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ABSTRACT

Proton Form Factor Ratio, µpG
p
E/G

p
M from Double Spin Asymmetry. (August 2013)

Habarakada Liyanage Anusha Pushpakumari, B.S., University of Peradeniya;

M.S., Hampton University

Chair of Advisory Committee: Dr. Michael Kohl

The form factors are fundamental properties of the nucleon representing the effect

of its structure on its response to electromagnetic probes such as electrons. They

are functions of the four-momentum transfer squared Q2 between the electron and

the proton. This thesis reports the results of a new measurement of the ratio of the

electric and magnetic form factors of the proton up to Q2 = 5.66 (GeV/c)2 using the

double spin asymmetry with a polarized beam and target.

Experiment E07-003 (SANE, Spin Asymmetries of the Nucleon Experiment) was

carried out in Hall C at Jefferson Lab in 2009 to study the proton spin structure

functions with a dynamically polarized ammonia target and longitudinally polarized

electron beam. By detecting elastically scattered protons in the High-Momentum

Spectrometer (HMS) in coincidence with the electrons in the Big Electron Telescope

Array (BETA), elastic measurements were carried out in parallel. The elastic double

spin asymmetry allows one to extract the proton electric to magnetic form factor

ratio Gp
E/G

p
M at high-momentum transfer, Q2 = 5.66 (GeV/c)2. In addition to the

coincidence data, inclusively scattered electrons from the polarized ammonia target

were detected by HMS, which allows to measure the beam-target asymmetry in the

elastic region with the target spin nearly perpendicular to the momentum transfer,

and to extract Gp
E/G

p
M at low Q2 = 2.06 (GeV/c)2.

This alternative measurement of Gp
E/G

p
M has verified and confirmed the dramatic

discrepancy at high Q2 between the Rosenbluth and the recoil-polarization-transfer
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method with a different measurement technique and systematic uncertainties un-

correlated to those of the recoil-polarization measurements. The measurement of

the form factor ratio at Q2 = 2.06 (GeV/c)2 has been determined as µpG
p
E/G

p
M =

0.605±0.178stat±0.033sys which is in agreement with an earlier measurement with the

polarized target technique at similar kinematics. The measurement of the form factor

ratio at Q2 = 5.66 (GeV/c)2 has been determined as µpG
p
E/G

p
M = 0.672 ± 0.362stat

which represents the highest Q2 reach with the double spin asymmetry to date.

v



Dedicated to my parents.

vi



ACKNOWLEDGEMENTS

There are so many people who have made it possible for me to finally reach this

milestone. First of all, I would like to thank my advisor, Dr. Michael Kohl, for his

guidance and support throughout the duration of my thesis research and for revising

the manuscript many, many times with patience. Then, of course, I must thank Dr.

M. Eric Christy for getting me started on experimental nuclear physics and giving his

advice continuously until I reached my final goal. I would also like to acknowledge

the assistance provided by the Hampton University Physics Department through out

this journey. A very special thanks goes to Dr. Mark Jones who provided me advice,

direction and invaluable assistance throughout my data analysis, being patient and

answering my endless questions. I would also like to thank Dr. Jose L. Goity for

serving on my thesis committee.

I would like to thank Dr. Cynthia Keppel for giving me the chance to come to

the United States of America and to continue my graduate studies in the Physics

Department at Hampton University.

During my four years at Jefferson Lab, I met many fantastic people who helped

me in numerous ways. I would like to thank all the people at Jefferson Lab as well as

the UVa polarized target group who made our experiment a success. I also had the

pleasure of working with the SANE collaborators, Dr. Oscar Rondon, Dr. Hovannes

Baghdasaryan, Dr. Narbe Kalantarians as well as my fellow SANE students Dr.

James Maxwell, Dr. Jonathan Mulholland, Whitney Armstrong, Hoyoung Kang and

Luwani Ndukun who helped me in many ways. I would like to thank all other hard

working fellow students in Jefferson Lab for making my stay at graduate school a

pleasant one.

Through this long process, I enjoyed the support of my friends and my husband,

Lanka. Throughout all the strange and hard times, he kept me in a positive attitude

vii



and made me feel that I could do this. Without my friends and him, I would have

forgotten that there is more to life than physics.

I would like to thank my parents for giving me the freedom to let me choose my

own goals and leaving me to fly a long way to here. There are not enough words in the

world to thank them and my siblings for their love and support. I would especially

like to thank them for always being there on the other side of the phone for me.

viii



Section Page

TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of the Experiment . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scattering Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Elastic Electron-Proton Scattering . . . . . . . . . . . . . . . 10

1.2.1.1 Born Approximation . . . . . . . . . . . . . . . . . . 11

1.2.1.2 Charge Form Factor, F1 . . . . . . . . . . . . . . . . 12

1.2.1.3 Anomalous Magnetic Moment, F2 . . . . . . . . . . . 14

1.2.1.4 Elastic Form Factors . . . . . . . . . . . . . . . . . . 15

1.2.1.5 Radiative Corrections . . . . . . . . . . . . . . . . . 17

1.2.1.6 Two-Photon Exchange (TPE) . . . . . . . . . . . . . 20

1.2.2 Inelastic Electron-Proton Scattering . . . . . . . . . . . . . . . 22

2 OVERVIEW OF EXPERIMENTAL DATA . . . . . . . . . . . . . 25

2.1 Electromagnetic Form Factor Measurements . . . . . . . . . . . . . . 25

2.1.1 Elastic e-N Scattering : Rosenbluth Cross-Section . . . . . . . 25

2.1.2 Double-Polarization Observables . . . . . . . . . . . . . . . . . 28

2.1.2.1 Polarization-Transfer Technique . . . . . . . . . . . . 29

2.1.2.2 Double-spin Asymmetry . . . . . . . . . . . . . . . . 32

2.2 Overview of World Data . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Proton Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Neutron Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Theoretical Interpretation of Nucleon Electromagnetic Form Factors . 45

2.3.1 Charge and Magnetic Distributions . . . . . . . . . . . . . . . 45

ix



Section Page

2.3.2 Vector Meson Dominance (VMD) . . . . . . . . . . . . . . . . 46

2.3.3 Constituent Quark Model (CQM) . . . . . . . . . . . . . . . . 46

2.3.4 Form Factors and Perturbative QCD . . . . . . . . . . . . . . 47

2.3.5 Form Factors and Generalized Parton Distributions . . . . . . 49

2.3.6 Dyson-Schwinger Equations (DSEs) . . . . . . . . . . . . . . . 50

2.3.7 Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 EXPERIMENT SETUP . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Polarized Electron Beam . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Polarized Electron Source . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.3 Standard Hall C Beam Line . . . . . . . . . . . . . . . . . . . 58

3.1.4 SANE Hall C Beam Line . . . . . . . . . . . . . . . . . . . . . 65

3.2 BigCal Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . 67

3.3 High Momentum Spectrometer, HMS . . . . . . . . . . . . . . . . . . 71

3.3.1 Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Collimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Detector Package . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.3.1 Drift Chambers . . . . . . . . . . . . . . . . . . . . . 78

3.3.3.2 Hodoscopes . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.3.3 Gas Cherenkov Detector . . . . . . . . . . . . . . . . 84

3.3.3.4 Lead-Glass Calorimeter . . . . . . . . . . . . . . . . 86

3.4 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Dynamic Nuclear Polarization (DNP) . . . . . . . . . . . . . . 87

3.4.2 Monitoring of the Target Polarization . . . . . . . . . . . . . . 91

3.4.3 Polarized Target Material . . . . . . . . . . . . . . . . . . . . 95

x



Section Page

3.4.4 SANE Target System . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Trigger and Data Acquisition . . . . . . . . . . . . . . . . . . . . . . 103

4 DATA ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1.1 Target Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 109

4.2 HMS Detector Calibrations . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Hodoscope Calibration . . . . . . . . . . . . . . . . . . . . . . 111

4.2.2 Drift Chamber Calibration . . . . . . . . . . . . . . . . . . . . 114

4.2.3 Cherenkov Calibration . . . . . . . . . . . . . . . . . . . . . . 117

4.2.4 Lead-Glass Calorimeter Calibration . . . . . . . . . . . . . . . 119

4.3 BigCal Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Elastic Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.1 Single-Arm Electron Scattering Data . . . . . . . . . . . . . . 127

4.4.1.1 Kinematic Correlation . . . . . . . . . . . . . . . . . 127

4.4.1.2 Particle Identification (PID) Cuts . . . . . . . . . . . 127

4.4.1.3 The Relative Momentum Acceptance (δ) . . . . . . . 128

4.4.2 Coincidence Data . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.2.1 Proton θp-Pp Kinematic Correlation . . . . . . . . . 131

4.4.2.2 Electron-Proton Kinematic Correlation . . . . . . . . 132

4.4.2.3 Elastic Event Selection Cuts . . . . . . . . . . . . . . 135

4.5 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5.1 Transport Through the Target Magnetic Field . . . . . . . . . 139

4.5.2 Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . 140

4.5.3 Radiative Effects . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.4 MC Comparison with C Data . . . . . . . . . . . . . . . . . . 144

xi



Section Page

4.5.4.1 Efficiency Corrections . . . . . . . . . . . . . . . . . 146

4.5.4.2 Position Offsets (Beam Offsets) . . . . . . . . . . . . 146

4.5.4.3 C Cross-Section Shape Correction . . . . . . . . . . . 149

4.5.5 MC Comparison with Single-Arm NH3 Data . . . . . . . . . . 150

4.5.5.1 Packing Fraction . . . . . . . . . . . . . . . . . . . . 152

4.5.6 MC Comparison with Coincidence NH3 Data . . . . . . . . . 154

4.6 Correlation Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.6.1 Azimuthal-Angle Correction . . . . . . . . . . . . . . . . . . . 158

4.7 Raw Asymmetry Calculation . . . . . . . . . . . . . . . . . . . . . . . 162

4.7.1 Charge Normalization . . . . . . . . . . . . . . . . . . . . . . 163

4.7.2 Lifetime Normalization . . . . . . . . . . . . . . . . . . . . . . 163

4.8 Physics Asymmetry Calculation . . . . . . . . . . . . . . . . . . . . . 165

4.8.1 Determination of the Dilution Factor . . . . . . . . . . . . . . 166

4.8.1.1 Dilution Factor for Single-Arm Data . . . . . . . . . 167

4.8.1.2 Dilution Factor for Coincidence Data . . . . . . . . . 172

4.9 Extraction of Gp
E/G

p
M Ratio . . . . . . . . . . . . . . . . . . . . . . . 174

4.10 Systematic Error Estimation . . . . . . . . . . . . . . . . . . . . . . . 180

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . 185

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

xii



Table Page

LIST OF TABLES

3.1 Table of beam energies averaged per run for each run configuration. . . 60

3.2 Table of SANE Mφller runs. HWP=Half Wave Plate, QE=Quantum
efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Table of chicane parameters for 80◦ field for both beam energy settings.
Integrated Bdl given in units of Tm. . . . . . . . . . . . . . . . . . . . . 66

3.4 Table of characteristics of TF1-0 lead-glass used for BigCal. . . . . . . . 69

3.5 Operating parameters of the HMS quadrupoles. . . . . . . . . . . . . . 72

3.6 Acceptance and resolution of HMS in its standard configuration. . . . . 77

3.7 Table of absolute, charge-averaged final polarizations averaged for all
runs of each target magnetic field configuration of SANE. . . . . . . . . 102

4.1 Table of run period, carbon run used to generate the time-to-distance
map within that run period, and the reason why it was needed to gen-
erate different maps for each run period. . . . . . . . . . . . . . . . . . 116

4.2 Summarized HMS elastic kinematics for both single-arm and coincidence
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 The initial parameters for both proton arm (HMS) and electron arm
(BETA) together with the single-arm Monte Carlo parameters. . . . . . 139

4.4 Target data input information. . . . . . . . . . . . . . . . . . . . . . . . 142

4.5 Kinematics used to create the radiated cross-section tables for different
target types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.6 HMS acceptance and PID cuts applied to both data and simulated yields. 145

4.7 Table of the ratio of data to MC yields for three different packing frac-
tions 50%, 60% and 70% using the “bottom” target data (72790). . . . 153

xiii



Table Page

4.8 The X and Y offsets determined by MC/SIMC for both single-arm and
coincidence data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.9 Physics asymmetries for the top and bottom targets and the weighted
average for both δ regions for the single-arm data. . . . . . . . . . . . . 172

4.10 The physics asymmetries, and extracted form factor ratios together with
the experimental parameters for both single-arm and coincidence data. . 179

4.11 Systematic uncertainty on each measurement and the relative system-
atic uncertainty on the µpG

p
E/G

p
M ratio due to the uncertainty on that

measurement for the single-arm data. . . . . . . . . . . . . . . . . . . . 184

5.1 The extracted form factor ratios for each Q2. . . . . . . . . . . . . . . . 186

5.2 The results of the form factor analysis from the experiment SANE. . . . 186

xiv



Figure Page

LIST OF FIGURES

1.1 Lab frame electron scattering from a stationary target. . . . . . . . . . 6

1.2 Differential cross-section dσ/dΩ for elastic e−p scattering in the lab
frame, for electron beam energy of 0.5 GeV, for various assumptions
about the spin and structure of the target proton. . . . . . . . . . . . . 10

1.3 Leading order Feynman diagram for elastic electron-proton scattering in
the one-photon exchange (Born) approximation. . . . . . . . . . . . . . 11

1.4 Born-term and lowest-order radiative correction graphs for the electron
in elastic ep scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 The lowest-order radiative correction graphs for the proton in elastic ep
scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Box and crossed-box diagrams for elastic electron-proton scattering in
the two-photon exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Leading order Feynman diagram for inelastic e−p→ e−X scattering. . . 23

1.8 The ep→ eX cross-section as a function of the missing mass W. . . . . 24

2.1 Kinematical variables for polarization-transfer from a longitudinally po-
larized electron to a proton with exchange of a virtual photon. . . . . . 29

2.2 Polarized electron scattering from a polarized target. . . . . . . . . . . . 33

2.3 Left : Proton electric form factor Gp
E from Rosenbluth separation and

forward-angle measurements normalized to the dipole form factor GD =
(1 + Q2/0.71)−2. Right : Proton magnetic form factor Gp

M from Rosen-
bluth separation, backward-angle, and high-Q2 cross-section measurements. 35

2.4 Proton electric to magnetic form factor ratio from Rosenbluth-separated
cross-sections (black symbols) and from double-polarization experiments
(colored symbols). Theoretical model by Kelly is also shown. . . . . . . 37

xv



Figure Page

2.5 Comparison of the polarization measurements (filled diamonds) and LT
separations (open circles) with no TPE corrections (left), with TPE cor-
rections (center), and with the additional high-Q2 corrections (right). . 40

2.6 Left : Neutron electric form factor Gn
E extracted from unpolarized and

tensor-polarized elastic electron-deuteron scattering. Right : Neutron
electric form factor Gn

E from double-polarization observables in quasi-

elastic scattering from 2 ~H and 3 ~He. . . . . . . . . . . . . . . . . . . . . 43

2.7 Neutron magnetic form factor ratio normalized to the dipole form factor
GD = (1+Q2/0.71)−2 from quasi-elastic inclusive and exclusive electron-
deuteron cross-section measurements, the cross-section ratio measure-
ments of d(e, e′n)/d(e, e′p), and from beam-target asymmetries with po-
larized 3He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Schematic overview of SANE’s experimental setup with the electron arm
(BETA) at 40◦ and the proton arm (HMS). . . . . . . . . . . . . . . . . 53

3.2 Energy levels and laser induced transitions for unstrained and strained
doped GaAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Charge distribution in the RF cavities at one instant. When the electron
moves forward the oscillating electromagnetic field induces a positive
charge in front of the electron thereby accelerating it continuously when
it is traveling in the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Thomas Jefferson National Accelerator Facility (TJNAF). . . . . . . . . 56

3.5 Schematic of the Hall C Mφller polarimeter. . . . . . . . . . . . . . . . 61

3.6 Electron beam polarization for each SANE experimental run. . . . . . . 62

3.7 Histogram of number of hits in HMS versus the fast-raster position for
SANE production run 72790, showing the fast-raster pattern in ADC
channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Histogram of number of hits in HMS versus the slow-raster position for
SANE production run 72790, showing the slow-raster pattern in cm. . . 66

3.9 Vertical motion of the beam through the chicane magnet setup during
the perpendicular target field configuration. . . . . . . . . . . . . . . . . 67

xvi



Figure Page

3.10 Left : The face of BigCal showing 1,744 lead-glass blocks, with different
colors indicating the groupings of the trigger channels. Right : Cutaway
view of the calorimeter from the side. . . . . . . . . . . . . . . . . . . . 68

3.11 Electromagnetic shower of particles in a calorimeter block. . . . . . . . 69

3.12 Schematic of the HMS spectrometer. . . . . . . . . . . . . . . . . . . . . 71

3.13 Left : The HMS sieve slit, center : The larger (pion) collimator, right :
The smaller collimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.14 HMS reconstruction at the Sieve Slit for the target magnetic field off,
run 72088. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.15 A schematic side view of the HMS detector hut. . . . . . . . . . . . . . 77

3.16 Front view of the HMS drift chambers. The read-out cards are shown
on the outside of the chamber. . . . . . . . . . . . . . . . . . . . . . . . 78

3.17 Arrangement of the drift chamber planes as seen by the incoming particles. 79

3.18 A diagram of a drift chamber cell structure representing the sense wires
(red dots) and the field wires (blue dots). As the charged particle ionizes
the gas in the drift chamber, the electrons are attracted to the sense wire
by the electric potential generated by the field wires. . . . . . . . . . . . 80

3.19 HMS hodoscope structure. . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.20 HMS Cherenkov detector geometry. . . . . . . . . . . . . . . . . . . . . 85

3.21 Calorimeter detector geometry. . . . . . . . . . . . . . . . . . . . . . . . 86

3.22 The energy level diagram of a spin-1/2 nucleon electron system placed
in a magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.23 Schematic overview of the systems required for Dynamic Nuclear Polar-
ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.24 Diagram of Q Meter circuit with LCR components and target material
inside the inductor coil. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.25 Steps on NMR signal analysis. . . . . . . . . . . . . . . . . . . . . . . . 94

3.26 Schematic overview of the UVa polarized target used in SANE. . . . . . 98

xvii



Figure Page

3.27 A photograph of bottom of the SANE target insert. From left to right :
A titanium cross-hair, a carbon disk, and two NH3 target cups. . . . . 99

3.28 Offline polarization of the target material sample #4 versus total charge
accumulated showing the positive target polarization (red), negative tar-
get polarization (blue) and anneals of the material (vertical gold bars). . 99

3.29 Offline target polarizations for all SANE runs, showing the positive tar-
get polarization (red) and negative target polarization (blue) for the two
different target magnetic field configurations, perpendicular (horizontal
green bar) and parallel (horizontal gold bar). . . . . . . . . . . . . . . . 102

3.30 Schematic showing the five types of triggers used by the experiment. . . 103

4.1 Diagram showing the bent particle path due to the target magnetic field
and its straight-line projection from the target together with the mag-
netic field representation at the target. The HMS, BigCal and the beam
coordinate systems are also shown. . . . . . . . . . . . . . . . . . . . . . 107

4.2 The reconstructed β spectrum with the tracking selection criteria on all
scintillator hits. Left : A nice narrow peak centered on 1 for electrons.
Right : Velocity β as calculated from the momentum, P of the particle
for hadrons, which is centered at 0.938 for protons. . . . . . . . . . . . . 113

4.3 Left : The measured drift-time distribution for the plane X1. Right :
The drift distance calculated using the measured drift time after the
drift chamber calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 DC tracking efficiency as a function of the focal plane coordinate Xfp

for the C run 72782. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Left : The ADC histograms for the top (top plot) and bottom (bottom
plot) mirrors. Right : The number of photo-electron histograms (cali-
brated) on the same mirrors. . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Left: an example of a full Cherenkov response for the electron run 72782.
Right: the inefficiency of the Cherenkov as a function of δ for the same
run 72782. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 The HMS shower counter spectrum after applying the PID cut of Cherenkov
photo electrons > 2: The ratio of the total energy deposited in the
calorimeter, ECal to the measured energy, P of the particles. The elec-
tron peak is at Ecal/P = 1 and the pion peak is at about 0.25. . . . . . 120

xviii



Figure Page

4.8 Left : Diagram showing an example of clustering for a set of calorimeter
blocks including energy-averaged cluster positions. Right : The plot of
π0 mass reconstructed after calibration of calorimeter blocks. . . . . . . 123

4.9 The schematic diagram of the detector setup during the single-arm data
collection for SANE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Cherenkov photo electrons and calorimeter energy regions for both pions
and electrons. The red (green) line indicate the calorimeter (Cherenkov)
cut used to separate electrons. . . . . . . . . . . . . . . . . . . . . . . . 128

4.11 Left: The momentum acceptance of the total single-arm electron data
as a function of invariant mass. Right: The raw yield after applying PID
cuts as a function of the invariant mass, W for two different δ regions. . 129

4.12 Schematic diagram of the detector setup during the coincidence data
collection for SANE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.13 ∆p spectrum for Q2 = 5.17 (GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2

(right). (Any coincidence cuts are not applied yet.) . . . . . . . . . . . 131

4.14 Elliptical cut (red) with (Xcut, Ycut) = (7, 10) cm applied to the ∆Y
vs ∆X spectra at Q2 = 5.17 (GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2

(right) with no ∆p cuts applied. . . . . . . . . . . . . . . . . . . . . . . 135

4.15 ∆p spectra of all events after applying the elliptical cut at Q2 = 5.17
(GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2 (right). . . . . . . . . . . . . . 136

4.16 ∆X and ∆Y spectra after applying the ±3σ cut of ±0.02 around the
elastic peak (red) in the ∆p spectrum for Q2 = 6.26 (GeV/c)2, compared
to before applying the ∆p cut (blue). . . . . . . . . . . . . . . . . . . . 137

4.17 Data to MC comparison for HMS reconstruction quantities for the C
run 72782. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.18 Data to MC comparison of reconstructed quantities by HMS with X and
Y offsets (X offset=0.4 cm and Y offset = 0.1 cm) from data for the C
run 72782. The simulation yields are corrected with the Cherenkov and
drift chamber efficiencies. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.19 The ratio of C data to simulated yields as a function of invariant mass,
W for the two δ regions, −8%<δ<10% (left) and 10%<δ<12% (right).
Only the MC yields on −8%<δ<10% used the W shift of 0.012 GeV/c2.
The polynomial fits (black) on the ratios are also shown in the plots. . . 149

xix



Figure Page

4.20 After using the same beam X and Y position offsets as well as the same
Cherenkov and drift chamber efficiencies as the C run 72782, the data to
Monte Carlo comparison for the reconstructed HMS quantities for the
NH3 target 72790 is shown. . . . . . . . . . . . . . . . . . . . . . . . . 151

4.21 The X ′tar vs W correlation for the data (left) and for MC (right). . . . . 151

4.22 The reconstructed target quantities including δ spectrum for the mo-
mentum acceptance −8%<δ<10% for the packing fraction of 60% using
run 72790 (left) and the ratio of data to MC yields for the three different
packing fractions 50%, 60% and 70% (right). . . . . . . . . . . . . . . . 153

4.23 The simulated target contributions at the elastic peak compared to the
data at both δ regions, −8%<δ<10% (left) and 10%<δ<12% (right) for
the experiment run 72795. Different colors show different target type
contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.24 Data (red) to SIMC (blue) comparison for the HMS quantity, Y target
(left) and coincidence quantity, ∆p (right) for the beam energy 5.895
GeV before correcting for the beam X and Y position offsets. . . . . . . 155

4.25 Data (red) to SIMC (blue) comparison for the HMS quantity, Y target
(left) and coincidence quantity, ∆p (right) after correcting the X and Y
offsets for the data determined by the simulation for the beam energy
5.895 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.26 The correlation of reconstructed out-of-plane angle, X ′tar with the invari-
ant mass, W in single-arm data (top) together with the correlation of
the HMS quantities X ′tar vs ∆p (middle) and a correlation of the BETA
quantities, ∆Y vs Yclust (bottom) in the coincidence data. . . . . . . . . 157

4.27 Monte Carlo simulated correlation to determine the correction (left) and
the measured data after using the azimuthal-angle correction (right). . . 159

4.28 The simulated correlation ofX ′tar vs ∆p (left) after applying the azimuthal-
angle correction only for the forward direction and the corrected coinci-
dence data (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.29 The simulated correlation of ∆Y vs Yclust after applying the azimuthal-
angle correction only for the forward-direction (top) and the corrected-
coincidence data (bottom) at ∆φ0 = −0.15◦ and dφ0 = −0.4 T/deg. . . 161

xx



Figure Page

4.30 The charge and lifetime-corrected raw asymmetries for δ regions of
−8%<δ<10% (left) and 10%<δ<12% (right) for all single-arm data for
top (red) and bottom (blue) targets. . . . . . . . . . . . . . . . . . . . . 164

4.31 The raw asymmetries for each category for the coincidence data. Solid
circles show the data from 5.895 GeV beam energy while the empty
circles show those at 4.73 GeV beam energy. The X axis shows the run
numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.32 The beam polarization (left) and the absolute-target polarization (right)
reached during the experiment. The red box shows the polarizations
during the coincidence runs and the green box shows the polarizations
during the single-arm electron runs while the red (blue) markers show
the positive (negative) polarizations. . . . . . . . . . . . . . . . . . . . . 166

4.33 The total data and the total simulated MC (top), the simulated back-
ground with the polynomial fit (middle) and the background-subtracted
elastic peak (bottom) for the two δ regions −8%<δ<10% (left) and
10%<δ<12% (right) for the top target using run 72795. . . . . . . . . . 168

4.34 The calculated dilution factor for −8%<δ<10% (top) and 10%<δ<12%
(bottom) for the top target using run 72795. . . . . . . . . . . . . . . . 169

4.35 The simulated target contributions at the elastic peak compared to the
data at both δ regions, −8%<δ<10% (left) and 10%<δ<12% (right) for
the bottom target using experiment run 72790. Different colors show
different target type contributions. . . . . . . . . . . . . . . . . . . . . . 169

4.36 The relative dilution factors calculated for both top (red) and bottom
(blue) targets for the two different δ regions −8%<δ<10% (left) and
10%<δ<12% (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.37 (Left): The top and bottom target physics asymmetries for the two
different delta regions −8%<δ<10% (top) and 10%<δ<12% (bottom).
(Right): The constant physics asymmetries for both top (inside the
hatched box) and bottom (outside the hatched box) targets and the
weighted average of it (inside the ellipse) for two different δ regions. The
expected physics asymmetries from the known form factor ratio for each
Q2 by Kelly’s form factor parametrization are also shown by dashed lines
separately for the two different δ regions. . . . . . . . . . . . . . . . . . 171

4.38 The normalized carbon background and H comparison with the coinci-
dence data for the beam energy 5.89 GeV (left) and 4.73 GeV (right). . 172

xxi



Figure Page

4.39 The data and SIMC carbon background used to calculate the relative
dilution factor using the integration method for the top (left) and bottom
(right) targets for the beam energy 5.89 GeV. . . . . . . . . . . . . . . 173

4.40 The physics asymmetries for each category of the coincidence data. The
solid circles show the data from 5.895 GeV beam energy while the empty
circles show those at 4.73 GeV beam energy. The X axis shows the run
numbers. The weighted average physics asymmetries and their errors for
the two beam energies are also shown (inside the brown ellipse). The
dashed lines are at the expected values of the physics asymmetries for
the two beam energies 4.73 GeV (light blue) and 5.893 GeV (magenta)
calculated from the known form factor ratio for each Q2 by Kelly’s form
factor parametrization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.41 The data (blue markers) to Monte Carlo simulation yields (red) com-
parison of Q2(E,E ′, θe) for the two δ regions −8%<δ<10% (left) and
10%<δ<12% (right). The simulated signal H and background (N+He+Al)
yields are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.42 The simulated background subtracted Q2(E,E ′, θe) distributions for the
two δ regions −8%<δ<10% (left) and 10%<δ<12% (right). . . . . . . . 177

4.43 The expected physics asymmetry Ap for a range of Q2 values. The black
line is the calculated Ap as a function of Q2 for different θ∗. Different
colored lines show the calculated Ap at constant θ∗ as shown in the
legends. The two black data points are the experimental Ap values for
the single-arm data at the two different δ regions. . . . . . . . . . . . . 178

4.44 The extracted µpG
p
E/G

p
M ratio for the single-arm data (left) and for the

coincidence data (right). The expected µpG
p
E/G

p
M for each data point is

shown by the similar color-coded dashed lines. . . . . . . . . . . . . . . 180

5.1 The form factor measurements from SANE together with the world data
as a function of Q2. The inner-error bar shown at Q2 = 2.06 (GeV/c)2

is statistical and the outer-error bar is a combination of statistical and
systematics. The error bar shown at Q2 = 5.66 (GeV/c)2 is only statistical. 188

xxii



1

SECTION 1

INTRODUCTION

Since Rutherford, Geiger, and Marsden discovered the atomic nucleus by mea-

suring the distribution of alpha particles scattered from gold foils ( [1–3]), scientists

started to believe that the nucleus consists of a dense center surrounded by a cloud of

negatively charged electrons. These electrons are bound to the nucleus by the elec-

tromagnetic force which causes the interaction between electrically charged particles.

The nucleus consists of nucleons, i.e., protons and neutrons, which themselves have

a substructure. The effort of understanding the nucleonic structure and dynamics has

continued for generations up to this day. The first clue that the nucleons themselves

are not point-like, elementary particles came from Otto Stern’s measurements of the

magnetic moment of the proton and the deuteron in 1933 [4]. These measurements

showed drastic deviation from the expected value in the Dirac equation for a “point”

spin 1/2 particle, implying that protons and neutrons are composite and have inter-

nal structure. Since that groundbreaking discovery, a modern understanding of the

nucleon has emerged, answering many questions and raising many more.

Elastic electron-nucleon scattering has been an important tool to understand the

structure of the nucleon. In one-photon exchange (Born) approximation, the structure

of the nucleon is characterized in terms of the electric and magnetic form factors, GE

and GM , which depend only on the four-momentum transfer squared, Q2. The form

factors, GE and GM , are fundamental quantities sensitive to the distribution of charge

and magnetization within the nucleon.

The proton form factors, Gp
E and Gp

M , can be extracted individually by measuring

the elastic ep scattering cross-sections at constant Q2, but at different beam energies
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and at the different electron scattering angles (Rosenbluth technique). In addition,

spin observables in elastic ep scattering are sensitive to the ratio of Gp
E/G

p
M , allowing

for a direct determination of Gp
E/G

p
M from either the recoil-polarization measurement

or the double-spin asymmetry at a single beam energy and a single electron scatter-

ing angle. A linear falloff with Q2 was shown in the polarization-transfer data in

contrast to the nearly flat Q2 dependence of Gp
E/G

p
M measured with the Rosenbluth

technique. This discrepancy has been widely considered as due to the significant

effects of two-photon exchange. Checking for the possibility of an unknown system-

atic error in the Rosenbluth or recoil-polarization technique is very important, before

physical conclusions can be made. Measurement of the beam-target asymmetry in

elastic ep scattering offers an independent technique of determining the Gp
E/G

p
M ratio.

By measuring Gp
E/G

p
M with the third technique and comparing to previous results,

the discovery of unknown or underestimated systematic errors in the previous mea-

surements is possible. This dissertation presents the measurement of Gp
E/G

p
M from

double-spin asymmetry for Q2 = 2.06 (GeV/c)2 and 5.66 (GeV/c)2.

1.1 Overview of the Experiment

The experiment E07-003 (Spin Asymmetries of the Nucleon Experiment) is a

single-arm inclusive-scattering experiment. The goal of SANE was to measure proton

spin structure functions g1(x,Q2) and g2(x,Q2) at four-momentum transfer 2.5<Q2<6.5

(GeV/c)2 and 0.3<x<0.8 which is an extension of the kinematics of experiment

RSS [5] performed in Hall C, Jefferson Lab in 2007.

SANE measured the inclusive spin asymmetries with the target spin aligned par-

allel and nearly perpendicular (80◦) to the beam direction for longitudinally polarized

electron scattering from a DNP polarized proton (crystallized NH3) target. The ex-

periment was carried out in the experimental Hall C at Jefferson Lab from January to

March, 2009. A subset of the data was used to measure the elastic beam-target spin
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asymmetry from elastic electron-proton scattering. Polarized electrons with energies

4.72 GeV and 5.89 GeV were scattered from the polarized proton target with the spin

of the proton aligned nearly perpendicular (80◦) to the beam direction. Single-arm

electron scattering data were taken by detecting the elastically scattered electrons in

the High-Momentum Spectrometer (HMS) for an electron beam energy 5.89 GeV. In

addition to that, recoiled protons were detected by the HMS in coincidence with the

electrons in Big Electron Telescope Array (BETA) for the two different beam energies

4.72 GeV and 5.89 GeV.

Single-arm data were taken about ∼12 hours in total (∼ 2 × 104 elastic events)

and the coincidence data were taken about a week for both beam energies, ∼40 hours

and ∼155 hours (∼113 elastic events and ∼1200 elastic events) respectively, for the

two beam energies 4.72 GeV and 5.89 GeV.

When HMS was at negative polarity, both the HMS Cherenkov detector and the

lead-glass calorimeter were used to separate pions and electrons. A relative momen-

tum acceptance cut also was used to extract the elastic events in single-arm data.

For the coincidence data, for HMS is in positive polarity, the relative momentum

deviation of the measured proton momentum in HMS from the calculated proton mo-

mentum by knowing the recoiled proton angle in HMS, was used to extract the elastic

events. The vertical and horizontal positions of the scattered electron on the BETA

calorimeter, BigCal was predicted from the proton angle in HMS (XHMS, YHMS). By

taking the horizontal and vertical position differences between the measured elec-

tron position on BigCal (Xclust, Yclust) and the predicted electron position on BigCal

(XHMS, YHMS) and performing the elliptical cut on them, subtract the inelastic back-

ground most effectively.

The following Section 1.2 of the first chapter in this dissertation motivates the use

of elastic electron-nucleon scattering to study the structure of the nucleon. Working

in both one-photon (Born approximation) and two-photon exchange, the scattering
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cross-sections are derived in terms of electric (GE) and magnetic (GM) form factors

which characterize the effect of the nucleon’s electromagnetic structure. Further, the

radiative effects on the Born cross-sections is also discussed. The cross-section formula

for the inelastic electron-proton scattering is also presented for the completeness of

the scattering experiments.

In Chapter 2, the formalism and the methods of measuring the electromagnetic

form factor ratio, µGE/GM from the Rosenbluth separation technique, the polarization-

transfer method and the double-spin asymmetry in terms of GE and GM are discussed.

Existing proton and neutron form factor data from cross-section and polarization ex-

periments are presented and discussed. In addition, possible theoretical interpreta-

tions of the nucleon electromagnetic form factors are summarized in Section 2.3.

In Chapter 3, a detailed description of the experiment setup is given, including

the polarized electron beam, BETA calorimeter (BigCal), HMS detector package,

polarized target, trigger and data-acquisition system.

In the fourth Chapter, the data analysis is reviewed by discussing the HMS event

reconstruction through the target magnetic field, HMS and BigCal detector calibra-

tions, elastic event selections, raw and physics asymmetries and hence the proton form

factor ratio, µpG
p
E/G

p
M calculation. The results of Montecarlo simulation comparisons

of C and NH3 data to correct the beam-position offsets and correlation corrections are

also shown. In addition, the systematic uncertainty determinations for the single-arm

data are discussed.

The last Chapter presents the results for the proton form factor ratio from double-

spin asymmetry at two Q2 values, Q2 = 2.06 (GeV/c)2 (with both statistical and

systematic uncertainties) and 5.66 (GeV/c)2 (with only statistical uncertainty) high-

liting the importance of the double-spin asymmetry method. The low HMS drift

chamber efficiency of ∼40% due to the drift chamber gas leak during the coincidence

data-taking decreased the proton yield in HMS, resulting in low statistics for the
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coincidence elastic events. Therefore, due to the large error bar on the statistical

uncertainty of the form factor measurement from coincidence data, the systematic

uncertainty for that measurement was not studied, as it is expected not to dominate

the error. Further, the possible improvements of the experiment for future references

are also discussed.

1.2 Scattering Experiments

Scattering experiments have been the method of choice of nuclear and particle

physicists to examine the microscopic structure of matter. To this day, electron

scattering remains one of the most powerful techniques to study nuclear and nu-

cleon structure. The interaction of a beam of electrons with a nuclear target is well

understood and precisely calculable within Quantum Electrodynamics (QED). The

electromagnetic fine structure constant α, the weak coupling constants gw and gz

are all sufficiently small at all energies. However, the strong coupling constant αs is

small only at high energy in the limit of asymptotic freedom, leaving the possibility

to use perturbation theory to carry out calculations of particle decay rates and scat-

tering cross-sections. At low energies, the probed distance is larger and therefore, the

strong force between quarks is stronger; QCD is non-perturbative. At higher ener-

gies, the probed distance is small; this is where the quarks are asymptotically free,

the force between quarks becomes weak, and perturbative QCD applies. Starting

from ‘Fermi’s Golden Rule’, which is a general expression giving the transition rate

(number of transmissions per unit time) from an initial state | i〉 of energy Ei to the

set of final states | f〉 with energies Ef = Ei, the invariant amplitude or so-called

Lorentz Invariant Matrix Element, M and hence the differential cross-section dσ for

the scattering, is derived in [6] as,

dσ =
¯|M |2

64π2ME1

d3p′

p′0
d3k′

k′0
δ(4)(k + p− k′ − p′), (1.2.1)
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where k, p and k′, p′ are the initial and final particle four-momenta. The bar over

the square of the scattering amplitude indicates that it is to be averaged over the

spin states of the initial particles and summed over the spin states of the outgoing

particles. Therefore, in other words, the Equation (1.2.1) refers to the unpolarized

cross-section.

By integrating over all possible outgoing momenta, assuming the two-body scat-

tering process of the form 1 + 2 → 3 + 4 , the above Equation (1.2.1) converts to

the differential cross-section describing the scattering of a particle into an element of

solid angle, dΩ in the lab frame,

dσ

dΩ
=

1

64π2

(
E3

ME1

)2
¯|M |2, (1.2.2)

where E1 and E3 are the energies of the incoming and scattered particle, respectively.

Note that dΩ = 2πdcos θ. The above expression for the differential cross-section

depends on the Lorentz-invariant matrix element squared, ¯|M |2, which contains the

dynamical information on the process. The matrix element is determined by Feynman

diagrams appropriate to that process and applying the Feynman rules (See [7], section

4.8 or [6], table 6.2) to each diagram.

θk = (E1,p1)

k′ = (E3,p3)

q = (ν,q) p = (M, 0)

p′ = (E4,p4)

Figure 1.1. Lab frame electron scattering from a stationary target.
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Figure 1.1 shows the most basic scattering process, elastic lepton - lepton scat-

tering. At leading order in α, the scattering occurs through the exchange of a single

virtual photon. Because the fine structure constant of electromagnetism is so small

(α = e2

~c (in cgs units)= 1
137.03599911

experimentally [8]), first-order perturbation theory

in α (Born approximation) is a very good approximation to the real physics process.

According to the Feynman rules for QED, the invariant amplitude for lepton-

lepton scattering can be read off from the diagram as,

−iM = ū(k′)(igeγ
µ)u(k)

(
−igµν

q2

)
ū(p′)(−igeγν)u(p). (1.2.3)

In Equation (1.2.3), u(k) and ū(k′) are the solutions to the momentum space Dirac

equation (γµpµ −mc)u = 0 for incoming and outgoing particles. The quantity q2 =

(k−k′)2 = (p′−p)2 is the four-momentum transfer squared and also the invariant mass

of the virtual photon. Each vertex adds a vertex factor, igeγ
µ , with ge representing the

coupling strength of the vertex, here the charge of the electron, ge = e. The photon

propagator, −igµν
q2

is sandwiched between them. Squaring the invariant amplitude

−iM , one can obtain:

|M |2 =
e4

(k − k′)2
[ū(k′)γµu(k)][ū(p′)γνu(p)][ū(k′)γµu(k)]∗[ū(p′)γνu(p)]∗. (1.2.4)

However, because of the lack of knowledge of the spin degrees of freedom, the

average of the all-spin states of |M |2, ¯|M |2 was calculated by averaging over initial

spins and summing over final spins to find the unpolarized scattering amplitude of

the process. In parallel, the invariant amplitude square, ¯|M |2 for lepton-nucleon

scattering can be written in different form as,

¯|M |2 =
e4

q4
Lµνe L

target
µν , (1.2.5)
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introducing the new quantities L, which are the leptonic and hadronic tensors. The

leptonic tensor expression is defined in [6] as:

Lµνe =
1

2
Tr((6 k′ +m)γµ( 6 k +m)γν) = 2(k′µkν + k′νkµ − (k′.k −m2)gµν), (1.2.6)

which gives information about the lepton arm of the scattering process. The hadronic

tensor, Ltargetµν gives information about the hadron arm of the scattering process which

is particular to each nucleon type. However, for lepton-lepton scattering, the hadronic

tensor in Equation (1.2.5) should be replaced by the leptonic tensor which is given

by Equation (1.2.6). Therefore, by substituting the leptonic tensor, Equation (1.2.6)

for both Lµνe and Ltargetµν in Equation (1.2.5), and then using the resulting ¯|M |2 into

Equation (1.2.2), one can calculate the unpolarized cross-section of the lepton-lepton

scattering.

