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Narrowband Emission in Thomson Sources Operating in the High-Field Regime
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We present a novel and quite general analysis of the interaction of a high-field chirped laser
pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the upshifted
Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs
at high field strengths, there is ponderomotive line broadening in the scattered radiation. This
effect makes the bandwidth too large for some applications and reduces the spectral brilliance. We
show that such broadening can be corrected and eliminated by suitable frequency modulation of
the incident laser pulse. Further, we suggest a practical realization of this compensation idea in
terms of a chirped-beam driven free electron laser oscillator configuration and show that significant
compensation can occur, even with the imperfect matching to be expected in these conditions.

PACS numbers: 29.20.Ej, 29.25.Bx, 29.27.Bd, 07.85.Fv

Sources of electromagnetic radiation relying upon
Thomson scattering are increasingly being applied in fun-
damental physics research [1], and compact accelerator-
based sources specifically designed for potential user fa-
cilities have been built [2]. One remarkable feature of
the radiation emerging from such sources, compared to
bremsstrahlung sources, is the narrowband nature of the
radiation produced. For example, applications to X-
ray structure determination [3], dark-field imaging [4, 5],
phase contrast imaging [6], and computed tomography [7]
have been demonstrated experimentally and take full ad-
vantage of the narrow bandwidth of the Thomson source.

Given that narrow bandwidth is desired, it is impor-
tant to know and understand the sources of bandwidth
of the scattered radiation and the limitations imposed
on the performance of Thomson sources. For applica-
tions where the normalized vector potential of the in-
cident laser pulse is much less than one (the low-field
regime), the line width of the radiation from a scatter-
ing event reproduces the line width of the incident laser
pulse. Unfortunately, when the normalized vector po-
tential increases, as is desired for stronger sources, a de-
tuning red-shift arises during the scattering events that
tends to spread out the spectrum [8–10]. Physically, the
scattering electron slows down, by a varying amount, as
the incident pulse is traversed.

In a recent paper, Ghebregziabher, Shadwick, and
Umstadter (GSU) observed that frequency modulation
(FM), or “chirping”, of the scattering laser pulse can
compensate for such ponderomotive line broadening, and
suggested a form for this modulation [11]. Motivated by
their observation, we present the exact analytic solution
for optimal FM, recovering the low-field linewidth even
in the high-field regime. The narrowing of the scattered
pulse is Fourier-limited only by the duration of the inci-
dent pulse.

The essence of laser pulse chirping is analogous to
free electron laser (FEL) undulator tapering [12–16]. In
tapering, as deceleration occurs due to the FEL emis-

sion, the field strength is adjusted to preserve the same
FEL emission frequency. To apply this idea to Thomson
sources, the field strength dependence of the frequency
shift must be countered by modulating the incident laser
pulse. We show below how such modulation is straight-
forwardly accomplished in FEL oscillator lasers using the
natural energy phase space curvature implicit in a bunch
placed on the crest of an RF accelerating wave (Fig. 1).

In this Letter, we derive a prescription for calculat-
ing the choice of the FM that compensates the frequency
spreading and recovers the initial spectral width. Even
at high field strength, one can by proper choice of FM
reduce the spectral width to the Fourier limit provided
by the laser pulse width. Strictly speaking, the calcu-
lations in this Letter apply to Compton scattering only
in the Thomson limit [1], i.e., when electron recoil may
be neglected. This approximation is valid for Compton
sources of X-rays originating from electron beams up to
100 MeV beam energy.

We report on calculations completed using the formal-
ism developed in Ref. [9], which derives far-field spectral
distribution of photons Thomson-scattered by a single
electron. The incident laser pulse is described by a plane
wave. This treatment is fully relativistic and includes the
classical electron motion without approximation. We as-
sume a linearly polarized incident plane wave described
by a single component for the normalized vector poten-
tial Ã(ξ) = eA(ξ)/mc = a(ξ) cos(2πξf(ξ)/λ), where a(ξ)
describes the envelope of the oscillation, ξ = z + ct is
the coordinate giving distance along the laser pulse, f(ξ)
specifies the laser FM, and λ is a convenient normaliz-
ing wavelength for the incident plane wave. In previous
literature f(ξ) = 1, but following Ref. [11] we allow the
possibility of laser chirping and let f vary throughout the
pulse. Without loss of generality and for convenience of
presentation, we require f(0) = 1 for the peak amplitude
centered at ξ = 0. Under this convention the calculated
spectrum in the forward direction has a maximum near
the frequency ωmax ≈ 2πc(1 + β)2γ2/[λ(1 + a2(0)/2)],
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FIG. 1: Thomson scattering for a chirped laser pulse. Chirping the electron bunch before it passes through an oscillator FEL
produces a chirped laser pulse. Thomson scattering occurs as the laser pulse collides with an electron. Narrowband emission
of the resulting backscattered radiation is recovered through frequency chirping.

