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ABSTRACT

COMPENSATION TECHNIQUES IN ACCELERATOR

PHYSICS

Hisham Kamal Sayed

Old Dominion University, 2011

Director: Dr. Geoffrey Krafft

Accelerator physics is one of the most diverse multidisciplinary fields of physics,

wherein the dynamics of particle beams is studied. It takes more than the under-

standing of basic electromagnetic interactions to be able to predict the beam dynam-

ics, and to be able to develop new techniques to produce, maintain and deliver high

quality beams for different applications. In this work, some basic theory regarding

particle beam dynamics in accelerators will be presented. This basic theory, along

with applying state of the art techniques in beam dynamics will be used in this dis-

sertation to study and solve accelerator physics problems. Two problems involving

compensation are studied in the context of the MEIC (Medium Energy Electron Ion

Collider) project at Jefferson Laboratory. Several chromaticity (the energy depen-

dence of the particle tune) compensation methods are evaluated numerically and

deployed in a figure eight ring designed for the electrons in the collider. Further-

more, transverse coupling optics have been developed to compensate the coupling

introduced by the spin rotators in the MEIC electron ring design.
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CHAPTER I

AN ELECTRON ION COLLIDER FOR JEFFERSON LAB

I.1 INTRODUCTION

The proposed Medium Energy Electron Ion Collider (MEIC) [1] at Thomas Jefferson

National Accelerator Facility (JLAB) will be primarily composed of two figure-8

rings, intersecting at up to four collision points, with a proton energy of 30-60 GeV

(15-30 GeV/A for ions) and an electron (positron) energy of 3-11 GeV. The design

luminosity approaches 1034 cm−2 sec−1 and MEIC operations are compatible with

simultaneous operation of the 12 GeV CEBAF for fixed-target experiments [2]. A

requirement driven by nuclear science program is high polarization for both beams,

up to 80%. The design is being carried out with an upgrade to higher energies in mind

called ELIC (ELectron Ion Collider), where high luminosity and high polarization

continue to be the design drivers.

A possible electron ring design will be presented in this thesis, that will be based

on a number of conservative MEIC design assumptions [3]. The first assumption is

that the maximum peak magnetic field of any superconducting dipole is less than 6

Tesla for the ion ring. This limit puts a constraint on the minimum ring size. Noting

that any tunnel built has to fit both electron and ion rings to minimize the cost, the

electron ring size is chosen based on this constraint as well. The second assumption is

that the maximum synchrotron radiation power density does not exceed 20 kW/m,

consistent with high current ring experience [4]. The final assumption is that the

maximum allowed β-function in the final focus region has to be less than 2.5 km in

order for the chromaticity not to degrade beam stability.

As seen in Fig. (1) [1], the existing CEBAF accelerator with a polarized electron

beam will be used as a full energy injector into a 3-11 GeV electron storage ring.

A positron source is envisioned as a future addition to the CEBAF injector for

generating positrons that can be accelerated in CEBAF, accumulated and polarized

in the electron storage ring, and collided with ions with luminosity similar to the

electron/ion collisions [5].

The MEIC facility is designed to produce a variety of polarized ion species: p, d,

This dissertation follows the style of Physical Review Special Topics-Accelerators and Beams as
journal model.
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low-energy IP	
  
polarimetry	
  

medium-energy 
          IPs	
  

FIG. 1: Schematic view of the MEIC/ELIC layout at Jefferson Lab.

He3 and Li, and unpolarized light ion species. To attain the required ion beams, a new

ion facility must be constructed at Jefferson Laboratory, a major component of which

is the 60 GeV collider ring located in the same tunnel and above the electron storage

ring. A critical component of the ion complex is an energy recovery linac (ERL)-

based continuous electron cooling facility, anticipated to provide low emittance and

very short ion bunches simultaneously.

The MEIC design accommodates an upgrade to higher ion beam energies up to

250 GeV, with luminosity close to 1035 cm−2sec−1 [6]. Fig. (1) shows a representation

of the upgrade project in gray color [1].
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cold	
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warm	
  ring	
  

FIG. 2: Detailed layout of the MEIC with injection from current Jefferson Lab
CEBAF.

I.1.1 Luminosity in lepton hadron colliders

The accelerator luminosity, representing the collision rate, is an important figure of

merit for any collider. The collider luminosity is defined as the ratio of the event rate

of a chosen interaction at a beam crossing to the effective beam cross-section area at

that interaction point. The luminosity depends on both the beam parameters and

the accelerator lattice.

In the MEIC case of a lepton hadron collider in a double ring machine, the collider

may be assumed to operate with head-on collisions between both beam bunches. The

general luminosity formula for such machines is given by:
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L =
NeNpNBfrev

2π
√
σxp2 + σxe2

√
σyp2 + σye2

, (1)

where Np(Ne) is the number of protons (electrons) per bunch, NB is the number of

bunches, frev revolution frequency, and σp(σe) is proton (electron) rms beam size at

the interaction point (IP).

The optimum conditions for such a machine are given as follows [7]

1. The hadron and lepton beam cross sections have to match to limit the nonlin-

earity of the beam-beam interaction. Therefore σxp ' σxe and σyp ' σye.

2. The total beam current of the lepton beam is limited by the synchrotron radi-

ation maximum power mentioned previously.

3. Np is limited by space charge effects in the ion injector chain.

4. The minimum beam size at the interaction point is limited by the maximum

proton beam size within the final focus quadrupoles of the interaction region

due to a maximum achievable focusing strength possible at an appropriate

magnet aperture size, and to the ability to compensate for the chromaticity

generated. This limitation is quantified by a maximum value of beta function

βmax, to be defined in subsequent text.

These conditions lead to a lepton hadron collider luminosity formula which has a

major dependence on hadron beam parameters through the number of hadrons per

bunch and bunch transverse size, and a dependence on the electron beam current as

L =
IeNpγp

4πe
√
β∗xpβ

∗
yp
√
εxNεyN

. (2)

In the MEIC case where the hadron beam is assumed to be round after cooling

(εxN ≈ εyN), the final luminosity equation is given by

L =
IeNpγp

4πe
√
β∗xpβ

∗
ypεpN

. (3)

From Eq. (3) we can see that in order to increase the collider luminosity two main

parameters are left to manipulate.

1. Minimize β∗p . This will introduce chromaticity in the collider ring, which in

turn affects the stability and the lifetime of the beam.
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2. Minimize εpN . This parameter will be limited by the ion beam cooling.

The significance of the first parameter in the ultimate MEIC luminosity is the main

motivation to find an appropriate scheme for correcting chromaticity of both beams,

and forms the principal justification of this thesis. For MEIC, obtaining small εpN is

being addressed by developing novel cooling techniques, which are beyond the scope

of this thesis.

I.1.2 Equations of linear motion and terminology of linear optics

Within the linear approximation, including effects of a pure quadrupole field and ig-

noring higher perturbations, the equations of motion for a particle orbit in a periodic

system will take the following form

u′′ + ku(s)u =
1

ρ

∆p

p
, (4)

where u refers to either of the transverse coordinates (x, y), and ρ is the radius of

curvature. The focusing strength ku(s) is periodic with a period of length L where

L is the is circumference of the circular accelerator lattice,

ku(s) = ku(s+ L) (5)

The derivation of these equations of motion from a Hamiltonian will be discussed

in more detail in Chapter II.2. The solution to the homogenous part of Eq. (4)

(∆p/p = 0) with a periodic focusing strength may be formulated in terms of Floquet’s

theorem. This theorem enables us to write the solution of this homogeneous equation

of motion in terms of an action I and an initial phase ψ as

u(s) =
√

2Iβ(s) cos(µ(s) + ψ), (6)

where β(s) is the periodic betatron function, and µ(s) is the characteristic phase

coefficient defined by

µ(s) =

∫ s

s0

1

β(s)
ds. (7)

In these formulas and the rest of the formulas in this section, the implicit u subscript

has been dropped in order to simplify the formulas.
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Twiss parameters If α is defined in terms of the first derivative u′(s) by

u′(s) =

√
2I

β(s)
(α(s) cos(µ(s) + ψ) + sin(µ(s) + ψ)), (8)

the derivative may be written as

u′(s) =
√

2Iγ(s) cos(µ(s) + ψ) (9)

with

α(s) = −β
′(s)

2
(10)

and

γ(s) =
1 + α2(s)

β(s)
. (11)

The periodic linear motion around the accelerator can be described by these so

called Twiss functions (α, β, γ). The action I is an invariant of motion, and is usually

referred to as Courant-Snyder invariant, where

γ(s)z2(s) + 2α(s)z(s)z′(s) + β(s)z′2(s) = 2I. (12)

The area of the phase space ellipse the orbit is on is called the emittance (ε). It is

also an invariant of the motion, and ε = 2I . For the electron beam in MEIC the

particle distribution in equilibrium is a Gaussian distribution in phase space, with

the distribution function

Ψ(x, x′; s)dxdx′ =
1

2πεx
e−(γx(s)x2+2αx(s)xx′+βx(s)x′2)/2εxdxdx′, (13)

and likewise for the y-direction. By integrating the distribution function, one can

calculate the average amplitude, average position squared, and average slope squared

of the distribution and obtain:

εrms =
√
< z2 >< z′2 > − < zz′ >2, (14a)

< z2 >= βεrms, (14b)

< zz′ >= −αεrms, (14c)

< z′2 >= γεrms. (14d)

By Liouville’s theorem the phase space ellipse area is conserved in linear motion.

In the case of uncoupled motion the area of the phase space ellipse in each of the

transverse dimensions is invariant as well.
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Dispersion and Momentum Compaction Factor

As a straight forward example of the solution of the inhomogeneous equation of mo-

tion for off-momentum particle, take a bending magnet with a homogenous magnetic

field and with no gradient magnetic field. The equation of motion is

x′′ +
1

ρ2
x =

1

ρ

∆p

p
. (15)

Defining a special trajectory η(s) which has ∆p/p = 1, Eq. (15) becomes:

η′′(s) +
1

ρ2
η(s) =

1

ρ
. (16)

The function η(s) is called the dispersion function. Eq. (16), which is an inhomoge-

neous differential equation, has the following solution

η(s) = η0 cos
s

ρ
+ η′0 sin

s

ρ
+ ρ(1− cos

s

ρ
) (17a)

η′(s) = −η0

ρ
sin

s

ρ
+ η′0 cos

s

ρ
+ sin

s

ρ
, (17b)

where η(0) = η0 and η′(0) = η′0. Now the trajectory of a particle with a momentum

deviation ∆p/p is given by

xd = x(s) + η(s)
∆p

p
(18)

The transformation matrix of the dispersion function is a 3× 3-matrix and is given

by the following:
η(s)

η′(s)

1

 =


cos s

ρ
ρ sin s

ρ
ρ(1− cos s

ρ
)

−1
ρ

sin s
ρ

cos s
ρ

sin s
ρ

0 0 1

 ·

η(s0)

η′(s0)

1

 (19)

Similar 3×3 dispersion transport matrices may be defined for other magnet elements

(quadrupoles, drifts, etc.), and are generally calculated by standard computer codes

and used to predict the optics properties of accelerator layouts.

Momentum Compaction Factor

The momentum compaction factor is defined as the ratio of the relative change in

path length ∆L/L to the relative momentum deviation from the reference particle

momentum, ∆p/p, and is given by

αc =
∆L/L

∆p/p
. (20)
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Only bending magnets contribute to the momentum compaction. For a full storage

ring of total length L, αc is calculated by

αc =
1

L

∮
η(s)

ρ(s)
ds. (21)

Betatron phase advance The total betatron phase advance is defined as the

number of betatron oscillations the particle accumulates as it travels around the

ring. It is given by

µ(s) =

∫ s

s0

1

β(s)
ds, (22)

where s0 is the beginning point, and s is the end point for the phase advance calcula-

tion. In circular accelerators the machine tune is defined as the number of betatron

oscillations the particle accumulates as it travels once around the ring. It is given by

ξx,y =
1

4π

∫ s0+L

s0

1

βx,y(s)
ds, (23)

where L is the total path length around the accelerator. It does not depend on the

starting point s0 as the β function is periodic.
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I.2 CEBAF AS THE FULL ENERGY INJECTOR FOR MEIC

The Continuous Electron Beam Accelerator Facility (CEBAF) at JLAB will serve as

a full energy injector for MEIC. Currently running at 6 GeV beam energy with a fixed

target electron scattering experiments that take place at three user halls (Hall A, Hall

B, and Hall C), CEBAF uses superconducting technology (SRF) for electron beam

acceleration. CEBAF is presently being upgraded to double the maximum beam

energy to 12 GeV [8]. During the upgrade a new set of highly improved cryomodules

will be added to double the beam energy. In addition, the upgrade includes a new user

hall (Hall D). The electron beam polarization reaches 80% during present operations.

Table 1 shows a summary of the CEBAF beam parameters plus the parameters of

the 12 GeV upgrade.

The CEBAF layout is shown in Fig. (3). The basic components of CEBAF are

Gun and Injector: Electron beam is continuously emitted from an electron gun

with three diode lasers working at 499 MHz repetition rate each with a phase

difference of 120o to deliver beam simultaneously to the three user halls. The

bunch length is controlled by choppers and the laser pulse length, followed by

a set of bunchers downstream of the gun, accelerating cavities, and an injector

chicane.

North and South Linacs: Each linac accelerates the electron beam up to 600 MeV

(i.e., for first pass from 65 MeV to 665 MeV).

Arcs: The first arc section bends the beam by 180o degrees to be injected in the

second linac for further acceleration. Then the beam is transferred by the

second arc to the following linac and so on. For every path the beam goes

through a different set of bending magnets in a vertically stacked structure of

fours paths or five paths.

Accelerating cavities: Super-conducting radio frequency (SRF) 5-cell cavities run-

ning at frequency of 1497 MHz, with up to 10 MV/m energy gain, see Fig. (4).

Cavities have an elliptical shape and are made of Niobium. In the 12 GeV up-

grade some of the existing cavities will be replaced with the new 7-cell (C100)

type cavities. The 7-cell cavity has a low power loss with 1497 MHz RF and

reaches 19 MV/m energy gain, see Fig. (5).
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User Halls (A, B and C) beamlines: After 5 passes of acceleration the total

beam energy reaches 6 GeV. A set of normal conducting RF separators are

used to deliver the beam to user halls, each working at frequency of 499 MHz.

The 12 GeV CEBAF will be able to support simultaneous operation of Jefferson

Laboratory’s fixed target experiments plus the operation of the MEIC figure-8 collider

ring. As the MEIC physics program requires a range of energies from 3-11 GeV, the

beam extraction from CEBAF may be accomplished by ejecting the beam after the

number of passes corresponding to MEIC’s required energy. CEBAF’s polarized

electron source will provide the required 80% polarization for MEIC’s electron beam.

FIG. 3: Schematic of CEBAF showing different components of the current 6 GeV
machine plus the 12 GeV upgrade accelerating section and new experimental Hall D.
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TABLE 1: CEBAF beam parameters currently and in the future 12 GeV upgrade

Quantity Unit 6 GeV CEBAF 12 GeV CEBAF

Max. beam energy GeV 6 12
Injected beam energy GeV 0.065 0.126
Transverse rms emittance εx(εy) nm 1.0 (1.0) 7.0(1.0)
Energy Spread 1× 10−4 2× 10−4

Duty factor CW CW
Polarization % 85 85
Max. summed current to Halls A&C µA 180 85
Max. summed current to Halls B (D) µA 0.2 5(5)

FIG. 4: The CEBAF 50 cm effective length 5-cell cavity. It is a 1497 MHz RF cavity
with a 5 MV/m energy gain.

FIG. 5: The 12 GeV upgrade CEBAF single 7-cell cavity. It has 70 cm effective
length with 1497 MHz RF with 19 MV/m energy gain.
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I.3 THE LEPTON HADRON COLLIDER HERA

The first collisions between high energy electrons and protons were registered at

HERA in 1991 [9]. HERA consisted of two 6.4 km long storage rings, designed to

store 820 GeV protons and 30 GeV electrons and to collide the two counter rotating

beams head-on in four interaction regions spaced equidistant around its 6.3-km cir-

cumference. The proton ring was built from 5 Tesla superconducting magnets while

the electron ring was built from normal conducting magnets. The beams collided

at four collision points where detectors named H1, ZEUS, HERMES, and HERA-B

were located. The interaction regions (IR) were upgraded for a high luminosity of

5×1031cm−2sec−1 in 2001 [10]. Fig. (6) illustrates the layout of the HERA accelerator

complex.

The HERA tunnel consisted of four 90o arcs joined by 360 m straight sections.

The proton beam energy was limited to 820 GeV by the 4.68 Tesla bending field of

the dipole magnets. The electron energy was limited to 30 GeV by the energy loss

due to the synchrotron radiation. Electron energy loss was compensated by a RF

system providing a total voltage of 200 MV, this RF system consisted of warm 500

MHz cavities augmented by 16 four-cell, 500 MHz superconducting cavities.

Protons generated at the proton source were accelerated to 750 keV by the radio

frequency quadrupole (RFQ), to 50 MeV by the Linac III, to 7.5 GeV in DESY III,

to 40 GeV in PETRA, and finally to 920 GeV at HERA, see Fig. (7).

I.3.1 Arc lattice and interaction regions

HERA’s proton ring consisted of a FODO (focusing - non-focusing - defocusing -

non-focusing) cell lattice. Each FODO cell had a 90o betatron phase advance, and

was 47 m long. Each cell contained four bending magnets with length 8.83 m. The

electron ring consisted of a 60o FODO lattice, each cell was 23.5 m long. At the

end of each arc dispersion was suppressed. The β functions in the electron straight

section were kept small. The magnetic field errors in HERA caused a small dynamic

aperture of only 3.8 rms beam sizes.

I.3.2 Polarized lepton beam

The HERA lepton beam was spin polarized by the Sokolov-Ternov effect [11]. A set

of spin rotators provided longitudinally polarized leptons for collisions with protons.
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The spin rotator was composed of a set of interleaved vertical and horizontal dipole

magnets which were used to rotate the vertical (with respect to the direction of elec-

tron motion) spin of the electron to longitudinal at the interaction points (IPs), and

back to vertical after the IP. The spin rotators had no focusing elements resulting in

large β functions within the spin rotator regions. Fig. (8) shows schematic of HERA

rings with the spin rotator locations indicated.

TABLE 2: HERA design parameters

Quantity Unit Electron Proton

Beam energy GeV 27.5 920 GeV
Revolution Frequency sec−1 47317 47317
Particles per bunch 1010 3.65 10
Beam average current mA 58 163
Polarization time min 35 –
Polarization % 30-45 –
Energy Spread 10−3 10−4

RMS bunch length cm 0.85 19
Transverse beam emittance εx/εy 10−9m 41/5.1 8/3.4
Beam size at IP σx/σy mm 0.286/0.06 0.28/0.058
Distance from IP to first FF quadrupole m 5.5 5.5
Luminosity per IP cm−2sec−1 3− 5× 1031 3− 5× 1031

Bending magnet length m 9.185 8.824
Bending radius in the arcs m 608.1 584
Energy loss per turn MeV 125 6× 10−6

Synchrotron radiation power MW 7.2 10−6

Tune Shift ∆ξx/∆ξy 0.02/0.02 10−3/5× 10−4

Horizontal (vertical) betatron tune 47.2 (48.35) 31.3 (32.3)
Synchrotron tune 0.07 1.6× 10−3

RF frequency MHz 500 208/52
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FIG. 6: Schematic view of the HERA accelerator complex, showing both electron
(red) and proton (blue) rings, injection chain, and four experimental halls.
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FIG. 7: Schematic view of HERA proton accelerator complex.
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FIG. 8: Equilibrium spin polarization vector around the HERA electron ring. The
required electron polarization is achieved in 35 minutes. Spin rotators are used
to rotate vertical polarization in the arc to longitudinal polarization at interaction
regions and vice versa.
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I.4 FIGURE-8 RING LAYOUT AND LINEAR OPTICS DESIGN

The rest of this thesis will be addressing the MEIC electron ring only. In this section

the requirements for the MEIC electron ring will be presented. Then a linear lattice

design which fulfills these requirements will be laid out.

The magnet lattice of MEIC has to satisfy the following requirements:

1 The lattice must have a small enough equilibrium emittance in the electron ring.

The emittance depends on the choice of the arc cell design.

2 The lattice must accommodate a range of energies (3-11 GeV).

3 The lattice must include a number of symmetric low-β insertions points (IP) with

very small β∗.

4 The dynamic aperture and beam lifetime must be sufficient.

5 The lattice must maintain the beam polarization above 80% with longitudinal

polarization at the IP by adopting a series of spin rotators and spin tuning

solenoids.

TABLE 3: Design parameters for MEIC (Medium energy electron ion collider at
JLAB).

Quantity Unit Proton Electron

Beam energy GeV 60 3-11 GeV
Collision Frequency GHz 0.75 0.75
Particles per bunch 1010 0.416 2.5
Beam current A 0.5 3
Polarization % 70 80
RMS bunch length mm 10 7.5
Normalized horizontal emittance µm rad 0.35 54
Normalized vertical emittance µm rad 0.07 11
Horizontal β∗ cm 10 10
Vertical β∗ cm 2 2
Distance from IP to first FF quadrupole m 7 3.5
Luminosity per IP cm−2sec−1 1032 − 1034 1032 − 1034
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The full parameter list for MEIC is given in Table (3) [1]. The general layout

is based on a figure-8 shaped vertically stacked rings as in Fig. (2), two of them for

the ion beam, while the third is for the electron (or positron) beam. Polarized ion

beam is produced by the ion source and initially accelerated by a superconducting

radio frequency (SRF) linac, followed by a figure-8 prebooster while maintaining the

required polarization of the beam. The ion beam is next injected from the prebooster

into the first figure-8 ring (warm ring) for acceleration, and then injected into the 60

GeV collider ring (cold ring). Figure-8 shaped ion rings have a number of positive

effects on beam’s polarization [12] which can be summarized in the following points:

� This choice is a simple solution to preserve full ion polarization during accel-

eration by avoiding spin resonances during acceleration.

� Figure-8 rings have energy independence of spin tune.

� Because (g-2) is small for deuterons; a figure-8 ring seems the only practical

way to accelerate deuterons and to arrange for longitudinal spin polarization

at the interaction point.

These attractive features are compelling enough to adopt an ion ring figure-8

footprint in MEIC, and the electron ring must be shaped in the same way. Aside

from providing the overall ring dimensions for MEIC and the figure-8 configuration

of the electron ring, the ion complex will not be discussed further in this thesis.

For the electrons, polarized electrons from the CEBAF machine are injected at

full energy directly into the figure-8 electron ring. The electron and ion beams are

brought into collision by vertically bending the ion beam. This choice was made to

limit the effect of synchrotron radiation had the electron beam been bent vertically.

The 12 GeV CEBAF, having polarized beam, meets the electron injector require-

ments for the MEIC. In Chapter IV we will give a detailed discussion of the electron

beam polarization and spin rotation.

The main components of MEIC’s electron ring magnetic lattice can be summa-

rized in the following items:

1 Two identical arcs with opposite bending directions.

2 The first long straight section contains.
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• A dispersion matching section.

• Two spin rotators.

• An interaction region matching section.

• Two symmetric interaction regions (or one interaction region).

3 The second long straight section contains.

• Two spin rotators.

• Dispersion adjusting section.

I.4.1 Arcs

The design of the arc cells has to meet two main requirements. The first requirement

is that low equilibrium emittance must be achieved, while the second is to make a

specific choice of phase advance per cell, related to the natural chromaticity generated

by cell’s quadrupoles. In addition to the mentioned constraints we have to take

into account that sextupole magnets will be added to the arc cells for chromaticity

corrections. This can be done by tailoring the dispersion function close to quadrupole

magnets where it is preferred to place sextupole magnets.

During the design and optimization process we have considered two different cell

designs; the first one with 135o betatron phase advance and the second with 90o

phase advance. In this section the basic characteristics of each of the designs will

be presented. In Chapter III.2, a comparison study regarding their chromaticity and

dynamic aperture will be discussed.

