ep → epω)

dt
= σ0 × ebt, (4.49)
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with b fitted between −1.5 GeV2 < t < tmin, and
∫ tmin

−2.7GeV2
dσ(ep→epω)

dt
dt = σ. σ0 is

determined by integrating Eq. (4.49) over the experimental acceptance.
For the kinematics of CLAS which are equivalent to our kinematics we have results

given in table 4.5. The obtained cross section must be multiplied by the branching ratio

variable Kin2 Kin3
Q2(GeV2) 2.05 2.35
xBj 0.37 0.37
tmin(GeV2) -0.34 -0.37
b(GeV−2) 1.35 0.97
σ(nb) 1002 581
σ0(nb) 2090 1569

Table 4.5: Recapitulative table of results given in [88] and their corresponding kinematic points.

of ω → π0γ, noted BRω→π0γ available in [87], which equals 8.92%.
Finally, The neutral pion contamination is given by the following quantity:

dσ(ep→epπ0)
dt

dσ(ep→epω0)
dt

×BRω→π0γ ×Xω in π0

, (4.50)

which has been plotted as a function of tmin − t, for Kin2 and for Kin3, considering their
respective optimal values of M2

X cut on Fig. 4.8. This contamination remains below 0.3 %
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0 0.05 0.1 0.15 0.2

 c
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n
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Kin2, M
2 Cut = 1.00 GeV2

X
Kin3, M

Figure 4.8: contamination of π0 data by ω → π0γ as a function of tmin − t, for Kin2 and Kin3 at
their respective optimal exclusivity cut.

for Kin3 and below 0.2 % for Kin2 for the considered cuts. For the cuts values which have
been considered for the present analysis (see next section) the ω contamination remains
below 0.3 %.

Let us evaluate now the influence of the calorimeter threshold. We assume that the
photon issued from ω decay is emitted at such an angle in the ω rest frame that it has
enough energy to pass the threshold. The only thing we have to compute is the minimal
emission angle of the gamma in the ω.R.F to allow it to pass the threshold. It implies the
emission angle of the π0 and, straightforwardly, the maximal energy q′0 with the photon
issued from the ω in the threshold. With this values, two configurations appear:

� Eπ0 < 2ETh. In this case, the contamination is ruled out by the two photons mass
cut: Xω in π0 = 0
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� Eπ0 > 2EThr. In that case, there may be up to 3 clusters. Events are either removed
from data sample (in case of 3 clusters), or cut by missing mass cut or two photons
mass cut. The contamination is Xω in π0 = 0 but we have correlations between
missing mass squared cut and calorimeter threshold.

The ratio Eπ0 < 2EThr ⇔ Eπ0

2EThr
has been plotted for Kin2 and Kin3, considering their

optimal calorimeter threshold in 4.9. This figure shows that this ratio is below 1 for each

) 2-t (GeVmint
0 0.05 0.1 0.15 0.2

) 
th

r
/(

2 
E

0 π
E

0

0.2

0.4
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1

 = 1.075 GeV
Thr

Kin2, E

 = 1.275 GeV
Thr

Kin3, E

Figure 4.9: contamination of π0 data by ω → π0γ as a function of tmin − t, for Kin2 and Kin3 at
their respective optimal calorimeter threshold.

tmin−t bin, showing that M2
X cut and EThr are not correlated by ω contamination. Finally,

the contamination of π0 electroproduction by ω is determined by the missing mass squared
cut only.

4.5 Systematic Errors

The systematic errors originate from several sources. There are instrumental sources
of systematic errors, and the systematics which come from the extraction method, and
particularly on the values of certain cuts liable for physics such as the missing mass cut.
We emphasize the systematics due to the missing mass squared cut on the one hand, and
due to the calorimeter threshold on the other hand. The estimations for the instrumental
systematic errors are listed, and summarized.

4.5.1 Systematic effect due to M 2
X cut

The systematic effect due to the exclusivity cut is due to inclusive channels which can
be observed in the missing mass squared distribution shown on Fig. 3.15. The variation
of this cut may vary the cross section because of these inclusive channels, which are not
simulated, but may be included in the data yields, depending on the M2

X cut value.
The method to estimate the systematic effect of the cut on the cross section is to

observe the cross section dependence on the cut. The estimator used is:

R =

∑6
Bin=0(rT + εLrL)(Cut)∑6

Bin=0(rT + εLrL)optimal cut

. (4.51)

This quantity is plotted as a function of the M2
X cut on Fig. 4.10. On this figure we

observe, as expected, the increase of the cross section along with the missing mass cut
increase above the interval of stability. However, we do not observe the expected stability
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Figure 4.10: Total cross section integrated over tmin − t and φπ, for Kin2 (left) and Kin3 (right),
as a function of the M2

X cut. The vertical lines indicate, from left to right, the minimal, optimal and
maximal M2

X cut values of the stability domain.

either for Kin2 and Kin3, although the systematic errors are larger for Kin2 (3 % system-
atic error for Kin2, meanwhile only 1.5 % for Kin3). The lower boundary of the interval
has been set for statistics reasons. The interval of stability and the optimal exclusivity
cut has been given for both kinematics in Table 4.6.

4.5.2 Systematic effect due to EThr.

The influence of the calorimeter threshold to the cross section comes, again, from a differ-
ence between the data yields and the simulation yields. There are two types of threshold:

� The hardware threshold, which is fixed by the trigger.

� The software threshold, which is the analysis cut, set stronger than than the hard-
ware threshold.

We plot the quantity given in Eq. (4.51) as a function of the software threshold on Fig.
4.11. The stability of the cross section is observed when the software threshold is above
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Figure 4.11: (a): Total cross section integrated over tmin − t and φπ, for Kin2 (left) and Kin3
(right), as a function of EThr. The vertical lines indicate, from left to right, the minimal, optimal
and maximal EThr values of the stability domain (see Table 4.6 for Kin3 values). (b): The number of
events as a function of EThr. The stability domain for EThr shows the statistics linearly decreasing
with EThr.

the hardware threshold and dominates. The upper boundary of the stability interval has
been fixed for statistics reasons.
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Variable Minimum Optimum Maximum
Kin3 / KinX3

M2
X cut (GeV2) 0.90 1.00 1.10

EThr (GeV) 1.20 1.275 1.35
Kin2 / KinX2

M2
X cut (GeV2) 0.90 1.00 1.10

EThr (GeV) 1.00 1.075 1.15

Table 4.6: Values of the M2
X cut and EThr defining the global cross-section stability domain.

Minimum and Maximum are the bounds of this domain, and Optimum is the cut value set in the
middle of the stability interval.

4.5.3 Summary of systematic errors

The interval of stability and the optimal software calorimeter threshold are given for both
kinematics in Table 4.6. The reduced structure functions rΛ are extracted at the optimal
value of the cuts. The systematic errors are taken as the maximum difference between the
rΛ computed at the optimum cuts and the rΛ computed at each of the four extremities of
the stability domain.

In Table 4.7 are listed all instrumental sources of systematics effects, and their mag-
nitude. All these errors are independent and are added quadratically. The first “Total

Kin3 Kin2
KinX3 KinX2

Exclusivity cut 1.5 % 3.0 %
Calorimeter threshold 1.0 %
HRS acceptance 2.2 %
Radiative corrections 1.5 %
Target length 0.5 %
Hadronic tensor integration 0.3 %
Multi tracks corrections 0.1 %
3 clusters corrections 0.1 %
Luminosity 0.1 %
Dead time 0.1 %
Particle identification 0.1 %
Total Quadratic 3.3 % 4.2 %
Beam polarization 2.0 %
Total Quadratic 3.9 % 4.6 %

Table 4.7: Experimental systematic errors. The first “Total Quadratic” row shows the quadratic
sum of all experimental helicity-independent systematic errors. The second “Total Quadratic” row
shows the quadratic sum of all experimental systematic errors including helicity-dependent effects.

Quadratic” row is the total instrumental systematic error on all helicity-independent cross
section contributions. The second one is the total instrumental systematic error on the
helicity-dependent term.
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4.6 π0 cross section results cross check

A cross check of the π0 cross section results is performed evaluating, by two different
methods, the proportion of one-cluster π0 events contaminating DVCS statistics. If the
π0 decay is very asymmetric, one of the two photons shall not pass the trigger, meanwhile
the other might have enough energy to mimic a DVCS photon. Therefore, this type of
events contaminate DVCS statistics. To evaluate the contamination of DVCS statistics
by one-cluster π0 events, one needs to know the number of π0, and the fraction of π0

giving one cluster in the calorimeter. One may either start with the raw two-cluster event
statistics and determine the probability of each pion to give only one cluster (first method,
used for DVCS analysis), or start with the pion cross section, and determine thanks to
the simulation the total number of one-cluster events (second method). Each of the two
methods shall give the same result. Thanks to this, we may test the reliability of the
cross section.

4.6.1 Evaluation of DVCS/π0 contamination: DVCS analysis
method

This method has been exposed within extensive details in [76]. In the first method we
select inclusive π0 events, that means we select the 2-cluster sample with cuts listed in
Table 4.2 except the exclusivity cut. We reconstruct the pion, and we simulate its decay
in two photons a large number of times N = 5000. Note the pion is selected with the
calibration applied, but it is reconstructed without applying the calibration. Practically,
we simulate the isotropic decay of the resonance at the actual mass mγγ for each event.
Finally, the allowance of both photons in the rest frame within cuts are checked.

If both photons are in the acceptance, we count them. If only one photon is in
the acceptance, we compute its supposed quadrimomentum transfer, t, its φγγ, and its
missing mass squared, M2

X DV CS, as if it was a real DVCS photon. This photon has finally
to pass the DVCS exclusivity cut, requiring M2

X DV CS < 1.15 GeV2. When all decays are
simulated for a real 2-cluster event, we have:

� n0 decays leading to no cluster;

� n1 decays leading to a 1-cluster event;

� n2 decays leading to a 2-cluster event.

Each 1-cluster event with a value t, φγγ populates the corresponding DVCS t and φγγ bin,
and are ponderated by

Wi =
1

n2

. (4.52)

The DVCS/π0 contamination yields obtained by this method are available on the
upper panels of Fig. 4.12 (black histograms).

4.6.2 Evaluation of DVCS/π0 contamination: Direct method

For this method we consider the 1-cluster π0 simulation. We select the π0 sample with
the spectrometer cuts given in Table 4.2. We also apply the calorimeter threshold and
acceptance cuts for the measured cluster. However, we do not apply any cut on the
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missing mass squared, and it is not possible as well to apply a 2-gamma invariant mass,
since one photon is not measured. These events were not calibrated with π0 calibration
as well.

For each event we compute, with the vertex variables, the tmin − t generated for this
event. We ponderate this event with the cross section weight given by the following
expression:

WXsec,i =

[∫ Ldt
]
psfi

Ngen

∑
Λ

FΛ(xv)rΛ × 1

[RadCor]× [MulTrk]× [TrClus]
(4.53)

where:

� [RadCor] is the intern virtual radiative correction

� [MulTrk] is the HRS multi-track correction

� [TrClus] is the triple-cluster event correction

Then, we compute the t and the φγγ that the photon would have if it was a DVCS event.
The DVCS/π0 contamination yields obtained by this method are available on the

upper panels of Fig. 4.12 (red histograms).