Similarly, using elastic scattering of a lepton from a point-like spin-1/2, Dirac par-

ticle, one can demonstrate the cross-section calculation through the Lorentz invariant

matrix element, M . By replacing the Ltargetµν by the Dirac particle tensor, which is

assumed similar to the electron tensor, the following general expression for ¯|M |2 is

obtained for scattering of e− of mass m from a Dirac particle of mass M :

〈 ¯|M |2〉 =
8e4

(k − k′)4
[(k.p)(k′.p′)+(k.p′)(p.k′)−(k.k′)M2−(p.p′)m2+2m2M2]. (1.2.7)

In the high-energy limit k � m, the electron mass can effectively be neglected. With

the target particle at rest, and using energy-momentum conservation, k+ p = k′+ p′,

the invariant matrix element in Equation (1.2.7) can be simplified as,

〈 ¯|M |2〉 =
e4M2

E1E3 sin4 θ/2

(
cos2 θ/2− q2

2M2
sin2 θ/2

)
, (1.2.8)
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and hence the differential cross-section from Equation (1.2.2) can be written as,

dσ

dΩ
=

α2

4E2
1 sin4 θ/2

E3

E1

(
cos2 θ/2− q2

2M2
sin2 θ/2

)
, (1.2.9)

where α = e2/~c ≈ 1/137 is the fine structure constant. For the elastic scattering,

the quantities E3 and q2 are given by,

E3

E1

=
M

M + E1(1− cos θ)
, q2 = − 2ME2

1(1− cos θ)

M + E1(1− cos θ)
(1.2.10)

so that the cross-section depends on only a single independent variable, θ. This seems

to be the product of Rutherford-like scattering cross-section with some additional

factors. The ratio E3/E1 gets close to unity at small scattering angles (θ → 0) where

the target recoil is small. It becomes smaller as θ increases, falling to E3/E1 ≈M/2E1

at large scattering angles, θ → π, where the target recoil is a maximum.

The cross-section of Equation (1.2.9) represents electron scattering from a point-

like, spin-1/2, Dirac particle. Such a particle would have an intrinsic magnetic mo-

ment of magnitude, µ = e~/(2Mc), i.e., µ = 1 in units of the nuclear magneton

µN = e~/(2Mc). If the spin-1/2 target particle is replaced by a spin 0 target particle,

the sin2 θ/2 term in Equation (1.2.9) gets omitted and the cross-section becomes,

(
dσ

dΩ

)

Mott

=
α2

4E2
1 sin4 θ/2

E3

E1

cos2 θ/2, (1.2.11)

known as the Mott cross-section with the additional recoil factor E3/E1. Since the

spin 0 particle has no intrinsic magnetic dipole moment, the sin2 θ/2 term in Equation

(1.2.9) must be due to scattering from the intrinsic magnetic dipole moment of the

spin-1/2 target particle. The cos2 θ/2 term, common to both Equations (1.2.9) and

(1.2.11), must be due to scattering from the Dirac particle electric charge.
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Figure 1: Differential cross section for elastic scattering in the lab frame, for electron beam
energies of 0.5 and 10 , for various assumptions about the spin and structure of the target proton.

where we have introduced the dimensionless, Lorentz-invariant quantity defined as

5.4 Scattering from a Finite Size Target

Thus far, the target proton has been assumed to be a pointlike particle. We now extend the above
results to take into account the finite spatial extent of the target proton (or neutron).

Assuming that the scattering is due to the exchange of a single virtual photon, it can be shown that
the lab frame pointlike cross section of Equation (25) generalises to the Rosenbluth Formula

spin 0
(26)

9

Figure 1.2. Differential cross-section dσ/dΩ for elastic e−p scattering in the lab frame,
for electron beam energy of 0.5 GeV, for various assumptions about the
spin and structure of the target proton [9].

Examples of the cross-sections dσ/dΩ and dσ/dΩspin0 predicted by Equations

(1.2.9) and (1.2.11) for a point-like Dirac target and a point-like spin-0 target are

shown in Figure 1.2. For small scattering angles, θ, the spin-0 and spin-1/2 cross-

sections are identical. The effect of the magnetic scattering term (−q2/2M2) sin2 θ/2

becomes evident at large scattering angles; the spin-0 cross-section falls to zero as

θ → π, while the spin-1/2 cross-section remains finite. The cross-section of the spin-

1/2 target with the assumption of the dipole form factor is also shown in Figure

1.2.

1.2.1 Elastic Electron-Proton Scattering

Detailed study of the nucleons is very important to understand the nucleus. In the

mid-1950s, a series of experiments led by Robert Hofstadter at Stanford University

established electron scattering as a powerful technique for exploring nuclear structure

[10–12]. In particular, this work established that the proton has an extended charge

distribution and measured its size. One of the main advantages of this technique
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is that it can reveal the electromagnetic structure of a nucleon or nucleus. The

small cross-sections associated with electromagnetic processes necessitate a very high-

luminosity experiment with intense electron beams. Despite this limitation, electron

scattering or lepton scattering more generally is a precision probe of nuclear structure.

1.2.1.1 Born Approximation

θk = (E1,p1)

k′ = (E3,p3)

q = (ν,q)

p = (E2,p2)

p′ = (E4,p4)

Figure 1.3. Leading order Feynman diagram for elastic electron-proton scattering in
the one-photon exchange (Born) approximation.

The basic electron-proton scattering is the elastic scattering in the one-photon

exchange (OPE) approximation [7]. That is, in the reaction e− + p → e− + p, the

stationary proton is probed by the electron by exchanging only one photon, while the

struck nucleon stays in its ground state and the energy and momentum of the electron-

nucleon system are conserved. If the proton is a point charge q with Dirac magnetic

moment q~/2Mc, one would have the same Equation (1.2.9) for the differential cross-

section. But, in reality, the proton is not a point charge. It has an internal structure

with quarks and gluons. Therefore, modifications are needed to the matrix element

accordingly by keeping the electron tensor as is and addressing the proton tensor

separately:

¯|M |2 =
e4

q4
Lµνe W

proton
µν (1.2.12)
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The black solid circle in Figure 1.3 indicates that the QED vertex factor is to be

modified to take into account the nucleon’s internal electromagnetic structure. By

applying the Feynman rules for QED, the invariant amplitude for elastic e−N scat-

tering can be read from the diagram as,

−iM = ū(k′)(igeγ
µ)u(k)

(
−igµν

q2

)
ū(p′)(−igeΓν)u(p). (1.2.13)

Here it is noted that one of the electron vertex factors, γµ from the lepton-lepton scat-

tering in Equation (1.2.3), which represents scattering from a spin-1/2 point particle,

is replaced by the nucleon vertex factor, or current Γν , which describes a spin-1/2

composite proton. Its magnetic moment is determined by the combined spin and

orbital angular momentum of three valence quarks, the surrounding sea of transient

quark-antiquark pairs and gluons that fluctuate in and out of existence in the strong

color field of the valence quarks. Therefore, the nucleon vertex factor Γν in Equation

(1.2.13) can be generalized as,

Γµ = γµF1(Q2) + (iF2(Q2) + F̃2(Q2)γ5)σµνq
ν + F̃3(Q2)(qµ 6 q − q2γµ)γ5, (1.2.14)

by noting that the electromagnetic current is conserved [13]. The objects F1, F2, F̃2, F̃3

are called form factors. These form factors are Lorentz invariant quantities which are

the functions of Q2 = −q2 = (p − p′)2. Here is the summary of the physics of these

form factors.

1.2.1.2 Charge Form Factor, F1

This form factor is known as the Dirac form factor. First, consider that the initial

and final states of the fermion are the same. In this situation, p = p′ and s = s′.

i.e., the momentum transfer 4-vector q vanishes and therefore, q2 = 0. Therefore, the
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matrix element of the electromagnetic current operator:

< p′, s′|jµ(x)|p, s >=
e−iq·x√

2EpV
√

2Ep′V
ūs′(p

′)eΓµ(p, p′)us(p) (1.2.15)

become,

< p, s|jµ(x)|p, s > =
eF1(0)

2EpV
ūs(p)γµus(p)

=
eF1(0)pµ

EpV

(1.2.16)

The normalization of the spinors ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs and the Gordon

identity, mū(p)γµu(p) = pµū(p)u(p) were used. Assuming a purely electric field in

which A = 0, and only A0 = φ is non-vanishing, the quantity, p0 = Ep.

− < jµ > Aµ = −eF1(0)φ

V
. (1.2.17)

The Lagrangian term is −ρφ, where ρ is the charge density. Thus, here ρ = eF1(0)/V .

In a volume V , which conclude that

eF1(0) = Charge of the particle.

where F1 = Qc is the charge in fundamental unit of e, of the particle whose vertex is

being considered. Therefore, F1(q2) is often called the charge form factor. In a more

general form for the photon field Aµ, which is non-vanishing A and q2, the matrix

element in the Equation (1.2.15) can be rewritten using the Gordon identity as,

< p′, s′|jµ(x)|p, s >=
e−iq·x√

2EpV
√

2Ep′V

eF1(q2)

2m
ūs′(p

′)[(p+ p′)µ − iσµνqν ]us(p).

(1.2.18)

In the non-relativistic case, i.e., when Ep ≈ Ep′ ≈ m, the dominant contribution

from (p + p′)µ in the square bracket reduces to the electric charge, which has been

discussed above. The contribution of the other term, iσµνq
ν to the matrix element is
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obtained by coupling this term to a photon field Aµ [13]. By expanding F1(q2) of the

result in a Taylor series around q2 = 0, and taking the inverse Fourier transform for

the first constant term, the matrix element of the operator is given in [13] as,

1

V

eF1(0)

2m
σ ·B =

1

V

eQc

2m
σ ·B, (1.2.19)

where now B is the magnetic field in co-ordinate space. This is exactly the magnetic

moment of a particle in a volume, V,

µD =
eQc

2m
σ =

eQc

m
S, (1.2.20)

where S = 1
2
σ is the spin vector of the particle. ~ = c = 1. This contribution

to the magnetic moment, coming from the charge form factor , is called the Dirac

magnetic moment, µD. Usually, the magnetic moment is expressed in terms of the

Lande g-factor, which is defined by,

µ =
eQc

2m
g S, (1.2.21)

where eQc is the charge of the particle and m is its mass. By comparing above

Equations (1.2.20) and (1.2.21), it shows that the charge form factor, F1(0) = Qc

gives the total charge of the particle, resulting in g = 2 for the g-factor.

1.2.1.3 Anomalous Magnetic Moment, F2

This form factor is known as the Pauli form factor. The contribution to the mag-

netic moment from the Pauli form factor is called the anomalous magnetic moment,

which is given by µA [13]:

µA = −eF2(0)σ = −2eF2(0)S. (1.2.22)
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By comparing the above Equations (1.2.21) and (1.2.22), the form factor, F2 gives a

contribution of −4m
Qc
F2(0) to the g-factor. Therefore, the Lande g-factor for a particle

with a charge eQc, which is the contribution to the magnetic moment coming from

both Dirac and Pauli form factors, is obtained by summing the two contributions:

g = 2− 4m

Qc

F2(0). (1.2.23)

For the protons, the contribution from the anomalous magnetic moment is smaller

and therefore, g>0. However, the uncharged particles such as neutrons also can have

magnetic moments. For such particles, the anomalous part of the magnetic moment

is larger and therefore, g<0.

The g-factor is 2 for Dirac particles (point-like). Having g − 2 non-zero as in

Equation (1.2.23) is due to the anomalous magnetic moment, which arises from the

internal structure of the nucleus. This knowledge of the nucleon anomalous magnetic

moment was the first hint that it has a substructure, found by Otto Stern’s mea-

surement in 1933 [4] as mentioned in Section 1, long before Hofstadter’s scattering

experiments.

Since a non-zero Electric Dipole Moment, F̃2, and Anapole Moment, F̃3 [14, 15]

are parity-odd, these form factors can appear only for parity-violating interactions.

Because QED is parity invariant, the discussion about these form factors is beyond

the scope of this dissertation. More details about F̃2 and F̃3 can be found in [13].

1.2.1.4 Elastic Form Factors

The only form factors that appear in pure QED interactions from the expression

(1.2.14) are F1 and F2. Therefore, the vertex function becomes,

Γν = γνF1(q2) + iσνα
qα

2M
F2(q2). (1.2.24)
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These form factors are fundamental properties of the nucleon, representing the effect

of its structure on its response to electromagnetic probes such as electrons. As ex-

plained in Section 2.1, F1(0) = 1 gives the proton charge in units of e, and F2(0) gives

the anomalous magnetic moment.

By substituting Equation (1.2.24) into Equation (1.2.13) and then using Equation

(1.2.2), one can calculate the differential cross-section for unpolarized electron-proton

elastic scattering in the lab frame similar to Equation (1.2.9) as,

(
dσ

dΩ

)

lab

=

(
α2

4E2
1 sin4 θ

2

)
E3

E1

[(
F 2

1 −
q2

4M2
F 2

2

)
cos2 θ

2

− q2

2M2
(F1 + F2)2 sin2 θ

2

]
.

(1.2.25)

Another commonly used choice of the form factors are the linear combinations,

GE(q2) = F1(q2)− τF2(q2)

GM(q2) = F1(q2) + F2(q2)

τ =
Q2

4M2
=
−q2

4M2
,

(1.2.26)

which are defined in such a way that no interference terms of F1 and F2 appear in the

cross-section as in Equation (1.2.25). GE(q2) and GM(q2) are known as Sachs electric

and magnetic form factors. The deuteron, as a spin-1 object has one additional form

factor: the charge quadruple form factor, GQ which is related to the deformation of

the deuteron from the ground state wave functions.

Then the nucleon vertex factor can be re-expressed in terms of Sachs form factors

using Equation (1.2.26) as,

Γν = GMγ
ν +

GE −GM

2M(1 + τ)
(p′ν + pν). (1.2.27)
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The differential cross-section on Equation (1.2.25) for electron-proton elastic scatter-

ing in the lab frame can also be redefined in terms of Sachs form factors as,

(
dσ

dΩ

)

lab

=

(
α2

4E2
1 sin4 θ

2

)
E3

E1

cos2 θ

2

(
G2
E + τG2

M

1 + τ
− 2τG2

M tan2 θ

2

)
. (1.2.28)

This is known as the Rosenbluth formula. The spatial distributions of charge and

magnetization of the proton and neutron are described by the electric (or charge)

form factor GE and the magnetic form factor GM , respectively, in a particular Lorentz

frame, called the Breit (or brick wall) frame, defined by p′ = −p. There is no energy

transferred to the proton in this frame, and it behaves as if the electron had bounced

off a brick wall. However, this has no physical meaning. In contrast, the recoil of the

proton makes it impossible to interpret the Fourier transforms of GE and GM as the

spatial charge and magnetic moment distributions. In this case, more complicated

forms of the form factors have tried using different theoretical models. Kelly [16] has

tried to model the charge and magnetization densities at the rest frame.

1.2.1.5 Radiative Corrections

Radiative corrections to the measured cross-section are necessary to obtain the

Born-level cross-section which measures the form factors from the Rosenbluth separa-

tion technique. The standard radiative corrections are QED and can be determined

from the first principles. However, at the higher order radiative correction terms

(hard two-photon exchange, etc.), it is not straightforward and model-dependent to

a certain extent, because of uncertain hadron structure. Starting from the “recipe”

of Mo and Tsai [17] on the point-like nucleons, the radiative correction model was

updated in the recent work by Maximin and Tjon [18], including the structure of
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the proton by introducing the proton form factors and eliminating some of the soft

photon approximations made by [17]. The various radiation correction processes

involving the electron and nucleon are shown in the diagrams of Figures 1.4 and 1.5,

respectively.

724 C.F. Perdrisat et al. / Progress in Particle and Nuclear Physics 59 (2007) 694–764

(a) Born term. (b) Vertex. (c) Vacuum. (d) Self energy.

(e) Bremsstrahlung.

Fig. 24. Born term and lowest order radiative correction graphs for the electron in elastic ep.

(a) Bremsstrahlung. (b) Vertex. (c) Self energy.

(d) Two-photon.

Fig. 25. Lowest order radiative correction for the proton side in elastic ep scattering.

The contributions due to real photon emission by the initial and final proton, as well as the
proton vertex and two-photon exchange with one soft and one hard photon are relatively small,
but strongly �-dependent.

The external part of the radiative corrections includes only real photon emission by the
incident and scattered electron, and is not coherent with the ep interaction. Although the
correction for the incoming electron in the target is energy independent, and it can be averaged
to a value at the center of the active area of the target for all kinematics of a given experiment,
the correction for the scattered electron in the target depends directly upon the target length and
diameter which determines the amount of target material traversed, and therefore the scattering
angle. As the desired range of � values is obtained by changing the electron scattering angle,
this correction has �-dependence. For the data of Andivahis et al. [34] the external corrections
are one-fourth to one-half as large as the internal corrections from the smallest to the largest �

values as shown in Fig. 26. The calculation of the external correction requires information on the

Figure 1.4. Born-term and lowest-order radiative correction graphs for the electron
in elastic ep scattering [19].
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(a) Born term. (b) Vertex. (c) Vacuum. (d) Self energy.

(e) Bremsstrahlung.

Fig. 24. Born term and lowest order radiative correction graphs for the electron in elastic ep.

(a) Bremsstrahlung. (b) Vertex. (c) Self energy.

(d) Two-photon.

Fig. 25. Lowest order radiative correction for the proton side in elastic ep scattering.

The contributions due to real photon emission by the initial and final proton, as well as the
proton vertex and two-photon exchange with one soft and one hard photon are relatively small,
but strongly �-dependent.

The external part of the radiative corrections includes only real photon emission by the
incident and scattered electron, and is not coherent with the ep interaction. Although the
correction for the incoming electron in the target is energy independent, and it can be averaged
to a value at the center of the active area of the target for all kinematics of a given experiment,
the correction for the scattered electron in the target depends directly upon the target length and
diameter which determines the amount of target material traversed, and therefore the scattering
angle. As the desired range of � values is obtained by changing the electron scattering angle,
this correction has �-dependence. For the data of Andivahis et al. [34] the external corrections
are one-fourth to one-half as large as the internal corrections from the smallest to the largest �

values as shown in Fig. 26. The calculation of the external correction requires information on the

Figure 1.5. The lowest-order radiative correction graphs for the proton in elastic ep
scattering [19].
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At order α2, the radiative corrections to the electron vertex in elastic ep scattering

include the radiation of virtual photons, such as vertex corrections (b), one-loop

vacuum polarization (c), electron self-energy corrections (d), and the radiation of

real photons; i.e., internal Bremsstrahlung (e) as shown in Figure 1.4. Similarly,

the proton vertex includes the processes such as internal Bremsstrahlung (a), vertex

corrections (b), proton self-energy (c), and two-photon (one soft and one hard photon)

exchange (e), which are called Coulomb distortion effects, as shown in Figure 1.5.

The internal Bremsstrahlung is the case in which the incident or scattered electron

radiates a real photon in the field of the nucleon participating in the scattering. In

addition, there are corrections coming from external Bremsstrahlung, in which the

incident and scattered electrons radiate due to interactions with the material, before

and after the primary scattering. While the internal Bremsstrahlung correction is

coherent with the Born-level scattering amplitude, making the amplitudes interfere,

the external Bremsstrahlung correction is incoherent and factorizes from the Born-

level process.

The virtual part of the electron radiative correction depends on Q2. As a factorial

correction to the cross-section independent of ε, GE would be corrected by the same

factor as GM , hence GE/GM would not be affected. The real part of the radiative

correction, Bremsstrahlung corrections, on the other hand, are energy, and, therefore,

Q2 and ε dependent. Therefore, these corrections modify the cross-section in an

ε dependent manner in which the extraction of GE/GM is affected. The radiative

contributions from the proton vertex that include internal Bremsstrahlung, the virtual

part of the proton, as well as the Coulomb distortion effect (two-photon exchange

in one soft photon and one hard photon) are relatively small [20], but strongly ε

dependent. Therefore, in general, the radiative corrections to the cross-section in a

Rosenbluth experiment are strongly ε-dependent. Typically the radiative corrections

change the cross-sections in the range of 10-30%.
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1.2.1.6 Two-Photon Exchange (TPE)

Figure 1.6 shows the box and cross-box two-photon exchange diagrams in which

both photons are “hard.” This process is generally neglected in the standard radiative

correction procedure. Since the calculation of the TPE process in elastic eN scattering

is sensitive to the structure of the nucleon through the virtual intermediate hadronic

state, it is strongly model-dependent and cannot be calculated exactly, in contrast

to the case where one of the two photons is “soft,” which is part of the standard

radiative corrections and is well understood. Higher order corrections to the Born

approximation were considered in the past [21, 22], which contributes to the cross-

section by order of 1-2 %. However, these estimates give a realistic description of

nucleon structure only at low momentum transfers up to Q2 ≤ 1 GeV2, whereas the

nucleon structure is largely unknown at the higher values of Q2. From a general

analysis of elastic electron-proton scattering and using the usual definitions,

P =
p+ p′

2
, K = −k + k′

2
, ν = K · P (1.2.29)

q = k − k′ = p′ − p, Q2 = −q2, (1.2.30)

for the box diagram of two-(and multi) photon exchange contributions to elastic

electron-proton scattering (see Figure 1.6),

q1 q2

k k′

p p′

q1 q2

k k′

p p′

Figure 1.6. Box and crossed-box diagrams for elastic electron-proton scattering in
the two-photon exchange [23]. The total four-momentum transfer to the
nucleon is q = k − k′ = q1 + q2.
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Guichon and Vanderhaeghen [23] have shown that the new nucleon vertex factor

Γνtpe can be written as,

Γνtpe = G̃Mγ
µ − F̃2

P µ

M
+ F̃3

γ ·KP µ

M2
, (1.2.31)

where G̃M , F̃2, F̃3 are complex functions of ν and Q2. The additional F̃3 term is

generated by the TPE contribution and the Born amplitudes are modified in the

presence of TPE as,

G̃M(ν,Q2) = GM(Q2) + δG̃M , G̃E(ν,Q2) = GE(Q2) + δG̃E (1.2.32)

F̃2(ν,Q2) = F2(Q2) + δF̃2, G̃E(ν,Q2) = G̃M(ν,Q2)− (1 + τ)F̃2(ν,Q2)

F̃3(ν,Q2) = 0 + δF̃3,

giving the new complex amplitudes. In the Born approximation, one obtains,

G̃Born
M (ν,Q2) = GM(Q2), F̃Born

2 (ν,Q2) = F2(Q2), F̃Born
3 (ν,Q2) = 0 (1.2.33)

and Equation (1.2.31) reduces to the Born approximation vertex factor given in Equa-

tion (1.2.27). Further, using standard techniques, they have derived a generalized

formalism for the elastic electron-proton scattering cross-section, in terms of form

factors as,

σr
G2
M

= 1 +
ε

τ

G2
E

G2
M

+ 2YM+2ε
GE

τGM

YE

+ 2ε

(
1 +

GE

τGM

)
Y3 + ℘(e4),

(1.2.34)

YM ≡ <(δG̃M/GM) YE ≡ <(δG̃E/GM), Y3 ≡ (ν/M2)<(F̃3/GM),
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where δG̃M and δG̃E are the modifications to the Born approximation as in Equa-

tion (1.2.32). The quantities σr is the reduced cross-section, ε is the virtual photon

polarization parameter, and YM , YE, Y3 are the 2γ-amplitudes. As seen in Equation

(1.2.34), the TPE contribution to GE, δG̃E has an ε dependence that has the same

sign as the GE contribution to the cross-section and, in combination with δG̃M , it

represents an ε-dependent correction to the cross-section.

Similarly, the generalized formalism for elastic positron-proton scattering cross-

section in terms of the form factors can be obtained by changing the sign in front of

the 2γ-amplitudes in Equation (1.2.34) as,

σr
G2
M

= 1 +
ε

τ

G2
E

G2
M

− 2YM−2ε
GE

τGM

YE

− 2ε

(
1 +

GE

τGM

)
Y3 + ℘(e4).

(1.2.35)

The formalism includes the possibility that the interference of the TPE amplitude

with the one-photon exchange amplitude is comparable in size to the G2
E term in

the unpolarized cross-section at large Q2. This motivates experimentalists to move

forward their work and consider new experiments beyond the Born approximation

[24–26].

1.2.2 Inelastic Electron-Proton Scattering

As the energy of the incoming electron is increased, and hence the average value of

|q2| increases, the elastic scattering process e−p→ e−p gradually gives way to inelastic

scattering e−p→ e−X where, as a result of the collision, the proton target breaks up

into a hadronic system X containing, for example, a proton plus one or more pions.

When |q2| is large (|q2| �M2), i.e., the energy and/or momentum transferred to the

proton target via the virtual photon is large, this is termed deep-inelastic scattering

(DIS).
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θk = (E1,p1)

k′ = (E3,p3)

q = (ν,q)

p = (E2,p2)

p′ = (E4,p4)

X

Figure 1.7. Leading order Feynman diagram for inelastic e−p→ e−X scattering.

For inelastic scattering, e−p→ e−X, the invariant mass of the final state hadronic

system, W is no longer fixed to be the proton mass M , i.e., the constraint p2
4 =

M2 is no longer valid. Therefore, the invariant mass of the final state W or the

“missing mass” in inclusive scattering becomes an important quantity. Unlike elastic

scattering, there are two independent variables, q2 and ν = p·q
M

. The invariant mass

W of the final hadronic system is related to ν and q2 by,

W 2 = (p+ q)2 = M2 + 2Mν + q2.

Since the final state is not a single fermion in inelastic scattering, evaluating the

inelastic cross-section in Figure 1.7 has more complex structure than ep elastic scat-

tering. The leptonic part and the photon propagator in diagram 1.7 is left unchanged.

The proton tensor W proton
µν , is now composed of four dimensionless structure functions,

two symmetric and two antisymmetric ones [27]. Measuring the experimental cross-

sections, one can access different structure functions depending on our control of the

spin degrees of freedom [28].
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The unpolarized differential cross-section for inelastic electron-proton scattering,

ep→ eX, neglecting the mass of the electron, is given in [6] as,

d2σ

dE ′dΩ
|lab=

α2

4E2 sin4 θ
2

{
W2(ν, q2) cos2 θ

2
+ 2W1(ν, q2) sin2 θ

2

}
(1.2.36)

In Figure 1.8, the first peak at W equal to the proton mass, is the elastic peak

in which the proton does not get excited. With increasing of q2 (and hence W ),

the broader peaks can be seen when the proton is excited to resonant baryon states.

When the proton is excited into a ∆ state producing an extra π-meson by the ep→

e∆+ → epπ0 or enπ+ reaction, the invariant mass is W 2 = M2
∆ and a peak is shown

at the ∆ mass at 1232 MeV. When q2 is very large and hence at lager W , beyond

the resonances, the proton starts to break up completely and the complicated multi-

particle states with large invariant mass result in a smooth distribution in W .

Figure 1.8. The ep → eX cross-section as a function of the missing mass W. Data
are from SLAC E61 [29]. The elastic peak is reduced by large scaler to
put on the same scale with the rest.
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SECTION 2

OVERVIEW OF EXPERIMENTAL DATA

2.1 Electromagnetic Form Factor Measurements

The form factor measurements became very important in order to understand the

structure of the nucleus. In the last few decades with technological improvements,

more and more experiments and new experimental methods have been conducted. In

the following Sections 2.1.1, 2.1.2.1 and 2.1.2.2, the experimental methods of measur-

ing the elastic proton form factor ratio, GE/GM will be briefly discussed. Existing

proton and neutron form factor data will also be presented and discussed.

2.1.1 Elastic e-N Scattering : Rosenbluth Cross-Section

In the one-photon exchange (OPE) approximation, the form factors, GE and GM

are experimentally accessible through the elastic e−N scattering cross-sections given

by Equation (1.2.28), which is known as the Rosenbluth Formula [30]. The pioneering

measurements were done more than fifty years ago at SLAC [12]. The e−p → e−p

cross-section Equation (1.2.28) represents scattering from a composite, spin-1
2
, proton.

In this form, it is clear that the cross-section is the product of the Mott cross-section,

which is scattering of spin-1
2

electrons from point-like, spinless charged particles, and

a “structure” factor determined by the form factors. Mott cross-section is shown

in Equation (1.2.11) with an additional recoiling factor, E3/E1. By defining the

“reduced” cross-section σr,

σr =
dσ/dΩ

dσ/dΩMott

=
G2
E(Q2) + τG2

M(Q2)

1 + τ
+ 2τG2

M(Q2) tan2 θ

2
(2.1.1)



26

ε =

[
1 + 2(1 + τ) tan2 θ

2

]−1

(2.1.2)

(1 + τ)εσr = εG2
E + τG2

M . (2.1.3)

It is clear from Equation (2.1.3) that the form factors can be extracted separately

by measuring the electron-nucleon elastic scattering cross-section at fixed τ (by vary-

ing the incoming beam energy, E and the scattered electron energy, E3) and varying

the scattering angle θ. A fit of σr vs ε yields a straight line with slope proportional

to G2
E and intercept proportional to G2

M . This procedure is called the Rosenbluth

separation technique or L/T separation. L/T refers to the separation between longi-

tudinally and transversely polarized (virtual) photons, with the degree of longitudinal

polarization of the virtual photon characterized by ε. However, the factor, τ = Q2

4M2
N

(with MN the nucleon mass) increases with Q2 and eventually makes a separation of

the two terms difficult.

Because the physical nucleon is a composite object with a rich substructure, in the

non-relativistic limit of Q2 �M2, the long-wavelength virtual photon has insufficient

resolution to be sensitive to this detailed structure. The nucleon should behave like a

point particle with charge ze (z = 1 for the proton or 0 for the neutron) and magnetic

moment e(z + k)/2MN , where k is the anomalous magnetic moment. In this limit,

the four-momentum transfer q = (E1 − E3,q) becomes approximately a pure three-

momentum transfer: q ≈ (0,q) so that the reaction can be viewed as scattering of the

electron by the static charge distribution of a stationary nucleon. In other words, at

low Q2, three-vector q2 ∼= Q2 and the Rosenbluth formula, Equation (2.1.1), becomes,

dσ/dΩ

dσ/dΩMott

= G2
E(q2) + 2τG2

M(q2) tan2 θ

2
, (2.1.4)

where GE(q2) and GM(q2) now depend only on the three-momentum squared, q2.

Comparing with the original point-like cross-section of Equation (1.2.9), it seems that,
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at low Q2, the cos2 θ/2 term associated with scattering from the electric charge of

the target is multiplied by a factor GE(q)2, while the sin2(θ/2) term associated with

scattering from its magnetic moment is multiplied by a factor GM(q)2. The electric

form factor dominates the cross-section in this limit, since the G2
M term in the cross-

section is multiplied by τ , which is small at smaller Q2. Therefore, neglecting the G2
M

term, the Rosenbluth formula (2.1.4) can be further simplified to,

dσ/dΩ

dσ/dΩMott

= (GE(q2))2. (2.1.5)

Comparing the cross-section ratio at low Q2, Equation (2.1.5), of electron scattering

from a static charge distribution to the electron scattering from a point charge (see [6],

Equation (8.1)), it is confirmed that the static charge distribution, GE(q2) is related

to the Fourier transform of the proton’s charge distribution ρ(x).

GE(Q2) ∼= GE(q2) =

∫
ρ(x)eiq·x d3x. (2.1.6)

Expanding the exponential in powers of q for a spherically symmetric charge distri-

bution, ρ = ρ(r ≡ |x|), this becomes

GE(q2) =

∫ ∞

0

ρ(r)r2 dr

∫ π

0

sin θ dθ

(
1 + i|q|r cos θ − 1

2
q2r2 cos2 θ + ...

)

GE(q2) = 1− 1

6
q2

∫
|x|2ρ(|x|) d3x + ...

= 1− 1

6
q2
〈
r2
〉

+ ...

(2.1.7)

meaning that, at leading order in q2, the electric form factor simply measures the

r.m.s. charge radius of the nucleon. From the above equation,

〈
r2
〉

= −6
dGE

dQ2
|Q2=0 (2.1.8)
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i.e., in electron scattering, the root-mean-square radius, r is defined in terms of the

slope of the electric form factor at Q2 = 0. Similarly, Equation (2.1.4) shows that in

the non-relativistic limit, the magnetic form factor GM(q2) can also be interpreted as

the Fourier transform of the nucleon’s magnetic moment distribution µ(x),

GM(q2) ∼= GM(q2) =

∫
µ(x)eiq·x d3x. (2.1.9)

In the limit of Q2 = 0, Equations (2.1.6) and (2.1.9) show that GE(0) is the total

charge measured in units of +e (+1 for protons and 0 for neutrons) and GM(0) is the

magnetic moment measured in units of the nuclear magneton µN ≡ e~/2Mp (+2.79

for protons and -1.91 for neutrons).

2.1.2 Double-Polarization Observables

Since the magnetic moment of the electron interacts with the magnetic moment

distribution of the nucleon in the scattering process, it is useful to know how the

reaction depends on the initial and final spin orientations of both the electron and the

nucleon. As it turns out, the spin dependence of the scattering amplitude gives rise to

a set of polarization observables directly related to the form factors. These observables

can be used as an alternative or a complement to cross-section measurements in

determining the form factors.

It was pointed out already in 1968 by Akhiezer and Rekalo [31] that the best way

to obtain the proton charge form factor is with polarization experiments, especially

by measuring the polarization of the recoil proton. Using the cross-section method

at large Q2 makes the separation of the charge form factor difficult because the

contribution from the τG2
M term in the cross-section Equation (2.1.3) increases with

Q2 and becomes dominated by GM . In a further paper in 1974, Akhiezer and Rekalo

[32] discussed the interest of measuring an interference term of the form GEGM by
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measuring the transverse component of the recoil proton polarization in the ~ep→ e~p

reaction at large Q2, to obtain GE in the presence of a dominating GM . In 1969,

Dombey [33] also discussed the possibility of measuring polarization observables in

elastic scattering with a polarized lepton on a polarized target. Furthermore, in 1982,

Arnold, Carlson and Gross [34] emphasized that the best way to measure the electric

form factor of the neutron would be to use the 2H(~e, e′~n)p reaction. Below is a

brief discussion of both methods, the recoil-polarization method and the polarized

target, to measure the elastic nucleon form factors highlighting their advantages and

dis-advantages.

2.1.2.1 Polarization-Transfer Technique

The development of polarized beams, targets and recoil polarimeters in the 1990’s

enabled access to the form factor ratio GE/GM through a spin correlation in double-

polarization experiments. With the high-intensity polarized beams, investigations of

the elastic scattering dependence on the initial and/or final spin orientation of the

electron and the nucleon were started. If the electron beam is longitudinally polarized,

and the nucleon target unpolarized, the scattering can transfer some polarization to

the recoiling nucleon, which can then be measured with a suitable technique. This

class of experiments is called polarization-transfer, or recoil-polarization.

k′

k
h = ±1

!q, ω

θ

p

p′
X̂ Ŷ

Ẑ

Figure 2.1. Kinematical variables for polarization-transfer from a longitudinally po-
larized electron to a proton with exchange of a virtual photon.
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Figure 2.1 shows the kinematical variables for the polarization-transfer from a

longitudinally polarized electron to a struck proton in the one-photon exchange ap-

proximation. The electron vertex in Figure 2.1 can be described by basic Quantum

Electrodynamics (QED) rules that involve the electron current tensor, Lµν , and the

proton vertex can be described by QCD and hadron electrodynamics involving the

hadronic current jµ = χ′†Γµχ. Decomposing the contraction LµνW
µν into unpolarized

and polarized (proportional to 〈σx〉, 〈σy〉 and 〈σz〉) terms,

LµνW
µν = LµνW

µν
unpol + LµνW

µν
〈σx〉 + LµνW

µν
〈σy〉 + LµνW

µν
〈σz〉, (2.1.10)

where, σx, σy and σz are the Pauli matrices, the first term reproduces the unpolarized

amplitude equal to Equation (1.2.28) relevant to the unpolarized nucleon tensor, W
(0)
µν

up to a factor of two. The missing factor of two comes from the sum over final

proton spin states. Then, the polarization components are defined by the ratio of the

different polarized components, transverse (t), normal (n) and longitudinal (l), over

the unpolarized term (1.2.28),

Pt ≡
LeµνW

µν
x

LeµνW
µν
unpol

, Pn ≡
LeµνW

µν
y

LeµνW
µν
unpol

, Pl ≡
LeµνW

µν
z

LeµνW
µν
unpol

, (2.1.11)

where, transverse, normal, and longitudinal describes a scattered proton with positive

helicity state along the x, y and z-axes, respectively. The x direction is defined as

the in-plane transverse coordinate and the y direction is defined as normal to the

scattering plane. The z direction is defined as the momentum transfer. Then the

polarization components Pt, Pn and Pl are obtained in terms of the electric GE, and

magnetic, GM form factors [32,34],

I0Pt = −2
√
τ(1 + τ)GEGM tan

θ

2
, (2.1.12)
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I0Pn = 0 (2.1.13)

I0Pl =
1

M
(E1 + E3)

√
τ(1 + τ)G2

M tan2 θ

2
, (2.1.14)

where I0 is given by:

I0 = G2
E(Q2) +

τ

ε
G2
M(Q2). (2.1.15)

Equations (2.1.12) and (2.1.14) show that there are only two non-zero polarization

components, transverse and longitudinal, which are proportional to GEGM and G2
M ,

respectively. The ratio GE/GM then can be obtained directly from the ratio of the

two polarization components Pt and Pl as follows:

GE

GM

= −Pt
Pl

(E1 + E3)

2M
tan

θ

2
. (2.1.16)

In terms of ε, the ratio of GE/GM is given by,

GE

GM

= −
√
τ(1 + ε)

2ε

Pt
Pl

(2.1.17)

ε =
1

1 + 2(1 + τ) tan2 θ
2

⇒ tan
θ

2
=

√
1− ε

2ε(1 + τ)
.

Equation (2.1.16) makes clear that this method offers several experimental advantages

over the Rosenbluth separation:

• For a given θ, only a single measurement is necessary, if the polarimeter can measure

both components at the same time. This greatly reduces the systematic errors

associated with changing angle and beam energy.

• If both polarization components are simultaneously measured, the knowledge of

the beam polarization and the analyzing power of the polarimeter is not needed

to extract the ratio, GE/GM .
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In addition, the polarization-transfer method allows for high luminosity by using

high-power liquid hydrogen targets to reach high Q2.

2.1.2.2 Double-spin Asymmetry

The second class of double-polarization experiments is double-spin Asymmetries.

Instead of measuring the transferred polarization to an unpolarized target, one can

measure the cross-section asymmetry between even and odd combinations of beam

and target spins (++,- -) vs. (+-,-+) in elastic scattering of a longitudinally polarized

electron off a polarized nucleon target. It was pointed out by Dombey [33] that the

form factors can be extracted using this technique without measuring the polarization

of the outgoing particles. In the one-photon exchange approximation, following the

approach of Donnelly and Raskin [35], the elastic eN (N=p or n) cross-section can be

written as a sum of an unpolarized part and a polarized part; the latter is non-zero

only if the electron beam is longitudinally polarized.

σpol = Σ + h4 (2.1.18)

where Σ is the elastic unpolarized cross-section given by Equation (1.2.28), h is the

electron beam helicity, and 4 is the polarized part of the cross-section with two

terms , θ∗ and φ∗, describing the direction of the target polarization relative to the

momentum transfer. The expression for 4 is given in [35] as,

4 = −2σMott tan(θ/2)

√
τ

1 + τ

{√
τ [1 + (1 + τ) tan2(θ/2)] cos θ∗G2

M

+ sin θ∗ cosφ∗GEGM

}
.

(2.1.19)

Where θ∗ and φ∗ are the polar and azimuthal laboratory angles of the target po-

larization vector with ~q in the ~uz direction and ~uy normal to the electron scattering



33

k′

k
h = ±1

!q, ω
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ûy

ûx

ûz

!P

Figure 2.2. Polarized electron scattering from a polarized target.

plane, as shown in Figure 2.2. The physical asymmetry A is then defined as,

A =
σ+ − σ−
σ+ + σ−

=
4
Σ
. (2.1.20)

Where σ+ is the cross-section at the even combination of beam and target spins,

(++,- -) and σ− is that of the odd combination of (+-,-+).

For a polarized target, the measured asymmetry, Araw, is related to the physical

asymmetry, A, by

Araw = PBPTA (2.1.21)

where PB and PT are electron beam and target polarizations, respectively. By in-

serting Equations (2.1.19) and (1.2.28) into Equation (2.1.20), one can obtain the

expression for the physical asymmetry:

A = −2
√
τ(1 + τ) tan(θ/2)

G2
E + τ

ε
G2
M

[
sin θ∗ cosφ∗GEGM

+
√
τ [1 + (1 + τ) tan2(θ/2)] cos θ∗G2

M

]
.

(2.1.22)
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It is evident from Equation (2.1.22) that to extract GE, the target polarization in

the laboratory frame must be perpendicular with respect to the momentum transfer

vector ~q within the reaction plane, i.e., θ∗ = π/2 and φ∗ = 00 or 1800. For these

conditions, the asymmetry A in equation (2.1.22) simplifies to:

Aperp =
−2
√
τ(1 + τ) tan(θ/2) GE

GM(
GE
GM

)2

+ τ
ε

. (2.1.23)

The asymmetry, Aperp is proportional to GE/GM . But with GE � GM , the term

(GE/GM)2 gets smaller and the denominator becomes constant.

