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4.4 MEIC – A Polarized Medium Energy Electron Ion Collider at 
Jefferson Lab  

Yuhong Zhang for the MEIC Study Group 
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 USA 

Mail to:  yzhang@jlab.org 

4.4.1 Introduction 

Jefferson Lab’s response to U.S. scientific user demand for a future gluon 
microscope is to propose a high luminosity polarized medium energy electron-ion 
collider (MEIC). It is a natural expansion of the precision measurement based nuclear 
science program at Jefferson Lab, and opens new QCD research frontiers [1] with more 
than an order of magnitude increase in the center of mass (CM) energy coverage over 
the recent successfully completed 6 GeV CEBAF fixed target program, and the future 
12 GeV CEBAF program after completion of the energy upgrade in 2015.  

After over a decade of science and machine feasibility studies, the envisioned 
science program and accelerator technology developments have been driving this future 
electron-ion collider toward a medium CM energy range [2]. Currently, Jefferson Lab 
takes a two-step staging approach for this facility based on different CM energy 
coverage, namely, a low medium energy range and an upper medium energy range 
respectively, allowing a maximum science reach over the entire life of the proposed 
collider under the foreseen fiscal and technical constraints. During the last two years, 
the Jefferson Lab design effort has been focused primarily on the first stage, MEIC, 
with CM energy up to 66 GeV [3,4]. As a result of this effort, a conceptual machine 
design has been completed [5].  

MEIC is currently designed as a ring-ring collider with up to three interaction points 
(IPs), enabling collisions of polarized electrons (and positrons) with polarized light ions 
(p, d, 3He and possibly Li and Be) and non-polarized light to heavy ions (up to lead). It 
covers beam energy up to 11 GeV for electrons, 100 GeV for protons and 40 GeV/u for 
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number of particles (~1011) per bunch for maintaining even a modest beam current. In 
MEIC, an ultra small bunch charge allows a dramatic reduction of the bunch length (as 
low as 1 cm RMS) with assistance of electron cooling, therefore permitting beta-stars 
hundreds times smaller than those of the typical hadron colliders. With appropriate 
interaction region designs, the combination of a high bunch repetition rate and ultra-
small beta-stars could lead to a very high luminosity [7]. 

 Initially, the Jefferson Lab electron-ion collider was designed naturally as an ERL-
ring collider [9] due to the existing CEBAF SRF linac and also the successful 
experience of ERL technology. It later evolved into a traditional ring-ring collider after 
the realization that the ERL-ring collider scenario, in fact, does not provide additional 
and significant advantages in achieving a higher luminosity with high bunch repetition 
rate beams [7]. It would in actuality add tremendous burdens on technology 
development including high current polarized electron sources and high current/energy 
ERLs. 

A unique design feature of MEIC is its figure-8 shape for all the booster and collider 
rings. Such a design greatly improves the preservation of the ion polarization during 
acceleration and storage, and also significantly simplifies the spin control [10]. An 
additional and important advantage of the figure-8 design is that it allows the 
acceleration and storage of polarized deuterons, thus expanding its science reach 
enormously [2].  

The MEIC design is derived with certain limits on parameters of stored beams due 
to collective beam effects [5]: the ion beam space-charge tune-shift should be less than 
0.1; the total beam-beam tune-shift summed over all the IPs must not be larger than 
0.03 and 0.1 for ion and electron beams respectively. We have also imposed limits on 
other machine parameters [5] based largely on previous lepton and hadron collider 
experience and the present state of the art of accelerator technologies in order to reduce 
R&D challenges and to improve robustness of the design. As an example, the stored 
beam currents are up to 0.5 and 3 A for ions and electrons respectively, and the electron 
synchrotron radiation power should not exceed 20 kW/m. 