where β and γ are the usual relativistic factors for the
scattering electron. We follow the practice in Ref. [9] and
normalize frequencies by ω0 = (1 + β)2γ22πc/λ. We re-
port calculated spectra normalized by (d2E/dωdΩ)n =
(1 + β)2γreEbeam/c where re is the classical electron ra-
dius and Ebeam is the total relativistic energy in a single
electron. These spectra include both positive and nega-
tive frequency contributions in a single positive frequency
spectrum. This normalization reflects the main beam en-
ergy dependence of the spectrum.

Because the longitudinal velocity of the electron
changes and there is relativistic red-shifting during the
laser pulse as the electron traverses it, the emitted spec-
trum of scattered radiation for a constant wavelength
incident laser pulse is spread out beyond the spectral
width of the incident pulse. Within each harmonic n in
the emitted spectrum of scattered radiation, subsidiary
peaks are featured whose number Nτ is proportional to
the field strength squared and the temporal duration of
the pulse T . We use the Eq. (31) of [8] and a stationary
phase argument [8, 17] to derive the exact relationship

Nτ = (2n− 1)
c

λ
T

∫

∞

0

a2(ξ̄)dξ̄, (1)

where ξ̄ ≡ ξ/(
√
2σ), with σ the pulse length. For a

gaussian envelope a(ξ) = a0 exp[−ξ2/(2σ2)] and n = 1,
Nτ =

√
2πcTa2(0)/4λ, which agrees well with the empir-

ical formula Nτ ≈ 0.24T [fs]a2(0) from Ref. [18]. While
their empirical formula applies only to pulses with gaus-
sian envelopes at λ = 800 nm, ours is exact and valid for
arbitrary envelope functions and wavelengths.

Our calculations were motivated by the suggestion in
Ref. [11]. FM corresponding to their proposed ω(t) =

2ω0

{

1 +
[

a(t)/
√
2a0
]2
}

/3 (found in the text below their

Eq. (4)) is

f(ξ) =
2

3

(

1 +
a2(ξ)

2a2(0)

)

. (2)

As understood and discussed subsequently, this substitu-
tion is strictly valid only when (ξf(ξ))′ = f(ξ)+ξf ′(ξ) ≈
f(ξ), that is, the FM occurs slowly enough. We also cal-
culated the spectral distributions resulting from

f(ξ) =

√

1 + a2(ξ)/2

1 + a2(0)/2
. (3)

From Fig. 2(a), it is evident that the calculated spectrum
for Eq. (3) represents a significant improvement over the
non-modulated case. Because all harmonics improved,
we concluded that a prescription exists to compensate
all harmonics. Next, we investigated optimal configura-
tions for f(ξ) using genetic optimization [19–23]. The
optimization simultaneously maximized the height and
minimized the width of the fundamental peak in the spec-
trum for a two-parameter family of functions of the form
fGA(ξ̄; b, c) = c/

[

1− (1− c) exp
(

−bξ̄2
)]

. The best result
has b = 0.859 and c = 0.907. The spectrum of the opti-
mal fGA, as well as the exact FM derived below is also
shown in Fig. 2(a). Genetic optimization performs quite
well, as the spectrum of the optimal fGA is very close to
that of the exact FM.
We investigated the dependence of the optimal param-

eters of fGA on the field strength in the incident laser
pulse and observed that c scaled directly as a(0)2/4. Con-
vinced that such simple scaling indicates an underlying
physics cause for narrowband emission, we derived the
following analytical condition that leads to minimal emis-
sion bandwidth.
For incident laser pulses of the given form and when

f(ξ) is not slowly varying, one must define local values of



3

0 1 2 3 4 5 6 7 8

Scaled Frequency ω/ω0

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

103
(d
I/
d
ω
d
Ω
)/
(d
I/
d
ω
d
Ω
) n

f(ξ) =1

f(ξ) =
√(

1+a2 (ξ)/2
)
/
(
1+a2 (0)/2

) Optimal fGA(ξ;b,c)

