Overview and Highlights of the Spin Asymmetries of the Nucleon Experiment - SANE

Oscar A. Rondón
INPP - University of Virginia

$13^{\text {th }}$ International Conference on Meson-Nucleon Physics and the Structure of the Nucleon Pontificia Università della S. Croce, Roma September 30, 2013

Probing the Nucleon with Transverse Polarized Electromagnetic Scattering

Inelastic e-nucleon Scattering

- Inclusive EM scattering is described by hadronic and leptonic tensors
- Symmetries reduce hadronic tensor to four structure functions:
- Symmetric part: unpolarized $\boldsymbol{W}_{1}, \boldsymbol{W}_{2}$
- Anti-symmetric part: double-polarized $\boldsymbol{G}_{1}, \boldsymbol{G}_{\mathbf{2}}$

$$
\begin{aligned}
W_{\mu \nu}^{A}= & 2 \epsilon_{\mu \nu \lambda \sigma} q^{\lambda} \\
& \left\{M^{2} S^{\sigma} \boldsymbol{G}_{\mathbf{1}}\left(v, Q^{2}\right)+\left[M v S^{\sigma}-p^{\sigma} S \cdot q\right] \boldsymbol{G}_{\mathbf{2}}\left(v, Q^{2}\right)\right\}
\end{aligned}
$$

Target fragments

Current jet
(http://www.desy.de/~gbrandt/feyn/)
Inclusive scattering: undetected final state

- Talk focus is on inclusive double-polarization measurement with Transverse and Longitudinal target polarization

Structure Functions in Inclusive DIS

- The four SF's $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{2}, \boldsymbol{W}_{\mathbf{1}}$ and \boldsymbol{W}_{2}, contain all the information on nucleon structure that can be extracted from inclusive data
- In the high energy regime of DIS, \boldsymbol{g}_{1} and \boldsymbol{g}_{2} are expected to scale like \boldsymbol{F}_{1} and \boldsymbol{F}_{2} (up to log violations)

$$
\begin{array}{r}
\lim _{Q^{2}, v \rightarrow \infty} M^{2} v G_{1}\left(v, Q^{2}\right)=g_{1}(x) \\
\lim _{Q^{2}, v \rightarrow \infty} M v^{2} G_{2}\left(v, Q^{2}\right)=g_{2}(x) \\
\text { Bjorken } x=Q^{2} /(2 M v)
\end{array}
$$

$$
\begin{aligned}
& \lim _{Q^{2}, v \rightarrow \infty} M W_{1}\left(\nu, Q^{2}\right)=F_{1}(x) \\
& \lim _{Q^{2}, v \rightarrow \infty} \nu W_{2}\left(\nu, Q^{2}\right)=F_{2}(x) \\
& \frac{F_{2}(x)}{F_{1}(x)}=2 x \quad(\text { Callan-Gross })
\end{aligned}
$$

- In the quark parton model \boldsymbol{g}_{1} and \boldsymbol{F}_{1} are also related to PDF's:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)+q_{f}^{\downarrow}(x)\right) \\
& g_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)-q_{f}^{\downarrow}(x)\right)
\end{aligned}
$$

Virtual Compton Asymmetries

- The spin SF's are also related to virtual photon cross-sections and spin asymmetries (SA)
- Along the γ^{*} axis, the helicity of the photon-nucleon system is $3 / 2$ or $1 / 2$ for transverse photons, $1 / 2$ for longitudinal ones
- The $\mathrm{SA} \boldsymbol{A}_{1}$ is defined in terms of the difference for $3 / 2$ and $1 / 2$ helicity cross sections

$$
\begin{aligned}
& A_{1}=\frac{\sigma_{T}^{(3 / 2)}-\sigma_{T}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{1(1 / 2)}} \\
& A_{1}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right) ; \quad \gamma=\frac{2 x M}{\sqrt{Q^{2}}}
\end{aligned}
$$

