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1 Introduction

Quantum integrability of the planar N=4 SYM theory [1] gave hopes for a rather complete

understanding of the full dynamics of this superconformal 4D theory, as well as for providing

us with efficient methods of computation of the basic physical quantities: spectrum of

anomalous dimensions, correlators of local and non-local operators, amplitudes. But the

actual computations are still very involved and usually relay on various approximations,

such as weak or strong coupling, or the BFKL limit. For the N=4 SYM spectral problem,

there has been a lot of progress in the last years [1] allowing to study it not only at these

approximations but also numerically, at any coupling. Recently these developments have

been culminated in the formulation of a well defined system of Riemann-Hilbert equations

[2]. But for the correlation functions the situation is far more complicated and one is here

on the early stage of case-by-case study in a weak [3–12] or strong [13–18] coupling regime.

In these circumstances, the BFKL approximation [19–21] appears to be an interesting

testing ground for the understanding of general properties of N=4 SYM theory. The BFKL

approximation was originally proposed for the study of the Regge (collinear) limit of hadron

deep inelastic scattering amplitudes in QCD, when g2
YMN → 0, the Mandelstam variable

s→∞ with g2
YMN log s

M2 - fixed. Kotikov and Lipatov [22] applied a similar approxima-

tion to the study of anomalous dimensions of twist-2 operators tr [F+µ
⊥g
⊥
µνD

j−2F ν+
⊥ + ...]
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in the BFKL limit, when the Lorentz spin is analytically continued to j − 1 = ω → 0, the

’t Hooft coupling g2 =
g2
YM

N

16π2 → 0 and g2

j−1 = const. Their explicit formula has passed a few

tests, and in particular it was confirmed by the 4-loop [23] and then 5-loop computation

from the Lüscher formula [24]. Also significant progress was made in the strong-coupling

regime [25–27]

But so far, to our knowledge, no reliable definition was given for the analytic continua-

tion of these operators to a complex Lorentz spin j. Usually one performs this continuation

in the final results for dimensions, without elaborating on the explicit definition of the gen-

eralized operator. The principle of maximal transcendentality, commonly used for the

analytic continuation from the integer spins within each order of the perturbation theory,

was never proven1. The goal of this paper is to construct an explicit form of twist-2 op-

erators for arbitrary complex Lorentz spin and to perform the direct calculation of their

two-point correlation function in the Leading Logarithmic Approximation (LLA) BFKL

with Leading Order (LO) accuracy for the impact factors and NLO for the anomalous

dimension. It can be considered as a necessary step for a slightly more ambitious goal -

the computation of 3-point correlators and the corresponding OPE structure functions, in

the BFKL approximation.

Let us describe the logic of our approach. We start with construction of a non-local

light-ray twist-2 operator which transforms according to the principal series representation

of sl(2, R) with conformal spin J = 1
2 + iν, ν ∈ R and even parity. This operator diagonal-

izes the renormalization group Hamiltonian. It is constructed from two local fields, with

the coordinates x1− and x2− on the same light-ray, connected by the adjoint Wilson line

factor. The operator is then integrated over the positions of both local operators along the

light-ray.

Constructed in this way, the light-ray operator is a singular, not well defined object in

the BFKL regime. To avoid the singularity, we regularize it by placing the local operators

on two diffferent, but very close parallel light rays separated by a small distance δx⊥ =

|x1⊥ − x3⊥| from each other, in a direction orthogonal to the light rays (see Fig.1). We

close it into a rectangular Wilson loop, with two fields inserted at the diagonally opposite

corners of the loop, as depicted in Fig.1. We will call this loop the Wilson frame.2 Note

that under a generic conformal transformation the frame will look almost the same: the

distance between two light-lines will be slightly changed and the short lines connecting

the ends of light ray intervals will be only slightly deformed. One can show that this

deformation does not change the final results in our approximation: one can neglect the

gluons emitted by infinitesimally short sides of the frame.

1 In the [28] a certain analyticity condition for the Baxter Q-function of sl(2) Heisenberg spin chain were

proposed reproducing the analytic continuations of harmonic sums w.r.t. the spin, at one and two loops.
2we hope the reader will avoid the confusion between this Wilson frame and the coordinate frame
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Figure 1. The “frame” configuration for the regularized light ray operator: long sides are stretched

along the light ray with the direction n+, short sides oriented in an orthogonal direction.

We will calculate in this paper the correlation function of two such objects separated

by a certain distance in orthogonal space and stretched along two different light-like di-

rections given by vectors n+ and n−, as shown in Fig.2. We will use for that the OPE3

decomposition over “colour dipoles” in the limit when (x1 − x3)2 → 0, proposed by one of

the authors [35](see also the review [36]). The “colour dipole” is a pair of parallel infinite

light-like Wilson lines, with a cut-off σ on the momenta of gauge field in the light-cone

direction. After such decomposition, symbolically depicted in Fig.4, we calculate the cor-

relator between two colour dipoles. This calculation is done in two steps: first, for each

dipole we compute the correlator for small values of the cutoff σ̃, such that g2 log σ̃
σ0
� 1,

where σ0 < σ̃ � σ, when the lowest order of perturbation theory dominates in the LLA

approximation, and then we evolve the result w.r.t. σ̃ to its final value σ. It is important

to stress that the evolution with respect to the scale σ± for each colour dipole is governed

by the BFKL equation [35]. The ratio of cut-offs σ+σ−
σ0+σ0−

, due to the conformal invariance,

appears to be related to certain anharmonic ratios defined by the shapes of our configura-

tion of frames. The last step is the integration over the coordinates of Wilson frame along

each of the light-rays. In what follows, we are going to precise each step of this calculation.

Figure 2. Two Wilson frames, at a distance |x − y|⊥ from each other, stretched in two different

light-cone directions n+ and n− and a typical gluon exchange between them.

3For the recent development of these ideas see [29].Another type of OPE for Wilson Loops with null

edges was elaborated in [30–34]
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2 Generalisation of twist-2 operators to the case of principal series sl(2, R).

The twist-2 supermultiplet of local operators was explicitly constructed in [37]. For exam-

ple, one of the components at zero order in gYM reads as follows (j is even):

Sjloc(x) = 6Ojgg(x) +
j − 1

2
Ojqq(x) +

j(j − 1)

4
Ojss(x), (2.1)

where

Ojgg(x) = tr G
5
2
j−2,x1,x2

F µ
+⊥(x1)g⊥µνF

ν
+⊥(x2)|x=x1=x2 , (2.2)

Ojqq(x) = tr G
3
2
j−1,x1,x2

λ̄α̇Aσ
+α̇β(x1)λAβ (x2)|x=x1=x2 , (2.3)

Ojss(x) = tr G
1
2
j,x1,x2

φ̄AB(x1)φAB(x2)|x=x1=x2 . (2.4)

We introduced here the differential operator Gαn,x1,x2 = in(∇x2 +∇x1)nCαn (
∇x2−∇x1
∇x2+∇x1

), where

Cαn (x) is the Gegenbauer polynomial of order n with index α. ∇x are covariant derivatives in

the light-like direction n+: ∇x = nµ+(∂µ−igYMAµ) = ∂+−igYMA+. The fields entering the

operators belong to the set X = {F µ
+⊥ , λ

A
+α, λ̄

α̇
+A, φ

AB} which contains the field components

with maximal spin (see appendix A).

Let us note that all components of twist-2 supermultiplet are constructed from so

called primary conformal operators, in the sense that they realize the highest-weight rep-

resentation of sl(2, R). For example, in the case of Sjloc the operators Ojgg, Ojqq, Ojss are

primaries, with conformal spin J = j + 1. Due to supersymmetry we should work with

superconformal operators transforming under an irreducible representation of sl(2|4). It

leads to the superprimary operators which are a linear combination of conformal operators

as in (2.1). It is important to stress that the coefficients in this combination do not depend

on the Yang-Mills coupling constant g2
YM

and the renormalization takes place for each

conformal operator separately4. These superconformal operators diagonalize the one-loop

dilatation operator given by the Hamiltonian:

H = g2[H12 +H21], (2.5)

Hi,i+1φ(zi, zi+1) = 2
[
ψ(JG

i,i+1)− ψ(1)
]
, (2.6)

where JG
i,i+1 is defined through the Casimir operator J2

i,i+1 = JG
i,i+1(JG

i,i+1 − 1) of the full

G = PSU(2, 2|4) group [38].

We start with generalization of local conformal operators. Our logic will be close to

the logic of [39]. Local conformal operators correspond to the discrete unitary irreps of

sl(2, R). Let us construct a nonlocal light-ray operator 5 which realizes the principal series

irrep of sl(2, R) with the conformal spin J = 1
2 + iν, ν ∈ R and even parity. A general

4It is so, because the supercharges don’t depend on gY M
5An interesting dual conformal symmetry on the light-cone was discovered in [40].
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light-ray operator with local fields χs of the same conformal spin s looks as follows:

Ssφ(x1⊥) =

∞∫
−∞

dx1−

∞∫
x1−

dx2−φ(x1−, x2−)χs(x1)[x1, x2]Adjχ
s(x2), (2.7)

where

[x1, x2]Adj = P exp[igYM

1∫
0

du(x2 − x1)µA
µ
Adj(x1(1− u) + x2u)], (2.8)

and the function φ(x1, x2) is an arbitrary function of two variables. We are looking for

the operators Ssφ which are the eigenfunctions of sl(2, R) Casimir operator defined in the

following way: Take the generators of sl(2, R) satisfying standard relations:

[J3, J±] = ±J±,
[J+, J−] = −2J3. (2.9)

and realize them on the fields with conformal spin s:

J+ =
i√
2
P+ =

1√
2

d

dx
,

J− =
i√
2
K+ =

√
2(2sx+ x2 d

dx
), (2.10)

J3 =
i

2
(D +M−+) = s+ x

d

dx
.