Lattice With 135o Phase Advance Cells

One FODO cell of the magnetic lattice is shown in Fig. (9), along with their β-

function and dispersion. Each cell of the arc is composed of two quadrupole mag-

nets with alternating focusing and defocusing strength and two horizontally bending

dipoles. The magnet parameters are given in Table (4). The basic structure of the

two arc regions is the same except that the dipoles bend the beam in opposite direc-

tions to form a figure-8. The two straight sections are composed of the same FODO

cells, plus a matching section, and the interaction region.

The total path length of the figure-8 ring is 660 m. The horizontal equilibrium

emittance and other lattice parameters are collected in Table (5). The choice of a
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TABLE 4: Magnet parameters of a MEIC 135o cell. L, θ, and K are magnet length,
bending angle, and quadrupole focusing strength respectively.

Magnet L [m] θ [rad] K [m−2]

QUADRUPOLE 0.5 0.0 1.583
QUADRUPOLE 0.5 0.0 -1.581
DIPOLE ARC I 1.5 -0.06159 0
DIPOLE ARC II 1.5 0.06159 0

FODO lattice with 135o phase advance per cell was considered to obtain the required

low horizontal equilibrium emittance and at the same time be able to construct a

−I transformation required for correcting chromatic aberrations. The dispersion

function is well tailored to add chromatic correction sextupoles at places with well

separated horizontal and vertical β functions [13]. Twiss functions (β, η) for the

whole figure-8 ring are shown in Fig. (10).



20

TABLE 5: Parameters of a MEIC 135o lattice

Quantity Value

Beam energy E 9 GeV
Particles/bunch N 3.1× 1010

Bunch length σs 5× 10−3 m
Energy loss/turn U0 33.45 MeV
Horizontal β∗x 0.02 m
Vertical β∗y 0.1 m
Horizontal equilibrium emittance εx 6.82× 10−8 m
Vertical emittance εy 1.36× 10−8 m
Beam size at IP σ∗x 3.69× 10−5 m
Beam size at IP σ∗y 3.69× 10−5 m
Momentum spread δp 1.58× 10−3

Momentum compaction αc 2.07× 10−3

Horizontal damping time τx 1.18× 10−3 sec
Longitudinal damping time τs 5.92× 10−4 sec
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Lattice With 90o Phase Advance Cells

In this section we explore a different arc lattice, which is inspired by the merits of

SuperB design [14]. Four cells of the magnetic lattice are shown in Fig. (11) with their

β-function and dispersion. Each arc cell is composed of three quadrupole magnets

for alternating focusing and a horizontal bending dipole. The magnet parameters

are given in Table (6). The basic structure in the two arcs is the same except that

the dipoles bend beam in the reverse direction to form the figure-8. The two straight

sections are composed of the same FODO cells, plus a matching section, and an

interaction region.

TABLE 6: Magnet parameters of a MEIC 90o cell.

Magnet L [m] θ [rad] K [m−2]

QUADRUPOLE 0.560 0.0 -0.138
QUADRUPOLE 0.365 0.0 -0.062
QUADRUPOLE 0.365 0.0 0.260
DIPOLE ARC I 5.0996 0.0436 0
DIPOLE ARC II 5.0996 -0.0436 0

The total path length of the figure-8 ring is 3037.5 m. The horizontal equilib-

rium emittance and other lattice parameters are given in Table (7). The choice of

90o horizontal phase advance per cell was made to obtain the required low horizontal

equilibrium emittance and at the same time to be able to construct a −I transforma-

tion required for correcting chromatic aberrations generated by sextupole magnets.

The 90o lattice has an advantage in terms of chromaticity correction over the 135o

lattice. The former requires weaker quadrupole magnets, which in turn generates

smaller natural chromaticity and ultimately it has better dynamic aperture. This

last statement will be examined quantitatively in Section III.2. The dispersion func-

tion is well tailored to add chromatic correction sextupoles at places with appropriate

horizontal versus vertical β aspect ratio. Twiss functions (β, η) for the figure-8 arc

are shown in Fig. (10), and the footprint is shown in Fig. (13).
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TABLE 7: Parameters of a MEIC 90o lattice.

Quantity Value

Beam energy E 9 GeV
Particles/bunch N 3.1× 1010

Bunch length σs 5× 10−3 m
Energy loss/turn U0 8 MeV
Horizontal β∗x 0.02 m
Vertical β∗y 0.1 m
Horizontal emittance εx 4.075× 10−8 m
Vertical emittance εy 8.15× 10−9 m
Beam size σ∗x 2.85× 10−5 m
Beam size σ∗y 2.85× 10−5 m
Momentum spread δp 2.85× 10−3

Momentum compaction αc 2.86× 10−3

Horizontal damping time τx 1.78× 10−2 sec
Longitudinal damping time τs 8.9× 10−3 sec
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FIG. 11: Twiss functions of MEIC 90o arc cell
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I.4.2 Dispersion in the straight sections

In the two versions of the ring lattices, a dispersion free section is required to accom-

modate the superconducting radio frequency accelerating cavities. One of the two

straight sections has been already reserved for the interaction region (Straight Section

I), so the SRF cavities have to be placed along the second straight section (Straight

Section II). In the following section we will discuss the treatment of dispersion in the

two straight sections from the point of view of linear lattice design.

Dispersion in straight section I

The dispersion in this section is required to fulfill a number of conditions:

1 The dispersion function has to be suitable to work with local chromaticity correct-

ing sextupoles around the IP.

2 The dispersion function has to vanish at the interaction point, but the derivative

of the dispersion can be non vanishing at IP.

3 The beam size including dispersion in the beam extension section inside the final

focus quadrupoles has to clear the magnet aperture limit.

These requirements are met in the linear optics design of straight section I. In

this thesis two different design concepts, having different values of the of dispersion

derivative at interaction point, will be evaluated and discussed in terms of chromatic

correction. In the first case we use the dispersion wave generated by the arc and

correct it to produce zero dispersion at interaction point with non-vanishing disper-

sion derivative. This design has a number of features which enable local chromaticity

correction in the IR. This issue will be discussed and quantified in section III.4. In

terms of linear lattice design, it is advantageous to apply this scheme in order to

make the interaction region more compact. Leaving the dispersion generated by the

arc section without suppressing it saves the space occupied by a dispersion suppres-

sor. The case of non vanishing dispersion derivative at IP was introduced in a lattice

with two symmetric interaction regions placed in the same straight section. The

symmetric interaction regions are separated by a matching section. The matching

section includes a set of symmetric dipoles which generate anti-symmetric dispersion

at the two interaction regions. Fig. (14) shows dispersion through straight section I.
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FIG. 14: Dispersion in straight section I (non - vanishing dispersion derivative at IR)

In the second case we use a matching section to connect the dispersion function

along with other Twiss functions to those at the beginning of the local chromatic

correction section. In this case both dispersion and its derivative are made to vanish

at the interaction point. A set of dipoles is used to tailor the dispersion to be

symmetric around the interaction point, while maintaining a suitably high value

to work with local IR sextupoles in correcting chromaticity. Fig. (15) shows the

dispersion through straight section I. This scheme features zero dispersion function

inside the final focus quadrupoles; the beam size will not be a concern in the beam

extension section.

Dispersion in straight section II

This straight section is reserved for SRF cavities, in addition to a single spin rotator.

Dispersion has to be suppressed in straight section II. The dispersion suppressor

consists of the arc’s last two FODO cells following the focusing quadrupole. The

bending magnet strengths are changed to suppress the dispersion, where each couple

of magnets will have bending angle θ1,2 given by [15]

θ1 + θ2 = θ, (24)
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FIG. 15: Dispersion in straight section I (dispersion and its derivative vanish at IR)

where θ is the original arc dipole bending angle,

θ1 = θ(1− 1/(4 sin2 µ)), (25)

and

θ2 = θ(1/(4 sin2 µ)). (26)

and where µ is the phase advance per regular FODO half cell. For µ = 90 we get

θ1 = 1
2
θ and θ2 = 1

2
θ. Fig. (17) shows suppressed dispersion in 90o lattice.
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FIG. 16: Schematic of dispersion suppressor; (T, T1, T2) are dipoles with bending
angles (θ, θ1, θ2) respectively

FIG. 17: Dispersion suppressed in straight section II
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I.4.3 Interaction region

The MEIC interaction region (IR) design is primarily driven by the detector needs for

very demanding forward detection architecture. The corresponding detector layout

is illustrated in Fig. (19).

The central detector [13] features a solenoid with endcaps on each side; it is

constructed out of three main components. Two conical sections exist on each side

to track particles that end up in the endcaps, a radial part includes a complete set

of detectors for tracking, identification, and calorimetry, as in Fig. (18).

The IR design assumes a 7 meter distance between the interaction point (IP)

and first final focus quadrupole for the ion’s beamline and 3.5 meter stand off for

the electron’s beamline. A small crossing angle of 3o requires interleaved quadrupole

arrangement for both sets of final focus quadrupoles; a pair of doublets for the

electrons and a triplet for the ions. Both IR designs assume β∗x and β∗y are 10 cm

and 2 cm respectively.

In this section the interaction region design for two different cases will be dis-

cussed; the first case has non-vanishing dispersion derivative at IP and the second

case has a vanishing dispersion derivative at the IP.

Non vanishing dispersion derivative at the IP

The electron beam interaction region is composed of a set of final focus quadrupole

doublets, beam extension area, chromaticity correction block and a set of matching

quadrupoles.

The distance from the IP to the final focus quadrupoles is set to 3.5 m, which

plays a role in limiting the maximum β-function values to 650 m. This version of

the lattice exhibits two mirror symmetric interaction regions placed along the same

straight. Each interaction region has a mixed symmetry across the IP; final focus

magnets are symmetric while the quadrupole sets at the chromaticity correction

block are not symmetric, but rather exhibit symmetry with the far half of the second

interaction region.

A set of two dipole magnets is placed at the end of the first IR, used to bring

the dispersion wave to vanish at the two IPs, and match with the arc’s periodic
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side to track particles that end up in the endcaps, a radial part includes a complete
set of detectors for tracking, identification, and calorimetry.

dispersion wave. The dispersion derivative η′x has a non vanishing value at both of

the IPs leading to antisymmetric dispersion across each IP and through the final

focus magnets. Fig. (20) shows the Twiss functions at the interaction region, and

Table (9) lists the IR magnet lattice parameters.

Having non vanishing dispersion derivative through the IP has a number of ad-

vantages, which can be listed as follows

1. The dispersion has a suitable values close to final focus quadrupoles, which

enables us to correct chromaticity much closer to its major source in the final

focus quadrupoles.

2. It saves the space required for the dispersion suppressor at the end of the arc,

as well as the space required for generating dispersion needed for local the chro-

matic correction.
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TABLE 8: Magnet lattice parameters of a MEIC interaction region.

Lattice Element L [m] θ [rad] K [m−2]

Drift (IP to First Quad) 3.5 0 0
FF Quad I 0.5 0.0 -1.710610246
FF Quad II 0.5 0.0 1.793012185
Drift (Distance between Quad I & II) 0.2 0.0 0.0
Drift (Beam Extension) 2.0 0.0 0.0
DIPOLE I 1.5 -0.018 0
DIPOLE II 1.5 -0.0995 0
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Vanishing dispersion derivative at IP

The distance from the IP to the first final focus quadrupole is set to 3.3 m, which

plays a role in limiting the maximum β function values to 544 m. This version

of the lattice exhibits one symmetric interaction region setting along the straight

section, with a line of symmetry passing through the IP. A set of two dipole magnets

placed symmetrically around the IR generates dispersion through the chromaticity

compensation block and maintains vanishing dispersion and dispersion derivative at

the IP. Fig. (23) shows the Twiss functions at the interaction region. Fig. (24) shows

the beam size at the IR, and Table (9) lists the IR magnet lattice parameters.

TABLE 9: Magnet lattice parameters of a MEIC IR.

Lattice Element L [m] θ [rad] K [m−2]

Drift (IP to First Quad) 3.3 0 0
FF Quad I 0.5 0.0 -3.024116403
FF Quad II 0.5 0.0 2.701291167
Drift (Distance between Quad I & II) 2.0 0.0 0.0
Drift (Beam Extension) 6.5 0.0 0.0
DIPOLE I 1.5 0.05 0
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FIG. 23: Twiss parameters through interaction region with vanishing dispersion
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I.4.4 Spin rotators

A set of spin rotators is needed to meet MEIC requirements of preserving the polar-

ization and producing longitudinal polarization vector at the interaction point (IP).

The rotators have been designed conceptually and involve solenoid magnets to per-

form the spin rotation. In this thesis, a novel design of a decoupling compensator

is presented which balances out the effects of the solenoids in the spin rotators. A

discussion with more details about MEIC polarization and spin rotator design will

be given in Chapter IV.

I.5 SUMMARY

In this chapter an introduction to MEIC and its requirements were presented. The

MEIC design parameters were shown in Table (3). A set of lattice design goals

was introduced here, as well as some linear electron ring designs which satisfy the

requirements. Further details regarding compensation for chromaticity, polarization,

and coupling will be given in the next chapters.

A brief basic summary of the HERA electron-proton collider design was pre-

sented. The HERA electron ring lattice was constructed out of 60o phase advance

cells. The HERA rings were 6.4 km long, such a large ring made it possible to pro-

duce the required small equilibrium emittance. In the MEIC/ELIC design the ring

size is limited to 0.6-3 km, which mandates the use of larger phase advance per cell

in order to produce the required small equilibrium emittance. The chromaticity gen-

erated from HERA’s arc quadrupoles and final focus quadrupoles are much smaller

than the chromaticity expected from MEIC, due to the stronger arc and final focus

quadrupoles used in MEIC’s design. In the HERA lepton beams were polarized by

making use of Sokolov-Ternov effect to raise the polarization of the injected unpo-

larized lepton beams up to 30−45%. In contrast at MEIC, highly polarized electron

beam is produced at CEBAF and injected into MEIC with up to 80% polarization.
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CHAPTER II

CHROMATICITY AND CHROMATICITY CORRECTION

II.1 INTRODUCTION

A collection of particles within a circulating accelerator bunch has a distribution of

energies above and below the design nominal energy Eo. In this thesis the case of

circular accelerators with separated function lattices is considered. In this case the

magnitude of the momentum deviation is defined by the equilibrium energy spread

which depends only on the particle energy, bending radius, and the ring optics. Such

energy deviations lead to focusing errors in the quadrupole magnets which cause

particles with different energies to be focused at different focal points and potentially

causing a smearing effect at the focused beam spot. The smearing effect at the IP is

of great importance for collider accelerators such as MEIC and it can be one of the

major reduction factors of the luminosity of the collider. The quadrupole focusing

errors in the lattice will introduce deviations from the nominal machine tunes. These

deviations are functions of the relative momentum deviation.

In the following two sections the effects of momentum deviation on the beam spot

size at the interaction point of the collider will be discussed. The effect on the tune

of circular accelerators will also be discussed in more detail.

II.2 HILL’S EQUATIONS

To introduce the chromaticity generated by a quadrupole magnet due to energy

deviations in the passing beam, we will start with the Hamiltonian which describes

motion of a charged particle in an electromagnetic field, and then we will drive the

equation of motion in quadrupole magnet. Once the equations of motion are known

we will be able to calculate small perturbations due to the energy deviations.

By using the pathlength as an independent variable in preference to time, the

Hamiltonian for a charged particle in an external electromagnetic field is given by

[16]
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H(x, px, y, py,−pt, ct; s) = −[1 +K(s)x]

×[
q

po
As(s) +

√
1− [px −

q

po
Ax(s)]2 − [py −

q

po
Ay(s)]2 −

2pt
β

+ p2
t ],

where the momenta px,y are normalized by the nominal momentum p0, s is the

pathlength, β is the relativistic factor, and pt and K are defined by

pt = −δE
poc

(27)

and

K(s) =
1

ρ(s)
, (28)

where ρ(s) is the horizontal radius of curvature.

For a particle with a given momentum deviation, δ ≡ (p− p0)/p0, the canonical

transformation generated by

F2 =
ct

β
[1−

√
1 + β2 (2δ + δ2)], (29)

H2 = H1 +
∂F2

∂s
, (30)

−cT =
∂F2

∂δ
= − β (1 + δ) ct√

1 + β2 (2δ + δ2)
, (31)

pt =
∂F2

∂(ct)
=

1

β
[1−

√
1 + β2(2δ + δ2)], (32)

where

t = T

√
1 + β2(2δ + δ2)

β(1 + δ)
, (33)

and

1− 2

β
pt + p2

t = (1 + δ)2, (34)

simplifies the equations of motion. The new Hamiltonian takes the following form:

H(x, px, y, py, δ, ct; s) = −[1 +K(s)x]× [
q

po
As(s)+√

(1 + δ)2 − [px −
q

po
Ax(s)]2 − [py −

q

po
Ay(s)]2].

(35)
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For times that are short compared to the synchrotron frequency the adiabatic

approximation, where the momentum deviation can be viewed as a slowly varying

parameter, may be applied. Using the multipole expansion of the vector potential in

the source-free region with piece-wise constant fields, one expands the Hamiltonian

to third order in the phase space coordinates [17].

H(x, px, y, py; s) = −[1 +K(s)x][1 + δ −
p2
x + p2

y

2(1 + δ)
+

q

po
As(s)] +O(4). (36)

The multipole expansion of the vector potential (Ax, Ay, As) in a source-free region

is used in Eq. (36) to yield [18]:

Ax(s) = 0, (37a)

Ay(s) = 0, (37b)

q

po
As(s) = −Re[

∞∑
n=1

1

n
[bn(s) + ian(s)](x+ iy)n], (37c)

where bn(s) (an(s)) are the normal (skew) multipole coefficients. The n-index rep-

resents the 2n pole (e.g. b3 is the normal sextupole coefficient with a dimension of

(length)−2).

The magnetic field can be calculated by

Bx(s) =
1

1 +K(s)x

∂Ay
∂s
− ∂As

∂y
, (38a)

By(s) =
K(s)

1 +K(s)x
As −

∂As
∂x
− 1

1 +K(s)x

∂Ax
∂s

, (38b)

Bs(s) =
∂Ax
∂y
− ∂Ay

∂x
. (38c)

When K(s) = 0, the corresponding magnetic fields are given by

By(s) + iBx(s) = −po
q

∞∑
n=1

[bn(s) + ian(s)](x+ iy)n−1. (39)

Assuming a piece-wise constant field magnetic lattice consisting of dipoles with

cylindrical geometry and quadrupoles and sextupoles with Cartesian geometry, and

considering the case where the local radius of curvature is small, the Hamiltonian

takes the following form [17]:

H(x, px, y, py; s) =
p2
x + p2

y

2(1 + δ)
− b1(s)xδ +

b2
1(s)

2
x2+

b2(s)

2
(x2 − y2) +

b3(s)

3
(x3 − 3xy2) +O(4)

(40)
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Finally, the equations of motion derived from Hamilton’s equations are:

x′ =
∂H

∂px
=

px
1 + δ

+O(3), (41a)

p′x = −∂H
∂x

= b1(s)δ − (b2
1(s) + b2(s))x− b3(s)(x2 − y2) +O(3), (41b)

y′ =
∂H

∂py
=

py
1 + δ

, (41c)

p′y = −∂H
∂y

= b2(s)y + 2b3(s)xy +O(3) (41d)

Combining Hamilton’s equations of motion into two second order ordinary differential

equations yields Hill’s equations.

x′′ +
b2(s) + b2

1(s)

1 + δ
x = b1(s)δ − b3(s)

1 + δ
(x2 − y2) +O(3), (42a)

y′′ − b2(s)

1 + δ
y =

2b3(s)

1 + δ
xy +O(3), (42b)

where b1 = 1/ρ . b2 and b3 are the quadrupole and sextupole normal fields respec-

tively.

II.3 TUNE CHROMATICITY IN COLLIDER RINGS

As seen in Section I.1.2, the betatron tune of a circular accelerator is defined as the

number of betatron oscillations the particles accumulate as they travel once around

the ring, and is given by the following formula

ξ =
1

4π

∫ s0+L

s0

1

β
ds, (43)

where β is the betatron Twiss function. The average value of the betatron function

around the ring can be approximatley given by

β̄ =
R

ξ
, (44)

where R is the radius of the ring R = L/(2π)

A deviation in a particle energy from the design energy leads to a change in

the tune of the particle . This dependence is known as the chromaticity. In the

following section, we will derive the first order chromaticity and later the second

order expansion with regard to energy deviation δ.
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II.3.1 First order chromaticity

From Eq. (42) considering the case of only quadrupole and sextupole magnets and

setting b1(s) = 0, and 1/(1 + δ) ≈ (1− δ+ ...), Hill’s equations will take the following

form:

x′′ + b2(s)x(1− δ) = −b3(1− δ)(x2 − y2), (45a)

y′′ − b2(s)y(1− δ) = 2b3(1− δ)xy. (45b)

We need to retain only the betatron oscillation terms involving xβ or yβ to derive

chromatic tune shifts. Setting x = xβ + ηxδ, and y = yβ, where ηy = 0, to account

for dispersion,

x′′ + b2(s)x(1− δ) = −b3(s)

2
(1− δ)(x2 − y2), (46a)

y′′ − b2(s)y(1− δ) = b3(s)(1− δ)xy, (46b)

and therefore

x′′β + b2(s)xβ = b2(s)xβδ − b3(s)ηxxβδ −
b3(s)

2
(x2

β − y2
β) +O(3), (47a)

y′′β − b2(s)yβ = −b2(s)yβδ + b3(s)ηyyβδ + b3(s)xβyβ +O(3). (47b)

Ignoring the nonchromatic terms of the second order (geometric aberrations),

x′′β + b2(s)xβ = (b2(s)− b3(s)ηx)xβδ, (48a)

y′′β − b2(s)yβ = −(b2(s)− b3(s)ηy)yβδ, (48b)

we observe that the perturbation terms are linear in the betatron amplitude

ξx = − 1

4π

∮
βx(b2(s)− b3(s)ηx)ds, (49a)

ξy =
1

4π

∮
βy(b2(s)− b3(s)ηx)ds. (49b)

A more accurate derivation of the first and higher order chromaticity based on a

more exact formula for the nonlinear dispersion function was introduced in [19]. The

expansion of the tune, ξ, with respect to the momentum deviation, δ, is given by,

ξ =
∑
n=0

δnξn, (50)

where

ξx1 =
1

4π

∫ s0+L

s0

[−βx(K2
x + b2 − b3η0)− 2αxKxη

′
0 + γxKxη0]ds, (51)
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ξy1 =
1

4π

∫ s

0

ds(βy(b2 − b3η0) + γyKxη0), (52)

and γx is defined as

γx = (K2
x + b2)βx +

1

2
β′′x . (53)

II.3.2 Second order tune chromaticity

A perturbative formula for the nonlinear dispersion function of a ring, which gives

explicit expressions for higher-order terms, was derived in [20]. The derivation starts

from the Hamiltonian without linearizing the kinematic term and then gives recursion

expressions for higher order terms up to the fourth order. The nonlinear dispersion

was used to derive the higher order expressions for the nonlinear chromaticity.

The second order variation of the tune, ξ2, with respect to the momentum devi-

ations, δ, is given by [19]

ξx2 =
1

4π

∫ s0+L

s0

[Gx,2(s)− 1

16
µ0a

2
1(0)−

∞∑
n=1

µ3
0

8(µ2
0 − π2n2)

[c2
1(n) + d2

1(n)]]ds, (54)

where

Gx,2 = βx[K
2
x(1− 1

4
(η′0)2)−K3

xη0 +
1

2
K4
xη

2
0 + b2 − b3(η0 − η1) +

1

2
b4η

2
0]

−2αx(Kxη
′
1 −K2

xη0η
′
0) + γx(Kxη1 −

1

2
K2
xη

2
0 +

3

2
η2

0).
(55)

The integral form of the Fourier components c1(n) and d1(n) are given by:

c1(n) =
2

µ0

∫ s0+L

s0

[(Gx,1 −
1

2βx
(
2πn

µx
)2Kxη0) cos[

2πn

µx
φx]+

2πn

µx
(
αx
βx
Kxη0 −Kxη

′
0) sin[

2πn

µx
φx]]ds,

(56)

d1(n) =
2

µ0

∫ s0+L

s0

[(Gx,1 −
1

2βx
(
2πn

µx
)2Kxη0) sin[

2πn

µx
φx]−

2πn

µx
(
αx
βx
Kxη0 −Kxη

′
0) cos[

2πn

µx
φx]]ds.

