Plans to measure J/ψ photoproduction and TCS on the proton at CLAS12

Pawel Nadel-Turonski

Jefferson Lab

Int. Workshop on using Heavy Flavors to Probe New Hadron Spectroscopies/Dynamics, Busan, Korea, November 18-21, 2012
Outline

Introduction

J/ψ photoproduction near threshold

- Gluonic structure of the nucleon at large x
- Behavior of cross section near threshold is unknown
 - CLAS12 will provide the first results
- Future measurements with nuclear targets?

Timelike Compton Scattering (TCS)

- Timelike-spacelike correspondence and universality of GPDs
- Real and imaginary parts of Compton form factors for valence quarks
Approved $ep \rightarrow e'pe^+e^-$ program for CLAS12

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Physics</th>
<th>Contact</th>
<th>Rating</th>
<th>Days</th>
<th>Group</th>
<th>Energy</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E12-06-108</td>
<td>Hard exclusive electro-production of $\pi 0, \eta$</td>
<td>Stoler</td>
<td>B</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-112</td>
<td>Proton's quark dynamics in SIDIS pion production</td>
<td>Avakian</td>
<td>A</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-119</td>
<td>Deeply Virtual Compton Scattering</td>
<td>Sabatie</td>
<td>A</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-003</td>
<td>Excitation of nucleon resonances at high Q^2</td>
<td>Gothe</td>
<td>B+</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-11-005</td>
<td>[Hadron spectroscopy with forward tagger]</td>
<td>Battaglieri</td>
<td>A-</td>
<td>119</td>
<td></td>
<td></td>
<td>11 GeV, Liquid H_2</td>
</tr>
<tr>
<td>E12-12-001</td>
<td>Timelike Compton Scatt. & J/ψ production in e^+e^-</td>
<td>Nadel-Turonski</td>
<td>A-</td>
<td>100+20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-12-007</td>
<td>Exclusive ϕ meson electroproduction with CLAS12</td>
<td>Stoler, Weiss</td>
<td>B+</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Unpolarized proton target will be first to run

• Experiment E12-12-001 for e^+e^- physics was approved at the last PAC meeting

• Spectroscopy (119 PAC days) and e^+e^- (100+20 days) experiments drive the total beam time for proton running (119+20 days), which can be shared by all.

• Approved beam time corresponds to more than a year of actual running
Partons in the nucleon

Elastic form factors
Transverse spatial distributions
(Naively Fourier transform of Q^2 or t)

Parton Distribution Functions
Longitudinal momentum distributions

Generalized Parton Distributions
A unified description of partons (quarks and gluons) in momentum and impact parameter space
Generalized Parton Distributions (GPDs)

Experimental Kinematics

- GPDs are measured in exclusive processes
- \(Q^2 \) is the momentum transfer from the electron
- \(t \) is the momentum transfer to the nucleon
- \(2\xi \) is the difference between initial and final momentum of the struck parton

Elastic Form Factors

\[
\int_{-1}^{1} dx \, H(x, \xi, t) = F_1(t) \quad \int_{-1}^{1} dx \, \tilde{H}(x, \xi, t) = g_A(t)
\]

\[
\int_{-1}^{1} dx \, E(x, \xi, t) = F_2(t) \quad \int_{-1}^{1} dx \, \tilde{E}(x, \xi, t) = h_A(t)
\]

Parton Distribution Functions (PDFs)

\[
H(x, \xi=0, t=0) = q(x) \\
\tilde{H}(x, \xi=0, t=0) = \Delta q(x)
\]

\(E, \tilde{E} \) don't appear in DIS (nucleon helicity flip)
Charmonium as a probe of nucleon's color field