Here x is a coordinate along the light ray. The equation on the eigenvalues and eigenfunc-

tions φ(x1−, x2−) of the Casimir operator

~J2Ssφ = J(J − 1)Ssφ = (j + 1)jSsφ (2.11)

can thus be rewritten as a partial differential equation[
β2

(
∂2

∂β2
− ∂2

∂α2

)
− 2sβ

∂

∂β
+ s(s+ 1)

]
φ(α, β) = J(J − 1)φ(α, β), (2.12)

where α = x1−+x2−, β = x2−−x1−. Separating the variables φ(α, β) = f(α)g(β) we get:
∂2

∂α2
f(α) = −k2f(α),(

β2 ∂

∂β2
− 2sβ

∂

∂β
+ s(s+ 1) + k2β2

)
g(β) = J(J − 1)g(β).

(2.13)

The general solution for the eigenfunctions reads as follows:

φ(x1−, x2−)

(x2− − x1−)2s− 3
2

=

=

∫
dk
[
η1(k)eik(x1−+x2−)(C11J− 1

2
+J(k(x2− − x1−)) + C12J 1

2
−J(k(x2− − x1−))) +

+ η2(k)e−ik(x1−+x2−)(C21J− 1
2

+J(k(x1− − x2−)) + C22J 1
2
−J(k(x2− − x1−))

]
, (2.14)
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where Jν(x) - is a Bessel function and η1(k), η2(k) are arbitrary functions of k. In addition,

we should impose a set of constraints on the operator Ssφ. First of all, it should be an entire

function of J , to allow for an unambiguous analytic continuation of the light-ray operator

in J , and the dimension of this operator should coincide with the standard local twist-2

operator for any integer J . Both of these conditions are satisfied if we choose a linear

combination of Bessel functions as the Hankel function of the second order:

Ci1J− 1
2

+J(k(x2− − x1−)) + Ci2J 1
2
−J(k(x2− − x1−))→ H2

J− 1
2

(k(x2− − x1−)), i ∈ {1, 2}

(2.15)

In this way we obtain an operator which is an entire function of spin: It is well defined for

J = 1
2 + iν and thus it can be uniquely continued to the whole complex plane of J . It is

natural to choose the so far arbitrary coefficient functions as η1(k) = η2(k) = 1
2δ(k)(k2 )J−

1
2

which naturally sets to zero the center-of-mass momentum k and cancels the singularity at

k → 0.

Now, using the asymptotics of Hankel function at k → 0:

H2
J− 1

2

(k(x2− − x1−))→ −(
k(x2− − x1−)

2
)−J+ 1

2
Γ(J − 1

2)

π
, (2.16)

we get the following form of the light-ray operators (denoted by S̆) for scalars, fermions

and gluons:

S̆Jsc(x1⊥) =

∞∫
−∞

dx1−

∞∫
x1−

dx2−(x2− − x1−)−J tr φ̄AB(x1)[x1, x2]Adjφ
AB(x2), (2.17)

S̆Jf (x1⊥) =

∞∫
−∞

dx1−

∞∫
x1−

dx2−(x2− − x1−)−J+1 tr λ̄α̇A(x1)σ+α̇β[x1, x2]Adjλ
A
β (x2), (2.18)

S̆Jgl(x1⊥) =

∞∫
−∞

dx1−

∞∫
x1−

dx2−(x2− − x1−)−J+2 tr F µ
+⊥(x1)g⊥µν [x1, x2]AdjF

ν
+⊥(x2). (2.19)

Let us clarify the correspondence of nonlocal operators (2.17)-(2.19) to the local operators,

using gluons as an example. We take an odd integer J in (2.19) and define the integral

over x2 − x1 , with the prescription analogous to the eq.(3.19) of [39]. This gives, e.g. for

the gluons:

S̆Jgl(x1⊥) =
23−J2πi

Γ(J − 2)

∞∫
−∞

dx− tr
[
(
←−
∇ −

−→
∇)J−3F i

+ (x)F+i(x)
]
, (2.20)

where
−→
∇ and

←−
∇ are covariant derivatives which act on the left and right scalars, corre-

spondingly. On the other hand, the local gluon operator (for odd J) has the following

form:

Ojgl(x) = OJ−1
gl (x) = tr

[
iJ−3(

−→
∇ +

←−
∇)J−3C

5
2
J−3

(−→
∇ −

←−
∇

−→
∇ +

←−
∇

)
F i

+ (x)F+i(x)

]
. (2.21)
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Integrating it over the coordinate, we get:

∞∫
−∞

dx−OJ−1
gl (x) = iJ−3 Γ(J − 1

2)2J−3

Γ(5
2)Γ(J − 2)

∞∫
−∞

dx−tr
[
(
−→
∇ −

←−
∇)J−3F i

+ (x)F+i(x)
]
. (2.22)

All terms inOJ−1
gl (x) with nonzero power

−→
∇+
←−
∇ disappear because they are full derivatives.

Now we want to construct a nonlocal superconformal operator. Nonlocal operator which

corresponds to
∫
dxSjloc(x) is a sum SJnloc = cscS

J
sc+cfS

J
f +cglS

J
gl with some so far unknown

coefficients. They can be fixed by comparing the local and nonlocal operators in the case

of integer J . For example for gluons, using (2.20), (2.22) we conclude that

cgl =
iJ22J−4Γ(J − 1

2)

πΓ(1
2)

. (2.23)

And similarly we get the other coefficients:

cf = i
J − 2

2

iJ22J−4Γ(J − 1
2)

πΓ(1
2)

, (2.24)

csc = −(J − 2)(J − 1)
iJ22J−4Γ(J − 1

2)

πΓ(1
2)

. (2.25)

Finally, the superconformal operator with conformal spin J reads as follows:

S̆J(x1⊥) =
iJ22J−4Γ(J − 1

2)

πΓ(1
2)

(
−(J − 1)(J − 2)S̆Jsc(x1⊥) + i

J − 2

2
S̆Jf (x1⊥) + S̆Jgl(x1⊥)

)
.

(2.26)

Now let us omit the common factor and redefine the operator as follows:

S̆J(x1⊥) = −(J − 1)(J − 2)S̆Jsc(x1⊥) + i
J − 2

2
S̆Jf (x1⊥) + S̆Jgl(x1⊥). (2.27)

In what follows, we will be interested in the BFKL limit when the Lorentz spin j goes to

one: j = J − 1 = 1 + ω → 1. In this limit, the operator takes the following form:

S̆2+ω(x1⊥) = −ωS̆2+ω
sc (x1⊥) + i

ω

2
S̆2+ω
f (x1⊥) + S̆2+ω

gl (x1⊥), (2.28)

where we kept in the coefficients only the leading order in ω. Formally, such light ray

operators are well defined objects. But in the LLA BFKL the correlation functions of

two such objects, when in each one the local operators is placed at the same light ray,

become ambiguous and should be regularized. We will introduce the following regulariza-

tion mentioned in the introduction: we replace the light-ray operator (2.27) by a non-local

rectangular Wilson loop with two opposite sides stretched along the light-cone direction

and two other sides (whose length tends to zero) being orthogonal to the light-cone. The

fields are placed in two opposite corners of the Wilson frame. The configurations of Wilson
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frame and the positions of operators resulting from these operations are shown in Fig.1.

For example, for the gluons we get:

S̆Jgl(x1⊥) = lim
(x1⊥−x3⊥)2→0

SJgl(x1⊥, x3⊥) =

= lim
(x1⊥−x3⊥)2→0

∞∫
−∞

dx1−

∞∫
x1−

dx3−(x3− − x1−)−J+2 tr F i
+ (x1)[x1, x3]�F+i(x3), (2.29)

x1 = (x1−, 0, x1⊥), x3 = (x3−, 0, x3⊥)

and the full regularized operator reds as follows:

SJ(x1⊥, x3⊥) = −(J − 1)(J − 2)SJsc(x1⊥, x3⊥) + i
J − 2

2
SJf (x1⊥, x3⊥) + SJgl(x1⊥, x3⊥),

(2.30)

where [x1, x3]� - Wilson frame with the local fields placed at the corners x1, x3 on a diagonal

of the frame and the short sides x23, x41 directed into the orthogonal space. The operation

”lim” is understood in the following sense: at first we should carry out all calculation with

the fixed length of short sides |x1⊥ − x3⊥|2 6= 0 , and only after that we take the limit.

In this sense we can treat our infinitesimally narrow Wilson frame as a conformal object.

Namely if we carry out any conformal transformation this infinitesimally narrow Wilson

frame almost conserves its shape 3.

Figure 3. A generic conformal transformation φ : x→ x′ acting on infinitesimally narrow Wilson

frame almost conserves its shape.