In practice, the second term in Equation (2.1.22) is not strictly zero due to the

finite acceptance of the detectors. But these effects are small and depend on kine-

matics only in first order and can be corrected for, so that the ratio GE/GM is not

affected directly. The discussion described above is only applicable to a free nu-

cleon. Corrections are required if nuclear targets, like 2H or 3He, are used instead

in quasi-elastic scattering to obtain the form factors. However, in contrast to the

polarization-transfer method, the luminosity with a polarized target is generally lim-

ited. Therefore, double-spin asymmetry is a suitable method to reach only moderately

high Q2.

2.2 Overview of World Data

2.2.1 Proton Data

Significant advances in experiment and theory have been made over the last

decade. This section presents a compilation of previous experimental data on nu-

cleon form factors from Hofstadter’s experiments to the present day.

For relatively low Q2 values up to about 1-2 GeV2, it is found that the Q2 depen-

dence of the electric and magnetic form factors of the proton, and the magnetic form
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Figure 2.3. Left : Proton electric form factor Gp
E from Rosenbluth separation [36–45]

and forward-angle measurements [46, 47] normalized to the dipole form
factor GD = (1 + Q2/0.71)−2. Right : Proton magnetic form factor Gp

M

from Rosenbluth separation [36–45], backward-angle [48], and high-Q2

cross-section measurements [49].

factor of the neutron, are well described by the dipole parameterization GD,

GD(Q2) =

(
1 +

Q2

0.712

)−2

. (2.2.1)

Gp
E = GD, Gp

M = µpGD, Gn
M = µnGD.

Figure 2.3 (left) and (right) plots show the existing data on electric and magnetic

proton form factors normalized to the dipole form factor GD from unpolarized mea-

surements using the Rosenbluth method [36–49], along with a recent form factor

parameterization [50]. However, at higher Q2, the electric form factor is not well

known from the Rosenbluth separation. Recalling the Rosenbluth separation method

(2.1.3) for the elastic electron-proton scattering cross-section in the Born approxima-

tion, it clearly shows that the sensitivity of the total cross-section to Gp
E at higher Q2

is very low compared to τGp
M .
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In contrast, the double-polarization experiments, Equations (2.1.16) and (2.1.23)

allow a precise determination of the proton electric form factor to higher Q2 than

is generally possible with Rosenbluth separations where the magnetic form factor

completely dominates the cross-section. The world data of the proton form factor

ratio µpG
p
E/G

p
M from double-polarization experiments with polarized target [51, 52],

recoil-polarization at Jefferson Lab/Hall A at high Q2 [53–58] and low Q2 [59–64],

at MAMI [65, 66], and at MIT-Bates [67, 68], are shown in Figure 2.4 along with

those obtained from Rosenbluth-separated form factors [36–45]. The polarization-

transfer experiments at high Q2 [53–58] performed with high precision shows a strong

decline starting around Q2 = 2 GeV2 and deviating from the empirical scaling law

µpG
p
E/G

p
M
∼= 1 as suggested by the Rosenbluth data. Thus, the recoil-polarization

data are inconsistent with the Rosenbluth data at high Q2. This “crisis” has generated

confusion and doubt about the whole methodology of lepton scattering experiments.

Furthermore, the precise information on the proton charge radius determined from

the cross-section method (2.1.8) is also questioned. Having a 7σ discrepancy between

the proton charge radius determined from the muonic hydrogen lamb shift [69] and the

electron-proton scattering [70, 71] made scientists believe that the possible issues of

the proton structure and hence the fitting procedures to the form factors. This doubt

about the form factors motivates both experimentalists and theorists to investigate

any form factor structure beyond the dipole form.

As the starting point of investigating the form factor discrepancy, it is worth re-

mentioning the radiative corrections. As discussed in Section 1.2.1.5, the radiative

corrections to the cross-section is typically in the range of 10%-30% in a Rosenbluth

experiment which are strongly ε-dependent. Therefore, the slope of the Rosenbluth

plot can change dramatically in going from uncorrected to corrected cross-sections.

The radiative correction contributions arise from the proton vertex that include inter-

nal Bremsstrahlung; the virtual part of the proton as well as the Coulomb distortion
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effect are relatively small [20], but strongly ε dependent, which reduces µGE/GM by

about 0.05 for Q2>1 (GeV/c)2, whereas the effect is gradually reduced at smaller

Q2. The accuracy of G2
E determined in a Rosenbluth separation experiment at high

Q2 strongly depends on the accuracy of the radiative corrections [19]. Although it

reduces the cross-section, its magnitude is not enough to explain the discrepancy

between the Rosenbluth and polarization methods.

In response to the surprising results [53–58], a new high-precision Rosenbluth

separation experiment [36] was conducted to determine whether a problem existed

with earlier cross-section-based experiments in this Q2 region that could be revealed

by a more precise experiment. This “super-Rosenbluth” experiment was different

from previous Rosenbluth separation experiments in that the scattered proton in an

elastic ep scattering was detected instead of the scattered electron. This cross-section

measurement has several advantages over detecting the scattered electrons:

• The ε dependence of the proton cross-section dσ/dΩp is much weaker than the ε

dependence of the electron cross-section dσ/dΩe.

• The proton momentum is constant at fixed Q2, whereas the electron momentum

varies strongly with ε.

• The ε-dependence of radiative corrections to the cross-section is smaller when the

proton is detected.

• The ε-dependence of the effect of offsets in beam energy and/or scattering angle

on the extracted cross-section is smaller when the proton is detected.

The new method greatly reduced the systematic uncertainties in a Rosenbluth

separation experiment relative to experiments in which the electron is detected, al-

lowing a more precise separation of G2
E and G2

M . The results of [36] were consistent

with previous Rosenbluth separation experiments, establishing an even stronger dis-

agreement between the cross-section and polarization data at high Q2. Furthermore,
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a followup of Super-Rosenbluth, E05-017, has been carried out in Hall C, Jefferson

Lab and the analysis is underway with a Q2 reach up to 5.5 (GeV/c)2.

This renewed interest in nucleon form factors and intense experimental and the-

oretical efforts to understand the discrepancy in terms of physics beyond the Born

approximation and the standard radiative correction procedures upon which most of

the published cross-section data are based. One of the possible explanations to solve

the puzzle is using the Two-Photon Exchange (TPE) effect. This effect is generally

thought to affect the cross-section in a strongly ε-dependent way by, at most, several

percent. Several independent studies have been done [23,72–80] to examine the TPE

effects on GE/GM . These studies address the intermediate hadron state between the

two-photon vertices by exploring states of the intermediate nucleon beyond the ground

state, using different approaches to the model of the nucleon. These models were able

to reproduce the main features of the form factor distributions while differing at a

more detailed level over a large Q2 range. Guichon and Vanderhaeghen [23] derived

the general formalism for the polarization-transfer components as well, including the

TPE effect in addition to the formalism for the scattering cross-sections shown in

Equation (1.2.34). Including TPE corrections, the polarization-transfer ratio can be

written as [23],

−
√
τ(1 + ε)

2ε

Pt
Pl

=
GE

GM

+ YE −
GE

GM

YM +

(
1− 2ε

1 + ε

GE

GM

)
Y3 + ℘(e4). (2.2.2)

Recalling Equation (1.2.34),

σr
G2
M

= 1 +
ε

τ

G2
E

G2
M

+ 2YM + 2ε
GE

τGM

YE + 2ε

(
1 +

GE

τGM

)
Y3 + ℘(e4).

From Equations (2.2.2) and (1.2.34) , they show the ε-dependence of the three

2γ-amplitudes, YM , YE, and Y3 on the unpolarized cross-section and the polarization-

transfer components. It seems that the real part of the TPE amplitude, <(δG̃M)
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and <(δG̃E) modifies both the unpolarized cross-section and the polarization-transfer

components via the two-photon amplitudes, YM and YE, respectively. As mentioned

in Section 1.2.1.6, the combination of positive δG̃M and positive δG̃E corrections to

the elastic cross-section is large enough to affect the extracted value of GE. There-

fore, the extracted GE/GM for the Rosenbluth technique is reduced. In contrast,

the polarization method (Equation (2.2.2)) gets affected in a different way. The

2γ-amplitudes YE and Y3 to Pt/Pl have equal magnitudes and of opposite signs, con-

firming the cancelation of the corrections. Therefore, the effect of the TPE contribu-

tion on polarization-transfer components is small, though the size of the contribution

changes with ε.

With the theoretical explanation of the TPE contribution on Rosenbluth and

polarization data, physicists started to investigate beyond the Born approximation.

J. Arrington et al. [81] has applied the TPE corrections to the existing Rosenbluth

data which caused a significant slope as shown in Figure 2.5.

estimates [7, 55, 102] of higher-mass intermediate state contributions (right panel of Fig. 26).

Figure 26: Comparison of polarization measurements (filled diamonds) and LT separations
(open circles) with no TPE corrections (left), TPE corrections from Ref. [6] (center), and
with the additional high-Q2 correction applied in Ref. [129] (right).

For the combined analysis of cross section and polarization measurements, TPE corrections were
applied to the extracted cross sections. Most experiments assumed a 1–1.5% uncertainty due to radiative
corrections, with the dominant contribution coming from TPE. Clearly, this was an underestimate of the
uncertainty when no TPE corrections were applied, and was taken to be an appropriate uncertainty after
applying the hadronic correction of the TPE effects. For the additional TPE contribution associated
with higher-mass intermediate states, 100% of the correction was applied as an additional uncertainty to
the cross section to reflect the impact of the poorly constrained TPE corrections at high Q2. While the
TPE calculation [6] provides predictions for the impact on the polarization transfer measurement, most
of the data are at large ε, where the impact is extremely small compared to the statistical uncertainties of
the measurements. In addition, although the hadronic and partonic calculations yield similar results for
the correction to the unpolarized cross sections, they yield corrections to the polarization measurements
with opposite sign at large Q2. The analysis [129] therefore did not to include any TPE corrections to
the polarization measurement, as either calculation would have had an extremely small impact on the
final result.

The extracted form factors from the combined analysis of polarization measurements and TPE-
corrected cross sections is shown in Fig. 27. Since this publication, there have been updated polarization
results at high Q2 [22, 24] and very low Q2 [21, 23, 25, 131], as well as an extensive set of cross section
measurements at low Q2 [81]. The global fit of Ref. [129] has been updated in Refs. [23, 131] to include
the new polarization measurements, and inclusion of the new cross section measurements [81] and a
detailed evaluation of the uncertainties is in progress [132].

5.4.3 Impact on the extracted charge and magnetization radii of the proton

The proton charge radius is related to the low Q2 behavior of the charge form factor. In both electron
scattering and atomic physics extractions, the root-mean-square radius RE is defined in terms of the
slope of the form factor at Q2 = 0,

GE(Q2) = 1 − Q2 R2
E

6
+ · · · ; R2

E = −6
dGE

dQ2

∣∣∣∣
Q2=0

. (62)

Because the TPE corrections are finite and have a significant Q2 dependence in the limit Q2 → 0,
as seen in Fig. 13, they can impact the electron scattering extractions of the charge radius. These

40

Figure 2.5. Comparison of the polarization measurements (filled diamonds) and LT
separations (open circles) with no TPE corrections (left), TPE corrections
from Ref. [82] (center), and with the additional high-Q2 correction applied
in Ref. [81] (right).
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The corrected results are clearly in better agreement with the polarization data.

In particular, the corrections have the proper sign and magnitude to resolve a large

part of the discrepancy between the Rosenbluth and polarization techniques.

However, the theoretical evidence is not enough to understand the effect. Several

experiments have being performed since the 1960s using unpolarized ep scattering of

positron-proton and electron-proton taking the advantage of opposite sign for positron

and electron scattering for the interference between OPE and TPE as in Equations

1.2.34 and 1.2.35. By taking the ε dependence of the ratio of cross-sections, R at

fixed Q2,

R =
σe+
σe−
∼= (A1γ + A2γ)

2

(A1γ − A2γ)
2 = 1 + 4<

(
A2γ

A1γ

)
(2.2.3)

and measuring the deviation of the ratio of cross-sections R from 1, the magnitude

of the TPE correction can be determined. In the last few years, there were three

new experiments, using an internal target in a positron/electron storage ring (the

VEPP-3 ring) in Novosibirsk [24], using a mixed beam of e+ and e−, in Hall B,

Jefferson Lab [25] and OLYMPUS experiment at DESY using the DORIS lepton

storage ring [26], to compare e+p and e−p scattering with the advantage of high

intensity e+ and e− beams.

Additional experiments will address the discrepancy of the Rosenbluth and po-

larization data with Rosenbluth-type measurements [83], and single-spin asymme-

tries [84–89] with a transversely polarized target [84] or a transversely polarized

beam [85–89]. New recoil-polarization experiments at Jefferson Lab have extended

the Q2 range up to 9 (GeV/c)2 with a new recoil polarimeter [53,54] and will extend

it up to 15 (GeV/c)2 after the 12 GeV upgrade [90–92]. At low Q2, new unpolarized

measurements [70] and additional polarized measurements are underway [93] .

Due to the enhanced sensitivity toGE at highQ2 and the relatively low importance

of radiative corrections and TPE effect, the polarization methods make the superior

technique to measure both electric and magnetic form factors at high-momentum
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transfers. Measurement of the beam-target asymmetry in the elastic ep scattering is

a polarization method which offers an independent technique to determine GE/GM

ratio. The latest result from this technique was published by M.K. Jones et al. [52] at

Q2 equal to 1.5 (GeV/c)2. Having the same measurement at higher values ofQ2 is very

important to understand the discrepancy between the Rosenbluth and polarization-

transfer technique. Because the sensitivity of the beam-target asymmetry to TPE

effect is the same as in the recoil-polarization, this method is expected to have con-

sistent results with the recoil-polarization method. Having different systematic errors

when compared to either the Rosenbluth method or polarization-transfer technique,

by measuring GE/GM by this technique, the discovery of unknown or underestimated

systematic errors in the previous measurement techniques is possible. The analysis

of this dissertation contributes GE/GM ratio measurements at higher Q2 extending

the results of [52] using this technique, double-spin asymmetry.

2.2.2 Neutron Data

Due to the absence of a pure neutron target, the neutron form factors are not as

well known as the proton form factors. They have been measured in both cross-section

and polarization experiments on deuterium, 2H and 3He.

Extraction of the free neutron elastic form factors from electron scattering ex-

periments on these nuclei requires theoretical models to correct for the binding of

the neutrons in a nucleus. Figure 2.6 shows the world data collection of the neu-

tron electric form factor Gn
E. The Rosenbluth separation method at low Q2 [94] does

not allow one to obtain any finite values for Gn
E due to the smallness of it relative

to Gn
M (due to z=0, one has Gn

E=0 for Q2 → 0). A more precise distribution of

Gn
E has been obtained by extracting Gn

E from the available experimental data of the

deuteron quadrupole form factor GQ(Q2) [95]. In the 1990’s, double-polarization ex-

periments became possible for quasi-elastic exclusive (~e, e’n) scattering off polarized
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Figure 2.6. Left : Neutron electric form factor Gn
E extracted from unpolarized [94] and

tensor-polarized [95] elastic electron-deuteron scattering. Right : Neutron
electric form factor Gn

E from double-polarization observables in quasi-

elastic scattering from 2 ~H [96–105] and 3 ~He [82, 106–109].

2 ~H and polarized 3 ~He and for measurements of polarization-transfer to the neu-

tron with 2H. Published results for Gn
E from double-polarization data [82, 96–109]

with neutron recoil-polarization [96–101], polarized 2 ~H target [102–105], and polar-

ized 3 ~He target [82, 106–109] are shown in the right plot of Figure 2.6. All of the

double-polarization experiments measure the ratio Gn
E/G

n
M , and a parameterization

for Gn
M [110] has been used to extract Gn

E. Additional data with polarized 3 ~He have

been taken at MAMI [111,112] and further experiments [113,114] have been approved

to be run at Jefferson Lab after the 12 GeV upgrade to extend Q2 up to'10 (GeV/c)2.

The neutron magnetic form factor, Gn
M , was first been determined by measuring

the unpolarized quasi-elastic deuteron cross-sections of 2H(e, e′n) and subtracting

the proton single-arm cross-sections [115–118]. However, the experiments [119–123]

developed a more precise technique by measuring the quasi-elastic exclusive cross-

sections for the reactions 2H(e, e′n) and 2H(e, e′p) simultaneously, in which theo-
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Figure 2.7. Neutron magnetic form factor ratio normalized to the dipole form fac-
tor GD = (1 + Q2/0.71)−2 from quasi-elastic inclusive and exclusive
electron-deuteron cross-section measurements [115–118], the cross-section
ratio measurements of d(e, e′n)/d(e, e′p) [119–123], and from beam-target
asymmetries with polarized 3He [124–127].

retical uncertainties partially cancel to determine Gn
M . The target spin aligned to

the momentum transfer probes Gn
M through the spin dependence of the quasi-elastic

cross-section [124–127]. As a different approach, the experiments [128,129] were con-

ducted using the vector-polarized deuterium as simultaneously polarized proton and

neutron targets with aligned spins. The ratio of perpendicular and parallel com-

ponents of the inclusive beam-target asymmetry for the 2 ~H(~e, e′) reaction shows a

leading dependence of Gn
M . The most recent data from CLAS at Jefferson Lab, based

on the 2H(e, e′n)/2H(e, e′p) cross-section ratio method, have provided the largest and

the most precise data set at high Q2 [119]. Figure 2.7 shows the published data for

Gn
M [115–127]. Another two approved “ratio method” experiments [130,131] extend-

ing the Q2 region up to ≈ 14 (GeV/c)2 will run at Jefferson Lab after the 12 GeV

upgrade. A detailed discussion of the technical and theoretical challenges involved in

measuring the neutron form factors can be found in the review [19].
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2.3 Theoretical Interpretation of Nucleon Electromagnetic

Form Factors

This section presents an overview of the theoretical understanding of the nu-

cleon electromagnetic form factors with an emphasis on high-momentum transfer,

Q2. Many theoretical attempts have been made to understand the nucleon form fac-

tors. Despite their approximations and limitations, some of these non-perturbative

methods reveal some insight into the nucleon structure.

2.3.1 Charge and Magnetic Distributions

As discussed in Section 1.2.1.4, in non-relativistic approximation, GE and GM are

the Fourier transforms of the charge and magnetic moment densities of the nucleon in

the Breit frame. However, this interpretation has no physical meaning. Considering

only Q2 = 0, in which recoil of the nucleon is negligible and the electron is scattered

from a static charge distribution, the Breit frame coincides with the lab frame and the

form factor interpretation to the charge and magnetic moment distribution become

valid. However, for the Fourier transformation all values of Q2 have to be considered

to derive the spatial distribution. Kelly [16] has derived a theoretical model relating

the Sachs form factors to the rest frame charge and magnetic moment densities taking

relativity into account. However, this is strictly model-dependent since the Lorentz

boost for a composite object such as proton depends on the interactions among the

constituent quarks. The most important feature of the proton density from this model

is the broader shape of the charge density relative to the magnetic moment density,

reflecting the precise recoil-polarization data in which Gp
E falls faster than Gp

M at

large Q2.
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2.3.2 Vector Meson Dominance (VMD)

The earliest model to explain the features of the nucleon form factors, such as

its dipole behavior, was vector meson dominance (VMD). In this model, the photon

couples to the nucleon through the exchange of the three lightest vector mesons, ρ

(770), ω (782) and φ (1020) which have the same quantum numbers as the photon.

In elastic electron-nucleon scattering, the form factors at low Q2 are dominated by

these vector mesons. Within such VMD models, the dipole behavior of the nucleon

form factors is identified as the combination of two nearby vector meson poles. The

first VMD fit was performed by Iachello et al. [132] and a linear decrease of the

proton µpG
p
E/G

p
M ratio has been predicted for Q2>1 (GeV/c)2, which is in agreement

with the result from the polarization-transfer technique. In this model, only three

adjustable parameters were used to fit the form factor data available at that time.

Gari and Krumpelmann [133] extended the model to conform with pQCD scaling at

larger Q2 with a smooth transition from VMD picture hold at low Q2. Thereafter,

many extended VMD fits have been obtained which provided a good parameterization

of nucleon electromagnetic form factors [134–137]. Most of these models involve

a number of adjustable parameters to be fitted to experimental data which were

described in the form factor data with a reasonable accuracy. Although VMD of the

form factor behavior is only expected to hold for relatively low Q2, the fit results from

models incorporating the transition to pQCD at high Q2.

2.3.3 Constituent Quark Model (CQM)

To understand the structure of the nucleons in terms of quark and gluon de-

grees of freedom, constituent quark models were developed. This treats baryons as

bound states of three quarks moving in a confining potential. In the non-relativistic

constituent quark models, quarks are treated as massive particles. The Isgur-Karl

model [138] is an example, in which the quarks are confined by a long-range harmonic
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oscillator potential supplemented by a short-range one-gluon-exchange quark-quark

interaction.

The nucleon is light enough that its internal structure needs to be treated rela-

tivistically following the prescriptions by Dirac [139]. This is even more valid since

the quarks are much lighter than the nucleon. Although these calculations correctly

describe the form factor behavior at larger Q2, effective degrees of freedom, such as

a pion cloud and a finite size of the constituent quarks were introduced to correctly

describe the behavior at lower Q2.

However, constituent quark models do not satisfy the symmetry properties of the

QCD Lagrangian, such as chiral symmetry. In the limit of exactly massless u and

d quarks, the QCD Lagrangian exhibits chiral symmetry, and the quark chirality is

conserved. In reality, the lightest mesons (pions) appear as the Goldstone bosons

of the broken chiral symmetry of the QCD Lagrangian. The non-zero masses of the

pions observed in nature are required through the chiral symmetry breaking of the

non-zero u and d quark masses. Therefore, as the lightest hadron, the pion plays

an important role in the structure of the nucleon. Miller [140] added the effects of

the pion cloud of the nucleon to the relativistic constituent quark model (rCQM) of

the Light-Front Cloudy Bag Model [141] which involves relativistic pion-nucleon form

factors. The pion cloud effects within this model made large contributions at low Q2,

particularly for the neutron electric form factor, which is not well reproduced by the

rCQM alone. In contrast, quarks are found to dominate at large Q2.

2.3.4 Form Factors and Perturbative QCD

The theory of the strong interaction, QCD is important in the nucleon form factors

with its property of the asymptotic freedom. At higher energies, the probed distance

is small; this is where the quarks are asymptotically free, the force between quarks

becomes weak, and perturbative QCD applies. Therefore, at higher Q2, quarks and
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gluons play a dominant role in the form factors in which the perturbative QCD

(pQCD) makes a prediction about the behavior of those. In pQCD, the quarks

interact via single-gluon exchange to leading order in αs which does not happen in

elastic scattering. Elastic scattering takes place at higher Q2 when the quark is struck

by a virtual photon and the struck quark shares the transferred momentum among

the two other valance quarks, such that the three quarks remain collinear after the

collision. Therefore, at very high Q2 corresponding to very short distances, elastic

scattering cannot occur without a minimum of two hard gluon exchanges sharing the

transferred momentum among the three quarks. If one of the exchange gluons among

three valence quarks is “soft,” then the struck quark fails to share the momentum

transfer among the other two quarks and moves rapidly away from the original three-

quark center of mass, leading to inelastic scattering. Therefore, the transition from

nucleon+meson degrees of freedom to quark+gluon degrees of freedom (pQCD) must

happen at higher Q2.

The nucleon form factors in the high Q2 in terms of the momentum fractions

of the quarks in the initial and final nucleons, including the leading asymptotic Q2

dependence of the form factor has been derived in [142]. This leads to the prediction of

Q2F2/F1 → constant, which implies that the ratio Gp
E/G

p
M becomes constant. These

predictions are different from the polarization-transfer measurements, where the ratio

Gp
E/G

p
M shows roughly a linear decrease with Q2 and points toward a zero-crossing

at some larger Q2.

Because the current quark mass in the nucleon is negligible in comparison to the

mass of the nucleon and Q2, Belitsky et al. [143] have shown that the discrepancy

between the high-Q2 data and pQCD scaling is due to the dominant mechanism for

nucleon spin flip in QCD, which is due to the quark orbital angular momentum.

Furthermore, they have derived the asymptotic Q2 dependence of the Pauli form

factor in terms of the orbital angular momentum of the quarks. In contrast to pQCD,
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in this calculation, the quark transverse momenta were considered non-negligible to

allow for orbital angular momentum of the constituents. This consideration leads to

a modified scaling behavior for the ratio F2/F1 at large Q2. The recoil-polarization

data for F p
2 /F

p
1 are compatible with such a scaling for the entire Q2 range of the data.

2.3.5 Form Factors and Generalized Parton Distributions

Generalized Parton Distributions (GPDs) are the theoretical framework accessed

in hard exclusive reactions such as Deeply Virtual Compton Scattering (DVCS) and

hard exclusive meson production to understand the quark structure of the nucleon.

These processes allow one to remove a quark from the initial nucleon and implement

another in the final nucleon. The amplitudes of these processes can be factorized into

quark-level sub-processes which can be calculated by GPDs. They contain process-

independent nucleon structure information. These GPD functions are characterized

as vector, tensor, axial vector and pseudoscaler transition amplitudes. They address

the new information about the nucleon structure which cannot be obtained from

inclusive reactions such as deep inelastic scattering (DIS). The predictions for the

nucleon form factors are derived using a model for the GPDs by Guidal et al. [144].

This model achieves a very good agreement with experimental data for all four nucleon

form factors in the entire Q2 range. Because vector and tensor GPDs can be related

to the total angular momentum carried by the quark in the nucleon, the behavior of

the ratio F p
2 /F

p
1 determines the behavior of the GPD, allowing an evaluation of Ji’s

angular momentum sum rules [145]. These sum rules relate the quark’s longitudinal

momentum fraction of GPDs to the total angular momentum carried by quarks in

the nucleon. GPDs provide the information about the spin structure of the nucleon.

The two-dimensional Fourier transform of vector GPD yields the transverse quark

density in the infinite momentum frame as a function of longitudinal momentum

fraction. By integrating overall the longitudinal momentum fraction and summing
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overall quark flavors, one can obtain the model-independent transverse charge density

[146] of the nucleon, which is equal to the two-dimensional Fourier transform of the

Dirac form factor F1.

2.3.6 Dyson-Schwinger Equations (DSEs)

A complementary framework for studying the form factors is via Dyson-Schwinger

equations (DSEs) [147, 148]. The investigation of hadron structure in the Dyson-

Schwinger approach proceeds for baryons via the covariant Faddeev Equation [149,

150]. This approach provides access to all momentum scales and all quark masses,

which is in good agreement in form factor results with the experimental data above

Q2 ' 2 (GeV/c)2. However, at low Q2, pion-cloud effects are not included and

therefore, the charge radii and magnetic moments underestimate the data and the

enhanced low Q2 structure in the neutron’s electric form factor is absent. Zero-

crossing of the form factor ratio Gp
E/G

p
M can occur with the Faddeev approach as well.

From the correlations in the Faddeev amplitude between the up, down and strange

quarks regime, it has been seen that the orbital angular momentum contributes one-

third to the nucleon spin, and this contribution slowly decreases with rising current-

quark mass.

Quark-diquark model studies also found a zero-crossing, where its location de-

pends on the model parameters in the calculation [151, 152]. The overall agreement

between the [150] and those obtained in the quark-diquark model provides further

evidence for the quark-diquark structure of the nucleon.

2.3.7 Lattice QCD

All theories described until now are at least to some extent parametrizations.

They used models constructed to focus on selected aspects of QCD. Only lattice

gauge theory can provide an ab initio calculation. One of the most advanced lat-
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tice calculations of electromagnetic form factors has been performed by the QCDSF

Collaboration [153]. This limits the calculations to the quenched approximation (in

which sea-quark contributions are neglected), to a box size of 1.6 fm and to a pion

mass of 650 MeV. Ashley et al. [154] have extrapolated the results of these calcula-

tions to the chiral limit, using chiral coefficients appropriate to full QCD. But the

agreement with the data is poorer than that of any of the other calculations.

Unquenched lattice QCD results from LHPC Collaboration [155] for the nucleon

electromagnetic form factors performed for one lattice spacing of a a'0.125 fm, and

for pion mass in the range mπ=360-775 MeV. This shows that the Q2 dependence of

Dirac isovector form factor FV1 at the smallest mπ of around 360 MeV in qualitative

agreement with the data and the isovector ratio F V
2 /F

V
1 approaches the experimental

result when decreasing mπ. The results at the lowest pion masses with higher statistics

are needed to provide a powerful test of experimental electromagnetic form factor

data.

Since the pion cloud calculation of the nucleon form factors are more relevant to

the behavior of the nucleon form factors at low momentum transfers, it is not discussed

in this dissertation. An extensive discussion of the theoretical model explanation on

the form factors can be found in the review paper [19].

To summarize, the preceding chapters motivated the use of elastic electron-nucleon

scattering to study the structure of the nucleon. The methods to obtain scattering

cross-section, polarization-transfer observables and beam-target asymmetry in polar-

ized target experiments in terms of electric (GE) and magnetic (GM) form factors

which fully characterize the effect of the nucleon’s electromagnetic structure on the

reaction, were discussed and an overview of the available data was given. The theoret-

ical interpretation of nucleon electromagnetic form factors were also briefly discussed.
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SECTION 3

EXPERIMENT SETUP

The main goal of the experiment E03-007, known as the Spin Asymmetries of

the Nucleon Experiment (SANE) was to measure the inclusive spin asymmetries

with the target spin aligned parallel and perpendicular to the beam direction (i.e.,

parallel and perpendicular spin asymmetries) for polarized electron scattering from a

polarized proton target. A subset of the data was used to measure the elastic beam-

target spin asymmetry from elastic electron-proton scattering. Polarized electrons

with energies 4.72 GeV and 5.89 GeV were scattered from the polarized proton target

with the spin of the proton aligned nearly perpendicular (80◦) to the beam direction.

Recoiled protons were detected by the High-Momentum Spectrometer (HMS) at 22.3◦

and 22.0◦, and central momenta of 3.58 GeV/c and 4.17 GeV/c, respectively, for the

two different beam energies. Scattered electrons were detected by the Big Electron

Telescope Array (BETA) in coincidence with the proton in HMS. In addition to

that, single-arm electron scattering data were also taken by detecting the elastically

scattered electron in the HMS at a central angle of 15.4◦ and central momentum of

4.4 GeV/c for an electron beam energy of 5.89 GeV.

The beam polarization was measured by the Hall C Moller polarimeter during the

experiment. Polarized protons were obtained by polarizing the frozen NH3 crystals

using Dynamical Nuclear Polarization at 1 K temperature and 5 T external magnetic

field. The spin direction of the polarized proton can be aligned parallel (positive

polarization) or anti-parallel (negative polarization) to the field direction by changing

the induced transition frequency applied by the microwave radiation. Data were taken

at both frequencies.
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Chapter 3

Description of the Experiment

Figure 3.1: Schematic overview of SANE’s experimental layout, with a novel elec-
tron arm at 40◦ viewing double polarized electron–proton scattering with the target
alignment at 180◦ and 80◦ to the beam.

Experiment E03-007, known as the Spin Asymmetries of the Nucleon Experiment

(SANE), took data in Hall C of Jefferson Lab from January to March of 2009. A

telescope array of detectors was used to view the CEBAF polarized electron beam

incident on a polarized ammonia (14NH3) target, to make an inclusive measurement

Figure 3.1. Schematic overview of SANE’s experimental setup with the electron arm
(BETA) at 40◦ and the proton arm (HMS) [156].

In the following sections, the subcomponents of the polarized electron beam, the

detectors and the target, trigger and the data acquisition system (DAQ) will be briefly

discussed.

3.1 Polarized Electron Beam

There are many components which are responsible to produce a good polarized

electron beam [157]. The polarized electron source and the electron accelerator in

Thomas Jefferson National Accelerator Facility (TJNAF) will be briefly discussed in

the following sections.

3.1.1 Polarized Electron Source

Depending upon the experiment, the electrons can be generated either in a polar-

ized state from a DC photo-emission gun using a cathode, or in an unpolarized state

from a thermionic gun. Polarized electrons are emitted by illuminating a Gallium
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Arsenide (GaAs) cathode using a circularly polarized laser light with a frequency

equal to the energy of the band gap of the material.

The circularly polarized light, which is directed onto the cathode, is produced

by sending the laser light through a Pockels cell, which is an electro-optical crystal

that converts linearly polarized light to circularly polarized light. The helicity of the

directed light can be varied by changing the voltage of the Pockels cell, which can be

used to change the helicity of the emitted electrons. At Jefferson Lab, the Pockels cell

reverses the polarization of the laser light between left and right circular polarization

at a frequency of 30 Hz. Right-handed polarized light excites electrons from P−3/2 and

P−1/2 valence band states into S1/2(-) and (+) conduction band states, respectively,

while the left-handed light does the transitions from P3/2 and P1/2 to S1/2(+) and

(-). These transitions can be seen in a) of Figure 3.2 with the transitions induced

by right-handed circularly polarized light in blue and the transitions induced by left-

handed circularly polarized light in red.
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Figure 3.4: Energy levels and laser induced transitions for unstrained (a) and strained,
doped (b) GaAs. Straining the GaAs breaks the degeneracy of the P state, allowing
a theoretical maximum polarization of 100%.

train of 1497 MHz, which is equal to the resonant frequency of the RF accelerating

cavities in the accelerators. The circular polarization of the light is controlled by

Pockels cells, which use electric field dependent birefringence to shift the phase of the

light. This allows rapid reversal of the polarization of the light and thus the helicity of

the electrons, and is used in practice to create pseudo-random 30Hz helicity batches.

A half-wave plate can also be inserted to reverse the helicity to observe any time-

dependent systematic effects. An excellent overview of polarized particles beams is

given in reference [48].

Acceleration and Delivery

Electrons from the polarized source are accelerated into the injector by a 100kV

electron gun, and the injector provides as much as 67 MeV of additional acceleration

as it sends the electrons into the north linear accelerator. The injector and each

linear accelerator consist of 2 1/4 and 20 cryomodules respectively; these cryomodules

themselves contain 8 superconducting RF cavities as well as supporting cryogenics

and power. Each cavity provides a nominal acceleration of roughly 28 MeV, giving

each linac a nominal acceleration of 570 MeV. At 5 passes through the race-track,

Figure 3.2. Energy levels and laser induced transitions for unstrained and strained
doped GaAs [157].

With the P1/2 and P3/2 energy states being degenerate, theoretically, a pure GaAs

induces only about 50 % of the electron beam polarization [157]. However, Jefferson

Lab’s polarized source uses a superlattice GaAs photocathode, in which the pure GaAs

is doped by phosphorous in every other layer. The “superlattice” is generated by
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inducing a gap between the P1/2 and P3/2 energy states which breaks the degeneracy

as seen in b) of Figure 3.2. As a result, the source delivers an 85 % polarized electron

beam with a quantum efficiency of 1%. Additionally, insertable and rotatable half-

wave plates are used by the experiments to passively reverse the polarization of the

laser light. Three diode lasers, one for each experimental hall, are used. Each laser

is pulsed at a frequency of 499 MHz, and the three are phase shifted relative to

each other by 120◦. Each laser pulse produces a single bunch of electrons, and the

combined train of electron bunches has a frequency of 1497 MHz, equal to the resonant

frequency of the RF accelerator cavities in the linear accelerator.

The orientation of the beam polarization is rotated by a Wien filter before injec-

tion into the accelerator to optimize the delivery of longitudinal polarization to the

experimental halls.

3.1.2 Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) is composed of

two parallel linear accelerators (north linac and south linac), 9 recirculating arcs of

magnets and a 67 MeV injector [158]. Injector energy needs to match with the linac

energy. 67 MeV is the energy at the injector in order to get the maximum final beam

energy of 6 GeV. The photo-emitted electrons are sent off into the injector by a 100

KV DC electron gun. The photocathode and the electron gun are housed in an ultra-

high vacuum enclosure which prevents degradation of the quantum efficiency of the

photo cathode by the residual gas. The injector itself accelerates electrons up to 67

MeV before entering into the north linac.

The electron acceleration takes place in superconducting RF-resonant Niobium

cavities cooled to well below their transition temperatures by superfluid Helium at

≈ 2 K. Cavities are operated by an oscillating electromagnetic field such that the

electron bunch always sees a net positive charge in front of its path (Figure 3.3),
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which forces the electrons to accelerate continuously throughout the cavity. Eight

RF cavities are housed within a cryo module, which is a large cryostat containing all

the necessary support structures for the accelerating cavities. The injector consists

of 21
4

cryo modules.

Figure 3.3. Charge distribution in the RF cavities at one instant. When the elec-
tron moves forward the oscillating electromagnetic field induces a positive
charge in front of the electron thereby accelerating it continuously when
it is traveling in the cavity.
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45-MeV Injector 
(2 1/4 Cryomodules)

0.4-GeV Linac

Helium 
Refrigerator
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Elements
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Arcs

(20 Cryomodules)

(20 Cryomodules)

Figure 3.4. Thomas Jefferson National Accelerator Facility (TJNAF) [158].

The two linacs are made of 20 cryo modules each. The layout of the accelerator

is shown in Figure 3.4. Each linac accelerates electrons by a maximum of 600 MeV.

This amount depends on the desired beam energy of the experiment. Linacs are

connected by nine re-circulating arcs, with five at the north and four at the south.

With this “race track” design, the electron beam can travel through both linacs up
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to five times, giving the maximum energy of approximately 6 GeV before extraction

and delivery to the three experimental halls. At any given time, up to five electron

beams of different energies are sitting on top of each other in the linac.

At the end of each linac, a series of dipole magnets separate the beam electrons

according to their momentum and direct them into one of the re-circulating arcs. The

arcs consist of room-temperature magnets, dipoles with different bending fields for

steering electrons along a path with the same radius of curvature, and quadruples

for focussing. At the exit of each arc is an identical series of magnets with opposite

polarity to recombine the electrons from the five-arc beam lines back into a common

beam pipe for another pass through the linac.

At the end of the south linac, the beam can be extracted from the main race

track to any given hall using RF separator magnets operating at 499 MHz after any

number of passes. These extracted beams enter the beam switch yard (BSY) where

the beams are directed into the beam line leading to the appropriate experimental

hall. This design allows the accelerator to provide different beam energies to the

three experimental halls simultaneously. Any given hall can choose a desired number

of passes which are multiples of linac energies. This limits the beam energy one can

use at the hall. The nominal beam energy is determined from the magnet settings in

the arcs or in the experimental hall’s beam arcs.

Exploiting the advantage of superconducting RF technology over the normal con-

ducting cavities, CEBAF has the ability to consistently deliver continuous wave (CW)

electron beams with high energy, intensity and polarization, which makes it the lead-

ing electron scattering facility in the world for nuclear and particle physics experi-

ments.
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3.1.3 Standard Hall C Beam Line

The extracted beam from the linac is directed to the experimental halls from the

BSY through the arc beam lines. Standard equipments are installed in the beam lines

to provide precise information on the energy, position, current and polarization of the

beam, which enables the experiments to run successfully. The Hall C arc consists of

8 dipoles, 12 quadrupoles and 8 sextuples which steer and focus the beam. The beam

is rastered to increase its spot size, which spreads the heat load over a wider area of

the target [159].

Beam Position Measurement

Hall C Beam Position Monitors (BPMs) monitor the beam position continuously.

There are three BPMs; each consists of a resonant cavity which contains four an-

tennae, rotated by 45 degrees relative to the vertical and horizontal axes in order to

minimize synchrotron radiation damage. These cavities are operated with the fre-

quency equal to that of the accelerator and the Hall C beam. An asymmetry of the

amplitudes of the signals coming from the antennae on the opposite side of the beam

is proportional to the distance between the beam and the mid-point of the two anten-

nae [160]. Because the slow-raster system rapidly changes the actual beam position

on the target during the experiment SANE, the BPM information for a particular

event is not the exact beam position on the target for that event. Therefore, no

absolute event-by-event beam position was measured. Instead, the relative position

to the beam center was measured by recording the raster X and Y amplitudes in an

ADC.

Beam Current Measurement

There are three devices used to measure the beam current entering into Hall

C. The first two devices are the cylindrical cavities, BCM1 and BCM2, which have

been designed to resonate at the same frequency as the accelerator RF [161–163].

These resonances get excited by the beam which is picked up by antennae placed
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inside the cavities. The antennae are used to convert the RF power of the excited

resonance, which is proportional to the square of the beam current, to an analog

voltage signal. Since the cavity’s resonance frequency is determined mainly by its

size and shape, and since it is temperature dependent, the BCM cavities are kept

thermally insulated at a constant temperature of 43.3 ◦C. The third device used

to measure the beam current is a parametric current transformer, called a Unser

monitor [161]. Because of its gain stability, it is used to calibrate the BCM cavities.

For cross-section measurements, careful calibration of the BCMs must be performed

periodically in order to minimize the uncertainty on the total charge collected by the

experiment. But for the asymmetry measurements, the result does not depend on

the total charge delivered to the experiment.

Beam Energy Measurement

The Hall C arc dipole magnets are used as a spectrometer to measure the energy

of the electron beam as it enters the hall. Three pairs of high resolution superharps

at the entrance, middle and exit of the arc precisely measure the beam positions and

angles of the beam. Using the curvature of the beam over its 34.4◦ deflection by

dipoles and the precise knowledge of the arc dipole fields, the energy of the beam can

be determined by,

E ' p =
e

θ

∫
~B · ~dl (3.1.1)

with electric charge, e, arc bend angle θ , and the magnetic field integrated over the

path of the beam.