(57)

Gx,1 is given by

Gx,1 = −βx(K2
X + b2 − b3η0)− 2αxKxη

′
0 + γxKxη0. (58)
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II.4 CHROMATICITY IN CASE OF A STRAIGHT BEAMLINE

Next, the first and second order chromaticity for a straight section will be discussed.

This special case is interesting for the MEIC, where the interaction region is the ma-

jor contributor to chromaticity and it is located in a straight section. Chromaticity

for different configurations will be presented in the following order: drift space, pure

quadrupole field, pure sextupole field, and finally pure octupole field.

Let us consider the first case of a drift with no magnetic fields by setting b2 =

b3 = b4 = 0 in Eqs. (51) and (54). We have:

ξ1 = 0, (59)

and

ξ2 =
1

4π

∫ l

0

(
3

4
η2

0β
′′)ds. (60)

In case of a pure quadrupole field by setting b3 = b4 = 0 in Eqs. (51) and (54), we

have:

ξ1 =
1

4

∫ l

0

[βxη0b3]ds, (61)

where the second order chromaticity will take the following form:

ξ2 =
1

4π

∫ l

0

[βxb2 +
3

2
η2

0(b2βx +
β′′x
2

)]ds− 1

8
(

∫ l

0

(βxb2)ds)2+

∞∑
n=1

µx
2(µ2

x − π2n2)
[(

∫ l

0

βxb2 cos(
2πn

µx
φx)ds)

2 + (

∫ l

0

βxb2 sin(
2πn

µx
φx)ds)

2].

(62)

For a pure sextupole field, by setting b2 = b4 = 0 in Eqs. (51) and (54), we have

ξ1 =
1

4π

∫ l

0

βxη0b3ds, (63)

where the second order chromaticity will take the following form:

ξ2 =
1

4π

∫ l

0

[−βxb3(η0 − η1) +
3

4
η2

0β
′′
x ]ds− 1

8
(

∫ l

0

(βxη0b3)ds)2+

∞∑
n=1

µx
2(µ2

x − π2n2)
[(

∫ l

0

βxη0b3 cos(
2πn

µx
φx)ds)

2 + (

∫ l

0

βxη0b3 sin(
2πn

µx
φx)ds)

2].

(64)

The last case considered here is for a pure octupole field. Here the first order

vanishes and the second order will take the following form:

ξ2 =
1

4π

∫ l

0

η2
0

2
(βxb4 +

3

2
β′′x)ds. (65)
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II.4.1 Compensating chromaticity in a straight interaction region

In this section we will introduce the conditions for canceling the first and second order

chromaticity, using a combined function magnet with quadrupole, sextupole, and

octupole components. This conceptual case will help in understanding the general

idea of compensating chromaticity in collider rings. The equations indicate that

the first order chromaticity is excited by a combined function magnet having three

multipole components (quadrupole, sextupole, and octupole):

ξx1 =
1

4π

∫ l

0

βx(−b2 + η0b3)ds. (66)

We can see that the choice of sextupole field, b3 = b2/η0 will compensate for the first

order chromaticity.

Now considering the second order chromaticity in our conceptual case, the second

order chromaticity will be reduced to the following form:

ξ2 =
1

4π

∫ l

0

[βx(b2 − b3(η0 − η1)) +
1

2
βxb4η

2
0 +

3

2
η2

0(b2βx +
β2
x

2
)]ds

−1

8
(

∫ l

0

βx(b2 − b3η0)ds)2 +
∞∑
n=1

µx
2(µ2

x − π2n2)

[(

∫ l

0

βx(b2 − b3η0) cos(
2πn

µx
φx)ds)

2 + (

∫ l

0

βx(b2 − b3η0) sin(
2πn

µx
φx)ds)

2]

(67)

by setting b3 = b2/η0, we see cancelations in the oscillatory terms and ξ2 will take

the much simpler form:

ξ2 =
1

4π

∫ l

0

[βxb2
η1

η0

+
3

2
βxb2η

2
0 +

3

4
η2

0β
′′
x +

1

2
βxb4η

2
0]ds, (68)

where the integrand reduces to zero when setting the octupole field to the value given

by

b4 = −b2(3 + 2
η1

η3
0

)− 3

2

β′′x
βx
. (69)

From the above we can conclude that in order to compensate the first order chro-

maticity that originates from quadrupoles, one would need to use sextupoles at loca-

tions with non vanishing dispersion; larger dispersion would allow us to use weaker

sextupoles. From Eq. (69), we see one could use octupole magnets to compensate

for second order chromaticity generated by correcting sextupoles.
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Amplitude dependent aberrations

A scheme to compensate the amplitude dependent aberrations introduced by a chro-

maticity correcting sextupole has been proposed in [21]. The scheme involves using

sextupoles in pairs, where every two sextupoles in a pair are separated by a negative

identity transformation (−I) in both planes;

−I =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (70)

The sextupoles can be represented as thin magnets introducing kicks in the particle

trajectories given by

∆x′ = −1

2
m0ls(x

2 − y2), (71a)

∆y′ = −m0lsxy, (71b)

where m, and ls are the sextupole strength and length. A thin sextupole transfor-

mation matrix Ms, is given by:

Ms(x0, y0) =


1 0 0 0

−1
2
m0lsx0 1 1

2
m0lsx0 0

0 0 1 0

0 0 m0lsx0 1

 . (72)

Evaluating the complete transformation through a sextupole pair separated by −I
transformation yields

Mt = Ms(−I)Ms = −I, (73)

showing a complete cancellation of geometric aberrations in both horizontal and

vertical planes. This correction scheme has been applied successfully to the final focus

system of the Stanford Linear Collider [22]. Compensation of geometric aberrations

is not perfect due to the fact that, in reality, sextupoles have finite length. One could

represent finite length sextupole as a series of thin sextupole slices, where interleaved

slices between every pair of slices will spoil the perfect cancelation.
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II.5 BETA CHROMATICITY IN THE FINAL FOCUS

In this section the Montague chromatic functions are introduced, which represent a

useful figure of merit to quantify chromaticity in the vicinity of the interaction region

(IR). It also works as a useful tool in optimizing the β-chromaticity at the final focus.

First; we start with notation. Following [23], one defines the Twiss parameters

β, α, and the phase advance φ for particles with momentum deviation δ, and for

particles with zero momentum deviation as

β1 = β(0), β2 = β(δ), (74a)

α1 = α(0), α2 = α(δ), (74b)

φ1 = φ(0), φ2 = φ(δ). (74c)

One defines ∆β, ∆α, and ∆k as follows:

∆β = β2 − β1, β =
√
β1β2, (75a)

∆φ = φ2 − φ1, φ =
1

2
(φ1 + φ2), (75b)

∆k = k2(δ)− k1(0), (75c)

where k is the focusing gradient error.

Let us define the chromatic variables as:

A =
α2β1 − α1β2√

β1β2

, (76a)

B =
β2 − β1√
β2β1

=
∆β

β
. (76b)

Introduce the derivatives:

dA

ds
= β∆k + 2B

dφ

ds
, (77a)

dB

ds
= 2A

dφ

ds
. (77b)

In a region with ∆k = 0 from Eq. (77) we find that

d

ds
(A2 +B2) = 0. (78)

Therefore (A2 +B2) is invariant. The Montague chromatic function is defined as:

W =
1

2
(A2 +B2)

1
2 . (79)
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The Montague chromatic function is a dimensionless quantity that can be used

as an absolute measure of the linear chromatic perturbation in a transport line.

The factor of 1/2 represents the fact that the chromatic function tends to oscillate

at twice the betatron frequency. It is worth mentioning that this function proves

useful in optimizing required sextupole strengths for chromatic corrections, it has

been implemented in the optics design codes MAD-8 and MAD-X. It is especially

useful in studying local chromatic correction of low-β insertions in the final focus of

colliders.

Consider the thin lens approximation in the low-β insertion case [23]. The chro-

matic function, A, in a single thin focusing lens at distance s from the interaction

point (IP) is given by:

A = −2s

β∗
(80)

where β∗ is the Twiss function at the interaction point. The contribution of the final

focus quadruple to Montague chromatic function, W , takes the form [23],

W =
s

β∗
. (81)

One could calculate a rough estimate of the contribution of final focus quadrupoles

to W functions in both transverse planes, given that the initial W function is zero. In

case of the MEIC, the distance between the interaction point and the first final focus

quadrupole is L = 3.3 m. In the horizontal plane, β∗x = 0.10 m and the Montague

function Wx = 33, while in vertical plane Wy = 165.

The Montague function represents a measure of the blur of the focused particles

at the interaction point (β-chromaticity). In the following work the W functions

were used as an optimization parameter to reduce β-chromaticity at the IP using

local sextupoles placed close to IPs in places with a non vanishing dispersion.

Chromatic increase in spot size at final focus

Uncorrected chromaticity leads to an energy dependent increase in spot size as given

by [22]. See Fig. (25),

∆σx,y
σ∗x,y

≈ F

β∗x,y
σE, (82)

∆σx,y
σ∗x,y

≈ ξ∗x,yσE. (83)



49

This increase is to be added in quadrature to the unperturbed spot size. Here F is

the focal length, σE is the rms energy spread in the beam, and σx,y(s) is the rms

beam size at location s.

€ 

σ = βε
€ 

Δσ

F	
  

€ 

δF

€ 

δ = 0

IP	
  

FIG. 25: Energy-dependent increase in spot size

II.6 CHROMATICITY CORRECTION SCHEMES

In this section, a summary of common chromaticity correction schemes used in lin-

ear and circular particle colliders will be presented. We will start with the global

correction, which refers to correcting chromaticity via sextupole families distributed

through the arcs. Then the local correction will be discussed. The local correction

is carried out by a single or multiple families of sextupoles located in the vicinity of

the interaction region.

II.6.1 Global chromatic correction

Most of the current storage and collider rings use a global distributed scheme in

correcting chromaticity. In this scheme, a single or multiple families of sextupoles are

placed within arc cells in positions with dispersion and a good aspect ratio between

both transverse β-functions. As stated before, in order to compensate for geometric

aberrations the phase advance between sextupoles in each family has to be set to

180o which gives the required −I transformation.
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The simplest scheme for correcting chromaticity in the arcs is to place a sextupole

next to each quadrupole. All sextupoles close to focusing quadrupoles compose a fam-

ily, SF, and those next to defocusing quadrupoles compose another family, SD. Since

βx will be large for a SF family and βy will be large for a SD family, this will reduce

the required sextupole strength for correcting chromaticity. Those sextupole families

are sufficient to make the arc achromatic. It is worth mentioning that the closer

the sextupoles are to quadrupoles, the better the chromaticity compensation. This

is due to the fact that nearer to the quadrupoles the difference between horizontal

and vertical betatron amplitudes increases, which helps in decoupling them when

compensating tune spread. In the case of a collider ring, the major sources of chro-

maticity are the final focus quadrupoles. In some designs the final focus section is

placed in a dispersion free region, making the sextupoles in the arcs the only resource

to correct chromaticity.

II.6.2 Local chromatic correction

Modern designs for low β-insertions for particle colliders require a very small β func-

tion to achieve high luminosity. In these cases, as the final focusing quadrupoles are

the major source of chromaticity, it is more advantageous to compensate for chro-

maticity locally around the interaction region so that the chromatic waves do not to

propagate to the arcs.

To be able to compensate chromaticity, we first need to create dispersion along

the beamline close to the interaction region, keeping in mind that beam size has to

be very small at the interaction point and the dispersion has to vanish there. The

first derivative of the dispersion can be non-vanishing at the interaction point. A

local correction scheme has been proposed for linear colliders [24, 25, 22]; later it was

adopted by new circular collider designs, like the Super B-factory [14].

Local chromaticity correction has several advantages over global correction, and

can be summarized in the following points:

• The local correction helps in maintaining a very small beam size at the IP, β

chromaticity has to be corrected at the IP.

• The local correction helps in maintaining a good dynamic aperture, since the

β function has relatively larger values around the IP, which allows for weaker
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correcting sextupoles. Having smaller sextupole strengths is crucial for not

destroying the dynamic aperture.

• The local correction helps in confining the chromatic wave to within the inter-

action region.

This approach comes with the complication of controlling the dispersion and its

derivative at the IP. This is especially true for electron beams due to the fact that

using dipoles close to IR will generate bad synchrotron radiation, which must be

shielded from the detector area.

For MEIC we have adopted this modern approach of correcting chromaticity both

locally in the IR and using sextupoles at the arcs as well.

II.6.3 Phase advance adjustment between the two β- insertions

A scheme to compensate the second order chromaticity was introduced in [26] for the

SSC. Later it was explored as an upgrade option for LHC [27]. A brief account of

the scheme and theoretical background will be given here. In the following chapter

a detailed discussion about how this scheme can be adopted for the MEIC ring will

be presented.

Considering a collider ring with a set of N IRs, each has a set of final focusing

quadrupoles (FF ). Let us define the integration done over the final focus quadrupoles

left (L) and right (R) of the IP:

IRi
x =

∫
FFi

dsk(s)βx(s) (84a)

ILi
x =

∫
FFi

dsk(s)βx(s) (84b)

IRi
y = −

∫
FFi

dsk(s)βy(s) (84c)

ILxRi = −
∫
FFi

dsk(s)βy(s), (84d)

where k(s) is the quadrupole strength.

The off-momentum β-beating, β′(s), is given by [27]:

β′x,y(s)

βx,y(s)
= − 1

2 sin(2πνx,y)

N∑
i=1

[IRi
x,y + ILi

x,y] cos(2 | µix,y − µx,y(s) | −2πνx,y), (85)
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where µix,y is the phase advance at IPi, and Qx,y is the horizontal (vertical) tune of

the machine. At the collision point it becomes

β′∗i
β∗i

= − 1

2 sin(2πν)

N∑
j=1

[IRj + ILj ] cos(2 | µij | −2πν), (86)

and µij = µi − µj.
The second order chromaticity is given by [27]:

ξ2 = − 1

8π sin(2πν)

N∑
i=1

N∑
j=1

[IRiIRj + ILiILj + 2ILiIRj ] cos(2 | µij | −2πν). (87)

In the case of only two symmetric IPs at the collider ring, the off momentum

β-beat and second order chromaticity are given by:

β′∗

β∗
= − I

R + IL

sin(2πν)
cos(µij) cos(µij − 2πν), (88)

ξ2 = − (IR + IL)2

2π sin(2πν)
cos(µij) cos(µij − 2πν). (89)

We can conclude from above that by separating the two IPs by (2n + 1)π
2

(n

integer) in betatron phase, one can cancel out the off momentum β-beat and the

second order chromaticity.

II.7 TOUSCHEK LIFETIME

The beam lifetime in an electron storage ring is limited by a number of factors: the

quantum lifetime τq, scattering (elastic or inelastic) of electrons by the residual gas

atoms τg, Touschek scattering τTouschek, and the effect of trapped ions in the electron

beam potential τion. The total lifetime is given by

1

τt
=

1

τq
+

1

τg
+

1

τTouschek

+
1

τion

. (90)

The quantum lifetime is defined as the reduction in the beam lifetime due to

quantum excitations. In quantum excitation, the particle’s emission of a high energy

synchrotron photon causes the particle to occasionally reach large oscillation ampli-

tudes, where the particle may cross the transverse aperture or the energy acceptance.

In this section we focus on the Touschek effect and study the case for the MEIC

electron figure-8 ring. The Touschek effect [28] describes particle loss within a bunch
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due to a single particle-particle collision, where the momentum transfer from the

transverse into longitudinal phase space causes the scattered particle to cross the

momentum aperture of the lattice. The Touschek effect is of fundamental importance

for the operation of collider rings, both in terms of beam lifetime, and beam stability.

II.7.1 Computing Touschek lifetime

The Touschek lifetime is defined as the time needed for the beam intensity to decay

to half its initial value. For an initial number of particles, N0, the reduced number

after time, t, is given by

N(t) =
N0

1 + t/τ
. (91)

In case of a flat electron beam, (εx/βx � εy/βy), the lifetime may be calculated by

[29]
1

τ
=

Nr0
2c

8πγ3σsL

∫
L

D(ξ)ds

σx(s)σy(s)σx′(s)δ2
acc(s)

, (92)

where r0 is the classical electron radius, c is the speed of light, N is the number of

particles per bunch, L is the machine path length, σs is the rms bunch length, and

σx(s), σy(s) are the rms horizontal and vertical beam sizes. For horizontal bending

lattices, σx(s), σy(s) are given by:

σx(s) =
√
εxβx(s) + (σδpηx(s))

2, (93a)

σy(s) =
√
εyβy(s), (93b)

where εx and εy are the horizontal and vertical emittance respectively, ηx, η
′
x are the

horizontal dispersion and its derivative, σδp is the rms relative momentum spread,

and σx′(s) is the rms horizontal beam divergence. The rms horizontal beam diver-

gence for x ≈ 0 is given by:

σx′(s) =
εx

σx(s)

√
1 +

H(s)σ2
δp

εx
. (94)

The chromatic invariant and the Twiss function in x are defined, respectively, as [29]:

H(s) = γx(s)η
2
x(s) + 2αx(s)ηx(s)η

′

x(s) + βx(s)
[
η

′

x(s)
]2

, (95a)

γx(s) =
1 + α2

x(s)

βx(s)
, (95b)
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with

ξ(s) =

(
δacc(s)

γσx′(s)

)2

, (96)

and

D(ξ) =

∫ 1

0

(
1

u
− 1

2
ln

1

u
− 1

)
e−ξ/udu. (97)

As the particles scattered by Touschek scattering leave the stable RF bucket, they

start coasting outside the stable bucket. A number of interest is the percentage of

particles outside the RF bucket, which is given by [30]

Ncoast =
t/τ

1 + t/τ
N0. (98)

A rough, order of magnitude estimate of the beam lifetime can be obtained by

using effective estimation of the β function to compute the rms transverse beam

divergence, σx′ =
√
εx/βeff , and assuming that the function D(ξ) is well-estimated

by a constant. A more accurate estimate of the Touschek effect is obtained by

estimating the integral in Eq. (92) as a sum over all N elements in the lattice:

1

τTouschek

≈ Nr2
0c

8πγ3σsL

N∑
i=1

D(ξ)∆si
σx(si)σy(si)σx′(si)δ2

acc(si)
, (99)

where the beam parameters, such as α, β functions as well as the dispersion, η, are

all assumed constant (therefore yielding constant beam sizes σx, σy, and divergence

σx′), in each of the N lattice elements.

II.7.2 Touschek lifetime in case of constant momentum acceptance

We first carry out calculations for the Touschek lifetime with the constant momentum

acceptance, δacc, in Eq. (99). The dependence of the Touschek lifetime on the constant

momentum acceptance for the MEIC 135o-phase advance lattice is given in Fig. (26),

and for the 90o phase advance lattice in Fig. (27).

II.7.3 Touschek lifetime in case of variable dynamic transverse momen-

tum acceptance

The momentum acceptance of an electron ring is limited by two factors: the height

of the RF bucket, and the transverse acceptance of the lattice where particles with

momentum deviations have a closed orbit which hits the vacuum chamber [29]. This
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FIG. 26: Touschek lifetime for the 9 GeV MEIC 135o lattice.
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FIG. 27: Touschek lifetime for the 9 GeV MEIC 90o lattice.
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momentum acceptance is provided by the lattice and varies throughout the ring. In

the case of a linear lattice, it is given by [29]

δacc(s0) = ±min

(
ax(s)√

H(s0)βx(s) + |η(s)|

)
, (100)

with the scattering event taking place at s = s0. ax(s) is the physical aperture

(beam pipe half width) at location s. In the case of a lattice with high nonlinearities,

tracking is needed to determine the transverse acceptance of the lattice.

We estimate the lower limit of the Touschek lifetime by using the minimum beam

pipe half width size along the beamline in Eq. (100), i.e., ax(s) = ax,min = const.

The results are shown in Fig. (28) and Fig. (29). For the minimum Touschek lifetime

of 2 hours, the minimum beam pipe half width of ax,min & 10 mm is required for the

135o lattice, while much less than this is required for the 90o lattice.
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FIG. 28: Touschek lifetime for the 9 GeV MEIC 135o lattice as a function of the
minimum size of the beam pipe half width.
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FIG. 29: Touschek lifetime for the 9 GeV MEIC 90o lattice as a function of the
minimum size of the beam pipe half width.
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II.8 BEAM-BEAM TUNE SHIFT

Beam-beam interactions cause an emittance growth of colliding beams, which leads

to reduction of collider luminosity. MEIC design parameters with very small β∗ at

the IP, and moderate crab crossing angle (50 to 100 mrad) require an investigation

of the beam-beam effect. A recent simulation study of the beam-beam effect [31]

was carried out for the MEIC with a 5 GeV electron beam colliding with a 60 GeV

proton beam. The betatron tune working point, which performs at the designed

luminosity was found. The study demonstrated that the proposed parameter set is

safely separated from beam-beam instabilities and preserves the design luminosity.

Fig. (30) shows the tune footprint of 400 random orbits of both electron and

proton beams. The tune spread of the proton beam is smaller than the spread of

the electron beam. The tune footprint of each beam is safely away from lower order

resonances, which allows beams to maintain high luminosity for a very long time.

FIG. 30: Tune space for the electron beam. High order resonant lines are shown in
various colors. The line for which the ratio is equal to the golden mean is shown in
green. Small red and blue dots represent the tunes of the 400 random orbits from the
electron and proton beams, respectively. Large red and blue dots represent design
tunes for electron and proton beams.
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II.9 RADIATION POWER

The synchrotron radiation power for high energy particle beams (like the MEIC

electron figure-8 ring) limits the maximum energy achievable in circular accelerator.

The radiation power of protons is much smaller than those of electrons by a factor

of 1.1367 × 1013. In case of isomagnetic lattice (all bending magnets have the same

bending radius) the total synchrotron radiation power is given by Eq. (101).

< Ps[MW ] >iso= 0.088463
E4[GeV ]

ρ[m]
I[A] (101)

Fig. (31) shows synchrotron radiation power per unit beam current as a function

of bending radius for isomagnetic lattice. For an electron ring at 9 GeV and an

isomagnetic lattice with radius of curvature of 116 m, the total radiation power is

5 MW/A, while for a lattice with radius of curvature of 25 m, the total radiation

power is 23 MW/A.
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FIG. 31: Synchrotron radiation power per unit beam current as a function of bending
radius at three different electron energies. The strong dependence of radiation power
on the electron energy causes substantial limitations on the maximum achievable
energy in circular accelerators.
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II.10 SUMMARY

The linear and non-linear equations of motion were derived from the Hamiltonian of a

charged particle in electromagnetic field. Accurate expansions for the first and second

order tune chromaticity were derived from the equations of non-linear motion. An

analytic calculation model was developed for the tune chromaticity generated by final

focus quadrupoles in a straight section. A correction mechanism using sextupole and

octupole magnets was discussed. A review of chromaticity correction schemes was

presented as well. Three chromaticity correction schemes of interest were evaluated

and used in this thesis. The three schemes are the global chromaticity correction,

local chromaticity correction, and adjusting phase advance between low β insertions

to cancel second order chromaticity. The effect of limited momentum acceptance

due to chromaticity on the Touschek lifetime was studied and quantified for the

considered lattice designs. An efficient code for computing Touschek lifetime for an

electron flat beam was developed and used for the computations.
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CHAPTER III

CHROMATICITY CORRECTION FOR MEIC

III.1 INTRODUCTION

This chapter will discuss a preferred scheme to correct for MEIC chromaticity, be-

ginning by discussing the natural chromaticity generated by the arc’s quadrupoles

and then present a comparison between two different arc lattices in correcting such

chromaticty. The rest of the chapter will be dedicated to the interaction region de-

signs and local chromatic correction. Two different IR designs will be presented.