At high Q^2 $c\bar{c}$ is produced in small-size configurations

- *c.f.* color transparency
- Local probe of color field

J/ψ photoproduction

- Probes distances $\approx 1/\sqrt{Q^2 + M_{J/\psi}^2} \approx 1/M_{J/\psi}$
- J/ψ radius much smaller than nucleon: $r_{J/\psi} \sim 0.2 – 0.3$ fm $<< 1$ fm
- Transverse size in light-cone wave function: $<r_T^2> = 2/3 <r^2>$
- Small-size configurations dominate, but corrections could be important
Exclusive J/ψ kinematics near threshold

Four-momentum transfer to the nucleon

\[t = -\left(\frac{\zeta^2 m_N^2 + \Delta_T^2}{1 - \zeta}\right) \]

- ζ is the „plus“ momentum transfer
 - light cone variables
- Δ_T is the transverse momentum transfer
- t_{min} at threshold is 2.2 GeV

C. Weiss, Non-perturbative forces in QCD, Temple U., 26-28 March 2012
J/ψ production at high vs. low W ($=\sqrt{s}$)

J/ψ production at high W

- Access to nucleon's gluon GPD at small x
 - t_{min} and ζ small, well understood diffractive process
 - Measurements at EIC, HERA, COMPASS, FNAL

J/ψ production near threshold

- t_{min} and ζ large, implies large skewness $x_1 - x_2$

- Natural interpretation in terms of a gluonic form factor sensitive to non-perturbative gluon field
 - analogous to high-t elastic eN scattering

- Amplitude constant, but cross section near threshold suppressed by large t_{min}

Weiss, Strikman
Enhancement instead of suppression near threshold?

- Based on the Cornell point, Brodsky et al. instead suggest a flattening out near threshold – diagram on the right?

- CLAS12 can easily answer this question.

- For rate predictions, a conservative estimate more akin to the red curve was used for E12-12-001.
Exclusive quasi-real photoproduction in CLAS12

- Low-Q^2 events are reconstructed by applying cuts on the transverse momentum of the missing beam electron.

- Exclusivity is ensured by detection of all produced final-state particles, and application of a missing mass cut.
Detection of the exclusive final state in CLAS12

- The leptons pairs are detected and identified using the High-Threshold Cherenkov Counter (HTCC) and the Forward Electromagnetic Calorimeter (FEC).

- Pairs with one lepton below the HTCC pion threshold of 4.9 GeV/c will have a pion pair rejection factor of $2 \cdot 10^7$.

- Proton kinematics and acceptance are shown on the right.
Acceptance and yields for J/ψ in CLAS12

- CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range in s and t.
Projected results – exclusive J/ψ production

Statistical uncertainties for 100 days at a luminosity of $10^{35} \text{ cm}^2\text{s}^{-1}$

Uncertainties for the total cross section assuming the most conservative prediction

t-dependence in narrow bins of s for a total cross section given by the lower curve on the left
Projected results – “inclusive” J/ψ production

Statistical uncertainties at a luminosity of $10^{35} \text{ cm}^{-2}\text{s}^{-1}$
Filled squares: 100 days Open squares: 30 days

- Excellent benchmark for studies of detector efficiency
 - Nominal acceptance for $e^+ e^-$ final state identical for both torus polarities
Approved CLAS12 beam time with nuclear targets