However, during the experiment SANE, the beam current was low (∼100 nA) and

the superharps did not work. Therefore, the less accurate beam position data from

the beam position monitors was used. The average beam energy per run for each

beam energy for each target field configuration is shown in Table 3.1.
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Table 3.1. Table of beam energies averaged per run for each run configuration.

Nominal E (GeV) Target Field Angle Average E (MeV) Standard Deviation
4.7 180◦ 4736.6617 0.9090
4.7 80◦ 4728.5463 0.7535
4.7 80◦ 4729.1416 0.5483
5.9 180◦ 5895.0354 1.9615
5.9 80◦ 5892.0832 4.9354

Beam Polarization Measurement

The polarization of the beam at the injector is not the same as the polarization

delivered to the experimental halls, because of the precession of the electron spin

in the recirculating arcs of the CEBAF accelerator and the Hall C arc owing to its

small anomalous magnetic moment. This precession depends on the number of passes

through the accelerator, the linac energy, and the Wien filter setting. The Wien filter,

which consists of crossed electric and magnetic fields with adjustable strength and

orientation, is used to rotate the electron spin at the injector to an initial orientation in

order to maximize the delivered longitudinal polarization to one or more experimental

halls after precession in the magnetic beam transport elements.

A Mφller polarimeter was used to measure the polarization of the beam entering

Hall C [164]. Using the well-known cross section calculable from QED for the reaction

~e+ ~e→ e+ e, the polarized cross section dσ /dΩ can be written as,

dσ

dΩ
=
dσ0

dΩ

[
1 + P

‖
t P
‖
b Azz(θ)

]
(3.1.2)

dσ0

dΩ
=

[
α(4− sin2 θ)

2meγ sin2 θ

]2

, Azz(θ) = − sin2 θ
(8− sin2 θ)

(4− sin2 θ)2

for the scattering angle θ [164], where dσ0
dΩ

is the unpolarized cross section, Azz(θ) is

the analyzing power, P
‖
t is the polarization of the electron target parallel to the beam

axis, and P
‖
b is the beam polarization. Then the asymmetry of the cross sections for
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beam and target spins parallel and anti-parallel is,

ε =
dσ↑↑ − dσ↑↓
dσ↑↑ + dσ↑↓

= Azz(θ)P
‖
t P
‖
b . (3.1.3)

This measurement is done by scattering the electron beam on a pure iron foil polarized

by a 4 T superconducting split-coil solenoid. As the analyzing power is maximized for

the electrons scattered by 90◦ in the center of mass frame, pairs of electrons scattered

around 90◦ are detected in coincidence. The coincidence eliminates background from

other processes, such as Mott scattering from the iron nuclei. A system of movable

collimators allows selection of a narrow range about 90◦ in the center of mass frame.

Figure 3.5 shows a schematic layout of the Hall C Mφller polarimeter.
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Figure 3.5: Diagram of the Hall C Møller Polarimeter by H. Fenker, reproduced with
permission from [55].

these two shower counters at different beam helicities is used to produce the asymme-

try in equation 3.3. The large acceptance of these detectors reduces sensitivity to the

Levchuk effect due to the orbital motion of electrons in the iron atom [56]. Since the

iron film target degrades the beam, polarization measurements cannot occur during

data taking, but are performed routinely to monitor the beam polarization. More

information on the Hall C Møller Polarimeter can be found in references [56, 57].

Nine Møller measurements, shown in table 3.2, were taken during SANE, and were

used by SANE collaborator D. Gaskell to create a fit to the salient accelerator data

to extrapolate beam polarizations throughout the experiment. The fit included three

degrees of freedom: the magnitude of the polarization at the source Psource, the degree

of imbalance between the north and south linear accelerators, and a global correction

from the beam energy Fcorr [58]. For Wien angle θw, correction for the quantum

efficiency of the cathode F (�q), and half wave plate status nhwp, the expression for

Figure 3.5. Schematic of the Hall C Mφller polarimeter.

The scattered electrons that pass through the system of quadrupole fields and

collimators are detected by two lead-glass shower counters at the end equipped with

photomultiplier tubes. For the actual beam polarization measurement, the asymme-

try in Equation (3.1.3) is produced by using the coincidence counting rate between

these two shower counters at different beam helicities. Since the iron film degrades
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the beam, Mφller measurements cannot be performed simultaneously with the data

taking, but are performed periodically to monitor the beam polarization. Because the

precise beam polarization is very important to determine the correct asymmetries,

nine Mφller measurements, as shown in Table 3.2, were taken during the experiment.

Using the beam energy, Wien angle, quantum efficiency of the superlattice GaAs

cathode and half wave plate status recorded by the EPICS system, the beam po-

larization for each run can be calculated [165–167]. The beam polarization per run

averaged over charge accumulated on target during SANE is shown in Figure 3.6.

!

!
!
!
!
! !
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not possible to give all halls maximum polarization for most beam energy settings.

Thus a compromise between halls is made to choose a Wien angle that provides the

best polarization possible in the circumstances [61].

Using beam energy, Wien angle, quantum efficiency, and half wave plate status

as collected over time by JLab’s EPICS system, the beam polarization for each run

during SANE was calculated using the above formulation. The original sane pol.f

code by D. Gaskell was translated into Perl for this purpose. Figure 3.6 shows the

beam polarization per run as averaged over charge accumulated on target during

SANE.
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Figure 3.6: Electron beam polarization for each SANE experimental run. The po-
larizations fall in groups depending most strongly on the beam energy of the run.
The 4.7 GeV beam energy setting allows near 90% polarization throughout, while
the 5.9 GeV setting polarizations (in the middle of the experiment) drop significantly
as the beam energy increases. At the end of the experiment, cryomodule failures
necessitated 5 accelerator passes to achieve 4.7 GeV, and the polarization suffered.
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Figure 3.6. Electron beam polarization for each SANE experimental run. The polar-
izations depend most strongly on the beam energy of the run. The 4.72
GeV beam energy setting allows the polarization around 90%, while for
the 5.89 GeV beam energy (in the middle of the experiment), the po-
larization drops significantly. At end of the experiment, a cryo module
failure necessitated 5 accelerator passes to achieve 4.72 GeV and hence
the beam polarization was effected. This can be seen around the run
numbers 72975-73050.
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Table 3.2. Table of SANE Mφller runs. HWP=Half Wave Plate, QE=Quantum effi-
ciency.

Date Run HWP Wien(◦) Beam E (MeV) QE(%) Polarization (%)
1/25 71942 IN 29.99 4730.46 0.1844 87.79 ±1.54

71943 IN 29.99 4730.48 0.1844 88.21 ±0.98
71944 IN 29.99 4730.51 0.1844 85.13 ±0.93
71945 IN 29.99 4730.53 0.1844 87.71 ±0.99
71946 IN 29.99 4730.53 0.1844 88.24 ±1.01
71947 IN 29.99 4730.53 0.1844 86.76 ±0.95
71948 IN 29.99 4730.53 0.1844 87.33 ±1.55
71949 IN 29.99 4730.52 0.1844 86.58 ±0.99
71950 IN 29.99 4730.52 0.1844 85.38 ±0.97
71951 IN 29.99 4730.53 0.1844 86.71 ±0.97
71952 IN 29.99 4730.49 0.1844 85.64 ±1.05
71953 IN 29.99 4730.49 0.1844 89.95 ±1.17
71954 IN 29.99 4730.49 0.1844 86.65 ±1.25
71956 IN 29.99 4730.50 0.1844 88.32 ±1.09

2/1 72209 IN 29.99 4729.25 0.0888 89.00 ±1.02
72210 IN 29.99 4729.29 0.0888 87.32 ±1.10
72211 IN 29.99 4729.28 0.0888 83.45 ±1.04

2/5 72300 IN 29.99 4728.23 0.0708 87.26 ±0.68
72301 IN 29.99 4728.27 0.0708 85.64 ±0.93

2/11 72465 OUT 29.99 5892.84 0.3124 -61.16 ±1.10
72466 OUT 29.99 5892.70 0.3124 -60.56 ±1.11
72467 OUT 19.99 5892.81 0.3124 -72.83 ±1.02
72468 OUT 19.99 5892.43 0.3124 -72.04 ±0.98
72469 OUT 19.99 5891.65 0.3124 -75.35 ±0.97
72470 OUT 22.99 5891.75 0.3124 -71.88 ±1.06
72471 OUT 22.99 5891.46 0.3124 -70.82 ±1.06
72472 OUT 22.99 5891.08 0.3124 -70.64 ±2.17

2/14 72537 OUT 22.99 5891.24 0.2790 -73.36 ±1.08
72538 OUT 22.99 5891.11 0.2790 -73.70 ±1.05
72539 OUT 22.99 5891.03 0.2790 -72.19 ±1.83

2/24 72767 OUT 13.00 5892.92 0.0830 -75.51 ±1.08
72768 OUT 13.00 5892.85 0.0830 -76.90 ±1.00

2/28 72839 IN 29.99 4728.95 0.2516 87.63 ±0.96
72840 IN 29.99 4728.88 0.2516 86.28 ±1.08

3/9 72965 OUT -18.00 5895.58 0.1635 -90.22 ±1.29
72966 OUT -18.00 5894.22 0.1635 -86.81 ±1.27

3/12 72977 OUT 21.19 4736.33 0.1789 65.83 ±0.97
72978 OUT 21.19 4736.34 0.1789 66.36 ±0.99
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Fast-Raster

The electron beam generated at CEBAF is a high-current beam with a very small

size (≤ 200 µm). The fast-raster system is designed to increase the effective beam size

in order to prevent damage to solid targets and to prevent local boiling in cryogenic

targets. This intense heat can even melt the Aluminum windows of the cryostat

targets as well as damage the beam dump.

The fast-raster system, 25 meters upstream of the target, consists of two sets of

steering magnets [168, 169]. The first set rasters the beam vertically and the second

rasters the beam horizontally. Triangular wave forms are used to drive the magnet

currents to produce a uniform square beam spot of 1× 1 mm2. Figure 3.7 shows the

fast-raster pattern during an example run in SANE.

Figure 3.7. Histogram of number of hits in HMS versus the fast-raster position for
SANE production run 72790, showing the fast-raster pattern in ADC
channels.
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3.1.4 SANE Hall C Beam Line

In addition to the standard Hall C beam-line equipment, SANE required extra

beam-line equipment to accommodate the UVa polarized target. The slow-raster was

added to spread the beam over an even larger area of the target material cup. When

the target magnetic field is nearly perpendicular to the beam, the electron beam is

deflected down, away from the target center. To counteract this, the beam was sent

through a chicane of magnets which bent it down and then back up at the target.

Even after the beam passed through the target center, it would continue to bend

down, deflecting away from the standard beam dump in the hall. So, a helium-filled

bag was used to transport the beam to a temporary beam dump.

Slow-Raster

Due to radiation damage, the polarization of the ammonia target material de-

creases. Therefore, the beam was rastered a second time to spread it evenly over a

larger area. This second raster was circular, unlike the square fast-raster, to match

the circular shape of the target cup face [170]. Throughout the experiment, the diam-

eter of the slow-raster was 2 cm. Three wave-form generators were used to drive the

slow-raster magnets. While one was creating the amplitude modulation to control

the radius of the spiral, the other two generators were used to generate sine waves

with a 90◦ phase difference, creating a circle. This results in the final spiral raster

pattern. Figure 3.8 shows an example of the slow-raster pattern for a run in SANE.

Chicane Magnets

The SANE experiment was run with two 5 T target magnetic field configurations.

The first one is parallel to the electron beam and therefore the trajectory of the beam

is unaffected. The second one, which is relevant to this thesis, is nearly perpendicular

(80◦) to the electron beam. The trajectory of the standard Hall C electron beam

would start to deflect down entering the target magnetic field region, causing the
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Figure 3.8. Histogram of number of hits in HMS versus the slow-raster position for
SANE production run 72790, showing the slow-raster pattern in cm.

beam to miss the center of the target. A chicane magnet was used to counteract this

bend of the beam before it reached the target as seen in Figure 3.9.

The chicane consists of two dipole magnets, BE and BZ. While BE bends the

incoming beam downwards toward the BZ, BZ bends the beam back up to the target.

The magnets were precisely positioned and tuned to allow the beam to reach the

center of the target after being bent by the target magnetic field. Table 3.3 shows the

integrated
∫
B · dl of the chicane magnets and the target for the two-beam energy

settings used in the perpendicular field configuration.

Table 3.3. Table of chicane parameters for 80◦ field for both beam energy settings.
Integrated Bdl given in units of Tm.

Beam E BE Bend BZ Bend Target Bend BE Bdl BZ Bdl Target Bdl
(GeV)

4.7 0.878◦ 3.637◦ 2.759◦ 0.513 1.002 1.521
5.9 0.704◦ 2.918◦ 2.214◦ 0.513 1.002 1.521
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Chicane

While the trajectory of the beam is unaffected by the target’s 5 T magnetic field

when it is coaxial to the coils, SANE required near perpendicular target polarization

and thus magnetic field alignment for much of the experiment. The standard Hall C

beam would be deflected down by the target magnetic field in this case, causing the

beam to miss the center of the target. To counteract the bend of the beam before it

met the target, a chicane was used, as seen in figure 3.9.

Figure 3.9: Diagram of the SANE beamline during perpendicular target field running
(not to scale).

The chicane consisted of two dipole magnets, BE and BZ. BE bent the incoming

beam downwards toward the BZ, which in turn bent the beam back up at the target.

These magnets were precisely positioned and tuned to allow the beam to strike the

center of the target after being bent by the target magnetic field. Table 3.3 shows

the positioning, deflection and integrated
�

B · dl of the chicane magnets for the two

beam energy settings used while the target was in its perpendicular configuration.

Beam E BE Bend BZ Bend Target Bend BE Bdl BZ Bdl Target Bdl

4.7 GeV 0.878◦ 3.637◦ 2.759◦ 0.513 1.002 1.521
5.9 GeV 0.704◦ 2.918◦ 2.214◦ 0.513 1.002 1.521

Table 3.3: Table of chicane parameters for 80◦ field for both beam energy settings.
Integrated Bdl given in Tm.

Figure 3.9. Vertical motion of the beam through the chicane magnet setup during the
perpendicular target field configuration.

Helium Bag

In Figure 3.9, the electron beam can be seen bending down in the target field

region after passing through the target, which is causing it to miss the standard Hall C

beam dump. This would cause the beam to interact with air in the hall while it passes

through toward the beam dump, by which the ionization would create an unacceptable

background with harmful by-products. Therefore, an 80-foot-long helium bag was

used as an additional beam line from the scattering chamber to the beam dump. The

exit windows were large enough to accept the different beam deflections 2.8◦ and 2.2◦

for the different beam energies 4.72 and 5.89 GeV, respectively. This large aperture

of the exit volume does not allow evacuation done as for the standard Hall C beam

exit pipe. Therefore, helium is used instead of air filling to minimize ionization.

3.2 BigCal Electromagnetic Calorimeter

The electromagnetic calorimeter of the BETA detector package is called BigCal,

which was assembled by the GEp−III collaboration [53,54]. It consisted of 1744 type

TF1-0 lead-glass bars. 1024 of these were 3.8×3.8×45.0 cm3 blocks contributed by the

Institute for High Energy Physics (IHEP) in Protvino, Russia, while the remaining

720 were 4.0× 4.0× 40.0 cm3 blocks from the Yerevan Physics Institute in Armenia,



68

and were previously used to study Real Compton Scattering (RCS) on the proton

in Hall A at Jefferson Lab. The Protvino blocks were stacked 32 × 32 to form the

bottom section of BigCal and the RCS blocks were stacked 30 × 24 on top of these

as seen in Figure 3.10.
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3.2.1 BigCal

BETA’s electromagnetic calorimeter, nicknamed BigCal, consisted of 1,744 TF1-0

lead glass blocks; 1,024 of these were 3.8 × 3.8 × 45.0 cm3 blocks contributed by the

Institute for High Energy Physics in Protvino, Russia, while the remaining 720 were

4.0 × 4.0 × 40.0 cm3 and came from Yerevan Physics Institute, most recently used

to study real Compton scattering (RCS) in Hall A. The calorimeter was assembled

by the GEp-III collaboration [66, 67]. The Protvino blocks were stacked 32 × 32 to

form the bottom section of BigCal, and the RCS blocks were stacked 30 × 24 on top

of these, as seen in figure 3.11. The assembled calorimeter had an area of roughly

122×218 cm2, making a large solid angle of approximately 0.2 sr with the face of the

calorimeter placed 3.50 m from the target cell.

Figure 3.11: Left is the face of BigCal, showing 1,744 lead glass blocks, with different
colors indicating the groupings of the trigger channels. Right shows a cutaway view
of the calorimeter from the side. Diagrams from reference [68].

Figure 3.10. Left : The face of BigCal showing 1,744 lead-glass blocks, with different
colors indicating the groupings of the trigger channels. Right : Cutaway
view of the calorimeter from the side. Diagrams are from reference [171].

The assembled calorimeter had an area of roughly 122× 218 cm2, making a large

solid angle of approximately 0.2 sr with the face of the calorimeter placed 3.50 m

from the target cell.

When an energetic electron passes through a given material, it loses energy by

radiation producing Bremsstrahlung photons. These high-energy photons convert

to e+e− pairs, which in turn radiate more photons, and the chain of events leads
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to a “shower” of electrons, positrons and photons. The process continues until the

energies of the secondary particles fall below 100 MeV, after which they lose energy,

predominantly through ionization, and are eventually absorbed. An electromagnetic

shower of particles in a calorimeter block is shown in Figure 3.11.

62

!"#$%&'()(%*+#$,-

./*01$2(%*$3*
4"%)&,#(0

Figure 3.20: Electromagnetic shower of particles in the calorimeter blocks.

electron-positron pairs. These pairs, in turn, radiate photons by interacting with the

atoms of the medium. These photons also produces electron-positron pairs and these

processes continue until all the electron energy is deposited in the calorimeter by

producing a shower of particles (e−, e+, γ) (see Figure 3.20). The radiation produced

by these shower particles is detected by the PMTs at each end of the blocks. The

produced signal in PMTs are proportional to the total energy of the initial electron.

The histogram of the ratio of the total deposited energy of the particles (electrons and

pions) in the calorimeter to the detected energy is plotted in Figure 3.21(from [44]).

Since electrons and pions have different energy depositions, they form separate peaks

in the plot. Electron peak is located at 1 while pion peak is at about 0.3.

Pions, deposit about 300 MeV in the calorimeter. However neutral pions can

undergo the reaction π → 2γ → e− + e+ and hence these products can deposit all

their energies and this leads to a high energy tail for the pion peak which can result

in pion electron misidendification.

The calorimeter PMT signals are sent to the read-out electronics in the count-

Figure 3.11. Electromagnetic shower of particles in a calorimeter block.

The primary and secondary electrons and positrons move close to the speed of

light, and faster than c/n, where n is the index of refraction of the material. Therefore,

they emit Cherenkov radiation at optical wave lengths, which can be collected by

photomultiplier tubes (PMT) to obtain a measurement of the energy of the incident

particles.

Table 3.4. Table of characteristics of TF1-0 lead-glass used for BigCal.

Index of Refraction, n 1.6522
Density, ρ 3.86 g/cm3

Radiation Length, X0 2.74 cm
Moliere Radius, RM 4.70 cm
Critical Energy, Ec 15 MeV

The characteristics of the TF1-0 lead-glass used in BigCal are shown in Table 3.4.

It has a high density, ρ, a high index of refraction, n and a relatively short radiation

length, X0 which is the mean distance electrons travel through a given material for

an interaction before losing 1/e of their energy by bremsstrahlung. The radiation
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length, X0 is expressed by the atomic number, Z and the mass number, A of the

material as, X0 ≈ 180 · A/Z2. The thickness of the lead-glass blocks in BigCal is

approximately 16 radiation lengths (16.2 for the RCS section, 16.4 for the Protvino

section) and this is enough material to fully stop electrons with energies up to 10

GeV. It is also highly transparent, making it an efficient collector of photons emitted

by showering particles. Therefore, all scattered electrons in this experiment deposit

their full energy in BigCal. The individual lead-glass bars are optically isolated from

each other by an aluminized mylar wrapping to ensure that the light radiated in each

bar is contained within that bar. Each of the bars is optically coupled to a PMT

through a 5 mm thick Si-pad and the whole system is enclosed in a black box to keep

the setup light tight. The signal and power cables enter the black box by labyrinth

openings. The analog signals come from PMT that are taken through several stages of

summing and discriminating to produce final ADC (analog-to-digital converter) and

TDC (time-to-digital converter) signals. The wiring of BigCal has been documented

in research conducted by Perdrisat and Puckett [171,172].

The Moliere radius, RM , is the radius of a cylinder containing on average 90%

of the shower’s energy deposition, 99% of the shower is contained within 3.5 RM .

Compared with the ∼ 4 cm transverse size of the blocks, electron showers are typically

spread out in 3 × 3 to 5 × 5 block clusters. By calculating the center of gravity of

each cluster of signals in a shower, its coordinate can be reconstructed.

In order to perform a coincidence experiment with the proton detected in HMS,

the electron detector is required to have a large acceptance to match the electron

acceptance to the proton acceptance defined by the HMS collimator. The lead-glass

electromagnetic calorimeter, BigCal, provides the needed acceptance with enough

energy and angular resolution. Andrew Puckett’s theses contains discussion of the

background and use of the calorimeter in great detail [173].
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3.3 High Momentum Spectrometer, HMS

The primary apparatus for the data of this thesis is based on the superconducting

magnetic spectrometer called High Momentum Spectrometer (HMS) which has a large

solid angle and momentum acceptance, providing the capability of analyzing high

momentum particles (up to 7.4 GeV/c). It is located on the right side of the beam line

as viewed from upstream of the target (see Figure 3.1). The spectrometer consists of

three quadrupole magnets and one dipole magnet in a QQQD configuration together

with the detector package. A schematic view of HMS is shown in Figure 3.12.

27m

Q1 Q2 Q3
Dipole

Figure 3.12. Schematic of the HMS spectrometer.

The detector support frame is mounted on a common carriage with the magnets

so that it remains stationary with respect to the optical axis. The shielding hut

surrounding the detector package is supported on a separate carriage. The entire

structure rests on concrete rails so that it can be rotated around the rigid central

pivot of the experimental hall.
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3.3.1 Magnets

The HMS magnet system consists of three quadrupole magnets which focus charged

particle trajectories, and a dipole magnet which deflects the particle trajectories ac-

cording to their momentum into the detector hut by a 25◦ vertical bend. The su-

perconducting coils of the magnets are cooled by liquid helium at 4 K temperature

supplied by the CEBAF End Station Refrigerator (ESR).

Quadrupoles

The three quadrupole magnets are a cold-iron superconducting design and are

named Q1, Q2, and Q3 for the order in which scattered particles from the target pass

through them. Q2 and Q3 are identical, while Q1 is somewhat smaller in dimensions.

Table 3.5 shows the size and operating parameters of the HMS quadrupoles (the

maximum current, I∗max is for 4.0 GeV/c central momentum). The optical axis of each

quadrupole was determined using the Cotton-Mouton method [174] and all magnets

in the hall are aligned with respect to the optical axis.

Table 3.5. Operating parameters of the HMS quadrupoles.

magnet effective length, m inner pole radius, cm I∗max, A
Q1 1.89 25.0 580
Q2 2.155 35.0 440
Q3 2.186 35.0 220

The initial model used to determine the field settings was generated using the

COSY INFINITY program from MSU [175]. The quadrupoles were all field-mapped,

and the maps were used to determine the conversion between current and field integral

(
∫
B · dl). The focal plane is defined as the surface created by varying the angles of

the initial rays, and determining the point where they are focussed by the magnetic

system. This refers to the “true” focal plane. However, the nominal focal plane

used when analyzing the data is defined to be the plane perpendicular to the central



73

trajectory, at the position where the central ray intersects the true focal plane. In

HMS, the focal plane is located near the center of the two drift chambers. The true

focal plane of the spectrometer is actually tilted ∼ 85◦ from the “detector” focal

plane.

The HMS magnets are operated in their standard tune: point-to-point tune in

which the quadrupoles Q1 and Q3 are focusing in the dispersive direction, while

Q2 focuses in the non-dispersive direction. This tune provides a large momentum

acceptance, solid angle, and extended target acceptance. The quadrupole fields are

regulated by monitoring the current in the magnets and typically, the current is stable

at the 10−4 level. In order to minimize particle loses and resolution degradation due

to multiple scattering, and to provide thermal insulation, the entire magnetic length

of the HMS is evacuated from the acceptance-defining collimators to the dipole exit

flange which is just upstream of the first detector and the location of the optical

focal plane of the spectrometer. Using the coordinates and the in-plane, out-of-plane

angles of the trajectories at the focal plane, tracks can be reconstructed to determine

the location and direction of the events at the target.

Dipole

The HMS dipole is a superconducting magnet with a 25◦ vertical bend for the

central ray. The gap between its flat poles is 42 cm. The dipole’s bending radius is

12.06 m, giving an effective length of 5.26 m for the 25◦ central bend. The momentum

dispersion of HMS is 3.71 cm/% [176] meaning that a 1% deviation of the particle

momentum from the central momentum results in a physical displacement of 3.71 cm

from the central ray at the focal plane. The dipole is also field-mapped. The dipole

field is stable at the 10−5 level, which is monitored and regulated with an NMR probe.
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Particles of a given momentum entering the dipole at a higher vertical position see a

smaller
∫
B · dl with respect to the central path and thus undergo smaller deflection,

while the particles entering the dipole at a lower vertical position undergo a larger

deflection.

3.3.2 Collimators

A slit system was installed in front of the first quadrupole, allowing remote inser-

tion and removal of various collimators. There are three HEAVYMET (90% machin-

able Tungsten with 10% CuNi) collimators with density of 17 g/cm3. The three

collimators are shown in Figure 3.13.
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Figure 3.13. Left : The HMS sieve slit, center : The larger (pion) collimator, right :
The smaller collimator.

The first collimator, Figure 3.13 (left), is a 3.175 cm thick sieve slit used for testing

the optical properties of the HMS. It contains a large number of small holes, in which

nine rows (columns) in the dispersive (non-dispersive) direction with 0.508 cm in

diameter, except for the central sieve hole, which has a smaller diameter of 0.254

cm and is used to determine the HMS angular resolution. The hole spacing is 2.54

cm in the vertical direction and 1.524 cm in the horizontal direction. Two holes are
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missing in the sieve slit in order to verify proper left-right and top-bottom directions

of the reconstructed angles. The outermost rows of sieve holes are located at ±10.16

cm, corresponding to ±61.2 mrad in the dispersive direction, while the outermost

columns of sieve holes are located at ±6.10 cm, corresponding to ±36.7 mrad in the

non-dispersive direction at a distance of 166 cm from the target. To use the sieve slit

to calibrate the spectrometer optics coefficients, scattered electrons from a series of

thin solid foil targets located at a known position along the beam line are measured.

The in-plane and out-of-plane angles are geometrically determined by the ray from

the thin target foil to the small sieve slit hole and compared with the measured data.

SANE has used the optics coefficients calibrated by the previous experiments and

Figure 3.14 shows the event reconstruction at the front of the sieve slit. The Y axis

represents the vertical position while the X axis represents the horizontal position

for each reconstructed event on the sieve slit in HMS coordinate system. Note that

there are no sieve holes at the vertical extremes of the HMS acceptance. This means

that the optical reconstruction parameters obtained from fitting sieve slit data give

relatively poor resolution when extrapolated to the extreme regions of the acceptance

not covered by the sieve slit.

Either of two octagonal collimators of different sizes is used to define the solid

angle acceptance of the HMS. The large collimator is designed to prevent particle

losses over a large momentum bite for a point target, and the small collimator is

designed to prevent particle losses for an extended target. For an extended target,

a slightly larger range of in-plane angles is accepted since particles coming from

anywhere along the target length can pass through the collimator. Both are 6.35

cm thick and have flared holes to match the angular acceptance of the HMS. For

the experiment SANE, the larger of the two collimators so-called pion collimator was

used. This has an opening of 9.150 cm in the horizontal direction and 23.292 cm in

the vertical direction as shown in Figure 3.13 (center). At a distance of 166.00 cm
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Figure 3.14. HMS reconstruction at the Sieve Slit for the target magnetic field off,
run 72088.

from the target, the angular acceptance defined by the collimator is roughly 70 mrad

in the out-of-plane angle and 28 mrad in the in-plane angle, giving a solid angle of

6.74 msr.

The HMS was designed to have a maximum central momentum of 7.4 GeV/c.

Table 3.6 summarizes the performance characteristics of the HMS in its standard

configuration.

3.3.3 Detector Package

The HMS is equipped with a set of detectors to detect and track charged parti-

cles scattered from the target. In the standard configuration, the HMS consists of

a pair of gas drift chambers (DC1 and DC2), four planes of scintillator hodoscopes

(S1X, S1Y, S2X, S2Y), a gas Cherenkov detector, and a lead-glass calorimeter. The
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Table 3.6. Acceptance and resolution of HMS in its standard configuration.

Max. central momentum, GeV/c 7.4
Min. central momentum, GeV/c 0.5
Momentum acceptance ±10%
Momentum resolution <0.1%
Solid angle, msr 6.74
Scattering angle acceptance, mr ±27.5
Out-of-plane angle acceptance, mr ±70
Extended target acceptance, cm 7
Scattering angle resolution, mr 1.0
Out-of-plane angle resolution, mr 2.0

two drift chambers provide the particle tracking information at the focal plane. The

scintillator hodoscopes are used for triggering the detector read-out and provide the

timing information while the gas Cherenkov detector and the lead-glass calorimeter

provide the particle identification. A schematic of the HMS detector package is shown

in Figure 3.15. All the detectors except the lead-glass calorimeter are oriented per-

pendicular to the Z axis which coincides with the central ray. High-voltage power

supplies were used to provide voltage for all the detectors. These power supplies are

located in the counting house.

DC1 DC2
S1X S1Y S2X S2Y

Cerenkov
Calorimeter

Figure 3.15. A schematic side view of the HMS detector hut.
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3.3.3.1 Drift Chambers

Drift chambers are gas-ionization detectors which are used to measure the position

and angle of the charged particle trajectories at the focal plane. The HMS consists

of two drift chambers which are separated by 81.2 cm [177]. Each drift chamber

contains six planes, two measuring X (the dispersive direction), two measuring Y

(non-dispersive direction), and two that were rotated ±15◦ from the X planes (the U

and V planes) in a gas-tight enclosure sealed by thin aluminized mylar windows. The

planes were ordered X, Y, U, V, Y’, X’ as seen by incoming particles, spaced 1.8 cm

apart. Figures 3.16 and 3.17 show the front and side views of one of the HMS drift

chambers.

113 X,X’ wires.
107 U,V wires.
52 Y,Y’ wires.
1.000252 cm wire spacing.X,X’

U

Y,Y’

V
X Y U V Y’ X’

Incident
Electrons

1.8 cm
Incident
Electrons

Amplifier/Discriminator
cards

Figure 3.16. Front view of the HMS drift chambers. The read-out cards are shown
on the outside of the chamber [177].

Since the U and V wires are much closer to the X, X’ wires in their orientation than

to the Y, Y’ wires, the track position and slope are more precisely determined in the

dispersive direction than in the non-dispersive direction. Each active plane contains

alternating field and sense wires. The sense wires (anodes) are 25 µm diameter gold-
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Figure 3.15: Arrangement of the drift chamber planes as seen by the incoming particle.

between positive sense wires and negative field wires. Then, an electric signal on the

sense wire is produced by these electrons (see figure 3.16). The actual one dimensional

position of the particle track at each plane is determined from the drift distance. Drift

time is used to determine the drift distance since they are proportional to each other.

The signals from the sense wires are amplified and discriminated on the elec-

tronic cards attached directly on the drift chambers. These logic signals are then sent

to time-to-digital converters (TDC) located in the back of the detector hut. With the

information of the fired sense wire and the drift time (or drift distance) information

from the TDCs, the actual position where the particle went through is determined by

the tracking software. Therefore, the trajectory of the particle is determined by the

tracking software using the position information from each drift chambers. The posi-

tion resolution is approximately 280 µm. The time to distance calibration is discussed

in the next chapter. For more information on the HMS drift chambers see [43].

Figure 3.17. Arrangement of the drift chamber planes as seen by the incoming parti-
cles.

plated tungsten wires with a spacing of 1 cm, which are kept at positive voltage. The

negative field wires (cathodes) are 150 µm gold-plated copper-beryllium wires spaced

0.5 cm to the nearest sense wires. In between the sense and field wire planes are

planes of guard wires which define a symmetric “drift cell” around each sense wire by

surrounding eight field wires. The negative high voltage applied to each field wire is

proportional to the distance from the field wire to the sense wire. This provides an

equipotential surface surrounding the sense wire that is nearly circular over the drift

cell. This insures that the drift time measured by a sense wire depends only on the

distance between that sense wire and the track that caused the ionization.

The gas used by the drift chambers is a 50%/50% argon-ethane mixture (by

weight), doped with 1% isopropyl alcohol. There are parallel gas streams to the

two chambers while the gas flow is monitored by a mass flow meter. The argon gas

in the mixture provides the primary ionization and the ethane gas propagates the

avalanche near the sense wire and enhances the drift properties of the mixture. Dur-
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ing continuous operation at high particle rates, the gas is capable of forming polymers

by recombination of dissociated organic molecules which can accumulate on the an-

ode and cathode wires and degrade the chamber performance. The small amount

of alcohol limits this formation and enhances the chamber lifetime. It also reduces

chamber noise by molecular absorption. 57

5 mm

9 mm

Field wires Sense wires

Charged 
particle

Figure 3.16: A diagram of a drift chambers cell structure. The blue dots represent the
field wires and the red dots the sense wires. As the charged particle ionizes
the gas in the drift chambers, the electrons are attracted to the sense wire
by the electric potential generated by the field wires.

3.3.5 Hodoscopes

Hodoscopes are used for triggering the detector read-out following the passage

of a charge particle through the detector stack. The hodoscopes consist of a set of

scintillator paddles as shown in Figure 3.17. When a charged particle goes through a

scintillator it excites the atoms. These atoms emit scintillation light as they return to

their ground state, and this light is then detected by photo multiplier tubes (PMT)

attached at each end of the scintillator paddles. PMTs convert these scintillation

lights to electrical signals. Each scintillator paddle is wrapped one layer of aluminum

foil and two layers of Tedlar in order to make it light-tight. There are two pairs

of hodoscopes in the HMS, each pair of planes consisting of one horizontally (S1X

and S2X) and one vertically (S1Y and S2Y) oriented scintillator paddle set. These

pairs are separated by 220 cm from each other. The S1X and S2X planes consist

Figure 3.18. A diagram of a drift chamber cell structure representing the sense wires
(red dots) and the field wires (blue dots). As the charged particle ionizes
the gas in the drift chamber, the electrons are attracted to the sense wire
by the electric potential generated by the field wires.

When a charged particle passes through the chamber, the gas becomes ionized,

and the liberated electrons are attracted to the nearest sense wire by the electric field

maintained by the voltage differential between the sense wire and the field wires (see

Figure 3.18). Then an electric signal is induced on the sense wire by these electrons.

These signals are amplified and discriminated by the electronic cards attached directly

to the chambers. These logic signals are then sent to time-to-digital converters (TDC)

located in the back of the detector hut. Fast signals from the HMS hodoscopes

generated by a charged particle passing through the hodoscopes triggers the main

data acquisition system to read out an event, and a stop signal is sent to the drift

chamber TDCs. The hodoscope timing is used to reconstruct the time when the
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particle passed through the focal plane. Then, one can determine the time it took

for the electrons created by the ionizing particle to “drift” to the wire by taking

the time difference between the reconstructed hodoscope time and the signal on the

wire. This drift time is converted to a drift distance, which is then added to the

wire position in order to get the position of the trajectory when it crossed the wire

plane. This allows a determination of the position of the particle with better than 0.5

cm accuracy (half the wire spacing). By measuring the position with all six planes,

the X and Y positions of the particle and its trajectory through the chamber can be

measured. The large separation in Z between the two chambers provides a precise

determination of the angles of charged particle trajectories and hence provides the

precise particle track through the detector.

However, multiple scattering of the ionized electrons in the chamber gas, fluctu-

ations of the drift velocity due to the electric field, and uncertainty in the absolute

positioning of the wires within the chambers and in the absolute positioning of the

chambers themselves relative to the HMS optical axis, contribute to the position reso-

lution of the drift chambers of approximately 280 µm. However, unfortunately, there

was a drift chamber gas leak during the SANE experiment and the efficiencies of the

drift chambers were reduced dramatically. The drift time-to-drift distance calibration

and their performance will be discussed in the next chapter.

3.3.3.2 Hodoscopes

The HMS is equipped with two pairs of scintillator planes which are separated by

2.6 m in Z direction [178]. Each pair consists of X and Y planes. By their fast response

time, they provide fast trigger and timing information. The planes are constructed

by long narrow strips of scintillators connected to the phototubes on both ends by

lucite light guide which couples the flat rectangular shape of the end of the scintillator

bar to the circular photo cathode of the PMT (see Figure 3.19). Each strip is 1.0 cm
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thick, 8.0 cm wide, and 75 (120.5) cm long for the X (Y) paddles with approximately

0.5 cm overlap between the paddles in order to avoid the gaps between them. The X

(Y) planes have 16 (10) elements each, giving each X-Y pair an active area of 120.5

cm by 75.5 cm. The 16 paddles in the X planes are oriented horizontally so that the

transverse dimension of the paddle measures the dispersive coordinate by using the

dimensions of the paddles. The longitudinal dimension measures the non-dispersive

coordinate by using the timing information of a PMT at the opposite ends of each

paddle. Similarly, the 10 paddles in the Y plane are oriented vertically so that their

transverse dimension measures the non-dispersive coordinate and their longitudinal

dimension measures the dispersive coordinate. The coordinate corresponding to the

transverse size of the paddles localizes the trajectory of the particles to a square area

of 8×8 cm2, which is useful to support the drift chamber track reconstruction at high

particle rates.
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Figure 3.17: Hodoscope structure.Figure 3.19. HMS hodoscope structure.
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All hodoscope PMTs were gain-matched using a 60Co γ-ray source in order to

obtain uniform signal, timing and efficiency characteristics. The PMT voltages were

adjusted so that the position of the Compton edge in the γ-ray spectrum was constant

and large enough to give a high trigger efficiency for photons.

When energetic charged particles are passing through the material, they ionize

the atoms in the material and liberate electrons. These electrons excite the molecules

in the material which emits optical photons by de-excitation. This light propagates

through the scintillator bar and the light guide to the PMTs at the end via total

internal reflection, which then convertes to charge and amplifies by the PMTs. The

scintillators and the light guides are wrapped in one layer of aluminum foil and one

layer of black Tedlar for light-tightness, which completely reflects the scintillation

light emitted at the angles larger than its critical angle for internal reflection and

makes them also reach the PMTs. The signals from each PMT are sent to ADCs,

TDCs and logic modules in the counting house. These logic modules generate the

logical OR of all the signals coming from each side of the hodoscope planes. For

example, all the signals coming from the right side of the hodoscope plane 1, S1X+

is given by the logical OR of the signals coming from the right side of all of the

individual scintillator paddles in plane 1, S1X1+ to S1X16+:

S1X+ ≡ (S1X1+ OR S1X2+ OR ................... OR S1X16+)

. Similarly, all of the signals coming from the left side of the hodoscope plane 1,

S1X− is given by the logical OR of the signals coming from the left side of all of the

individual scintillator paddles in plane 1, S1X1− to S1X16−

S1X− ≡ (S1X1− OR S1X2− OR ................... OR S1X16−)

Then these two logic signals from each side are combined as S1X ≡(S1X+ AND

S1X−) indicating whether the S1X plane fired. Similarly, the logic signals S1Y, S2X

and S2Y are generated and a new logic signal is generated using these four signals to
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indicate that at least three of the four planes are fired. This logic signal (SCIN) is

then sent to the main trigger logic and to the scalers to be recorded.

Having more precise timing information from both pairs of hodoscopes, it can be

used to determine the time-of-flight information and hence be used for particle identi-

fication. However, this is extremely limited at high momenta and particle velocities.

Because of the large distance between two scintillator pairs, the trigger formed by

the hodoscopes is very restrictive on the angles of tracks coming from the chambers.

Acquiring of the coincidence between both pairs decreases the probability of triggers

in one pair or the other caused by low-energy background radiation, noise and other

background or random signals mixed with good events of real charge particle tracks

coming from the target through the HMS and both drift chambers.

3.3.3.3 Gas Cherenkov Detector

Gas Cherenkov detectors are typically used for electron/pion identification and

separation. They detect the Cherenkov radiation emitted by the charged particle

passing through the detector medium (with index of refraction, n) with velocity β,

which is faster than the speed of light in that medium, c/n (where c is the speed of

light in vacuum). The light is emitted in a forward-pointing cone with an opening

angle, cos θc = 1/nβ. This light is then reflected from focussing mirrors to PMT tubes.

By choosing the medium properly, the threshold velocity (=c/n) can be made such

that electrons emit Cherenkov radiation and pions do not. For separating pions from

electrons in a momentum range 1-4 GeV, the index of refraction of the medium must

be very small and therefore, a gas can be used as the Cherenkov medium. The type of

gas and operating pressure can be chosen in order to maximize the signal for electrons,

while minimizing scintillation and keeping the pion Cherenkov threshold above the

spectrometer momentum. Still, a pion can be misidentified as an electron if the pion

produces a knock-on electron of sufficient energy to emit Cherenkov light. Because
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the total thickness of material that can cause knock-on electrons is dominated by the

window and the detector material immediately in front of the Cherenkov detector, a

thin entrance window is used to reduce this effect.