- The $\operatorname{SA} \boldsymbol{A}_{2}$ is defined in terms of the interference between

$$
A_{2}=\frac{\sigma_{T L}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)}} \leq R=\frac{\sigma_{L}}{\sigma_{T}}
$$ initial transverse and final longitudinal amplitudes

$$
\boldsymbol{A}_{2}=\frac{\gamma}{F_{1}}\left(g_{1}+g_{2}\right)=\frac{\gamma}{F_{1}} \boldsymbol{g}_{T}
$$

Transverse Polarized Scattering: Unlocking Twist-3

- Twist-2 and twist-3 operators contribute at same order in transverse polarized scattering

- twist-2: handbag diagram
- twist-3: qgq correlations
- direct access to twist-3 via \boldsymbol{g}_{2} :

> - "Unique feature of spin-dependent scattering" (R. Jaffe)

(c)
(d)
$\log Q^{2} \quad \alpha_{Q C D} \quad$ twist-3
(Comments NPP 19, 239 (1990))

- difference of transverse cross sections

$$
\frac{d^{2} \sigma^{(\uparrow \rightarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow \rightarrow)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \theta \cos \phi\left[M G_{1}\left(\nu, Q^{2}\right)+2 E \boldsymbol{G}_{2}\left(\nu, Q^{2}\right)\right]
$$

Why is \boldsymbol{g}_{2} interesting?

- tests twist-3 effects = quark-gluon correlations
- higher twist corrections to \boldsymbol{g}_{1} with $3^{\text {rd }}$ moment \boldsymbol{d}_{2} matrix element
- test of lattice $\mathrm{QCD}, \mathrm{QCD}$ sum rules, quark models from moments
- polarizabilities of color fields (with twist-4 matrix element f_{2})
- magnetic $\chi_{\mathrm{B}}=\left(4 d_{2}+f_{2}\right) / 3$ and electric $\chi_{\mathrm{E}}=\left(4 d_{2}-2 f_{2}\right) / 3$.
- $3^{\text {rd }}$ moment related to color Lorentz force on transverse polarized quark (M. Burkardt, AIP Conf.Proc. 1155 (2009) 26)
- sign of d_{2} related to sign of transverse deformation (anomalous $\kappa^{\text {q }}$)
- contains chiral odd twist-2 = quark transverse spin (mass term)
- test quark masses (covariant parton models)

\boldsymbol{g}_{2} and $\boldsymbol{g}_{\mathrm{T}}$ Spin Structure Functions

Experimentally measured quantities

$$
g_{T}(x)=g_{1}(x)+g_{2}(x)=\frac{1}{2} \sum e_{q}^{2} g_{T}^{q}(x)
$$

Decomposition of g_{T}^{q} and TMD distributions ${ }_{[1]}$

$$
\begin{array}{r}
g_{T}(x)=\int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} \frac{g_{\mathrm{TT}}^{q}\left(x, \vec{k}_{t}^{2}\right)}{x}+\frac{m}{M} \frac{h_{1}(x)}{x}+\tilde{g}_{T}(x) \\
\text { twist-3 TMD quark mass term qgq interaction }
\end{array}
$$

Applying twist-2 Wandzura-Wilczek approximation of g_{2}

$$
\begin{gathered}
g_{2}^{W W}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y) \\
g_{T}(x)=\int_{x}^{1} d y \frac{g_{1}(y)}{y}+\frac{m}{M}\left[\frac{h_{1}(x)}{x}-\int_{x}^{1} \frac{d y}{y} \frac{h_{1}(y)}{y}\right]+\tilde{g}_{T}(x)-\int_{x}^{1} \frac{d y}{y}\left(\tilde{g}_{T}(y)-\hat{g}_{T}(y)\right)
\end{gathered}
$$

Twist-3 for the nucleon (neglecting quark mass)

$$
\overline{\boldsymbol{g}}_{2}=\frac{1}{2} \sum e_{q}^{2}\left[\tilde{g}_{T}^{q}-\int_{x}^{1} \frac{d y}{y}\left(\tilde{g}_{T}^{q}(y)-\hat{g}_{T}^{q}(y)\right)\right] ; \quad \tilde{g}_{T}=q g \text { term, } \hat{g}_{T}=\text { Lorentz invariance [2] }
$$

Proton world $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$ data before SANE

- Two beam energies: $5.9 \mathrm{GeV}, 4.7 \mathrm{GeV}$
- Very good high \boldsymbol{x} coverage with detector at 40°

Experiment

Spin Asymmetries of the Nucleon Experiment (TJNAF E07-003)

SANE Collaboration
Argonne National Lab., Christopher Newport U., Florida International U., Hampton U., Jefferson Lab., U. of New Hampshire, Norfolk S. U., North Carolina A\&T S. U., Mississippi S. U., Ohio U., IHEP - Protvino, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Southern U. New Orleans, Temple U., Tohoku U., U. of Virginia, Yerevan Physics I., Xavier U.