The first has non-vanishing dispersion derivative across the IP, the second IR design

has a symmetric dispersion with the IP as the symmetry point; in this design both

dispersion and its derivative will vanish at the IP.

III.2 NATURAL CHROMATICITY FROM THE ARC SECTIONS

This section is dedicated to a discussion of the natural chromaticity generated from

the arc’s quarupoles. It will explore two different linear lattice designs for the arcs,

and consider the contribution of each arc lattice to the over all chromaticity of the

figure-8 ring. The motivation in this section is to evaluate different lattices choices

for the figure-8 collider ring in terms of chromaticity.

III.2.1 Arc lattice with 135o phase advance cells

In this lattice 135o phase advance FODO cell has been chosen so that it’s close to

the theoretical minimum emittance for all FODO cells. It is quite common to use

such high betatron phase advance lattice for light sources, or a damping storage

ring. The case of a collider ring is more challenging, as the low β -insertion is the

major contributor to chromaticity. The final focus quadrupole would produce tune

chromaticity comparable to the contribution of all other quadrupoles in the ring or

more, and has an impact on the β function at IP (β∗) and the magnet free distance

from IP to first final focus quadrupole.

The following treatment will address the natural chromaticity of a figure-8 ring

with no final focus quadrupoles, as an aid to assist in choosing the best figure-8 cell

design for the MEIC case.
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The scheme for correcting chromaticity would be solely global, where a set of

interleaved sextupole families are placed in the arc cells and are used for chromatic

correction. Each sextupole was placed adjacent to a quadrupole they correct. Sex-

tupoles were added in families, every family member was placed 3π in betatron phase

from each other to cancel second order aberrations. Fig. (32) shows the sextupole

magnets in arc cells.

The basic structure of the sextupole families can be put as follows:

Two sextupoles per cell: One for vertical correction next to defocusing

quadrupole, and the second for horizontal correction next to focusing

quadrupole.

Four families of sextupoles repeated every 4 cells: Each cell has 135o phase

advance, so the total phase advance between each family member is set to 3π.

Four different knobs: Enables optimizing for four different chromatic quantities

(first order chromaticity, second order chromaticity, W chromatic function at

the IP, W chromatic function at the end of the IR).

Sextupoles at the second arc: The second arc was designed to be almost iden-

tical (opposite bending) to the first arc, but the dispersion function has the

opposite sign. So the same correcting sextupoles were used but with opposite

polarity.

The basic structure of the first arc cells is given as following,

QD - SXTFA1 - BENDIN - QF - SXTDA1 - BENDIN

QD - SXTFB1 - BENDIN - QF - SXTDB1 - BENDIN

QD - SXTFC1 - BENDIN - QF - SXTDC1 - BENDIN

QD - SXTFD1 - BENDIN - QF - SXTDD1 - BENDIN

where QF(QD) is the focusing (defocusing) quadrupole, BENDIN is the bending

magnet in the first arc, and SXT(A,B,C,D)1 are sextupole magnets. The basic

structure of the second arc cells is given by:

QD - SXTFA2 - BENDOUT - QF - SXTDA2 - BENDOUT

QD - SXTFB2 - BENDOUT - QF - SXTDB2 - BENDOUT

QD - SXTFC2 - BENDOUT - QF - SXTDC2 - BENDOUT

QD - SXTFD2 - BENDOUT - QF - SXTDD2 - BENDOUT



63

BENDOUT is the bending magnet in the second arc with opposite polarity, and

SXT(A,B,C,D)2 are sextupole magnets with exact strength and opposite polarity of

those in the first arc. This structure is repeated for 7 times in each arc, with an −I
transformation between every sextupole and its symmetric partner in the family.
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FIG. 32: MEIC arc cells with sextupole magnets (smallest boxes). Sextupoles are
placed at locations with good aspect ratios between βx and βy.

The chromaticity correction was carried out using the computer code (MAD-X).

During the optimization process, the arc sextupoles were optimized to correct the

first and the second order tune chromaticity. Fig. (33) shows the tune variation with

momentum deviation after correction in both horizontal and vertical planes. The

momentum acceptance corresponds to more than 115 hours of Touschek lifetime.

A track was launched using the MAD-X PTC tracking module for a figure-8 ring

with all sextupoles on. The dynamic aperture was found to be more than sufficient;

85 σ in both transverse dimensions. The limiting factor for dynamic aperture is the

arc’s correcting sextupoles.
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FIG. 33: Tune variation with momentum deviation for the MEIC figure-8 ring with-
out the interaction region. Momentum acceptance is ±0.8%.
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III.2.2 Arc lattice with 90o phase advance cells

The 90o phase advance per cell is a result of weaker focusing quadrupoles. Lesser

quadrupole strengths would lead to smaller natural chromaticity and therefore weaker

correcting sextupoles. This would also make a larger dynamic aperture. This scheme

for correcting chromaticity is solely global, just as before. Interleaved sextupole

families at the arcs were used for chromatic correction. Each sextupole was placed in

the arc cells adjacent to a quadrupole. Every sextupole family member was placed at

π phase from each other to cancel second order aberrations. Fig. (34) shows sextupole

magnets in arc cells. The basic structure of sextupole families can be put as follows:

Number of sextupoles per cell: One sextupole every two cells for vertical cor-

rection next to the defocusing quadrupole (non interleaved sextupole families),

and one sextupole for horizontal correction next to the focusing quadrupole

(interleaved sextupole families).

Two families of sextupoles repeated every 2 cells: Each cell has 90o phase

advance so the total phase advance between each family member is π.

Two different knobs: Enables optimizing for two different chromatic quantities

(first order chromaticity, second order chromaticity). In this case more knobs

need to be created at the local correction block to correct Montague chromatic

functions W .

Sextupoles at the second arc: The second arc was designed to be almost iden-

tical (opposite bending) to the first arc, but the dispersion function has the

opposite sign. So the same correcting sextupoles were used but with opposite

polarity.

The basic structure of the first arc cells is given as following,

CELLRA = QF - SF1A - DRIFT - QD - BNDIN - QD2

CELLRB = QF - SF1B - DRIFT - QD - BNDIN - QD2

CELLR = CELLRA - SD1A - RCELLRB - CELLRA - SD1A -

RCELLRB

where QD(QF) is the focusing (defocusing) quadrupole, BNDIN is the bending mag-

net in the first arc, and SD(SF)(A,B) are sextupole magnets, and the RCELLRB

means is the reverse lattice of CELLRB.
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The lattice structure at the second arc is given by:

CELLLA = QF - SF2A - DRIFT - QD - BNDOUT - QD2

CELLLB = QF - SF2B - DRIFT - QD - BNDOUT - QD2

CELLL = CELLLA - SD2A - RCELLLB - CELLLA - SD2A - RCELLLB

This structure is repeated 29 times in each arc, with an −I transformation be-

tween every sextupole and its symmetric partner in the family.
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FIG. 34: MEIC arc cells with sextupole magnets (smallest boxes). Sextupoles are
placed at locations with good aspect ratio between βx and βy.

The correction was studied using the computer code (MAD-X). During the op-

timization process the sextupole knobs in the arcs were optimized to correct first

and second order tune chromaticity. Fig. (35) show tune variation with momentum

deviation after correction in both horizontal and vertical planes.

Tracking was carried out using the MAD-X PTC tracking module for a figure-

8 ring with all sextupoles on. The dynamic aperture was found to be more than

sufficient at 120 σ in both transverse dimensions. Clearly, this lattice has a larger

dynamic aperture than the 135o case.
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III.3 ANALYSIS OF CHROMATICITY OF THE FINAL FOCUSING

QUADRUPOLES

The final focus quadrupoles provide the major contribution to chromaticity. Refer-

ring to Eq. (49), the first order chromaticity from quadrupole contribution is given

by

ξx = − 1

4π

∮
βxb2(s)ds, (102a)

ξy =
1

4π

∮
βyb2(s)ds. (102b)

The contribution to the first order chromaticity due to a quadrupole magnet

increases with the β function and the quadrupole strength. One realizes that in

order to optimize for the lowest possible contribution to chromaticity from a final

focus quadrupole, we must limit the maximum β function at that location while

maintaining the design requirements of β∗ and magnet free space from the IP to the

first final focusing quadrupole.

The betatron function can be given in terms of its value at the IP by

β(s) = β∗ +
s2

β∗
, (103)

where s is the distance from the interaction point. As in the MEIC design, the

magnet free distance, L, must be large enough to enable the installation of large

particle detectors. As a result the β function will increase dramatically at the final

focus quadrupoles, contributing to the chromaticity.

A rough estimate of the contribution of the final focus quadrupoles to chromaticity

using Eq. (102) was calculated. The results are given in Table (10) for a non-vanishing

dispersion derivative at the IP case and Table (11) for a vanishing dispersion deriva-

tive at the IP. The total chromaticity is the sum of the chromatic contributions of

every quadrupole in the lattice.

III.4 CORRECTING CHROMATICITY FOR THE MEIC

In this section, the general correction scheme adopted for the MEIC will be discussed

and the correction scheme will be described in more detail. The final results after

correction will be presented in addition to dynamic aperture tracking.

There are two main goals for correcting chromaticity. The first is to correct the

tune chromaticity to enable stability of the beam dynamics and a long Touschek
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TABLE 10: Estimates of the first order chromaticity from the MEIC final focus
quadrupoles with non-vanishing dispersion derivative at the interaction point.

Magnet K [m−2] L [m] βx (βy) [m] ξx (ξy)

Horizontal Quad 1.79 0.5 210 (324) -188 (289)
Vertical Quad -1.71 0.5 122 (612) 104 (-523)

TABLE 11: Estimates of the first order chromaticity from the MEIC final focus
quadrupoles with vanishing dispersion derivative at the interaction point.

Magnet K [m−2] L [m] βx (βy) [m] ξx (ξy)

Horizontal Quad 2.70 0.5 281 (320) -397 (432)
Vertical Quad -3.0 0.5 109 (539) 163 (-808)

lifetime. The second goal is to reduce the off-momentum betatron beats (β chro-

maticity) at the IP to achieve the required beam size at the IP, which produces the

design luminosity of the collider.

III.4.1 Anti-symmetric dispersion around the interaction point

In the following sections. A scheme for correcting chromaticity for an interaction re-

gion with an anti-symmetric dispersion across the interaction point will be presented,

in this case only the dispersion vanishes at the interaction point while its derivative

has a finite value. The interaction region linear lattice was presented in detail in

section (I.4.3). In this part the local and global correction scheme of the first and

second order chromaticity will be presented.

Local correction This correction was done using a set of sextupoles placed sym-

metrically around the IP in places with suitably large values of dispersion and be-

tatron function, in order to reduce the sextupole strength needed for the correction.

The dispersion required for the chromatic correction was generated from the arc

dipoles and left to propagate through the IR while maintaining dispersion-free IPs
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FIG. 36: Twiss function near the IR with a non-vanishing dispersion derivative at
the IP.

with an antisymmetric dispersion wave around each of the two IPs. Montague chro-

matic functions, Wx,y, were used as a measure of β chromaticity at the IP. Local

correcting sextupoles around the IP were used to reduce those functions from 103 to

10−4, while confining them to acceptable values for the rest of the ring. Six sextupole

pairs were used in this process; the pair closest to the IP was used to eliminate the

Wx,y functions at the IP, and the remaining five pairs were invoked to confine chro-

matic functions within the IR. Fig. (37) shows Montague functions locally around

the IP after correction. Second order chromaticity arising from the IR’s final focus

quadrupoles and correcting sextupoles was mitigated by adjusting the phase advance

between the two symmetric interaction regions to be π(1/2+n) (where n is an integer

number).
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FIG. 37: MEIC Montague chromatic functions at the IP after correction with local sextupoles. Sextupoles are placed at
locations with a good aspect ratio between βx and βy.
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FIG. 38: MEIC Montague chromatic functions in the two interaction regions after correction with local sextupoles.
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FIG. 39: MEIC Montague chromatic functions in the figure-8 ring after sextupole correction.
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Global correction The residual chromaticity propagated from the IR, in addition

to the natural chromaticity generated by the arc quadrupoles, was compensated with

families of sextupoles placed in the arcs and in the other straight which has no IP. In

the arc case, sets of interleaved sextupole families were used, every family member

was placed at 3π phase from each other to cancel second order effects. The main goal

of the sextupole families in the arcs is to reduce the tune variation with momentum

deviation (tune chromaticity). A global optimization was used to reduce it. Fig. (40)

shows tune variation with momentum offset after the correction.
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FIG. 40: MEIC tune variation with momentum deviation before and after correction.
Momentum acceptance is ±0.3%.
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A Touschek lifetime calculation showed that for the lattice under study one needs

at least 0.003 momentum acceptance for the lifetime to reach 3 hours. Fig. (26)

shows the Touschek lifetime dependance on momentum acceptance. The MEIC is

expected to have shorter depolarization time scale, hence the electron ring will be

refilled before Touschek effect becomes an issue. A dynamic aperture study showed

that the unbalanced local correcting sextupoles reduced the dynamic aperture. The

anitsymmteric dispersion across the IP made it mandatory for sextupoles of the same

family to have opposite signs and the second order aberrations were not canceled.
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III.4.2 Symmetric dispersion around the interaction point

In the following section, a scheme for correcting chromaticity for an interaction region

with a symmetric dispersion across the interaction point is presented. In this case

both dispersion and its derivative vanish at the interaction point. The interaction

region linear lattice was presented in detail in Section I.4.3. In this part, we will

present the linear lattice design of the interaction region matching section and adja-

cent chromaticity correction block. The last part of this section will be dedicated to

local and global correction schemes of the first and second order chromaticity.

Interaction region matching section

A matching section was designed to match the large betatron functions and dispersion

to the periodic structure of the chromatic correction block. The lattice structure of

the matching section is given as follows:

[DRIFT, OIRD2, SIRD1, QFFMTCH04, DRIFT, OIRF2, SIRF1,

QFFMTCH03, DFF, QFFMTCH02,OIRD1, SIRD2, DRIFT,

QFFMTCH01, DRIFT,OIRF1, SIRF2]

The following table defines each lattice element and its parameters:

TABLE 12: Magnets of the interaction region matching section.

Element Type L [m] K [m−2] M [m−3] O [m−4]

QFFMTCH01 Quad. 0.5 0.79 0 0
QFFMTCH02 Quad. 0.5 -1.20 0 0
QFFMTCH03 Quad. 0.5 1.130 0 0
QFFMTCH04 Quad. 0.5 -1.11 0 0
SIRF1 Sext. 0.2 0 14.2 0
SIRF2 Sext. 0.2 0 -960 0
SIRD1 Sext. 0.2 0 -244 0
SIRD2 Sext. 0.2 0 147 0
OIRD1 Oct. 0.2 0 0 37366
OIRD2 Oct. 0.2 0 0 53865
OIRF1 Oct. 0.2 0 0 1232930
OIRF2 Oct. 0.2 0 0 -4960
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Description of the chromaticity correction block

The chromaticity correction block was designed to serve two main purposes. The first

is to generate the Twiss function suitable for chromaticity correction (β functions

with a reasonable aspect ratio between the horizontal and vertical peaks, 180o degrees

in phase advance in both planes at sextupole locations, and a dispersion function

which has the same sign at all members of each sextupole family). The second goal

of the chromatic correction block is to mitigate β function to adequate values that are

matched to the arc using a matching section. Fig. (41) shows the Twiss parameters

through the IR and the chromaticity correction block.
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FIG. 41: Twiss functions at the chromaticity correction block.

The lattice structure of the block can be listed as follows:

[DRIFT, SIRD4, QCCB02, DRIFT, SIRF3, QCCB01, DFF2, SIRD3,

QCCB02, SIRD3, DFF1, QCCB01]
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[DRIFT, SIRD6, QCCB02, DRIFT, SIRF4, QCCB01, DFF2, SIRD5,

QCCB02, SIRD5, DFF1, QCCB01]

[DRIFT, SIRD4, QCCB02, DRIFT, SIRF3, QCCB01, DFF2, SIRD3,

QCCB02, SIRD3, DFF1, QCCB01]

where QCCB01(QCCB02) are the focusing (defocusing) quadrupole, DFF1 and

DFF2 are bending magnets used to mitigate dispersion and match it to the dis-

persion in the arcs, and SD(SF)(A,B) are sextupole magnets. Magnet parameters

are given in Table (13).

TABLE 13: Magnets of the chromaticity correction block.

Element Type L [m] θ [rad] K [m−2] M [m−3]

DFF1 Dipole 3.0 0.05 0 0
DFF2 Dipole 3.0 -0.05 0 0
QCCB01 Quad 0.5 0 0.8497 0
QCCB02 Quad 0.5 0 -0.8497 0
SIRF3 Sext 0.2 0 0 -244.5
SIRF4 Sext 0.2 0 0 -244.5
SIRD3 Sext 0.2 0 0 -10.209
SIRD4 Sext 0.2 0 0 -13.00
SIRD5 Sext 0.2 0 0 -10.209
SIRD6 Sext 0.2 0 0 -13.00

Local correction

In order to correct chromaticity locally around the IR, the linear lattice must be able

to accommodate the correcting sextupoles in addition to its goal of achieving the

design Twiss parameters at the IP (β∗x(β
∗
y) = 0.1(0.02) m, α∗x,y = 0, η∗x,y = η′∗x,y = 0).

The basic guidelines for constructing the interaction region which meets the men-

tioned goals are stated as the following:

1 βmax was minimized to avoid unnecessary chromaticity.

2 Magnet free beam extension drift (L=6.5 m) was added after the final focus

quadrupoles with negative β slope, so the β functions was relaxed to a lim-

ited amplitude that could be matched easily to the rest of the ring without

adding unnecessary chromaticity.
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3 A local chromaticity correction block was introduced. The block features a peak

in the betatron function at every 180o degrees of phase advance. Each peak

has a reasonable betatron aspect ratio to ensure uncoupling of the chromatic

Montague functions.

4 Dispersion was adjusted to maintain adequate values at the sextupole locations.

5 Sextupoles were added in families; four families for horizontal correction (SIRF1,

SIRF2, SIRF3, SIRF4) and six families for vertical chromatic correction

(SIRD1, SIRD2, SIRD3, SIRD4, SIRD5, SIRD6). The sextupoles have a sym-

metry line across the IP. Table (14) presents the sextupoles families and their

values. Fig. (42) shows the Montague chromatic functions at the IP and at the

beginning of the arc.

6 Sets of octupole magnets were placed adjacent to local correcting sextupoles. They

were used for correcting second order tune chromaticity.

TABLE 14: Local correcting sextupole families.

Sextupole Family Number of magnets L [m] M [m−3]

SIRF1 2 0.2 14.2
SIRF2 2 0.2 -960
SIRF3 4 0.2 356
SIRF4 2 0.2 356
SIRD1 2 0.2 -244
SIRD2 2 0.2 147
SIRD3 8 0.2 356
SIRD4 4 0.2 356
SIRD5 4 0.2 356
SIRD6 2 0.2 356

Global correction

To correct for tune chromaticity. Sextupoles placed in the arcs were invoked in a

global tune correction. Several iterations involving the local correcting sextupoles

and octupoles were needed to achieve the required correction. Fig. (43) and (44)

show periodic chromatic Montague functions in the entire ring, while Fig. (45) shows
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FIG. 42: MEIC Montague chromatic functions at the IP after correction with the
local sextupoles.

tune chromaticity after correction. A dynamic aperture tracking study showed that

this scheme has more promising dynamic aperture. Fig. (46(a)) shows the dynamic

aperture after sextupole correction and Fig. (46(b)) shows the dynamic aperture after

adding octupoles for the second order correction.
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FIG. 43: MEIC Montague chromatic functions after correction with local and global sextupoles. Sextupoles were placed at
locations with good aspect ratios between βx and βy and reasonable dispersion.
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III.5 RESULTS AND DISCUSSION

This chapter presented the schemes adopted for chromaticity correction for the elec-

tron figure-8 ring of the MEIC beginning by correcting the chromaticity of the rings

without the interaction region. This study compared two arc lattice designs, one with

a 135o phase advance per arc cell and the one with a 90o phase advance per arc cell.

Both designs produce a horizontal equilibrium emittance in the range of 4−6×10−8

m. The 90o phase advance lattice showed better corrected tune chromaticity with

a momentum acceptance of ±2.0%, and dynamic aperture of 120 σx,y. The 135o

phase advance lattice proved less promising; it produced momentum acceptance of

±0.8%, and dynamic aperture of 85 σx,y. We conclude that the 90o phase advance

lattice has more potential for electron collider rings in this application. The superior

results of the 90o phase advance lattice could be interpreted by the fact that cell

quadrupoles are weaker and thus generate less chromaticity, and they require less

sextupole strength to correct them.

Two different designs of the interaction region were explored. In the first case,

a non-vanishing dispersion derivative through the interaction region using local and

global chromatic correction schemes was studied. The tune chromaticity revealed a

momentum acceptance sufficient for 3 hours of Touschek lifetime, but the dynamic

aperture was limited. The second one explored a design with vanishing dispersion

derivative at the IP, and showed higher correction of tune chromaticity, and a more

promising dynamic aperture of 1.5 σx,y. The symmetric IR showed superior results

which can be explained by the fact that the sextupole families were symmetric across

the IP since dispersion is symmetric across the IR, and the phase advance across the

IR between symmetric sextupoles was π which reduced second order effects from

local correcting sextupoles.

From the discussion above we conclude that of the cases studied, the 90o phase

advance per arc cell ring including a symmetric IR is the most suitable design for

the MEIC electron ring.
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CHAPTER IV

POLARIZED ELECTRON BEAMS IN FIGURE-8 RINGS

A unique design feature of a polarized Medium Energy Electron-Ion Collider (MEIC)

is its figure-8 storage ring design for both electrons and ions, which significantly

simplifies beam polarization maintenance and manipulation. While the electron

(positron) polarization is maintained vertical in the arcs of the ring, a stable lon-

gitudinal spin at four collision points is achieved through solenoid based spin rota-

tors and horizontal orbit bends. The proposed MEIC lattice was developed in order

to preserve a very high polarization (more than 80%) of the electron beam injected

from the CEBAF machine. The coupled beam trajectory due to solenoids used in the

spin rotators was decoupled by a special decoupling insert that works at all solenoid

settings.

IV.1 REQUIREMENTS FOR POLARIZED BEAMS FOR MEIC

There is a growing consensus in the nuclear physics community that further investiga-

tions of the quark and gluon structure of matter will require a very high polarization

(70− 80%) for both electron and ion beams.

In the case of the lepton beam, the choice is to inject with full energy from

the CEBAF machine and maintain the injected polarization. The polarization of

electron beam has to be longitudinal along the momentum vector direction at each

of the interaction points. In the arcs in order to take advantage of the Sokolov-Ternov

effect the polarization vector has to be vertical.

In the ion case, the polarization has to be longitudinal at the interaction region as

well, but since ions do not radiate much synchrotron radiation, the Sokolov-Ternov

polarization effect is weak.

IV.2 INTRODUCTION TO POLARIZED BEAMS

This section will give a brief account on polarized beams in circular accelerators.