60

3.3.5.1 Threshold Cerenkov Detector

The Cerenkov radiation is an electromagnetic radiation emitted when a charged

particle travels through a medium with a velocity above the speed of light in the

medium. The HMS Cerenkov detector is used for particle identification, and consists

of a large cylindrical tank of 150 cm diameter and 165 cm length, which is filled with

C4F10 gas. A pair of front reflecting spherical mirrors are mounted vertically at the

back of the detector at a 15o angle to focus the Cerenkov light on the pair of PMTs

(see Figure 3.18).
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Figure 3.18: Cerenkov detector geometry.

The gas was chosen so that the electrons within the spectrometer momentum

acceptance travel faster than speed of light in this medium, and therefore, will emit

cerenkov radiation while pions will not. The Cerenkov light which is emitted by

the electrons is reflected by the mirrors and focused on the PMTs, with the signal

proportional to the number of Cerenkov photons. The signals from each PMT are

Figure 3.20. HMS Cherenkov detector geometry.

The HMS Cherenkov tank is cylindrical with an inner diameter of ∼ 150 cm

and a length of ∼ 165 cm. Its entrance and exit windows are made of 0.1016 cm

Al (0.27 g/cm2). A pair of front-reflecting spherical mirrors are placed vertically

at the far end of the tank at a 15◦ angle with the effective length (length before

the mirrors) of ∼ 12Tedlar0 cm (see Figure 3.20). The mirrors reflect and focus

the Cherenkov light into two PMTs which produce the signals proportional to the

number of Cherenkov photons. In addition, the PMT front surfaces are coated with

a wavelength-shifting coating in order to improve the PMT quantum efficiency in the

ultra-violet wavelengths. The tank is filled with 0.42 atmospheres of C4F10, giving

an index of refraction of 1.0006. This gives a pion threshold of 4 GeV/c and electron

threshold of ∼ 15 MeV/c. The signals from each PMT are sent to ADCs and TDCs

in the counting house to be recorded.
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3.3.3.4 Lead-Glass Calorimeter

The HMS lead-glass calorimeter is positioned at the back of the HMS detector

hut and is used as a particle identification detector together with the gas Cherenkov

detector by measuring the deposited energy of the charged particles. It consists of

four layers of 13 stacked 10 cm × 10 cm × 70 cm blocks of lead-glass giving a total

of 52 blocks with an active area of 130 cm × 70 cm. Lead-glass has a density of

3.86 g/cm3 and a radiation length of 2.54 cm, making the entire calorimeter ∼ 16

radiation lengths in total thickness. PMT tubes are attached to each block at one end

and each block is wrapped with one layer of aluminized mylar (25 µm) and two layers

of Tedlar PVF film (38 µm each) to make them light tight. As seen in Figure 3.12,

the calorimeter is tilted about 5◦ with respect to the optical axis to avoid particles

from passing in between the blocks. The operating voltages of the PMTs were set to

match the gain of the individual blocks.
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sent to ADCs and TDCs in the counting house and recorded in the electronic medium.

3.3.5.2 Calorimeter

The HMS calorimeter used as a particle identification detector since different

types of particles deposit their energies differently. Charged particles deposit their

energies by processes such as Bremstahlung radiation and pair production. The HMS
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Figure 3.19: Calorimeter detector geometry.

calorimeter consists of 52 TFI type lead-glass blocks of 10cm x 10cm x 70cm. PMTs

are attached to both ends of the lead-glass blocks, and has four layers consisting of

13 lead-glass blocks. As can be seen in the Figure 3.13, the calorimeter has a tilt

about 5 degrees with respect to the dispersive plane to prevent particles from passing

in between the blocks.

Electrons interact with the atoms of the medium and emit electromagnetic

radiation when travelling through the calorimeter blocks. These photons produce

Figure 3.21. Calorimeter detector geometry.
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All of the electron energy that strikes the calorimeter is deposited in the calorime-

ter by producing a shower of particles (e−, e+, γ) as described in Section 3.2. An

example of an electromagnetic shower of particles in a calorimeter block can be seen

in Figure 3.11.

The Cherenkov light produced by the process is detected by a PMT connected

to each lead-glass block. The total signal in the PMTs is proportional to the total

energy of the initial electron. The calorimeter PMT signals are sent to the read-out

electronics in the counting house to the ADC modules. The calorimeter is calibrated

for the conversion of the ADC to the energy deposition.

3.4 Target

As a double polarization experiment, SANE requires a polarized nucleon target.

Frozen ammonia (NH3) was utilized as a polarized proton target. In addition to the

polarized targets, 12C and CH2 targets were also used for calibration purposes. The

protons in the NH3 molecules were polarized using Dynamic Nuclear Polarization

(DNP) in a 5 T magnetic field at 1 K temperature. The polarization of the target

was monitored continuously by a Nuclear Magnetic Resonance (NMR) system. In this

section, the principle of DNP, how NMR was used to measure the target polarization,

and an overview of the SANE polarized target will be briefly discussed.

3.4.1 Dynamic Nuclear Polarization (DNP)

In DNP, nucleons were polarized by transferring the free electron polarization in

the medium to the nucleons which is induced by microwave radiation at high magnetic

field and low temperature. When the material is placed in a magnetic field, unpaired

electron and nuclear spins tend to align themselves in the direction of the magnetic

field due to the interaction between the magnetic moments, ~µ and the magnetic field,
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~B. For an electron, the interaction is given by, ~µe = geµB ~S, and for a proton, it is

given by, ~µp = gpµN ~S, where ~S is the particle spin, µB and µN are the Bohr and

nuclear magnetons, and g is the gyroscopic, i.e., g-factor of the particle, ge ∼ 2,

gp ∼ 2 ∗ 2.79 = 5.58. Further, this interaction creates a set of 2J + 1 energy sublevels

via the Zeeman interaction, where J is the total spin of the particle. The polarization

describes the alignment of the nuclear spins in the magnetic field for a desired energy

sub-level. For a nucleus with total spin J , the nuclear polarization, PJ is given by,

PJ =
ΣiJz,iNi

JΣiNi

,

where Ni is the total number of nuclei with spin projection along the axis of the

magnetic field, which is considered here as along the Z axis. The relative population

of spins aligned to anti-aligned in two different energy sublevels for a spin-1/2 system

is given by a Boltzmann distribution,

N↑
N↓

= exp

(
µB

kT

)
,

hence, the vector polarization of the spin-1/2 particles is given by,

P1/2 =
N↑ −N↓
N↑ +N↓

= tanh

(
µB

kT

)
,

where ~µ · ~B = µB (along ~B direction) is the energy of the Zeeman interaction, k

is the Boltzmann constant, and T is the temperature of the medium. According

to the above equation, at 2.5 T magnetic field and 1K temperature, the electron

polarization reaches about 92%. However, having a much smaller magnetic moment

than the electron (µe ∼ 600µp), the proton reaches a far lower polarization of about

0.25% at the same magnetic field and temperature conditions [179]. As magnetic
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fields far beyond 2.5 T and temperatures far below 1 K are difficult to achieve, DNP

is used to increase the nucleon polarizations enormously.

In DNP, microwaves are introduced to the thermal equilibrium polarization method.

In addition, the target material has to be doped with paramagnetic impurities in the

form of unpaired electrons. The Hamiltonian of such a system of free electrons and a

spin-1/2 nucleons placed in a magnetic field is given by,

H = H0 − ~µe · ~B − ~µN · ~B +Hss.

The term H0 is the free Hamiltonian for the electrons and the nucleon. The second

(third) term describes the interaction between the electron (nucleon) and the magnetic

field. The final term, Hss arises due to dipole-dipole interactions between the electron

and the nucleon which has relatively small effect on H0 compared to the second and

third terms. The hyper-fine splitting from spin-spin interactions of the electron and

proton in the magnetic field results in four discrete energy levels corresponding to the

four permutations of aligned and anti-aligned spins as in Figure 3.22.
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Figure 3.22. The energy level diagram of a spin-1/2 nucleon electron system placed
in a magnetic field. Details are given in the text.
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These are four states, | −+〉, | −−〉, | ++〉, and | +−〉, where the first sign

indicates the electron spin direction and the second sign indicates the nucleon spin

direction. The transitions | −−〉 →| +−〉 and | −+〉 →| ++〉 are due to electron

spins flipped by applying microwaves at the EPR (Electron Paramagnetic Resonance)

frequency, νEPR, which corresponds to the Zeeman energy of the electron’s magnetic

moment in the given ~B field, ~µe · ~B. Similarly, the proton transitions | +−〉 →| ++〉

and | −−〉 →| −+〉 can be carried out by proton spins flipped by microwaves at the

NMR (Nuclear Magnetic Resonance) frequency, νNMR, corresponding to the proton

Zeeman energy, ~µp · ~B. However, the transitions that require flipping both the electron

and the nucleon spins, | −−〉 →| ++〉 and | −+〉 →| +−〉 are forbidden due to the

dipole selection rules. But the dipole-dipole interaction, which is much smaller than

the Zeeman effect, leads to a slight mixing of the nuclear states. This then allows

transitions of the type | −−〉 →| ++〉 and | −+〉 →| +−〉 with a probability much

less (∼ 10−4) than the allowed transitions.

Thus, the transitions | −−〉 →| ++〉, from anti-aligned protons to aligned ones

leading to positive polarization, can be induced with microwaves at νµ− = νEPR −

νNMR. Because of the strong interaction with the lattice, the electrons reach ther-

mal equilibrium very rapidly (in 10−3 s) by relaxation to the lowest energy state,

| ++〉 →| −+〉 allowing it to flip the spin of another proton, which continuously

drives protons into positive polarization. However, due to the weak coupling to the

lattice, the relaxation time of the nucleons is much larger, ∼ 103 s. They instead relax

through coupling with the electron spin-spin system via the same transitions induced

to polarize the nucleons with microwaves. As these transitions are “forbidden”, they

are less likely, between 104 and 106 times smaller than the electron relaxations [180].

This populates one spin state of the nucleons near that of a free electron. In the

same manner, aligned protons can be anti-aligned, called negative polarization; the

transition | −+〉 →| +−〉 is induced using microwaves at νµ+ = νEPR + νNMR. The
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electrons become relaxed by the transition | +−〉 →| −−〉 back to their lowest energy

state, allowing them to flip the spin of another proton. In this way both positive and

negative polarizations can be achieved with the same magnetic field by altering the

microwave frequency.

!
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Figure 4.8: Schematic overview of the systems required for dynamic nuclear polariza-
tion.

4.4.1 Cryogenics

The efficiency of the DNP process depends strongly on extreme low temperatures.

An insulated cryostat is used in the Univ. of Virginia target which contains a 4He

evaporation refrigerator fed by the magnet’s liquid helium reservoir and insulated by

a liquid nitrogen shield. The system in use at UVa is seen in figure 4.9.

The target material is enclosed in an insert which extends into the nose of the

refrigerator, where a bath of 1 K liquid helium provides cooling. The nose is supplied

and cooled by the refrigerator above it. Liquid helium is drawn from the magnet

helium reservoir through an insulated jumper and flows through baffles which cool

the liquid. The helium then reaches the separator, which serves as a reservoir of

cooled helium to supply the nose. Pumping on the separator draws the helium from

the magnet reservoir into the separator, and the flow from this pump is monitored

and recorded. From the separator, helium can flow down into the nose through two

"!#!$!%!

&'()!*!&+,)!-!$./!012!

&+,)!-!3$4!,12!
567!(76869:!

Figure 3.23. Schematic overview of the systems required for Dynamic Nuclear Polar-
ization [156].

Figure 3.23 shows the schematic overview of the systems required for Dynamic

Nuclear Polarization. In SANE, the protons in NH3 were polarized using DNP in

a 5 T magnetic field at 1 K temperature. The positive polarization was reached by

applying the microwave radiation with a frequency of 140.1 GHz, while the negative

polarization was reached by 140.5 GHz.

3.4.2 Monitoring of the Target Polarization

A Nuclear Magnetic Resonance (NMR) system was used to monitor the polariza-

tion of the SANE target. As described in the previous section, a particle with total

spin, J placed in an external magnetic field ~B results in 2J + 1 energy levels due to

Zeeman splitting. In addition, the magnetic field, ~B exerts a torque, ~Γ on the particle
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magnetic moment, ~µ in the form of ~Γ = ~µ× ~B =| γ~L× ~B |, where γ is the gyromag-

netic ratio and L is the angular momentum. This causes the spins of the nucleons to

precess about the direction of the applied ~B field. The frequency of this precession,

known as the Larmor frequency, is given by ω0 = γ | ~B |. In the NMR technique

an oscillating magnetic field, ~B1 with RF frequency ω is applied perpendicular to

the static ~B field with the frequency equal to the particle’s Larmor frequency, ω0 to

match the energy difference between the nuclear spin levels. This causes a flip of the

nucleon spin as it absorbs or emits energy due to the magnetic susceptibility, χ(ω) of

the material as a function of RF frequency ω,

χ(ω) = χ′(ω)− iχ′′(ω),

which can be expressed as the difference of a dispersive term χ′(ω) and an absorp-

tion term χ′′(ω). For a given spin type, the absorption portion of the magnetic

susceptibility integrated over the frequency is proportional to the polarization of the

material [181],

P = K

∫
χ′′(ω)dω (3.4.1)

with a constant K containing information on spin species, spin density, gyromagnetic

ratio and other NMR system quantities. This absorptive signal can be measured

using an inductor, called an NMR coil embedded in the target material sample. The

oscillating magnetic field ~B1 with a radio frequency near to the Larmor frequency

was applied to this NMR coil to flip the spin of the nucleon. In turn, this changes

the susceptibility of the material surrounding the coils, which creates an inductance,

LC(ω) = L0[1 + 4πηχ(ω)], (3.4.2)
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where L0 is the coil inductance for unpolarized material, and η is the coil filling factor,

a function of the coupling of the coil to the material. The coil’s impedance is then,

ZC = rC + iωLC(ω)

= rC + iωL0[1 + 4πηχ′(ω) + i4πηχ′′(ω)]

= rC − 4πωL0ηχ
′′(ω) + i[ωL0(1 + 4πηχ′(ω))]

(3.4.3)

for a coil resistance rC . The real part of this measurement gives the absorption

component of the magnetic susceptibility and thus a measurement proportional to

the polarization.

To measure the real portion of the NMR coil’s impedance over frequency, called Q-

curve, an LCR circuit called Q-meter, developed by the University of Liverpool [182]

was used. A schematic of such a Q-meter and the NMR system used during SANE

is shown in Figure 3.24.
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proton in a 5 T magnetic field is 213 MHz. Current through the NMR coil drives the

impedance signal, so it is crucial that it be independent of frequency. This is achieved

by using a high impedance amplifier to connect to the phase matching portion of the

circuit.

Figure 4.7: Diagram of Q Meter circuit showing RF generator, Phase Sensitive De-
tector (PSD), and LCR component with target material inside inductor coil.

The output of the amplifier is split to be sent to a full-wave diode detector for

diagnostic output and to a phase-sensitive detector (PSD), which is a balanced ring

modulator, (BRM) in the case of the Liverpool Q-meter. This device accepts an input

and a reference signal and outputs the input multiplied by the input’s phase, relative

to the reference signal. The input signal comes from the amplified LCR circuit and

the reference from the RF generator. To measure only the real part of the input signal

and thus the real part of LCR impedance, the reference signal must be adjusted so

there is zero phase difference between it and the input signal. This is accomplished

by simply adjusting the length of the phase cable which carries the reference signal.

Figure 3.24. Diagram of Q Meter circuit with LCR components and target material
inside the inductor coil [156].
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Inductance (and impedance) of the NMR coil changes when the surrounding ma-

terial absorbs or emits energy and thus changes the voltage of the LCR circuit. This

circuit was tuned to the Larmor frequency of the particle, which for a proton in a 5

T magnetic field is 213 MHz. For negative polarizations in the target material, as

the spin absorbs energy from RF to flip from aligned to anti-aligned, the impedance

is increased above the Larmor frequency of the particle. For positive polarizations,

spin emits energy while flipping from anti-aligned to aligned and the impedance is

decreased below the Larmor frequency. The Q-curve is produced by the output of the

Q-meter, given by the impedance plotted against the RF frequency. Integration of

this Q-curve over the frequency gives a measurement proportional to the material’s

polarization after subtracting out the background signal. The background Q-curve is

produced with unpolarized target material which depends on many quantities of the

system.
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sweeps, generally 500, averaging the signals to reduce noise. The resultant averaged

signal is then sent to the OLA module for fitting and integration.

The OLA module performs the signal integration as illustrated in figure 4.12, an

example NMR signal from a negatively enhanced polarization on March 8th, 2009.

A background signal is first subtracted from the signal, as in a) of figure 4.12; this

background is the Q-curve signal with the polarization signal removed, usually by

moving the magnetic field and thus Larmor frequency, out of the range of the fre-

quency sweeps. The background signal is dependent on many target variables, such

as small temperature shifts in and around the target electronics, so this subtracted

signal generally still contains some “background” as the true background signal shifts.

To remove any residual background and isolate the area of the signal which is due

to the polarization of the material, a polynomial fit is performed on the wings of the

signal, as in b) of 4.12. After subtracting this polynomial fit, the final signal can be

integrated to produce the NMR area in arbitrary units, as in c) of 4.12.
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Figure 4.12: Steps of NMR Signal Analysis, see text.
Figure 3.25. Steps on NMR signal analysis [156]. (explained in the text)

An example of NMR signal from negatively polarized NH3 is shown in Figure 3.25.

The background signal is subtracted from the signal as in a) of Figure 3.25. Then, a

polynomial fit is performed on the wings of the remaining signal to remove any residual

background and isolate the area of the Q-curve which is due to the polarization of

the material as in b) of Figure 3.25. The final signal after subtracting this polynomial
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fit can be integrated to determine the material’s polarization in arbitrary units as

in c) of Figure 3.25. However, this polarization needs to be calibrated to get the

true polarization. The proportionality constant, called calibration constant, can be

determined by measuring the area of Q-curve for a known polarization. Since the

polarization at thermal equilibrium, PTE, is a known quantity at a given temperature,

T ,

PTE = tanh

(
µB

KT

)
,

the system allows to relax into the thermal equilibrium and then measure the Q-

curve. The calibration constant formed by this Q-curve area allows the correction of

the Q-curve area for the absolute polarization of the material. The final polarizations,

which include the calibrations from the thermal equilibrium measurements and other

corrections have been obtained by re-integrating the recorded NMR signals. These

analyses are done by the SANE collaborator James D. Maxwell and more details can

be found in [156].

3.4.3 Polarized Target Material

Choosing 14NH3 as the polarizable proton target material has several advantages

compared to lithium hydride (7LiH and 6LiH) which is the other commonly used

irradiation doping DNP target material. Its higher maximum achievable polarization

(>90% at 1 K and 5 T), the high rate at which it reaches the maximum polarization

(<30 minutes), its higher resistance to radiation damage caused by an experimental

beam and the high percentage of polarizable nucleons for scatterings, its dilution

factor, the ratio of free, polarizable protons to total nucleons in the material, which

is roughly 17.6% protons for 14NH3, are the crucial properties. Butanol, on the other

hand, is also used as a polarized proton target. However, it needs to be chemically
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doped and its high ability to sustain radiation damage makes it a disadvantage in use

with a high-luminosity electron beam [179].

SANE used ammonia crystals made by freezing the gaseous ammonia in a sealed

aluminum cylinder in a bath of liquid nitrogen and crushed to form irregular beads

of a size of about 2 mm. The small size and shape of the beads prevents overheating

of the target due to the electron beam and provides a high packing fraction of the

material. The packing fraction is the ratio of the volume taken by the ammonia to

the target cup volume, which is determined by comparing measured and simulated

yields. In order to form the free, unpaired electrons to use in DNP, ammonia beads

were ionized to knock out an atomic hydrogen from NH3 molecules to form ˙NH2

paramagnetic centers. This process has been done at Medical Industrial Radiation

Facility (MIRF) in Maryland using a 19 MeV electron beam with the material in a

87 K liquid Argon bath (LAr2) and irradiating the material with ∼ 1017e−/cm2. This

production of radicals turns the colorless frozen ammonia beads into a pale violet.

By keeping the material at 77 K in liquid nitrogen, these radicals can remain in the

material from months to years.

3.4.4 SANE Target System

SANE used the University of Virginia polarized target. This replaced the standard

Hall C target housing called scattering chamber. The UVa target system also has

cutouts for the two spectrometers, HMS and BETA, large enough to cover the full

angular acceptances for both in-plane and out-of-plane angles. In addition, there are

entrance and exit openings for the electron beam. The beam line connects directly

to the entrance opening of the target system so that the beam does not pass through

any other material before the target. The system is mounted to the same fixed pivot

which used to mount the scattering chamber in the hall. The top of the system

contains the cryo target plumbings and lifting mechanism of the solid target insert.
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The solid target insert can be lifted out of the target system, keeping the system

sealed off so that it can then be replaced or repaired without breaking the system’s

operating conditions. An overview of the target system is shown in Figure 3.26.

The target system consisted of several subsystems:

• A superconducting Helmholtz pair of magnets, which provided a 5 T magnetic field

to the target. The magnets were kept at a temperature of 4 K through a liquid

helium reservoir. The reservoir is insulated by a 77 K liquid nitrogen, LN2

shield.

• A target insert. The targets were placed with the target insert in the uniform field

region of the magnet in the refrigerator. This is roughly 2 m long, providing

the room for four target materials, in 2.5 cm diameter target cups. Figure

3.27 shows a photograph of the bottom of the target insert. Two target cups

were filled with the crystalized NH3 beads for the main experiment. One is

for a carbon disk used for tuning of simulations and the other one is for a

titanium cross-hair which is used to monitor the beam position on the target

cup. During the calibration data collection at the beginning of SANE, the

NH3 targets were replaced by crystalized CH2 beads. Further, the insert was

equipped with thermocouples, platinum resistors, and carbon-glass resistors in

order to measure the precise temperature of the target materials required for

anneals. Heater wires were run to the bottom of the two NH3 target cups to

provide the heat needed to perform anneals. The insert guided all the cables

down to the target area. It was raised and lowered by a hydraulic lift to position

the correct target cup to the beam.

• A liquid helium evaporation refrigerator system to keep the target material at 1 K

temperature. The refrigerator was fed by the liquid helium reservoir which was

used to cool the superconducting magnets.
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Polarized Target 

The Polarized Target Assembly 

 • C, CH2 and NH3 
 • Dynamic Nuclear Polarization (DNP) polarized the   
   protons in the  NH3  target up to 90% at 

 1 K Temperature 
  5 T Magnetic Field 
•   Temperature is maintained by immersing the entire target   
   in the  liquid He bath 
 • Used microwaves to  excite spin flip   
    transitions 
    (55 GHz - 165 GHz) 
 • Polarization measured using NMR 
    coils 
•  To maintain reasonable target  
   polarization, the beam current, 

!   limited to 100 nA 
!  Was uniformly rastered. 

 
 

Figure 3.26. Schematic overview of the UVa polarized target used in SANE [156].
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insert to provide the heat needed to perform anneals, and the entire insert was raised

and lowered by a mechanized lift to position the correct target cup in the beam.

Figure 4.10: Photograph showing the bottom of a SANE target insert.

4.4.3 Microwaves

The microwaves needed to drive the polarization enhancement in DNP were supplied

by an Extend Interaction Oscillator (EIO) by CPI Canada. The EIO itself sat directly

above the target during the experiment, coupled to either target material cups by a

switching junction and over-sized, CuNi wave-guides which terminated in horns to

broadcast microwaves evenly over the cups. The Varian microwave power supply

sat in the shielded area of the Short Orbit Spectrometer hut, an unused Hall C

spectrometer, and a remote control module was used to control the power supply

from the counting house.

To measure EIO frequency and power output, a small portion of the microwaves

were directed into an EIP frequency counter and an HP power meter. An additional

check of microwave power is available by monitoring the flow rate caused by helium

boiling off due to the heat; the standard operating power for the EIO tube was less

than 1 W.

Figure 3.27. A photograph of bottom of the SANE target insert. From left to right :
A titanium cross-hair, a carbon disk, and two NH3 target cups [156].

• A NMR system. The NMR system provided an online target polarization and

recorded the operating conditions. The microwave horns were trained on each

NH3 target cup to provide the microwave radiation required for target DNP,

and the NMR coils were embedded into the two NH3 target cups to measure

the target polarizations. Microwaves were provided by the Extended Interaction

Oscillator (EIO).

4.6. Polarized Target Results 123

Sample Position Run Range Calibration Constant Charge (Pe−/cm2)

1 Top 72162–72427 -2.945048 3.8
2 Bottom 72164–72377 -3.015994 4.4
3 Bottom 72378–72416 -2.044750 2.0
4 Bottom 72417–72656 -2.122256 19.7
5 Top 72428–72668 -2.023154 22.9
6 Bottom 72657–72823 -2.032478 12.7
7 Top 72669–72836 -2.263753 16.4

8 & 11
Bottom 72824–72928 -2.563189

11.3
Bottom 72929–72983 -4.106710

9 & 10
Top 72837–72912 -2.303744

12.5
Top 72913–72985 -4.187268

12 Bottom 72984–73029 -1.956892 5.5
13 Top 72986–73014 -2.035103 11.0

Table 4.5: Table of ammonia samples used during SANE, showing run range and
position, as well as calibration constant and total charge accumulated on the material.
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Figure 4.18: Example material lifetime in total charge accumulated, showing anneals
of the material as vertical gold bars.

case at 0 Pe−/cm2 this indicates under-irradiation at NIST, and in the other two

cases it indicates an over-anneal of the material.

At around 3 and 11 Pe−/cm2, there are spontaneous drops in polarization. These

Figure 3.28. Offline polarization of the target material sample #4 versus total charge
accumulated showing the positive target polarization (red), negative tar-
get polarization (blue) and anneals of the material (vertical gold bars).
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Absolute polarization of a DNP polarized NH3 sample versus accumulated beam

charge on target is shown in Figure 3.28 [156]. The polarization of the irradiated

ammonia in an experimental beam follows three basic stages:

1. The exponential decay of polarization due to radiation damage of the material.

The high-energy electron beam from the CEBAF accelerator starts to ionize the

target material, creating more ˙NH2 paramagnetic centers. These excess free elec-

trons in the system allows more relaxation paths through the forbidden transitions,

which leads to a higher proton relaxation rate, causing an imbalance between the

electron and proton relaxation times. This reduces the DNP efficiency and creates

the exponential decay of the polarization over time. During SANE, this dropped the

polarization from 80% to 60% in 8 hours of 100 nA beam current exposure on 14NH3.

These polarization decays are shown in Figure 3.28 with positive polarizations in red

and negative polarizations in blue.

2. The immediate reduction of DNP efficiency and hence the target polarization due

to the target heating.

The CEBAF electron beam of 100 nA produces roughly 300 mW of heat while

passing through the target. This heat load cannot be entirely absorbed by the cryo-

genic systems maintaining the target material temperature. Therefore, the target

temperature increases and the maximum polarization of the material becomes lim-

ited by the thermal equilibrium polarization of the electron spins which depends on

the material’s temperature. This is clearly visible in the target polarization plots

shortly after beam trips, where the polarization rises up due to removal of the heat

load. When the beam returns, the polarization starts to drop again, generally pro-

ducing many small spikes of polarization over time, which results in a ∼ 5% of overall

polarization reduction. These small spikes can be seen on the positive and negative
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polarization decays in Figure 3.28 together with a large rise at 10·1015e−/cm2 due to

the beam drop.

3. The rapid decrease of the polarization after repeated anneals indicates the end of

the material’s useful life.

The process, called “annealing,” allows the recombination of paramagnetic centers

to restore the polarization. The target is removed from the beam and the polarizing

microwave radiation, and the temperature of the target material is increased. During

SANE, anneals were done using a coiled heater wire at the bottom of the target insert.

The current through the wire heats helium in the target volume, which convectively

heats the material to 70-100 K for 10 to 60 minutes. But removing too many radicals

causes polarization loss due to less DNP efficiency. In Figure 3.28, anneals are shown

by the vertical gold bars.

Although anneals recover the polarization of the target material, the material still

has a limited lifetime of total accumulated radiation dose. After successive cycles

of irradiation dose in the experimental beam, followed by polarization recovery via

anneals, the rate of the polarization decay due to radiation damage is increased.

(see Figure 3.28 at total charge accumulated between 19 to 20·(1015e−/cm2)). This is

thought to be due to creation of different free radicals such as hydrazine, N2H4, which

are formed from ˙NH2 when the material is heated during an anneal. At this point,

the target material reaches the end of its useful lifetime and needs to be replaced for

experiment continuation.

In addition to these three major facts, the spontaneous polarization drops at 3 and

11·(1015e−/cm2) in Figure 3.28 are due to the loss of liquid helium in the refrigerator.

This increases the target temperature and hence the polarization drops.

Figure 3.29 shows the charge averaged polarizations for each run of the SANE

experiment [156]. These data are summarized in Table 3.7.
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4.6. Polarized Target Results 129

represent the different run periods of SANE, separated by magnetic field orientation

and beam energy setting. This data is summarized in table 4.6. At 68%, the charge

averaged absolute polarization fell short of the anticipated polarization quoted in

SANE’s proposal of 75%. However, considering the unforeseeable difficulties in the

operating conditions during the run, a near 70% average polarization should be seen

as a success.
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Figure 4.22: Offline target polarizations for all SANE runs, showing run ranges for
perpendicular and parallel magnetic field configurations.

B Field Orientation Beam Energy Setting Absolute Polarization

Perpendicular
5.9 GeV 69%
4.7 GeV 66%

Parallel
5.9 GeV 66%
4.7 GeV 68%

Entire Experiment 68%

Table 4.6: Table of absolute, charge-averaged, offline polarizations per run setting
during SANE.

Figure 3.29. Offline target polarizations for all SANE runs, showing the positive tar-
get polarization (red) and negative target polarization (blue) for the two
different target magnetic field configurations, perpendicular (horizontal
green bar) and parallel (horizontal gold bar).

Table 3.7. Table of absolute, charge-averaged final polarizations averaged for all runs
of each target magnetic field configuration of SANE.

B Field Orientation Beam Energy Setting Absolute polarization
Perpendicular 5.9 GeV 69%

4.7 GeV 66%
Parallel 5.9 GeV 66%

4.7 GeV 68%
Entire Experiment 68%
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3.5 Trigger and Data Acquisition

A key element in an experiment is the event trigger. The net rate of particles

entering the spectrometer can be quite large and one needs to discriminate real events

from the many background events that pass through the detectors. When a charged

particle passes through the detectors, it produces trigger signals. A certain logical

combination of these signals is used to produce a pre-trigger for the event read-out.

Both BETA and HMS have their own event-selection criteria and once fulfilled, a

so-called singles pre-trigger is formed. In coincidence mode, pre-triggers from both

HMS and BETA that arrive within a certain timing window are accepted.
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Figure 3.30. Schematic showing the five types of triggers used by the experiment.

During the experiment SANE, five different trigger types were defined for pro-

duction data-taking, including four single-arm triggers (BETA1, BETA2, HMS and

COSMIC), and one coincidence trigger (COIN) as shown in Figure 3.30. One of the

two BETA single-arm triggers was BETA1, which was produced by using the BigCal

trigger. The second BETA signal, BETA2 is produced by the “AND” logic signal of

both BigCal and BETA Cherenkov triggers, which was not used for the COIN trigger.

For the HMS single-arm data, HMS electron trigger (HMS) was produced by requir-
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ing a Cherenkov signal (HMS C) and the Hodoscope trigger (SCIN). SCIN trigger is

produced if 3/4 hodoscope planes are fired; see the section of 3.3.3.2. For coincidence

data-taking, the protons detected by HMS in coincidence with electrons in BigCal

were acquired with the coincidence trigger (COIN). It was defined by the HMS ho-

doscope trigger (SCIN) together with the BETA electron trigger, BETA1. In addition

to the COIN trigger, part of the coincidence data was collected using a “COSMIC”

trigger, which used only HMS hodoscope trigger, SCIN. It detects everything that

produces hits in BETA, under the condition that the HMS hodoscope trigger was

fired. This made it possible to count the accidental background in BETA within the

accepted HMS scintillator timing window. However, the elastic event-selection crite-

ria could remove much of these backgrounds. The BigCal single-arm triggers were

always highly pre-scaled because their raw particle rate was very high. The triggers

formed by the HMS side and COIN were always read out with a pre-scale factor of

1, meaning all the events were recorded to disk.

The pre-triggers were coordinated by a Trigger Supervisor (TS), which received

trigger information from all detectors. The trigger supervisor accepts the trigger if it

is not busy reading the previous event, and a signal is sent to generate gates for ADCs

and to start signals for TDCs. For every run, the first 1000 triggers were generated

for pedestals. The Data Acquisition (DAQ) system records the read-outs from the

ADCs. Then the physics events are read by the DAQ. The data-acquisition system

is handled by CODA (Cebaf Online Data Acquisition) [183] in three types:

• The ADCs and TDCs from each detector for each event.

• Scaler information, which has read every two seconds.

• The information from the EPICS database, which contains the slow-control param-

eters like magnet settings, beam position, target temperature and pressure.

From there, the data is copied to long-term tape storage.
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SECTION 4

DATA ANALYSIS

The analysis of the data consisted of four major steps. The first step was recon-

struction of the individual events by decoding the raw data received from HMS and

BETA and determination of the particle trajectories, momenta and the positions of

the scattered particles at the interaction vertex. The second step was to calibrate

the detectors in order to get the physics meaning of timing, positioning and energy

recorded by each detector. Elastic and inelastic event separation was the third step,

which involved studying kinematic correlations of elastic electron-proton scattering,

the target magnetic field and also correcting the data with target and beam offsets

determined by comparing with the Monte Carlo simulation. The fourth step was to

calculate the raw and physics asymmetries and their errors and then to extract the

form factor ratio for both single-arm and coincidence data.

In this chapter, these four steps are discussed in detail.

4.1 Event Reconstruction

Once the raw signals were recorded by the Data Acquisition System (DAQ), trans-

forming them into particle tracks, particle identification and time-of-flight informa-

tion are the crucial parts. This task is performed by standard Hall C analysis code,

the replay ENGINE. A separate stand-alone FORTRAN code then continues with

the physics analysis, including calculating the track-reconstructed quantities such as

scattering angles and the positions at the target, as well as the physics quantities

such as invariant mass, W, and the momentum transfer squared, Q2. Furthermore,

ENGINE keeps track of various scaler quantities such as charge, current and tracking
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efficiencies for each experiment run separately. The output of the data was in three

forms:

• Scaler files which contain all the scaler quantities for each run.

• PAW [184] HBOOK files containing the standard set of histograms which are used

to check the detector performances and monitor the hardware.

• PAW Ntuple files containing the event-by-event information for each run. This in-

formation consists of detector quantities and, track quantities such as trajectory

and position at the focal plane of the spectrometer and at the target. These

Ntuples are the main output used in the final physics analysis.

The determination of the particle trajectory and momentum at the target was

done mainly by two major steps. The first step was to find the trajectory at the

detector focal plane and, the second step was to reconstruct the trajectory back to the

interaction vertex. The first part was done using the two HMS drift chambers. The

drift chamber hits were used to identify clusters of hits (space points) which required

at least four out of six planes in each chamber to have a “hit.” A straight line fit to

these hits in each space point, called a “stub,” is a small track. A total of 26 stubs per

space point can be generated for all left-right combinations for the wires that are fired

by the charged particle. The stub with the lowest χ2 was selected as the best stub for

each space point. After all of the best stubs were selected for all of the space points

separately for the two chambers, the tracking algorithm fits all the combinations of

particular space points belonging to the best stubs between two chambers to form a

straight line segment through both chambers. The minimization of χ2 requires that

the resulting track is consistent with the best stubs in each chamber. The fit track

is then extrapolated to the detector focal plane, which is approximately half way

between the two chambers, and the focal-plane quantities, Xfp, Yfp, X
′
fp and Y ′fp,

of the particle track at the focal plane were determined. By convention, Xfp is the
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position in the dispersive direction (pointing vertically downwards in the spectrometer

coordinate system) while Yfp is the position in the non-dispersive direction (pointing

left to smaller angles). The quantities X ′fp (=
dXfp
dZ

) and Y ′fp(=
dYfp
dZ

) are the slopes of

the tracks at the focal plane. The Z direction of the spectrometer coordinate system

is parallel to the central ray.
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Figure 4.1. Diagram showing the bent particle path due to the target magnetic field
and its straight-line projection from the target together with the mag-
netic field representation at the target. The HMS, BigCal and the beam
coordinate systems are also shown.

These focal-plane track quantities are determined using the drift chamber. The

position of the particle as it passes perpendicularly through each plane of the drift

chamber can be determined from the drift time of each particle to the fired wire

and the wire position. The drift times of the particle to each wire of a plane can

be measured by taking the time difference between the particle passing through the

focal plane (as determined by the HMS hodoscopes discussed in Section 4.2.1) and

the signal generated at each fired wire by the passing particle.
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The particles scattered off from the target are transported through the HMS

magnets to the focal plane. The particle trajectories are characterized at the target

by the HMS reconstructed position (Ztar = 0, Xtar, Ytar), angles (X ′tar, Y
′
tar) and

the fractional momentum deviation from the spectrometer central momentum, P0 ,

δ = (P − P0)/P0. The coordinates Xtar and Ytar are in the HMS coordinate system

as shown in Figure 4.1 pointing toward Xhms and Yhms, respectively. The angle

X ′tar(=
dXtar
dZ

) is the out-of-plane scattering angle at the target and Y ′tar(=
dYtar
dZ

) is the

in-plane scattering angle relative to the central ray. Note that the “tar” coordinates

are in the HMS spectrometer coordinate system (Xhms, Yhms, Zhms).

These reconstructed coordinates (Xtar, Ytar, X
′
tar, Y

′
tar, δ) at the target have a one-

to-one correspondence with the focal plane coordinates (Xfp, Yfp, X
′
fp, Y

′
fp) if the ver-

tical position of the particle track at the target, Xtar, is assumed to be zero. The

target coordinates can then be reconstructed using the focal-plane coordinates and

the matrix transformation:

X i
tar =

∑

j,k,l,m

M i
jklm(Xfp)

j(X ′fp)
k(Yfp)

l(Y ′fp)
m (4.1.1)

with the constraints of j + k + l + m ≤ N where N is the order of the expansion

and i goes from 1 to 4, which is defined by X ′tar, Ytar, Y
′
tar and δ. The reconstruction

coefficients M i
jklm are determined by a fit using an iterative process starting with a

COSY INFINITY model [185] of the spectrometer optics. By a series of dedicated

optics runs using a sieve slit collimator and thin multi-foil targets, the spectrometer

reconstruction coefficients can be calibrated. The assumption of Xtar = 0 is corrected

for by studying the slow-raster X position, Xraster.
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4.1.1 Target Magnetic Field

With the polarized target experiments, the reconstruction methodology in HMS is

modified from the ordinary one. In this case, there is an extra magnetic field around

the target which is used to polarize the target. This magnetic field deflects both beam

and scattered particles. The chicane magnets used on the beam line compensate for

this extra magnetic field around the target and direct the electron beam to the target

center. However, the scattered particles are deflected before they are transported

through the HMS magnets. Therefore, an additional particle transport through the

target magnetic field has been added to the existing HMS particle-tracking algo-

rithm. The SANE target magnetic field is assumed to be cylindrical around the

target with a dependence only on the radius and position along the axis. The field

strength decreases with radius and has non-negligible strength up to 100 cm from

the target center. The standard Hall C HMS reconstruction matrix elements are

defined to reconstruct the particle tracks from the focal plane to the interaction ver-

tex for unpolarized targets without an additional target magnetic field. Using the

same reconstruction matrix elements for the polarized target experiment mistracks

the particles because the particle starting point at the focal plane is now different

from the unpolarized case due to the extra deflection. However, the target magnetic

field integral is much smaller than that of the HMS dipole magnetic field. Therefore,

SANE used a separate transport system for the particles going through the target

magnetic field region in addition to the existing HMS transport system. Further,

because SANE used a 2 × 2 cm beam rastering system, the reconstruction matrix

element coefficients of this additional transport system were included with the slow

raster X and Y positions as well.
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The angular deflection for a particle with charge, e and momentum, P passing

through a magnetic field, B is,

∆Φ =
e

P

∫
B · dl, (4.1.2)

which can be determined for each momentum using the target magnetic field map

provided by the manufacturer. The out-of-plane angle deflection is, ∆Φ = φB − φr,

where φr is the projected out-of-plane angle for the case of no magnetic field, and φB

is the observed out-of-plane angle with magnetic field. This angle deflection causes

the vertical position difference, dY in the field-free region as shown in Figure 4.1.

This dY modifies the particle track while keeping the standard Hall C reconstruction

matrix elements the same.

First, the particle tracks are reconstructed by the HMS reconstruction coefficients

to the target center, assuming no target magnetic field. Then, by knowing the target

coordinates, Xraster, Ytar, X
′
tar, Y

′
tar, the particle is projected back to the field-free re-

gion at Z=100 cm from the target center, which is determined by the target at Z=0.