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Physics</th>
<th>Contact</th>
<th>Rating</th>
<th>Days</th>
<th>Group</th>
<th>Energy</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E12-07-104</td>
<td>Neutron magnetic form factor</td>
<td>Gilfoyle</td>
<td>A-</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR12-11-109 (a)</td>
<td>Dihadron DIS production</td>
<td>Avakian</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-007a</td>
<td>Study of partonic distributions in SIDIS kaon production</td>
<td>Hafidi</td>
<td>A-</td>
<td>56</td>
<td>90</td>
<td>11</td>
<td>liquid D2 target</td>
</tr>
<tr>
<td>E12-09-008</td>
<td>Boer-Mulders asymmetry in K SIDIS w/ H and D targets</td>
<td>Contalbrigo</td>
<td>A-</td>
<td>TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-11-003</td>
<td>DVCS on neutron target</td>
<td>Niccolai</td>
<td>A</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-109</td>
<td>Longitudinal Spin Structure of the Nucleon</td>
<td>Kuhn</td>
<td>A</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-119(b)</td>
<td>DVCS on longitudinally polarized proton target</td>
<td>Sabatie</td>
<td>A</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-07-107</td>
<td>Spin-Orbit Correl. with Longitudinally polarized target</td>
<td>Avakian</td>
<td>A-</td>
<td>103</td>
<td></td>
<td></td>
<td>NH3 ND3</td>
</tr>
<tr>
<td>PR12-11-109 (b)</td>
<td>Dihadron studies on long. polarized target</td>
<td>Avakian</td>
<td>-</td>
<td>170</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-007(b)</td>
<td>Study of partonic distributions using SIDIS K production</td>
<td>Hafidi</td>
<td>A-</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-009</td>
<td>Spin-Orbit correlations in K production w/ pol. targets</td>
<td>Avakian</td>
<td>B+</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-106</td>
<td>Color transparency in exclusive vector meson production</td>
<td>Hafidi</td>
<td>B+</td>
<td>60</td>
<td>60</td>
<td>11</td>
<td>Nuclear</td>
</tr>
<tr>
<td>E12-06-117</td>
<td>Quark propagation and hadron formation</td>
<td>Brooks</td>
<td>A-</td>
<td>60</td>
<td>60</td>
<td>11</td>
<td>Nuclear</td>
</tr>
<tr>
<td>E12-10-102</td>
<td>Free Neutron structure at large x</td>
<td>Bueltman</td>
<td>A</td>
<td>40</td>
<td>40</td>
<td>11</td>
<td>Gas D2</td>
</tr>
</tbody>
</table>
Timelike Compton Scattering (TCS)

Timelike-spacelike correspondence and the universality of GPDs

- Of fundamental importance for the GPD program

Real (and imaginary) part of Compton amplitude

- Straightforward access through azimuthal asymmetry of lepton pair
- Input for global analysis of Compton Form Factors (and GPDs)
Deep Inelastic Scattering (DIS) and Drell-Yan

- The spacelike DIS and timelike Drell-Yan processes both factorize into a partonic cross section and a Parton Distribution Function (PDF)
 - Measurements of both demonstrated the universality of PDFs
DVCS and TCS

(spacelike) Deeply Virtual Compton Scattering

Timelike Compton Scattering

- In DVCS there is a similar factorization at the amplitude level into a partonic amplitude and a Generalized Parton Distribution (GPD)
 - Measuring both spacelike DVCS and Timelike Compton Scattering (TCS) can test the universality of GPDs
Real part at large x important for GPD models

$$\tau = \frac{Q'^2}{s - M_p^2}$$

$$\eta = \frac{\tau}{2 - \tau}$$

τ and η are the TCS equivalents of Bjorken x and the skewness ξ

$Q'^2 = M_{e^+e^-}^2$ is the timelike virtuality of the outgoing photon (\rightarrow hard scale)
Photoproduction of lepton pairs

- TCS and Bethe-Heitler (BH) processes contribute
- TCS cross section is smaller than BH in JLab 12 GeV kinematics
- The interference term is *enhanced* by the BH and easy to isolate
TCS-BH interference

\[
\frac{d \sigma^4}{dQ'^2 \, dt \, d(cos \theta) \, d\phi} = |BH|^2 + I(BH \cdot TCS) + |TCS|^2
\]

• Under lepton charge conjugation:
 - Compton and BH amplitudes are \textit{even}
 - Interference term is \textit{odd}

• Direct access to interference term through angular distribution of the lepton pair
 - cosine and sine moments

Easy to project out \textit{only} the interference term
Kinematics

- $k, k' = \text{momentum of } e^-, e^+$
- $\theta = \text{angle between the scattered proton and the electron}$
- $\phi = \text{angle between lepton scattering- and reaction planes}$

$$\frac{d\sigma_{BH}}{dQ'^2 dt d\cos \theta} \approx 2\alpha^3 \frac{1}{-tQ'^4} \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta} \left(F_1(t)^2 - \frac{t}{4M_p^2} F_2(t)^2 \right)$$