4.6.3 Comparison between the two methods

The comparison between the method exposed in subsections 4.6.1 and 4.6.2 is summa-
rized in Fig. 4.12. The ratio of the two DVCS/π0 contamination yields obtained by the
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Figure 4.12: Comparison, for Kin2, between DVCS/π0 contamination evaluated for the two different
methods exposed in the text. On upper panel are plotted the contamination yields as a function
of φγγ for each DVCS t bin. Blue histograms are the estimations given by the method exposed
in subsection 4.6.1, red histograms are the estimations given by the method exposed in subsection
4.6.2. On lower panels are plotted the ratio red histogram/blue histogram, each of the lower panel
for its corresponding upper panel.

two different methods is equal to 1 on average, and fluctuates by ∼ 10% on the lower t
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bin, by 20 % for the intermediate t bins, and by 40 % for the higher t bin. Several tests
of stability of both methods relatively to the calorimeter threshold have been performed,
demonstrating the reliability of these methods, implying the reliability of the cross check
and of the π0 cross section results.
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Chapter 5

Results and Discussion

This chapter is dedicated to the results of neutral pion analysis in Hall A. Our kinematical
coverage allowed to separate all φπ contributions to the ep → epπ0 cross sections, and
to extract Q2- and W -dependences. We show the π0 electroproduction cross section
components for Kin2 and Kin3, and for KinX2 and KinX3. These results are cross checked
by a comparison between the method performed to subtract one-cluster π0 from DVCS
[36, 76] and a direct one-cluster π0 subtraction method using the π0 cross section. We
confront these results with several models among those described in Chapter 1, including
Regge-inspired calculations, GPD predictions and SIDIS approach.

In this chapter, the results are presented as the four cross section components following
the usual decomposition found in the literature:

d2σv

dtdφπ

=
1

2π

{
dσT

dt
+ εL

dσL

dt

+
√

2εL(1 + ε)
dσTL

dt
cos φπ

+ ε
dσTT

dt
cos 2φπ

+ h
√

2εL(1− ε)
dσTL′

dt
sin φπ

}
.

(5.1)

5.1 Results for π0 electroproduction.

The exclusive π0 electroproduction cross section φπ dependences were extracted for Kin2,
Kin3, KinX2 and KinX3. The Q2- and W -dependences of these cross sections have also
been estimated. The tables of results, with statistics and systematic errors, are available
in Appendix 1.

5.1.1 Cross sections results

We expose here the different φπ contributions to H(e, e′π0)p cross section for Kin2, Kin3,
KinX2 and KinX3. For each of the following plots, the cross section has been computed
from the extracted rΛ value at the kinematics given in Tables 5.2 and 5.3. The latter
table also gives the tmin − t values where the data points are indicated for each bin.

Fig. 5.1 represents σT + εLσL for Kin2 and Kin3. These cross sections are rather flat
in tmin − t, and they are about 0.4 (resp. 0.7) µb · GeV−2 for Kin3 (resp. Kin2). The
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Figure 5.1: (a) separated H(e, e′π0)p cross section σT +εLσL as a function of tmin−t for xBj = 0.36.
Error bars represent statistical errors only. (b): ratio of σT +εLσL for the two kinematics as a function
of tmin − t. The fit of this ratio (dashed line) indicates the Q2-dependence of the cross section.

available statistics allowed us to achieve, for the φπ-independent cross section, a statistical
precision of 2.5%. For reasons of visibility, this calculation has been multiplied by a factor
10.
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Figure 5.2: σTL (a), σTT (b) and σTL′ (c) H(e, e′π0)p cross-section components as a function
of tmin − t for the two Q2-values. Kin2 is represented by the open circles, and Kin3 by the solid
circles. Error bars represent statistical errors only. The bands (light for Kin2 and dark for Kin3)
are explained in the text. Refer to Table 5.4 for more detailed cross-section values, statistical and
systematic errors.

σTL, σTT , and σTL′ are plotted as a function of tmin− t for Kin2 and Kin3 on Fig. 5.2.
We performed on these components fits proportional to sin θCM

π (for σTL and σTL′), and
proportional to sin2 θCM

π (for σTT ). These fits, including their statistical and systematic
errors, are the bands represented on Fig. 5.2. Their reduced χ2 are around 1.25, pointing
a fair agreement with the data. This indicates that the main t-dependence of σTL,TL′ , and
σTT may be given by sin θCM

π and sin2 θCM
π respectively.

Fig. 5.3 shows σT + εLσL for KinX2 and KinX3. These data are within a statistical
precision of about 5% for the total cross section.

Fig. 5.4 represents σTL, σTT and σTL′ for KinX2 and KinX3. The fits proportional
to sin θCM

π for σTL and σTL′ , and proportional to sin2 θCM
π for σTT are also represented.

These fits, including statistical and systematic errors, are shown as bands in Figs. 5.2 and
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Figure 5.3: (a): Separated H(e, e′π0)p cross section σT + εLσL as a function of tmin − t for
Q2 = 2.1 GeV2. Error bars represent statistical errors only. (b) Ratio of σT + εLσL for the two
kinematics as a function of tmin − t. The fit of this ratio (dashed line) indicates the W -dependence
of the cross section.
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Figure 5.4: σTL (a), σTT (b) and σTL′ (c) H(e, e′π0)p cross-section components as a function of
tmin − t for the two xBj-values. KinX2 is represented by the open circles, and KinX3 by the solid
circles. Error bars represent statistical errors only. The bands (light for KinX2 and dark for KinX3)
are explained in the text. Refer to Table 5.5 for more detailed cross-section values, statistical and
systematic errors.

5.4, and in Tables 5.6 and 5.7. Their reduced χ2 are below 1, indicating a good agreement
for our data. This confirms that there is no t-dependence beyond the angular dependence
of the hadronic tensor for the φπ-dependent components of the cross section.

The cross sections values plotted in all these figures are available in Tables 5.4 and 5.5
(Appendix 1), together with . All these results are cross-checked in section 4.6.

5.1.2 Q2- and W - dependences of the cross section

We investigate the dependences of the cross sections on Q2 and W , in order to compare
them to QCD predictions at leading twist in GPD framework. To estimate the Q2(W )-
dependence, the ratio of σT + εLσL for Kin2 and Kin3 (KinX2 and KinX3) is plotted as
a function of tmin − t (see bottom panels of Figs. 5.1 and 5.3). This ratio is fitted by
a constant. If the fit is reasonable (i.e. reduced χ2 below or around 1), then it means
that the ratio is independent of t. If so, the average value obtained from the fit which is
then compared to the ratio of Q2(W ) for Kin2 and Kin3 (KinX2 and KinX3) raised to
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the power n
σT + εLσL|Kin(X)3

σT + εLσL|Kin(X)2

=

(
Q2(W )|Kin(X)3

Q2(W )|Kin(X)2

)n

. (5.2)

at the W - and Q2- values for the two kinematics.

The dependences of σT +εLσL in bottom panels of Figs. 5.1 and 5.3 yields the following
conclusions:

� [σT + εLσL]Kin3/[σT + εLσL]Kin2 is flat in tmin − t with a reduced χ2 < 1. The ratio
is found to be 0.633 ± 0.009, indicating a Q2-dependence of the total cross section
of about 1/Q4.5;

� [σT + εLσL]KinX3/[σT + εLσL]KinX2 is also flat in tmin − t with a reduced χ2 < 1.
This ratio is found to be 0.660±0.015, indicating a W -dependence of the total cross
section of about 1/W 3.5.

The Q2- and W -dependences of the relevant quantities (σT , {Wxx + Wyy}/2 + εLWzz, σT ,
and σL, with VGG conventions) have been summarized in Table 5.1. The Q2- and W -

Quantity Q2-dependence W -dependence
σT + εLσL (Q2)−2.39±0.08 (W )−3.48±0.11

Wxx+Wyy

2
+ εLWzz (Q2)−1.26±0.08 (W )−1.58±0.20

σL (VGG) (Q2)−1.50±0.08 (W )1.28±2.52

Table 5.1: Q2- and W -dependences for the total cross section, the total hadronic tensor,
and the longitudional cross section with VGG conventions. For σL, the dependences have
been evaluated neglecting σT . The Q2- and W -dependences of σT alone (i.e. assuming
σL = 0) are the same as the Q2- and W -dependences of σT + εLσL.

dependences for the cross sections are rather low. The Q2-dependence of the total cross
section is similar to the Hall C π+ transverse electroproduction cross section [15]. The
dependences of σL are obtained within s-channel helicity conservation (implying σT ¿ σL)
which is most likely improbable. This, and other issues about the data will be discussed
in the following section.

5.2 Discussion

In this section, I discuss the physics underlying our data. Particularly, I attempt to give
a satisfying description of our data within one of the models presented in Chapter 1.

Over the studied tmin − t range, the rΛ values from Equations (4.20) and (4.21) are
constant within errors, as evidenced by the fits in Figs. 5.2 and 5.4. This means that
there is no supplementary contribution to the cross sections amplitudes beyond the leading
angular dependences given by the phase space. Also, the total cross section σT + εLσL

shows an almost flat behavior.
The Q2-dependence of σT + εLσL is similar to the Hall C π+ transverse electroproduc-

tion cross section [15]. In addition to that, neutral pion has no charge and no spin, so the
virtual photon cannot couple directly to a π0 from the pion cloud. Thus, in contrast with
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charged pion electroproduction, where the pion pole contribution to σL is a significant
channel, the total cross section for ep → epπ0 might be dominated by σT .

In addition to these remarks, we are interested in confronting our data and several
models of neutral pion production. The cross section will be compared to Regge-based
calculations from J. M. Laget [89] (section 1.3). The Q2-dependence will be compared
with QCD predictions in the GPD framework (section 1.4) Finally, we attempt on an
interpretation of our data within semi-inclusive formalism (section 1.5).

5.2.1 Confrontation with Regge calculations

The latest development of Regge-inspired model is essentially due to J. M. Laget, M.
Vanderhaeghen, and M. Guidal. This model is known as VGL. The description of this
model is available in [19, 20].

The new feature of this model, compared to previous ones is the implementation of
gauge invariance for the t-channel exchange. The t-channel pion diagram is indeed not
gauge invariant by itself. Gauge invariance is obtained by reggeizing the s-channel (or
u-channel) nucleon exchange (Fig. 1.5) the same way the t-channel has been reggeized.
We multiply the s(u)-channel amplitude by Pπ

Regge× (t−m2
π). The reggeized s(u)-channel

diagram and t-channel diagrams together satisfy gauge invariance.
This model takes advantage of previous Regge analysis of photoproduction data to

fix propagator trajectories and coupling constants at vertices. This gives to the model a
predictive property.

On another side, a further development of this model has been done to express charged
pion electroproduction cross sections as a function of form factors with Regge trajectories
instead of Born term [18]. That model allows then to optimize the charged pion form
factor extraction (see sub-section 1.2.2).

J. M. Laget proposes a modelization for π0 electroproduction, derived from VGL.
This modelization includes the ω, the ρ0 and the b1 pole trajectories (Fig. 5.5 a). As
well as Goldstein and Owens [30] it includes π0 rescattering amplitudes (Fig. 5.5 b). It
even includes several inelastic rescattering terms, such as charged pion rescattering with
charge exchange (Fig. 5.5 c).

p

*γ *γ *γ

p p

0π 0π 0π
0π

P1
, bρ, ω ω ρ, π ρ

π

(a) (b) (c)

Figure 5.5: Diagrams of neutral pion production in J. M. Laget model: (a) is the pole trajectories
term, (b) is the elastic rescattering term, and (c) is the inelastic rescattering term.
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The results of these calculations are available on Fig. 5.6. Only considering charged

Figure 5.6: Computations of Jean Marc Laget [89] for π0 electroproduction. The data are from
[31]. In the lower right panel is the prediction for our data within [89] framework.

pion rescattering in inelastic rescattering term, the model by J. M. Laget is able to
describe low Q2 electroproduction cross section data from DESY [31] (see Fig. 5.6), and
π0 beam spin asymmetries at 1.5 < Q2(GeV)2 < 3 and 2 < W (GeV) < 3 from JLab
Hall B [90]. Similar computations have been done with this model for π+ data from Hall
C [14, 15], including the pion pole. These data are π+ electroproduction cross sections
at Q2 = 1.60 and 2.45 GeV2 for [14] (resp. Q2 = 2.15 and 3.90 GeV2 for [15]) with a
transverse-longitudinal separation. The model successfully describe the longitudinal cross
section. The transverse cross section however cannot be described by the model including
only pion rescattering.