The particle’s new coordinates, X, Y,X ′, Y ′ at Z=100 cm, are then transported back

to the target at Z=0 through the target magnetic field, determining the track X

position, Xtar. A corrected Xtar position is calculated by adding the difference by

the raster position. The new reconstructed target coordinates calculated with the

corrected Xtar are projected back to the field-free region and transported to the tar-

get through the target magnetic field. Projecting the new coordinates forward to the

field-free region at Z=100 cm, transporting them backward to the target at Z=0 and

correcting the Xtar, were iterated continuously until the difference between Xtar and

Xraster is less than 1 mm. Once the iteration is completed with this requirement, the

particle reconstruction procedure continues with the next event. In this manner, the
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new target coordinates for each event are reconstructed, including the target magnetic

field effects.

4.2 HMS Detector Calibrations

Calibrations have to be performed in order to get the timing information from

individual scintillator elements, to determine the gain parameters of the calorimeter

and Cherenkov PMTs, and to convert the drift chamber TDC values to drift distances.

The drift chambers, hodoscopes and calorimeter have more complicated calibration

procedures. For the gas Cherenkov, for each PMT, the gain parameter representing

the number of ADC channels per photoelectron, is determined by finding the one-

photoelectron peak in the ADC spectrum. The calibration procedure of all of the

HMS detectors is presented in detail in Sections 4.2.1, 4.2.2, 4.2.3, 4.2.4.

4.2.1 Hodoscope Calibration

The main purpose of the HMS hodoscopes was to determine the start time for

drift chambers, which is the time when the particle passed through the HMS focal

plane. There are a number of corrections to be applied in order to reconstruct the

timing of the event using the raw ADC and TDC information [186]. First, the raw

TDC value is converted to time in nanoseconds with the conversion factor of 25.9 ps

per TDC count, which was determined at the initial commissioning of the HMS [178].

Hence, the “raw” time is given by traw = 25.9 ps × TDC for each TDC bin.

The next correction to the scintillator time is to subtract the zero offset, a deter-

mined for each channel in order to account for the variations in cable delay between

channels. During the calibration procedure, one of the PMTs is arbitrarily chosen to

have zero offset and determines the time of each scintillator hit relative to the time
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on the arbitrary PMT, which defines the start time for the drift chamber hits. All

the other PMTs were calibrated relative to this reference PMT.

The next correction to the timing signal is to correct for the light-propagation time

in the scintillator bar. The point where the particle passed through the scintillator

paddle is determined from drift-chamber tracking information. The path length of

light in each scintillator bar (in cm) is defined as the distance from the PMT to this

DC-determined paddle position which is p (max. 30 cm). Then the time correction

is given by p/b, where b is the effective speed of light in the scintillator bar in units

of cm/ns. The maximum time correction should be 30/1.4 = 21 cm/ns for the

scintillator material with a refractive index of 1.4. Because the light has an internal

reflection in the bar, the actual value of the effective speed can be less than 21 cm/ns.

The final correction for the scintillator time is the pulse-height correction or time-

walk correction, using the pedestal subtracted ADC value for a particular PMT. Since

the PMT signals are leading-edge discriminated at fixed threshold, larger signals will

exceed the threshold and start the TDC earlier than smaller signals. Therefore, the

correction to the time for the pulse height is made of the form d/
√
ADC, where d is

determined for each PMT in the calibration procedure.

The time corrections described above can be written as,

tcorr = traw − a− p/b− d/
√
ADC.

The goal of the hodoscope calibration is then to determine the above three param-

eters (zero offset a, time-walk correction coefficient d, and effective propagation speed

b). The standard HMS time-of-flight calibration code written by P. Bosted [186] was

used to obtain the best set of parameters. This code fits all three parameters for

all PMTs simultaneously, for a total of 156 parameters. The calibration code runs
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separately from the replay ENGINE and requires a special parameter file defining

several start values.

After the initial calibration was done using a good run with at least 500, 000

electron events and 50 ns time periods, additional iterations with 10 ns and 3 ns

time intervals were performed in order to avoid a bias due to accidental hits. The

calibrations were checked by looking at the reconstructed velocity β = v/c, where

v is the particle velocity and c is the speed of light. Figure 4.2 shows the velocity

spectrum of β for both electrons (using the experiment run 72994) and protons (using

the experiment run 72878) for which the tracking selection criteria for each track are

used. The code checks for a hit on each scintillator paddle.

Figure 4.2. The reconstructed β spectrum with the tracking selection criteria on all
scintillator hits. Left : A nice narrow peak centered on 1 for electrons.
Right : Velocity β as calculated from the momentum, P of the particle for
hadrons, which is centered at 0.938 for protons.

The calibration parameters depend on the PMT high voltages (HV). Therefore,

each time when the HV is changed, the calibration needs to be repeated. Because

we used the same HV during SANE, only one calibration was enough. Taking the

average time difference between the two hodoscope sets, S1 and S2 (two planes on
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each), the velocity of the particle can be calculated and hence used as the particle

identification to distinguish the particles between electron, proton, pion and kaon.

4.2.2 Drift Chamber Calibration

Drift chambers are used to determine the particle tracks. When a particle traverses

the drift chamber, a list of hits along with a TDC value for each hit is produced.

Using the hodoscopes to determine the time when the particle passed through the

focal plane, the drift chamber TDC value can be converted into a drift time. In order

to determine the drift distance, which is the distance between the particle track and

the fired wire, a time-to-distance map is generated. This is done by processing the

TDC values from all hits on a given plane for a large number of events. This gives

the drift-time distribution, F (t). The drift distance, D(t) is then calculated from,

D(t) = Dmax

∫ t
tmin

F (t′)dt′
∫ tmax
tmin

F (t′)dt′
,

assuming the drift position distribution is uniform for all wires after averaging over all

cells. The distance Dmax is the maximum possible distance which is 1/2 of the wire

spacing (0.5 cm); the time limits tmax, tmin define the range of times included in the

fit. The time t is the time value converted from the TDC. Separate time-to-distance

maps are generated for each plane of the chambers. Figure 4.3 shows the measured

drift-time distribution for the plane X1 (left) along with the calculated drift distance

(right) using the measured drift time.

The drift chamber efficiency for electrons as a function of the focal-plane coordi-

nate Xfp, (vertically pointing down in the HMS coordinate system) was calculated

using the hodoscopes hits. For each scintillator X paddle (X = 1 to 16), the number

of hits with the full number of HMS Cherenkov photo electrons, Ncer>0.5 and good

velocity from the hodoscope, 0.7<β<1.3 were recorded as the good scintillator hits.
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Figure 4.3. Left : The measured drift-time distribution for the plane X1. Right : The
drift distance calculated using the measured drift time after the drift
chamber calibration.

Then the ratio of the number of events with a good drift chamber track in the focal

plane to all good scintillator hits was calculated. In this manner, the DC tracking

efficiency as a function of the scintillator paddles was obtained, and by converting

the paddle number to the vertical position from the known geometry, the tracking

efficiency as a function of the focal plane vertical position, Xfp, is determined. Figure

4.4 shows the DC tracking efficiency as a function of the focal plane Xfp for the C run

72782. The drift chamber showed dramatic efficiency degrading with the particle’s

vertical position, i.e., with the particle relative momentum δ.

The reason for the efficiency degrading over time during SANE was assumed to

be due to the drift chamber gas leak. Therefore, different time-to-distance maps were

generated for runs taken at different time periods. In Table 4.1, different run periods

are shown with a Carbon run used to generate the time-to-distance map within that

range of runs. The reason why it was required to generate separate maps within

the particular run period is also shown. The DC calibration procedure has been

documented by P. Bosted [186].
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Figure 4.4. DC tracking efficiency as a function of the focal plane coordinate Xfp for
the C run 72782.

Table 4.1. Table of run period, carbon run used to generate the time-to-distance
map within that run period, and the reason why it was needed to generate
different maps for each run period.

The run period C run Reason to change the drift maps
72478-72652 72505 Re-established the DC gas flow
72653-72781 72678 Control run
72782-72862 72835 Control run
72863-72926 72909 Used a new Ar bottle
72927-72962 72940 Changed the DC1 gas flow rates from 100 cm3/min

to 400 cm3/min keeping the DC 2 rate at 600 cm3/min
72963-72992 72973 Changed the DC1 filter and the DC gas flow rates.

DC 1 from 400 cm3/min to 450 cm3/min and DC 2 from
600 cm3/min to 450 cm3/min

72993-72999 73026 Changed DC Argon bottle
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4.2.3 Cherenkov Calibration

The Cherenkov light reflected from the two mirrors in the HMS Cherenkov de-

tector tank is collected by the two PMTs which encoded in the ADC spectrum. The

Cherenkov calibration is performed by identifying the location of the single-photo-

electron peak in the ADC distribution. Figure 4.5 illustrates the ADC histograms

(left) and the number of photo-electron histograms (right) for both top and bottom

mirrors. Data are taken from the electron run 72375.

Figure 4.5. Left : The ADC histograms for the top (top plot) and bottom (bottom
plot) mirrors. Right : The number of photo-electron histograms (cali-
brated) on the same mirrors.

In Figure 4.5 (left), the single-photo-electron peak is clearly visible at ADC chan-

nel 219 (267) while the two-photo-electron peak appears in the proper place near

channel 438 (534) for the top (bottom) mirror. The ADC channels at the single

photo-electron peaks are saved as the calibration constants for the top mirror as

1/219 and that for the bottom mirror as 1/267 in a separate parameter file to be

used for further data analysis. The calibration constants depend on the PMT high

voltages. Each time when PMT high voltage is changed, a new Cherenkov PMT

calibration is needed. The calibrated signals from each PMT are summed to get the
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total number of photo electrons produced per event. Figure 4.6 (left) presents an ex-

ample of the full Cherenkov response for the electron run 72782. This average signal

is approximately 6 photo electrons per event. For particle identification, electrons are

identified from the number of total photoelectrons >2, while for protons the number

of total photo electrons is <2.!
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Figure 4.6. Left: an example of a full Cherenkov response for the electron run 72782.
Right: the inefficiency of the Cherenkov as a function of δ for the same
run 72782.

However, because the two mirrors are aligned vertically, there is an inefficiency

at the central region where the two mirrors meet each other. This inefficiency for

electrons is determined by calculating the ratio of yields with a cut of Cherenkov

photo electrons > 2 to Cherenkov photo electrons > 0 as a function of momentum

acceptance of the HMS, δ. As seen in Figure 4.6 (right), the Cherenkov cut of 2 photo

electrons causes an inefficiency up to 20% in the central region of the δ spectrum.

This inefficiency is applied in Monte Carlo simulation as a function of δ in order to

correct the Monte Carlo yields.
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4.2.4 Lead-Glass Calorimeter Calibration

The lead-glass electromagnetic calorimeter measures the energy deposited by a

charged particle. The Cherenkov light produced by the charged particle is collected

by PMTs which are connected to the end of the lead glass bars. The PMT signal is

proportional to the total energy deposited in each bar which read as ADC channels

by electronics. In order to correct for the gain differences between the lead glass

modules and to define a coefficient to transform the ADC amplitude to the energy

deposition for each shower counter block, the calibration is performed. The relation-

ship between the energy of the electron as determined from the track reconstruction,

Ei and the calibration coefficient, Ci for the i-th block, can be constructed using the

ADC amplitude, Ai and the pedestal in the particular ADC channel, Pi as follows:

Ei = Ci(Ai − Pi).

for the good electron events selected using the Cherenkov detector. In order to min-

imize the difference between the energy sum from all blocks and the true energy, En
e

of the electron, the χ2 minimization procedure,

χ2 =
N∑

n=1

(∑

iεMn

Ci · (Ani − Pi)− En
e

)2

= χ2
min

is performed and the final coefficients for each block were calculated, where, N is the

number of events, i is the number of blocks, and Mn is the set of block numbers in

the cluster. After all the calorimeter blocks are calibrated (total of 13×17 = 78), the

energy deposition, E, is calculated by summing over all blocks involved n a cluster:

E =
∑

iεMn

Ei.

The obtained resolution has been ∆E/E = 6− 8%/
√
E for HMS (E in GeV).
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Because the experiment used the same PMT high voltages on each PMT for the

whole run period, a single set of calibration constants was generated and used for

all runs. The histogram of the ratio of the total energy deposited by the negative

particles (electrons and pions) in the calorimeter to the detected energy is shown in

Figure 4.7 (blue) plotted from the electron run 71392.
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Figure 4.7. The HMS shower counter spectrum after applying the PID cut of
Cherenkov photo electrons > 2: The ratio of the total energy deposited
in the calorimeter, ECal to the measured energy, P of the particles. The
electron peak is at Ecal/P = 1 and the pion peak is at about 0.25.

The electron peak can be clearly seen at ECal/P = 1. It also shows a clear

pion peak. Since the electron and the pion have different energy depositions, they

form separate peaks in the plot. Electrons, positrons and photons deposit their

entire energy in the calorimeter, giving a ratio of energy detected in the calorimeter

to particle momentum determined from tracking close to 1. In contrast, hadrons

usually deposit a constant energy per layer due to ionization and produce little or

no Cherenkov light (depending on their momentum and refraction index of the lead

glass). At HMS kinematics, pions deposit a constant energy of approximately 200−
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300 MeV in the calorimeter blocks. So the pion signal appears at ∼ 0.25 GeV/Pπ in

the energy fraction distribution. However, the neutral pions produced from negative

π− in secondary π−p→ π0n reactions can decay to e+e− pairs via π0 → 2γ → e+ +e−

at the lead glass blocks and deposit the full energy of the neutral pion. This leads

to a high-energy tail for the pion toward the electron peak and may misidentify the

pion-generated electrons as good electrons.

A small peak at 0 in the energy fraction distribution is due to misidentified tracks.

If the drift chamber does not identify the electron tracks correctly, the calorimeter

clusters we are looking for projected by the drift chambers do not have any energy

deposited. This gives the deposited energy near zero. The actual track deposits its

energy somewhere else in the calorimeter.

The Figure 4.7 (red) shows the sameEcal/P spectrum after applying the Cherenkov

cut of Cherenkov photo electrons > 2, which cleans almost all pions. Therefore, for

particle identification, using the selection cuts on the energy fraction, ECal/P together

with the Cherenkov cut allows one to distinguish electrons from pions. SANE used

ECal/P>0.7 to extract the electrons.

4.3 BigCal Calibration

As the first step toward the BigCal calibration, the high voltages supplied to the

PMTs were adjusted so that each ADC channel corresponds to 1 MeV. This was

done using cosmic rays before the experiment started taking data. The rest of the

calibration procedure was continued in parallel with data-taking, using a large number

of π0 events produced in the target. These neutral pions decay very rapidly into two

photons with a 98.82% probability and a mean lifetime of 8.4× 10−17 s [187]. These

photons deposit their full energy in the calorimeter, forming two separated clusters

in BigCal.
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The particle shower in the calorimeter, as discussed in Section 4.2.4, deposits

its energy in several blocks surrounding the point where the primary particle enters

the calorimeter. In order to determine the energy and the position of this incident

particle, this set of blocks called a cluster is identified by the highest ADC value from

the BigCal phototubes for a given event. Starting with the block with the highest

energy, the neighboring blocks, whose energy exceed a threshold of 10 MeV, are added

to the first block making the cluster of blocks. This process continues to grow the

cluster by adding blocks whose energy exceeded the threshold until the maximum

number of 25 blocks in a 5 × 5 grid is reached. Once the highest energy cluster is

completed, the second highest energy cluster is generated by adding the neighboring

blocks to the second highest energy block until all the energy threshold exceeding

blocks have been added. This process continues until all the clusters are identified.

The energy of each cluster, Ec can be defined as,

Ec =
∑

i

CiAi,

where Ai is the ADC value of the block i of the cluster, and Ci is the calibration

constant for that block. The calibration started with rough values for Ci assuming

each ADC channel corresponds to 1 MeV. The goal of the calibration is to determine

an accurate value Ci for each block of BigCal.

The position of the particle entering the calorimeter, the average position, is deter-

mined by calculating the energy-weighted average of the block positions in the cluster

as,

xclust = 〈x〉 =
∑

i

CiAi
Ec
· xi

yclust = 〈y〉 =
∑

i

CiAi
Ec
· yi,

(4.3.1)

where xi and yi are the individual block coordinates at the BigCal face for a given

cluster.
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number of 25 blocks in a 5 × 5 grid is reached. Once a cluster is completed, the

next highest maxima in BigCal is found and a cluster is grown from it, until all the

blocks exceeding a given threshold are used. Figure 5.1 illustrates clustering for a

hypothetical set of blocks.

Figure 5.1: Diagram showing an example of clustering for a hypothetical set of
calorimeter blocks, including the energy–averaged cluster moments.

Once our clusters are built we can assign them an energy Ec based on the ADC

value Ai of each constituent blocks i and a calibration constant for that block ci:

Ec =
�

i

ciAi. (5.3)

The constants ci are the end goal of the calibration. We start out with rough values

for ci assuming each ADC channel corresponds to 1 MeV.

The position which the incident particle entered the calorimeter can be approx-

imated using the positions of the blocks in the cluster and their deposited energies.

By performing an energy–weighted average of the block positions in the cluster we
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clusters which include the block. By dividing this invariant mass by the known π0

mass mπ0 = 134.9 MeV, this histogram should show a distribution which is peaked

above or below unity. Dividing the calibration constant ci by the peak value of this

distribution and squaring gives the new calibration constant to be applied to that

block. Once new constants are produced in this way for all the blocks, we start again,

forming new histograms to fit. By iterating in this manner many times, our invariant

mass peaks for all the blocks should converge about one and our constants ci are

achieved. Figure 5.2 shows the π0 mass reconstruction after calibration for a subset

of calorimeter blocks.
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Figure 5.2: Plot of neutral pion mass reconstruction after block calibration. The
energy resolution of this peak is directly proportional to the energy resolution of the
clusters in the calorimeter. Plot by H. Baghdasaryan from reference [105].

Angle Correction: Neural Network

Although the calibration constants for each of the phototubes have been obtained,

we have shown that the process depends on our ability to correctly reconstruct the
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Figure 4.8. Left : Diagram showing an example of clustering for a set of calorime-
ter blocks including energy-averaged cluster positions. Right : The plot
of π0 mass reconstructed after calibration of calorimeter blocks (by H.
Baghdasaryan from reference [188].

Once the clusters and their positions on the calorimeter are identified, the calibra-

tion constant, Ci can be adjusted using the reconstructed π0 mass. For the π0 events

detected by the calorimeter, there are two separated clusters of energy E1 and E2 with

energy-averaged positions (x1, y1) and (x2, y2). Some of these π0 photons convert to

electron-positron pairs even before reaching BigCal. These electron-positron pairs

also deposit their energy in BigCal. However, these e+e− pairs are directed mostly

back-to-back and deposit their energy in the calorimeter in two clusters with a higher

distance between them. Therefore, by choosing the clusters between 20 and 80 cm

apart, the energy depositions due to electron-positron pairs are removed. Then the

invariant mass of the π0 can be determined by,

m2
π0 = 2E1E2(1− cosα), cosα =

x1x2 + y1y2 + z2

(x2
1 + y2

1 + z2)(x2
2 + y2

2 + z2)
, (4.3.2)

where α is the angle of separation of the two photons, i.e., the angle between the

two trajectories from the target to each cluster position. The variable, z, is the

distance from the target to the calorimeter face. The calibration is performed by
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histogramming the π0 mass and checking the peak position of the mass distribution

for the block with the highest signal. Dividing this invariant mass by the known π0

mass of mπ0 = 134.9 MeV/c2, this histogram should show a peak at 1. If not, dividing

the calibration constant, Ci by the peak value of the mass distribution and squaring

gives the new calibration constant for the particular block. This calibration process

continues for all of the calorimeter blocks. Once the new constants were determined,

the verification process started again by producing the invariant mass distribution

and checking the peak value of the distribution for each block. This process iterates

until the normalized peak value of the invariant mass becomes 1 for all the blocks,

and then the calibration constants, Ci for all the blocks are determined. Figure 4.8

(right) shows the π0 mass reconstructed after calibration of a subset of calorimeter

blocks.

The newly determined calibration constants need some angle correction as well. So

far, all the particles have assumed that start showering at the face of the calorimeter

blocks and have a measured z position (needed for Equation 4.3.2) from the target

to the face of the calorimeter. But the depth in the calorimeter block at which the

particle shower starts can vary with the energy of the incident particle. The z position

should be measured from the target to the real cluster positions which are inside the

blocks. A particle that starts showering deeper inside the calorimeter block has a

smaller angle to the beam axis than one that starts showering closer to the face of

the blocks. Therefore, the angle α between the two photon clusters is different and

needs to be corrected. This correction was done by a neural network [189]. In the

neural network, a set of inputs is transformed to a set of outputs via a number of

steps to reproduce the specific results. The SANE neural network had 27 inputs,

two for the x-y coordinates of the maximum energy block, and 25 for the energy

deposited on the neighboring blocks, which is the maximum number of blocks in the

cluster. Three outputs, x, y coordinates of the new cluster center and the cluster
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energy were generated. Because this method gives a better accuracy and better

resolution, the energy and the coordinates determined from this method were used to

reconstruct the π0 mass for each block that once has the maximum energy entry and

hence to determine the calibration constant, Ci. The calibration was performed by

SANE collaborator H. Baghdasaryan. Then the BigCal hit positions of the scattered

electrons (Xclust, Yclust) were determined using the energy-weighted average of the

block positions in the cluster.

4.4 Elastic Event Selection

A subset of SANE data was used to measure the beam-target asymmetry from

elastic electron-proton scattering. Polarized electrons with energies 4.72 GeV and

5.89 GeV were scattered from the polarized proton target with the spin of the proton

aligned nearly perpendicular (80◦) to the beam direction. Single-arm electron scat-

tering data were taken by detecting the elastically scattered electrons in the HMS

spectrometer at a central angle of 15.4◦ and 4.4 GeV/c HMS central momentum for

an electron beam energy of 5.89 GeV. In separate runs, coincidence ep elastic data

were taken in which recoiled protons were detected by HMS at 22.3◦ and 22.0◦, and

central momenta of 3.58 GeV/c and 4.17 GeV/c, respectively, for the two different

beam energies of 4.72 GeV and 5.89 GeV in coincidence with the scattered electrons

detected in BETA at a central angle of 40.0◦. The summarized HMS elastic kinemat-

ics are shown in Table 4.2.

After the reconstruction of each event and the detector calibrations were complete,

the elastic and inelastic event separation was the next task in the data analysis. This

was done separately for the two data sets.



126

Table 4.2. Summarized HMS elastic kinematics for both single-arm and coincidence
data.

Spectrometer Mode Coincidence Coincidence single-arm
HMS detects Proton Proton Electrons
HMS polarity + + -
Beam energy E (GeV) 4.72 5.89 5.89
HMS central momentum PHMS (GeV/c) 3.58 4.17 4.40
HMS central angle θHMS (Deg) 22.3 22.0 15.40
Q2 (GeV/c)2 5.17 6.26 2.20
Elastic events 231 1200 3× 104
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Figure 4.9. The schematic diagram of the detector setup during the single-arm data
collection for SANE.
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4.4.1 Single-Arm Electron Scattering Data

Figure 4.9 shows the schematic diagram of the detector setup during the single-

arm data collection. The scattered electron energy, E ′, and the scattered electron

angle, θ, are measured by the HMS spectrometer for the incoming beam energy, E.

A range of experiment runs, 72783-72801 was considered.

4.4.1.1 Kinematic Correlation

By knowing two kinematic variables, the rest of the elastic kinematics can be

determined by using the elastic kinematic correlations. In general, for inclusive scat-

terings, the beam energy E, the scattered energy E’ and the scattering angle θ can

be used to calculate the four-momentum transfer squared as,

Q2 = 4EE ′ sin2

(
θ

2

)

and the γ∗ + p invariant mass squared, W 2 as,

W 2 = M2 −Q2 + 2M(E − E ′).

Observation of elastic events is very basic because the invariant mass of the elastic

events should be at the proton rest mass of 0.938 GeV. But the experimental data

comes with a significant inelastic background from N , He and Al walls. Therefore,

separating the elastic events from quasi-elastic and inelastic background plays a very

important role in the single-arm data analysis.

4.4.1.2 Particle Identification (PID) Cuts

Identification of electrons in HMS is straightforward and is done mainly with the

PID and momentum acceptance cuts. By using the Cherenkov cut of, Ncer>2 and

calorimeter cut of ECal/P>0.7, (PID cuts), the background due to π− particles is
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suppressed. The quantitie, Ncer is the number of photoelectrons for the Cherenkov

counter and ECal is the deposited energy in the HMS calorimeter. The HMS spec-

trometer measures the momentum of the detected electron, P . Figure 4.10 shows

the number of Cherenkov photo electrons versus calorimeter energy to illustrate the

separation of pions and electrons.
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Figure 4.10. Cherenkov photo electrons and calorimeter energy regions for both pions
and electrons. The red (green) line indicate the calorimeter (Cherenkov)
cut used to separate electrons.

4.4.1.3 The Relative Momentum Acceptance (δ)

An acceptance cut on the momentum relative to the central momentum has been

applied to the data in addition to the PID cuts. This eliminates events that are outside

of the spectrometer acceptance, but end up in the detectors after multiple scattering

in the magnets or exit windows. Also, this cut eliminates events where the acceptance

is not well determined. The relative momentum is defined as, δ = P−Pc
Pc

= δP
P

, which

is well determined in the region of −8 %<δ<10 %, where Pc is the central momentum
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of HMS. Figure 4.11 (left) shows δ of the total single-arm electron data as a function

of invariant mass, W . It shows that the elastic events are mostly populating an even

higher region of the δ acceptance, 10 %<δ<12 %, where the reconstruction matrix

elements are not well known.
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Figure 4.11. Left: The momentum acceptance of the total single-arm electron data
as a function of invariant mass. Right: The raw yield after applying PID
cuts as a function of the invariant mass, W for two different δ regions.

Figure 4.11 (right) shows the total raw yield as a function of the invariant mass,

W after applying PID cuts. The elastic yield would be extracted after subtracting

the inelastic background from the raw data. However, the data in the higher δ region

were analyzed separately so that the systematic uncertainty from the HMS optics

can be determined and included in the final results. Therefore, two δ intervals of the

elastic data were used separately in addition to the PID cuts to extract the elastic

events.
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4.4.2 Coincidence Data
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Figure 4.12. Schematic diagram of the detector setup during the coincidence data
collection for SANE.

Figure 4.12 shows the schematic diagram of the detector setup during the co-

incidence data collection for SANE. Although it is possible to separate elastic and

inelastic events from the reconstructed proton momentum, Pp and the proton scatter-

ing angle, θp, the overlap between elastic and inelastic scattering within the resolution

of HMS makes the separation less clean. Therefore, by detecting the scattered elec-

tron in coincidence with the proton in HMS, the cleanest possible separation can be

achieved. A series of experiment runs, 72515-72781 and 72845-72894 were considered

at two-beam energies of 5.895 GeV and 4.720 GeV, respectively.
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4.4.2.1 Proton θp-Pp Kinematic Correlation

Based on energy and momentum conservation for electron-proton elastic scatter-

ing, the proton scattering angle, θp and the reconstructed proton momentum, Pp can

be related for a given electron beam energy, E by,

Pp(θp) =
2MpE(E +Mp) cos θp
M2

p + 2MpE + E2 sin2 θp
, (4.4.1)

where Mp is the rest mass of the proton. The difference between the proton mo-

mentum measured by HMS, P and the momentum predicted by the scattered proton

angle, Pp, using Equation (4.4.1), can be used to define the relative momentum dif-

ference, ∆p = P−Pp(θp)

Pc
× 100, which is expressed as a percentage of the HMS central

momentum, Pc. Elastic events were centered at ∆p = 0. Figure 4.13 shows the ∆p

spectrum for the two different kinematic settings.
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Figure 4.13. ∆p spectrum for Q2 = 5.17 (GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2

(right). (Any coincidence cuts are not applied yet.)

For both settings, the elastic peak is visible together with a significant background

increasing to the left side of the peak, which has lower momentum than the expected

momentum for elastic scattering. These protons are primarily from the neutral pion

photo production reaction γ + p → π0 + p, which is similar to elastic ep scattering.
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The bremsstrahlung photons, radiated by the electron beam with energy near to the

beam energy, interact with the proton target and the resulting proton is detected by

the HMS. The produced π0 decays immediately to two photons, π0 → γ + γ, with

some probability for one or both photons to hit BigCal with enough energy to pass

the BigCal trigger threshold. Because both the electron and photon-induced showers

give identical signals in BigCal, the only way to distinguish them is the position of

the detected particle in the BigCal. Due to the random angular distribution of the

neutral pion decay photons, they do not have the kinematic correlation between the

particle detected in the BigCal and the proton in HMS as in the elastic case, which

makes this method a very powerful way to remove the inelastic π0 backgrounds. The

reaction of Compton scattering, γ+p→ γp also contributes to the background, which

has, however, a much smaller cross-section compared to the pion photo production

and is, hence, neglectable [190].

4.4.2.2 Electron-Proton Kinematic Correlation

The scattered electron angle, θe can be calculated using the measured proton

momentum in HMS, Pp as in Equation (4.4.2) using the elastic kinematics,

θe = sin−1


2

√
2Mp(E − E3)

4EE3


 . (4.4.2)

The scattered electron energy, E3 = E−Ep+Mp and the proton energy, Ep are given

by
√
P 2
p +M2

P . The transverse coordinates of the interaction vertex, Xbeam and Ybeam

are given by the slow raster X, Y signals and the Zbeam coordinate is given in terms

of Ytar and Y ′tar reconstructed by HMS as,

Zbeam = Ytar

(
cos θhms

tan(θhms − Y ′tar)
+ sin θhms

)
,
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where θhms is the central angle of the HMS. The Xbeam (Ybeam) coordinate axis points

beam right (vertically up) while Ytar and Y ′tar are the horizontal coordinate and the

in-plane angle at the target in the HMS coordinate system as shown in Figure 4.1.

The HMS azimuthal-angle is centered at φp = −π
2
, and BigCal is centered at φe = π

2
.

The azimuthal-angle of the electron determined by the co-planarity is, φe = φp + π.

The unit vectors of the orthonormal basis along the electron trajectory in the BETA

coordinate system is,

X̂cal = sin θe sinφe

Ŷcal = − sin θe cosφe

Ẑcal = cos θe.

The coordinates measured at BigCal are parallel to its surface, with +Xcal pointing

in the direction of increasing θe, and +Ycal pointing vertically upward. By calculating

the distance where the electron trajectory intersects the surface of BigCal, S0,

S0 =
Rcal −Xbeam sin θe − Zbeam cos θe

X̂cal sin θe + Ẑcal cos θe

where Rcal=335 cm is the distance from the target to the center of BigCal, the

coordinates of the electron at point S0 along its trajectory are defined as,

X(S0) = Xbeam + S0X̂cal

Y (S0) = Ybeam + S0Ŷcal

Z(S0) = Zbeam + S0Ẑcal.

The expected coordinates from the proton kinematics (XHMS, YHMS) can then be

calculated as,

XHMS = X(S0) cos θe − Z(S0) sin θe

YHMS = Y (S0).
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The scattering angles can be calculated as,

φBETA =
YHMS

Rcal

, θBETA =
XHMS

Rcal

.

However, SANE uses a polarized target with a strong magnet which deflects the

outgoing particles by the amount of dY as seen in Figure 4.1. The target magnetic

field effects are accounted for the particle track reconstruction by HMS as explained

in Section 4.1.1. For the coincidence data, the electron deflections at BigCal, dY

are determined using the same target field subroutines. As in Equation 4.1.2, the

deflected angle, ∆φ, results in a vertical position difference of the electrons in BigCal.

Prediction of this deflection is started with the scattered electron with energy E ′ from

the interaction vertex of,

YBETA = −Ybeam

XBETA = Xbeam cos θe − Zbeam sin θe

ZBETA = Xbeam sin θe + Zbeam cos θe

with in-plane and out-of plane angles,

φBETA = −(YHMS − YBETA)/(Rcal − ZBETA)

θBETA = (XHMS −XBETA)/(Rcal − ZBETA)

in the BETA coordinate system. The electron is then considered to pass through

the target magnetic field step-by-step, each time calculating the vertical position and

angle using the target magnetic field map. This results in the predicted electron

coordinates, (XHMS, YHMS) at BigCal, including the target magnetic field deflection

corrections.
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4.4.2.3 Elastic Event Selection Cuts

Another selection criteria to extract the good elastic events is by comparing the

detected electron position at BigCal (Xclust, Yclust) to the expected position (XHMS,

YHMS) calculated from elastic kinematics of the proton detected in HMS. The dif-

ference between each pair of coordinates is defined as ∆X = XHMS − Xclust and

∆Y = YHMS − Yclust. Elastic events should be at (∆X,∆Y ) = (0, 0) as shown in

Figure 4.14.
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Figure 4.14. Elliptical cut (red) with (Xcut, Ycut) = (7, 10) cm applied to the ∆Y
vs ∆X spectra at Q2 = 5.17 (GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2

(right) with no ∆p cuts applied.

Therefore, in order to get a clean sample of elastic events, cuts have been applied

to three variables which are:

• The relative proton momentum difference, ∆p.

• The horizontal position difference, ∆X.

• The vertical position difference, ∆Y .



136

Applying an elliptical cut to the ∆X and ∆Y distributions,

√(
∆X

Xcut

)2

+

(
∆Y

Ycut

)2

≤ 1.

achieves a better background suppression than using the cuts on ∆X and ∆Y sep-

arately, because the shape of the cut matches the shape of the elastic peak in two-

dimensional phase space, (∆X,∆Y ). Compared to the rectangular cut (black), an

elliptical cut (red) rejects events at the corners of the rectangle where the signal-to-

background ratio is lower, leading to a cleaner sample of events. Figure 4.14 shows an

elliptical cut with (Xcut, Ycut) = (7, 10) cm applied to the ∆Y vs ∆X spectra at both

Q2 = 5.17 (GeV/c)2 and Q2 = 6.26 (GeV/c)2. The ∆p spectrum of all events after

applying the elliptical cut is shown in Figure 4.15 in which a much cleaner selection

of elastic events is achieved than compared to Figure 4.13.
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Figure 4.15. ∆p spectra of all events after applying the elliptical cut at Q2 = 5.17
(GeV/c)2 (left) and Q2 = 6.26 (GeV/c)2 (right).

Even after applying an elliptical cut, there is a tail at negative values of ∆p which

implies that still there are some events passing the elliptical cut coming from inelastic

reactions such as π0 photo-production. In order to suppress these inelastic events,

a cut around the elastic peak in ∆p of ±3σ is applied. Figure 4.16 shows the ∆X
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and ∆Y spectra after applying the ±3σ cut (red) around the elastic peak in the

∆p spectrum for Q2 = 6.26 (GeV/c)2. Compared to the same ∆X and ∆Y spectra

before applying the ∆p cut (blue) shown in the same Figure, the new ∆X and ∆Y

distributions are much cleaner.
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Figure 4.16. ∆X and ∆Y spectra after applying the ±3σ cut of ±0.02 around the
elastic peak (red) in the ∆p spectrum for Q2 = 6.26 (GeV/c)2, compared
to before applying the ∆p cut (blue).

4.5 Monte Carlo Simulation

Simulations play a very important role in order to understand the experimental

data. The SANE simulation includes details about all detectors, consisting of the

physical parameters of the detectors and the materials the particles pass through. To

have a better match with the resolution of data, the effects of multiple scattering in

the target and the spectrometer were also simulated for both incoming and outgoing

particles. The energy loss at the target was also included. After applying radiative

corrections and accounting for inefficiencies, the simulated yields are compared with

the experimental data. In this way, any unknown problems on the experimental data

can be determined. Because the simulation includes all known physics processes when

the particle passes through the materials, any differences between the data and the
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simulated yields are used to identify the problems and hence to either correct them

in the data or to account for them in the simulation.

For the single-arm data collection during SANE, the HMS spectrometer detected

the scattered electrons from the NH3 target and recorded the scattering angle, θe and

the scattered momentum, P . A single-arm Monte Carlo simulation constructed by M.

Eric Christy was used to weight the electron data. The standard Hall C Monte Carlo,

SIMC was used for the comparison with the coincidence data. In contrast to the

single-arm HMS Monte Carlo, SIMC contains all detector (HMS, SOS, BETA, etc.)

Monte Carlos. It is carried out separately for the lepton arm and the hadron arm, in

the same way as the single-arm Monte Carlo. SANE used BETA as the electron arm

and HMS as the proton arm in coincidence data collection. In addition to the NH3

data, the scattered electrons from the C target were generated in both single-arm

and coincidence settings for the detailed understanding of the data in the inelastic

region. Both simulations were modified to use the target magnetic field because the

original versions were for unpolarized targets only. In general, both simulations work

as follows:

For a given event, initial parameters such as X, Y , Z coordinates and the elec-

tron/proton azimuthal and polar scattering angles, as well as the momentum, are

generated at the target center. The initial limits for these parameters, initially larger

than the physical acceptance of the spectrometer, are set by the user. In SIMC, these

initial kinematic generation limits are given for both the electron and the proton,

while in the single-arm simulation, the parameters are given for the electron. For the

elastic case, only one set of angles is generated. The remaining kinematic variables

are calculated. The starting positions, X and Y , of the electron/proton beam at the

target is rastered with a uniform sinusoidal raster of 2.00 cm diameter. Table 4.3
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shows all the initial parameters except for target parameters for both the proton arm

(HMS) and the electron arm (BETA) together with the single-arm Monte Carlo. The

particles generated with the initial parameters at the target center are then propa-

gated through the target, checking for possible energy loss and multiple scattering.

Table 4.3. The initial parameters for both proton arm (HMS) and electron arm
(BETA) together with the single-arm Monte Carlo parameters.

HMSproton BETAelectron HMSelectron
Pc (GeV/c) 4.174 2.559 4.394
θc (deg.) 22.0 40.0 15.41
δ (%) −15<δ<15 −20<δ<20 −15<δ<15
Y ′tar (mrad) −250<Y ′tar<250 −120<Y ′tar<120 −150<Y ′tar<150
X ′tar (mrad) −200<X ′tar<200 −240<X ′tar<240 −200<X ′tar<200

4.5.1 Transport Through the Target Magnetic Field

The standard Hall C COSY INFINITY model generates the particle tracks with-

out a target magnetic field. The generated events at the target center are passed

through the target and are then transported through the HMS magnets to the detec-

tor hut. However, SANE used a polarized NH3 target. The magnetic field which is

used to polarize the target is directed 80◦ left to the beam axis and has a cylindrical

volume of about 100 cm in diameter around the target. Therefore, the generated

electrons from the target bend downward, deviating from a linear trajectory from the

target to the HMS collimators, which are located at beam right. The generated pro-

tons bend upward in the SIMC simulation. The simulation was modified to account

for this deflection, using the same target magnetic field map which is used for the

reconstruction of the measured data.

First, the particles are tracked through the target magnetic field up to the edge

of the field-free region, beginning at 100 cm from the target center. Then, taking

these positions and angles, (X, Y , X ′, Y ′) as the starting point, the trajectory is
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projected back to the target at Z = 0. The projection gives new coordinates at the

target, (Xnew = X −ZX ′, Ynew = Y −ZY ′, Z = 0). Then the particles starting with

these new coordinates, (Xnew, Ynew, Z = 0) with the same angles of X ′, and Y ′ are

tracked to the HMS collimator and then through the HMS magnets. As they travel

through the magnets, the magnetic optics determine the event trajectory using a

matrix calculated with the COSY INFINITY model [191], which agreed well with the

HMS optics. This has been done step-by-step through the different apertures in the

quadrupoles and dipole. Once the particle track has passed through all the apertures,

it enters the detector hut and strikes the detectors. The detector dimensions of the

drift chambers and hodoscopes were included in the simulation. So all of the particles

were checked so that they would physically hit the detectors. If so, by taking the

coordinates at the focal plane, the tracks are then reconstructed back to the target

providing reconstructed target coordinates and angles. This was done in the same

way as was done by the analyzer discussed in Section 4.1.

For the electron arm in the coincidence simulation, which is the BETA detector,

only the electron position at BigCal has been considered. This way, the predicted

and measured X and Y positions were simulated. The target magnetic field map was

used to calculate the electron’s deflection angle and then to track it using the field

integral
∫
B · dl. Although the carbon target is not polarized, the target magnetic

field was there while taking the C data. So these scattered electrons were affected

the same way as the electrons scattered from polarized NH3 when passing through

the target magnetic field to the HMS spectrometer.

4.5.2 Target Parameters

For the single-arm data-to-simulation comparison, both NH3 and C targets were

used. In order to simulate NH3 in a liquid He bath, N , H and He were generated

separately. These contributions were weighted by each target density in the target
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cup using the known packing fraction of NH3. (packing fraction will be discussed

in detail in Section 4.5.5.1.) Because the target ladder is immersed in the liquid

He bath at the center of the target chamber, the incoming electron beam has to

penetrate about a 0.5 cm thick He volume. Data for these front and back He were

also generated. Further, the aluminum contributions arising from the target cup lids,

the 4 K shields, and the evaporation refrigerator’s tailpiece were also generated.

For the carbon target, some data were taken with no He in the evaporation

refrigerator. In that case, only the C and the Al backgrounds coming from the 4 K

shields and the evaporation refrigerator’s tailpiece were simulated. Because a small

carbon disk of ∼ 0.7 cm thick has been used, carbon does not have any background

contributions from the target cup lid nor from front and back He, in contrast to the

NH3 target. However, for the carbon data taken with liquid He in the refrigerator,

the He contributions at the target (with a 3 cm thickness of the target cup minus 0.7

cm carbon thickness) as well as the front and back He bath penetrates were generated

in addition to the same aluminum background which C has without He.

For all these targets, the effective density of the targets, the thickness of the

targets, the Z position of the target measured from the target center, and the one

radiation length of the target material were given by the user as inputs. For the

coincidence data, only the H target is simulated in addition to the carbon target.