3 OPE over colour dipoles for nonlocal operators SJnloc

Let us introduce two nonlocal super-primary operators defined above: the first one, S2+ω1
+ ,

is placed along n+ and the second, S2+ω2
− , along n−. Our goal is to calculate their cor-

relation function in the BFKL limit ω1, ω2 → 0, g2

ω1
, g2

ω2
→ fixed. The main contribution

in this case comes from large distances L+(L−) along n+(n−). The integral over L+(L−)

entering into the definition of the regularized light-ray operator leads to the Regge pole
1

ω1,2
. This pole is analogous to the large log s

M2 in the Regge approximation for high energy

scattering amplitudes. 6 Summing all contributions in g2

ω1,2
in our setup corresponds to

summing the powers g2 log s
M2 in the LLA in high energy scattering - the key feature of

the BFKL approximation.

6In high energy scattering M is a reference scale such that m2 � M2 � s, where m is a characteristic

hadron mass.
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In this case we can apply the OPE over color dipoles, which was elaborated for the

scattering amplitudes in [35]. Let us remind the logic of this approach within the scattering

theory and then relate it to our calculation.

The high-energy behavior of the amplitudes can be studied in the framework of the

rapidity evolution of Wilson-line operators forming color dipoles. The main idea is the

factorization in rapidity: we separate a typical functional integral describing scattering of

two particles into (i) the integral over the gluon (and gluino) fields with rapidity close to

the rapidity of the ”probe” YA , (ii) the integral over the gluons with rapidity close to the

rapidity of the target YB, and (iii) the integral over the intermediate region of rapidities

YA > Y > YB , see Fig. 4. The result of the first integration is a certain coefficient

function (impact factor) times color dipole (ordered in the direction of the probe velocity)

with rapidities up to YA. Similarly, the result of the second integration is again the impact

factor times the color dipole ordered in the direction of target velocity with rapidities

greater than YB. The result of the last integration is the correlation function of two

dipoles which can be calculated using the evolution equation for color dipoles, known in

the leading and next-to-leading order [35].

Figure 4. Colour dipole decomposition for the correlator of two frames. Due to the separation

of scales w.r.t. the rapidity Y in BFKL approximation, the correlator factorizes into the “probe

impact factors”, the dipole-dipole interaction and the “target impact factor”. The analogue of

rapidity Y in the current paper is log σ – the logarithm of cutoff for the momenta of the gauge

fields in the light cone direction. As an example, the probe is represented by an NLO graph where

as the target – by an LO graph.

To factorize in rapidity, it is convenient to use the background field formalism: we

integrate over gluons with Y > YA and leave the gluons with Y < YA as a background

field, to be integrated over later. Since the rapidities of background gluons are very different

from the rapidities of gluons in our Feynman diagrams, the background field is seen by the

probe in the form of a shock wave (pancake) due to the Lorentz contraction. To derive

the expression of a quark or gluon propagator in this shock-wave background we represent

the propagator as a path integral over various trajectories, each of them weighed with the

– 9 –



gauge factor Pexp(ig
∫
dxµA

µ) ordered along the propagation path. Now, since the shock

wave is very thin, quarks or gluons emitted by the probe do not have time to deviate in

transverse direction so their trajectory inside the shock wave can be approximated by a

segment of the straight line. Moreover, since there is no external field outside the shock

wave, the integral over the segment of straight line can be formally extended to ±∞ limits

yielding the Wilson-line gauge factor

Uσ+x⊥ = P exp[igYM

∞∫
−∞

dx+A
σ+
− (x)], (3.1)

where we have used the gauge field with a cutoff σ = eY w.r.t. the longitudinal momenta

k+

Aσ+µ (x) =

∫
d4kθ(σ+ − |k+|)eikxAµ(k). (3.2)

Now let us adopt this scheme of calculation to our correlator. In our case, the Wilson

frames play the role of the probe and the target, respectively. The gluons emitted and

absorbed within each frame contribute to their ”impact factors”. The correlator factorizes

into these two impact factors and the BFKL evolution of colour dipoles appearing in

the OPE of the frames. The BFKL evolution corresponds to the evolution of the cutoff

from some minimal7 σ0+ to the final value σ+ for the frame oriented in the n− direction.

Similarly, for the second dipole, the evolution goes from σ0− to σ−. As we will see later,

the ratio σ+σ−
σ0+σ0−

will be identified with a certain anharmonic ratio of characteristic sizes

of the configuration. The rest of the calculation is very similar to the case of scattering in

Regge kinematics and is based on computations of graphs in the pancake background.

The propagators of gluons, scalars and fermions get modified by the presence of this

pancake background. Denoting the corresponding average as 〈. . . 〉 we represent these

propagators as follows8:

〈Aaµ(x)Abν(y)〉 =
1

4π3

∫
d2z⊥U

σ+ab
z [x+g

⊥
µξ − n−µ(x− z)⊥ξ ][y+δ

⊥ξ
ν − n−ν(y − z)ξ⊥]·

· x+|y+|
[−2(x− y)−x+|y+|+ x+(y − z)2

⊥ + |y+|(x− z)2
⊥ + iε]

, (3.3)

〈Φ̂a
I (x)Φ̂b

J(y)〉 =
δIJ
4π3

∫
d2z⊥

x+|y+|Uabz[
−2(x− y)−x+|y+|+ (x− z)2

⊥|y+|+ (y − z)2
⊥x+ + iε

]2 ,
(3.4)

7The initial point σ0 is an analog of the low normalization point µ2 ∼ Q2
0 ∼ 1GeV for usual DGLAP

evolution. It should be chosen in such way that σ0 �M but g2 ln σ0
M
� 1 where M is of order of the mass

of colliding particles (in our case of M is of order of inverse transverse separations of Wilson frames).
8pancake is placed along n+ direction
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〈λaIα (x) λ̄bJα̇ (y)〉 =
i

2π3

∫
d2z⊥U

ab
z [x+n̄− + (x̄− z̄)]n+ [|y+|n̄− − (ȳ − z̄)] ·

· x+|y|+
[−2(x− y)−x+|y+|+ (x− z)2

⊥|y+|+ (y − z)2
⊥x+ + iε]3

, (3.5)

where n̄αα̇ ≡ nµσ̄µαα̇ and nα̇α ≡ nµσα̇αµ , and Uabz = 2tr(taUzt
bU †z ).

The effective propagator for any field χ has a form of decomposition over Wilson lines

〈χa(x)χb(y)〉 =
∫
d2z⊥U

σ+ab
z⊥ f(z, x, y), where f(z, x, y) is a function which depends only

on the coordinates and doesn’t carry the colour indices. Then any conformal nonlocal

operator SJsc, S
J
f , SJgl can be decomposed over the colour dipoles:

tr(χ(x)[x, y]�χ(y))→
∫
d2z⊥f(z, x, y)Uσ+abz⊥

tr(taU
σ+
x⊥ t

bU
σ+
y⊥ ) −−−−→

N→∞

−−−−→
N→∞

∫
d2z⊥f(z, x, y)

N2

2
(1− 1

N
tr(1− Uσ+x⊥U

σ+†
z⊥ )− 1

N
tr(1− Uσ+z⊥U

σ+†
y⊥ ) +O(g2)),

(3.6)

where we have used the following sequence of equalities:

Uσ+abz tr(taUσ+x tbUσ+y ) = 2tr(taUσ+z tbUσ+†z ) tr(taUσ+x tbUσ+y ) = tr(taUσ+x Uσ+†z taUσ+z Uσ+†y ) =

=
1

2
tr(Uσ+x Uσ+†z ) tr(Uσ+z Uσ+†y )− 1

2N
tr(Uσ+x Uσ+†y ) −−−−→

N→∞

−−−−→
N→∞

N2

2
[1−Uσ+(x, z)−Uσ+(z, y) + Uσ+(x, z)Uσ+(z, y)] =

=
N2

2
[1−Uσ+(x, z)−Uσ+(z, y)]

(
1 +O(g2,

1

N2
)

)
, (3.7)

where we have introduced the colour dipole operator in fundamental representation:

Uσ+(x1⊥, z⊥) = 1− 1

N
tr(Uσ+x1⊥U

σ+†
z⊥

) (3.8)

with U
σ+
x⊥ defined in (3.1).

The first two lines of (3.7) hold at any N . In the last line we dropped the term non-

linear in colour dipoles. This is valid since in the BFKL approximation we take into account

only linear evolution of Wilson-line operators corresponding to the processes containing two

reggeized gluons in t-channel. 9

Let us now proceed with calculation of the gluonic part. Calculation for scalars and

fermions can be done in the same way and it turns out that the main contribution for

the “impact factor” in LO comes just from gluons. Naively, it can be explained from the

fact that in the limit ω = J − 2→ 0 the scalar and fermionic terms enter with subleading

coefficients into the eq.(2.28). The explicit computation of correlators confirms it.