The t-channel Meson Exchange (TME) model calculations by J. M. Laget for Kin3
are shown alone on Fig. 5.6. On the one hand, the TME calculation for the total cross
section (Figs. 5.6 and 5.1) shows a dip at t = tmin, and at tmin − t = 0.2 GeV2, the
total cross section is about 0.05 µb ·GeV−2. On the other hand, the total cross section is
about 0.4 µb ·GeV−2 over all the tmin− t range. This makes a disagreement by at least a
factor 10 between our data and the TME model calculation, as well as a disagreement in
shape. One should note however that this model fairly describes π0 beam spin asymme-
tries published by R. De Masi for Hall B [90], which is in agreement with the beam spin
asymmetry we can compute thanks to σTL′ .

A further improvement of this model [89] is the consideration of ρ+ rescattering. It
used to be considered as negligible for photoproduction and low Q2 data. At larger Q2,
the ρ electroproduction cross section is high enough to give a non negligible contribution
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at Q2 > 1 GeV2, without influencing data at low Q2.
This t-channel meson exchange model only includes ω and ρ0 channels, plus charged

pion rescattering with charge exchange. Another more recent calculation by J. M. Laget
includes charged ρ production, including nucleon and ∆ resonances (ρ+∆0 and ρ−∆++) in
the intermediate state [89]. The addition of these channels greatly improves the agreement
of the model to our data (see Fig. 5.7). This improvement of the t-channel meson exchange
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Figure 5.7: New calculations, at Kin2 (left panels) and Kin3 (right panels) of the t-channel meson
exchange model. Dashed lines: pole contributions and Pomeron cut alone. Dash-dotted lines:
without ρ∆ cuts. Full lines: ρ∆ cuts included.

model has been made possible thanks to measurements of ρ+ electroproduction by Fradi
et al. [91]. This new model of π0 electroproduction reproduces fairly well σT + εLσL

and σTL′ . Note however that if the agreement with σT + εLσL is greatly improved, there
remains a point of disagreement concerning the sign of σTL, and the magnitude of σT T .

5.2.2 Confrontation with GPD predictions

To test whether our data are compatible with GPDs predictions, we compare the Q2-
dependences of the measured cross sections to the GPD predictions at the asymptotic
limit, which are 1/Q6 for σL (within [34, 35] conventions) and 1/Q8 for σT . Table 5.1
lists the Q2 dependences for the σT + εLσL and σL within the conventions of [34, 35].
Within these conventions, the longitudinal cross section we extracted (assuming we could
neglect σT , which is very unlikely) would depend on (Q2)−1.50, which disagrees by more
than one power with the asymptotic (Q2)−3 dependence. The transverse cross section
is also in disagreement by more than one power ((Q2)−2.39 instead of (Q2)−4) with the
Q2-dependence in the Bjorken regime (Q2 →∞ and t/s → 0). This is a strong proof that
we are far from the QCD leading twist prediction.
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5.2.3 Interpretation within semi-inclusive framework

The description of the transverse cross sections σT of exclusive processes with inclusive
formalism is possible, within high intrinsic transverse momenta of partons, or, which is
equivalent, a high transfer of transverse momentum during the quark hadronization. The
work of Kaskulov, Gallmeister and Mosel [92] could be a beginning for a SIDIS-based
formalism dedicated to the description of exclusive data.

The starting point of the Kaskulov Gallmeister Mosel model is the work of Horn
et al. [14, 15]. They published ep → enπ+ cross sections with transverse-longitudinal
separation, at Q2 = 1.60 and 2.45 GeV2 [14] and Q2 = 2.15 and 3.90 GeV2 [15], in the
valence region (xBj ' 0.3), and above the resonance region (W > 2 GeV). As we evoked
in sub-section 5.2.1, Regge based models such as VGL [19, 20, 18] describe really well
the longitudinal cross section. In contrast with this, the Regge predictions given by the
previously cited models disagree by more than one order of magnitude with the measured
transverse cross section, and this disagreement increases with Q2.

The exclusive π+ total cross section calculations by Kaskulov, Gallmeister and Mosel
(KGM) (shown on Fig. 5.8) combines independent recalculation with a Regge model
(red curves on Fig. 5.8) using similar theoretical VGL ingredients (refer to sub-section
5.2.1) for σL on the one hand; and estimation of inclusively produced pions in the forward
direction for σT on the other hand. This is on the latter item we wish to insist on in this
sub-section.

Figure 5.8: longitudinal (upper panels) and transverse (lower panels) cross sections by Horn et al..
The red curves are the Regge calculations by Kaskulov, Gallmeister, Mosel. The discontinuities are
due to the slight differences of kinematics from one t bin to the other. The green histograms on
lower panels are the calculations of the inclusive model by Kaskulov, Gallmeister, Mosel, using the

optimized value parameter
√
〈k2

q⊥〉 = 1.2 GeV. The dashed histogram in lower left panel is the same

calculation at
√
〈k2

q⊥〉 = 0.4 GeV.

The model of transverse pion production is directly inspired by the model of the SIDIS
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process (see 1.5):

� the virtual photon strikes a quark with an intrinsic transverse momentum kq⊥;

� this excited quark tries to escape the nucleon, but is retained by the color interaction;

� this interaction increases with the distance of the quark from the relic nucleon (or
di-quark), but the gluons carrying this interaction remain confined in a tube, the
so-called “color string”;

� at “medium” distance this string breaks, the quark hadronizes in the required
hadron;

� in contrast with a classic DIS process, where the string breaks in several other
hadrons and/or destroys the di-quark, the breaking of the string only hadronizes
the single quark into the measured hadron, and the di-quark into the recoil nucleon.

The process described is schematized on Fig. 5.9. This model corresponds to the so-

k
k’

q
)+πq’ (

p’ (n)n

Figure 5.9: Diagram of exclusive electroproduction of π+ according to the Lund model. Note
the blue curly line does not represent a gluon, but the color string. The black blob represents the
breaking of this string.

called Lund model, which describes quark hadronization in terms of color strings breaking
(fragmentation). The Lund model is explained in extensive detail in [48].

To implement these calculations, KGM uses the framework of PYTHIA/JETSET.
These two tools are usually employed to generate high energy proton-proton collisions in
hadron colliders, such as the TeVatron or the LHC. In that case, PYTHIA simulates the
parton-parton interaction. It includes common parton distributions, and a parton intrin-

sic transverse momentum gaussian distribution, which deviation
√
〈k2

q⊥〉 can be tuned.

JETSET simulates the quark fragmentations in jets. It includes common fragmentation
distributions. Thus, PYTHIA has been used for electron-proton interaction, and JETSET
for the hadronization of the quark and the di-quark in a π+ and a neutron respectively.
They started from the default configuration of PYTHIA/JETSET, and tuned only the

intrinsic transverse momentum gaussian distribution deviation
√
〈k2

q⊥〉. The best descrip-

tion of the data is obtained for
√
〈k2

q⊥〉 = 1.2 GeV (green histograms on Fig. 5.8). This
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value is fairly higher than the default value, which is about 0.25 GeV. A lower value for√
〈k2

q⊥〉 (e.g. by the authors 0.4 GeV) increases the cross section at forward angles and

the cross section slope (dashed histogram on Fig. 5.8). The necessity of such a high
transverse momentum for partons may actually come from the hadronization, since the
fragmentation functions do not scale at high z values.

This model allows to formulate some hope for an interpretation of exclusive data within
a semi inclusive framework. The Q2-dependence of the measured ep → epπ0 cross section
is similar to the Q2-dependence of the Hall C ep → enπ+ transverse cross section which
has been successfully described by the model presented above. Moreover, as we pointed
out at the beginning of this section, the transverse current is likely to dominate the cross
section. For these reasons, we consider our data within the context of Semi-Inclusive Deep
Inelastic Scattering (SIDIS).

In the exclusive regime (z → 1), we do not have a reliable parameterization of Dh
q (z).

This is the reason why we cannot compare directly the cross sections. The idea to perform
our analogy then is to compare the relative value of the Cahn effect (cos φ term in Equation
(1.56)) to the total cross section. The relative ratio of these two quantities is given by
[51]:

4(2− y)
√

1− yz〈k2
q⊥〉q′T

〈q′2T 〉
√

Q2
× 1

(1 + (1− y)2)
. (5.3)

This quantity is compared to the experimental ratio (
√

2εL(1 + ε)σTL)/(σT +εLσL) at the
two kinematic points Kin2 and Kin3, and at each tmin − t value. In Equation (5.3), the
only quantities that are not kinematically constraints are 〈k2

q⊥〉 and 〈q′2T 〉, or equivalently
〈k2

q⊥〉 and 〈q′2⊥〉, since 〈q′2T 〉 = 〈q′2⊥〉+ z2〈k2
q⊥〉. With this last relation, we rewrite Equation

(5.3) as:
4(2− y)

√
1− yzπq

′
T( 〈q′2⊥〉

〈k2
q⊥〉

+ z2
) √

Q2(1 + (1− y)2)
(5.4)

The adjustment of this relation to our data only requires the variation of 〈q′2⊥〉/〈k2
q⊥〉. This

adjustment is shown on Fig. 5.10. The reduced χ2 of these fits are 2.12 for Kin3 and 2.65
for Kin2. Two conclusions arise from this figure:

� the minus sign affecting the cos φπ term in the SIDIS model is in agreement with
the σTL;

� 〈q′2⊥〉 must be equal to ∼ 5.0× 〈k2
q⊥〉 to reproduce the data.

In other words, the data is compatible with the Cahn effect if ∼ 5.0× 〈k2
q⊥〉.

The authors of [51] adjusted their model to semi-inclusive data from the EMC collab-
oration [93]. They give 〈k2

q⊥〉 = 0.25 GeV2 and 〈q2
⊥〉 = 0.20 GeV2, which gives a ratio

〈q′2⊥〉/〈k2
q⊥〉 ∼ 0.8. Their fits are shown in Fig. 5.11. Note on this figure that the lower

the z, the better the agreement between model and data. This may explain the difference
between their adjustment and ours. They extracted these values on data with high mul-
tiplicity of particles, whereas the multiplicity of particles is unity for our data.

Our data are consistent with an exclusive limit of SIDIS if 〈q′2⊥〉/〈k2
q⊥〉 is around 5.0

at zh > 0.9. The exclusive limit of SIDIS could be defined by a SIDIS-inspired model
applicable to data at z → 1.0 or, more practically, when the measured hadron carries such
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Figure 5.10: Ratio

√
2εL(1+ε)σTL

σT +εLσL
for Kin2 (open circles) and Kin3 (solid circles) plotted as a function

of q′T . The error are statistical only. Each kinematics is fitted by the model by Anselmino et al. in
[51].

Figure 5.11: Fit of the data from [93] by the model of Anselmino et al. [51]. Data are plotted as a
function of q′2T (noted P 2

T here) and integrated over three ranges in z (noted zh here): 0.1 < z < 0.2,
0.2 < z < 0.4, and 0.4 < z < 1.0. The bands represents variations of ± 20 % for 〈k2

q⊥〉 and 〈q2
⊥〉.

a large fraction z of the total energy of the reaction that it does not allow the production
of another particle.

We can compare this data within SIDIS interpretation to the π+ cross section data
published by T. Horn for Hall C collaboration and the work of Kaskulov, Gallmeister
and Mosel. It is reasonable to think our longitudinal cross section could be described by
Regge calculations, or be compatible with leading twist QCD scaling.

Kaskulov et al. reproduced transverse π+ cross section from Hall C using jet fragmen-
tation model, and adjusting the slope parameter of the quark transverse momentum dis-
tribution 〈k2

q⊥〉 (Chapter 1.5 for definitions), neglecting the transverse momentum transfer
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occuring during the 〈q′2⊥〉 (that means 〈k2
q⊥〉 is actually the slope parameter for the trans-

verse momentum of the measured hadron). We recall that they found this parameter to
be 〈k2

q⊥〉 = 1.44 GeV2. If we consider our model, where 〈q′2⊥〉/〈k2
q⊥〉 ∼ 3.0, and we choose

the slope parameter of the quark transverse momentum distribution to be the one given
in [51], we get a slope parameter for the measured transverse momentum of the hadron
〈q′2T 〉 ∼ 1.0 GeV2, which is roughly consistent with the work of Kaskulov et al..