4.4.4 Electron and Ion Collider Rings 

The two collider rings have nearly identical footprints (shown in Figure 4) and 
intersect at two symmetric points in the two long straights of the figure-8 for medium 
energy collisions. The figure-8 has a crossing angle of 60°, thus partitioning the ring 
roughly equally into two arcs and two long straights. The long straights also 
accommodate utility components such as injection, RF systems, and electron cooling. 
There are two short (20 m) straights in the middle of the two arcs of the ion ring for two 
Siberian snakes. Table 3 summarizes the parameters of the ion and electron collider 
rings. 
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conducting magnet ring, the variation of the electron ring circumference is far easier 
since apertures of the magnets could be made large enough for a shift of the magnetic 
center up to 1.2 cm for one IP or 2.4 cm for two IPs. The scheme requires a variation of 
frequency of SRF modules by up to 0.012%. Though it has never been done before, it is 
believed achievable. 

4.4.5 Ion Injector 

The schematic layout [5] of the MEIC ion injector in Figure 6 illustrates the 
scheme [11] for ion beam formation and acceleration. The ions, coming out of the 
polarized or un-polarized sources, will be accelerated step-by-step to the colliding 
energy in the following machine components: a 285 MeV pulsed SRF linac, a 3 GeV 
pre-booster, a 20 GeV large booster and finally a medium-energy collider ring of 20 to 
100 GeV. The energy values above are the design parameters for protons, and should be 
scaled appropriately for other ion species using a charge-to-mass ratio. All rings are in 
figure-8 shape for benefit of ion polarization.  

 
Figure 6: A schematic layout of MEIC ion injector complex.  

The MEIC ion sources will rely on existing and mature technologies: an Atomic 
Beam Polarized Ion Source (ABPIS) with Resonant Charge Exchange Ionization for 
producing polarized light ions H-/D- and 3He++, and an Electron-Beam Ion Source 
(EBIS) currently in operation at BNL for producing unpolarized light to heavy ions. 
Alternatively, an Electron Cyclotron Resonance Source (ECR) can generate ions with 
10 or more times charge per pulse than an EBIS source.  

The technical design of a pulsed SRF ion linac, originally developed at ANL as a 
heavy-ion driver accelerator for FRIB [12] and shown in Figure 7, has been adopted for 
the MEIC proposal. Figure 8 shows the three types of SRF cavities used in this linac. 
This linac is very effective in accelerating a wide variety of ions from H¯ to 208Pb30+.  

 

 
Figure 7: A schematic layout of the MEIC ion linac. 
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4.4.6 Electron Cooling and ERL Circulator Cooler 

MEIC has adopted a concept of multi-stage electron cooling of bunched medium 
energy ion beams [16,17]. First, low energy electron cooling will assist ion 
accumulation in the pre-booster. Next, in the collider ring, electron cooling is applied 
after injection, and then after the acceleration of ions to the collision energy for 
reduction of ion beam emittances and bunch length. Finally, cooling will be continued 
during collisions for the suppression of emittance growth induced by intra-beam 
scattering. Shortening the bunch length (1 cm or less) that results from electron cooling 
of the ion beam captured in a high voltage SRF field is critical for high luminosity in 
MEIC since it facilitates an extreme focusing and also crab crossing of the colliding 
beams at the IPs. 

The multi-stage cooling scheme requires two electron coolers. One is a low energy 
cooler with a DC electron beam, based on mature technologies. The other is a medium 
energy cooler which demands new technologies for delivering a high current and high 
bunch repetition rate electron beam with energy up to 55 MeV. Presently this medium 
energy electron cooler is designed by utilizing several new technologies: a magnetized 
photo-cathode SRF gun, an SRF ERL, and a compact circulator ring [17]. A schematic 
drawing in Figure 10 illustrates this ERL circulator cooler design concept. These 
technologies play critical roles in the success of this cooling facility by providing most 
promising solutions to two bottlenecks of the facility: the high current and high power 
of the cooling electron beam. The first challenge is high RF power, up to 81 MW, for 
accelerating a 1.5 A, 55 MeV electron beam. Delivery of such high power without an 
ERL demands not only very high capital costs for hardware, but also unacceptably high 
operation costs. Furthermore, safely dumping a beam with such high power, about a 
hundred times that of the CEBAF 12 GeV beam, is technically unfeasible. With an 
ERL, nearly all beam power is recaptured in a decelerating pass and is then used for 
accelerating a new bunch. The second challenge is a need for a long cathode lifetime, in 
terms of the total extracted charge, which greatly exceeds the present state-of-the-art. A 
compact circulator ring, in which the cooling electron bunches will circulate multiple 
times while continuously cooling an ion beam, could lead to a reduction of beam 
current from the cathode by a factor equal to the number of circulations, thus extending 
the effective injector lifetime.  