The Thomas-BMT equation, which describes the particles spin dynamics in particle

accelerators, will be presented.
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The first polarized proton acceleration in high-energy (12 GeV) circular acceler-

ators took place at the Zero Gradient Synchrotron (ZGS) at Argonne in the 1970s

[32]. This success was followed by a series of high energy particle accelerators with

polarized beams. In the 1980s, the AGS at Brookhaven National Laboratory (BNL)

started their 24 GeV polarized heavy ion program [33]. The concept of a siberian

snake was introduced in the 1970s by S. Derebenv and Kondratenko [34], opening

the possibility of achieving higher energies. The principle of siberian snakes with a

low-energy polarized proton beam was tested at the Indiana University Cyclotron

Facility (IUCF) in 1989 [35]. The ability to use partial siberian snakes and radio-

frequency dipoles in order to maintain polarization during acceleration in the AGS

was demonstrated in 1999 [36]. Later, the acceleration of very polarized protons to

higher energies (100 GeV - 205 GeV) with 30% polarization was accomplished [37]

[38].

IV.2.1 Thomas-BMT equation

Thomas-BMT equation describes the motion for a spin vector defined in the rest

frame of the particle in a synchrotron and it is given by [39]

d~S

dt
=

e

γm
× [(1 +Gγ) ~B⊥ + (1 +G) ~B‖ + (Gγ +

γ

γ + 1
)
~E × ~β

c
], (104)

where ~S is the spin vector of the particle in its rest frame, ~B‖ and ~B⊥ are the

longitudinal and transverse components of the magnetic fields in the laboratory frame

with respect to particle momentum direction, ~E is the electric field, and ~β and γ are

relativistic factors. G is the anomalous gyromagnetic g-factor which is given by

G =
g

2
− 1. (105)

The spin equation of motion in the rest frame of the particle in presence of an

external magnetic field ( ~B) is given by

d~SR
dt

= g
e

2m
~SR × ~B (106)

where ~SR is the particles spin vector in the rest (R) frame.

In case of spin particle moving in a circular orbit with transverse magnetic fields

in the laboratory frame, one can derive the spin 4-vector in the Lorentz boosted

frame given by [39],
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(S0L, ~SL) = (γ~β · ~SR, ~SR +
γ2

γ + 1
~β(~β · ~SR)), (107)

which shows the relation between the spin vector in laboratory frame and spin vec-

tor in the particle’s rest frame. The Thomas-BMT equation is derived easily from

Eq. (107) [39].

From the Thomas-BMT equation we can see that in a solenoid magnet, ~B‖ pro-

duces a spin rotation around the longitudinal direction, and it can rotate horizontal

polarization into vertical polarization or vice versa. The spin rotation in a longitudi-

nal field is energy dependent therefore spin rotations should be done at low energies

if possible. In a dipole field, ~B⊥, the equation of spin motion relative to the particle

motion shows that spin rotation relative to the orbit motion is independent of energy.

IV.2.2 Radiative Polarization (Sokolov-Ternov Effect)

Circulation of electron and positron beams for a relatively long time in a storage

ring causes a polarization build up due to the reaction of continuous emission of

transversely polarized synchrotron radiation [11].

The polarization time is given by [11]

1

τp
=

5
√

3

8

e2~γ5

m2c2ρ3
, (108)

where e and m are the electron charge and mass respectively, and ρ is the radius

of curvature of the storage ring. The theoretically maximum achievable polarization

is 92.38%. The polarization time is a strong function of beam energy and is very

long for low energies. Several GeVs of energy is required for the polarization time to

become short compared to the storage time of an electron beam in a storage ring.

IV.3 COUPLED MOTION IN A SOLENOID FIELD

The spin rotators in MEIC include solenoid magnets. The longitudinal magnetic

field inside the solenoid magnets rotate the beam by an angle which depends in the

solenoid field strength. In this section, we introduce the linear equation of motion

inside a solenoid field.

The linear equation of motion in a solenoid magnetic field can be derived from
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the Hamiltonian of Eq. (27), and is given by

x′′ = S(s)y′ +
1

2
S ′(s)y (109a)

y′′ = −S(s)Bsx
′ − 1

2
S ′(s)x, (109b)

where S(s) = eBs/p. Following [40], we can derive the transformation matrix of a

solenoid magnet as follows. Perform a coordinate rotation in complex plane. Define

R to be

R = (x+ iy)e−iφ(s). (110)

Eqs. (109) can be combined in to one equation

(x+ iy)′′ + iS(s)(x+ iy)′ + i
1

2
S ′(s)(x+ iy) = 0. (111)

Applying Eq. (110) to Eq. (111)

(x+ iy)′ = R′eiφ + iφ′Reiφ. (112)

(x+ iy)′′ = R′′eiφ + i2φ′R′eiφ + iφ′′Reiφ − φ′2Reiφ. (113)

Using Eq. (110)

R′′ − [S(s)φ′ + φ′2]R + i2[φ′ +
1

2
S(s)]R′ + i[φ′′ +

1

2
S ′(s)]R = 0 (114)

is obtained.

Assuming continuous rotation along the solenoid axis with an angle defined by

φ(s) = −1

2

∫ s

s0

S(ζ)dζ, (115)

the equation of motion in terms of R becomes

R′′ +
1

4
S2(s)R = 0, (116)

where R can be represented as R = v + iw. At the entrance of the solenoid magnet,

φ = 0, v0 = x0, and w0 = y0. Applying Eq. (116) to the equation of motion, two

uncoupled equations of motion are obtained:

v′′ +
1

4
S2(s)v = 0, (117a)

w′′ +
1

4
S2(s)w = 0. (117b)
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The motion of the particle in a solenoid can be represented by a quadrupole of

strength, ks, followed by a coordinate system rotation by angle, −φ(Ls), where ks =
1
4
S2(Ls).

The solution of the equation of motion may be expressed in a matrix formulation

given by the following form:
x(s)

x′(s)

y(s)

y′(s)

 =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



x0

x′0

y0

y′0

 (118)

where the transformation matrix elements Mij are functions of the field strength of

the magnet.

The transformation matrix of the solenoid focusing effect from the beginning of

solenoid to point s inside the solenoid is

M f
s (s0|s) =


cosφ 2

S
sinφ 0 0

−S
2

sinφ cosφ 0 0

0 0 cosφ 2
S

sinφ

0 0 −S
2

sinφ cosφ

 (119)

where φ = 1
2
Ss. The rotation matrix of the solenoid including the rotation effect is

given by

M r
s (s0|s) =


cosφ 0 sinφ 0
−S
2

sinφ cosφ S
2

cosφ sinφ

− sinφ 0 cosφ 0
S
2

cosφ − sinφ −S
2

sinφ cosφ

 . (120)

The total transformation matrix from beginning of the solenoid magnet to the point

s is given by multiplication of the last two matrices;

Ms(s0|s) =


cos2 φ 1

S
sin 2φ 1

2
sin 2φ 2

S
sin2 φ

−S
2

sin 2φ cos 2φ S
2

cos 2φ sin 2φ
−1
2

sin 2φ −2
S

sin2 φ cos2 φ 1
S

sin 2φ
−S
2

cos 2φ − sin 2φ −S
2

sin 2φ cos 2φ

 . (121)

To add the effect of the solenoid fringe field assuming hard edge approximation, the
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transformation matrix at the end of the solenoid is given by

Ms(0|L) =


cos2 Φ 1

S
sin 2Φ 1

2
sin 2Φ 2

S
sin2 Φ

−S
4

sin 2Φ cos2 Φ −S
2

sin2 Φ 1
2

sin 2Φ

−1
2

sin 2Φ − 2
S

sin2 Φ cos2 Φ 1
S

sin 2Φ
S
2

sin2 Φ −1
2

sin 2Φ −S
4

sin 2Φ cos2 Φ

 (122)

where Φ = SL/2. To focus a parallel beam at the entrance of the solenoid to

focal point at the end of the solenoid, the total rotation angle has to be π/2, i.e.

Φ = SL/2 = π/2.

IV.4 GENERALIZING THE COURANT-SNYDER PARAMETRIZA-

TION TO TWO DIMENSIONAL COUPLED LINEAR MOTION

The Courant-Snyder parameterization of one-dimensional linear betatron motion has

been generalized to two-dimensional coupled linear motion [41]. Four betatron func-

tions, four alpha-functions, and two betatron phase advances are needed to represent

the 4× 4 symplectic transfer matrix. Those ten parameters provide a generalization

to Courant-Snyder formalism analogous to the uncoupled case.

A single-particle phase-space trajectory along the beam orbit is

X̂(s) = Re(
√
ε1V̂1(s)e−i(ψ1+µ1(s)) +

√
ε2V̂2(s)e−i(ψ2+µ2(s))), (123)

where M̂(0, L) is the transfer matrix of the entire ring, and V̂1,2 are the eigen-vectors

of the transfer matrix, M̂(0, s)M̂M̂−1(0, s), given by

V̂1,2(s) = eiµ1,2(s)M̂(0, s)V̂1,2. (124)

ψ1,2 are the initial phases of the betatron motion. The eigen vectors can be introduced

in the following standard form:

V̂1(s) =


√
β1x(s)

− 1√
β1x

(i(1− u) + α1x)√
β1ye

iv1

− 1√
β1y

(iu+ α1y)e
iv1

 (125a)

V̂2(s) =


√
β2x(s)e

iv2

− 1√
β2x

(iu+ α2x)e
iv2√

β2y

− 1√
β2y

(i(1− u) + α2y)

 , (125b)
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where u is defined in terms of kx and ky:

kx =

√
β2x

β1x

, (126a)

ky =

√
β1y

β2y

, (126b)

and

Ax = kxα1x − k−1
x α2x, (127a)

Ay = kyα2y − k−1
y α1y, (127b)

and

u =
1

1− (kxky)2
[−k2

Xk
2
y ±

√
k2
Xk

2
y(1 +

A2
X − A2

y

k2
x − k2

y

(1− k2
Xk

2
y))]. (128)

v1,2 are given by

ei(v1+v2) =
Ax + i(kx(1− u) + k−1

x u)

Ay − i(ky(1− u) + k−1
y u)

, (129a)

ei(v1+v2) =
Ax + i(kx(1− u) + k−1

x u)

Ay + i(ky(1− u)− k−1
y u)

. (129b)

In the case of weak coupling, one should normally choose V̂1 as the eigen-vector

which mainly relates to the horizontal motion, and V̂2 to the vertical motion. In

the case of strong coupling the choice is arbitrary. Such a parameterization works

equally well for weak and strong coupling and can be useful for analysis of coupled

betatron motion in circular accelerators, as well as in transfer lines.

Here β1x, β1y, β2x, and β2y are the beta-functions: The alphas α1x, α1y, α2x,

and α2y, are negative half-derivatives of the betas at regions with zero longitudinal

magnetic field and there are two phases v1, and v2. These ten independent parameters

are called the generalized Twiss functions.

IV.5 POLARIZATION AROUND THE FIGURE-8 RING

In MEIC longitudinally polarized electrons (positrons) are generated by a polarized

photoinjector and then accelerated to the desired energy in CEBAF. After that,

they are injected into the electron storage ring with vertical polarization in the arcs

and accumulated there until their average current reaches a desired value, taking

advantage of the Sokolov-Ternov effect [11]. While electron polarization is maintained
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vertical in the arcs of the ring, a stable longitudinal spin at all four collision points

is required by experiments and is achieved through solenoid based spin rotators

and horizontal beam orbit bends integrated into some of the spin rotators. The

ions are injected in one of the IR of the ion ring with longitudinal polarization.

Three identical Siberian Snakes make the longitudinal polarization periodic in both

interaction regions and provide a very efficient spin tune control.

Spin vector 

Spin vector 

Electron motion 

Spin rotator 

FIG. 47: Spin vector for the electron beam polarization around the figure-8 ring

IV.6 UNIVERSAL SPIN ROTATORS

A generic spin rotation scheme has been designed to transform the electron spin in

MEIC from vertical in the arcs to longitudinal at all interaction points. The scheme,

which is called the Universal Spin Rotator (USR), does not change the beam orbit for

all planned electron beam energies and consists of a combination of superconducting

solenoids and horizontal arc dipoles. One possible implementation of the USR is

shown in Fig. (48). The last two equal arc dipole sections, B1 and B2, interleave

with two solenoids (Sol I and Sol II). The rotator works by adjusting spin rotation

angles in solenoids depending on the beam energy. To provide the required spin

rotation in the whole (3-9 GeV) energy range, the bending angle of each dipole

section is 6.6o and the total integral field of each solenoid is 48 Tesla meter [42]. X-Y

betatron coupling introduced by solenoids is compensated by the methods based on

[43, 44].
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FIG. 48: Layout of the Universal Spin Rotator (USR) (solenoids are black,
quadrupoles are blue and dipoles are green)

IV.7 COUPLING COMPENSATION INSERT

Transverse beam coupling introduced by the solenoids is compensated locally. Each

solenoid is divided into two equal parts and a set of quadrupoles is inserted between

them to cancel out the coupling. In order to automatically cancel the orbit cou-

pling, the overall transfer matrix of the insert may have a structure of (MCOMP ), as

described by the following equation:

MCOMP =

(
M 0

0 −M

)
, (130)

where M is a general 2 × 2 matrix. The overall transfer matrix of two identical

solenoids with the insert in between will result in an uncoupled cumulative transfer

matrix given by the following form

Msol.MCOMP .Msol =

(
A 0

0 B

)
, (131)

which is independent of the solenoid field strength (A and B are 2× 2 matrices).

We examine the special case where an insert which has the following transfer

matrix, corresponding to a phase advance of 180o in both planes



94

TABLE 15: Magnet parameters for universal spin rotator (USR) at different beam
energies. φ1,2 and DBL are the solenoid spin rotation angle and integral field strength
respectively. θ1,2 are the dipole spin rotation angles.

E Sol. I Sol. II Spin Rot.
GeV φ1 [rad] DBL [Tesla m] φ2 [rad] DBL [T m] θ1 [rad] θ2 [rad]

3 π/2 15.7 0 0 π/3 π/6
4.5 π/4 11.8 π/2 23.6 π/2 π/4
6 0.63 12.3 π − 1.23 38.2 2π/3 π/3
9 π/6 15.7 2π/3 62.8 π π/2
12 0.62 24.6 π − 1.23 76.4 4π/3 2π/3

MCOMP =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (132)

The total transfer matrix for the two solenoid halves and the coupling compensating

insert will be given by

Msol.MCOMP .Msol =
cos 2Φ 4

S
sin Φ cos Φ 0 0

−S sin Φ cos Φ cos 2Φ 0 0

0 0 − cos 2Φ − 4
S

sin Φ cos Φ

0 0 S sin Φ cos Φ − cos 2Φ

 (133)

Eq. (133) shows total cancelation of the coupling terms because the matrix is now

block diagonal.

Consider the more general matrix of the form defined by the arbitrary constants

a and b,
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
a 0 0 0

0 b 0 0

0 0 −a 0

0 0 0 −b

 , (134)

The total transfer matrix will be

Msol.MCOMP .Msol =
M11

1
S

(a+ b) sin 2Φ 0 0

−1
4
S(a+ b) sin 2Φ M22 0 0

0 0 −M11 − 1
S

(a+ b) sin 2Φ

0 0 1
4
S(a+ b) sin 2Φ −M22

 , (135)

where M11 = ((a+ b) cos 2Φ + a− b)/2, and M22 = ((a+ b) cos 2Φ− a+ b)/2.

The existence of four spin rotators with relatively long solenoids in MEIC makes

preserving the modularity of the spin rotators and matching to the rest of the ring

challenging tasks. Existing schemes involve at least seven normal quadrupoles, and

skew quadrupoles are conceivable [44]. Unfortunately such schemes are not compact

enough to fit the MEIC layout, which leads us to the following new design for the

compensation system.

The new design involves the minimal required optimization parameters needed

to fulfill four conditions given in Eq. (130). One could note that the symplecticity

of the system will reduce those conditions to only three, as the symplecticity of

the transformation introduces a condition on the matrix elements. A set of two

symmetric doublets separated by one singlet quadrupole is enough to meet the three

conditions. The compactness of such a system was incorporated in the optimization

process yielding relatively short drifts between the quadrupoles as seen in Fig. (48).

The β-functions through one of the compensated solenoids are shown in Fig. (49).

Similarly, β-functions through the whole spin rotator with the horizontal dipoles are

shown in Fig. (50), where one can notice that vertical dispersion was generated by

coupling introduced by first half of the solenoid and then compensated back to zero

by the end of the second half of the solenoid.

The structure of the coupling compensation insert is given by

CSOL,OS1,QDS,OS2,QFS,OS3,QDS2,OS3,QFS,OS2,QDS,OS1,CSOL
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where the magnet parameters are given in Table (16), and CSOL is one half of the

solenoid magnet.

TABLE 16: Magnets of the coupling compensation insert.

Element Type L [m] K [m−2]

QDS QUADRUPOLE 0.25 2.4
QFS QUADRUPOLE 0.51 -1.25

QDS2 QUADRUPOLE 0.70 1.24
OS1 DRIFT 1.0 0
OS2 DRIFT 1.0 0
OS3 DRIFT 1.5 0

IV.8 INTEGRATION OF SPIN ROTATORS TO MEIC

The symmetric insert has the advantage of requiring only four parameters to match

the insert to the end of the arc and to the FODO cells of the straight. This will

reduce the number of matching quadrupoles to four. Fig. (52(a)) shows the Twiss

functions are matched from the arc to the first USR then the matched to the straight

section, and for the second USR in the same straight to the second arc section as

seen in Fig. (52(b)).
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FIG. 49: β-functions across the symmetric insertion between two identical solenoids.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

                               s (m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

β
x

(m
),

βy
(m

)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
x

(m
),

D
y

(m
)

β x β y Dx Dy

FIG. 50: Dispersion function across the USR. One can see that although the electron
ring is a totally horizontal, the horizontal dispersion passing through the solenoid
is coupled and vertical dispersion is generated. Vertical dispersion is suppressed by
the end of the second half of the solenoid due to rotation introduced by the coupling
compensation insert.
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FIG. 51: Twiss functions through the MEIC figure-8 ring with the integrated and matched USR.
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(a) USR was matched at the end of the first arc section to the start of the straight
section.
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(b) USR was matched at the end of the straight section to the start of the second
arc section.

FIG. 52: Twiss functions through the USR. The USR was matched at the end of the
arc section and to the start of the straight section.
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FIG. 53: Dispersion through the MEIC figure-8 ring with the integrated and matched USR. Note that the vertical dispersion
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IV.8.1 Stability study

A stability study of the coupling compensation insert was carried out. An error of the

order of 10−4 was introduced to each of the five magnets. The auxiliary β functions

at the end of the second solenoid were evaluated and compared to uncoupled β

functions see Fig. (54). Because the resulting changes in the auxiliary beta functions

were small the insert was proven stable within the introduced magnet errors.
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FIG. 54: Error analysis for MEIC coupling compensation insert.

IV.9 RESULTS AND DISCUSSION

In this chapter, an overall description for MEIC polarization manipulation was pre-

sented. An orbit decoupling insert has been designed to be implemented in a compact

modular spin rotator. This insert works over the entire energy range by scaling the

quadrupole field strength accordingly. It is short and compact enough to fit within

the MEIC electron ring. The new orbit decoupling insert has a universal nature

and can be implemented between any symmetric orbit coupling elements (solenoids,

skew quadrupoles, ... etc). The orbit decoupling insert is independent of the coupling

rotation angle.
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CHAPTER V

ELECTRON ION COLLIDER ELIC

The main differences between MEIC and ELIC are the design luminosity and energy.

The design luminosity of MIEC is in the range of 1032 − 1034 cm−2sec−1, while it

is in the range of 1033 − 1035 cm−2sec−1 for ELIC. Table (17) lists the main design

parameters of ELIC and MEIC [6].

The lattice design of the electron ring of ELIC will presented in this chapter in-

cluding the interaction region design. Later in the chapter the chromaticity correction

scheme will be presented in detail.

TABLE 17: Design parameters for the MEIC and the ELIC.

Quantity Unit MEIC P/E ELIC P/E

Beam energy GeV 60/3-11 30-225/3-9
Collision Frequency GHz 0.75 1.5
Particles per bunch 1010 0.416/2.5 0.42/0.77
Beam current A 0.5 / 3 1.0/1.85
Polarization % 70/80 70/80
RMS bunch length mm 10 / 7.5 5/5
Normalized horizontal emittance µm rad 0.35/54 1.25/90
Normalized vertical emittance µm rad 0.07/11 0.05/3.6
Horizontal β∗ cm 10/10 0.5/0.5
Vertical β∗ cm 2 / 2 0.5/0.5
Distance from IP to first FF quadrupole m 7/3.5 3.8/3.8
Luminosity per IP cm−2sec−1 1032 − 1034 1033 − 1035

V.1 LATTICE DESIGN

The lattice design of the electron ring of ELIC has to satisfy the same requirements

as listed for the MEIC lattice in Chapter I.4. The basic layout of ELIC resembles

that of MEIC. ELIC consists of three figure-8 vertically stacked rings, two of them

for the ion beam, while the third one is for the electron (or positron) beam. The

figure-8 rings in ELIC have larger diameters than MEIC rings. The main components

of ELIC’s electron ring lattice are:
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1 Two identical arcs with opposite bending directions.

2 The first straight section contains.

• A dispersion matching section.

• Two spin rotators.

• An interaction region matching section.

• One interaction region (could be upgraded to four IRs, two in each straight

section).

3 The second straight section contains.

• Two spin rotators.

• Dispersion adjusting section.

V.1.1 Arc sections

The ELIC figure-8 electron ring has two symmetric arc sections, arc I and arc II. The

dipole magnets in arc II have the opposite polarity to those in arc I. Each arc section

is composed of 84 FODO cells. Each arc cell is composed of two quadrupole mag-

nets with alternating focusing and defocusing strength and two horizontally bending

dipoles [13]. The magnet parameters are given in Table (18). One FODO cell mag-

netic lattice is shown in Fig. (55) along with their β-function and dispersion. The

lattice parameters of the electron ring of ELIC are given in Table (19). Note espe-

cially the small β∗ at the IP of 5 mm.

TABLE 18: Magnet parameters of an ELIC arc cell.

Magnet L [m] θ [rad] K [m−2]

QUADRUPOLE 0.3 0.0 1.444
QUADRUPOLE 0.3 0.0 -1.443
DIPOLE ARC I 3 0.027 0
DIPOLE ARC II 3 -0.027 0

The total circumference of the figure-8 ring is 2100 m. The unit FODO cell has

1200 phase advance in both of the transverse planes, this phase advance per cell is
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FIG. 55: Twiss function of ELIC arc cell

needed to obtain the required small equilibrium emittance. The dispersion function

is well tailored to add chromatic correction sextupoles at places with large separation

of the horizontal and vertical β aspect ratio. Twiss functions (β, η) for the entire

figure-8 ring are illustrated in Fig. (60).

V.1.2 Straight section

The two straight sections are configured with the same phase advance per FODO

cell as in the arc sections, plus a matching section, and the interaction region. The

first straight section, straight section I, accommodates the interaction region and

two spin rotators. The dispersion needed for the local chromaticity correction was

generated by the arc dipoles and propagated by design into the interaction region

while maintaining zero dispersion at the IP. The second straight section, straight

section II, will accommodate the RF section and two spin rotators. The dispersion

was suppressed in straight section II using the last 2 FODO cells of the arc section.

Fig. (56) shows the last three arc cells suppressing dispersion in the beginning of

straight section II.



105

TABLE 19: Parameters of an ELIC lattice.

Quantity Value

Beam energy E 9 GeV
Particles/bunch N 0.77× 1010

Bunch length σs 5× 10−3 m
Energy loss/turn U0 7.42 MeV
Horizontal β∗x 0.005 m
Vertical β∗y 0.005 m
Horizontal equilibrium emittance εx 5.6× 10−9 m
Momentum spread δp 7.3× 10−4

Momentum compaction αc 5.56× 10−4

Horizontal damping time τx 1.7× 10−2 sec
Longitudinal damping time τs 8.7× 10−3 sec
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FIG. 56: Suppressing dispersion in the beginning of straight section II.
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FIG. 57: Twiss functions of ELIC figure-8 ring.
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V.1.3 The interaction region

The electron beam interaction region is configured with two final focus quadrupole

doublets, followed by the beam extension area, and a set of matching quadrupoles.