Spokespersons:
S. Choi (Seoul), M. Jones (JLab), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Goal: Measure the proton spin structure function $\boldsymbol{g}_{\mathbf{2}}\left(x, Q^{2}\right)$ and spin asymmetry $\mathbf{A}_{1}\left(x, Q^{2}\right)$ for $2.5 \leq \boldsymbol{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}$ and $0.3 \leq \boldsymbol{x} \leq 0.8$

Method: Measure inclusive spin asymmetries for two orientations of target spin relative to beam helicity (anti-parallel and near-perpendicular), detect electrons with novel large solid angle electron telescope BETA

SANE Layout in JLab's Hall C

BETA with DIS electron simulation

[^0][4] Norfolk State U. and U. of Regina
[5] UVA- JLab

Polarized Target

Data

DATA

Detector	Detected particle	Scattering Type	Beam Energy $[$ GeV]	Field Direction	Target
BETA	e, π^{0}	Inclusive inelastic	$5.9,4.7$	$180^{\circ}, 80^{\circ}$	NH3
HMS	e	Inclusive inelastic	$5.9,4.7$	$180^{\circ}, 80^{\circ}$	NH3 C, LHe [1]
BETA - HMS	$e-p$	Inclusive elastic	5.9	80°	NH 3
Coincidence	5.9	80°	NH 3		
elastic Unpolarized, for dilution factor					

- Data taken in January - March 2009

BETA and HMS data

- $Q^{2}-x$ phase space of BETA's 80° data

- Central kinematics of HMS inclusive asymmetry data
- cut on $\mathrm{E}^{\prime} \geq 1.3 \mathrm{GeV}$

Measured Asymmetries $\mathrm{A}\left(80^{\circ}\right), \mathrm{A}\left(180^{\circ}\right)$

$$
\begin{gathered}
A_{m}=\frac{\epsilon}{f P_{b} P_{t} C_{N}} ; \epsilon=\frac{N^{-}-N^{+}}{N^{-}+N^{+}} \\
A_{p h y s}=\frac{1}{f_{r c}}\left(\frac{A_{m}-f_{b} A_{b}}{1-f_{b}}\right)+A_{r c}
\end{gathered}
$$

- $\boldsymbol{N}^{+,-}=$charge normalized, dead time corrected yields

- $\boldsymbol{P}_{\mathrm{b}}, \boldsymbol{P}_{\mathrm{t}}=$ beam, target polarizations
- $\boldsymbol{f}=$ polarized dilution factor
- $\boldsymbol{C}_{\mathrm{N}}={ }^{14} \mathrm{~N}$ polarization correction
- $\boldsymbol{A}_{b}, \boldsymbol{f}_{b}=$ background corrections

- $\boldsymbol{A}_{r o} \boldsymbol{f}_{r c}=$ radiative corrections

$$
A_{\perp}=\left(A_{180} \cos 80+A_{80}\right) / \sin 80
$$

Sample of Normalizations and corrections

Preliminary Results

Spin Asymmetries \boldsymbol{A}_{1} and $\boldsymbol{A}_{\mathbf{2}}$

- HMS single arm data in the resonances, $<\mathrm{Q}^{2}>=1.8 \mathrm{GeV}^{2} \quad A_{1}=\frac{1}{D^{\prime}}\left(\frac{E-E^{\prime} \cos \theta}{E+E^{\prime}} A_{180}+\frac{E^{\prime} \sin \theta}{\left(E+E^{\prime}\right) \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)$
- Model independent separation from

$$
A_{2}=\frac{1}{D^{\prime}} \frac{1}{2 E}\left(\sqrt{Q^{2}} A_{180}-\sqrt{Q^{2}} \frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)
$$ measured asymmetries