Currently, as a design optimization, this ERL circulator cooler is placed at the 
vertex of the figure-8 of the ion collider ring, as shown in Figure 10, by taking 
advantage of this unique shape. It provides two 30 m long cooling channels for gaining 
higher cooling rates. 
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Figure 10: A schematic layout of an ERL circulator electron cooler (left) and an optimized 

location (right) in the MEIC ion collider ring. 

Recently, a proof-of-principle experiment [18] has been proposed to demonstrate 
the ERL circulator cooler concept. The Jefferson Lab FEL is selected as the test facility 
for this experiment since it can provide a high quality electron beam with an energy 
range and bunch repetition rate similar to the cooler; therefore it allows maximum reuse 
of existing hardware, dramatically reducing the capital cost of this experiment. As 
shown in Figure 11, the presence of the two parallel IR and UV beam lines provides an 
opportunity for implementation of a compact circulator ring with two 180° bends 
already available. The purpose of this experiment is to demonstrate circulations of an 
electron beam in a circulator ring while the beam quality is satisfactorily preserved. 
Specifically, we will (1) demonstrate a scheme for bunch exchange between the ERL 
and the circulator ring, (2) develop and test support technologies such as ERL and faster 
kickers, (3) study beam dynamics and collective effects in the circulator ring, and (4) 
test bunch length change and longitudinal phase matching between the ERL and the 
circulator ring. We expect this experiment will be completed in less than three years.  

 
Figure 11: A test facility for an ERL circulator electron cooler. 

4.4.7 Polarization 

The unique figure-8 shape [5,10] for all the booster synchrotrons and collider rings 
is chosen for its advantage of preserving the ion polarization during acceleration and 
storage and for greatly simplifying the spin control. The mechanism is simple: the total 
spin procession (and the spin tune) in a figure-8 ring is zero. Further, a Siberian snake 
could shift the spin tune to a non-zero constant, thus retaining the energy independence, 
as a consequence, effectively by-passing all spin resonances during acceleration. Such a 
figure-8 design is also advantageous for the booster synchrotrons where polarization of 
protons and 3He++ ions can be preserved by making the spin tune energy independent 
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with a partial snake if the space is too limited to accommodate full snakes, while this is 
not possible in a conventional circular synchrotron.  

The figure-8 design is the only practical way [5] presently to preserve the deuteron 
polarization at the medium energy range. It allows acceleration and storage of polarized 
deuterons in a synchrotron, which is not possible in a circular synchrotron since the 
required Siberian snakes would be impractical due to the deuteron small anomalous 
magnetic moment.  

The MEIC science program demands both longitudinal and transverse polarization 
of light ions at all IPs. Schemes for arranging ion polarizations in the two long straights 
(where one to two IPs are located) of the figure-8 collider ring have been developed 
[19]. For polarized protons and 3He++ ions, three polarization configurations—namely, 
longitudinal at all IPs, transverse at all IPs, and alternately longitudinal in one straight 
and transverse in the other straight—are achievable, as illustrated in Figure 12. Using 
multiple Siberian snakes provides a high flexibility for science programs at the multiple 
detectors. For polarized deuterons, we can deliver a transverse polarization in both long 
straights; however, a longitudinal polarization is only possible in one straight while the 
spin orientation at the other straight will have an angle depending on the beam energy. 
Figure 13 illustrates the design of deuteron polarization in a figure-8 collider ring. 

      
Figure 12: Polarization configurations of proton and 3He++ ions in a figure-8 ring with Siberian 

snakes: longitudinal (left) and transverse (middle) polarization at all IPs. The right drawing 
shows a transverse polarization in one straight and a longitudinal polarization in the other. 

           
Figure 13: Polarization configurations of deuterons in a figure-8 ring with an SC solenoid or a 

special magnetic insert: longitudinal in one straight (left) and transverse polarization in both 
straights (right). 