The distance from the IP to final focus quadrupoles is set to 3.8 m. The maximum

β function in the final focus quadrupoles is about 30 km in the vertical plane and 3

km in the horizontal plane. The interaction region is symmetric across the IP with

antisymmetric dispersion. Fig. (58) shows the Twiss functions across the interaction

region.
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FIG. 58: Twiss functions in the interaction region. The dispersion function vanishes
at the IP, while the derivative of dispersion does not vanish at IP.

The IR section consists of two final focus quadrupoles and two mitigating

quadrupoles to focus the beam before it gets matched to the FODO cells by a match-

ing section. The matching section is composed of four quadrupoles. Table (20) gives

the magnet parameters of the IR.
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TABLE 20: Magnet parameters of the ELIC interaction region.

Lattice Element L [m] θ [rad] K [m−2]

Drift (IP to First Quad) 3.8 0 0
FF Quad I 0.5 0.0 1.06586
FF Quad II 0.6 0.0 -0.824
Drift (Distance between Quad I & II) 2.2 0.0 0.0
Drift (Beam Extension) 3.5 0.0 0.0
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FIG. 59: Beam size at interaction region, the horizontal beam size at IP is 5.2×10−5

m and 2.3× 10−6 m in the vertical, the maximum amplitude is 20 mm in horizontal
and 29 mm in vertical.
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FIG. 60: Twiss functions of ELIC with two interaction regions on one straight section.
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V.2 CHROMATICITY CORRECTION

As in the MEIC case the final focus quadrupoles are the major sources of chromaticity.

The extremely small β function forces the maximum β function in the final focus

quadrupoles to extreme values (29481 m and 2889 m). The huge β function in final

focus quadrupoles results in a large chromaticity.

V.2.1 Local chromaticity correction

Similarly to the MEIC antisymmetric IR design, the chromaticity correction in ELIC

is implemented by two groups of sextupoles for local and global correcting. The local

correction is carried out by a set of four sextupole families. Each family consists

of two member sextupoles placed symmetrically across the IP. Each family member

has a reversed polarity from its counterpart in the other side of the IP due to the

reversed sign of the dispersion function across the IP. The dispersion needed for

chromaticity correction is generated by the arc dipole magnets and shaped up by the

IR matching quadrupoles to vanish at the IP. The Montague chromatic functionsWx,y

were employed to measure the β chromaticity at the IP. Local correcting sextupoles

around IP were used to reduce Montague functions from 103 to around 100 and they

are confined to acceptable values throughout the rest of the ring. Fig. (61) shows

Montague functions across the IR after the local chromatic correction. Table 21 lists

the sextupole magnet parameters.

TABLE 21: Local correcting sextupole families.

Sextupole Family Number of magnets L [m] M [m−3]

SIRF1 2 0.2 93463.4
SIRD2 2 0.2 -1.49574
SIRD3 2 0.2 -2154880
SIRD4 2 0.2 -0.0012

V.2.2 Global chromaticity correction

Two sextupole families were placed at each of the arc sections and they were used

for chromatic correction; one family for the horizontal and one for the vertical. Sex-

tupoles were placed in the arc cells adjacent to quadrupoles. To correct for tune
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FIG. 61: Montague chromatic functions across ELIC IR after local chromatic cor-
rection using a set of 4 sextupole families.

chromaticity, sextupoles placed at the arcs were used for global tune correction.

Several iterations involving the local correcting sextupole were performed. The cor-

rection was carried out using the computer code (MAD-X). During the optimization,

sextupoles reserved for interaction region correction were fixed, while others were

optimized to correct first and second order tune chromaticity. Fig. (62) shows tune

variation with momentum deviation after correcting in both horizontal and verti-

cal planes. The final momentum acceptance corresponds to 3 seconds of Touschek

lifetime.
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TABLE 22: Global correcting sextupole families.

Sextupole Family Number of magnets L [m] M [m−3]

SARCINF 2 0.4 -0.850888
SARCOUTF 2 0.4 -80.2809
SARCIND 2 0.4 171.058
SARCOUTD 2 0.4 235.660
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V.2.3 Touschek lifetime

A calculation of the Touschek lifetime with the constant momentum acceptance δacc

was performed for ELIC. The dependence of the Touschek lifetime on the constant

momentum acceptance is showed in Fig. (63).
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FIG. 63: Touschek lifetime for ELIC.

V.3 SUMMARY

ELIC is an upgrade of MEIC in terms of luminosity and the energy of the ion beam.

The basic layout of ELIC was discussed in this chapter and the lattice structure was
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presented. The two arc sections were configured with FODO cells, each FODO cell

has 120o of betatron phase advance in both horizontal and vertical planes. The ELIC

has two straight sections; the first straight section accommodates the interaction

region, while the second straight section will be reserved for rf accelerating cavities.

The interaction region in the first straight is composed of two final focus

quadrupoles and a matching section. The IR is symmetric around the IP with an-

tisymmetric dispersion. The dispersion function in the IR was generated by the arc

dipoles and suppressed by matching quadrupoles to vanish at the IP. The dispersion

derivative in the IP has a finite value.

Chromaticity correction was done for ELIC lattice using local correcting sex-

tupoles at the IR and global correcting sextupoles at the arcs. The very small β∗
of 5 mm and the 3.5 m of magnet free space from IP to final focusing quadrupoles

resulted in a substantial βmax inside the final focusing quadrupoles. The generated

chromaticity from the IR turned out to be too large to correct using the local and

global correction schemes. The momentum acceptance after chromatic correction was

limited to ±0.003% which yields a very short Touschek lifetime of 3.5 seconds. The

dynamic aperture tracking showed a very restricted coordinate space area 10−5σx,y

much smaller than the initial particle’s amplitude. This small dynamic aperture is

attributed to the very strong sextupole magnets used for chromaticity correction.

In order to obtain better compensation and better control of chromaticity, the re-

quirement of a small β function of 5 mm at the interaction point may have to be

relaxed.
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CHAPTER VI

CONCLUSIONS

In this thesis numerical evaluations of the design of the electron ring for the MEIC

have been performed. The requirements presented for the MEIC are summarized in

the following: a proton energy of 30-60 GeV (15-30 GeV/A for ions) and an electron

(or positron) energy of 3-11 GeV, a design luminosity between 1032−1034cm−2sec−1,

support up to four collision points, support of simultaneous operation of the 12 GeV

CEBAF for fixed-target experiments, high polarization for both beams (up to 80%),

and finally the MEIC design has to support upgrade capability to higher energies in

the ELIC (Electron Ion Collider).

The full design parameters of MEIC are given in Table (3). The main parameters

presenting design difficulties solved in this thesis were the small β∗ functions of 2(10)

cm in the vertical (horizontal) directions, a long magnet free distance from the IP to

first final focusing quadrupole of 3.5 m, a small normalized horizontal emittance of 54

µm, and finally retaining a high polarization with a longitudinal polarization vector

at the IP. The general layout of MEIC is composed of two vertically stacked figure-

8 collider rings intersecting at up to four collision points. The CEBAF accelerator

serves as MEIC’s electron (positron) full energy injector, while a whole injector chain

is envisioned for the ion beam.

Only the electron ring design was considered in this thesis work. The basic com-

ponents of the electron figure-8 ring were: two identical arc sections with opposite

bending directions and two straight sections connecting the two arc sections. Each of

the straight sections accommodate an interaction region, the chromaticity compensa-

tion block, and two spin rotators. Each spin rotator includes a coupling compensation

block.

The linear and non-linear equations of motion were derived from the Hamiltonian

of a charged particle in electromagnetic field. Expressions for the first and second

order tune chromaticity were derived from the equations of non-linear motion. An

analytic calculation model was developed for the tune chromaticity generated by fi-

nal focus quadrupoles in a straight section. Several chromaticity correction schemes

were presented and evaluated. The methods explored are global chromaticity cor-

rection, local chromaticity correction, and adjusting the phase advance between low

β insertions to cancel second order chromaticity. The effect of limited momentum
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acceptance due to chromaticity on the Touschek lifetime was studied and quantified

for the lattice designs considered. An efficient code for computing Touschek lifetime

for a flat electron beam was developed and used in the computations.

Two different arc lattice designs were considered and the chromaticity generated

by each was corrected and evaluated. The first arc lattice was constructed out of

FODO cells, each cell having 135o of phase advance. The second lattice has a 90o

phase advance per cell. Both designs produce a horizontal equilibrium emittance

in the range of 4 − 6 × 10−8 m. A set of sextupole families were used in each case

to correct natural chromaticity generated by the arc quadrupole magnets. The 90o

phase advance lattice showed better corrected tune chromaticity with a momentum

acceptance of ±2.0%, and dynamic aperture of 120 σx,y. The 135o phase advance

lattice proved less promising; it produced momentum acceptance of ±0.8%, and

dynamic aperture of 85 σx,y. We conclude that the 90o phase advance lattice has

more potential to use for electron collider rings in this application. The superior

results of the 90o phase advance lattice could be interpreted by the fact that cell

quadrupoles are weaker and thus generate less chromaticity, and they require less

sextupole strength to correct them.

The MEIC interaction region (IR) design is primarily driven by the detector needs

for a very demanding forward detection architecture. The magnet free space between

the IP and the first final focus quadrupole was set to 3.5 m for the electron beamline.

Two IR designs were considered in this thesis, both have 2(10) cm of β∗y(β
∗
x), and the

flat electron beam is focused by a set of doublets in both designs. The distinction

between the two designs was the value of the dispersion function derivative at the IP.

In the first case a non-vanishing dispersion derivative at the IP(antisymmetric case)

is considered, and in the second a vanishing dispersion derivative case is considered

(symmetric case). Tune chromaticity and local Montague chromatic function were

corrected for both cases using local and global sextupoles. The antisymmetric IR

design showed momentum acceptance sufficient for 3 hours of Touschek lifetime but

the dynamic aperture was not large. On the other hand, the symmetric case showed

higher correction of tune chromaticity, and a more promising dynamic aperture of

1.5-2.5 σx,y with estimated Touschek lifetime of 55 hours. The symmetric IR design

showed superior results which is explained by the fact that the sextupole families

were symmetric across the IP (since dispersion is symmetric across IR), and the

phase advance across the IR between symmetric sextupoles was π which reduced
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second order effects from local correcting sextupoles.

The observed reduction of the dynamic aperture due to octupole magnets may

require further study in future work. The study should include the effect of octupole

magnets on dynamic aperture and optimizing the octupole magnet settings to pro-

duce larger dynamic aperture and small second order chromaticity. The MEIC rings

studied in this thesis had either one or a maximum of two IRs. The MEIC ring with

four IRs is expected to have much larger chromaticity. The chromaticity produced

from four IRs may result in severe degradation of tune chromaticity, Touschek life-

time, and dynamic aperture of the lattice. A MEIC ring with four IRs may require

increasing the β-functions at each of the IP in order to reduce the produced chro-

maticity. In summary, a study of similar MEIC lattices which include matching four

IRs to the straight sections and evaluates the chromaticity may be required to fully

understand the limit of correctable chromaticity for a given β function.

An overall description of MEIC polarization manipulation was presented. A novel

design for an orbit decoupling insert for a compact modular universal spin rotator

(USR) was presented. The equations of coupled motion in the solenoid field were

presented and used to compensate the coupling in the USR solenoid. The compen-

sating insert works over a wide energy range by scaling the quadrupole field strength

accordingly; it is short and compact enough to fit within the MEIC electron ring.

Such compact decoupling inserts have a universal nature and can be implemented be-

tween any symmetric orbit coupling elements (solenoids, skew quadrupoles, ... etc),

and have the additional feature that compensation is independent of the coupling

rotation angle. The stability of the solution of such insert was evaluated and the

solution was found to be stable within the recognized magnet errors. An example

integrating the USR in the figure-8 lattice was presented.

The basic layout of ELIC was discussed and the lattice structure was presented.

The two arc sections were configured with 120o FODO cells. The IR is symmetric

around the IP with antisymmetric dispersion. Chromaticity correction was done for

ELIC lattice using local and global correcting sextupoles. The very small β∗ of 5 mm

and the 3.5 m of magnet free space from IP to final focusing quadrupoles resulted

in large chromaticity after local and global correction schemes. The momentum

acceptance after chromatic correction was limited to ±0.003% which yields a very

short Touschek lifetime of 3.5 seconds. The dynamic aperture tracking showed a

very restricted coordinate space area 10−5σx,y much smaller than the initial particle’s
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amplitude. This small dynamic aperture is attributed to the very strong sextupole

magnets used for chromaticity correction. In order to obtain better compensation

and better control of chromaticity, the requirement of a small β function of 5 mm at

the interaction point may have to be relaxed.
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APPENDIX A

APPENDIX: BEAM DYNAMICS CODES

A.1 ELEGANT

Elegant (Electron Generation And Tracking) [45] is an accelerator simulation code

that includes 6-D tracking using matrices up to third order, canonical integration,

and numerical integration. Supported beamline elements the were used in this thesis

include but not limited to: solenoid, dipole, quadrupole, and sextupole.

Elegant has a range of capabilities including calculations of coherent synchrotron

radiation, wakefields, rf elements, kickers, apertures, scattering, and tracking with

and without errors. Elegant performs optimization of tracked properties, and com-

putation and optimization of Twiss parameters, radiation integrals, matrices, and

floor coordinates. Orbit/trajectory, tune, and chromaticity correction are supported.

Elegant is fully compliant with the Self Describing Data Sets (SDDS) file protocol.

Elegant lakes the calculations of Montague chromatic functions which proved to be

crucial for chromaticity correction and optimization.

A.2 MAD-X

MAD-X [46] is a program for accelerator design and simulation which has an exten-

sion interface to PTC, the Polymorphic Tracking Code [47]. MAD-X is based on

several languages: C, Fortran77, and Fortran90; with dynamic memory allocation

(core program written in C). MAD-X has a strictly modular organization. It sup-

ports symplectic and arbitrarily exact descriptions of all elements via PTC, Taylor

Maps, and Normal Form techniques using PTC.

MAD-X proved to be especially useful for interaction region design and optimiza-

tion, as well as chromaticity correction. It is able to calculate Montague chromatic

functions. Several beamline elements are supported and were used in the work in

this thesis: solenoid, dipole, quadrupole, sextupole, and octupole.

A simple comparison study was carried during this work between Elegant and

MAD-X calculations. They came to excellent agreement in regard to Twiss functions

and chromaticity calculations.

Chromaticity calculations are typically of the order of and agree with PTC and
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other codes. However, it was recently discovered that in presences of coupling, MAD-

X simply seems to ignore coupling when the chromaticity is calculated.
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A.3 TOUSCHEK LIFETIME CODE

Listing A.1: Touschek Lifetime Code

1 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
%

3 % Ca lcu l a t i on o f Touschek l i f e t i m e

% For F la t E lec t ron Beam

5 % Hisham Sayed Feb . 2009

%

7 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

9

%% Comments

11 %%

13 function [ Tau ] = Touschek l i f e t ime ( beta x , a l f a x , eta x , etap x , beta y ,

dp acc , gama)

15 sgma d = 1.588348 e−03; % equ i l i b r i um r e l a t i v e momentum spread

%eps x = 2.6 e−9 ;% Meter h o r i z on t a l emit tance

17 eps x = 1.422733 e−09; % Meter h o r i z on t a l equ emit tance from e l e g an t

eps y = eps x /5 ;% Meter v e r t i c a l emit tance

19 sgma z = 0.005 ; % Meter bunch l en g t h

g t w i s s = ((1+ a l f a x ˆ2) / beta x ) ; %(1+ a l f a x ˆ2)/ b e t a x ;

21 No = 3 .1 e10 ;

r0 = 2.81794 e−15; %C l a s s i c a l E lec t ron Radius Meter

23 c = 299792458 ;% Speed Of Ligh t M/ sec

emass = 9.10938 e−31 ;% e l e c t r on mass Kgm

25

27 % Functions and d e f i n i t i o n s

29 % gama = 19569.5 ;% eng/ ( emass ∗ c ˆ2) % r e l t i v i s t i c gamma

sgma x = sqrt ( eps x ∗ beta x + ( sgma d∗ e ta x ) ˆ2) ;

31 sgma y = sqrt ( eps y ∗ beta y ) ;

% sgma t = s q r t ( eps x ∗ g tw i s s ) ;

33

H = ( g t w i s s ∗ e ta x ˆ2+2∗ a l f a x ∗ e ta x ∗ etap x+beta x ∗ etap x ˆ2) ;

35 sgma t = ( ( eps x /sgma x ) ∗sqrt (1+H∗sgma d ˆ2/ eps x ) ) ;

x i = ( dp acc /(gama ∗ sgma t ) ) ˆ2 ;
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37 tau cons t = (8∗pi∗gamaˆ3∗ sgma x∗ sgma y∗ sgma z∗ sgma t∗dp acc ˆ2) /(No∗ r0

ˆ2∗ c ) ;

39 %% D( x i )

y=x i

41 Dint1 = quadgk (@( x ) log10 ( x ) .∗exp(−x ) . / x ,y , i n f , ’ RelTol ’ ,1 e−8, ’ AbsTol ’

,1 e−12) ;

Dint2 = quadgk (@( x ) exp(−x ) . / x , y , i n f , ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−12) ;

43

D1 = (−3/2)∗exp(−y ) ;

45 D2 = ( y/2) ∗Dint1 ;

D3 = 0 .5∗ (3∗y−y∗ log10 ( y ) +2)∗Dint2 ;

47 D = sqrt ( y ) ∗(D1+D2+D3)

Tau = tau cons t /D;

Listing A.2: Call Touschek Lifetime Code

1 %% Elegant tw i s s

%tw i s s = importdata ( ’ tw i s s . dat ’ ) ;

3 % co l=s , betax , alphax , betay , a l f ay , etax , e taxp

%% Optim tw i s s

5 tw i s s = importdata ( ’ r i n g 9 t w i s s . dat ’ ) ;

% S [cm] BetaX(cm) AlfaX BetaY (cm) AlfaY DspX(cm

) DspXp

7 tw i s s ( : , 1 ) = tw i s s ( : , 1 ) /100 ;

tw i s s ( : , 2 ) = tw i s s ( : , 2 ) /100 ;

9 tw i s s ( : , 4 ) = tw i s s ( : , 4 ) /100 ;

tw i s s ( : , 6 ) = tw i s s ( : , 6 ) /100 ;

11

%%saved matlab tw i s s wi th mom acceptance

13 % S [m] BetaX(m) AlfaX BetaY (m) AlfaY DspX(m)

DspXp Mom. acc

%tw i s s = importdata ( ’ twiss mom acc . t x t ’ ) ;

15

[m, n ] = s ize ( tw i s s ) ;

17 % gama = 19569 .5 ; % 10 Gev

gama = 176 12 . 6 ; % 9 Gev

19 T = [ ] ;

apt = [ ] ;

21 g tw i s s = [ ] ;

H = [ ] ;

23 for k= 1 : m;
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gtw i s s = [ gtwiss ,(1+ tw i s s (k , 3 ) . ˆ 2 ) . / tw i s s (k , 2 ) ] ;

25 H = [H, ( ( g tw i s s ( k ) ∗ tw i s s (k , 6 ) ˆ2) +(2∗ tw i s s (k , 3 ) ∗ tw i s s (k , 6 ) ∗ tw i s s (k

, 7 ) )+( tw i s s (k , 2 ) ∗ tw i s s (k , 7 ) ˆ2) ) ] ;

end ;

27

for j = 1 : 1 : 6 ;

29

a = j ∗1e−2;% beam pipe h a l f width

31 d e l t a = [ ] ;

d e l t a a c c = [ ] ;

33 %gtw i s s = (1+ tw i s s ( : , 3 ) . ˆ2) ./ tw i s s ( : , 2 ) ;

%H = (( g tw i s s .∗ tw i s s ( : , 6 ) . ˆ2)+(2∗ tw i s s ( : , 3 ) .∗ tw i s s ( : , 6 ) .∗ tw i s s ( : , 7 )

)+( tw i s s ( : , 2 ) .∗ tw i s s ( : , 7 ) . ˆ2) ) ;

35

for i = 1 : m;

37 d e l t a = min( a . / ( sqrt (H( i ) ∗ tw i s s ( : , 2 ) )+abs ( tw i s s ( : , 6 ) ) ) ) ;

d e l t a a c c = [ de l t a acc , d e l t a ] ;

39 end ;

41 sum = 0 . 0 ;

for i = 1 : m−1;

43 t a u i = Touschek l i f e t ime ( tw i s s ( i , 2 ) , tw i s s ( i , 3 ) , tw i s s ( i , 6 ) , tw i s s ( i

, 7 ) , tw i s s ( i , 4 ) , d e l t a a c c ( i ) ,gama) ;

ds = tw i s s ( i +1 ,1)−tw i s s ( i , 1 ) ;

45 sum = ( ds/ t a u i ) + sum ;

end ;

47 Tau = tw i s s (m, 1 ) /sum ;

T = [T, Tau ] ;

49 apt = [ apt , a ] ;

end ;

51

53 %%

% This s e c t i on to p l o t l i f e t im e Vs . apt f o r a s p e c i f i c energy

55 f i g u r e 1 = f igure ;

axes1 = axes ( ’ Parent ’ , f i gu r e1 , ’ FontSize ’ ,12) ;

57 box ( axes1 , ’ on ’ ) ;

hold ( axes1 , ’ a l l ’ ) ;

59 plot ( apt ( : ) ,T( : ) /3600 , ’ o−−b ’ , ’ Parent ’ , axes1 , ’ LineWidth ’ , 1 . 5 , ’ Color ’ , [ 0

0 1 ] , . . .