Let us summarize on the interpretation of our data:

� the GPD model is very wrong to describe σT + εLσL;

� the data are consistent with the Cahn effect proper to SIDIS, but we do not have a
description of the cross section by a semi-inclusive formalism;

� the Regge model can predict σT + εLσL but struggles with σTL and σTT .

Another experiment with complete Rosenbluth separation needs to be performed for a bet-
ter description of the data. This would improve our knowledge on of σL, and help to deter-
mine the reliability of a description in the GPD framework. Moreover, a transverse longi-
tudinal separation would make PYTHIA/JETSET calculations by Kaskulov/Gallmeister/Mosel
easier to apply to π0 [94].
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Conclusions

The DVCS/π0 experiment at Jefferson Lab, Hall A successfully provided accurate cross
section results for π0 production [95] and for DVCS [36], in spite of a high-radiation
environment, due to high luminosities (∼ 1037 cm−2s−1), and small detection angles. This
is a combined tribute to the HRS and the calorimeter. The left HRS allows to reconstruct
an electron with a precision of 10−3 in position/direction, and to the 10−4 in momentum.
It also reconstructs the vertex within ∼ 2 mm for our settings. The calorimeter allows
the reconstruction of the photon energy with a resolution of 5%/

√
E at 4.2 GeV, and the

photon position in the calorimeter at the 2 mm level. This allows to achieve, for π0 total
cross section σT + εLσL statistical accuracies of 2.5 % for Kin2 and Kin3 and of 5 % level
for KinX2 and KinX3. The accurate instruments on the beam line and in the detector
package of the HRS combined with our cut optimization give systematic errors up to 10
% for the total cross sections for all considered kinematics.

The π0 cross sections were rather difficult to interpret clearly. Let us review, among
the models confronted to the data, which ones are able to describe these data:

� we are far from the Bjorken regime and the data do not obey to QCD leading twist
behavior.

� on the one hand, the t-channel meson exchange model of J. M. Laget only including ω
and π+ completely failed to reproduce the data. On the other hand, the description
of the data by the t-channel meson exchange model including all channels involving
ρ± is in fair agreement with the data at Kin3;

� the attempt of interpretation of the π0 data with a semi-inclusive formalism is
compatible with the Cahn effect.

Actually, the latter interpretation is not even completely satisfying from a theoretical
point of view. The problem with the SIDIS interpretation model comes from the scaling
violation of the fragmentation functions at low multiplicity/high z. Thus, it is hard to
give a reliable and accurate estimation of the unpolarized TMD with huge systematic
errors on the fragmentation function.

A better understanding of our data would require a measurement of σL independent of
σT . For this, a complete Rosenbluth separation is required. This is why a new DVCS/π0

experiment has been planned in Hall A. This experiment has many features in common
with the last one:

� the studied kinematic range will be the same, and we keep the same settings. There
will be several beam energies: the maximal energy at 5 passes (hopefully the same
energy or above compared to last DVCS experiment) and the beam at 4 passes. A
3 pass beam is also planned for a Q2 = 1.5 GeV2 kinematic point;
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� the detector package of the HRS and the beam line will be the same. However,
independently of this experiment, an upgrade of the Compton polarimeter has been
performed;

� the layout for the calorimeter will remain the same. To protect the most exposed
blocks of the calorimeter from the noise, a shielding has been developed. This
shielding includes a thickness of polyethylene in front of the calorimeter, plus a
beveled edge made out of tungsten to protect the first block row of the calorimeter
from the hot radiation spots in the scattering chamber and the beam line;

� the calorimeter has been upgraded from 132 (12×11) blocks to 208 (16×13) blocks,
in order to improve its acceptence, mostly for π0. Otherwise, the specifications as
well as the block design are the same. The ARS have been kept for the readout;

� several changes are applied to the trigger. First, the calorimeter event selection has
been changed. The “four-block cluster” threshold is too tight for π0, particularly
for Kin 1. The next calorimeter trigger would rather consider the global energy
deposit in the calorimeter, which would improve the statistics for Kin1, and allow
to extract π0 cross sections at this kinematic point. Secondly, the trigger has been
upgraded with a FIFO (First In First Out) device, in order to stock events which
have to be read-out meanwhile the DAQ can be reset to enable. This would greatly
reduce the effect of the dead time (hopefully by up to a factor of 10). Finally, and
to improve the consideration of the background noise, a random trigger has been
developed. This trigger will register background at random positions and random
times. It will be possible then to use these “background” data for studies. The price
to pay for these improvements will be a huge volume of data;

� the proton array, which was not fully useful for π0 or for DVCS analysis, has simply
been given up. In both analysis, the resolution on missing mass squared is good
enough for exclusive events selection.

During the time this document is been written, the upgrade is implemented by my
collaborators and myself. The main requirements are the increase of the number of chan-
nels of the calorimeter. One hundred new PbF2 blocks have been ordered from SICCAS.
These blocks have been tested for radiations damages. New Hamamatsu R7877 PMTs
have been purchased for the supplementary channels, and to replace the ones which died
because of the two high anode current due to noise at the end of the previous experiment.
The new blocks are being wrapped and assembled. This required the manufacturing of
new brass assemblies. The wrapping/assembling of the old blocks has to be renewed. The
number of channels actually did not increase, and was even reduced (132+125 before vs
208 now), so the ordering of cables were necessary only to replace the broken ones. The
calorimeter stand is being renovated and the shielding is being manufactured.

At the same time, the analysis codes are being actualized. Several calibrations methods
have been developed for the calorimeter.

The measurements provided by this new experiment would hopefully be at the same
precision level. These new data, put in parallel with the old ones, and, hopefully, with
Hall B π0 cross section which are still under analysis, may lead to a better understanding
of the data presented in this document.
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Appendix 1: Tables of kinematics
and results for H(e, e′π0)p cross
sections

These are the tables for π0 electroproduction cross sections shown in Figures 5.1, 5.2,
5.3, 5.4 and 5.10 in Chapter 5. The actual kinematics are summarized in Table 5.2 for
quantities independent of the (tmin − t) bin and in Table 5.3 for quantities depending of
the (tmin − t) bin. The cross section are displayed in Tables 5.4 (Kin2 and Kin3) and
5.5 (KinX2 and KinX3). The parameterizations of the φπ-dependent components of the
hadronic tensor are displayed in Tables 5.6 (Kin2 and Kin3) and 5.7 (KinX2 and KinX3).

Q2 dependence xBj dependence
Kin3 Kin2 KinX3 KinX2

Nπ0 15516 23429 5952 9860
NGen 2.14× 109 2.14× 109∫ Ldt 5.10× 109 nb−1 2.99× 109 nb−1

Q2 (GeV2) 2.350± 0.002 1.941± 0.010 2.155± 0.268 2.073± 0.001
xBj 0.368± 0.001 0.368± 0.005 0.335± 0.045 0.394± 0.003
W (GeV) 2.217± 0.004 2.055± 0.012 2.272± 0.072 2.016± 0.008
tmin (GeV2) −0.173± 0.001 −0.170± 0.005 −0.137± 0.048 −0.199± 0.003
ε 0.649± 0.002 0.769± 0.003 0.648± 0.001 0.768± 0.003
E0 (GeV) 5.752± 0.001 5.753± 0.001 5.752± 0.001 5.753± 0.001
E ′ (GeV) 2.348± 0.007 2.937± 0.020 2.322± 0.029 2.951± 0.016
qlab (GeV) 3.734± 0.007 3.142± 0.017 3.732± 0.009 3.151± 0.014
pCM

π (GeV) 0.904± 0.002 0.806± 0.007 0.937± 0.043 0.783± 0.005
kCM

γ (GeV) 0.910± 0.002 0.813± 0.007 0.942± 0.042 0.790± 0.005

Table 5.2: Average measured kinematics for the four kinematics of the experiment. Errors are the
maximal deviation of the values in the seven tmin − t bins, compared to the averages listed.
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Q2 dependence xBj dependence
tmin − t (GeV2) sin θCM

π sin2 θCM
π tmin − t (GeV2) sin θCM

π sin2 θCM
π

Kin3 KinX3
0.0095 0.077 0.007 0.0095 0.076 0.007
0.0298 0.144 0.021 0.0297 0.143 0.020
0.0546 0.194 0.038 0.0545 0.193 0.037
0.0843 0.241 0.058 0.0843 0.240 0.058
0.1188 0.285 0.081 0.1188 0.284 0.081
0.1583 0.328 0.108 0.1579 0.326 0.106
0.2063 0.372 0.139 0.2057 0.370 0.137

Kin2 KinX2
0.0094 0.085 0.008 0.0094 0.085 0.008
0.0296 0.159 0.026 0.0296 0.160 0.026
0.0540 0.215 0.046 0.0542 0.216 0.047
0.0839 0.267 0.071 0.0840 0.268 0.072
0.1179 0.315 0.099 0.1181 0.316 0.100
0.1577 0.362 0.131 0.1579 0.364 0.133
0.2050 0.410 0.168 0.2051 0.412 0.170

Table 5.3: Average for tmin − t, sin θCM
π and sin2 θCM

π
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Q2 dependence
Kin3 Kin2

xBj = 0.369, Q2 = 2.353GeV2 xBj = 0.368, Q2 = 1.940GeV2

tmin − t dσT /dt + εLdσL/dt

GeV2 nb/GeV2

0.010 377 ± 10 ± 12 571 ± 10 ± 24
0.030 381 ± 12 ± 12 600 ± 12 ± 25
0.054 403 ± 10 ± 13 641 ± 12 ± 27
0.084 425 ± 11 ± 14 673 ± 15 ± 28
0.118 418 ± 11 ± 14 645 ± 16 ± 27
0.158 395 ± 13 ± 13 636 ± 25 ± 27
0.206 384 ± 13 ± 13 628 ± 36 ± 26

dσTL/dt
0.010 -13 ± 23 ± 10 17 ± 19 ± 13
0.030 38 ± 26 ± 24 -43 ± 22 ± 12
0.054 -25 ± 22 ± 11 -23 ± 21 ± 12
0.084 -26 ± 25 ± 13 -19 ± 27 ± 14
0.118 -75 ± 24 ± 9 -103 ± 30 ± 21
0.158 -91 ± 30 ± 8 -185 ± 52 ± 43
0.206 -123 ± 31 ± 10 -189 ± 74 ± 34

dσTT /dt
0.010 -12 ± 23 ± 14 -39 ± 19 ± 7
0.030 -25 ± 27 ± 15 -110 ± 24 ± 13
0.054 -74 ± 22 ± 4 -141 ± 22 ± 17
0.084 -64 ± 25 ± 14 -174 ± 28 ± 17
0.118 -124 ± 24 ± 16 -319 ± 29 ± 23
0.158 -137 ± 29 ± 15 -352 ± 45 ± 53
0.206 -134 ± 30 ± 15 -343 ± 57 ± 68

dσTL′/dt
0.010 9 ± 49 ± 20 31 ± 51 ± 15
0.030 119 ± 55 ± 21 136 ± 61 ± 24
0.054 129 ± 46 ± 12 61 ± 56 ± 41
0.084 151 ± 51 ± 30 123 ± 68 ± 20
0.118 153 ± 47 ± 17 120 ± 69 ± 24
0.158 87 ± 54 ± 23 142 ± 91 ± 36
0.206 127 ± 51 ± 15 76 ± 99 ± 80