The MEIC electron ring also has a figure-8 shape since it is housed in a common 
tunnel as the ion collider ring. It should provide similar advantages to electron 
polarization after the future energy upgrade of MEIC, in which the electron energy will 
be ramped to 20 GeV in the ring. At the first stage, such advantages are not as 
significant or critical to the electron polarization as they are to the ion beam 
polarization. 

In MEIC, the polarization of the electron beam originates in a polarized photo-
cathode DC gun and can be easily preserved during acceleration in five passes of the 
CEBAF recirculating SRF Linac. CEBAF operations have shown that the polarization 
at 6 GeV is above 85%. It is expected that a similar high polarization will be achieved 
after the 12 GeV CEBAF upgrade. The design strategy of MEIC is to utilize the 
Sokolov-Ternov effect to preserve this high polarization and improve its lifetime in the 
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storage ring [5,20]. This requires aligning the electron spin in the vertical direction in 
arcs, and anti-parallel to the magnetic field of arc bending dipoles, as shown in the 
Figure 14. This, in turn, demands four energy-independent 90° universal spin rotators 
on each end of the two arcs to achieve longitudinal orientation at IPs. The first spin 
rotator rotates a downward spin to the longitudinal direction at one long straight; the 
second spin rotator then rotates the spin another 90° to upward orientation at the other 
half ring. This spin manipulation is repeated for the second long straight, and the 
electron will finally return to the original state of downward spin in the original half 
ring. The total spin tune is energy dependent, and to move the tune away from 
resonances, one or more spin tuning solenoids are placed in one long straight.  

 
Figure 14: Illustration of spin orientation in the MEIC electron collider ring. 

A concept of a universal spin rotator [5] has been developed to provide rotation of 
spin vectors. The term universal is used for referring its orbital and energy 
independence. As shown in Figure 15, it utilizes two solenoids and two (sets) of arc 
dipoles.  

 
Figure 15: A schematic drawing of a universal spin rotator. B1 and B2 are the arc bends 

rotating spins by α1 and α2. Sol1 and Sol2 are solenoids with spin rotation angles φ1 and φ2. 

4.4.8 Interaction Region 

The design of the interaction region (IR) associated to the primary full acceptance 
detector is aimed for the detection of scattered electrons, mesons, and baryons without 
holes in the acceptance, even in forward regions, and operation in a high-luminosity 
environment with moderate event multiplicities and acceptable background conditions.  

It should be pointed out that a full acceptance detector literally is capable of 
detecting particles with angles from 0 to 180°. The particles with a very small forward 
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Figure 19: (Left) Chromatic dependence of the fractional betatron tunes before and after 
compensation. (Middle) Frequency map in the (x-Δp/p) space. The color reflects the tune 
change. (Right) Dynamic aperture of the ion ring without (red) and with (blue) octupole 

minimization of the 1st order amplitude-dependent tune-shift. 

4.4.9 Outlook 

MEIC is the primary future of the nuclear science program at Jefferson Lab beyond 
the 12 GeV CEBAF fixed target program. By incorporating several unique and 
advanced design features including figure-8 shape rings, staged electron cooling, and 
high bunch repetition rate beams, it holds a promise to deliver high performance 
including high luminosity above 1034 cm-2s-1 per detector for two IPs and higher than 
70% polarization of electron and light ion beams. The two-step staging approach 
enables a physics program with CM energy range up to 66 GeV immediately and 
ultimately reaches a higher medium CM energy up to 140 GeV in a future upgrade. The 
first conceptual design of MEIC has been completed recently and a comprehensive 
design report is now available online and will be officially published soon.  

The focus of the Jefferson Lab study group is now the accelerator R&D for both the 
technology development and demonstration and for beam physics studies. For the next 
two years, we will focus on the following topics: collective beam physics including 
beam-beam and electron clouds; election cooling simulation study and ERL circulator 
cooler technology development and demonstration; IR development and dynamic 
aperture optimization; and a demonstration of the advantages of the figure-8 ring on ion 
polarizations and a satisfactory electron polarization lifetime.      
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