Exact f(ξ)

0 100 200 300 400
Photon Energy [keV]

0.80 0.85 0.90 0.95 1.00 1.05

Scaled Frequency ω/ω0

0

20

40

60

80

100

120

140

160

180

(d
I/
d
ω
d
Ω
)/
(d
I/
d
ω
d
Ω
) n

f(ξ) =1

Spectrum of Ax (ξ)

Exact f(ξ)

50 52 54 56 58 60 62 64
Photon Energy [keV]

FIG. 2: Top: Normalized spectra of scattered radiation for
the case without FM (green line), FM from Eq. (3) (black
line), FM from optimal fGA(ξ; b, c) (blue line), and the exact
FM from Eq. (4) (red line). The shapes of the spectra —
both non-modulated and modulated — are independent on
the scattering electron’s energy. Bottom: Complete correc-
tion of spectral width is demonstrated by this comparison of
the case with no FM (green line), the Fourier transform of the
amplitude function (blue line), and the case with exact FM
(red line). In both panels, a gaussian envelope is used with
a0 = 0.587 and electron’s γ = 100 as in Fig. 2 of [9].

the pulse frequency and wave number as

ω(ξ) = ∂Φ/∂t = cdΦ/dξ, k(ξ) = ∂Φ/∂z = dΦ/dξ,

where Φ is the incident wave phase. Lorentz-
transforming these quantities into the beam frame (frame
with zero average beam velocity) yields ω′ = (1+β∗)γ∗ω
and k′ = (1 + β∗)γ∗k, where γ∗(ξ) = γ/

√

1 + a(ξ)2/2

and β∗(ξ) =
√

1− (1/γ2)(1 + a(ξ)2/2) are local values
within the pulse. To minimize the spectral width in the
lab frame one should arrange the frequency in the beam
frame to emit radiation Doppler-shifted back to a con-
stant frequency in the lab frame. Thus for all ξ-values
we require locally

(1 + β∗)2γ∗2dΦ/dξ = C = (1 + β)2γ2dΦ/dξ(ξ = −∞),

for some constant C. This exact case is found by inte-
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FIG. 3: Narrowing the radiation spectra by exact FM. Scat-
tered spectral distributions calculated with no FM (green
line), the GSU FM as in Eq. (5) (blue line), and the exact
FM given in Eq. (6) (red line). A gaussian envelope is used
with a0 = 0.865 as in Fig. 6 of [11]. Note the linear scale
and that only data in the first harmonic is displayed for both
panels. The top x-axes in both panels denote photon energies
for the case of Ebeam = 300 MeV, λ = 800 nm, FWHM pulse
duration of 90 fs, as in Fig. 6 of [11].

gration

d

dξ
[ξf(ξ)] = (1 + a(ξ)2/2)f(ξ = −∞),

as both β and β∗ are close to one for relativistic scatter-
ing. The solution with the boundary condition f(0) = 1
is

f(ξ) =
1

1 + a(0)2/2

(

1 +

∫ ξ

0 a(ξ′)2dξ′

2ξ

)

. (4)

Clearly, this function falls from 1 to the constant value
f(±∞) = (1 + a(0)2/2)−1. This characteristic, that f
falls off to the same value at ξ = ±∞, is shared by any
single-peaked symmetrical model for the amplitude func-
tion, as is clear from the general formula in Eq. (4). We
can now explain the scaling in the optimization. The
optimal fGA closely traces the exact FM around ξ = 0,
while its purely exponential tails are unable to match the
exact 1/ξ behavior.
Applying this pulse-chirping prescription leads to nar-