Table 5.4: Separated cross section values from Equation (5.1) (first value) together with statistic
errors (second value) and systematic errors (third value) for each of the seven considered bins.
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xBj dependence
Kin3 Kin2

xBj = 0.335, Q2 = 2.155GeV2 xBj = 0.394, Q2 = 2.072GeV2

tmin − t dσT /dt + εLdσL/dt

GeV2 nb/GeV2

0.010 439 ± 19 ± 14 635 ± 17 ± 26
0.030 437 ± 22 ± 14 703 ± 21 ± 29
0.054 457 ± 18 ± 15 683 ± 19 ± 28
0.084 442 ± 21 ± 14 688 ± 23 ± 29
0.118 466 ± 22 ± 15 682 ± 23 ± 28
0.158 407 ± 29 ± 13 662 ± 34 ± 28
0.205 406 ± 34 ± 13 591 ± 44 ± 25

dσTL/dt
0.010 20 ± 46 ± 38 -26 ± 30 ± 22
0.030 2 ± 50 ± 17 -100 ± 37 ± 61
0.054 -28 ± 43 ± 15 -88 ± 32 ± 54
0.084 -37 ± 50 ± 19 -68 ± 38 ± 487
0.118 -74 ± 55 ± 27 -170 ± 40 ± 562
0.158 -188 ± 80 ± 27 -155 ± 63 ± 657
0.205 -174 ± 90 ± 32 -228 ± 82 ± 738

dσTT /dt
0.010 -16 ± 44 ± 16 -63 ± 33 ± 18
0.030 -44 ± 50 ± 32 -83 ± 41 ± 22
0.054 -63 ± 42 ± 15 -153 ± 36 ± 24
0.084 -114 ± 47 ± 8 -186 ± 43 ± 78
0.118 -156 ± 50 ± 18 -327 ± 44 ± 109
0.158 -244 ± 66 ± 35 -247 ± 65 ± 141
0.205 -124 ± 69 ± 42 -444 ± 82 ± 183

dσTL′/dt
0.010 68 ± 97 ± 35 -23 ± 84 ± 138
0.030 12 ± 109 ± 39 112 ± 100 ± 104
0.054 236 ± 88 ± 19 50 ± 90 ± 63
0.084 126 ± 99 ± 26 211 ± 104 ± 95
0.118 119 ± 93 ± 22 3 ± 106 ± 111
0.158 246 ± 106 ± 89 78 ± 136 ± 126
0.205 177 ± 104 ± 30 62 ± 146 ± 146

Table 5.5: Separated cross section values from Equation (5.1) (first value) together with statistic
errors (second value) and systematic errors (third value) for each of the first seven bins in tmin − t
for 1.95 GeV2 < Q2 < 2.25 GeV2.
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Q2 dependence
Kin3 xBj = 0.368, Q2 = 2.350 (GeV2)

Wxx−Wyy

2
= [−562± 62± 32]× sin2 θCM

h cos 2Φh nb
<e(Wxz) = [97± 18± 8]× sin θCM

h cos Φh nb
=m(Wxz) = [−206± 35± 13]× sin θCM

h sin Φh nb
Kin2 xBj = 0.368, Q2 = 1.941 (GeV2)

Wxx−Wyy

2
= [−1024± 58± 51]× sin2 θCM

h cos 2Φh nb
<e(Wxz) = [82± 17± 11]× sin θCM

h cos Φh nb
=m(Wxz) = [−142± 38± 19]× sin θCM

h sin Φh nb

Table 5.6: Φh-dependent hadronic tensor parameterization for constant xBj . The first error is
statistics, the second is systematics.

xBj dependence
KinX3 xBj = 0.335, Q2 = 2.155 (GeV2)

Wxx−Wyy

2
= [−770± 135± 63]× sin2 θCM

h cos 2Φh nb
<e(Wxz) = [121± 43± 17]× sin θCM

h cos Φh nb
=m(Wxz) = [−278± 69± 28]× sin θCM

h sin Φh nb
KinX2 xBj = 0.394, Q2 = 2.073 (GeV2)

Wxx−Wyy

2
= [−1003± 86± 153]× sin2 θCM

h cos 2Φh nb
<e(Wxz) = [163± 24± 72]× sin θCM

h cos Φh nb
=m(Wxz) = [−101± 58± 55]× sin θCM

h sin Φh nb

Table 5.7: Φh-dependent hadronic tensor parameterization for constant Q2. The first error is
statistics, the second is systematics.
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Appendix 2: DVMP beyond 6 GeV:
Deep φ(1020) electroproduction at
JLab 12 GeV.

On the side of π0 electroproduction analysis, I worked on a proposal for a ep → epφ(1020)
experiment for Hall A for the JLab upgrade at 12 GeV. This experiment is expected to
give very interesting information on the proton structure, and particularly on the gluon
content in the valence region (xBj > 0.1). For several experimental reasons, the ep → epφ
reaction will only be observed through the φ decay channel φ → K+K−. The K+K−

pair will be detected in the Super BigBite Spectrometer, a large acceptance spectrometer
which is under development for Hall A.

This supplementary chapter deals about the letter of intent for φ(1020) electropro-
duction at JLab 12 GeV which has been submitted to the Program Advisory Committee
this year [96]. First, I expose the physics motivations for such an experiment. The exper-
imental setup is described. The simulation of the ep → epφ in the apparatus is detailed,
and the counting rate is provided. The analysis method to obtain the projected results
is described, and the results and error bars are provided. Finally, I conclude on the faisi-
bility of the Deep φ(1020) electroproduction experiment, and I give further prospects to
improve it.

Physics motivations

Understanding the gluonic structure of matter is a vital challenge in hadronic physics. In
particular, the spatial distribution is almost completely unknown. Measurements of the
GPDs of quarks and gluons will allow us to construct the matter distribution of the proton.
Exclusive electroproduction of the φ-meson is an essential probe of the gluon GPDs of
the proton. The high luminosity capability of Hall A allows to obtain high precision
differential cross sections measurements at the highest possible Q2 for xBj fixed. The
absolute cross sections will test models of the hard scattering amplitude. the t-dependence
of the cross sections (more specifically the ∆2

⊥) measures the spatial distribution of gluons
in the target, with calculable corrections from the finite size effects in the hard scattering
kernel.

The forward parton distribution are illustrated in Figure 5.12. The momentum sum
rule of quarks demonstrated that roughly half the proton momentum is carried by the
gluons. For instance, in the MRST2002 NNLO analysis [97], the gluon sum rule is:

∫ 1

0

dx[xg(x)] = 0.35 at Q2
0 = 1 GeV2. (5.5)
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Figure 5.12: CTEQ parameterization of PDFs at Q2 = 5 GeV2. Note the gluon PDF at large xBj

is comparable to the down quark PDF, thus much larger than strange quark PDF.

Even more interesting is that 60 % of this integral is obtained is obtained for x > 0.15.
Thus gluons at large x are a very important and little studied part of the proton structure.

We recall the role of gluons in vector meson electroproduction. The factorization
theorem and its consequences are explicited. The existing data are reviewed and their
consequences on the factorization theorem applicability are discussed.

Gluons and vector mesons

Gluon GPDs contribute only to the diffractive channels that have vacuum quantum num-
ber in the t-channel, i.e. eN → eNγ and eN → eNV 0, V 0 ∈ ρ0, ω, φ, J/Ψ, . . . In
general, deep virtual φ production will have contributions from both s-quark and gluon
GPDs. However, at all values of momentum fraction x, the forward gluon PDF domi-
nates over the strange quark PDF (Figure 5.12). Thus deep virtual φ production may
offer a unique window into the gluon GPDs with JLab at 12 GeV. However, this inter-
pretation will be quantitative only if theoretical models can extend the effective range of
factorization down to Q2 ∼ 4 GeV2.

The cross section for ep → epφ with φ → KK̄ is 8-fold differential. For example, we
choose the laboratory variables for the scattered electron (k′, cos θe, φe), t and φφ for the
φ production, and the Schilling and Wolf convention [98] for the φ → KK̄ production
variables:

� m2
KK the invariant mass squared of the kaon pair

� cos θK , φK the polar and azimuthal angles of kaon production in the φ rest frame,
with the polar axis along the φ direction.

If we assume the two kaon distribution unchanged across the resonance, then the general
cross section can be written as:

d8σep→epφ

dQ2dxBdφedtdφφdm2
KKd2ΩK

= Γρ(m2
KK)

[
dσT

dt
+ ε

dσL

dt

]
W(cos θφRF

K , φφ, φK) (5.6)

In this equation, Γ and ε are the same quantities as in the π0 cross section equation,
ρ(m2

KK) is the K+K− mass density, and W is the angular decay distribution. The two
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latter quantities are normalized to unity:
∫

d cos θφRF
K dφφdφKW(cos θφRF

K , φφ, φK) = 1 (5.7)

∫
dm2

KKρ(m2
KK) = 1 (5.8)

The general angular decay distribution depends on 24 independent density matrix ele-
ments. Its expression is given within full details in Appendix 3. Under s-channel helicity
conservation (SCHC), the angular decay distribution W simplifies enormously to depend
only on two free parameters:

W(cos θφRF
K , φφ, φK)

SCHC−→ W(cos θφRF
K , Ψ) (5.9)

with Ψ = φK − φφ (Appendix 3):

W(cos θ, Ψ, h) =
1

1 + εR

3

8π

{
sin2 θ(1 + ε cos 2Ψ) + 2ε cos2 θ

+
√

2ε(1 + ε)
√

R cos δR sin 2θ cos Ψ

+ h
√

2ε(1− ε)
√

R sin δR sin 2θ sin Ψ
}

,

(5.10)

R =
dσL

dσT

(5.11)

r04
00 =

εR

1 + εR
=

εdσL

dσT + εdσL

(5.12)

Note that the usual electroproduction interference terms have been subsummed into
cos 2Ψ, cos Ψ and sin Ψ terms respectively, each with explicit θK dependence. In the lat-
ter two terms, δ is the relative phase of the longitudinal and transverse photo-absorption
amplitude.

A measurement of the cos2 θK dependence of the differential cross section allows us to
extract the density matrix element r04

00, and hence separate the longitudinal and transverse
cross sections. The validity of SCHC is tested by measuring the size of all terms dependent
on φK + φφ which are nominally zero in SCHC.

Factorization

As we already evoked in Chapter 1.4.4, exclusive meson production processes factorize,
at sufficiently high Q2, into a hard scattering kernel convoluted with quark and gluon
generalized parton distributions [38]. This is illustrated by Figure 5.13.

The QCD factorisation theorem asserts that the longitudinal virtual photo-absorption
cross section scales as a function of Q2 at fixed xBj as

σL → |GPD|2Q6
0

Q6
as Q2 →∞. (5.13)

The cross section for photo-production of vector mesons with transversely polarized virtual
photons is predicted to be higher twist and therefore to fall more rapidly with Q2:

σT

σL

∼ 1

Q2
as Q2 →∞. (5.14)
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Figure 5.13: Factorization of the ep → epφ. We took the same conventions as for π0 production
(Chapter 1.1.1).

In addition, the hard scattering kernel of σL satisfies s-channel helicity conservation. This
means that for exclusive vector meson production by a longitudinally polarized virtual
photon the final state vector-meson is also longitudinally polarized. Thus, within SCHC,
σL can be separated from σT measuring the φ → K+K− decay angular distribution.

The longitudinal cross section has the form (see also in Chapter 1.4.4):

dσL

dt
=

1

16πQ4(1− xBj)
√

1 + 4M2x2
Bj/Q

2
|MV |2 (5.15)

The matrix elementMV is in general a sum over the helicity states of the φ-meson and the
final state proton. However, in the limit of SCHC, the φ meson has only the longitudinal
polarization state. In the colinear approximation, the leading twist longitudinal amplitude
has the form

Mφ = Mg
φ +Ms

φ (5.16)

with

Mg
φ = e

∫ 1

0

Cg
φ(x, ξ,Q2)Hg(x, ξ, ∆2

⊥) + . . . (5.17)

Cg
φ(x, ξ) =

8π

Nc

√
Q2

[
fφ

∫ 1

0

dz

z
Φφ(z)

] [
1

ξ + x

1

ξ − x− i0+

]
1

2ξ
(5.18)

where fφ = 221 MeV is the φ decay constant determined from the φ → e+e− width, Φφ is
the φ Distribution Amplitude (DA), and Hg is the gluon GPD. The matrix element Mg

φ

also has a contribution from the spin flip GPD Eg. The
√

Q2 factor in C together with the
1/Q4 kinematic factor in Equation (5.15) yields to the leading twist 1/Q6 dependence of
σL. Before examining modifications to Equation 5.18, we review the existing deep virtual
vector meson prodiuction data.