(H-y. Kang)

DIS Spin Asymmetry \boldsymbol{A}_{1}

- Statistical errors only
- CLAS data of same W but different Q^{2} are merged in $\mathrm{A}_{1}{ }^{\mathrm{p}}(W)$

DIS Spin Asymmetry \boldsymbol{A}_{2}

- DIS $\boldsymbol{A}_{2}{ }^{\mathrm{p}}$ not zero is signal of parton transverse momentum
$9 / 30 / 13$ - connection to transverse twist-3 TMD $\boldsymbol{g}_{1 \mathrm{~T}}{ }^{+} \quad g_{2}(x)=\frac{d}{d x} g_{1 \mathrm{~T}}^{(1)}(x)+\hat{g}_{T}(x)$

\boldsymbol{g}_{2} in DIS and Resonances

- BETA proton data
- DIS and resonances $0.3<x<0.8,2.5<Q^{2}<6$., $\mathrm{E}^{\prime} \geq 1.3 \mathrm{GeV}$ (more data available down to 0.9 GeV)
- Twist-2 $g_{2}{ }^{w w}\left(2 \mathrm{GeV}^{2}\right)$ from PDF's (AAC03, LSS06)
- SLAC E143 and E155 DIS data

DIS Transverse Spin SF $\boldsymbol{g}_{\mathbf{T}}{ }^{\mathbf{p}}$

- $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{F}_{1} \boldsymbol{A}_{2} / \gamma$ measures spin distribution normal to γ^{*}
- SANE $\left\langle\mathrm{g}_{\mathrm{T}} \mathrm{p}(x>.3)>=0.023 \pm 0.006\right.$

- Bag Model (1990's)
- Data scaled $\times 2.5$
- Model updates needed

DIS Transverse Spin SF $\boldsymbol{g}_{\mathbf{T}}{ }^{\mathbf{p}}$

- $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{F}_{1} \boldsymbol{A}_{2} / \gamma$ measures spin distribution normal to γ^{*}
- SANE $\left\langle\boldsymbol{g}_{\mathrm{T}} \mathrm{p}(x>.3)>=0.023 \pm 0.006\right.$

- $\boldsymbol{g}_{\mathrm{T}}$ evolution non-trivial: no NLO simplification (NPB 608 (2001) 235)
- \boldsymbol{d}_{2} 's pQCD evolution is known ${ }_{26}$ (Shuryak-Vainshtein)

Operator Product Expansion for Spin SF's

- OPE connects SF's CornwallNorton moments to twist-2, twist- 3 matrix elements $\boldsymbol{a}_{\mathrm{N}}, \boldsymbol{d}_{\mathrm{N}}$
$\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{\boldsymbol{a}_{N}}{2}+t m c, \quad N=0,2,4, \ldots$
$\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N\left(\boldsymbol{d}_{N}-\boldsymbol{a}_{N}\right)}{2(N+1)}+t m c, N=2,4, \ldots$ (tmc: target mass corrections)
- At moderate Q^{2} Nachtmann moments are needed to get dynamic twist-3 free of tmc

SANE's measured C-N \boldsymbol{d}_{2} (all data $E^{\prime}>1.3 \mathrm{GeV}, W>2 \mathrm{GeV}$.

Only projected error shown.)

$$
\boldsymbol{d}_{2}\left(\boldsymbol{Q}^{2}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right)
$$

$G_{\mathrm{E}}{ }^{\mathrm{p}} / G_{\mathrm{M}}{ }^{\mathrm{p}}$ from inclusive and coincidence data

Ratio from:

- Inclusive HMS e data at

$$
\begin{aligned}
& Q^{2}=2.06 \mathrm{GeV}^{2} \\
& -A_{\mathrm{el}}^{\mathrm{p}}=-0.20 \pm 0.02 \\
& -G_{\mathrm{E}}^{\mathrm{p}} / G_{\mathrm{M}}^{\mathrm{p}}=0.60 \pm 0.18 \pm 0.06
\end{aligned}
$$