9The nonlinear terms are relevant for the high-energy in dense QCD regime like pA scattering on LHC
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Using the propagator (3.3) and the decomposition (3.6) the OPE for the gluon operator

stretched in n+ direction reads as follows10

trF+i(x1)[x1, x3]F i
+ (x3)→

N2

2π3

∫
d2z

(
2

(x3−(x1 − z)2
⊥ − x1−(x3 − z)2

⊥)2
+
x1−x3−(9(x1 − z)2

⊥(x3 − z)2
⊥ + 6(x1 − z, x3 − z)2)

(x3−(x1 − z)2
⊥ − x1−(x3 − z)2

⊥)4
·

(1−Uσ−(x1⊥, z⊥)−Uσ−(z⊥, x3⊥))) , (3.9)

where we use in Uσ− the gauge field with a cut-off σ− for the light-cone momenta. Now

we can collect the full expression for the correlator of operators S2+ω1
gl and S2+ω2

gl stretched

along n+ and n− directions using (2.29) and (3.9):

〈S2+ω1
gl (x1⊥, x3⊥)S2+ω2

gl (y1⊥, y3⊥)〉 =

= (
N2

2π3
)2

∞∫
−∞

dx1−

∞∫
x1−

dx3−(x3− − x1−)−ω1

∞∫
−∞

dy1+

∞∫
y1+

dy3+(y3+ − y1+)−ω2 ·

·
∫
d2z

(
2

((x3−(x1 − z)⊥)2 − x1−(x3 − z)2
⊥)2

+
x1−x3−(9(x1 − z)2

⊥(x3 − z)2
⊥ + 6(x1 − z, x3 − z)2)

(x3−(x1 − z)2
⊥ − x1−(x3 − z)2

⊥)4

)
·
∫
d2w

(
2

((y3+(y1 − w)⊥)2 − y1+(y3 − w)2
⊥)2

+
y1+y3+(9(y1 − w)2

⊥(y3 − w)2
⊥ + 6(y1 − w, y3 − w)2)

(y3+(y1 − w)2
⊥ − y1+(y3 − w)2

⊥)4

)
(〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥, w⊥)〉+ 〈Uσ−(x1⊥, z⊥)Vσ+(w⊥, y3⊥)〉+
〈Uσ−(z⊥, x3⊥)Vσ+(y1⊥, w⊥)〉+ 〈Uσ−(z⊥, x3⊥)Vσ+(w⊥, y3⊥)〉), (3.10)

where Vσ+(y1⊥, w⊥) is the operator similar to (3.8) but for the second frame operator

stretched along n−.

All terms in the last brackets are similar and give the same contribution. We proceed

with the first one. As was demonstrated in [35], the problem of calculation of correlator

for two dipoles splits into two parts: we compute the correlator for relatively small values

of the cutoff σ̃ such that g2 log σ̃
σ0
� 1, where σ0 < σ̃ � σ for each dipole, when the

lowest order of perturbation theory dominates in the LLA BFKL approximation, and then

we evolve the result w.r.t. σ̃ to its final value σ. Let us elaborate it in detail.

3.1 BFKL evolution

As was demonstrated in [43] evolution w.r.t. the cutoff can be written in the form of BFKL

equation11:

σ
d

dσ
Uσ(z1, z2) = KBFKL ∗Uσ(z1, z2), (3.11)

10The representation for the impact factor as an integral of 4-point correlator of the external currents

and the gluonic current was constructed in [41, 42]
11we dropped index ⊥ for sake of brevity. Also we will omit index ⊥ in all formulas where it doesn’t lead

to confusion.
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whereKBFKL is the integral operator having the following form in LO BFKL approximation:

KLOBFKL ∗U(z1, z2) =
2g2

π

∫
d2z3

z2
12

z2
13z

2
23

[U(z1, z3) + U(z3, z2)−U(z1, z2)] . (3.12)

In principal, we will use in what follows the NLO generalization of this kernel, or rather of

its eigenvalues, to fix the NLO scaling of the correlator. To fix the right NLO normalization

of the correlator, we should also correct the operators U,V, but we will restrict ourselves

to the LO in the normalization.

The BFKL kernel has G = SL(2, C) symmetry and its eigenfunctions and the spectrum

should be classified w.r.t. the irreps of this group. The SL(2, C) group has three sets of

unitary irreps. The color dipole operator can be expanded w.r.t. only one of them, the

principal series, characterised by conformal weights h = 1+n
2 + iν, h̄ = 1−n

2 + iν, where

ν ∈ R, n ∈ Z and a two-dimensional coordinate z0. Explicitly, the eigenfunction reads as

follows12:

Eh,h̄(z10, z20) =

[
z12

z10z20

]h [ z̄12

z̄10z̄20

]h̄
. (3.13)

Let us introduce the projection of dipole on the E-function:

Uν,n(z0) =
1

π2

∫
d2z1d

2z2

z4
12

E∗ν,n(z10, z20)U(z1, z2) (3.14)

and the inverse transformation is

U(z1, z2) =
∞∑

n=−∞

∫
dν

∫
d2z0

ν2 + n2/4

π2
Eν,n(z10, z20)Uν,n(z0). (3.15)

The solutions of BFKL equation (3.11) in terms of this projection can be explicitly written

in the following form:

Uσν,n(z0) =

(
σ

σ0

)ℵ(ν,n)

Uσ0ν,n(z0), (3.16)

where ℵ(n, ν) are the eigenvalues of KBFKL. Let us give their expression already in the

NLO approximation [22]

ℵ(ν, n = 0) = 4g2(χ(ν) + g2δ(ν)),

χ(ν) = 2Ψ(1)−Ψ(
1

2
+ iν)−Ψ(

1

2
− iν),

δ(ν) = χ′′(ν) + 6ζ(3)− 2ζ(2)χ(ν)− 2Φ(
1

2
+ iν)− 2Φ(

1

2
− iν), (3.17)

where Ψ(x) = Γ′(x)
Γ(x) and function Φ(x) has the following representation:

Φ(x) =
1

2

∞∑
k=0

Ψ′(k+2
2 )−Ψ′(k+1

2 )

k + x
. (3.18)

12where we pass to the complex coordinates for 2-dimensional space: z = (x, y) → x + iy. Complex

conjugation of z is denoted by z̄
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The transformation (3.14) can be expressed graphically as in Fig.5:

Figure 5. Graphical representation of the projection (3.14) of colour dipole on the E-

eigenfunction. Dotted lines represent the Wilson lines and all the coordinates correspond to the

transverse 2-dimensional space.

3.2 Correlator of dipoles with a small cutoff

Now let us introduce projections of Uσ−(x1⊥, z⊥) and Vσ+(y1⊥, w⊥) to the eigenfunctions:

Uσ−ν+,n+
(z0) =

1

π2

∫
d2x1⊥d

2z⊥
(|x1⊥ − z⊥|2)2

E∗ν+,n+
(x1⊥ − z0, z⊥ − z0)Uσ−(x1⊥, z⊥), (3.19)

Vσ+ν−,n−(w0) =
1

π2

∫
d2y1⊥d

2w⊥
(|y1⊥ − w⊥|2)2

E∗ν−,n−(y1⊥ − w0, w⊥ − w0)Vσ+(y1⊥, w⊥). (3.20)

It is important to stress that the contribution corresponding to the lowest twist-2 comes

from the projections with n = 0. Using BFKL evolution (3.16) we can reduce the correlator

with arbitrary cut-off to the case of small13 cutoffs σ±0:

〈Uσ−ν+ (z0),Vσ+ν− (w0)〉 =

(
σ−
σ−0

)ℵ(ν+)( σ+

σ+0

)ℵ(ν−)

〈Uσ0−ν+ (z0),Vσ0+ν− (w0)〉. (3.21)

Graphically the logic of our calculation can be represented as in Fig.6

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥, w⊥)〉 ∼

Figure 6. The logic of our calculation of the dipole-dipole correlation function: the projection

of the colour dipoles onto the E-functions at each end-point, the BFKL evolution from relatively

small cutoffs (green arrows) and, finally, the calculation of the dipole-dipole correlation function at

small cutoffs, in the middle.

13But large enough to use LLA and only two-reggion contribution to ℵ(n, ν)
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The correlation function between two dipoles with relatively small cutoffs σ± & σ±0

can be calculated perturbatively. In one loop it reads as follows [43]

〈Uσ−ν+ (z0),Vσ+ν− (w0)〉 =
−4π4g4

N2ν2
−(ν2
− + 1

4)2
×(

δ(z0 − w0)δ(ν+ + ν−) +
21−4iν−δ(ν+ − ν−)

π|z0 − w0|2−4iν−

Γ(1
2 + iν−)Γ(1− iν−)

Γ(iν−)Γ(1
2 − iν−)

)
(1 +O

(
g2 log

(
σ−σ+

σ0−σ0+

))
.

(3.22)

Graphically, the last calculation, together with the BFKL evolution, looks as depicted in

the Fig.7

Figure 7. The scheme of calculation of the dipole-dipole correlator for small cutoffs and the

BFKL evolution (shown by green arrows). In the r.h.s. we use the orthogonality condition for the

E-functions.