’ DisplayName ’ , ’ Corrected ’ ) ;
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61 grid on ;

xlabel ( ’ a {x , min} [m] ’ ) ;

63 ylabel ( ’ Touschek L i f e t ime [ Hour ] ’ ) ;
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APPENDIX B

APPENDIX: MEIC LATTICES IN MAD-X FORMAT

B.1 MEIC 90O LATTICES IN MAD-X FORMAT

Listing B.1: MEIC 90 lattices in MAD-X format

! =========== CONSTATNTS ==============

2 QQFFVE = −3.024116403;

QQFFHE = 2.701291167 ;

4 LDFF02 = 6 . 5 ;

qqffmtch04 = −1.113370159;

6 qqffmtch03 = 1.130822661 ;

qqffmtch02 = −1.20170373;

8 qqffmtch01 = 0.7924065644 ;

QQCCB01 = 0.8497852339 ;

10 QQCCB02 = −0.8497852371;

QQCCB03 = −0.7675683757184256;

12

LSIR=0.2;

14 KSIRD1 = −0.1403912125;

KSIRF1 = 27 .72327464 ;

16 KSIRD2 = −195.2490114;

KSIRF2 = −5640.0548;

18 KSIRD3 = 9.79110119 ;

KSIRF3 = 37 .31109756 ;

20 KSIRD4 = 623 .8418653 ;

22

! ===================================

24 ODFFE: DRIFT, L=3.3 ;

ODFF01 : DRIFT, L=0.2 ;

26 ODFF02 : DRIFT, L:= LDFF02 ;

ODFF03 : DRIFT, L=0.5 ;

28 ODFF04 : DRIFT, L=2.5 ;

ODFF04X: DRIFT, L=2.5−0.2 ;

30 ODFF04XX: DRIFT, L=2.5−0.2−0.2 ;

QFFVE: QUADRUPOLE, L=0.35 ,K1:= QQFFVE ;

32 QFFHE: QUADRUPOLE, L=0.35 ,K1:= QQFFHE ;

QFFMTCH01: QUADRUPOLE, L=0.5 ,K1:= QQFFMTCH01;
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34 QFFMTCH02: QUADRUPOLE, L=0.5 ,K1:= QQFFMTCH02;

QFFMTCH03: QUADRUPOLE, L=0.5 ,K1:= QQFFMTCH03;

36 QFFMTCH04: QUADRUPOLE, L=0.5 ,K1:= QQFFMTCH04 ;

OCCB01: DRIFT, L=3 ;

38 OCCB01X: DRIFT, L=3−0.2 ;

OCCB02: DRIFT, L=0.25 ;

40 OCCB03: DRIFT, L=0.5 ;

OCCB04: DRIFT, L=0.75 ;

42 OCCB05: DRIFT, L=1 ;

QCCB01: QUADRUPOLE, L=0.5 ,K1 := QQCCB01 ;

44 QCCB02: QUADRUPOLE, L=0.5 ,K1 := QQCCB02 ;

QCCB03: QUADRUPOLE, L=0.5 ,K1 := QQCCB03 ;

46 ! ==== BINDS ==========

! DCCB = 0 . 1 ;

48 ! DCCB2 = 0 . 1∗2/ 3 ;

50 ! DCCB2 = 0.05857308755 ;

! DCCB = 0.0053904695 ;

52

DCCB2 = 0 . 0 5 ;

54 DCCB = 0 . 0 5 ;

56 DCCBIN: SBEND, L = 1 . 5 , ANGLE := DCCB; ! , E1 := DCCB/2 , E2 := DCCB/2 ,

HGAP = 0 . 1 ;

DFF1 : SBEND, L = 3 , ANGLE := DCCB2; ! , E1 := −DCCB/2 , E2 := −DCCB/2 ,

HGAP = 0 . 1 ;

58 DFF2 : SBEND, L = 3 , ANGLE := −DCCB2; ! , E1 := −DCCB/2 , E2 := −DCCB/2 ,

HGAP = 0 . 1 ;

DFF: SBEND, L = 2 . 5 , ANGLE := DCCB2; ! , E1 := DCCB2/2 , E2 := DCCB2/2 ,

HGAP = 0 . 1 ;

60

! ========= MARKERS ===========

62 MARKMATCH: MARKER ;

MARKIP: MARKER ;

64

66 ! ============SEXTUPOLES=================

SIRF1 : SEXTUPOLE, L:=LSIR , K2 := KSIRF1 ;

68 SIRF2 : SEXTUPOLE, L:=LSIR , K2 := KSIRF2 ;

SIRF3 : SEXTUPOLE, L:=LSIR , K2 := KSIRF3 ;

70 SIRF4 : SEXTUPOLE, L:=LSIR , K2 := KSIRF4 ;
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72 SIRD1 : SEXTUPOLE, L:=LSIR , K2 := KSIRD1 ;

SIRD2 : SEXTUPOLE, L:=LSIR , K2 := KSIRD2 ;

74 SIRD3 : SEXTUPOLE, L:=LSIR , K2 := KSIRD3 ;

SIRD4 : SEXTUPOLE, L:=LSIR , K2 := KSIRD4 ;

76

K3OIRF1= 0 . 0 ;

78 K3OIRF2= 0 . 0 ;

K3OIRD1= 0 . 0 ;

80 K3OIRD2= 0 . 0 ;

OIRF1 : OCTUPOLE, L=0.2 ,K3 := K3OIRF1 ;

82 OIRF2 : OCTUPOLE, L=0.2 ,K3 := K3OIRF2 ;

OIRD1 : OCTUPOLE, L=0.2 ,K3 := K3OIRD1 ;

84 OIRD2 : OCTUPOLE, L=0.2 ,K3 := K3OIRD2 ;

! ==== FFQ =====================

86 FFQDR: LINE=(ODFFE,QFFVE,ODFF01,QFFHE,ODFF02, DCCBIN) ;

RFFQDR: LINE=(DCCBIN,ODFF02,QFFHE, ODFF01,QFFVE, ODFFE) ;

88

! CCBR02: LINE=( SIRF2 , ODFF04X, QFFMTCH01, ODFF04X, SIRD2 ,

QFFMTCH02, DFF, QFFMTCH03, SIRF1 , ODFF04X, QFFMTCH04, SIRD1 , ODFF04X

) ;

90 ! RCCBR02: LINE=(ODFF04X, SIRD1 , QFFMTCH04, ODFF04X, SIRF1 ,

QFFMTCH03, DFF, QFFMTCH02, SIRD2 , ODFF04X, QFFMTCH01, ODFF04X, SIRF2

) ;

92 CCBR02: LINE=( SIRF2 , OIRF1 , ODFF04XX, QFFMTCH01, ODFF04XX, SIRD2 ,

OIRD1, QFFMTCH02,

DFF, QFFMTCH03, SIRF1 , OIRF2 , ODFF04XX

, QFFMTCH04, SIRD1 , OIRD2, ODFF04Xx)

;

94 RCCBR02: LINE=(ODFF04XX, OIRD2, SIRD1 , QFFMTCH04, ODFF04XX, OIRF2 ,

SIRF1 , QFFMTCH03, DFF, QFFMTCH02, OIRD1, SIRD2 , ODFF04XX,

QFFMTCH01, ODFF04XX, OIRF1 , SIRF2) ;

96

CCBCELL: LINE=(QCCB01, DFF1, SIRD3 , QCCB02, SIRD3 , DFF2, QCCB01,

SIRF3 , OCCB01x, QCCB02, SIRD4 , OCCB01x) ;

98 RCCBCELL: LINE=( OCCB01x, SIRD4 , QCCB02, OCCB01x, SIRF3 , QCCB01,

DFF2, SIRD3 , QCCB02, SIRD3 , DFF1, QCCB01) ;

100 IR : LINE=(FFQDR, RCCBR02, 3∗CCBCELL) ;
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RIR : LINE=(3∗RCCBCELL, CCBR02, RFFQDR) ;

102 ! IR2IR : LINE=(−IR ,MARKIP, IR ) ;

IR2IR : LINE=(RIR ,MARKIP, IR ) ;

104

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ARC LATTICE ∗∗∗∗∗∗∗∗∗∗∗∗∗
106 LQF = 0 . 3 6 5 ;

LQD = 0 . 2 8 0 ;

108

! KQD = −0.3890830170474;

110 ! KQF = 0.4099360657 ;

! KQFB = 0.3319687659 ;

112

KQF = 0.2601505412 ;

114 KQD = −0.137920606;

KQFB = −0.06201670865;

116

! KQF = 2.62308 e−01;

118 ! KQD = −1.40203e−01;

! KQFB = −0.06201670865;

120

122 KQFDS1A = 0.4919351467 ;

KQDDS1A = −0.3056595639;

124 KQFBDS1A = 0.09714455205 ;

KQFDS2A = 0.6290280142 ;

126 KQDDS2A = −0.3464434475;

KQFBDS2A = 0.3473587435 ;

128

KQFDS2B = 0.503524733 ;

130 KQDDS2B = −0.3069047922;

KQFBDS2B = 0.03367782865 ;

132 KQFDS1B = 0.7011091949 ;

KQDDS1B = −0.3393333849;

134 KQFBDS1B = 0.2500242496 ;

136

138 ! THETA = 0.04274849508 ;

NARCCELL = 120 ;

140 THETA = 300/NARCCELL∗(pi /180) ;

! DSIP SUPP
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142 M=PI /4 ; ! PHASE ADVANCE PER HALF CELL

T1=THETA∗(1−1/(4∗ sin (m) ˆ2) ) ;

144 T2=THETA∗(1/(4∗ sin (m) ˆ2) ) ;

LB = 5.09962715728 ;

146

148 LSXT = 0 . 1 2 5 ;

150 KSF1A = −2.180871699;

KSD1A = 0.2572540972 ;

152 KSD1B = 0.2572541066 ;

KSF1B = −2.180871673;

154

156 KSF3A = 0 ;

KSF3B = 0 ;

158 KSD3A = 0 ;

KSD3B = 0 ;

160 KSF4A = 0 . 0 ;

KSF4B = 0 . 0 ;

162 KSD4A = 0 . 0 ;

KSD4B = 0 . 0 ;

164

d = sqrt (312.1886089ˆ2+258.1873466ˆ2) ;

166 LSTRAIGHT = sqrt (2∗d/(1−cos (60∗pi /180) ) ) ;

N o f c e l l s = LSTRAIGHT−1;

168 ! SHOW, THETA, LSTRAIGHT, N o f c e l l s , T1 , T2 ;

170 BNDIN: SBEND, L= LB, ANGLE := THETA, E1 := THETA/2 , E2 := THETA/2 ;

BNDOUT: SBEND, L= LB, ANGLE := −THETA, E1 := −THETA/2 , E2 := −THETA/2 ;

172

BNDINT1: SBEND, L= LB, ANGLE := T1 , E1 := T1/2 , E2 := T1/2 ;

174 BNDINT2: SBEND, L= LB, ANGLE := T2 , E1 := T2/2 , E2 := T2/2 ;

176 BNDOUT1: SBEND, L= LB, ANGLE := −T1 , E1 := −T1/2 , E2 := −T1/2 ;

BNDOUT2: SBEND, L= LB, ANGLE := −T2 , E1 := −T2/2 , E2 := −T2/2 ;

178

DBND: DRIFT, L:= LB;

180 DLB: DRIFT, L=0.2 ;

DLA: DRIFT, L= 2.51 ;

182 D25 : DRIFT, L= 0 . 2 5 ;
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D125 : DRIFT, L= 0 . 1 2 5 ;

184 QD : QUADRUPOLE, L:=2∗LQD, K1:=KQD;

QFB : QUADRUPOLE, L:=LQF, K1:=KQFB;

186 QF : QUADRUPOLE, L:=LQF, K1:=KQF ;

188 ! ================ MARCHING ARC TO IR ====================

kqfmtcha = 1 .07481082 ;

190 kqdmtcha = −0.5153631518;

kqfbmtcha = −0.1825519498;

192 kqfmtchb = 0.5110269728 ;

KQDMTCHB = 0 . 0 ;

194 KQFBMTCHB = 0 . 0 ;

196

198

QDMTCHA : QUADRUPOLE, L:=2∗LQD, K1:=KQDMTCHA;

200 QFBMTCHA : QUADRUPOLE, L:=LQF, K1:=KQFBMTCHA;

QFMTCHA : QUADRUPOLE, L:=LQF, K1:=KQFMTCHA ;

202

QDMTCHB : QUADRUPOLE, L:=2∗LQD, K1:=KQDMTCHB;

204 QFBMTCHB : QUADRUPOLE, L:=LQF, K1:=KQFBMTCHB;

QFMTCHB : QUADRUPOLE, L:=LQF, K1:=KQFMTCHB ;

206

208 ! ======= SEXTS ARC IN =================

SF1A : SEXTUPOLE, L:=LSXT, K2 := KSF1A ;

210 SD1A : SEXTUPOLE, L:=2∗LSXT, K2 := KSD1A ;

SF1B : SEXTUPOLE, L:=LSXT, K2 := KSF1B ;

212 SD1B : SEXTUPOLE, L:=2∗LSXT, K2 := KSD1B ;

214 SF4A : SEXTUPOLE, L:=LSXT, K2 := KSF4A ;

SD4A : SEXTUPOLE, L:=2∗LSXT, K2 := KSD4A ;

216

! ======= SEXTS ARC OUT ===============

218 SF2A : SEXTUPOLE, L:=LSXT, K2 := −KSF1A ;

SD2A : SEXTUPOLE, L:=2∗LSXT, K2 := −KSD1A ;

220 SF2B : SEXTUPOLE, L:=LSXT, K2 := −KSF1B ;

SD2B : SEXTUPOLE, L:=2∗LSXT, K2 := −KSD1B ;

222
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224 SF4B : SEXTUPOLE, L:=LSXT, K2 := KSF4B ;

SD4B : SEXTUPOLE, L:=2∗LSXT, K2 := KSD4B ;

226 ! ======= SEXTS STRIAGHT ===============

SF3A : SEXTUPOLE, L:=LSXT, K2 := −KSF3A ;

228 SD3A : SEXTUPOLE, L:=2∗LSXT, K2 := KSD3A ;

SF3B : SEXTUPOLE, L:=LSXT, K2 := −KSF3B ;

230 SD3B : SEXTUPOLE, L:=2∗LSXT, K2 := KSD3B;

232

CELL RA: LINE=(QF, SD1A, DLB, D25 , DLA, DLB, QD, DLB, BNDIN, DLB, QFB)

;

234 CELL RB: LINE=(QF, SD1B, DLB, D25 , DLA, DLB, QD, DLB, BNDIN, DLB, QFB)

;

RCELL RA: LINE=(QFB,DLB, BNDIN, DLB, QD, DLB, DLA, D25 , DLB, SD1A, QF)

;

236 RCELL RB: LINE=(QFB,DLB, BNDIN, DLB, QD, DLB, DLA, D25 , DLB, SD1B, QF)

;

238

! CELL R : LINE=(CELL RA, SF1A , RCELL RB, CELL RA, SF1B , RCELL RB) ;

240 CELL R : LINE=(CELL RA, SF1A , RCELL RB, CELL RA, SF1B , RCELL RB) ;

RCELL R: LINE=(CELL RB, SF1B , RCELL RA, CELL RB, SF1A , RCELL RA ) ;

242

CELL LA: LINE=(QF, SD2A, DLB, D25 , DLA, DLB, QD, DLB, BNDOUT, DLB, QFB)

;

244 CELL LB : LINE=(QF, SD2B, DLB, D25 , DLA, DLB, QD, DLB, BNDOUT, DLB, QFB)

;

RCELL LA: LINE=(QFB,DLB, BNDOUT, DLB, QD, DLB, DLA, D25 , DLB, SD2A, QF)

;

246 RCELL LB: LINE=(QFB,DLB, BNDOUT, DLB, QD, DLB, DLA, D25 , DLB, SD2B, QF)

;

248 ! CELL L : LINE=(CELL LA, SF2A , −CELL LB, CELL LA, SF2B , −CELL LB) ;

CELL L : LINE=(CELL LA, SF2A , RCELL LB, CELL LA, SF2B , RCELL LB) ;

250 RCELL L : LINE=(CELL LB, SF2B , RCELL LA, CELL LB, SF2A , RCELL LA ) ;

252

CELL MTCH: LINE=(DLA, QFMTCHA, DLB, DLA, QDMTCHA, DLB, DLA, QFBMTCHA,

DLB, DLA, QFMTCHB, DLA) ;

254 RCELL MTCH: LINE=(DLA, QFMTCHB, DLA, DLB, QFBMTCHA, DLA, DLB, QDMTCHA

, DLA, DLB, QFMTCHA, DLA) ;
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256 CELL STRAIGHTA: LINE=(QF, DLB, D25 , DLA, D25 , DLB, QD, DLB, DBND, DLB,

QFB) ;

CELL STRAIGHTB: LINE=(QF, DLB, D25 , DLA, D25 , DLB, QD, DLB, DBND, DLB,

QFB) ;

258 CELL STRT: LINE=(CELL STRAIGHTA, D125 , −CELL STRAIGHTB) ;

260 ARCENDR: MARKER;

ARCENDL: MARKER;

262

! ARC: LINE=( 29∗CELL R,16∗CELL STRT, 29∗CELL L,16∗CELL STRT ) ;

264

IRRING : LINE=(markip , IR , 5∗D25 , CELL MTCH, ARCENDR, CELL R, 28∗CELL R

) ;

266 ! IR2IR : LINE=(RCELL MTCH, 5∗D25 , RIR , markip , IR , 5∗D25 , CELL MTCH,

CELL R, ARCENDR) ;

RIRRING: LINE=(−IRRING) ;

268 ! RIRRING: LINE=(29∗RCELL R, RCELL MTCH, ARCENDR, 5∗D25 , RIR) ;

! RIRRING: LINE=(29∗RCELL L, RCELL MTCH, ARCENDR, 5∗D25 , RIR) ;

270

! RING: LINE=(RCELL R, RCELL MTCH, 5∗D25 , RIR , MARKIP, IR , 5∗D25 ,

CELL MTCH, ARCENDR, CELL R) ;

272 RING: LINE=(markip , IRRING, RIRRING) ;

FIG8 : LINE=(RIRRING, markip , IRRING, ) ;

B.2 MEIC 135O LATTICES IN MAD-X FORMAT

Listing B.2: MEIC 135 lattices in MAD-X format

1 qFF1 : QUADRUPOLE, L= 0 . 5 , K1=−1.710610246;

qFF2 : QUADRUPOLE, L= 0 . 5 , K1=1.793012185;

3 qFFL : QUADRUPOLE, L= 0 . 5 , K1=−0.6980660777;

qQL1 : QUADRUPOLE, L= 0 . 5 , K1=0.4798035784;

5 qQL2 : QUADRUPOLE, L= 0 . 5 , K1=−0.001750974343;

qQL3 : QUADRUPOLE, L= 0 . 5 , K1=0.4330462711;

7 qFFR: QUADRUPOLE, L= 0 . 5 , K1=−0.6980660777;

qQR1 : QUADRUPOLE, L= 0 . 5 , K1=0.5495883026;

9 qQR2 : QUADRUPOLE, L= 0 . 5 , K1=−0.1349845162;

qQ6 : QUADRUPOLE, L= 0 . 5 , K1=1.074875476;

11 qQ13 : QUADRUPOLE, L= 0 . 5 , K1=−0.1919464793;

qQ14 : QUADRUPOLE, L= 0 . 5 , K1=0.8166352573;
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13 qQ15 : QUADRUPOLE, L= 0 . 5 , K1=−0.5884208797;

qQ16 : QUADRUPOLE, L= 0 . 5 , K1=0.5276194262;

15 oD01 : DRIFT, L= 3 .5 ;

oD02 : DRIFT, L= 0 .2 ;

17 oD02a : DRIFT, L= 2 ;

oD03 : DRIFT, L= 0 .8 ;

19 oD04 : DRIFT, L= 3 . 0 ;

oD05 : DRIFT, L= 3.090005 ;

21 odX : DRIFT, L= 4 .2 ;

oD1 : DRIFT, L= 3.353333 ;

23 oD1a : DRIFT, L= 2.853333 ;

oD0 : DRIFT, L= 0.94 ;

25 oD2 : DRIFT, L= 3.373333 ;

oD2a : DRIFT, L= 0.5733333 ;

27 oD2b : DRIFT, L= 6.173333 ;

qF1a : QUADRUPOLE, L= 0 . 5 , K1=1.648251293;

29 qD1a : QUADRUPOLE, L= 0 . 5 , K1=−1.289835116;

oQ : DRIFT, L= 0 .5 ;

31 qQ1 : QUADRUPOLE, L= 0 . 5 , K1=0.4149178511;

qQ3 : QUADRUPOLE, L= 0 . 5 , K1=−0.5707631072;

33 qQ5 : QUADRUPOLE, L= 0 . 5 , K1=0.3497200242;

oA : DRIFT, L= 0.25 ;

35 qF : QUADRUPOLE, L= 0 . 5 , K1=1.583002171;

qD: QUADRUPOLE, L= 0 . 5 , K1=−1.581551258;

37 qF2 : QUADRUPOLE, L= 0 . 5 , K1=1.585141235;

qD2 : QUADRUPOLE, L= 0 . 5 , K1=−1.584267556;

39 qF3 : QUADRUPOLE, L= 0 . 5 , K1=1.587533443;

qD3 : QUADRUPOLE, L= 0 . 5 , K1=−1.583753275;

41 dAin : SBEND, L= 1 . 5 , ANGLE=0.06159985546

, E1=0.03079993003 , HGAP=0.09976317438 , FINT=0.5

43 , E2=0.03079993003 ;

dA13in : SBEND, L= 1 . 5 , ANGLE=0.01804217958

45 , E1=0.009021090286 , HGAP=0.09997965744 , FINT=0.5

, E2=0.009021090286;

47 dA23in : SBEND, L= 1 . 5 , ANGLE=0.04355767588

, E1=0.02177882927 , HGAP=0.09988150403 , FINT=0.5

49 , E2=0.02177882927 ;

dCin : SBEND, L= 1 . 5 , ANGLE=0.099527244

51 , E1=0.04976363048 , HGAP=0.09938316213 , FINT=0.5

, E2=0.04976363048 ;

53 dAout : SBEND, L= 1 . 5 , ANGLE=−0.06159985546
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, E1=−0.03079993003 , HGAP=0.09976317438 , FINT=0.5

55 , E2=−0.03079993003 ;

dA13out : SBEND, L= 1 . 5 , ANGLE=−0.01804217958

57 , E1=−0.009021090286 , HGAP=0.09997965744 , FINT=0.5

, E2=−0.009021090286;

59 dA23out : SBEND, L= 1 . 5 , ANGLE=−0.04355767588

, E1=−0.02177882927 , HGAP=0.09988150403 , FINT=0.5

61 , E2=−0.02177882927 ;

dCout : SBEND, L= 1 . 5 , ANGLE=−0.099527244

63 , E1=−0.04976363048 , HGAP=0.09938316213 , FINT=0.5

, E2=−0.04976363048 ;

65 qF1b : QUADRUPOLE, L= 0 . 5 , K1=1.685669596;

qD1b : QUADRUPOLE, L= 0 . 5 , K1=−0.7234813724;

67 qQQ0: QUADRUPOLE, L= 0 . 5 , K1=0.5761200943;

qQQ1: QUADRUPOLE, L= 0 . 5 , K1=−0.6809219204;

69 qQQ2: QUADRUPOLE, L= 0 . 5 , K1=0.7914314709;

qQQ4: QUADRUPOLE, L= 0 . 5 , K1=0.7986657184;

71 qQQ5: QUADRUPOLE, L= 0 . 5 , K1=−0.7165798756;

qQQ6: QUADRUPOLE, L= 0 . 5 , K1=0.7952396182;

73 qQQ8: QUADRUPOLE, L= 0 . 5 , K1=0.798751654;

qQQ9: QUADRUPOLE, L= 0 . 5 , K1=−0.7169845725;

75 qQQ10 : QUADRUPOLE, L= 0 . 5 , K1=0.7953748502;

qQQ12 : QUADRUPOLE, L= 0 . 5 , K1=0.798751654;

77 qQQ13 : QUADRUPOLE, L= 0 . 5 , K1=−0.6133182291;

qQQ14 : QUADRUPOLE, L= 0 . 5 , K1=0.3976731025;

79 qQQ15 : QUADRUPOLE, L= 0 . 5 , K1=0.3905511043;

qQQ16 : QUADRUPOLE, L= 0 . 5 , K1=−0.5827737767;

81 qQQ17 : QUADRUPOLE, L= 0 . 5 , K1=0.6912944836;

qQQ18 : QUADRUPOLE, L= 0 . 5 , K1=−0.1274522254;

83 IIR1 : MONITOR ;

IIR2 : MONITOR ;

85 MIDPINT: MONITOR;

ARC2IR: MONITOR;

87 ENDIR: MONITOR;

STRTII : MONITOR;

89

! dmux : = 0 . 0 ;

91 !TUNEMATRIX: MATRIX, L=0,

! RM11=1, RM22=1+dmux ;

93

! i n s e r t pure phase advance delmx , delmy
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95 ! must be preceded by

97 delmx = 0 . 1 ;

delmy=0;

99

! savebeta , l a b e l=phaserot , p l ace=TUNEMATRIX

101 ! btx=phaserot [ betx ] ; a lx=phaserot [ a l f x ] ; bty=phaserot [ bety ] ; a ly=

phaserot [ a l f y ] ;

103 btx =0.09999851407;

a lx =0;

105 bty =0.02000277498;

a ly =0;

107

! phase r o t a t o r on

109 !TUNEMATRIX: matrix , L=0,

!RM11=cos (2∗pi∗delmx )+alx ∗ sin (2∗pi∗delmx ) ,

111 !RM12=btx∗ sin (2∗pi∗delmx ) ,

!RM21=−(1+alx ˆ2) ∗ sin (2∗pi∗delmx ) /btx ,

113 !RM22=cos (2∗pi∗delmx )−a lx ∗ sin (2∗pi∗delmx ) ,

!RM33=cos (2∗pi∗delmy )+aly ∗ sin (2∗pi∗delmy ) ,

115 !RM34=bty∗ sin (2∗pi∗delmy ) ,

!RM43=−(1+aly ˆ2) ∗ sin (2∗pi∗delmy ) /bty ,

117 !RM44=cos (2∗pi∗delmy )−a ly ∗ sin (2∗pi∗delmy ) ;