(statistical + systematic error)

- BETA-HMS $e-p$ coincidences at $Q^{2}=5.66 \mathrm{GeV}^{2}$
- $G_{\mathrm{E}}{ }^{\mathrm{p}} / G_{\mathrm{M}}{ }^{\mathrm{p}}=0.67 \pm 0.36$
(statistical error only)

SANE Status and Plans

- DIS $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{g}_{1}+\boldsymbol{g}_{2}$ - working on improved low x systematics
- Moments of $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}$, twist-3 matrix element \boldsymbol{d}_{2}
- working on extending x range, optimized binning to try $\boldsymbol{d}_{2}\left(\mathrm{Q}^{2}\right)$
- Spin Asymmetries $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$
- BETA - parameterizing W and Q^{2} dependence for world data fits
- HMS inelastic asymmetries - finalizing radiative corrections
- Ratio of elastic form factors - publication in preparation
- Three PhD degrees awarded (UVA: J. Maxwell, J. Mulholland; Hampton: A. Liyanage), three more coming (Temple: W. Armstrong; Seoul National: H. Kang; Mississipi State: L. Ndukum)
- Long paper draft in progress

SANE Collaboration (E-07-003)
P. Solvignon

Argonne National Laboratory, Argonne, IL
E. Brash, P. Carter, A. Puckett, M. Veilleux

Christopher Newport University, Newport News, VA
W. Boeglin, P. Markowitz, J. Reinhold

Florida International University, Miami, FL
I. Albayrak, O. Ates, C. Chen, E. Christy, C. Keppel, M. Kohl, Y. Li, A. Liyanage, P. Monaghan, X. Qiu, L. Tang, T. Walton, Z. Ye, L. Zhu

Hampton University, Hampton, VA
P. Bosted, J.-P. Chen, S. Covrig, W. Deconink, A. Deur,
C. Ellis, R. Ent, D. Gaskell, J. Gomez, D. Higinbotham, T. Horn, M. Jones, D. Mack, G. Smith, S. Wood Thomas Jefferson National Accelerator Facility, Newport News, VA
J. Dunne, D. Dutta, A. Narayan, L. Ndukum, Nuruzzaman Mississippi State University, Jackson. MI
A. Ahmidouch, S. Danagoulian, B. Davis, J. German, M. Jones

North Carolina A\&T State University, Greensboro, NC
M. Khandaker

Norfolk State University, Norfolk, VA
A. Daniel, P.M. King, J. Roche

Ohio University, Athens, OH
A.M. Davidenko, Y.M. Goncharenko, V.I. Kravtsov,
Y.M. Melnik, V.V. Mochalov, L. Soloviev, A. Vasiliev nstitute for High Energy Physics, Protvino, Moscow Region, Russia
C. Butuceanu, G. Huber

University of Regina, Regina, SK
V. Kubarovsky

Rensselaer Polytechnic Institute, Troy, NY
L. El Fassi, R. Gilman

Rutgers University, New Brunswick, NJ
S. Choi, H-K. Kang, H. Kang, Y. Kim

Seoul National University, Seoul, Korea
M. Elaasar

State University at New Orleans, LA
W. Armstrong, D. Flay, Z.-E. Meziani, M. Posik, B. Sawatzky, H. Yao

Temple University, Philadelphia, PA
O. Hashimoto, D. Kawama, T. Maruta,
S. Nue Nakamura, G. Toshiyuki

Tohoku U., Tohoku, Japan
K. Slifer

University of New Hampshire
H. Baghdasaryan, M. Bychkov, D. Crabb, D. Day, E. Frlez,
O. Geagla, N. Kalantarians, K. Kovacs, N. Liyanage,
V. Mamyan, J. Maxwell, J. Mulholland, D. Pocanic, S. Riordan, O. Rondon, M. Shabestari

University of Virginia, Charlottesville, VA

L. Pentchev

College of William and Mary, Williamsburg, VA
F. Wesselmann

Xavier University, New Orleans, LA
A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan Yerevan Physics Institute, Yerevan, Armenia