Existing data and subasymptotic factorization

The high W 2 data on exclusive photo-production of vector mesons and DVCS is summa-
rized in Figures 5.14, 5.15 and 5.16 (see also the recent review [99]). Within statistics,
the experimental results satisfy SCHC. The slope parameter b of Figure 5.16 was obtained
by fitting the data to the form

dσL

dt
=

σ0

b

(
W0

W

)
ebt. (5.19)

We draw the following conclusions to these data:
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Figure 5.14: Ratio R for coherent ρ0 production, as a function of Q2. Compilation from G. Wolf
[99]. The high statistics ZEUS data for Q2 > 10 GeV2 are consistent with a linear Q2 dependence
as predicted by the factorization theorem. In constrast to that, lower statistics H1 data suggested
that R saturates at large Q2.

Figure 5.15: Longitudinal density parameter r04
00 for coherent vector meson production as a function

of Q2, extracted from [99]. The data exhibit a universal behavior for ρ, φ and J/Ψ production,
suggesting a common reaction mechanism coupling to the gluon structure of the proton.

� The scaling behavior in Figures 5.15 and 5.16 suggest a universal hard mechanism.
A hadronic component of the photon, of transverse size proportional to 1/(Q2+M2

V ),
couples to the gluonic structure of the proton. As a consequence, the size parameter
b in Figure 5.16 can be conjectured as the sum of the transverse size of the hadronic
photon plus the rms size (approximately constant at high W 2) of the gluon density
in the proton.

� the longitudinal to transverse R, plotted in Figure 5.14 for ρ production exhibits
a linear Q2 dependence after 10 GeV2, consistent with leading twist dominance.
The longitudinal density parameter r04

00, displayed in Figure 5.15 suggests that this
behavior is universal to all vector meson channels.
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Figure 5.16: Universal scaling of the deeply virtual vector meson production as a function of
Q2 + M2

V , with MV the mass of the produced meson, extracted from [99]. The plot shows the
t-slope parameter b from the fit of Equation (5.19)

In the valence region, the universality of vector meson production will be broken by the
valence quark contributions to ρ and ω production. However, a conjecture states that
the universal gluon mechanism observed in the HERA data will continue into the valence
region for the φ and J/Ψ production. This experiment may be able to test this conjecture.

The world data for exclusive φ electroproduction at Q2 ' 3.8 GeV2 is displayed in
Figure 5.17. The CLAS data point [100] is at 〈Q2〉 = 3.4 GeV2, 〈W 〉 = 2.4 GeV, or

Figure 5.17: Deep virtual φ electroproduction at Q2 ' 3.8 GeV2. The data points in increasing
W are from CLAS, HERMES and HERA. The curve and error band is the calculation of Goloskokov
and Kroll [39, 40]. The error band reflects only the uncertainty of the forward gluon PDF.

equivalently xBj = 0.41. The success of the model of Goloskokov and Kroll [39, 40]
suggests that even at modest values of Q2, deep φ production can be described in terms
of the gluon GPD of the proton, convoluted with a sub-asymptotic hard scattering kernel.

137

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



The conclusion from the HERA data on deep virtual production of vector mesons is
that factorization is clearly observed for Q2 > 10 GeV2 within the precision of the data.
For Q2 ∼ 5 GeV2, the cross section is strongly modified from colinear factorization, but
the cross section still exhibits a universal scaling behavior. This strongly suggests that
the reaction mechanism is dominated by the perturbative exchange of two gluons, but
the γ∗g → V g hard scattering amplitude must be modified by finite size effects in impact
parameter (or equivalently finite k⊥ effects). Modifications to the colinear factorization
of deep virtual production have been discussed by numerous authors [34, 39].

As an example, Goloskokov and Kroll adopt the Modified Perturbative Approach
(MPA). They consider the intrinsic k⊥ dependence of the hard scattering γg → V g kernel
and of the leading Foch space qq̄ wave-function of the meson. In the hard scattering kernel,
they include the k⊥ dependence of the quarks propagators in Figure 5.13 and Sudakov
form factors which modify the qq̄ → φ vertex. The Sudakov form factors accounts for the
fact that a finite separation b of the ss̄ pair in the transveerse plane produces a finite
color dipole, which will radiate gluons. At high W 2, this gluon radiation will preferentially
populate multi-particle final states. The experimental selection of the exclusive channel
thereby post-selects configurations with small values of |b|. This is expressed in the
scattering amplitude via the Sudakov form factor which suppresses large separations. The
net effect of these modifications is to strongly suppress the exclusive scattering amplitude
at modest Q2, but to eventually recover the colinear result for Q2 > 10 GeV2.

Experimental setup

This section describes the experimental setup which is required for the measurement of
the H(e, e′K+K−)p. Basically, the electron will be detected in the left High Resolution
Spectrometer described in Chapter 2.4 of this thesis. The kaon pair issued from the
φ(1020) decay will be measured by the Super BigBite Spectrometer (SBS), and identified
as kaons by the Ring Imaging CHerenkov (RICH) we got from the HERMES experiment
[101]. The SBS is described and some details are given on the particle identification. I
also discuss the experimental constraints and propose relevant kinematics within these
constraints.

Kaon detection in the Super BigBite Spectrometer (SBS)

The Super BigBite Spectrometer is a large acceptance spectrometer which will be designed
for Hall A [102]. It is composed of a vertical dipole magnet (generated magnetic field
horizontal) laid on an iron yoke which defines the acceptance. Behind the yoke is located
the detector package of the SBS. As for the HRS, the detector package may have a different
composition. For our experiment, the detector package is likely to be the following:

� One or two GEM trackers; the first will be composed of 6 plans of 40 × 100 cm2

active area, the second will be composed of 4 plans of 80× 150 cm2 active area.

� Interlaced between these two trackers is located the RICH, which will likely be
upgraded to improve its spatial reconstruction.

� Behind all of that will finally be located the hadronic calorimeter.

Note that for our experiment, the SBS yoke has to be reduced of 18.5 cm on the beam
side to ensure the compatibility with the HRS. This results in the dipole operated at half
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maximum field. A projected view of the SBS and the first HRS quadrupole is available
on Figure 5.18.

Figure 5.18: SBS and Q1 of left HRS at θe = θHRS = 18.18° and θq = θSBS = 10.55°. The scales
are in meters. The yoke of the SBS magnet (in blue) is symeetric on the “regular” SBS, and the
yoke asymmetry relative to the SBS window translates the yoke reduction. The small corrector coils
along the beam line to compensate for the non-zero field in the SBS yoke are not represented.

The SBS magnet is a square dipole of 48” (∼120 cm) by 48”, with a gap of 18” (∼46
cm). The minimum distance from the target to the entrance of the SBS is dictated by
the minimum iron yoke necessary to produce zero field on the beam line. The estimated
minimum distance, perpendicular to the entrance face of the magnet, from the center of
the gap to the beam line is 43 cm. Thus the SBS angle and distance from the target are
correlated by:

D = 0.43/ tan θSBS. (5.20)

The angular acceptance of the SBS can be estimated by the geometrical aperture of
the back edge of the gap, relative to the target. Therefore, the horizontal and vertical
acceptances are, in radians:

θH = ± Gap/2

1.2 + D
= ± 0.23

1.2 + 0.43/ tan θSBS

(5.21)

θV = ± 1.2/2

1.2 + D
= ± 0.60

1.2 + 0.43/ tan θSBS

(5.22)

with all numerical values in the two latter equations in meters. The other SBS specifica-
tions are given in table 5.8. This tables provides the momentum and angular resolutions
for the “plain” SBS, and for the SBS modified for deep φ electroproduction experiment.

Particle identification

Kaon identification is achieved by the RICH detector pictured and described in Figure
5.19. This is one of the two identical HERMES RICH detectors. The particle ID perfor-
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Momentum
Range 2.0 GeV < pSBS < 10.0 GeV
Resolution σp/p = 2.9 · 10−3 + 3 · 10−4p

σ̃p/p = 5.8 · 10−3 + 6 · 10−4p
Direction

Range 3.5° < θSBS < 30°
Acceptance Equation (5.21) (Horizontal)

Equation (5.22) (Vertical)
Resolution σθ = 0.14 + 1.3[GeV]/p mrad

σ̃θ = 0.28 + 2.6[GeV]/p mrad

Table 5.8: Planned performances for Super BigBite Spectrometer. σp/p and σθ are the resolu-
tions for the original SBS project. σ̃p/p and σ̃θ are the resolutions for the SBS modified for HRS
compatibility.

Figure 5.19: The HERMES RICH detector [101]. The Aerogel tiles have an index of refraction
n = 1.0304. The space between the tiles and the mirror array is filled with C4F10, an ozone-safe
gas with index n = 1.0014 at λ = 633 nm. The acceptance area is 60× 120 cm2.

mance in the HERMES experiment is displayed in Figure 5.20. Excellent π/K separation
is achieved for the full momentum range of interest to this experiment. In HERMES, a
discriminator on each PMT channel was latched in a 100 ns trigger window. To handle
the higher luminosity, we will implement a multihit TDC readout of each PMT, with 1
ns resolution.

Experimental constraints and proposed kinematics

In the Hall A at 12 GeV, several experimental features constrains the fixing of the
kinematics. Let me list all of them, and set the kinematics which resulted from these
constraints. First, we would like to study the reaction in the inclusive regime, i.e.
W 2 = Q2(xBj − 1)/xBj + M2 > 4 GeV2. The specifications of the left spectrometer
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Figure 5.20: The HERMES RICH performance for pions, kaons and protons, as a function of their
momentum. The upper scatter plots are the Čerenkov rings from the Aerogel radiator. The bottom
scatter plots are the Čerenkov signals from the C4F10 gas. π/K separation is obtained up to a 4.5
GeV/c momentum by discriminating on the radius of the Aerogel ring. From 4.5 to 9 GeV, the π/K
separation is obtained by vetoing on the presence of the gas Čerenkov signal for pions.

limits the momentum of the scattered electron to be below 4.3 GeV. In order to maximize
the two kaon pair acceptance in the SBS, it is our interest to get the higher boost possible
for the φ. To achieve this, we have the minimize the angle and the energy of the virtual
photon, and then to maximize the angle on the scattered electron. For the same reason,
we choose to run at the highest beam energy possible, i.e. k = 11 GeV. However, we do
not want the angle of the virtual photon to be to low, to avoid the SBS to be to far from
the target. All these constraints have been summarized on Figure 5.21. Taking all these

Figure 5.21: Experimental constraints materialized in the [xBj ;Q2] plane, at beam energy k = 11
GeV.

constraints into account, the kinematics have been preliminary fixed as written down in
table 5.9. The expected counting rate one may expect for each of these kinematics is
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KIN k pHRS θSBS Q2 xBj W 2 θSBS zSBS Emax
φ tmin

# (GeV) (GeV) (deg) (GeV2) (GeV2) (deg) (m) (GeV) (GeV2)
1 11.0 4.19 18.18 4.6 0.36 9.06 10.55 2.31 6.65 -0.29
2 11.0 3.54 24.49 7.0 0.50 7.88 10.67 2.28 7.12 -0.64
3 11.0 3.38 30.04 10.0 0.70 5.17 11.86 2.05 6.50 -2.09

Table 5.9: Deeply virtual φ production kinematics with SBS and L-HRS. The first six
columns are the electron kinematics. θSBS is the central angle of the SBS, centered on the
central direction of the virtual photon. zSBS is the distance to the target. The maximal
energy of the φ, Emax

φ is obtained at the minimum momentum transfer value t = tmin.

provided and explained in the following section.