4 Calculation of correlation function

Now using the inversion formula (3.15) and the eq.(3.21) we obtain the correlator of two

color dipoles with the original finite cut-offs σ±:

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥, w⊥)〉 = −4π2g4

N2

∫
dν+

∫
d2z0

ν2
+

π2

(
(x1 − z)2

⊥
(x1 − z0)2

⊥(z − z0)2
⊥

) 1
2

+iν+

·

·
∫
dν−

∫
d2w0

ν2
−
π2

(
(y1 − w)2

⊥
(y1 − w0)2

⊥(w − w0)2
⊥

) 1
2

+iν− ( σ−
σ0−

)ℵ(ν+)( σ+

σ0+

)ℵ(ν−) π2

ν2
−(ν2
− + 1

4)2
·

·

(
δ(z0 − w0)δ(ν+ + ν−) +

21−4iν−δ(ν+ − ν−)

π|z0 − w0|2−4iν−

Γ(1
2 + iν−)Γ(1− iν−)

Γ(iν−)Γ(1
2 − iν−)

)
. (4.1)

Integrating over ν− and14 over w0 we get:

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥, w⊥)〉 =

= −8g4

N2

∫ ∫
dν ν2 d2z0

(1
4 + ν2)2

(
(x1 − z)2

⊥
(x1 − z0)2

⊥(z − z0)2
⊥

) 1
2

+iν (
(y1 − w)2

⊥
(y1 − z0)2

⊥(w − z0)2
⊥

) 1
2
−iν (

σ+σ−
σ+0σ−0

)ℵ(ν)

.

(4.2)

Now we come to the subtlest point in our calculations: we should fix the physical value of

the ratio of our cutoffs σ+σ−
σ−0σ+0

. In general, they are some functions of our configuration

of the frames and should depend on conformal ratios of 8 points characterizing the shapes

14using the ”star-triangle” relation, see e.g. the Appendix A of [44]
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and positions of two frames. But we expect that in the limit of very narrow frames which

we will need, the cutoffs depend only on the distances between the positions of local fields

x1, x3, y1, y3. Indeed, if we make a conformal transformation with generic parameters,

which are not related to the shape of the frames, the frames remain rectangular (up to an

insignificant, in our limit, deformation of their short sides, as shown in Fig.2) and and are

still characterized by 4 points x′1, x′3, y′1, y′3 - new position of the local fields inserted into the

frames. That means that the cutoffs can depend only on two conformally invariant ratios:

r1 = (x1−y3)2(x3−y1)2

x213y
2
13

and r2 = (x1−y1)2(x3−y3)2

x213y
2
13

and we have to calculate this dependence

explicitly. A natural assumption would be then to put σ+σ−
σ−0σ+0

' r2 or σ+σ−
σ−0σ+0

' r1. Both

choices give the same result in the limit when the distance between the frames is much less

then their lengths. It is demonstrated in the appendix B that precisely this cut-off occurs

in the NLO graphs in this limit. But before this limit the result appears to be a bit subtler.

Instead of doing explicit calculations, we will appeal to a similar calculation done in in [45]

for the 4-point correlator of local scalar fields 〈tr Z2(x1)Z̄2(x3)Z2(y1)Z̄2(y3)〉. Its form

is fixed by conformal symmetry so that it depends on the same conformal ratios as our

configuration. Comparing the result of BFKL computation of this correlator, which also

uses the OPE for the regularized colour dipoles, with the Regge limit of the same quantity

found in the papers [26, 46], the following prescription was found for the cutoff dependence

on x1, x3, y1, y3:15

(
σ+σ−
σ+0σ−0

)ℵ(ν)

→

→ i

sinπℵ(ν)

(
((x1 − y3)2)

ℵ(ν)
2 ((x3 − y1)2)

ℵ(ν)
2

(x2
13)
ℵ(ν)
2 (y2

13)
ℵ(ν)
2

− ((x1 − y1)2)
ℵ(ν)
2 ((x3 − y3)2)

ℵ(ν)
2

(x2
13)
ℵ(ν)
2 (y2

13)
ℵ(ν)
2

)
. (4.3)

Since we are in a very similar kinematic situation we will assume here that our cutoff

dependence on the coordinates of the frames is also governed by (4.3).

A motivation stemming from the Feynman graphs of NLO impact factor is given in

Appendix B.

We denote the coordinates of the vertices of a frame as follows:

x1 = (−uL−, 0, x1⊥),

x3 = (ūL−, 0, x3⊥),

y1 = (0,−vL+, y1⊥),

y3 = (0, v̄L+, y3⊥), (4.4)

where ū = 1− u, v̄ = 1− v. These parameters can be restricted to u, v ∈ (0, 1) since each

frame should intersect the shock wave in order to give a non-zero contribution. If there is

no intersection, we can make a scale transformation which sends the frame to an infinite

distance from the shock wave, thus suppressing their interaction.

15By keeping each factor in the anharmonic ratio in a separate power ℵ(ν)
2

we choose the right analytic

branch giving the right signature factor. It could be explicited by an i0 prescription.
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Using (4.3) we can rewrite the correlator of two dipoles (4.2) in the explicit way:

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥, w⊥)〉 =

= −8g4

N2

∫
dν

∫
d2z0

ν2

(1
4 + ν2)2

(
(x1 − z)2

⊥
(x1 − z0)2

⊥(z − z0)2
⊥

) 1
2

+iν (
(y1 − w)2

⊥
(y1 − z0)2

⊥(w − z0)2
⊥

) 1
2
−iν

i

sinπℵ(ν)
·

·

((2uL−v̄L+ + ∆2
⊥)(2ūL−vL+ + ∆2

⊥)

x2
13⊥y

2
13⊥

)ℵ(ν)
2

−
(

(−2uL−vL+ + ∆2
⊥)(−2ūL−v̄L+ + ∆2

⊥)

x2
13⊥y

2
13⊥

)ℵ(ν)
2

 ,

(4.5)

where ∆⊥ = (x−y)⊥ is the distance between the frames in the orthogonal direction. Then

we plug it into (3.10) and thus obtain a closed expression for the correlator. Now we

should carry out the remaining integrations. Let us start with the integrations over L−
and L+. We can factor out the L-dependence in each of the two terms in (4.3) leading to

the following two terms in (3.10):

∞∫
0

dL−L
−2−ω1
−

0∫
−L−

dx1+

∞∫
0

dL+L
−2−ω2
+

0∫
−L+

dy1−
(
(2uL−v̄L+ + ∆2

⊥)(2ūL−vL+ + ∆2
⊥)
)ℵ(ν)

2 =

= 2πδ(ω1 − ω2)

1∫
0

1∫
0

dudv(4uūvv̄)
ℵ(ν)
2 (

∆2

2uv̄
)
ℵ(ν)
2 (

∆2

2ūv
)−ω+

ℵ(ν)
2 ×

×B(−ω, ω − ℵ(ν))2F1(−ℵ(ν)

2
,−ω;−ℵ(ν); 1− uv̄

ūv
) (4.6)

and

∞∫
0

dL−L
−2−ω1
−

0∫
−L−

dx+

∞∫
0

dL+L
−2−ω2
+

0∫
−L+

dy−
(
(−2uL−vL+ + ∆2

⊥
)ℵ(ν)

2
(
−2ūL−v̄L+ + ∆2

⊥)
)ℵ(ν)

2 =

= 2πeiπℵ(ν)(−1)ℵ(ν)−ωδ(ω1 − ω2)

1∫
0

1∫
0

dudv(4uūvv̄)
ℵ(ν)
2 (

∆2

2uv
)
ℵ(ν)
2 (

∆2

2ūv̄
)−ω+

ℵ(ν)
2 ×

×B(−ω, ω − ℵ(ν))2F1(−ℵ(ν)

2
,−ω;−ℵ(ν); 1− uv

ūv̄
). (4.7)

The best way to do these integrals is to change the integration variables to L+L− and L+

L−
.

The integral over L+

L−
renders δ(ω1−ω2). Here B(−ω, ω−ℵ(ν)) = Γ(−ω)Γ(ω−ℵ(ν))

Γ(−ℵ(ν)) , and thus

it has a pole in ν, namely 1
ω−ℵ(ν) . We postpone the ν-integration because we close the

contour integration (in the upper or lower half-plane) depending on whether the modulo

of the ratio ∣∣∣∣∣
(

(x1 − z)2

(x1 − z0)2(z − z0)2

)(
(y1 − w)2

(y1 − z0)2(w − z0)2

)−1
∣∣∣∣∣ (4.8)
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is greater or smaller then one. Hence we first carry out the coordinate integrations. First

let us perform the u- and v-integrations. We can factor out all functions depending on u

and do the u-integration:

1∫
0

du(u(1− u))
ℵ(ν)
2

1

u
ℵ(ν)
2

1

(1− u)
ℵ(ν)
2
−ω

2F1(−ℵ(ν)

2
,−ω;−ℵ(ν); 1− uv̄

ūv
)·

·
(

2

(((1− u)(x1 − z)⊥)2 + u(x3 − z)2
⊥)2
−
u(1− u)(9(x1 − z)2

⊥(x3 − z)2
⊥ + 6(x1 − z, x3 − z)2

⊥)

((1− u)(x1 − z)2
⊥ + u(x2 − z)2

⊥)4

)
=

=
1

2

(
1

|x3 − z|2⊥|x1 − z|2⊥
− 2[(x3 − z)⊥ · (x1 − z)⊥]2

(|x3 − z|2⊥|x1 − z|2⊥)2

)
(1 +O(g2, ω)), (4.9)

where by · we denote the scalar product of 2-dimensional vectors. The first line of the

integrand is equal to 1 + O(g2, ω) and the terms of the order O(g2, ω) contribute only to

the NLO impact factor. We will drop such terms since we limit ourselves to the LO to the

impact factor only. Finally we obtain our correlator of the regularized light ray operators

in the form:

〈S2+ω1
gl+ (x1⊥, x3⊥)S2+ω2

gl− (y1⊥, y3⊥)〉 =

= −i4N
2g4

π5
δ(ω1 − ω2)