Ph.D. student, M.S. Student, Student

Extras

Double Spin SIDIS A ${ }_{\text {LT }}$

- $\mathrm{g}_{1 \mathrm{~T}}{ }^{\perp}\left(x, \boldsymbol{k}_{\mathrm{t}}\right)$ is chiral-even TMD for quarks with longitudinal helicity in a transverse polarized target
- Weighted by $\boldsymbol{k}_{\mathrm{t}}^{2} / 2 M^{2}$ and integrated over k_{t}, generates a $\cos \left(\phi-\phi_{\mathrm{s}}\right)$ azimuthal A_{LT}, measurable in SIDIS

Hall A E06-010,
PRL 108 (2012) 05200

$$
\frac{A_{L T}(x, y, z)}{\left(\mid \vec{P}_{T} / M\right) \cos \left(\phi-\phi_{s}\right)}=\frac{C(x, y) \sum e^{2} g_{1 T}^{(1)(x)} D^{h}(z)}{C^{\prime}(x, y) \sum e^{2} f_{1}(x) D^{h}(z)}
$$

Spin Asymmetries \boldsymbol{A}_{1} and $\boldsymbol{A}_{\mathbf{2}}$

- HMS single arm data in the resonances, $<\mathrm{Q}^{2}>=1.8 \mathrm{GeV}^{2} \quad A_{1}=\frac{1}{D^{\prime}}\left(\frac{E-E^{\prime} \cos \theta}{E+E^{\prime}} A_{180}+\frac{E^{\prime} \sin \theta}{\left(E+E^{\prime}\right) \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)$
- Model independent separation from

$$
A_{2}=\frac{1}{D^{\prime}} \frac{1}{2 E}\left(\sqrt{Q^{2}} A_{180}-\sqrt{Q^{2}} \frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)
$$ measured asymmetries

(H-y. Kang)

\boldsymbol{g}_{2} in DIS and Resonances

- Proton $\left(\mathrm{NH}_{3}\right)$
- Hall C SANE (E07-003)
$9 / 30 / 13-0.3<x<0.8 \quad 2.5<Q^{2}<6.5$

* E143 (SANE Q ${ }^{2}$ range) SANE (E'>=1.3) - E155x (SANE Q2 range)
- $\operatorname{SLAC} \boldsymbol{x} \boldsymbol{g}_{2}\left(2<Q^{2}<6 \mathrm{GeV}^{2}\right)$
- Total errors SANE \& E143, statistical only E155x

\boldsymbol{g}_{2} in DIS and Resonances

- Proton $\left(\mathrm{NH}_{3}\right)$
- Hall C SANE (E07-003)
$9 / 30 / 13-0.3<x<0.8 \quad 2.5<Q^{2}<6.5$

- Neutron (on ${ }^{3} \mathrm{He}$)
- Hall A d2n (E06-014)
- 4.7 and 5.9 GeV beam

Resonances $\boldsymbol{d}_{\mathbf{2}}$

- Plots show contribution of resonances to $\boldsymbol{d}_{2} \mathrm{CN}$ integral
- Data with $Q^{2}<\sim 4 \mathrm{GeV}^{2}$ need Nachtmann integrals
- Add Nachtmann elastic: dominant at $Q^{2<2} \mathrm{GeV}^{2}$
(E155x, E99-117 DIS too)

$g_{2}{ }^{n}$ at Low $Q^{2}-\mathrm{E} 08-027$

- Goals:
- BC Sum Rule: violation suggested for proton at large Q^{2}, but found satisfied for the neutron and ${ }^{3} \mathrm{He}$.
- Spin Polarizability: Major failure $(>8 \sigma)$ of χ PT for neutron $\delta_{\text {LT }}$. Need g_{2} isospin separation to solve.
- Hydrogen Hyper Fine Splitting and Proton Charge Radius: Lack of knowledge of g_{2} at low Q^{2}, is one of the leading uncertainties (E08-007)
- Took data in 2012. Analysis in progress

Big Electron Telescope Array - BETA

- BigCal lead glass calorimeter: main detector used in GEp-III.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
- Effective solid angle $=0.194 \mathrm{sr}$
- Energy resolution $10 \% / \sqrt{ } E(\mathrm{GeV})$
- 1000:1 pion rejection
- angular resolution $\sim 1 \mathrm{mr}$