The target input data are shown in Table 4.4 assuming the packing fraction of NH3

is 56 %. In contrast to the different target inputs, all other initial inputs were the same

for the same kinematics for all targets. After generating all of the sub-targets, for

example H, N , He, Al for the NH3 target, they were summed together in accordance

with their weight-scaling factor. These scaling factors were determined by calculating

the luminosity for each target relevant to the total charge of the particular data run

and the phase-space factor. The total charge, Q, was measured for each data run and

the simulation needs to be scaled by this measured charge. The luminosity of the
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Table 4.4. Target data input information.

Target Type Effective density Thickness Z position X0

(g/cm3) (cm) (cm) (cm)
H 0.0861 3.00 0.15 732.17189
N 0.4020 3.00 0.15 94.5025
He 0.0634 3.00 0.15 1487.7287
Liquid He front 0.1450 0.5 -1.60 650.4966
Liquid He back 0.1450 0.5 1.90 650.4966
C (No He in the cup) 2.20 0.684 0.30 19.41
Liquid He with C 0.1450 2.316 0.15 650.4966
Target cup lid-Front 2.736 0.00381 -1.35 8.7756
Target cup lid-Back 2.736 0.00381 1.65 8.7756
4 K shield - Front 2.736 0.00254 -3.80 8.7756
4 K shield - Back 2.736 0.00254 3.80 8.7756
fridge’s tailpiece -Front 2.736 0.01016 -2.05 8.7756
fridge’s tailpiece -Back 2.736 0.01016 2.35 8.7756

data can be calculated as,

L =

(
Q× 10−6C

1.602× 10−19C/electron

)
·
(
ρtNA

M

)
,

where ρ is the target density in g/cm3, t is the target thickness in cm, NA is Avogadro’s

number, M is the target mass in amu, and Q is the charge in µC read from the scaler

files. The phase-space factor for the MC yield is,

δP = 4× dX ′ × dY ′ × dE ′

1000
(rad2MeV ),

where dX ′, dY ′ are the total out-of-plane and in-plane angles and dE ′ is the total

energy range. Then the weighting scaling factor for each sub-target was calculated

as,

f =
L× δP
Ngen

· 1

1000
.

The weight scaling factors for each target contribution for C with no He and C with

He targets were also calculated in the same manner. The yields for the coincidence
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simulation were also scaled by the measured charge. The simulation assumes that all

of the detectors and electronics work perfectly, which is not true in reality. Therefore,

the MC yields must be corrected for the detector inefficiencies and dead times such

as computer dead time, electronic dead time, etc. Further, the MC/SIMC yields are

modified by the radiative effects.

4.5.3 Radiative Effects

For each successful event reconstructed to the target, a weight is calculated which

consists of a model cross-section modified by the radiative effects. The model cross-

sections were determined using the most recent cross-section parametrization, F1F209

by M. Eric Christy and P. Bosted [192] and the electric and magnetic form factors

were calculated using a parametrization to the world data by J. Arrington [193]. The

uncertainty on cross-sections due to the radiative effects was estimated to be 1%

according to the radiative effect studies done at SLAC [194]. The radiative effects

calculated using the radiative correction codes, originally written by S. Dasu using

Tsai’s formula [17] and modified by P. Bosted were used for each input kinematics

table. The input kinematic tables were generated for each beam energy, which include

±8◦ range of scattering angle, θ around the HMS central angle, θc in 0.1◦ intervals.

For each θ value, the scattering momentum, P is varied by ±15% about the HMS

central momentum, Pc in 0.01 GeV intervals. The output table gives the model cross-

sections modified by radiative effects together with the beam energy, E, scattered

particle momentum, P , and the scattered particle angle, θ.

However, NH3 target, C target and C+He configurations consist of several target

materials for which the radiative effects and cross-sections are different. Therefore, the

radiative effect tables were generated separately for each sub-target material using

common input parameters. A packing fraction of 56% was assumed for the NH3

target. Table 4.5 shows the kinematics used to create the radiation tables.
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For each simulated successful event, by knowing its scattering angle and the re-

constructed scattering momentum, the radiated cross-section can be determined from

the table by interpolation or extrapolation within its kinematic range. The simulated

yields are weighted by this radiated model cross-section separately for each target

material.

Table 4.5. Kinematics used to create the radiated cross-section tables for different
target types.

NH3 C C+He
E 5.895 5.895 5.895
θc 15.41 15.41 15.41
θ 7.41-23.41 7.41-23.41 7.41-23.41
Pc 4.4 4.4 3.10
P 3.74-5.06 3.74-5.06 2.635-3.565

In contrast to the single-arm MC, the radiative effects calculation to the model

cross-section is implemented in SIMC codes so that it is not needed to calculate the

radiated cross-section tables separately and to do interpolating/extrapolating.

4.5.4 MC Comparison with C Data

The plot in Figure 4.17 shows the comparison of data to Monte Carlo yields for

the reconstructed quantities for the C target for run 72782. The data were collected

with no He in the evaporation refrigerator. Therefore, only 4 K shields and the

evaporation refrigerator’s tailpiece contribute to the background. Nominal cuts in

the reconstructed spectrometer variables are applied on both data and simulated

yields. The HMS acceptance and PID cuts applied to the data as well as to the MC

yields are given in Table 4.6. The reconstructed variables, Ytar and X ′tar show a shift

between data and MC, while Y ′tar has a discrepancy at the higher edge of the in-plane

angle acceptance. The momentum fraction, δ = δP
P

shows a dip at δP
P

= 0 on data,

which MC does not show.



145

Figure 4.17. Data to MC comparison for HMS reconstruction quantities for the C
run 72782.

Table 4.6. HMS acceptance and PID cuts applied to both data and simulated yields.

Acceptance Cuts
−50<Y ′tar<50 (mrad)
−200<X ′tar<200 (mrad)
−0.05<(θ − θc)<0.10 (mrad)

−8%<δ<10%
PID cuts
Ncer>2

Ecal/P>0.7
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4.5.4.1 Efficiency Corrections

As mentioned in Section 4.2.3, the Cherenkov detector has an inefficiency of about

20% in the central region of the δ spectrum. In the plot of reconstructed δ in Figure

4.17, the dip in the data at δ = 0 is caused by this inefficiency. Applying the

inefficiency as a function of δ to the simulated yields creates the same dip at the

same δ, resulting in a better agreement with the data. Since this inefficiency is due

to the vertical space between two mirrors, it is constant over the duration of the

experiment. Therefore, the inefficiency calculated from the C run 72782 (shown in

Figure 4.6: right) was used for all C and NH3 Monte Carlo simulations.

The drift chamber tracking efficiency also degraded as a function of the vertical

focal plane coordinate, Xfp as discussed in Section 4.2.2. The Monte Carlo simulated

yields were normalized with this tracking efficiency as well to get better agreement

with the data. For the elastic data, both the C run (72782) and NH3 runs (72790

and 72795) which were used to compare with MC were in the same kinematic regions.

Therefore, the drift chamber efficiencies were calculated using run 72782 as shown in

Figure 4.4 were used to correct both C and NH3 MC yields.

4.5.4.2 Position Offsets (Beam Offsets)

The incoming electron beam was rastered circularly with a radius of 1 cm. So,

for each event, the reconstructed target X and Y positions are not well known. No

absolute event-by-event beam position was measured. The relative X and Y positions

to the beam center were measured by recording the X and Y raster amplitudes in

an ADC. The Monte Carlo simulation was used to define the central beam X and

Y positions on the target. Figure 4.17 shows the data to MC comparison for the

reconstructed target variables using the C target. The horizontal position denoted as

“Y target” = Ytar shows a shift between data and MC. Meanwhile, the reconstructed

target in-plane angle, “Y’ target” = Y ′tar also shows a difference at the acceptance
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edges. The HMS dipole does not affect the horizontal position or in-plane angle.

Therefore, introducing a horizontal offset in X direction to the generated X position

of the simulation can shift the reconstructed X position. By adjusting this X offset

until the horizontal “Y target” and the target in-plane angle, “Y’ target” acceptance

of the MC match with the data, the beam X offset on the target, is identified.

Similarly, the reconstructed out-of-plane angle, “X’ target”= X ′tar at the target

also shows a shift between data and MC. Because theX ′tar has a first-order dependence

on the Y position at the target in the reconstruction matrix elements, using the

incorrect raster Y position at the target can cause such a type of shift. Therefore,

the generated Y position of the particles at the target was changed by introducing

an offset until the reconstructed out-of-plane angle of the data and MC agreed with

each other. Figure 4.18 shows the reconstructed distributions of Y , Y ′, X ′ and δ

after using the X and Y offsets determined by the simulation for C run 72782. The

simulation yields are corrected with the Cherenkov and drift chamber efficiencies.

The comparison between data and MC for the detected angle relative to the HMS

central angle, θ − θc, the invariant mass squared, W 2, the ratios of data to MC for

θ − θc and δp/p are also shown in Figure 4.18.

Beam X and Y offsets were checked for both C and NH3 data following the same

procedure and the offsets were the same. The X offset was found to be 0.4 cm; the Y

offset was 0.1 cm. An MC scale factor of 0.93 shown in the plot θ− θc of Figure 4.18

results from the data for the MC-to-data ratio in the δ region of −8%<δ<10%. This

shows how well the C cross-section model agrees with the data. The C cross-section

model is well tested with world data and since the cross-section for N is similar

to that for C, normalizing the N yields by this C data-to-MC ratio of 0.93 is one

further correction to the N cross-section. Therefore, the NH3 simulation yields are

re-normalized by 0.93.
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Figure 4.18. Data to MC comparison of reconstructed quantities by HMS with X and
Y offsets (X offset=0.4 cm and Y offset = 0.1 cm) from data for the C
run 72782. The simulation yields are corrected with the Cherenkov and
drift chamber efficiencies.
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4.5.4.3 C Cross-Section Shape Correction

Because the elastic peak is located at the higher δ region as seen in Figure 4.11

(left), the comparison for elastic data to the Monte Carlo simulation was considered

for two different δ regions −8%<δ<10% and 10%<δ<12% separately as mentioned in

Section 4.4.1.3. A small shift of 0.012 GeV/c2 of the invariant mass, W was applied

to the Monte Carlo yields at the elastic peak for the δ region −8%<δ<10% to have

a better match with the data for NH3 run 72790. The cross-section shape of the

C yields after applying the same W shift of 0.012 GeV/c2 was also tested. Because

the elastic peak in the δ region of 10%<δ<12% matched better with the data for

run 72790 without using any W shift, no W shift applied to these data. Figure 4.19

shows the ratio of C data to simulated yields as a function of invariant mass, W for

the two δ regions.
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Figure 4.19. The ratio of C data to simulated yields as a function of invariant mass,
W for the two δ regions, −8%<δ<10% (left) and 10%<δ<12% (right).
Only the MC yields on −8%<δ<10% used the W shift of 0.012 GeV/c2.
The polynomial fits (black) on the ratios are also shown in the plots.
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The polynomial fits shown in the plots were used to correct the Monte Carlo

yields for the C target, as well as the same fit functions were used to correct all of the

background yields in the NH3 target. In this way, the N , He and Al cross-sections

get additional corrections determined by the C cross-section as a function of W . This

correction is applied only for the elastic region of 0.7<W<1.1 GeV/c2.

4.5.5 MC Comparison with Single-Arm NH3 Data

Figure 4.20 shows the data to Monte Carlo simulation yield comparison for the

reconstructed HMS quantities for NH3 run 72790. These data were taken with the

same kinematics as the C run 72782. The same beam X and Y position offsets as

well as the same Cherenkov and drift chamber efficiencies were used on the simulation

yields as in run 72782. The C cross-section shape corrections discussed in Section

4.5.4.3 are not applied here.

The X position offset determined by using the Monte Carlo simulation as dis-

cussed in Section 4.5.4.2 was re-checked by looking at the correlation between the

reconstructed target out-of-plane angle, X ′tar and the invariant mass, W . In MC,

events are generated at a given X position and then reconstructed back to the same

position. However, in the data, the actual X position is not known and the events

are reconstructed to target X position. If the reconstructed position is not the same

as the start position of the particle, the data will show a correlation between the X ′tar

and W as in Figure 4.21 (left). This correlation can be reproduced by the Monte

Carlo simulation as well as by reconstructing the particle to a different horizontal

position X than from where it was generated as shown in Figure 4.21 (right).

Therefore, reproducing this X ′tar vs W correlation in MC generates confidence

that the same correlation seen in data are due to the reconstruction of the particle

track to the incorrect horizontal target position X. This is a very good method to

re-check the target X position for the polarized target experiments.
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Figure 4.20. After using the same beam X and Y position offsets as well as the same
Cherenkov and drift chamber efficiencies as the C run 72782, the data to
Monte Carlo comparison for the reconstructed HMS quantities for the
NH3 target 72790 is shown.
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Figure 4.21. The X ′tar vs W correlation for the data (left) and for MC (right).
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4.5.5.1 Packing Fraction

SANE utilized ammonia crystals with a density of 0.8670 g/cm3 as the polarized

target. These crystals do not fill the target cup perfectly. The packing fraction is

the ratio of the volume taken by this ammonia to the target cup volume. This is

determined by comparing the NH3 data to Monte Carlo simulation. The individual

densities of H and N in the target cup are extracted from the density of NH3. The

new effective densities were calculated by accounting for the packing fraction. The

effective density of He in the target cup is also calculated by taking the packing

fraction into account. When the packing fraction changes, then the effective density

of H, N and He in the target cup changes as follows:

The H atomic density in the total density of NH3 is 0.8670 × 3
17

g/cm3 = 0.153

g/cm3. So the remainder is the atomic density of the N , which is 0.8670× 14
17

g/cm3

= 0.714 g/cm3. If one assumes that the NH3 crystals were packed in the target cup

with the packing fraction, f, then the total H effective density in the target cup is

determined as 0.153× f
100

g/cm3, and the total N effective density in the target cup

is 0.714 × f
100

g/cm3. If the fraction of NH3 in the target cup is only f, then the

rest of (1 − f
100

) is liquid He. The density of liquid He used by SANE is 0.1450

g/cm3. Therefore, the effective density of He in the target cup is determined as

0.1450× (1− f
100

) g/cm3.

In this way, the effective densities of all the targets were calculated by assuming

one packing fraction. Then the simulation of each target type is generated and added

all together by their weighting factors as discussed in Section 4.5.2. The ratio of

data to Monte Carlo yields in the δ = δp/p spectrum for the momentum acceptance

−8%<δ<10% (seen in Figure 4.22 (left)) were determined and the procedure was

continued assuming three different packing fractions, 50%, 60% and 70%. Figure
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4.22 (right) shows the ratio of data to MC yields for the three packing fractions using

the “bottom” target data (72790). The NH3 yields were normalized by the ratio of

data to MC yields of C as discussed in Section 4.5.4.2. The data related to Figure

4.22 (right) are shown in Table 4.7.!
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Figure 4.22. The reconstructed target quantities including δ spectrum for the mo-
mentum acceptance −8%<δ<10% for the packing fraction of 60% using
run 72790 (left) and the ratio of data to MC yields for the three different
packing fractions 50%, 60% and 70% (right).

Table 4.7. Table of the ratio of data to MC yields for three different packing fractions
50%, 60% and 70% using the “bottom” target data (72790).

Packing Fractions (%) 50 60 70
Data/MC Ratio 1.0 0.88 0.78
Data/MC Ratio/0.93 1.075 0.95 0.84

By taking the packing fraction, which gives a ratio of data to MC yield of 1 as

shown in Figure 4.22 (right), the packing fraction of the NH3 crystals in the “bottom”

target cup is estimated as 56%. During the experiment, several target loads were used

and each load had different packing fractions. Because both “top” and “bottom”

NH3 targets (one target load in each) were used for the single-arm electron data, the

packing fractions have determined for the two-target cups separately. The packing
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fraction for the “top” target using the run 72795 was determined as 58%. The target

data inputs in Table 4.4 were calculated for the packing fraction of 56%, which is

determined for the “bottom” target using run 72790. Figure 4.20 shows a comparison

of reconstructed HMS quantities with the data for run 72790, assuming a new packing

fraction of 56%.

The simulated target contributions at the elastic peak compared to the data for

the NH3 run 72795 at both δ regions are shown in Figure 4.23. The W shift of 0.007

GeV/c2 and the C cross-section shape corrections mentioned in Section 4.5.4.3 were

also applied.

Figure 4.23. The simulated target contributions at the elastic peak compared to the
data at both δ regions, −8%<δ<10% (left) and 10%<δ<12% (right) for
the experiment run 72795. Different colors show different target type
contributions.

4.5.6 MC Comparison with Coincidence NH3 Data

The SIMC yields-to-data comparison for the coincidence runs is shown in Figure

4.24. All the coincidence runs with beam energy 5.895 GeV are considered. The same

elastic cuts defined in Section 4.4.2.3 were used. The shift between the data and MC

of the HMS reconstructed Ytar and the ∆p can be seen.
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Figure 4.24. Data (red) to SIMC (blue) comparison for the HMS quantity, Y target
(left) and coincidence quantity, ∆p (right) for the beam energy 5.895
GeV before correcting for the beam X and Y position offsets.

The beam X position offset for these data was determined by using the proton

arm reconstructed quantity, Ytar in the same way as the single-arm MC. The Y offset

was determined by looking at the data-to-SIMC comparison of the ∆p spectrum.

The same procedure was followed for both beam energies 5.895 GeV and 4.73 GeV.

Figure 4.25 shows the data-to-SIMC comparison for the HMS (left) and coincidence

(right) quantities after correcting for the X and Y offsets on data for the beam energy

5.895 GeV. SIMC yields were also corrected by the Cherenkov and DC efficiencies.

Further, both MC and SIMC yields were corrected by the computer lifetime read

from the scaler files. Table 4.8 shows the X and Y offsets determined by MC/SIMC

for both single-arm and coincidence data.

Table 4.8. The X and Y offsets determined by MC/SIMC for both single-arm and
coincidence data.

X offset (cm) Y offset (cm)
Single-arm data 0.4 0.1
Coincidence data
4.730 GeV/c2 0.3 0.10
5.895 GeV/c2 0.3 -0.15
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Figure 4.25. Data (red) to SIMC (blue) comparison for the HMS quantity, Y target
(left) and coincidence quantity, ∆p (right) after correcting the X and Y
offsets for the data determined by the simulation for the beam energy
5.895 GeV.

4.6 Correlation Corrections

After selecting the good elastic events, the correlation of reconstructed out-of-

plane angle, X ′tar with the invariant mass, W as seen on Figure 4.26 (left) showed a

problem in the single-arm data, which needed to be corrected. Because the recon-

structed out-of-plane angle at the target, X ′tar has a first-order dependence on the Y

position at the target in the reconstruction matrix element, the vertical beam position

deviation from the target center, Yoff , can have an effect on the reconstructed X ′tar.

This causes a correlation of X ′tar with the invariant mass, W as seen in Figure 4.26

(left).

Similarly, a correlation of the HMS quantities X ′tar vs ∆p and a correlation on the

BETA quantities, ∆Y vs Yclust were also observed in the coincidence data, as seen in

Figure 4.26 (right).

Since all of these correlations are related to the vertical position or angle, a cor-

rection of azimuthal-angle due to the target magnetic field was considered the best

explanation. Subsequently, all these correlations were analyzed with an azimuthal-

angle correction using the Monte Carlo simulation.
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Figure 4.26. The correlation of reconstructed out-of-plane angle, X ′tar with the invari-
ant mass, W in single-arm data (top) together with the correlation of
the HMS quantities X ′tar vs ∆p (middle) and a correlation of the BETA
quantities, ∆Y vs Yclust (bottom) in the coincidence data. The variable
∆p is the relative momentum difference as discussed in Section 4.4.2.1.
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4.6.1 Azimuthal-Angle Correction

The target magnetic field has not been mapped in detail. The analysis at first

assumed it is cylindrical around the target. All scattered particles would travel the

same radial distance through the field, exposed to the same field integral
∫
B ·dl. But

in reality, the target magnetic field might not be symmetric around the target and it

might have some azimuthal-angle (out-of-plane) dependence. This allows the particles

to have different
∫
B ·dl, depending on the out-of-plane angle, and therefore, undergo

different deflections. The validity of this assumption was checked and confirmed with

the Monte Carlo simulation. Two new parameters, ∆φ0 and dφ0 are defined as,

Bcorr = (θazim −∆φ0)× dφ0

Bscale =
B0

B0 + abs(Bcorr)
,

(4.6.1)

which shifts the out-of-plane angle of the particle, θazim by an amount of ∆φ0, and a

target magnetic field gradient of dφ0 corrects the magnetic field strength at the new

vertical angle of (θazim − ∆φ0). Bscale is the rescaling factor by which the magnetic

field is multiplied after introducing the magnetic field correction, Bcorr. Then the

target magnetic field is modified as,

B(3) = B(3) +Bcorr

B(3) = B(3)×Bscale

B(1) = B(1)−Bcorr

B(1) = B(1)×Bscale,

where B(3) is the field magnitude along the magnetic field Z direction at 80◦ to the

beam Z axis, and B(1) is the X component of the magnetic field pointing downward.

The horizontal component, B(2), is pointing left of the target field Z and is not

affected by the field vertical angle. Applying this correction only for the forward
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direction of the Monte Carlo simulation, the parameters ∆φ0 and dφ0 were adjusted

so that the MC generates the same correlation of X ′tar vs W as the data shows.

During the data analysis, particle tracks are reconstructed by assuming we know

all of the processes which particles undergo from the scattering at the target to

the focal plane through the detectors. Using an azimuthal-angle correction for the

forward direction and using the same reconstruction as the data does for the backward

direction on MC, is an effort to understand the target magnetic field, the particles

have passed through in forward direction during the experiment. Figure 4.27 (left)

shows the X ′tar vs W correlation generated by the simulation at ∆φ0 = 0.06◦ and

dφ0 = −0.6 T/deg. Once the correct ∆φ0 and dφ0 parameters were determined,

the azimuthal-angle correction is used in the reconstruction of the experimental data.

Figure 4.27 (right) shows the plot of X ′tar versus W for data after using the correction,

indicating that the correlation has disappeared.
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Figure 4.27. Monte Carlo simulated correlation to determine the correction (left) and
the measured data after using the azimuthal-angle correction (right).

For the data taken in coincidence mode, the proton is detected in the HMS at a

similar central angle like that of the inclusive electron data. Therefore, assuming the

azimuthal-angle correction for HMS in positive polarity is the same as for negative

polarity, the correlation of X ′tar vs ∆p was tested in a similar manner with the Monte
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Carlo simulation. Figure 4.28 (left) shows the simulated correlation after applying

the above azimuthal-angle correction only for the forward direction which gives an

equivalent correlation as the coincidence data shows in Figure 4.26 (right-top). Ap-

plying this correction to the reconstructed proton data removes the correlation as

shown in Figure 4.28 (right). Therefore, the same azimuthal-angle correction from

HMS in negative polarity is used for HMS in positive polarity, too.
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Figure 4.28. The simulated correlation of X ′tar vs ∆p (left) after applying the
azimuthal-angle correction only for the forward direction and the cor-
rected coincidence data (right).

However, scattered electrons were detected by BETA, which is at the central angle

of 40◦ left to the incoming electron beam in coincidence with the proton detected by

HMS. These electrons need different ∆φ0 and dφ0 parameters to correct the azimuthal-

angle effect of the target magnetic field. These parameters were determined using the

same method as for the HMS spectrometer by looking at the correlation of BETA

detector quantities, ∆Y vs Yclust. From the BETA arm, the only considerations

were the measured X and Y , (Xclust, Yclust) positions and the predicted X and Y ,

(XHMS, YHMS) positions of the electrons at BigCal. Therefore, the azimuthal-angle

correction is applied to the predicted values of X and Y . First, both forward and



161

backward azimuthal-angle corrections on HMS (the proton arm) in the simulation

is turned ON and then the ∆φ0 and dφ0 parameters for BETA (the electron arm)

are changed until the simulated correlation ∆Y versus Yclust becomes the same as

for the measured data as in Figure 4.26 (right-bottom). The simulated correlation is

shown in Figure 4.29 (top) and the corrected coincidence data are shown in Figure

4.29 (bottom).

The success of this method proves that the azimuthal-angle correction assumption

is a good way to correct all of the correlations seen in both single-arm and coincidence

data.
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Figure 4.29. The simulated correlation of ∆Y vs Yclust after applying the azimuthal-
angle correction only for the forward-direction (top) and the corrected-
coincidence data (bottom) at ∆φ0 = −0.15◦ and dφ0 = −0.4 T/deg.
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4.7 Raw Asymmetry Calculation

To generate experimental asymmetries, first the raw asymmetry is produced us-

ing the experimental raw yields. This was done for the single-arm data and the

coincidence data separately. Because the single-arm data have much higher statistics

compared to the coincidence data, the raw asymmetry for the single-arm data was

produced as a function of W . The software loops through all of the events of all of the

single-arm electron data runs, and after passing the electron selection cuts defined

in Sections 4.4.1.2 and 4.4.1.3, the positive and negative beam helicity were summed

separately for each W bin from 0.7 to 1.1 GeV/c2 in 0.1 GeV/c2 intervals. Then the

measured asymmetry, Ar,

Ar =
N+ −N−
N+ +N−

is calculated. Here, N+ and N− are the positive and negative helicity yields for a given

target polarization, which is positive (target polarization is in the same direction as

the applied target magnetic field) or negative (target polarization is in the opposite

direction as the applied target magnetic field). Because the single-arm elastic data

were collected using both top and bottom NH3 targets, the raw asymmetries were

calculated separately for the two targets. Further, these data were analyzed separately

for the two HMS momentum acceptance regions as mentioned in Section 4.4.1.3; the

single-arm raw asymmetries were calculated separately for the two δ regions.

In contrast, the coincidence data were taken at higher Q2 and have low statistics.

Therefore, instead of calculating the measured asymmetries as a function of W , all

the coincidence runs were separated to a few categories at first, the data taken from

top and bottom targets, positive and negative beam and target polarizations for each

target cup, and so on. After looping over all of the events within each category and

summing all of the positive and negative helicity yields which passed through the

coincidence event selection cuts as in Section 4.4.2.3, the raw asymmetry, Ar was
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calculated. This was done separately for the two-beam energies. However, all of

these helicity yields need to be corrected for the correct accumulated beam charge

and lifetimes.

4.7.1 Charge Normalization

Although the helicity flips of the beam polarization provide approximately the

same number of electrons to the target for each helicity state, still an unequal num-

ber of electrons on the target can introduce a false asymmetry affecting the results.

Charge normalization is performed to counteract this effect. Therefore, the charge-

normalized raw asymmetry, Arc is calculated as,

Arc =
N+/C+ −N−/C−
N+/C+ +N−/C−

for the charge accumulated on the target from the positive and negative helicity states

are C+ and C− respectively. These C+ and C− are read from the helicity scalers in

the EPICS data file for each run.

4.7.2 Lifetime Normalization

The trigger supervisor accepts triggers to record events. Then the data acquisition

starts recording the events and takes finite time to process it, which keeps the DAQ

busy. Triggers accepted by the trigger supervisor during this busy time cannot be

recorded and hence these events get lost. The number of events recorded for each

helicity state needs to be corrected for the lost events. This is called dead time cor-

rection [195]. This can be normally done by calculating the computer dead time for

each helicity state using the ratio of total accepted trigger events to the total recorded

trigger events as recorded by the scalers. But unfortunately, the total recorded posi-

tive trigger scaler information was not available during the experiment. It has been
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estimated by assuming that the relative dead time for positive and negative polarity

has been equal. By fitting the linear correlation of the accepted negative helicity

triggers to the total recorded negative helicity triggers that we have from the scaler

information, the total recorded positive triggers were determined using the total ac-

cepted positive triggers. This was done and implemented for all the data by SANE

collaborators H. Baghdasaryan and H. Kang.

The charge and lifetime-corrected raw asymmetries were calculated separately for

the two data sets of single-arm and coincidence are shown in Figure 4.30.
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Figure 4.30. The charge and lifetime-corrected raw asymmetries for δ regions of
−8%<δ<10% (left) and 10%<δ<12% (right) for all single-arm data for
top (red) and bottom (blue) targets.

The raw asymmetries for each category of the coincidence data for both beam

energies are shown in Figure 4.31. It shows that all of the data from the beam energy

4.73 GeV fell into only two categories, i.e., positive and negative beam polarization.

They all were taken with the bottom target with positive beam polarizations.
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Figure 4.31. The raw asymmetries for each category for the coincidence data. Solid

circles show the data from 5.895 GeV beam energy while the empty
circles show those at 4.73 GeV beam energy. The X axis shows the run
numbers.

4.8 Physics Asymmetry Calculation

After the lifetime and charge normalization have been applied to the raw asym-

metries, the physics asymmetry is calculated by,

Ap =
Arc

PBPT f
+Nc,

where PB and PT are the beam and target polarizations, and f is the dilution fac-

tor. The Nc term is a correction to the measured asymmetry that eliminates the

contribution from quasi-elastic scattering off polarized 15N under the elastic peak.

Because SANE used 14NH3(ammonia), the correction by Nc for 14N is negligible but

of opposite sign as for 15N [52].
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Each run is analyzed individually by normalizing the charge-weighted average

beam and target polarizations obtained by the Mφller and target polarization deter-

minations as discussed in Sections 3.1.3 and 3.4.1. Figure 4.32 shows the beam and

absolute target polarization reached during the experiment.
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Figure 4.32. The beam polarization (left) and the absolute-target polarization (right)
reached during the experiment. The red box shows the polarizations
during the coincidence runs and the green box shows the polarizations
during the single-arm electron runs while the red (blue) markers show
the positive (negative) polarizations.

Cuts on the beam polarization >60% and the absolute target polarization >55%

were applied in the physics asymmetry extraction.

The dilution factor, f is a crucial part in the extraction of the physics asymmetries.

The following sections will discuss the determination of f in detail.

4.8.1 Determination of the Dilution Factor

The dilution factor is the ratio of free polarizable protons to the total rates from

all other nucleons in the target material. Using polarized NH3 in a liquid He bath as

a polarized proton target, scattering from the unpolarized N , He and Al materials

dilutes the e− p scattering asymmetries which require the correction of the dilution
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factor to the raw asymmetries. Therefore, the dilution factor can be defined as,

f =
Y ieldH

Y ield(H+N+He+Al)

.

Determination of the dilution factor has been done separately for the single-arm and

coincidence data using comparisons of data to simulation yield.

4.8.1.1 Dilution Factor for Single-Arm Data

The single-arm Monte Carlo simulation discussed in Section 4.5.5 was used to

determine the dilution factor for the single-arm data. All data were collected using

both top and bottom targets, which have different packing fractions and hence different

dilution factors. Two runs, 72790 for the bottom target and 72795 for the top target,

were selected to compare with the simulated yields and to determine the dilution

factors for the two different target cups. Further, as discussed in Section 4.4.1.3, the

data were analyzed separately for the two δ regions for which the dilution factors

were also determined for the two δ regions separately. Figure 4.23 shows the Monte

Carlo simulated contributions for each target type compared to the total data for

two different δ regions separately for the top target using run 72795. Since the total

MC and data agree well with each other as shown in the plot, this is the best way

to determine the background contributions in the data. The dilution factor has been

calculated by taking the ratio of the background subtracted elastic to the total raw

yield:

f =
Y ielddata −MC(N+He+Al)

Y ielddata
. (4.8.1)

Since the low W region is dominated by the unpolarized materials of N , He and Al,

the normalization of the MC yields has been done by calculating the scaling factor

for the W region of 0.7<W<0.85 GeV/c2 using the ratio-of-data to MC yield. Then

a polynomial fit of the normalized background (N , He and Al) for the region of
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0.7<W<1.1 GeV/c2 is subtracted from total data which includes the contributions

from H, N , He and Al, resulting in the free H contribution to the data. The total

data and the total simulated MC, the simulated background with the polynomial fit

and the background subtracted elastic peak as a function of W for the two δ regions

are shown in Figure 4.33. The calculated dilution factor as a function of W is shown

in Figure 4.34.
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Figure 4.33. The total data and the total simulated MC (top), the simulated back-
ground with the polynomial fit (middle) and the background-subtracted
elastic peak (bottom) for the two δ regions −8%<δ<10% (left) and
10%<δ<12% (right) for the top target using run 72795.

Similarly, the MC contributions to the total data for different target types are

shown in Figure 4.35 for the bottom target using the NH3 run 72790. Following the

same procedure for run 72795 shown above, the dilution factor was also calculated for

the bottom target as a function of W . Figure 4.36 shows the relative dilution factors

calculated for both top and bottom targets for the two different δ regions.
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Figure 4.34. The calculated dilution factor for −8%<δ<10% (top) and 10%<δ<12%
(bottom) for the top target using run 72795.
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Figure 4.35. The simulated target contributions at the elastic peak compared to the
data at both δ regions, −8%<δ<10% (left) and 10%<δ<12% (right) for
the bottom target using experiment run 72790. Different colors show
different target type contributions.
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Figure 4.36. The relative dilution factors calculated for both top (red) and bottom
(blue) targets for the two different δ regions −8%<δ<10% (left) and
10%<δ<12% (right).

The total number of elastic events were determined after subtracting the MC

background from the data separately for the two different δ regions and were found

as ∼ 1.4 × 104 elastic events for −8%<δ<10% and ∼ 0.5 × 104 elastic events for

10%<δ<12%. Therefore, using the higher δ region of 10%<δ<12% has gained extra

events of about ∼ 40%.

The dilution factor is zero and flat for W<0.85 GeV/c2, indicating that the N +

He+Al background shape is matched well with data in this region after normalizing all

inelastic MC contributions by a constant scaling factor. The dilution factor increases

with W and reaches its maximum at the proton mass of 0.938 GeV. It then starts to

drop off to nearly a constant value of 0.1 for W>1.0 GeV/c2. The raw asymmetry,

Arc calculated for each W bin of a width of 0.13 GeV/c2 from 0.7 to 1.1 GeV/c2 were

normalized with these dilution factors as a function of W .

Normalizing Arc/PB/PT with the dilution factor as a function of W for top and

bottom targets separately results in the physics asymmetry, Ap. Figure 4.37 (left)

shows the top and bottom physics asymmetries for the two different δ regions.
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@!Figure 4.37. (Left): The top and bottom target physics asymmetries for the two
different delta regions −8%<δ<10% (top) and 10%<δ<12% (bottom).
(Right): The constant physics asymmetries for both top (inside the
hatched box) and bottom (outside the hatched box) targets and the
weighted average of it (inside the ellipse) for two different δ regions.
The expected physics asymmetries from the known form factor ratio for
each Q2 by Kelly’s form factor parametrization [50] are also shown by
dashed lines separately for the two different δ regions.

For W<0.91 GeV/c2, the dilution factor f is much smaller with large error bars

resulting in the Ap with very large error bars. At 0.91<W<0.97 GeV/c2, Ap is

constant and the error bars are smaller due to the larger f and smaller error bars on

f. For W>0.97 GeV/c2, in the elastic radiative tail, Ap is again resulting in larger

error bars. The physics asymmetries and their errors for both targets were determined

by using a linear fit in the region of 0.91<W<0.97 GeV/c2, where Ap is constant.

Then the weighted average physics asymmetry and error were obtained by combining

the top and bottom asymmetries for both δ regions; the results are shown in Figure

4.37 (right) referring to Table 4.9.
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Table 4.9. Physics asymmetries for the top and bottom targets and the weighted
average for both δ regions for the single-arm data.

Ap ±∆Ap −8%<δ<10% 10%<δ<12%
Top Target −0.213± 0.023 −0.145± 0.034
Bottom Target −0.222± 0.030 −0.188± 0.046
Weighted Average −0.216± 0.018 −0.160± 0.027

4.8.1.2 Dilution Factor for Coincidence Data

The dilution factor for the coincidence data were also determined using the data-

to-Monte Carlo simulation comparison. The background shape under the elastic

peak for the coincidence data was generated using the carbon target. The simulated

carbon background was then normalized by the scaling factor determined, using the

ratio of data-to-SIMC yields for the region of 0.03<δp/p<0.08 where the data and the

simulated carbon background match each other. By adding this normalized carbon

background to the SIMC-simulated H, a better match between the total data and

SIMC-simulated H+C can be seen in Figure 4.38. Because the coincidence data were

taken for two beam energies of 5.89 GeV and 4.73 GeV, this background simulation

is done separately for both energies.

!
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!
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Figure 4.38. The normalized carbon background and H comparison with the coinci-
dence data for the beam energy 5.89 GeV (left) and 4.73 GeV (right).
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Subtracting the normalized carbon background from the experimental data and

taking the ratio of the resulting yields to the total data determines the dilution factor

as,

f =
Y ielddata − SIMC(C)

Y ielddata
. (4.8.2)

The coincidence data were also taken using both top and bottom targets. Therefore,

it is needed to determine the dilution factors for the two target cups separately.

However, due to low statistics, it is harder to normalize the raw asymmetry, Arc

with the dilution factor bin-by-bin as a function of δp/p in a similar way as for the

single-arm data discussed in Section 4.8.1.1. Instead, an average dilution factor was

calculated using an integration method. Figure 4.39 shows the data and SIMC carbon

background used to calculate the dilution factor with the integration method for the

top (left) and bottom (right) targets for the beam energy 5.89 GeV.

!"#$#!
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Figure 4.39. The data and SIMC carbon background used to calculate the relative
dilution factor using the integration method for the top (left) and bottom
(right) targets for the beam energy 5.89 GeV.

This determines the integrals of both the normalized carbon MC and the measured

counts under the elastic peak over the δp/p region with a narrower cut of ±0.02 for

both targets. The dilution factor is then calculated using Equation 4.8.2. However,

the 4.73 GeV data has much lower statistics than the 5.895 GeV data. Therefore, for
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these data, both top and bottom targets were considered as one target. The dilution

factors calculated from the integration method for the top and bottom targets for the

5.895 GeV beam energy is determined as 0.785 and 0.830, respectively, while that for

the 4.73 GeV beam energy is determined as 0.816.

Then the beam and target polarization normalized raw asymmetries, Arc/PB/PT

are again normalized with the calculated dilution factors, and the physics asymme-

tries, Ap were obtained for each category of data. Figure 4.40 shows the extracted

physics asymmetries for different categories for both beam energies. The weighted

average physics asymmetries and their errors were calculated for the two beam ener-

gies as A = −0.006± 0.077 for the beam energy of 5.893 GeV, and A = 0.184± 0.136

for the beam energy of 4.725 GeV. These results are also shown in the same Figure

4.40.

4.9 Extraction of Gp
E/G

p
M Ratio

The beam-target asymmetry, Ap for elastic electron-proton scattering is directly

related to the proton elastic form factor ratio, Gp
E/G

p
M according to Equation 2.1.22.

Kinematics variables, a, b and c are introduced to simplify Equation 2.1.22 as,

Ap =
−br sin θ∗ cosφ∗ − a cos θ∗

r2 + c
, (4.9.1)

where r = Gp
E/G

p
M , and θ∗ and φ∗ are the polar and azimuthal-angles between the

momentum transfer vector, ~q and the proton’s spin vector. The kinematic factors are

given by,

a = 2τ tan
θe
2

√
1 + τ + (1 + τ)2 tan2 θe

2

b = 2 tan
θe
2

√
τ(1 + τ)

c = τ + 2τ(1 + τ) tan2 θe
2

(4.9.2)
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Figure 4.40. The physics asymmetries for each category of the coincidence data. The

solid circles show the data from 5.895 GeV beam energy while the empty
circles show those at 4.73 GeV beam energy. The X axis shows the run
numbers. The weighted average physics asymmetries and their errors
for the two beam energies are also shown (inside the brown ellipse). The
dashed lines are at the expected values of the physics asymmetries for
the two beam energies 4.73 GeV (light blue) and 5.893 GeV (magenta)
calculated from the known form factor ratio for each Q2 by Kelly’s form
factor parametrization [50].
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with τ = Q2

4M2 .

The four-momentum transfer squared, Q2 was calculated by using all three elastic

electron variables, incoming electron beam energy, E; scattered electron energy, E ′;

and the scattered electron angle, θe. The Q2(E,E ′, θe) calculated only from the elastic

events were extracted by comparing with the Monte Carlo simulation yields. Figure

4.41 shows the data-to-simulation yield comparison of Q2(E,E ′, θe) for two δ regions.

Figure 4.41. The data (blue markers) to Monte Carlo simulation yields (red) com-
parison of Q2(E,E ′, θe) for the two δ regions −8%<δ<10% (left)
and 10%<δ<12% (right). The simulated signal H and background
(N+He+Al) yields are also shown.

Because the simulated yields and data are matched very well after applying all of

the elastic event selection cuts on both data and MC yields, the simulated background

yields were subtracted from the data and the resulting Q2 distribution is shown in

Figure 4.42 for both δ regions. The mean values of Q2 read from Figure 4.42 are

Q2 = 2.20 (GeV/c)2 for the region −8%<δ<10%, and Q2 = 1.91 (GeV/c)2 for the

region 10%<δ<12%.

Using the elastic kinematic relations, E ′ can be calculated by θe and vice-versa.

Therefore, Q2(E,E ′) and Q2(E, θe) were also determined in addition to Q2(E,E ′, θe)

as a cross check. After applying all of the elastic event selection cuts on Q2(E,E ′)



177

Figure 4.42. The simulated background subtracted Q2(E,E ′, θe) distributions for the
two δ regions −8%<δ<10% (left) and 10%<δ<12% (right).

and Q2(E, θe), the mean values were the same as in Q2(E,E ′, θe). Therefore, the

above mentioned Q2(E,E ′, θe) were used for the GE/GM extraction.