Simulation of ep → epφ in HRS⊗SBS pair

This section is devoted to the Monte Carlo simulation of the reaction ep → epφ, with
the scattered electron measured by the HRS, and with φ → K+K− and the kaon pair
measured by the SBS. This simulation has several purposes:

� model the acceptance and the resolution smearing of these two instruments, as well
as radiative effects;

� model the counting rate of ep → epφL, and also the “background”, ep → epφT and
non resonant ep → epK+K−.

I give some details on the simulation, and particularly on simulation of all experimental
effects. The model of the cross section σep→epφ

L used to estimate the counting rates is then
described, as well as the cross sections σep→epφ

T and σ(ep → epK+K−) and the relative
poderation between ep → epφ and ep → epK+K− yields. The ep → epφL counting rate
for each kinematic is also provided.

Simulation of experimental effects

I describe the simulation of the reaction H(e, e′K+K−)p with e′ in the HRS acceptance and
K+, K− in the SBS acceptance. The kaon pair may either be resonant or non resonant,
but in both case, and for practical reasons, an intermediate resonance is generated. Only
the distribution of the two kaon mass mKK differs from one case to the other.

Basically, the generation of H(e, e′K+K−)p events starts by the generation of the elec-
tron uniformly in xBj, Q2, φe. As in the H(e, e′π0)p simulation (Chapter 4.4.2), the real
radiative effects on the incident electron are treated in the radiator equivalence approxi-
mation. In contrast with π0 simulation however, both external and internal real energy
losses of the scattered electron are also treated in the radiator equivalence approximation.
The probability of an energy loss ∆kout for the scattered electron is:

Iout(k
′
v, ∆kout, tout) =

btout + δS/2

∆kout

[
∆kout

k′v

]btout+δS/2

(5.23)

with tout is the quantity of material crossed by the scattered electron in the target.
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The two kaon mass is then generated accordingly to the event type. For resonant
K+K− events, the resonance mass is generated according to a relativistic Breit-Wigner
distribution:

P (m2
KK)dm2

KK =
mφΓφ/π

(m2
KK −m2

φ)2 + m2
φΓ

2
φ

dm2
KK . (5.24)

The inversion of this relation gives:

m2
KK = mφΓφ tan [π(U − 1/2)] + m2

φ, (5.25)

with U uniform between 0 and 1. For the non resonant continuum, the mass is distribution
is given by a s-wave in the Lorentz invariant phase space:

P (m2
KK)dm2

KK =
3

2

√
m2

KK − 4m2
K

[m2
KKmax − 4m2

K ]3/2
dm2

KK , (5.26)

with mKKmax the maximal mass of the continuum, set to 1.5 GeV. The inversion of this
relation gives:

m2
KK = [m2

KKmax − 4m2
K ]U2/3 + 4m2

K , (5.27)

with U uniform between 0 and 1. In both cases, the generated mass has to respect the
condition 2mK < mKK < (W −M).

After the two kaon mass generation, t is generated uniformely between tmin and

min(tmin − 1.5(GeV2), tmax), with tmin(tmax) =
(Q2−m2

φ)2

4s
±(|qCM | − |q′CM |)2. φφ is gen-

erated uniformly in [0, 2π]. The decay φ → KK is generated uniformly in cos θK in the φ
rest frame cos θφRF

K ∈ [−1, 1], and φK ∈ [0, 2π], and boosted in the lab frame, for both res-
onant and non resonant events. The φ → KK angular distribution (Appendix 3) comes
as a ponderation.

Then, the scattered electron and the two kaons are smeared by the HRS (Table 2.1)
and the SBS (Table 5.8) resolutions, respectively. Practically the smearing of a particle
is implemented the following way:

� The particle momentum is smeared by a gaussian distribution which deviation is
the momentum resolution of the respective instrument.

� The projections of the particle direction in the horizontal and vertical planes of
the instrument are computed. Then, these projections are smeared by a gaussian
distribution which deviation is the adequate direction resolution of the respective
instrument. Finally, the three component of the particle trivector are recomputed
with these smeared projections.

Finally, the experimental (i.e. smeared) particle trivectors are matched with the
acceptances of their respective instrument (given Table 2.1 for the HRS and in Table 5.8
for the SBS).

The choice of the HRS⊗SBS pair for the measurement of the reaction H(e, e′K+, K−)p
has been initially made for several reasons:

� the relatives acceptances between the HRS (measures the electron in a very small
acceptance) and the SBS (measures the kaon pair, which has several degrees of
freedom relative to the electron) were expected to give good constraints on the
phase space;
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� the very accurate resolution of the HRS, coupled to the rather good resolution of
the SBS was expected to give good constraints on the kinematics, and particularly
on the exclusivity.

With the described simulation, one may verify that these requirements are met. Let us
review the simulation achievements in terms of acceptance and resolutions.

The acceptance achievements are shown on Figure 5.22 for KIN1. On this figure are

Figure 5.22: Left: Distribution of H(e, e′K+K−)X in the cos θφRF
K variable. The visible peak

comes from the highest kaon pair masses. Right: Distribution of H(e, e′K+K−)X the Ψ variable,
emphasizing the bounds of the SBS acceptence.

shown the distributions of the data sample H(e, e′K+K−)X (resonant plus non resonant)
in the φ → K+K− decay anglur variables, i.e. cos θφRF

K , Ψ. These variables are indeed
very useful for the separation of the different contributions to the φ → KK decay (see
Appendix 3). The acceptence is complete in both cos θφRF

K and Ψ. On the cos θφRF
K

distribution, a peak, due part of the resonant events and part to the highest mass non
resonant events, shows at cos θφRF

K → ±1. The height of this peak is just about the double
of the baseline, which is not dramatic. On the Ψ distribution the SBS bounds are well
visible, but the ratio “highest peak”/“lowest dip” is not more than 40 %.

The resolutions achievements are available on Figure 5.23. On this figure, the missing

Figure 5.23: Left: Distribution of the missing mass squared for H(e, e′K+K−)X events. Right:
Distribution of the two kaon resonant mass for H(e, e′φ → K+K−)X events. Both distributions
have been fitted with a gaussian.

mass squared distribution for H(e, e′K+K−)X events is shown on the left. This dis-
tribution has been fitted by a gaussian, which deviation is at the 0.04 GeV2 level. The
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exclusivity cut set at M2
X < (M+mπ) = 1.15GeV2 is materialized by the red line. The sep-

aration between exclusive H(e, e′K+K−)p events and H(e, e′K+K−)X, X ∈ p + nπ, ∆, ...
could then be performed in the best conditions. The two kaon mass distribution for
H(e, e′φ → K+K−)X (resonant events) is shown on the right panel of Figure 5.23. This
distribution has been fitted with a gaussian. The most remarquable feature of this fit is
paradoxally its awful reduced χ2, which demonstrates that the generated relativistic Breit
Wigner shape competes with the gaussian resolution of the reconstructed missing mass
squared. In other words, the SBS resolution (even worsened by the SBS modifications)
do not smear enough the kaon trajectories to drown the resonance mass shape under
experimental effects.

ep → epK+K− cross section, counting rate

We give here the cross section ponderation for the resonant and non resonant ep →
epK+K− processes. The resonant ep → epK+K− cross section is based on the model and
calculations by Goloskokov and Kroll [39, 40]. They provided calculations of their model
for our kinematics. Their calculations are shown on Figure 5.24. We parameterized this

Figure 5.24: Longitudinal cross section dσL/dt for ep → epφ process, as calculated by Goloskokov
and Kroll.

cross section by the following expression:

dσGK
L

dt
(Q2, xBj, tmin − t) = ce−aQ2

eb(xBj)×(t−tmin), (5.28)

with c = 5.01 · 101, a = 3.97 · 10−1, and where:

b(xBj) = d + e× ln
1

xBj

, (5.29)

with d = 3.73 and e = 7.97 · 10−1. The tranverse cross section σT is modeled directly σL:

dσT

dt
(Q2, xBj, tmin − t) =

1(
Λ2+Q2

0

Λ2+Q2

)3 ×
dσGK

L

dt
(Q2, xBj, tmin − t)×

(
Λ2 + Q2

0

Λ2 + Q2

)4

=
Λ2 + Q2

0

Λ2 + Q2

dσGK
L

dt
(Q2, xBj, tmin − t)

(5.30)
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with Q2
0 = 3.8 GeV2. This gives the ratio longitudinal/transverse cross section:

R =
Λ2 + Q2

Λ2 + Q2
0

(5.31)

Under the assumption of s-channel helicity conservation, which implies:

W(cos θφRF
K , Ψ) =

3

8π

1

r04
00

(
1− r04

00 + (3r04
00 − 1) cos θ

)
(5.32)

and given this cross section model, the eightfold differential cross section we used to
ponderate resonant events is:

d8σep→epφ

dQ2dxBdφedtdφφdm2
KKd2ΩK

=
d3Γ

dQ2dxBdφe

ρ(m2
KK)ε

dσGK
L

dt
W(cos θφRF

K , Ψ)

=
d3Γ

dQ2dxBdφe

ρ(m2
KK)

[
dσT

dt
sin2 θK + 2ε

dσL

dt
cos2 θK

]

(5.33)
where

ρ(m2
KK) =

mφ

mKK

√
m2

KK − 4m2
K√

m2
φ − 4m2

K

(5.34)

is the additionnal resonant mass density which is not included in the mass generation.
The cross section expression for non resonant events is similar to the expression in

Equation 5.33. In constrast with the resonant case, the production of the two kaons is
isotropic:

⇒W(cos θφRF
K , Ψ) = 1. (5.35)

We use the same longitudinal and transverse cross sections model, so the eightfold differ-
ential cross section for non resonant events is:

d8σep→epK+K−NR

dQ2dxBdφedtdφφdm2
KKd2ΩK

= ΓρNR(m2
KK)

[
dσT

dt
+ ε

dσGK
L

dt

]
. (5.36)

where ρNR(m2
KK)mφ/mKK .

The relative ponderation we used between resonant events and non resonant events to
build a realistic data sample is paramterezed by the respective statistics in the resonant
peak bounds, which are present in the ratio of ∼ 1 : 1 in CLAS [100].

With this model, we have access to a rough estimation of the counting rate for lon-
gitudinal φ electroproduction. The estimation method is similar to the counting rate
estimation method for elastic events (Chapter 3.3.1). The approximate counting rate N
is given by:

N =

[∫
Ldt

]
PSFHRS

NGen

NGen∑
i=1

Γiεi

[∫
dt

dσL

dt

]

i

×BRφ→KK × SBSacc, (5.37)

where PSFHRS = ∆pHRS∆Ωe, NGen is the number of generated events, BRφ→KK = 0.492
the branching ratio of the φ(1020) in two charged kaons, and SBSacc = 0.15 takes into
account the proportion of rejected events due to the SBS acceptance. The approximate
counting rate is about 4 · 104 events for KIN1, 5 · 103 events for KIN2, and 5 · 102 events
for KIN3.
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Analysis and Results for φ(1020) electroproduction

We are interested about the projected results as well as the projected error bars. We
would wish to verify whether the cross section which is extracted is consistent with the
model, and if the statistics allows accurate enough error bars. The analysis method is
quickly described and the results are exposed.

Analysis method

Similarly to π0 cross section extraction method, the analysis method for φ is based on
comparison between simulation and “data” yields. In constrast with π0 analysis however,
the φ resonance peak is flooded in the continuum (Figure 5.26). For this reason we have

Figure 5.25: Distribution of mKK for the simulation ponderated by the cross section model, for
0 < tmin − tGeV2 < 0.1. The black curve is the fit of the total yields, and the green curve is the
continuum contribution. The cut lines delimit the yield ranges we use for the analysis. More details
are available in the text.

to subtract the continuum yields from the peak. The method to subtract the continuum
is the following:

� For each tmin − t bin, the two kaon mass distribution is fitted on the range 2mK <
mKK < 1.1 GeV by a function f(mKK) = fNR(mKK) + fφ(mKK), with fφ(mKK) =
Aφ exp [−(mKK −mφ)/2σ

2
φ] and fNR(mKK) = ANR[(m2

KK−4m2
K)/(m2

φ−4m2
K)]1/2×

[(mmax −mKK)/(mmax −mφ)]
p.