- Target field sweeps low E background

Cherenkov

Jefferson Angular Momentum - JAM Collaboration

- Joint theorists and experimentalists effort to "study the quark and gluon spin structure of the nucleon by performing global fits of PDFs".
- JAM's spin PDFs are tailored for studies at large Bjorken \underline{x}, as well as the resonance-DIS transition region at low and intermediate \boldsymbol{W} and \boldsymbol{Q}^{2}. http://wwwold.jlab.org/theory/jam/

Nucleon Spin "Crisis"

- Nucleon spin is calculated from the first moment of \boldsymbol{g}_{1}

$$
\begin{gathered}
\int_{0}^{1} d x g_{1}^{p}(x)=\frac{1}{36}\left[4 E_{0} a_{0}+3 E_{3} a_{3}+E_{8} a_{8}\right] \\
a_{0}=\sum q=\Delta u+\Delta d+\Delta s
\end{gathered}
$$

- Singlet axial-vector matrix element \boldsymbol{a}_{0} is sum of quark spins: $a_{0}=0.33 \pm .03 \pm .05$ (COMPASS 2007)

Nucleon Spin "Crisis"

- Nucleon spin is calculated from the first moment of \boldsymbol{g}_{1}

$$
\begin{gathered}
\int_{0}^{1} d x g_{1}^{p}(x)=\frac{1}{36}\left[4 E_{0} a_{0}+3 E_{3} a_{3}+E_{8} a_{8}\right] \\
a_{0}=\sum q=\Delta u+\Delta d+\Delta s
\end{gathered}
$$

- Singlet axial-vector matrix element \boldsymbol{a}_{0} is sum of quark spins: $a_{0}=0.33 \pm .03 \pm .05$ (COMPASS 2007)
- $\Delta \mathrm{g} \sim 0$: need L to get $1 / 2 \mathrm{~h} / 2 \pi$

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{2} \sum \Delta q+\Delta g+L \\
& \quad=(.12 \pm .03)+(.11 \pm .12)+L \\
& \bar{M} S \text { scheme at } 4 \mathrm{GeV}^{2} \\
& \text { (Nocera et al. (NFRR) arXiv:1206.0201) }
\end{aligned}
$$

Nucleon Spin beyond G_{1} and G_{2}

- Need to go beyond a_{0} to understand nucleon spin
- Orbital angular momentum (OAM) \boldsymbol{L} is needed.
- Partons have transverse momentum, implies OAM
- Mulders et al., Transverse Momentum dependent Distributions - TMDs
- functions of x and k_{t}
- Semi-inclusive scattering (detect final e, one hadron)

Transverse Momentum Distributions by Polarization			
Target \downarrow \ quark \rightarrow	U	L	T
U	$f_{1}\left(x, k_{t}\right)$		$h_{1}{ }^{\perp}$
L		g_{1}	$h_{1 L}{ }^{\perp}$
T	$f_{1 T}{ }^{\perp}$	$g_{1 T}{ }^{-1}$	$h_{1} h_{1 T}{ }^{\perp}$

Longitudinal SSF (leading twist)
$g_{1}(x)=\sum g_{1}^{q}(x)=\sum \int d^{2} \vec{k}_{t} g_{1 L}\left(x, \vec{k}_{t}^{2}\right)$
Transverse SSF (twist-3)
$g_{1 \mathrm{~T}}^{(1)}(x)=\sum g_{1 \mathrm{~T}}^{q(1)}(x)=\sum \int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} g_{1 \mathrm{~T}}^{q}\left(x, \vec{k}_{t}^{2}\right)$
$g_{T}(x)=g_{1}(x)+\frac{d}{d x} g_{1 \mathrm{~T}}^{(1)}=g_{1}(x)+g_{2}(x)$

$\boldsymbol{d}_{\mathbf{2}}$ from RSS Third Moments

Moments at $\left\langle Q^{2}\right\rangle=1.3$ GeV^{2}, in three regions:

- measured $.32<x<.8$; elastic (quasi-el. for deuteron);
- unmeasured $x<0.32$, suppressed by x^{2}.

x ranges	Proton	Deuteron	Neutron
Measured			
CN	0.006 ± 0.001	0.008 ± 0.002	0.003 ± 0.002
Nachtmann	0.004 ± 0.001	0.005 ± 0.002	0.002 ± 0.001
$0<x<1$			
CN	0.036 ± 0.003	0.017 ± 0.004	-0.018 ± 0.003
Nachtmann	$\mathbf{0 . 0 1 0} \pm \mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 3} \pm \mathbf{0 . 0 0 2}$	$\mathbf{- 0 . 0 0 8} \pm \mathbf{0 . 0 0 2}$

- Non-zero $\boldsymbol{d}_{\mathbf{2}}$ for both nucleons (total errors shown)
- OPE valid to $N=2<Q^{2} / M_{0}{ }^{2} \sim 1.3 / 0.5^{2}$ (DIS - resonances duality) (Ji \& Unrau, PR D52 (1995) 72)
- Neutron approximated as D-state corrected $d-p(\operatorname{good}$ to $O(1 \%))$
- Ratios Nachtmann/CN < 1: large contribution of kinematic HT

Duality in \boldsymbol{g}_{1}

- Bloom - Gilman duality for spin SF's
- Local Duality only above $\Delta(1232)$
- Global duality (for $W>\pi$ threshold, or from elastic) obtains above $Q^{2}>1.8 \mathrm{GeV}^{2}$
- seen in p, d, and ${ }^{3} \mathrm{He}$
- DIS SSF's from PDF's extrapolated with target mass corrections

Duality in $\boldsymbol{g}_{\mathbf{1}}$

- Bloom - Gilman duality for spin SF's
- Local Duality only above $\Delta(1232)$
- Global duality (for $W>\pi$ threshold, or from elastic) obtains above $Q^{2}>1.8 \mathrm{GeV}^{2}$
- seen in p, d, and ${ }^{3} \mathrm{He}$
- DIS SSF's from PDF's extrapolated with target mass corrections

\boldsymbol{g}_{2} Spin Structure Functions

- First world data for $\boldsymbol{g}_{2}{ }^{\mathrm{p}, \mathrm{d}}$ in the resonances
- $\boldsymbol{g}_{2}{ }^{\mathrm{wW}}$ computed using RSS fit to g_{1} point by point
- $\mathrm{HT} \bar{g}_{2}($ low $x) \cong 0$ within errors
$-\overline{\boldsymbol{g}}_{2}\left(x<x_{\text {min }}=0.317\right)=0 \pm \delta \bar{g}_{2}$
- systematic error $\delta \bar{g}_{2}$ estimated by extrapolating fit errors

$$
\delta \overline{\mathbf{g}}_{2}\left(x_{\min }\right) \text { to } x=0
$$

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\Gamma_{2}=0=\Gamma_{2}^{\mathrm{ww}}+\bar{\Gamma}_{2}+\Gamma_{2}(\mathrm{el})$
- dispersion relation not from OPE, free from gluon radiation, TMC's
- twist-2 part $\Gamma_{2}{ }^{\mathrm{ww}} \equiv 0$
- BC is higher-twist + elastic

$$
\begin{aligned}
& -\Gamma_{2}=\bar{\Gamma}_{2}(\text { unm. })+\bar{\Gamma}_{2}(\text { measur. })+\Gamma_{2}(\mathrm{el}) \\
& -\Delta \bar{\Gamma}_{2}=\Gamma_{2}-\bar{\Gamma}_{2}(\mathrm{u})=\bar{\Gamma}_{2}(\mathrm{~m})+\Gamma_{2}(\mathrm{el})
\end{aligned}
$$

- $\Delta \bar{\Gamma}_{2} \neq 0$: assuming BC , implies significant HT at $x<x_{\text {min }}$, or, if twist-3 ~ 0 at low x,
- BC fails: isospin dependence? nuclear effects?

Kinematics Space at JLab

[^0]: [1] BigCal Collaboration
 [2] North Carolina A\&T U.
 [3] Temple U