The mean of the measured electron scattering angle on HMS, θe was determined

by applying all of the electron selection cuts together with 0.9<W<1.0 GeV/c2 for

the single-arm data.

The polar and azimuthal-angles, θ∗ and φ∗ are calculated as,

θ∗ = arccos(− sin θq cosφe sin β + cos θq cos β)

φ∗ = − arctan

(
sinφe sin β

cos θq cosφe sin β + sin θq cos β

)
+ 180◦.

(4.9.3)

The out-of-plane angle of the scattered electron defined as φe is further increased

by bending downward due to the target magnetic field. The average φe is estimated

by reading the mean value of the measured φe distribution for the elastic events. The

three-momentum transfer vector, q̃ points at an angle of θq, which is the scattered

proton angle determined event-by-event by the elastic kinematics of the electron in

HMS, and the mean value of θq was determined. The angle β is the target magnetic

field direction, 80◦ to the beam Z axis toward the BETA detector package. Then
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θ∗ and φ∗ can be calculated using Equation 4.9.3. The proton form factor ratio,

r = Gp
E/G

p
M is extracted using the physics asymmetries, Ap for both δ regions for the

single-arm data. Equation 4.9.1 has two solutions for Gp
E/G

p
M . The positive value

was chosen because the negative value is non physical.

The errors of the form factor ratio Gp
E/G

p
M , ∆r were determined by propagating

the errors of the physics asymmetry, ∆Ap. The ratios of Gp
E/G

p
M and their errors

were obtained for both δ regions separately.

Figure 4.43 shows the predicted Ap for a range of Q2 values according to the form

factor parametrization [50]. Since θq varies with Q2 and hence θ∗ varies, the black

line is the calculated Ap for known Q2 with different θ∗ calculated according to each

Q2. The different colored lines show the calculated Ap as a function of Q2 at constant

θ∗ as shown in the legends. The two black data points are the experimental Ap values

for the single-arm data at the two different δ regions. The figure shows that the two

data points are consistent with the expected asymmetry Ap within their errors.
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Figure 4.43. The expected physics asymmetry Ap for a range of Q2 values [50]. The
black line is the calculated Ap as a function of Q2 for different θ∗. Dif-
ferent colored lines show the calculated Ap at constant θ∗ as shown in
the legends. The two black data points are the experimental Ap values
for the single-arm data at the two different δ regions.
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For the coincidence data, Q2(E,E ′, θe) were determined by taking the mean values

after applying all the coincidence event selection cuts on Q2 for both beam energies.

As protons were detected by HMS, the scattered electron angle, θe was calculated

using elastic kinematics of the protons in HMS. Further, the mean value of θq is

determined using the detected proton angle from HMS, and the out-of-plane angle of

the electron, φe is determined requiring co-planary, φe = φq + 180, where φq is the

mean value of the measured proton out-of-plane angle on HMS. The corresponding

polarization angles θ∗ and φ∗ were calculated using Equation 4.9.3 and then Gp
E/G

p
M

and its errors were extracted for the two beam energies.

The physics asymmetries Ap, and extracted proton form factor ratios, r = Gp
E/G

p
M

together with the experimental parameters for both single-arm and coincidence data

are shown in Table 4.10. The extracted µpr ratio for both data sets are shown in

Figure 4.44 together with the predicted µpr.

Table 4.10. The physics asymmetries, and extracted form factor ratios together with
the experimental parameters for both single-arm and coincidence data.
The expected ratio µpr from Kelly’s form factor parametrization [50] for
each Q2 and the calculated Ap from the above predicted µpr are also
shown. The errors ∆Ap and ∆(µpr) are statistical.

single-arm Coincidence
−8%<δ<10% 10%<δ<12%

E (GeV) 5.895 5.895 5.893 4.725
θq (Deg) 44.38 46.50 22.23 22.60
φq (Deg) 171.80 172.20 188.40 190.90
θe (Deg) 15.45 14.92 37.08 43.52
φe (Deg) 351.80 352.10 8.40 10.95
Q2 (GeV/c)2 2.20 1.91 6.19 5.14
θ∗ (Deg) 36.31 34.20 101.90 102.10
φ∗ (Deg) 193.72 193.94 8.40 11.01
Ap ±∆Ap −0.216± 0.018 −0.160± 0.027 −0.006± 0.077 0.184± 0.136
µpr ±∆(µpr) 0.483± 0.211 0.872± 0.329 0.937± 0.428 −0.052± 0.678
predicted µpr 0.73 0.78 0.305 0.38
predicted Ap −0.186 −0.171 0.107 0.097
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Figure 4.44. The extracted µpG
p
E/G

p
M ratio for the single-arm data (left) and for the

coincidence data (right). The expected µpG
p
E/G

p
M for each data point is

shown by the similar color-coded dashed lines [50].

4.10 Systematic Error Estimation

Systematic errors are uncertainties due to the experiment measurements and the

experiment instruments. In contrast to the statistical error which fluctuates for each

individual measurement independently of others, the systematic error is a constant

for the measurements taken under the same conditions. There is no well-defined

method to treat or analyze the systematic errors. In this dissertation data analysis,

mostly Monte Carlo simulation was used to estimate the systematic uncertainties

from different sources.

During SANE elastic data collection, HMS played the main role recording each

particle momentum and angle. HMS was placed at a defined central angle and with

a defined central momentum. The accuracy of both measurements depends on the

accuracy of the instrument used for the measurements. The accuracy of the energy of

the incoming beam also depends on the method and the instrument used to measure

the beam energy. The errors arising from the kinematic quantities were estimated

by varying each quantity (one at a time) by its corresponding uncertainty (0.05% for
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the beam energy, 0.1% for the central momenta, and 0.5 mrad for the spectrometer

angle) and propagating it to the Monte Carlo extracted Gp
E/G

p
M ratio. The resulting

difference in the extracted Gp
E/G

p
M ratio from the value at the nominal kinematics is

taken as the uncertainty in the Gp
E/G

p
M ratio due to the uncertainty in that quantity.

In general, the uncertainties due to the kinematic variables are less than 1%.

The quantities, θ∗ and φ∗ were calculated using Equation (4.9.3), which shows

that both quantities depend on the angles θq, β and φe. Therefore, the errors on

these quantities propagate to the errors on θ∗ and φ∗. Using the Jacobian of the

elastic electron-proton reaction,

J =
δθp
δθe

=
Pe
Pp

sin θe
sin θq

, (4.10.1)

the error on the θq, δθq can be determined for the known δθe = 0.5 mrad, where the

angles θe and θq are the scattered electron and recoiled proton angles, respectively.

The scattered electron momentum (=energy) is denoted as Pe, while the recoiled

proton momentum is denoted as Pp, which can be calculated for known beam energy

E and the scattered electron angle θe using the elastic kinematics. Hence, the error

on the θq, δθq propagated from the beam energy E and the scattered electron angle

θe was determined as 0.03◦.

Then the uncertainty on the θ∗ and φ∗ were determined using the uncertainties

on the θq, δθq = 0.03◦ and the uncertainty on the target magnetic field direction

β, δβ = 0.1◦. As the final step, the uncertainty on the GE/GM ratio due to the

uncertainty in the θ∗ and φ∗ was determined. Taking the difference between the

extracted GE/GM ratio from the value at the nominal kinematics and that of after

varying each quantity, θ∗ and φ∗ one at a time by its corresponding uncertainty, the

error on the GE/GM from the error on the θ∗ was determined as 0.54%, while that

from the φ∗ was determined as 0.01%
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The systematic error on the target polarization is the largest individual contri-

bution to the uncertainty. The accuracy of the target polarization is based on the

accuracy of the calibration constants used to produce the polarization from the NMR

area. The systematic error is determined by the standard deviation of the individual

calibration constants for a given material sample to its mean value and was estimated

as 5 % [156].

The error on the beam polarization measurement comes from a global error of the

Mφller measurements and the error due to the fit to these measurements. The beam

polarization uncertainty during SANE is measured as 1.5 % [156].

The calculation of the dilution factor, f is another important source of systematic

uncertainty in the extraction of the form factor ratioGE/GM . For both single-arm and

coincidence data sets, the dilution factor has been determined using data-to-Monte

Carlo simulated yield comparisons. Therefore, the uncertainty of the dilution factor

is based on how well the data match with the simulated yield. Since the simulated

yields are based on the packing fraction, the error of 5% (analysis has done by SANE

collaborator Hoyoung Kang) in the packing fraction measurement propagates to the

dilution factor. Therefore, the new packing fraction of (pf +5)% is determined by

applying the error to the nominal packing fraction, pf determined by the Monte Carlo

simulation as discussed in Section 4.5.5.1 as (56+5=61)%. The new dilution factor

and hence the new proton form factor ratio, µpG
p
E/G

p
M was calculated for the new

packing fraction of 61% and takes the difference with the µpG
p
E/G

p
M calculated from

the nominal pf =56%. Hence, the uncertainty on the form factor ratio, µpG
p
E/G

p
M

due to the 5% uncertainty on the packing fraction is identified as 1.34%.

Single-arm data used the extended momentum acceptance in the region of

10%<δ<12%, where the HMS optics are not well tested. Therefore, the reconstruction

of the events from this region is not understood well and the uncertainty in the

COSY model used to determine these particle tracks is a special source of systematic
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uncertainty for the single-arm data. The systematic error due to this higher δ region

has been tested with a Monte Carlo simulation. As mentioned in Section 4.5.1, the

Monte Carlo checks all of the events at several apertures while they go from target to

the detector hut. This process was used to estimate the systematic uncertainty. The

number of events failed at each of these apertures were checked for the δ region of

10%<δ<12% and found that the biggest loss of events in this δ region is at the HMS

vacuum pipe exit. Particles with relatively higher momentum are less bent through

the target magnetic field and the HMS dipole field where it is possible to hit the

upper edge of the vacuum pipe exit and to not make it to the detector hut. In order

to estimate this uncertainty, ±2 mm offsets were used on the vacuum pipe positions

on both vertical and horizontal directions separately, and the effective solid-angle

differences between the offsets and those at the nominal vacuum pipe position were

determined. Taking the average ratio of these effective solid-angle differences to the

nominal solid angle, the uncertainty due to higher momentum electron tracks hitting

the edge of the vacuum pipe exit was estimated as 0.68 %. However, during the

Dilution factor determination, Monte Carlo simulated C cross-section shape match

was done for data in both δ regions. Also, Monte Carlo yields were normalized with

the ratio of data to Monte Carlo yields in the region 0.7<W<0.85 GeV/c2. Therefore,

the uncertainty, 0.68 % that comes from losing events due to higher δ are already

accounted in the dilution factors.

Table 4.11 summarizes non-negligible contributions to the systematic uncertainty

of the single-arm data. The measurements, the uncertainty of each measurement and

the relative systematic uncertainty of the µpG
p
E/G

p
M ratio due to the uncertainty on

that measurement are shown. The final relative systematic uncertainty was obtained

by summing all the individual contributions quadratically. Summing all the individual

contributions of the systematic uncertainties linearly represents the maximum
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possible error of the measurement. Therefore, the final relative systematic error on

µpG
p
E/G

p
M was estimated as 5.44% while the maximum possible error was estimated

as 9.13%. The target, beam polarizations and the packing fraction are the dominant

contributions to the systematic uncertainty.

Table 4.11. Systematic uncertainty on each measurement and the relative system-
atic uncertainty on the µpG

p
E/G

p
M ratio due to the uncertainty on that

measurement for the single-arm data. The maximum possible systematic
uncertainty obtained by summing all the individual contributions linearly
and the final systematic uncertainty obtained by summing all the indi-
vidual contributions quadratically are also shown.

Measurement Error ∆µpG
p
E/G

p
M/µpG

p
E/G

p
M (%)

E (GeV) 0.003 0.07
E ′ (GeV) 0.004 0.13
θe (mrad) 0.5 0.54
θ∗ (mrad) 1.22 0.54
φ∗ (mrad) 0.3 0.01
PT (%) 5.0 5.0
PB (%) 1.5 1.5
Packing Fraction, pf (%) 5 1.34
The maximum possible error 9.13
The final error 5.44
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SECTION 5

RESULTS AND DISCUSSION

The SANE elastic data consist of two sets, the single-arm electron and the electron-

proton coincidence data. The results for the proton elastic form factor ratio, µpG
p
E/G

p
M

determined from both data sets are shown in Table 4.10. Two regions of the HMS mo-

mentum acceptance were considered separately for the single-arm data, corresponding

to slightly different kinematics. The resulting form factor ratio was determined by

extrapolating both measurements to the average Q2 using the parameterization by

Kelly [50], as in Equation (5.0.1) and then taking the weighted average, resulting

in µpG
p
E/G

p
M = 0.605 ± 0.178 (only the statistical error is shown) for an average

four-momentum transfer squared Q2 = 2.06 (GeV/c)2,

(µpr)ext = (µpr)exp +

(
∆(µpr)

∆Q2

)
·
(
〈Q2〉 −Q2

exp

)
. (5.0.1)

Where the quantities (µpr)ext is the extrapolated form factor ratio using the parame-

terization by Kelly [50], (µpr)exp is the form factor ratio from the experiment,
(

∆(µpr)

∆Q2

)

is the straight-line gradient to Kelly’s parameterization [50], 〈Q2〉 is the average Q2,

and Q2
exp is the experiment Q2 from data.

Due to the low statistics of the coincidence data, the statistical errors of the

µpG
p
E/G

p
M ratios are larger at both beam energies, corresponding to Q2=5.17 and 6.26

(GeV/c)2. Therefore, the weighted average µpG
p
E/G

p
M and its error were determined

from the measurements extrapolated to the average Q2 using the parameterization

by Kelly [50] as in Equation (5.0.1) for the two energy settings. The resulting form

factor ratio is given as µpG
p
E/G

p
M = 0.672±0.362 (only the statistical error is shown)

for an average Q2 = 5.66 (GeV/c)2.
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Table 5.1 shows the extracted form factor ratios, (µpr)exp for each Q2, the extrapo-

lated ratios, (µpr)ext to the average Q2, Q2
Avg using the parameterization by Kelly [50]

together with the weighted average of the extrapolated ratios for both single-arm and

coincidence data.

Table 5.1. The extracted form factor ratios for each Q2, the extrapolated ratios to
the average Q2 using the parameterization by Kelly [50] together with
the weighted average of the extrapolated ratios for both single-arm and
coincidence data.

single-arm Coincidence
−8%<δ<10% 10%<δ<12%

Q2 (GeV/c)2 2.20 1.91 6.19 5.14
(µpr)exp 0.483± 0.211 0.872± 0.329 0.937± 0.428 −0.052± 0.678
Q2
Avg (GeV/c)2 2.06 5.66

(µpr)ext 0.506± 0.211 0.847± 0.329 0.975± 0.428 −0.089± 0.678
W. Avg. (µpr)ext 0.605± 0.178 0.672± 0.362

Table 5.2 shows the final µpG
p
E/G

p
M ratios with the statistical and systematic

uncertainties together with the average Q2 values. Because the form factor ratio at

higher Q2 of 5.66 (GeV/c)2 is largely dominated by the statistical uncertainty, the

systematic uncertainty for this measurement was not studied.

Table 5.2. The results of the form factor analysis from the experiment SANE.
Both the statistical and systematic uncertainties are shown for the lower
Q2=2.06 (GeV/c)2 while only the statistical uncertainty is shown for the
higher Q2=5.66 (GeV/c)2.

Q2
Avg (GeV/c)2 µpG

p
E/G

p
M ±∆µpG

p
E/G

p
M(stat) ±∆µpG

p
E/G

p
M(syst)

2.06 0.605 ± 0.178 ± 0.033
5.66 0.672 ± 0.362

Compared to the uncertainty of µpG
p
E/G

p
M from the δ region −8%<δ<10% as

shown in Table 4.10, the relative error has decreased from ∼44% to ∼29%, a relative

decrease by 34% as shown in Table 5.2 by taking the weighted average between the

two measurements in both δ regions. This improvement is due to an extra 40% events

gain by the higher δ region 10%<δ<12%.
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Figure 5.1 shows the form factor measurements from SANE together with the

world data as a function of Q2. The inner-error bar shown at Q2 = 2.06 (GeV/c)2 is

statistical and the outer-error bar is a combination of statistical and systematics. The

error bar shown at Q2 = 5.66 (GeV/c)2 is only statistical. The weighted average data

point at Q2 = 2.06 (GeV/c)2 is very consistent with the existing recoil-polarization

measurements, confirming the decrease of µpG
p
E/G

p
M with Q2. Because in theory, the

beam-target asymmetry method is equivalent to the polarization-transfer method, the

results are expected to be similar to the polarization-transfer data. The measurement

does not reveal any unknown systematic difference from the polarization-transfer

method. The obtained accuracy confirms the suitability of using the beam-target

asymmetry for determination of the µpG
p
E/G

p
M ratio.

The weighted average data point at higher Q2 = 5.66 (GeV/c)2 has a larger

statistical uncertainty due to the small number of counts which makes it difficult to

draw a strong conclusion with respect to a change of the proton form factor ratio

with Q2.

The HMS drift chamber gas leak during the coincidence data-taking resulted in the

drift chamber tracking efficiency to decrease from ∼ 98% to the average of ∼ 40%.

This caused about ∼ 60% inefficiency of the elastic proton detection by HMS. In

addition, one of the superconducting Helmholtz coils used to polarize the NH3 target

was damaged during the data-taking, which took about a month to have repaired.

This prevented about a one-month period of productive data-taking during the given

beam time. Therefore, single-arm data were taken only about ∼ 12 hours in total and

the coincidence data for elastic kinematics were taken about a week for both beam

energies, ∼ 14 hours and ∼ 155 hours, respectively, for two beam energies 4.72 GeV

and 5.89 GeV. Therefore, along with optimum proton detection efficiency in HMS, it

should be possible to take at least four times the amount of data in the same time

period, which would decrease the error bars on both measurements by a factor of
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Figure 5.1. The form factor measurements from SANE together with the world data
as a function of Q2. The inner-error bar shown at Q2 = 2.06 (GeV/c)2 is
statistical and the outer-error bar is a combination of statistical and sys-
tematics. The error bar shown at Q2 = 5.66 (GeV/c)2 is only statistical.



189

two. In addition, the target spin orientation was not optimized for a measurement of

GE/GM .

Measurement of the beam-target asymmetry in elastic electron-proton scattering

offers an independent technique of determining the proton elastic form factor ratio,

µpG
p
E/G

p
M . The TPE amplitude has a strong ε dependence with a large effect on the

extraction of the proton form factors from the Rosenbluth separation method. The

absence of such a strong dependence for the polarizable observables, the double-spin

polarization experiments show a strong validation of the method of measuring the

form factor ratio.

The form factor analysis from the experiment SANE extended the proton electric-

to-magnetic form factor ratio, µpG
p
E/G

p
M from the double-spin asymmetry up to

Q2 = 5.66 (GeV/c)2. The results at Q2 = 2.06 (GeV/c)2 are an important test of the

reproducibility of the first measurement of the beam-target asymmetry at Q2 = 1.5

(GeV/c)2 [52]. A measurement with this method at higher Q2 than the first mea-

surement at Q2 = 1.5 (GeV/c)2 has been very important to see if this third technique

is consistent with the polarization-transfer method as expected, or if it follows the

form factor scaling result from the Rosenbluth separation method. The result of this

work validates those of the polarization-transfer method and, therefore, strengthens

the case for the TPE framework as an explanation for the form factor discrepancy

between unpolarized and polarized data.

However, as a byproduct measurement of the SANE experiment, the precision

of this result is limited by statistics. It would certainly be possible to improve the

precision at high Q2 with a dedicated experiment.



190

REFERENCES

[1] H. Geiger and E. Marsden. Proceedings of the Royal Society of London, Series

A 82, 495 (1909).

[2] E. Rutherford. Philosophical Magazine, 21, 669-688 (1911).

[3] H. Geiger and E. Marsden. Philosophical Magazine, 25, 148 (1913).

[4] O. Stern. Nature, 132, 169 (1933).

[5] F. R. Wesselmann et al. Phys. Rev. Lett. 98, 132003 (2007).

[6] Francis Halzen and Alan D. Martin. Quark and Leptons: An Introductory

Course in Modern Particle Physics. John Wiley and Sons, (1984).

[7] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field

Theory. Westview Press, (1995).

[8] C. Amsler et al. (Particle Data Group), “2008 Review of Particle Physics”.

Phys. Lett. B 667, 1 (2008).

[9] M. Amaryan. Class notes, (2007).

[10] Robert Hofstadter and Robert W. McAllister. American Physical Society, Phys.

Rev. 98, 217-218 (1955).

[11] Robert Hofstadter and Robert McAllister. Phys. Rev. 102, 851 (1956).

[12] Robert Hofstadter. Rev. of Mod. Phys. 28(3), 214 (1956).

[13] Amitabha Lahiri and Palash B. Pal. A First Book Of Quantum Field Theory.

CRC Press, (2001).

[14] C. M. Maekawa and U. Van Kolck. Phys. Lett. B 478, 73 (2000).



191

[15] W. H. Hockings and U. Van Kolck. Phys. Lett. B 605, 273-278 (2005).

[16] J. J. Kelly. Phys. Rev. C 66, 065203 (2002).

[17] L. W. Mo and Y. S. Tsai. Rev. Mod. Phys. 41, 205-235 (1969).

[18] L. C. Maximon and J. A. Tjon. Phys. Rev. C 62, 054320 (2000).

[19] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen. Prog. Part. Nucl. Phys.

59, 694-764 (2007).

[20] J. Arrington and I. Sick. Phys. Rev. C 70, 028203 (2004).

[21] S. D. Drell and S. Fubini. Phys. Rev. 113, 741 (1959).

[22] G. K. Greenhut. Phys. Rev. 184, 1840 (1969).

[23] P. A. M. Guichon and M. Vanderhaeghen. Phys. Rev. Lett. 91, 142303 (2003).

[24] J. Arrington et al. Proposal for an experiment at VEPP-3. Novosibirsk. nucl-

ex/0408020, (2004).

[25] J. Arrington et al. Proposal E07-005. Jefferson Lab, Hall B, (2004).

[26] D. Hasell, M. Kohl, and R. Milner et al. OLYMPUS Proposal at DESY, Ger-

many, (2008).

[27] S. D. Drell and J. D. Walecka. Ann. Phys. 28, 18-33 (1964).

[28] M. Anselmino, A. Efremov, and E. Leader. Physics Reports, 261(1-2), 1-124

(1995).

[29] S. Stein et al. Phys. Rev. D 12, 1884 (1975).

[30] M. N. Rosenbluth. Phys. Rev. 79(4), 615 (1950).



192

[31] A. I. Akhiezer and M. P. Rekalo. Sov. Phys. Doklady Akademii Nauk SSSR.

180, 5, 1081 (1968).

[32] A. I. Akhiezer and M. P. Rekalo. Sov. J. Part. Nucl. 3, 277 (1974).

[33] Norman Dombey. Rev. Mod. Phys. 41, 236 (1969).

[34] Carl E. Carlson, Raymond G. Arnold, and Franz Gross. Phys. Rev. C 23, 363

(1981).

[35] T. W. Donnelly and A. S. Raskin. Ann. of Phys. 169:247, 191:78 (1986).

[36] I. A. Qattan et al. Phys. Rev. Lett. 94, 142301 (2005).

[37] M. E. Christy et al. Phys. Rev. C 70, 015206 (2004).

[38] L. Andivahis et al. Phys. Rev. Lett. D 50, 5491 (1994).

[39] R. C. Walker et al. Phys. Rev. Lett. D 49, 5671 (1994).

[40] F. Borkowski et al. Nucl. Phys. B 93, 461 (1975).

[41] F. Borkowski et al. Nucl. Phys. A 222, 269 (1974).

[42] W. Bartel et al. Nucl. Phys. B 58, 429 (1973).

[43] C. Berger et al. Phys. Lett. B 35, 87 (1971).

[44] J. Litt et al. Phys. Lett. B 31, 40 (1970).

[45] T. Janssens et al. Phys. Rev. 142, 922 (1966).

[46] G. G. Simon et al. Nucl. Phys. A, 333-381 (1980).

[47] J. J. Murphy, Y. M. Shin, and D. M. Skopik. Phys. Rev. C 9, 2125 (1974).

[48] P. E. Bosted et al. Phys. Rev. C 42(1), 38-64 (1990).



193

[49] A. F. Sill et al. Phys. Rev. D 48, 29 (1993).

[50] J. J. Kelly. Phys. Rev. C 70(6), 068202 (2004).

[51] C. B. Crawford et al. Phys. Rev. Lett. 98(5), 052301 (2007).

[52] M. K. Jones et al. Phys. Rev. C 74(3), 035201 (2006).

[53] M. Meziane et al. Phys. Rev. Lett. 106, 132501 (2011).

[54] A. J. R. Puckett et al. Phys. Rev. Lett. 104(24), 242301 (2010).

[55] V. Punjabi and C. F. Perdrisat et al. Phys. Rev. C 71(5), 069902 (2005).

[56] V. Punjabi and Perdrisat et al. Phys. Rev. C 71(5), 055202 (E) (2005).

[57] M. K. Jones et al. Phys. Rev. Lett. 84, 1398-1402 (2000) (superseded by [55,56]).

[58] O. Gayou et al. Phys. Rev. Lett. 88, 092301 (2002).

[59] M. Paolone et al. Phys. Rev. Lett. 105, 072001 (2010).

[60] G. Ron et al. Phys. Rev. Lett. 99, 202002 (2007).

[61] Hu, B., and M. K. Jones et al. Phys. Rev. C 73, 064004 (2006).

[62] S. Strauch et al. Phys. Rev. Lett. 91, 052301 (2003).

[63] O. Gayou et al. Phys. Rev. C 64, 038202 (2001).

[64] G. MacLachlan et al. Nucl. Phys. A 764, 261-273 (2006).

[65] T. Pospischil et al. Eur. Phys. J. A 12, 125-127 (2001).

[66] S. Dieterich et al. Phys. Lett. B 500, 47-52 (2001).

[67] B. D. Milbrath et al. Phys. Rev. Lett. 80, 452-455 (1998).

[68] B. D. Milbrath et al. Phys. Rev. Lett. 82, 2221 (E) (1999).



194

[69] R. Pohl et al. Nature 466, 213 (2010).

[70] J. C. Bernauer et al. Phys. Rev. Lett. 105(24), 242001 (2010).

[71] X. Zhan et al. Phys. Lett. B 705, 59-64 (2011).

[72] M. P. Rekalo and Egle Tomasi-Gustafsson. Eur. Phys. J. A 22, 331-336 (2004).

[73] P. G. Blunden, W. Melnitchouk, and J. A. Tjon. Phys. Rev. Lett. 91, 142304

(2003).

[74] P. G. Blunden, W. Melnitchouk, and J. A. Tjon. Phys. Rev. C 72, 034612

(2005).

[75] Y. C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson, and M. Vanderhaeghen.

Phys. Rev. Lett. 93, 122301 (2004).

[76] A. V. Afanasev, S. J. Brodsky, C. E. Carlson, Yu-Chun Chen, and M. Vander-

haeghen. Phys. Rev. D 72, 013008 (2005).

[77] D. Borisyuk and A. Kobushkin. Phys. Rev. C 74, 065203 (2006).

[78] D. Borisyuk and A. Kobushkin. Phys. Rev. C 78, 025208 (2008).

[79] D. Borisyuk and A. Kobushkin. Phys. Rev. D 79, 034001 (2009).

[80] N. Kivel and M. Vanderhaeghen. Phys. Rev. Lett. 103, 092004 (2009).

[81] J. Arrington, W. Melnitchouk, and J. A. Tjon. Phys. Rev. C 76, 035205 (2007).

[82] S. Riordan et al. Phys. Rev. Lett. 105, 262302 (2010).

[83] J. Arrington et al. Proposal E05-017. Jefferson Lab, Hall C, (2005).

[84] T. Averett et al. Proposal E05-015. Jefferson Lab, Hall A, (2005).

[85] D. Androic et al. Phys. Rev. Lett. 107(2), 022501, (2011).



195

[86] L. Capozza. Eur. Phys. J. A 32, 497-499 (2007).

[87] D. Beck et al. (E06-008-G0 Collaboration). Jefferson Lab, Hall C, (2006).

[88] F. E. Maas et al. ImaginaryPhys. Rev. Lett. 94(8), 082001 (2005).

[89] S. P. Wells et al. Phys. Rev. C 63(6), 064001, (2001).

[90] C. Perdrisat et al. 12 GeV Proposal PR12-07-109. Jefferson Lab, Hall A, (2007).

[91] S. Gilad et al. 12 GeV Proposal PR12-07-108. Jefferson Lab, Hall A, (2007).

[92] E. J. Brash et al. 12 GeV Proposal PR12-09-001. Jefferson Lab, Hall C, (2009).

[93] J. Arrington et al. 12 GeV Proposal E08-007. Jefferson Lab, Hall A, (2008).

[94] S. Platchkov et al. Nucl. Phys. A 510, 740-758 (1990).

[95] R. Schiavilla and I. Sick. Phys. Rev. C 64, 041002 (2001).

[96] B. Plaster et al. Phys. Rev. C 73, 025205 (2006).

[97] R. Madey et al. Phys. Rev. Lett. 91, 122002 (2003) (superseded by [96]).

[98] D. I. Glazier et al. Eur. Phys. J. A 24, 101-109 (2005).

[99] M. Ostrick et al. Phys. Rev. Lett. 83, 276-279 (1999).

[100] C. Herberg et al. Eur. Phys. J. A5, 131-135 (1999).

[101] T. Eden et al. Phys. Rev. C 50, 1749-1753 (1994).

[102] E. Geis et al. Phys. Rev. Lett. 101, 042501 (2008).

[103] G. Warren et al. Phys. Rev. Lett. 92, 042301 (2004).

[104] H. Zhu et al. Phys. Rev. Lett. 87, 081801 (2001).

[105] I. Passchier et al. Phys. Rev. Lett. 82, 4988-4991 (1999).



196

[106] J. Bermuth et al. Phys. Lett. B 564, 199-204 (2003).

[107] D. Rohe et al. Phys. Rev. Lett. 83, 4257-4260 (1999) (superseded by [106]).

[108] J. Golak et al. Phys. Rev. C 63, 034006 (2001) (Applying FSI corrections

to [109]).

[109] J. Becker et al. Eur. Phys. J. A 6, 329-344 (1999) (without FSI corrections).

[110] J. Friedrich and T. Walcher. Eur. Phys. J. A 17, 607-623 (2003).

[111] Annual Report 2004/2005. Institut fuer Kernphysik, Universitaet Mainz,

(2006).

[112] P. Achenbach et al. Proposal MAMI-A1-1/05(polarized 3He), Mainz Microtron,

(2005).

[113] B. D. Anderson et al. 12 GeV Proposal PR12-11-009 (recoil polarization).

Jefferson Lab, Hall C, (2011).

[114] B. Wojtsekhowski et al. 12 GeV Proposal PR12-09-016 (polarized He-3), Jef-

ferson Lab, Hall A, (2009).

[115] A. Lung et al. Phys. Rev. Lett. 70, 718-721 (1993).

[116] P. Markowitz et al. Phys. Rev. C 48, 5-9 (1993).

[117] S. Rock et al. Phys. Rev. Lett. 49, 1139 (1982).

[118] K. M. Hanson et al. Phys. Rev. D 8, 753-778 (1973).

[119] J. Lachniet et al. Phys. Rev. Lett. 102, 192001 (2009).

[120] G. Kubon et al. Phys. Lett. B 524, 26-32 (2002).

[121] H. Anklin et al. Phys. Lett. B 428, 248-253 (1998).



197

[122] E. E. W. Bruins et al. Phys. Rev. Lett. 75, 21-24 (1995).

[123] H. Anklin et al. Phys. Lett. B 336, 313-318 (1994).

[124] B. Anderson et al. Phys. Rev. C 75, 034003 (2007).

[125] W. Xu et al. Phys. Rev. C 67, 012201 (2003) (supeseded by [124]).

[126] W. Xu et al. Phys. Rev. Lett. 85, 2900-2904 (2000) (supeseded by [124]).

[127] H. Gao et al. Phys. Rev. C 50, 546-549 (1994).

[128] N. Meitanis. Ph.D. theses, Massachusetts Institute of Technology, (2006).

[129] B. O’Neill. Ph.D. theses, Arizona State University (in preparation).

[130] G. P. Gilfoyle et al. 12 GeV Proposal PR12-07-104 (ratio method). Jefferson

Lab, Hall B, (2007).

[131] B. Quinn et al. 12 GeV Proposal PR12-09-019 (ratio method). Jefferson Lab,

Hall A, (2009).

[132] F. Iachello, A.D. Jackson, and A. Lande. Phys. Lett. B 43, 191-196 (1973).

[133] Manfred Gari and W. Krumpelmann. andZ. Phys. A 322, 689-693 (1985).

[134] M. A. Belushkin, H. W. Hammer, and U. G. Meissner. Phys. Rev. C 75, 035202

(2007).

[135] C. Crawford et al. Phys. Rev. C 82, 045211 (2010).

[136] I. T. Lorenz et al. Eur. Phys. J. A 48, 151 (2012).

[137] Earle L. Lomon and Simone Pacetti. Phys. Rev. D 85, 113004 (2012).

[138] Nathan Isgur and Gabriel Karl. Phys. Rev. D 18, 4187 (1978).



198

[139] Dirac and A. M. Paul. Rev. Mod. Phys. 21, 392-399 (1949).

[140] G. A. Miller. Phys. Rev. C 66, 032201 (2002).

[141] M. R. Frank, B. K. Jennings, and G. A. Miller. Phys. Rev. C 54, 920-935

(1996).

[142] G. Peter Lepage and Stanley J. Brodsky. Phys. Rev. Lett. 43, 545-549 (1979).

[143] Andrei V. Belitsky, Xiang-dong Ji, and Feng Yuan. Phys. Rev. Lett. 91, 092003

(2003).

[144] M. Guidal, M. V. Polyakov, A. V. Radyushkin, and M. Vanderhaeghen. Phys.

Rev. D 72, 054013 (2005).

[145] Xiang-Dong Ji. Phys. Rev. Lett. 78, 610-613 (1997).

[146] Gerald A. Miller. Phys. Rev. Lett. 99, 112001 (2007).

[147] Reinhard Alkofer and Lorenz von Smekal. Phys. Rept. 353, 281 (2001).

[148] Christian S. Fischer. J. Phys. G 32, R253-R291 (2006).

[149] John Arrington, Kees de Jager, and Charles F. Perdrisat. J. Phys. Conf. Ser.

299, 012002 (2011).

[150] I. Aznauryan et al. (2009).

[151] I. C. Cloet et al. Few Body Syst. 46, 1-36 (2009).

[152] A. Holl et al. Nucl. Phys. A 755, 298-302 (2005).

[153] M. Gockeler et al. Phys. Rev. D 71, 034508 (2005).

[154] J. D. Ashley et al. Eur. Phys. J. A 19, 9-14 (2004).

[155] R. G. Edwards et al. PoS LAT2006, 121 (2006).



199

[156] James D. Maxwell. Probing Proton Spin Structure: A Measurement of g2

at Four-momentum Transfer of 2 to 6 GeV2. Ph.D. theses, University of

Virginia, (2011).

[157] C. Hernandez-Garcia, M. L. Stutzman, and P. G. O’Shea. Physics Today 61(2),

44-49 (2008).

[158] C. W. Leemann, D. R. Douglas, and G. A. Krafft. Ann. Rev. Nucl. Part. Sci.

51, 413-450 (2001).

[159] C. Yan and R. Carlini. Hall C beamline instrumentation, (1992).

[160] P. Gueye. Technical report, Jefferson Lab, (1992).

[161] K. B. Unser. A. I. P. Conf. Proc. 252, 266 (1992).

[162] G. Niculescu. (Unpublished internal document, Jefferson Lab), (1995).

[163] C. Armstrong. (Unpublished internal document, Jefferson Lab), (1996).

[164] M. Hauger et al. Nucl. Instrum. Meth. A 462, 382-392 (2001).

[165] J. M. Grames et al. Phys. Rev. ST Accel. Beams 7, 042802 (2004).

[166] B. W. Montague. Phys. Rept. 113, 1-96 (1984).

[167] D. W. Higinbotham. AIP Conf. Proc. 1149, 751-754 (2009).

[168] C. Yan et al. Nucl. Instrum. Meth. A 365, 46-48 (1995).

[169] C. Yan, N. Sinkine, and R. Wojcik. Nucl. Instrum. Meth. A 539, 1-15 (2005).

[170] M. Fukuda, S. Okumura, and K. Arakawa. Nucl. Instrum. Meth. A 396, 45-49

(1997).

[171] C. F. Perdrisat. Technical report, Jefferson Lab, Hall C, (2007).



200

[172] A. Puckett. Technical report, Jefferson Lab, Hall C, (2008).

[173] Andrew J. R. Puckett. Recoil polarization Measurements of the Proton Elec-

tromagnetic Form Factor Ratio to High Momentum Transfer. Ph.D. theses,

Massachusetts Institute of Technology, (2010).

[174] Joseph K. Cobb and J. J. Muray. Nucl. Instrum. Meth. 46, 99-105 (1967).

[175] M. Berz. COSY Infinity Version 7 Reference Manual, NSCL Technical Report

MSUCL-977, Michigan State University, (1995).

[176] L. Tang, C. Yan, and Ed. V. Hungerford. Nucl. Instrum. Meth. A 366, 259

(1995).

[177] O. K. Baker et al. Nucl. Instrum. Meth. A 367, 92-95 (1995).

[178] J. Arrington. Ph.D. theses, California Institute of Technology, (1998).

[179] D. G. Crabb and W. Meyer. Ann. Rev. Nucl. Part. Sci. 47, 67-109 (1997).

[180] M. Borghini. Conf. Proc. C680922V4P2, 191-242 (1968).

[181] M. Goldman. Journal of Magnetic Resonance (1969) 17(3), 393-398 (1975).

[182] G. R. Court, D. W. Gifford, P. Harrison, W. G. Heyes, and M. A. Houlden.

Nucl. Instrum. Meth. A 324, 433-440 (1993).

[183] CODA-CEBAF Online Data Acquisition User’s Manual.

[184] C. Group. PAW (Physics Analysis Workstation) Users Guide. Program Library

Q121, CERN.

[185] K. Makino and M. Berz. Nucl. Instrum. Meth. A 427, 338 (1999).

[186] Time of flight scintillator hodoscope calibration. https://hallcweb.jlab.

org/document/howtos/tof_calibration/, (2009).



201

[187] K. Nakamura and the Particle Data Group. Journel of physics G:Nuclear and

Particle Physics 37(7A), 075021 (2010).

[188] D. Crabb, D. Day, and O. Rondon. A proposal for the renewal of contact no.

de-fg02-96er40950, university of virginia.

[189] C. Delaere. class TMultiLayerPerception. http://root.cern.ch/root/html/

TMultiLayerPerception.html, (2003).

[190] M. A. Shupe et al. Phys. Rev. D 19, 1921-1930 (1979).

[191] K. Makino and M. Berz. Nucl. Instrum. Meth. A 427, 338-343 (1999).

[192] M.E. Christy and Peter E. Bosted. Phys. Rev. C 81, 055213 (2010).

[193] J. Arrington. Phys. Rev. C 69, 022201 (2004).

[194] S. Dasu et al. Proceedings, 4th Meeting of the Division of Particles and Fields

of the APS, 635-638 (1988).

[195] W. R. Leo. Techniques for Nuclear and Particle Physics Experiments. Springer

Verlag, (1987).



202

HABARAKADA LIYANAGE ANUSHA PUSHPAKUMARI

468 Young’s Mill Lane, Apt F, Newport News, VA 23602, (757) 2434885, anusha@jlab.org

Education

Doctor of Philosophy (August, 2013), Nuclear Physics, Hampton University, Hamp-

ton, VA

Bachelor of Science (April, 2004), Physics, University of Peradeniya, Sri Lanka

Professional Experience

Research Assistant (2006-2013), Hampton University, Hampton, VA

Teaching Assistant (2004-2006), University of Peradeniya, Peradeniya, Sri Lanka

Honors and Awards

Departmental Fellow, full scholarship and stipend, (2006-2013) Hampton University
physics Department, Hampton University, Hampton, VA.

First Place, Graduate Student Poster Competition, User Group Meeting, Thomas
Jefferson National Accelerator Facility, Newport News, VA, May 2010.

Awarded the visiting scholar award for excellence in scholarship in the natural and
computational sciences, 12th Annual Graduate Research Symposium (GRS), The Col-
lege of William and Mary, Williamsburg, VA, March 2013.

Publications and Presentations

Proton Form Factor Ratio Gp
E/G

p
M at High Q2 from Double Spin Asymmetry with

Polarized Beam and Target, Poster presentation at the Gorden Research Con-
ference, New Hampshire, August 2010.

Proton Form Factor Ratio Gp
E/G

p
M from Double Spin Asymmetry with Polarized Beam

and Target , Division of Nuclear Physics meeting of the American Physical
Society, Santa Fe, NM, November 2010.

Measurement of the Proton Form Factor Ratio Gp
E/G

p
M from the Double Spin Asym-

metry, American Physical Society April Meeting, Anaheim, California, April
2011.

Proton Form Factor Ratio Gp
E/G

p
M from the Double Spin Asymmetry, Seminar at

Thomas Jefferson National Accelerator Facility, October, 2012.