rowband emission, as shown in Fig. 2(a). The non-FM
case clearly shows ponderomotive broadening at high
field strength that is corrected away using the exact FM
prescription. Notice a non-trivial conclusion of this cal-
culation: our prescription works across all the harmon-
ics shown, whereas Ref. [11] presents information on the
fundamental line only. Additionally, because Eq. (4)
is energy-independent, compensation occurs for all elec-
trons in a bunch of electrons with varying energy. In
this case, the linewidth is spread in the usual way by the
energy spread [1].
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In Fig. 2(b) we compare the spectral peak in the high-
field case with the spectrum obtained simply from the
Fourier transform of the gaussian amplitude/envelope
function a(ξ), suitably shifted to the peak frequency of
the first curve. Observe that the corrected width is iden-
tical to that generated by the gaussian (and is Fourier-
limited by the duration of the scattered pulse). One can-
not expect to obtain a peak narrower than the Fourier-
limited linewidth. The scattered photons in the high-field
case have a linewidth much narrower than that of the
Fourier spectrum of the incident frequency-modulated
laser pulse.
Using this more accurate method defining the fre-

quency and wave number, it is now possible to gener-
ate a scattered distribution closer to the one reported in
Ref. [11]. Integrating

d

dξ
[ξfGSU(ξ)] =

2

3

(

1 +
a(ξ)2

2a(0)2

)

for a gaussian envelope yields the analogous fGSU with
the correct boundary conditions

fGSU(ξ) =
2

3

(

1 +

√
πσ

4ξ
erf(ξ/σ)

)

. (5)

For comparison, exact FM for the gaussian envelope is

f(ξ) =
1

1 + a20/2

(

1 +

√
πσa20
4ξ

erf(ξ/σ)

)

. (6)

FM obtained using the empirical prescription of [11], and
given here in Eqns. (2) and (5), does not satisfy the
asymptotic behavior of lima(0)→0 f(ξ) = 1 because they
do not even depend on a(0). Therefore Eqn. (5) should
not be directly compared to the exact FM in Eq. (6)
which satisfies this asymptotic behavior. A cursory in-
spection shows that the empirical FM in Eq. (5) is equiv-
alent to the exact FM in Eq. (6) for a(0) = 1 and explains
why [11] observed a substantial narrowing of the spectra
for their case of a(0) = 0.865 ≈ 1.

In Fig. 3 we show scattered spectral distributions cal-
culated with f(ξ) = 1, the modified GSU model in
Eq. (5), and the fully corrected result using Eq. (6), now
on a linear scale as in the previous publication [24]. We
observe that pulse chirping increases the peak spectral
energy density by a factor of 2.4 in going from unmodu-
lated to the Eq. (5) model, and another factor of 2.5 in
applying the exact FM prescription.

Alternatively, Eq. (4) follows from a stationary phase
analysis of [8, 9, 17]

Dx =

∫

∞

−∞

dξ

γ(1 + β)
Ã(ξ) exp

[

iω

(

ξ

cγ2(1 + β)2
+

1

cγ2(1 + β)2

∫ ξ

−∞

Ã2(ξ′)dξ′

)]

(7)

≈ 1

2

∫

∞

−∞

dξ

γ(1 + β)
a(ξ) exp

[

−2πiξf(ξ)

λ
+ iω

(

ξ

cγ2(1 + β)2
+

1

cγ2(1 + β)2

∫ ξ

−∞

Ã2(ξ′)dξ′

)]

where d2E/dωdΩ = reEbeamω2|Dx|2/(4π2c3γ) =
(d2E/dωdΩ)n(ω/ω0)

2|(1 + β)γDx/λ|2 in the forward di-
rection. The dominant contribution to Dx comes from
replacing Ã2(ξ) by its average value a2(ξ)/2 in the phase
integral. Applying Eq. (4) guarantees that the phase in
the integral is constant on average and only slightly mod-
ulated as a function of ξ. Therefore, the maximum value
of the amplitude of Dx is well-approximated by

|Dx|max ≈ 1

2γ(1 + β)

∫

∞

−∞

a(ξ)dξ,

as observed in the exact FM case.
The fact that the f function falls from a maximum in

the middle of the pulse, suggests an immediate practical
realization of the frequency chirping. Suppose an FEL
oscillator is constructed where the driving beam bunches

are long enough that the RF-curvature related energy
spread is substantial (see Fig. 1). The frequency of the
resulting laser pulse emitted by the oscillator FEL will
also be chirped:

ω(ξ) = ω(ξ = 0) cos2(2πξ/λRF),

where λRF is the wavelength of the RF accelerating wave,
and it is assumed that the center of the electron pulse
coincides with the accelerating wave maximum. The cir-
culating bunches will generate a ξ-dependent frequency
from the energy dependence of the FEL emission.