∫
dν

(∆2
⊥)ℵ(ν)−ω

(x2
13⊥y

2
13⊥)

ℵ(ν)
2

B(−ω, ω − ℵ(ν))
1− eiπ(2ℵ(ν)−ω)

sinπℵ(ν)

ν2

(1
4 + ν2)2

·

·
∫
d2z

(
1

2|x1 − z|2⊥|x3 − z|2⊥
−

(x1 − z, x3 − z)2
⊥

(|x1 − z|2⊥|x3 − z|2⊥)2

)
·

·
∫
d2w

(
1

2|y1 − w|2⊥|y3 − w|2⊥
−

(y1 − w, y3 − w)2
⊥

(|y1 − w|2⊥|y3 − w|2⊥)2

)
·

·
∫
d2z0

(
|x1 − z|2⊥

|x1 − z0|2⊥|z − z0|2⊥

) 1
2

+iν ( |y1 − w|2⊥
|y1 − z0|2⊥|w − z0|2⊥

) 1
2
−iν

. (4.10)

To be able to calculate these integrals over z and w we derived, using the dimensional

regularization and Feynman parameterization, the following formula:

2

∫
d2z

π

(
1

(x− z)2(y − z)2
− 2〈x− z, y − z〉2

((x− z)2(y − z)2)2

)
(x− z)2β

z2β
= − β

1− β
2〈x, y〉2 − x2y2

x2(y2)1+β((x− y)2)1−β .

(4.11)

It leads to the following expression for our correlator:

〈S2+ω1
gl+ (x1⊥, x3⊥)S2+ω2

gl− (y1⊥, y3⊥)〉 =

= −iN
2g4

4π3
δ(ω1 − ω2)

∫
dν(∆2

⊥)ℵ(ν)−ωB(−ω, ω − ℵ(ν))
1− eiπ(2ℵ(ν)−ω)

sinπℵ(ν)

ν2

(1
4 + ν2)2

·

1

(|x13|2⊥|y13|2⊥)
1
2

+
ℵ(ν)
2

∫
d2z0

(|x13|2⊥)
1
2

+iν(2 cos2(φx)− 1)

(|x1 − z0|2⊥)
1
2

+iν |x3 − z0|2⊥)
1
2

+iν

(|y13|2⊥)
1
2
−iν(2 cos2(φy)− 1)

(|y1 − z0|2⊥)
1
2
−iν |y3 − z0|2⊥)

1
2
−iν

,

(4.12)
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where φx is the angle between the vectors z0 − x1⊥ and z0 − x3⊥, φy is the angle between

the vectors z0 − y1⊥ and z0 − y3⊥.

The last integration can be done directly in the limit x13, y13 → 0. The calculations

are given in Appendix C. Finally we get:

〈S2+ω1
gl+ (x1⊥, x3⊥)S2+ω2

gl− (y1⊥, y3⊥)〉 −−−−−−−−−→
x
13⊥ , y13⊥→0

→ −iN
2g4

4π3
δ(ω1 − ω2)

∫
dν(∆2

⊥)ℵ(ν)−ωB(−ω, ω − ℵ(ν))
1− eiπ(2ℵ(ν)−ω)

sinπℵ(ν)

ν2

(1
4 + ν2)2

·

1

(|x13|2⊥|y13|2⊥)1+
ℵ(ν)
2

(
(|x13|2⊥)

1
2

+iν(|y13|2⊥)
1
2

+iν

(|x− y|2⊥)1+2iν
G(ν) + (ν → −ν)

)
, (4.13)

where

G(ν) = −i 4−1−2iνπ3(i− 2ν)2

Γ2(3
2 − iν)Γ2(1 + iν) sinh(2πν)

.

Now we can carry out the last integration over ν as the pole contribution at ω = ℵ(ν).

We pick here the first pole Ψ-functions in (3.17) which corresponds to the operator with

the lowest possible twist=2. Note that we omitted from our contour of integration the

singularity at ν = − i
2 . Finally, we arrive at the final result of our paper - the correlator

of two light ray operators representing the analytic continuation of twist two operators to

the Lorentz spin j = 1 + ω, in the BFKL limit ω → 0 and g2

ω - fixed:

〈S2+ω1
+ (x1⊥, x3⊥)S2+ω2

− (y1⊥, y3⊥)〉 −−−−−−−−−→
x
13⊥ , y13⊥→0

δ(ω1 − ω2)Υ(γ̃)
(x2

13⊥)
γ̃
2
−ω

2 (y2
13⊥)

γ̃
2
−ω

2

((x− y)2
⊥)2+γ̃

,

(4.14)

where Υ is given by

Υ(γ̃) = −N2g4 2−1−2γ̃π

γ̃2Γ2(1− γ̃
2 )Γ2(1

2 + γ̃
2 ) sin(πγ̃)ℵ̂′(γ̃)

(4.15)

and γ̃ = −1 + 2iν is the solution of ω = ℵ̂(γ̃) , where ℵ̂(γ̃) = ℵ(−i γ̃+1
2 ) and ℵ(ν) is given

by 3.17. Finally let us introduce the new quantity γ = γ̃ − ω which is the anomalous

dimension in NLO BFKL. It satisfy the following equation:

ω = ℵ̂(γ + ω) = ℵ̂(γ) + ℵ̂′(γ)ℵ̂(γ) + o(g4) . (4.16)

This anomalous dimension γ is in the full correspondence with [22]. The correlator in terms

of γ reads as follows:

〈S2+ω1
+ (x1⊥, x3⊥)S2+ω2

− (y1⊥, y3⊥)〉 −−−−−−−−−→
x
13⊥ , y13⊥→0

δ(ω1 − ω2)Υ(γ + ω)
(x2

13⊥)
γ
2 (y2

13⊥)
γ
2

((x− y)2
⊥)2+γ+ω

.

(4.17)

Note that this formula correctly reproduces the tensor structure of the correlator cor-

responding of local twist-2 operators (2.1) restricted on 2-dimensional orthogonal space
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and analytically continued to j → 1 + ω. Indeed, the regularized operators enter with

a multiplier Λγ where Λ is a scheme-dependent cutoff. We use the point-splitting reg-

ularization in the orthogonal direction for our light-ray operators and hence the cutoffs

are defined as Λx = 1
|x13⊥| and Λy = 1

|y13⊥| . Now if we redefine light ray operators as

ΛγxS̆
2+ω1
+ (x1⊥) → S̆2+ω1

+ (x1⊥) , Λγy S̆
2+ω1
+ (y1⊥) → S̆2+ω2

+ (y1⊥) the correlation function ac-

quires a standard form:

〈S̆2+ω1
+ (x⊥)S̆2+ω2

− (y⊥) = δ(ω1 − ω2)
Υ(γ + ω)

((x− y)2
⊥)2+γ+ω

. (4.18)

In the leading order of perturbation theory, when g2

ω → 0, the coefficient Υ(γ + ω) reads

as follows:

Υ(−8g2/ω) =
ωN2

π27
(4.19)

and our BFKL result (4.17) reduces to

〈S̆2+ω1
+ (x⊥)S̆2+ω2

− (y⊥)〉 = δ(ω1 − ω2)
ωN2

π27

1

((x− y)2
⊥)2+ω

. (4.20)

5 Conclusion

In this paper we have generalized the twist-2 operator for the case of principal series repre-

sentation in terms of a nonlocal light ray operator. Then we have calculated the correlation

function between two such operators in the BFKL limit. The correlator takes the form ex-

pected from conformal invariance, with the same anomalous dimension as predicted in [22].

One might ask why this predictable result could be interesting. Here is our motivation.

First of all, the method of [22] is rather indirect and is based on the the comparison

with the Bjorken scaling for the scattering amplitudes. It was suggested there that an

analytic continuation of anomalous dimensions of local twist-2 operators gives the anoma-

lous dimension of some non-local gluon operator F−i∇ω−1F i
− . This method, however,

does not tell us the explicit form of this operator and in this paper we demonstrated that

F−i∇ω−1F i
− is actually a light-ray operator (j ≡ ω + 1):

Fj(x⊥) =

∫ ∞
0
dL+ L1−j

+

∫
dx+ tr F i

− (x+n− + x⊥)[x, x+ L+n−]F−i ((L+ + x+)n− + x⊥)

(5.1)

with the anomalous dimension of this operator γ(j; g2) being an analytic continuation of

the anomalous dimension (4.16) of local twist two operators. The correlator we calculate

is a physical quantity well adopted to the study of CFT.

Secondly, we hope to generalize this result to the case of three-point correlators (and

the corresponding structure functions) of twist-2 operator in the BFKL limit. An important

basic ingredient for it – the so called 3-pomeron transition vertex – is already present in the

literature [47–49]. However, this vertex is a purely 2-dimensional object (in the 2d space
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orthogonal to the light-cone directions). In a work in progress, we are trying to understand

how to adopt it in the context of 4-dimensional 3-point correlators and our experience with

the 2-point correlator from the current paper, and in particular its explicitly calculated

normalization, can serve as a valuable material.

In other words, our work can be considered as the first step in the construction of the

conformal bootstrap ingredients for the 4-dimensional OPE in the BFKL approximation

in N=4 SYM theory. This could provide a valuable information on the general structure

of the OPE in this model beyond the perturbation theory. An additional interest for it is

the fact that in the leading BFKL order, the same gluon graphs dominate both the planar

QCD and the planar N=4 SYM. This bootstrap program could thus provide an interesting

point of view to the hadron high energy scattering.