- For θ close to 0 and π, BH becomes large. A cut is usually applied.
TCS cross section and the interference term

\[
\frac{d\sigma_{TCS}}{dQ'^2 \, d\Omega dt} \approx \frac{\alpha^3}{8\pi} \frac{1}{s^2} \frac{1}{Q'^2} \left(\frac{1 + \cos^2 \theta}{4} \right) 2(1 - \xi^2) |\mathcal{H}(\xi, t)|^2
\]

\[
\frac{d\sigma_{INT}}{dQ'^2 \, dt \, d\cos \theta \, d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1 - \tau}} \cos \varphi \frac{1 + \cos^2 \theta}{\sin \theta} \text{Re} \tilde{M}^{--}
\]

\[
\tilde{M}^{--} \approx \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} [F_1(t)\mathcal{H}(\xi, t)]
\]

\[
\mathcal{H}(\xi, t) = \sum_q e_q^2 \int_{-1}^{1} dx \left(\frac{1}{\xi - x + i\epsilon} - \frac{1}{\xi + x + i\epsilon} \right) H^q(x, \xi, t)
\]
The D-term and the pressure balance in the nucleon

\[H(x, \xi) = H_{DD}(x, \xi) + \theta(\xi - |x|) \frac{1}{N_f} D\left(\frac{x}{\xi}\right) \]

- The D-term contributes only to the real part of the Compton amplitude
First measurements at 6 GeV

- Cosine moment of weighted cross sections

\[\frac{dS}{dQ^2 dt d \varphi} = \int \frac{L(\theta, \varphi)}{L_0(\theta)} \frac{d \sigma}{dQ^2 dt d \varphi} d \theta \]

\[R = \frac{2 \int_0^{2\pi} d \varphi \cos \varphi \frac{dS}{dQ^2 dt d \varphi}}{\int_0^{2\pi} d \varphi \frac{dS}{dQ^2 dt d \varphi}} \]

- Numerator is proportional to \(\overline{M} \)
 - \(\cos \varphi \) part of interference term

- \(R \) can be compared directly with GPD models

- Analysis of 6 GeV data with tagged real photons is underway

Comparison of results by R. Paremuzyan et al from e1-6/e1f with calculations by V. Guzey.
From 6 to 12 GeV

- 6 GeV kinematics are limited to $M_{e^+e^-} < 2$ GeV.
- 12 GeV extends this mass (Q') range up to 3 GeV

- 6 GeV data were important for developing methods
- 12 GeV will provide
 - A much larger reach in s and Q'^2
 - Higher luminosity and more statistics for multi-dimensional binning
 - A possibility to avoid meson resonances in the e^+e^- final state
 - Data can be taken in the resonance-free region between the ρ' and J/Ψ
Projected results – cosine moment R'

Statistical uncertainties for 100 days at a luminosity of $10^{35} \text{ cm}^{-2}\text{s}^{-1}$

- Uncertainties for R', integrated over the CLAS12 acceptance, for two bins in photon energy, for the lowest Q'^2 bin above the ρ' resonance.
- Different values of the D-term are only shown for the double distribution.
Summary

CLAS12 experiment E12-12-001 will measure TCS and J/Ψ

J/Ψ photoproduction near threshold

- Establish reaction mechanism
- Access to gluonic structure of the nucleon at large x

Timelike Compton Scattering (TCS)

- Test universality of GPDs
- Straightforward access to real part of Compton form factors
Backup
Jefferson Lab PAC 39 Proposal
Timelike Compton Scattering and J/ψ photoproduction on the proton in e^+e^- pair production with CLAS12 at 11 GeV