Using our prescription for defining f(ξ),

d

dξ
[ξfRF(ξ)] = cos2(2πξ/λRF)
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yields

fRF(ξ) =
1

2
+

1

ξ

λRF

8π
sin(4πξ/λRF). (8)

Notice the dependence has the correct sign to allow com-
pensation. Expanding the above equation around the
center of the pulse produces fRF(ξ) ≈ 1− 4π2ξ2/(3λ2

RF),
and matching it to the quadratic dependence of the exact

FM function in Eq. (6) yields λRF0 =
√
8π

√
1+a2

0
/2

a0

σ.

TABLE I: Peak height (normalized to peak height for exact
FM) and optimal choice for λRF for each harmonic when ap-
proximated by RF waveform curvature model in Eq. (8).

Harmonic Peak Height λRF/λRF0

1 0.84 1.47

3 0.89 1.21

5 0.94 1.14

7 0.98 1.10

9 0.99 1.12

Because we cannot reproduce the optimal frequency
profile exactly by these means, we investigated whether
we could obtain peaks in the spectra of all reported har-
monics close to those in the optimal case. Our results
showing the spectral peak values and the optimal λRF

for the various harmonics, compared to the optimal case,
are reported in Table I. Indeed, we are able to get close-
to-optimal performance across all harmonics with slight
adjustments in RF-frequency (compressed bunch length
in practice). Interestingly, higher harmonics achieved op-
timal performance by adjusting closer to the λRF0 value.
Finally, we investigated the robustness of the solutions.

Requiring the spectrum peaks to be degraded under 10%
leads to a restriction of the bunch length. Because the
peaks as a function of bunch length are quite broad, con-
trol of the bunch length at the 20% level is indicated.
There is already experimental evidence [25] that con-
trolled chirping of an electron bunch driving an FEL os-
cillator is reflected in the FEL output radiation charac-
teristics.
The cases discussed in this paper, corresponding to

laser parameters of interest in many sources, all yield less
than one photon per electron. More quantitatively, from
[1] we derive the domain of validity of the no-electron-
recoil approximation, i.e. when the number of emitted

photons nγ = (αλ)/(3π)
∫

∞

−∞

∣

∣

∣
∂Ã(ξ)/∂ξ

∣

∣

∣

2

dξ < 1, to be

for field strength a0 <
√

3λ/(2π1/2ασ), with α the fine
structure constant. For the cases considered here this
restriction reduces to a0 < 2.39, which is easily satis-
fied in the cases reported in this Letter (nγ = 0.06 for
a0 = 0.587, γ = 100 and nγ = 0.13 for a0 = 0.865,
Ebeam = 300 MeV case). Therefore, the field strength

is not so large that quantum mechanical multi-photon
emission processes need to be considered.

It is our belief that because including electron recoil in
the formula for the emitted photon energy is straightfor-
ward, a calculation procedure similar to the above will
lead to chirping prescriptions including the full Compton
effect.

The calculations presented suggest the following con-
clusions. Frequency chirping of the incident laser pulse
can indeed lead to bandwidth reduction in the radiation
emerging from Thomson scattering events at high field
strength, as suggested by GSU. This somewhat counter-
intuitive situation arises because, with proper tuning, the
double-Doppler-shifted frequency in the lab frame may
be adjusted to a constant value by compensating the fre-
quency shifts due to velocity changes against the FM. We
have analytically derived exact frequency compensation
functions that may be applied to very general longitudi-
nal pulse shapes and across all the lower-order harmonics,
which become more prominent in the high-field regime.
We have suggested a practical realization of this com-
pensation idea in terms of a chirped-beam driven FEL
oscillator configuration and shown that significant com-
pensation can occur, even with imperfect matching.
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