And finally, let us stress again that our generalization of twist-2 operators based on

principal series representation with continuous spin j allows us to circumvent a subtle ques-

tion of analytic continuation in j. The well-known principal of maximal transcendentality,

which often serves as a mnemonic prescription for such analytic continuation, notably in the

perturbative expansion based on integrability [23, 24], might naturally emerge in the frame-

work of the extension of N=4 SYM physical space to the principal series of PSU(2, 2|4) or

its subgroups. It is tempting to suggest that the principal series representation, in terms

of nonlocal objects generalising local operators, might fix at once the analytic continuation

for all such observables.
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Appendices

A Notations

In this section we set our notations. The lagrangian of N=4 SYM with the SU(Nc) gauge

group has the following form:

L = Tr

{
−1

2
FµνF

µν +
1

2
(Dµφ

AB)(Dµφ̄AB) +
1

8
g2[φAB, φCD][φ̄AB, φ̄CD]+

+2iλ̄α̇Aσ
α̇β
µ DµλAβ −

√
2gλαA[φ̄AB, λ

B
α ] +

√
2gλ̄α̇A[φAB, λ̄α̇B]

}
, (A.1)
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where field strength Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] and covariant derivative Dµ = ∂µ −
ig[Aµ, ...].Notice that we work with Minkowski signature (+,−,−,−) and all fields are taken

in the adjoint representation of SU(Nc). SO(6)-multiplet with scalars φa, a ∈ {1÷ 6} can

be grouped into the antisymmetric tensor φAB,A,B ∈ {1÷ 4}:

φAB =
1√
2

ΣaABφa, φ̄AB =
1√
2

Σ̄a
ABφ

a = (φAB)∗, (A.2)

using Dirac matrices in 6-d Euclidian space:

ΣaAB = (η1AB, η2AB, η3AB, iη̄1AB, iη̄2AB, iη̄3AB),

Σ̄a
AB = (η1AB, η2AB, η3AB,−iη̄1AB,−iη̄2AB,−iη̄3AB),

and ’t Hooft symbols:

ηiAB = εiAB + δiAδ4B − δiBδ4A,

η̄iAB = εiAB − δiAδ4B + δiBδ4A,

η1 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , η2 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , η3 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , (A.3)

iη̄1 =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 , iη̄2 =


0 0 −i 0

0 0 1 −i
i 0 0 0

0 i 0 0

 , iη̄3 =


0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

 . (A.4)

Explicit formula for scalars reads as follows

[φAB] =
1√
2

(φ1η1AB + φ2η2AB + φ3η3AB + φ4iη̄1AB + φ5iη̄2AB + φ6iη̄3AB) =

=
1√
2


0 φ3 + iφ6 −φ2 − iφ5 φ1 − iφ4

−φ3 − iφ6 0 φ1 + iφ4 φ2 − iφ5

φ2 + iφ5 −φ1 − iφ4 0 φ3 − iφ6

−φ1 + iφ4 −φ2 + iφ5 −φ3 + iφ6 0

 =


0 Z −Y X̄

−Z 0 X Ȳ

Y −X 0 Z̄

−X̄ −Ȳ −Z̄ 0

 .

Fermions are realized as a two-component Weyl spinors λAα with conjugated λ̄α̇A. Spinor

index α ∈ {1, 2}and A ∈ {1÷ 4} is a SU(4) index. Due to supersymmetry one can fix just

the propagator of scalars and get the normalization for fermions and gauge fields acting by

supercharges. In this article we set the normalization for free propagators as follows:

〈Z(x)ab Z̄(y)cd〉0 = N (δadδ
c
b −

1

Nc
δab δ

c
d)

1

(x− y)2
, and the same for Xand Y, (A.5)

〈λAα (x)ab λ̄β̇B(y)cd〉0 = iN δAB(δadδ
c
b −

1

Nc
δab δ

c
d)σ̄

µ

αβ̇

∂

∂xµ
1

(x− y)2
, (A.6)

〈Aµ(x)abAν(y)cd〉0 = −N (δadδ
c
b −

1

Nc
δab δ

c
d)

gµν
(x− y)2

. (A.7)
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where N = − 1
8π2 , {σµ} = {1, σ} and {σ̄µ} = {1,−σ} with ordinary Pauli matrices σ.

Throughout the text we use the basis {n+, n−, e1⊥, e2⊥} with two light-like vectors nµ+ =

{ 1√
2
, 0, 0, 1√

2
}, nµ− = { 1√

2
, 0, 0,− 1√

2
} normalized as (n−n+) = 1 and two orthogonal vectors

e1⊥, e2⊥ , which span 2-d plane {⊥} orthogonal to {n+, n−}. The vector x reads in this

basis as x = x−n+ + x+n− + x⊥, with its square equal to x2 = 2x+x− − x2
⊥.

Field content of twist-2 operators All twist-2 operators, which were discussed in this

paper, are constructed from the set of elementary fields X = {F µ
+⊥ , λ

A
+α, λ̄

α̇
+A, φ

AB}. Twist

2 is the minimal possible twist (defined as bare dimension minus spin). Gluon field F µ
+⊥ is

obtained by projection of one of the indices of the field strength tensor Fµν on n+ direction

where as the second index is automatically restricted to the transverse plane with the metric

g⊥µν = gµν − n+µn−ν − n+νn−µ. Weyl spinors λ+α and λ̄α̇+ correspond to the states with

definite helicity 1,−1, respectively and they are parameterized as λ+α = 1
2 σ̄
−
αβ̇
σ+β̇γλγ and

λ̄α̇+ = 1
2σ
−α̇βσ̄+

βγ̇ λ̄
γ̇ .

B Explanation of the coordinate dependence of the cut-off ratio (4.3)

using NLO Impact factor

In principle, in the context of high energy scattering, the cutoffs σ in Eq. (4.3) should be

obtained from the NLO impact factor for Wilson frame. In accordance with general logic

of high-energy OPE we factorize any correlation function into a product of the “probe” im-

pact factor, the “target” impact factor, and the amplitude of scattering of two (conformal)

dipoles. The “rapidity divide” between the impact factor and the dipole-dipole scattering

is determined from two conditions: (i) the properly defined impact factor should not scale

with the energy, so that all the energy dependence is contained in the dipole-dipole scat-

tering, and (ii) the impact factor should be Möbius invariant. The calculation of the NLO

impact factor for frames is beyond the scope of present paper where we limit ourselves only

to the LO impact factor, with a typical Feynman graph given in Fig.8 (but take into ac-

count the NLO dimension!); however, it is instructive to consider a typical Feynman graph

in NLO to read off the cutoff dependence on the shape of the configuration of frames. A

typical Feynman diagram for the NLO impact factor is shown in Fig.9 and the result is

proportional to [50]
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Figure 8. ImpactFactorLO

g2

∫
d2z1d

2z2

∫ ∞
0

dp1−e
i
p1−
2
Z1

∫ ∞
0

dp2−
p2−

ei
p2−
2
Z2 + (z1 ↔ z2), (B.1)

where Zi ≡
(x1−zi)2⊥
x1−

− (x3−zi)2⊥
x2−

. The integral over α2 in the Eq. (B.1) diverges. This

divergence reflects the fact that the eq.(B.1) is not exactly the NLO impact factor since

we must subtract from it the matrix element of the leading-order contribution, the graph

in Fig.8, which is proportional to

g2

∫
d2z1

∫ ∞
0
dp1− e

i
p1−
2
Z1

∫ σ−

0

dp2−
p2−

, (B.2)

where the integral over p2− is restricted by the “rigid cutoff” (4.3). The difference of these

two expressions gives the typical logarithmic term in the NLO impact factor in the form

g2

∫
d2z1d

2z2

∫ ∞
0

dp1− e
i
p1−
2
Z1

(∫ ∞
0

dp2−
p2−

ei
p1−
2
Z2 −

∫ σ−

0

dp2−
p2−

)
+ (z1 ↔ z2) =

=
1

Z2
1

lnσZ2 + (z1 ↔ z2). (B.3)

Figure 9. ImpactFactorNLO
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The logarithmic contribution is obviously not conformally invariant. As explained

in [50] the reason is that while formally light-like Wilson lines are Möbius invariant, the

rigid cutoff (4.3) violates the invariance. Since the conformally invariant cutoff for rapidity

divergence of Wilson lines is not known (it may even not exist) we proceed with the

rigid cutoff (4.3) but pay the price of correcting the “rigid-cutoff” dipoles by counterterms

restoring the conformal invariance order-by-order in perturbation theory. In the NLO

approximation such “composite conformal dipole” has the form

U(z1, z2)conf = U(z1, z2)+

+
g2

π

∫
d2z3

z2
12

z2
13z

2
23

[U(z1, z3) + U(z3, z2)−U(z1, z2)] ln
az2

12

z2
13z

2
23

(B.4)

is the “composite dipole” with the conformal longitudinal cutoff in the next-to-leading

order and a is an arbitrary dimensional constant. The arbitrary dimensional constant a

should be chosen in such a way that the impact factor (B.1) does not change with length

of the frame. It is convenient to choose the rapidity-dependent constant a → ae−2η so

that the [Tr{Ûσz1Û
†σ
z2 }
]conf

a
does not depend on η = lnσ− and all the rapidity dependence

is encoded into a-dependence:

U(z1, z2)conf = U(z1, z2)+

+
g2

π

∫
d2z3

z2
12

z2
13z

2
23

[U(z1, z3) + U(z3, z2)−U(z1, z2)] ln
2az2

12

σ2
+z

2
13z

2
23

+ O(α2
s). (B.5)

We need to choose the new “rapidity cutoff” a in such a way that all the energy dependence

is included into the matrix element(s) of Wilson-line operators so that the impact factor

does not depend on energy (i.e. it should not scale with the length of frame.