119 ! phase r o t a t o r o f f

TUNEMATRIX: matrix , L=0;

121

123 ! ===== SEXTUPOLES ==========

SEXT ON:=0;

125 SEXT IR ON:=0;

SEXT ARC ON:=1;

127

129 oD04e l i2 : DRIFT, L= 2 . 6 ;

oD04e l i1 : DRIFT, L= 0 . 2 ;

131 s e x t e l i : s extupo le , L=0.2 , k2=40∗SEXT ON;

133

k s x i r 2 a r c r 6 = −28.59089268∗SEXT ARC ON;
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135 k s x i r 2 a r c r 5 = 19.70671862∗SEXT ARC ON;

k s x i r 2 a r c r 4 = −24.26003573∗SEXT ARC ON;

137 k s x i r 2 a r c r 3 = 0. ; ! −9 .506902037∗SEXT ARC ON;

k s x i r 2 a r c r 2 = 0 . ; ! 3 . 2 7 2 0 7 3 3 3 2∗SEXT ARC ON0;

139 k s x i r 2 a r c r 1 = −0 . ; ! 9 .725332579∗SEXT ARC ON;

k s x i r 2 i r 1 = −15.29809242∗SEXT IR ON ;

141 k s x i r 2 i r 2 = 18.33662226∗SEXT IR ON∗0 ;

k s x i r 2 i r 3 = −17.92583988∗SEXT IR ON∗0 ;

143 k s x i r 2 i r 4 = −24.91912144∗SEXT IR ON∗0 ;

k s x i r 2 i r 5 = −0.09031587341∗SEXT IR ON ;

145 k s x i r 2 i r 6 = −9.869232721∗SEXT IR ON∗0 ;

k s x i r 2 i r 7 = 13.68822556∗SEXT IR ON ;

147

149 ! ARC SEXTs

151 ksxarcouta = 42.91533855∗SEXT ARC ON ;

ksxarcout2a = −20.03903641∗SEXT ARC ON;

153 ksxarcoutb = 42.5850182∗SEXT ARC ON;

ksxarcout2b = −19.57800357∗SEXT ARC ON;

155 ksxarcoutc = 41.96571473∗SEXT ARC ON;

ksxarcout2c = −19.40595386∗SEXT ARC ON;

157 ksxarcoutd = 41.95193565∗SEXT ARC ON;

ksxarcout2d = −19.73627421∗SEXT ARC ON;

159

ksxarc ina = −15∗SEXT ON ;

161 ksxarc in2a = 15∗SEXT ON ;

ksxarc inb = −15∗SEXT ON ;

163 ksxarc in2b = 15∗SEXT ON ;

ksxar c inc = −15∗SEXT ON ;

165 ksxarc in2c = 15∗SEXT ON ;

ksxarc ind = −15∗SEXT ON ;

167 ksxarc in2d = 15∗SEXT ON ;

169

k s x s t r t i i 1 3 = 5∗SEXT ON ;

171 k s x s t r t i i 1 2 = −5∗SEXT ON ;

k s x s t r t i i 1 1 = 5∗SEXT ON ;

173 k s x s t r t i i 1 0 = −5∗SEXT ON ;

k s x s t r t i i 9 = 5∗SEXT ON ;

175 k s x s t r t i i 8 = −5∗SEXT ON ;
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k s x s t r t i i 7 = 5∗SEXT ON ;

177 k s x s t r t i i 6 = −5∗SEXT ON ;

k s x s t r t i i 5 = 5∗SEXT ON ;

179 k s x s t r t i i 4 = −5∗SEXT ON ;

k s x s t r t i i 3 = 5∗SEXT ON ;

181 k s x s t r t i i 2 = 5∗SEXT ON ;

k s x s t r t i i 1 = −5∗SEXT ON ;

183

oD01SXT : DRIFT, L= 3.5−0.2 ;

185 oD2aSXT : DRIFT, L= 0.5733333−0.20 ;

oD02aSXT : DRIFT, L = 2.0−0.2 ;

187 oD03SXT : DRIFT, L = 0.8−0.2 ;

oD1SXT: DRIFT, L = 3.353333−0.20 ;

189 oD2SXT: DRIFT, L = 3.373333−0.20 ;

oD0SXT: DRIFT, L = 0.94−0.20 ;

191 oD2bSXT : DRIFT, L= 6.173333−0.20 ;

oQSXT: DRIFT, L= 0.5−0.20 ;

193 oASXT: DRIFT, L= 0.25−0.20 ;

195

! LEFT OF SYMMETRRY

197 SXIR2IRL1 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR1 ;

SXIR2IRL2 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR2 ;

199 SXIR2IRL3 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR3 ;

SXIR2IRL4 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR4 ;

201 SXIR2IRL5 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR5 ;

SXIR2IRL6 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR6 ;

203 SXIR2IRL7 : SEXTUPOLE , L=0.2 , K2:= KSXIR2IR7 ;

205 ! RIGHT OF SYMMETRRY

SXIR2IRR1 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR1 ;

207 SXIR2IRR2 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR2 ;

SXIR2IRR3 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR3 ;

209 SXIR2IRR4 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR4 ;

SXIR2IRR5 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR5 ;

211 SXIR2IRR6 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR6 ;

SXIR2IRR7 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2IR7 ;

213

! Right o f 2nd IIP

215 SXIR2ARCR1: SEXTUPOLE , L=0.2 , K2:= KSXIR2ARCR1;

SXIR2ARCR2: SEXTUPOLE , L=0.2 , K2:= KSXIR2ARCR2;
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217 SXIR2ARCR3: SEXTUPOLE , L=0.2 , K2:= KSXIR2ARCR3;

SXIR2ARCR4: SEXTUPOLE , L=0.2 , K2:= KSXIR2ARCR4;

219 SXIR2ARCR5: SEXTUPOLE , L=0.2 , K2:= KSXIR2ARCR5;

SXIR2ARCR6: SEXTUPOLE , L=0.2 , K2:= KSXIR2ARCR6;

221

223

! L o f 1 s t IIP

225 SXIR2ALCR1 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2ARCR1;

SXIR2ALCR2 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2ARCR2;

227 SXIR2ALCR3 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2ARCR3;

SXIR2ALCR4 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2ARCR4;

229 SXIR2ALCR5 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2ARCR5;

SXIR2ALCR6 : SEXTUPOLE , L=0.2 , K2:= −KSXIR2ARCR6;

231

233 SXSTRTII1 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII1 ;

SXSTRTII2 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII2 ;

235 SXSTRTII3 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII3 ;

SXSTRTII4 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII4 ;

237 SXSTRTII5 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII5 ;

SXSTRTII6 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII6 ;

239 SXSTRTII7 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII7 ;

SXSTRTII8 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII8 ;

241 SXSTRTII9 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII9 ;

SXSTRTII10 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII10 ;

243 SXSTRTII11 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII11 ;

SXSTRTII12 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII12 ;

245 SXSTRTII13 : SEXTUPOLE , L=0.2 , K2:= KSXSTRTII13 ;

247 SXSTRTIIL1 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII1 ;

SXSTRTIIL2 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII2 ;

249 SXSTRTIIL3 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII3 ;

SXSTRTIIL4 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII4 ;

251 SXSTRTIIL5 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII5 ;

SXSTRTIIL6 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII6 ;

253 SXSTRTIIL7 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII7 ;

SXSTRTIIL8 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII8 ;

255 SXSTRTIIL9 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII9 ;

SXSTRTIIL10 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII10 ;

257 SXSTRTIIL11 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII11 ;
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SXSTRTIIL12 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII12 ;

259 SXSTRTIIL13 : SEXTUPOLE , L=0.2 , K2:= −KSXSTRTII13 ;

261 ! Arc s e x t s

263

SXARCOUTA1: SEXTUPOLE , L=0.2 , K2:= KSXARCOUTA;

265 SXARCOUTA2: SEXTUPOLE , L=0.2 , K2:= KSXARCOUT2A;

SXARCOUTB1: SEXTUPOLE , L=0.2 , K2:= KSXARCOUTA;

267 SXARCOUTB2: SEXTUPOLE , L=0.2 , K2:= KSXARCOUT2A;

SXARCOUTC1: SEXTUPOLE , L=0.2 , K2:= KSXARCOUTA;

269 SXARCOUTC2: SEXTUPOLE , L=0.2 , K2:= KSXARCOUT2A;

SXARCOUTD1: SEXTUPOLE , L=0.2 , K2:= KSXARCOUTA;

271 SXARCOUTD2: SEXTUPOLE , L=0.2 , K2:= KSXARCOUT2A;

273 SXARCINA1: SEXTUPOLE , L=0.2 , K2:= KSXARCINA;

SXARCINA2: SEXTUPOLE , L=0.2 , K2:= KSXARCIN2A;

275 SXARCINB1: SEXTUPOLE , L=0.2 , K2:= KSXARCINA;

SXARCINB2: SEXTUPOLE , L=0.2 , K2:= KSXARCIN2A;

277 SXARCINC1: SEXTUPOLE , L=0.2 , K2:= KSXARCINA;

SXARCINC2: SEXTUPOLE , L=0.2 , K2:= KSXARCIN2A;

279 SXARCIND1: SEXTUPOLE , L=0.2 , K2:= KSXARCINA;

SXARCIND2: SEXTUPOLE , L=0.2 , K2:= KSXARCIN2A;

281

283 ! ====== SEXT SECTIONS +===============

285 IR2IRWSEXT: LINE=(IIR1 , oD01SXT , SXIR2IRL1 , qFF1 , OD02, qFF2 , SXIR2IRL2

, oD02aSXT , qFFR, SXIR2IRL3 , oD03SXT , qQR1,

oD04 , qQR2, oD05 , qQ6 , SXIR2IRL4 , oD1SXT, dA13out , oD0SXT, SXIR2IRL5 ,

qQ13 , oD0 , dCout , oD2 , qQ14 , SXIR2IRL6 , oD2SXT,

287 qQ15 , SXIR2IRL7 , oD2SXT, qQ16 , MIDPINT

,qQ16 , oD2SXT, SXIR2IRR7 , qQ15 , oD2SXT, SXIR2IRR6 , qQ14 , oD2 , dCin ,

oD0 , qQ13 , SXIR2IRR5 , oD0SXT,

289 dA13in , oD1SXT, SXIR2IRR4 , qQ6 , oD05 , qQR2, oD04 , qQR1, oD03SXT ,

SXIR2IRR3 , qFFR, oD02aSXT , SXIR2IRR2 , qFF2 , OD02,

qFF1 , SXIR2IRR1 , oD01SXT , IIR2 ) ;

291

293 IRWSEXT: LINE = (ARC2IR, IR2ARCL, IR2IRWSEXT,IR2ARCR, ARC2IR) ;

IRWSEXT1: LINE = (ARC2IR, IR2ARCL, IR2IRWSEXT) ;
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295 IRWSEXT2: LINE = (IR2ARCR, ARC2IR) ;

IRWSEXT3: LINE = (IR2IRWSEXT, IR2ARCR) ;

297

IR2ARCL: LINE = (oA, dA13out , oA , qD1a , oA , odX , oD1SXT, SXIR2ALCR6, qQ1

, oD1SXT, oQ, oQ, SXIR2ALCR5, qQ3 , oD1SXT, oQ, oQ, SXIR2ALCR4, &

299 qQ5 , oD1a , oD1a , qQL3 , oD05 , qQL2 , oD04el i2 , s e x t e l i , oD04el i1 , qQL1 ,

oD03SXT , SXIR2ALCR3, qFFL , oD02aSXT , SXIR2ALCR2, qFF2 , &

OD02, qFF1 , SXIR2ALCR1, oD01SXT) ;

301

IR2ARCR : LINE = ( oD01SXT ,SXIR2ARCR1, qFF1 ,OD02 , qFF2 , SXIR2ARCR2,

oD02aSXT , qFFL , SXIR2ARCR3, oD03SXT , qQL1,&

303 oD04el i1 , s e x t e l i , oD04el i2 , &

qQL2 , oD05 , qQL3 , oD1a , oD1a , qQ5 , SXIR2ARCR4, oQ, oQ, oD1SXT, qQ3 ,

SXIR2ARCR5, oQ, oQ, oD1SXT, qQ1 , SXIR2ARCR6,oD1SXT, &

305 odX , oA , qD1a , oA , dA13in , oA) ;

307

309 STRAIGHTIIWSXTR: LINE = (qQQ18 , oD2b , qQQ17 , SXSTRTII1 , oD2SXT, qQQ16 ,

SXSTRTII2 , oD2aSXT , dCout , oD0 , qQQ15 , oD0 ,

dA13out , oD1 , oQ, oQ, qQQ14 , oD1 , qQQ13 , SXSTRTII3 , oD1SXT, qQQ12 ,

SXSTRTII4 , oD1SXT, oD1 , qQQ10 , SXSTRTII5 , oD1SXT,

311 qQQ9, SXSTRTII6 , oD1SXT, qQQ8, SXSTRTII7 , oD1SXT, oD1 , qQQ6, SXSTRTII8 ,

oD1SXT, qQQ5, SXSTRTII9 , oD1SXT, qQQ4, SXSTRTII10 , oD1SXT, oD1 ,

qQQ2, SXSTRTII11 , oD1SXT, qQQ1, SXSTRTII12 , oD1SXT, qQQ0, SXSTRTII13 ,

oQSXT, odX) ;

313

STRAIGHTIIWSXTL: LINE = (odX , oQSXT, SXSTRTIIL13 , qQQ0, oD1SXT,

SXSTRTIIL12 , qQQ1, oD1SXT, SXSTRTIIL11 , qQQ2,

315 oD1 , oD1SXT, SXSTRTIIL10 , qQQ4, oD1SXT, SXSTRTIIL9 , qQQ5, oD1SXT,

SXSTRTIIL8 , qQQ6, oD1 , oD1SXT, SXSTRTIIL7 ,

qQQ8, oD1SXT, SXSTRTIIL6 , qQQ9, oD1SXT, SXSTRTIIL5 , qQQ10 , oD1 , oD1SXT,

SXSTRTIIL4 , qQQ12 , oD1SXT, SXSTRTIIL3 , qQQ13 , oD1 , qQQ14 , oQ,

317 oQ, oD1 , dA13in , oD0 , qQQ15 , oD0 , dCin , oD2aSXT , SXSTRTIIL2 , qQQ16 ,

oD2SXT, SXSTRTIIL1 , qQQ17 , oD2b , qQQ18) ;

319 STRAIGHTIIWSXT: LINE = ( STRTII , STRAIGHTIIWSXTL, STRAIGHTIIWSXTR) ;

321 STRAIGHTIIWSXTOLD: LINE = ( STRTII , odX , oQ,

qQQ0, oD1 , qQQ1, oD1 , qQQ2, oD1 , oD1 , qQQ4, oD1 , qQQ5, oD1 , qQQ6, oD1 ,

oD1 ,
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323 qQQ8, oD1 , qQQ9, oD1 , qQQ10 , oD1 , oD1 , qQQ12 , oD1 , qQQ13 , oD1 , qQQ14 ,

oQ,

oQ, oD1 , dA13in , oD0 , qQQ15 , oD0 , dCin , oD2a , qQQ16 , oD2 , qQQ17 , oD2b ,

qQQ18 ,

325 qQQ18 , oD2b , qQQ17 , SXSTRTII1 , oD2SXT, qQQ16 , SXSTRTII2 , oD2aSXT , dCout ,

oD0 , qQQ15 , oD0 ,

dA13out , oD1 , oQ, oQ, qQQ14 , oD1 , qQQ13 , SXSTRTII3 , oD1SXT, qQQ12 ,

SXSTRTII4 , oD1SXT, oD1 , qQQ10 , SXSTRTII5 , oD1SXT,

327 qQQ9, SXSTRTII6 , oD1SXT, qQQ8, SXSTRTII7 , oD1SXT, oD1 , qQQ6, SXSTRTII8 ,

oD1SXT, qQQ5, SXSTRTII9 , oD1SXT, qQQ4, SXSTRTII10 , oD1SXT, oD1 ,

qQQ2, SXSTRTII11 , oD1SXT, qQQ1, SXSTRTII12 , oD1SXT, qQQ0, SXSTRTII13 ,

oQSXT, odX) ;

329

331

333

ARCOUTSXTA: LINE = (qD, SXARCOUTA1, oASXT, dAout , oA , qF ,SXARCOUTA2,

oASXT, dAout , oA) ;

335 ARCOUTSXTB: LINE = (qD, SXARCOUTB1, oASXT, dAout , oA , qF ,SXARCOUTB2,

oASXT, dAout , oA) ;

ARCOUTSXTC: LINE = (qD, SXARCOUTC1, oASXT, dAout , oA , qF ,SXARCOUTC2,

oASXT, dAout , oA) ;

337 ARCOUTSXTD: LINE = (qD, SXARCOUTD1, oASXT, dAout , oA , qF ,SXARCOUTD2,

oASXT, dAout , oA) ;

339 ARCINSXTA: LINE = ( dAin , oA , qD, SXARCINA1, oASXT, dAin , oA , qF ,

SXARCINA2, oASXT) ;

ARCINSXTB: LINE = ( dAin , oA , qD, SXARCINB1, oASXT, dAin , oA , qF ,

SXARCINB2, oASXT) ;

341 ARCINSXTC: LINE = ( dAin , oA , qD, SXARCINC1, oASXT, dAin , oA , qF ,

SXARCINC2, oASXT) ;

ARCINSXTD: LINE = ( dAin , oA , qD, SXARCIND1, oASXT, dAin , oA , qF ,

SXARCIND2, oASXT) ;

343

ARCOUTSXT: LINE = (ARCOUTSXTA, ARCOUTSXTB, ARCOUTSXTC, ARCOUTSXTD) ;

345 ARCINSXT: LINE = (ARCINSXTA, ARCINSXTB, ARCINSXTC, ARCINSXTD) ;

!+++++++++++++++++++++++++++++++++++++

347

IR2IR : LINE=(IIR1 , oD01 , qFF1 , oD02 , qFF2 , oD02a , qFFR, oD03 , qQR1,
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349 oD04 , qQR2, oD05 , qQ6 , oD1 , dA13out , oD0 , qQ13 , oD0 , dCout , oD2 , qQ14 ,

oD2 ,

qQ15 , oD2 , qQ16 , qQ16 , oD2 , qQ15 , oD2 , qQ14 , oD2 , dCin , oD0 , qQ13 , oD0 ,

351 dA13in , oD1 , qQ6 , oD05 , qQR2, oD04 , qQR1, oD03 , qFFR, oD02a , qFF2 , oD02

,

qFF1 , oD01 , IIR2 ) ;

353

IR : LINE = ( ARC2IR, oA , dA13out , oA , qD1a , oA , odX , oD1 , qQ1 , oD1 , oQ,

oQ, qQ3 , oD1 , oQ, oQ,

355 qQ5 , oD1a , oD1a , qQL3 , oD05 , qQL2 , oD04 , qQL1 , oD03 , qFFL , oD02a , qFF2 ,

oD02 , qFF1 , oD01 , IR2IR , oD01 , qFF1 , oD02 , qFF2 , oD02a , qFFL , oD03 ,

qQL1 , oD04 ,

357 qQL2 , oD05 , qQL3 , oD1a , oD1a , qQ5 , oD1 , oQ, oQ, qQ3 , oD1 , oQ, oQ, qQ1 ,

oD1 ,

odX , oA , qD1a , oA , dA13in , oA , ARC2IR) ;

359

STRAIGHTII : LINE = ( STRTII , odX , oQ,

361 qQQ0, oD1 , qQQ1, oD1 , qQQ2, oD1 , oD1 , qQQ4, oD1 , qQQ5, oD1 , qQQ6, oD1 ,

oD1 ,

qQQ8, oD1 , qQQ9, oD1 , qQQ10 , oD1 , oD1 , qQQ12 , oD1 , qQQ13 , oD1 , qQQ14 ,

oQ,

363 oQ, oD1 , dA13in , oD0 , qQQ15 , oD0 , dCin , oD2a , qQQ16 , oD2 , qQQ17 , oD2b ,

qQQ18 ,

qQQ18 , oD2b , qQQ17 , oD2 , qQQ16 , oD2a , dCout , oD0 , qQQ15 , oD0 ,

365 dA13out , oD1 , oQ, oQ, qQQ14 , oD1 , qQQ13 , oD1 , qQQ12 , oD1 , oD1 , qQQ10 ,

oD1 ,

qQQ9, oD1 , qQQ8, oD1 , oD1 , qQQ6, oD1 , qQQ5, oD1 , qQQ4, oD1 , oD1 , qQQ2,

oD1 ,

367 qQQ1, oD1 , qQQ0, oQ, odX) ;

369 ARCOUT: LINE = (qD, oA , dAout , oA , qF , oA , dAout , oA) ;

ARCIN: LINE = ( dAin , oA , qD, oA , dAin , oA , qF , oA) ;

371

373 MACHINE: LINE=(oA, qD1b , oA , dA13out , oA , qF1b , oA , dA23out , oA , qD2 ,

oA ,

dA23out , oA , qF2 , oA , dAout , oA , qD3 , oA , dAout , oA , qF3 , oA , dAout , oA

,

375 7∗ ARCOUTSXT,

qD, oA , dAout , oA , qF , oA , dAout , oA , qD, oA , dAout , oA , qF3 , oA , dAout

,



147

377 oA , qD3 , oA , dAout , oA , qF2 ,

oA , dA23out , oA , qD2 , oA , dA23out , oA , qF1a ,

379 IRWSEXT1,IRWSEXT2,

qF1a , oA , dA23in , oA , qD2 , oA , dA23in , oA ,

381 qF2 , oA , dAin , oA , qD3 , oA , dAin , oA , qF3 , oA , dAin , oA , qD, oA , dAin ,

oA ,

qF , oA , dAin , oA , qD, oA , dAin , oA , qF , oA , dAin , oA , qD, oA , dAin , oA ,

qF ,

383 oA , dAin , oA , qD, oA , dAin , oA , qF , oA , dAin , oA , qD, oA , dAin , oA , qF ,

oA ,

6∗ARCINSXT,

385 dAin , oA , qD, oA , dAin , oA , qF3 , oA , dAin , oA , qD3 , oA , dAin , oA , qF2 ,

oA ,

dA23in , oA , qD2 , oA , dA23in , oA , qF1b , oA , dA13in , oA , qD1b , oA ,

387 STRAIGHTIIWSXT,TUNEMATRIX) ;

389 MACHINEIRSRT: LINE=( IR2IRWSEXT, IR2ARCR, qF1a , oA , dA23in , oA , qD2 , oA

, dA23in , oA ,

qF2 , oA , dAin , oA , qD3 , oA , dAin , oA , qF3 , oA , dAin , oA , qD, oA , dAin ,

oA ,

391 qF , oA , dAin , oA , qD, oA , dAin , oA , qF , oA , dAin , oA , qD, oA , dAin , oA ,

qF ,

oA , dAin , oA , qD, oA , dAin , oA , qF , oA , dAin , oA , qD, oA , dAin , oA , qF ,

oA ,

393 6∗ARCINSXT,

dAin , oA , qD, oA , dAin , oA , qF3 , oA , dAin , oA , qD3 , oA , dAin , oA , qF2 ,

oA ,

395 dA23in , oA , qD2 , oA , dA23in , oA , qF1b , oA , dA13in , oA , qD1b , oA ,

STRAIGHTIIWSXT ,oA , qD1b , oA , dA13out , oA , qF1b , oA , dA23out , oA , qD2 ,

oA ,

397 dA23out , oA , qF2 , oA , dAout , oA , qD3 , oA , dAout , oA , qF3 , oA , dAout , oA
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7∗ ARCOUTSXT,
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