1 Catholic University of America, Washington, D.C. 20064
2 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
3 Yerevan Physics Institute, 375036 Yerevan, Armenia
4 Institut de Physique Nucleaire d’Orsay, IN2P3, BP 1, 91406 Orsay, France
5 Hampton University, Hampton, Virginia 23668
6 Ohio University, Athens, Ohio 45701
7 Old Dominion University, Norfolk, Virginia 23529
8 University of South Carolina, Columbia, South Carolina 29208
9 Florida International University, Miami, Florida 33199
10 CPhT, Ecole Polytechnique, 91128 Palaiseau, France
11 CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
12 Norfolk State University, Norfolk, Virginia 23504
13 University of Connecticut, Storrs, Connecticut 06269
14 National Center for Nuclear Research (NCBJ), Warsaw, Poland
15 LPSC Grenoble, 38000 Grenoble, France

(Dated: May 4, 2012)

*Co-spkesperson
†Contact person: turonski@jlab.org
Probing GPDs through Compton scattering

(Im, $x=\xi$)
DVCS: spin asymmetries
(TCS with polarized beam)

(Re)
TCS: azimuthal asymmetry
DVCS: charge asymmetry

Double DVCS

DVCS: cross section
Interference term

To leading order, in terms of helicity amplitudes:

\[
\frac{d\sigma_{\text{INT}}}{dQ'^2 \, dt \, d(\cos \theta) \, d\varphi} = -\frac{\alpha^3_{\text{em}}}{4\pi s^2} \frac{1}{1 - t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1 - \tau}} \frac{L_0}{L} \left[\cos \varphi \frac{1 + \cos^2 \theta}{\sin \theta} \frac{\text{Re} \tilde{M}^{0-}}{\text{Re} \tilde{M}^{+-}} \right]
- \cos 2\varphi \sqrt{2} \cos \theta \frac{\text{Re} \tilde{M}^{0-} + \cos 3\varphi \sin \theta \frac{\text{Re} \tilde{M}^{+-}}{\text{Im} \tilde{M}^{--}} + O\left(\frac{1}{Q'}\right)}{\text{Im} \tilde{M}^{--}}
- \sin 2\varphi \sqrt{2} \cos \theta \frac{\text{Im} \tilde{M}^{0-} - \sin 3\varphi \sin \theta \frac{\text{Im} \tilde{M}^{+-}}{\text{Im} \tilde{M}^{--}} + O\left(\frac{1}{Q'}\right)}{\text{Im} \tilde{M}^{--}}
\]

\(\nu\): circular polarization of incoming photon also gives access to imaginary part

\[
\frac{1}{2} \sum_{\lambda, \lambda'} |M^{\lambda'-, \lambda-}|^2 = (1 - \eta^2) \left(|\mathcal{H}_1|^2 + |\tilde{\mathcal{H}}_1|^2 \right) - 2\eta^2 \text{Re} \left(\mathcal{H}_1^* \mathcal{E}_1 + \tilde{\mathcal{H}}_1^* \tilde{\mathcal{E}}_1 \right)
- \left(\eta^2 + \frac{t}{4M^2} \right) |\mathcal{E}_1|^2 - \eta^2 \frac{t}{4M^2} |\tilde{\mathcal{E}}_1|^2.
\]
Acceptance in Q'^2, s, and t

- CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range in s and t.
Acceptance in the TCS angles θ_{CM} and ϕ_{CM}

$E_\gamma = 9.39 \text{ GeV}, \quad Q^2 = 4.5 \text{ GeV}^2$

Generated events. Regions dominated by BH fall outside of the contour indicating the CLAS acceptance.

Accepted events for four t-bins. The observable R' is integrated over the CLAS acceptance.
Projected results – cross section

Statistical uncertainties for 100 days at a luminosity of 10^{35} cm$^{-2}$s$^{-1}$

- The unpolarized and polarized four-fold differential TCS+BH cross sections will provide input for global analysis of Compton Form Factors.
- The narrow J/ψ peak on the right is very prominent.