Also, the NLO impact factor should be Möbius invariant. These two requirements fix

the cutoff in the form a0 = 2x1−x3−
(x−y)2

and we obtain that the typical logarithmic term in the

NLO impact factor is proportional to

1

Z2
1

[
ln

−x1−x3−z
2
12

x2
13⊥

(x1⊥ − z2)2z2
12

Z2
2 + 2C

]
+ (x1 ↔ x3) + (z1 ↔ z2). (B.6)

Thus, the “new rapidity cutoff” for the upper Wilson frame is σ− = 2x1−x3−
x213⊥

(for simplicity,

we use the same notation σ since the meaning of a0 is essentially the rapidity cutoff for the

conformal dipole (B.4)). Similarly, for the lower Wilson frame the cutoff is σ− = 2y1+y3+
y213⊥

so we get σ+σ− = r1 = r2 at large longitudinal x, y.

C Calculation of the integral in (4.12)

To carry out the integration over z0 in the integral

AR2 =

∫
R2

d2z0
(|x13|2)

1
2

+iν(2 cos2(φx)− 1)

(|x1 − z0|2)
1
2

+iν |x3 − z0|2)
1
2

+iν

(|y13|2)
1
2
−iν(2 cos2(φy)− 1)

(|y1 − z0|2)
1
2
−iν |y3 − z0|2)

1
2
−iν

(C.1)
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let us define two functions

AΩ =

∫
Ω

d2z0
(|x13|2)

1
2

+iν(2 cos2(φx)− 1)

(|x1 − z0|2)
1
2

+iν |x3 − z0|2)
1
2

+iν

(|y13|2)
1
2
−iν(2 cos2(φy)− 1)

(|y1 − z0|2)
1
2
−iν |y3 − z0|2)

1
2
−iν

, (C.2)

BΩ =

∫
Ω

d2z0
(|x13|2)

1
2

+iν

(|x1 − z0|2)
1
2

+iν |x3 − z0|2)
1
2

+iν

(|y13|2)
1
2
−iν

(|y1 − z0|2)
1
2
−iν |y3 − z0|2)

1
2
−iν

(C.3)

and divide the full R2 space into three domains

(1) Ω0 = |x1 − z0|, |x3 − z0| > qx ∧ |y1 − z0|, |y3 − z0| > qy

(2) Ωx = |x1 − z0|, |x3 − z0| < qx

(3) Ωy = |y1 − z0|, |y3 − z0| < qy

where

qx =
√
|x13||x− y|, qy =

√
|y13||x− y|

and calculate the difference AΩ −BΩ for each of them.

In the case (1) we can expand cos2 ≈ 1 + o(|x13|, |y13|), then 2cos2 − 1 → 1. The

difference AΩ0 − BΩ0 disappears in this domain. Now let us elaborate the case (2) (the

case (3) is absolutely similar). In this case we integrate over z inside the circle centered at

x1 ∼ x3, with the radius qx:

AΩx −BΩx =
(|x13|2)

1
2

+iν(|y13|2)
1
2
−iν

(|x− y|2)1−2iν

∫
|z−x|<qx

d2z0
2 cos2(φx)− 1− 1

(|x1 − z0|2)
1
2

+iν(|x3 − z0|2)
1
2

+iν
(1 + o(

qx
|x− y|

)) =

= −2
(|x13|2)

1
2

+iν(|y13|2)
1
2
−iν

(|x− y|2)1−2iν

∫
R2

d2z0
sin2(φx)

(|x1 − z0|2)
1
2

+iν(|x3 − z0|2)
1
2

+iν
(1 + o(

x13

qx
)). (C.4)

The last integral can be calculated in elliptic coordinates

|x1 − z0| =
|x13|

2
(σ + τ),

|x3 − z0| =
|x13|

2
(σ − τ), (C.5)

which gives:

∫
R2

d2z
sin2(φx)

(|x1 − z0|2)
1
2

+iν(|x3 − z0|2)
1
2

+iν
= 23+4iν(|x13|2)−2iν

∞∫
1

dσ

1∫
−1

dτ

√
(σ2 − 1)(1− τ2)

(σ2 − τ2)2+2iν
=

= −π2−1+4iν(|x13|2)−2iν Γ(−1
2 − iν)Γ(1 + iν)

Γ(1− iν)Γ(3
2 + iν)

, (C.6)
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where we have used the formula:

∞∫
1

dσ

1∫
−1

dτ

√
(σ2 − 1)(1− τ2)

(σ2 − τ2)2+2iν
=

∞∫
1

dσ
√
−1 + σ2

1

2
π
(
σ2
)−2−2iν

2F1

(
1

2
, 2 + 2iν, 2,

1

σ2

)
=

= −
πΓ
(
−1

2 − iν
)

Γ(1 + iν)

16Γ(1− iν)Γ
(

3
2 + iν

) . (C.7)

Finally we get :

δx = AΩx −BΩx =
(|x13|2)

1
2
−iν(|y12|2)

1
2
−iν

(|x− y|2)1−2iν
π24iν Γ(−1

2 − iν)Γ(1 + iν)

Γ(1− iν)Γ(3
2 + iν)

. (C.8)

And similar expression for AΩy −BΩy :

δy = AΩy −BΩy =
(x13|2)

1
2

+iν(|y13|2)
1
2

+iν

(|x− y|2)1+2iν
π2−4iν Γ(−1

2 + iν)Γ(1− iν)

Γ(1 + iν)Γ(3
2 − iν)

. (C.9)

Expression for BR2 (when Ω = R2) in the limit x13, y13 → 0 reads as follows:

BR2 =

∫
R2

d2z0
(|x13|2)

1
2

+iν

(|x1 − z0|2)
1
2

+iν(|x3 − z0|2)
1
2

+iν

(|y13|2)
1
2
−iν

(|y1 − z0|2)
1
2
−iν(|y3 − z0|2)

1
2
−iν

=

=
(|x13|2)

1
2

+iν(|y13|2)
1
2

+iν

(|x− y|2)1+2iν
F (ν) + (ν → −ν), (C.10)

where F (ν) = π2−4iν

2iν

Γ( 1
2

+iν)Γ(−iν)

Γ( 1
2
−iν)Γ(iν)

. Finally, collecting the individual terms we obtain

AR2 =
(|x13|2)

1
2

+iν(|y13|2)
1
2

+iν

(|x− y|2)1+2iν
G(ν) + (ν → −ν),

where

G(ν) = −i 4−1−2iνπ3(i− 2ν)2

Γ2(3
2 − iν)Γ2(1 + iν) sinh(2πν)

.

D Two-point correlator of Wilson frames

As was noticed before, the method of OPE over colour dipoles is quite general and can

be applied to many different operators. In this section we give the expression for the case

of pure Wilson frames (with no field insertion). Namely, such an operator for a frame

stretched along n+ reads as follows:

Sω
W.F.+

(x1⊥, x3⊥) =

∞∫
−∞

dx1−

∞∫
x1−

dx3−(x3− − x1−)−2−ω tr [x1, x2]� . (D.1)

The operator constructed from a pure Wilson rectangle collapses to one when it is reduced

to light-ray, but it has a nontrivial correlation function when its transverse size is slightly
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different from zero. The OPE expansion of frames over colour dipoles consists of simply

replacement of a finite frame by an infinite dipole with a certain cutoff σ+:

tr [x1, x3]� → N(1−Uσ+(x1⊥, x3⊥)). (D.2)

This formula is an analogue of (3.9). The rest of calculation almost directly repeats the

calculations for the regularized light ray operators of the main text and the result reads as

follows:

〈Sω1

W.F.+
(x1⊥, x3⊥)Sω2

W.F.−(y1⊥, y3⊥)〉 ∼ g4

ω

(x2
13⊥)2+ γ

2 (y2
13⊥)2+ γ

2

((x− y)2
⊥)2+γ+ω

, (D.3)

where γ is the anomalous dimension in the NLO BFKL given by the solution of (4.16). Let

us stress that this result is in correspondence with (4.17). Namely let us check the weak

coupling regime g2

ω → 0. In this case we have :

∂x1⊥∂x3⊥

∫ ∫
(x3− − x1−)−2−ω[x1, x3]� '

g2
YM

ω

∫ ∫
(x3− − x1−)−ωF (x1)[x1, x3]�F (x3).

(D.4)

So it leads to the following correlator of two frames

〈S2+ω1
+ S2+ω2

− 〉 ∼ (
ω

g2
YM

)2∂x1⊥∂x3⊥∂y1⊥∂y3⊥〈S
ω1

W.F.+
(x1⊥, x3⊥)Sω2

W.F.−(y1⊥, y3⊥)〉, (D.5)

which coincides with (4.20) and (D.3).
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