� Three 0.015 GeV wide bins in mKK are defined: one centered on the peak (at 1.02
GeV), and two shifted from the peak center value by 0.0225 GeV (at 0.9975 and
1.0425 GeV). The two side bins are selected to remove the continuum from the peak.
The integral of the continuum function fit is computed in the two side bands and
in the peak window.

� The yields in the two side bands are subtracted from the yields of the peak. These
yields are weighted by the ratio of the continuum function integral of the peak
window over the the continuum function integral for the side band.

The result of this subtraction is given for the first bin in tmin − t and as a function
of cos θφRF

K in the left panel of Figure 5.26. These resonant yields are then fitted by a
combination of 3/(8π) × Γ sin2 θφRF

K and 3/(4π) × Γε cos2 θφRF
K contributions (right panel

of Figure 5.26), to evaluate σT and σL. The results are available in the next subsection.
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Figure 5.26: Left: Counts in cos θφRF
K for total yields (black), subtracted non resonant yields

(green), resonant yields (blue). Details on the fit are given in the text. Right: cos2 θφRF
K (σL, black)

and sin2 θφRF
K (σT , blue) contributions to resonant yields.

Projected results

The longitudinal φ cross section and error bars has been extracted for KIN1 with the
method described in the previous subsection. From this extraction and with the help of
the model and estimated counting rates, the longitudinal cross sections and errors bars
have been extrapolated for KIN2 and KIN3. All of these are available as a function of
tmin − t on Figure 5.27.

Figure 5.27: Projected dσL/dt results and the error bars for KIN1 (black), KIN2 (red), and KIN3
(green).

For KIN1, the analysis method gives back the model cross section shape, but the
abosulte value of the cross section is overestimated. The statistical error bars are obtained
assuming a luminosity of 1037 cm−2s−1 during one month for each kinematic. If one
assumes a total systematic error of 10 % with the present statistical errors:

� For KIN1, the statistical effects are dominant for tmin − t > 0.7 GeV2 (last bin).
The acumulatic statistics are fairly sufficiant.

� For KIN2, the statistical errors are dominant for tmin−t > 0.3 GeV2. About 6 times
more statistics would then be required for a non dominance of statistical effects for
tmin − t > 0.55 GeV2.
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� For KIN3, the statistical errors are dominant for all the tmin − t range. No amount
of statistics are recordable in a reasonable duration to balance this. This kinematic
may have to be given up then, despite its huge interest.

With σL (Figure 5.27) and σT (not showed), we are able to compute r04
00. The r04

00 we
extracted is available as a fucntion of tmin − t for KIN1 and with error bars, on Figure
5.28. On this figure, along with r04

00, an estimation of the errors on a s-channel helicity

Figure 5.28: Projected r04
00 results and the error bars for KIN1. The blue error bands are the errors

estimations for a SCHC violating term such as r5
1,−1.

conservation violating term, r5
1,−1 here, is also materialized by the blue error bands. The

r04
00 is compatible within the error bars with the model we injected in the simulation. The

errors estimation of the density matrix element r5
1,−1 are better than 0.1 in every bin, that

means the sensitivoty of SCHC violating terms is better than 10 %.

Conclusion and prospects for deep φ(1020) electropro-

duction experiment

The deeply virtual φ production experiment in Hall A at JLab 12 GeV seems to be faisible
with the help of the HRS⊗SBS pair. The acceptance is complete (Figure 5.22) and, due
to the apparatus, the resolutions in missing mass and in two kaon invariant mass are
excellent (Figure 5.23). These resolutions allow, at least at Q2, xBj not too high, an
accurate extraction of the ep → epφ longitudinal cross section.

These cross section measurements will allow to test some models of the two-gluon
exchange mechanism at relatively high Q2. High precision measurements of the tmin − t-
distributions (independent of the magnitude of the cross sections) provides a unique probe
of the spatial distribution of gluons in the valence region. The s-channel helicity conser-
vation could be tested at a level which is better than 10 %.

On the other hand, several issues could be explored to improve this work, either on
theoretical/phenomenological and experimental points of view. To refine the simulation,
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the K/π misidentification, which would be accessible through a complete GEANT4 sim-
ulation of the apparatus, and particularly of the RICH. The kinematic range would have
to be restrained to 0.3 < xBj < 0.6, in order to get reasonable statistics.

From the phenomenological point of view, the Q2 dependence at fixed xBj also be very
useful for testing models. To do this, careful studies have to be done on lower Q2, since
acceptance leaks could appear because of the lower φ boost, implying a larger aperture
of the two kaons decay in the lab frame. It would also be interesting to test the validity
of SCHC, by expanding the study of sensitivity to other SCHC violating terms. The
ultimate goal for the experiment is to test the sensitivity of the cross sections to GPDs.

150

te
l-0

05
86

09
3,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



Appendix 3: φ(1020) → K+K− decay
distributions

We develop the full expression of the angular decay distribution for φ(1020) → K+K−, in
the case of deeply virtual φ(1020) production. We use the coordinate system of Schilling
and Wolf [98]:

ẑq =
k − k′

|k − k′| , ŷq =
k ∧ k′

|k ∧ k′| , x̂q = ŷq ∧ ẑq; (5.38)

Ŷ =
q ∧ q′

|q ∧ q′| , Ẑ = ẑq, X̂q = Ŷq ∧ Ẑq; (5.39)

ẑK =
q′CM

|q′CM | , ŷK = Ŷ , x̂K = ŷK ∧ ẑK ; (5.40)

The azimuthal production angle of the φ(1020) meson, φφ = Φ (compact notation) is
defined by:

cos Φ = ŷq · Ŷ , sin Φ =

(
ŷq ∧ Ŷ

)
· Ẑ

∣∣∣ŷq ∧ Ŷ
∣∣∣

. (5.41)

The polar and azimuthal angle of the K+ in the φ1020 rest frame, θK = θ and φK = φ
(compact notations) are defined by:

cos θ =
q+ · ẑK

|q+| , sin θ cos φ =
q+ · x̂K

|q+| , sin θ sin φ =
q+ · x̂K

|q+| . (5.42)

Within these conventions, the angular decay distribution for φ(1020) → K+K− is
expressed, in the most general case:

W(cos θ, φ, Φ, h) = W(cos θ, φ, Φ) +W(h). (5.43)

which is normalized by:

∫
d cos θdφdΦdhW(cos θ, φ, Φ, h) = 1. (5.44)
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and with the helicity independent decay distribution:

W(cos θ, φ, Φ) =
3

4π

{
1

2
(1− r04

00) +
1

2
(3r04

00 − 1) cos2 θ −
√

2<e r04
10 sin 2θ cos φ− r04

1,−1 sin2 θ cos 2φ

+
√

2ε(1 + ε) cos Φ
[
r5
11 sin2 θ + r5

00 cos2 θ −
√

2<e r5
10 sin 2θ cos φ− r5

1,−1 sin2 θ cos 2φ
]

− ε cos 2Φ
[
r1
11 sin2 θ + r1

00 cos2 θ −
√

2<e r1
10 sin 2θ cos φ− r1

1,−1 sin2 θ cos 2φ
]

+
√

2ε(1 + ε) sin Φ
[√

2=mr6
10 sin 2θ sin φ−=mr6

1,−1 sin2 θ sin 2φ
]

− ε sin 2Φ
[√

2=m r2
10 sin 2θ sin φ−=mr2

1,−1 sin2 θ sin 2φ
]}

,

(5.45)
and the helicity dependent decay distribution:

W(h) =
3h

4π

{√
1− ε2

[√
2=mr2

10 sin 2θ sin φ−=mr2
1,−1 sin2 θ sin 2φ

]

+
√

2ε(1− ε) cos Φ
[√

2=mr7
10 sin 2θ sin φ−=mr7

1,−1 sin2 θ sin 2φ
]

+
√

2ε(1− ε) sin Φ
[
r8
11 sin2 θ + r8

00 cos2 θ −
√

2<e r8
10 sin 2θ cos φ− r8

1,−1 sin2 θ cos 2φ
]}

.

(5.46)
In the case where s-channel helicity conservation (SCHC) applies, the expression of

theangular decay distribution is greatly simplified. Indeed, SCHC implies all the above
constraints:

√
2<e r5

10 = =mr6
10 =

√
R cos δR; (5.47)√

2<e r8
10 = =mr7

10 =
√

R sin δR; (5.48)

r5
11 = r5

00 = r5
1,−1 = =mr7

1,−1 = <e r04
10 = 0; (5.49)

r8
11 = r8

00 = r8
1,−1 = =mr6

1,−1 = <e r3
10 = 0; (5.50)

r1
11 = r1

00 == <e r1
10 = r04

1,−1 = 0; (5.51)

r2
10 = r3

1,−1 = 0; (5.52)

r1
1,−1 = =mr2

1,−1 =
ε

2(1 + εR)
= ε(1− r04

00); (5.53)

so:
W(cos θ, φ, Φ, h)

SCHC→ W(cos θ, Ψ, h), (5.54)

with:

W(cos θ, Ψ, h) =
1

1 + εR

3

8π

{
sin2 θ(1 + ε cos 2Ψ) + 2ε cos2 θ

+
√

2ε(1 + ε)
√

R cos δR sin 2θ cos Ψ

+ h
√

2ε(1− ε)
√

R sin δR sin 2θ sin Ψ
}

(5.55)

and Ψ = φ− Φ.
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RESUMÉ

La décennie passée a vu une forte évolution de l’étude de la structure des hadrons par
les processus exclusifs, permettant d’acceder a une description plus complète de cette
structure. Les processus exclusifs incluent la diffusion Compton profondément virtuelle,
ainsi que la production exclusive de mesons à haute énergie. Ce document s’attache
particulierement a ce dernier, et plus particulièrement à la production exclusive de pions
neutres. Cette thèse décrit l’analyse des événements en triple cöıncidence H(e, e′γγ)X,
qui fut un sous produit abondant de l’expérience DVCS qui a eu lieu duant l’automne
2004 dans le Hall A au Jefferson Laboratory, afin d’extraire la section efficace de ep →
epπ0. Cette section efficace a été mesurée à deux valeurs de quadrimoment de tranfert
Q2 = 1.9 GeV2 et Q2 = 2.3 GeV2. La précision statistique accomplie pour ces mesures
est meilleure que 5 %. Le domaine cinématique permet d’étudier l’évolution en Q2 et en
W de la section efficace. Ces resultats ont été comparés avec des calculs inspirés de la
phénoménologie de Regge, ainsi qu’avec les prédictions du formalisme des distributions
de partons généralisées. Une interpretation dans le cadre de la diffusion profondément
inelastique semi-inclusive est également discutée.

MOTS-CLEFS

Structure des hadrons; Production de meson profondément virtuelle; Expérience de haute
precision; Formalisme de Regge, Distributions de partons généralisées; Diffusion pro-
fondément inelastique semi-inclusive.

ABSTRACT

The past decade has seen a strong evolution of the study of the hadron structure through
exclusive processes, allowing to access to a more complete description of this structure.
Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard
exclusive meson production. This document is particularly focussed on the latter, and
more particularly on exclusive neutral pion production. In this thesis is described the
analysis of triple coincidence events H(e, e′γγ)X, which were a consequent by-product of
the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract
the ep → epπ0 cross section. This cross section has been measured at two values of
four-momentum transfer Q2 = 1.9 GeV2 and Q2 = 2.3 GeV2. The statistical precision
for these measurements is achieved at better than 5 %. The kinematic range allows to
study the evolution of the extracted cross section as a function of Q2 and W . Results are
be confronted with Regge inspired calculations and Generalized (GPD) predictions. An
intepretation of our data within the framework of semi-inclusive deep inelastic scattering
is also discussed.

KEYWORDS

Hadron structure, Deeply virtual pion production; High precision experiment; Regge
formalism; Generalized parton distributions; Semi-Inclusive Deep Inelastic Scattering
(SIDIS).
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