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High-statistics measurements of differential cross sections and spin density matrix elements for the
reaction γp → φp have been made using the CLAS detector at Jefferson Lab. We cover center-of-
mass energies (

√
s) from 1.97 to 2.84 GeV, with an extensive coverage in the φ production angle. The

high statistics of the data sample made it necessary to carefully account for the interplay between
the φ natural lineshape and effects of the detector resolution, that are found to be comparable in
magnitude. We study both the charged- (φ→ K+K−) and neutral- (φ→ K0

SK
0
L) KK decay modes

of the φ. Further, for the charged mode, we differentiate between the cases where the final K− track
is directly detected or its momentum reconstructed as the total missing momentum in the event.
The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated
against each other. Extensive usage is made of kinematic fitting to improve the reconstructed φ mass
resolution. Our final results are reported in 10- and mostly 30-MeV-wide

√
s bins for the charged-

and the neutral-mode, respectively. Possible effects from K+Λ∗ channels with pKK final-states
are discussed. These present results constitute the most precise and extensive φ photoproduction
measurements to date and in conjunction with the ω photoproduction results recently published by
CLAS, will greatly improve our understanding of low energy vector meson photoproduction.

I. INTRODUCTION AND MOTIVATION

Vector meson electro- and photoproduction have
played an important role in our understanding of photon-
hadron interactions in QCD. Sakurai [1] first proposed
that during interactions with hadrons, the photon (ei-
ther real or virtual) behaves like an on-shell vector meson
V = {ρ, ω, φ}. This is possible because the photon and
the vector mesons share the same set of quantum num-
bers (see Ref. [2] for a review on the hadronic properties
of the photon). Following Feynman [3], if the real or
virtual photon momentum is q, we can write the photon-
hadron interaction amplitude in terms of a current Jµ(q2)
as 〈hadrons|Jµ(q2)|0〉, and one sees “resonances” at the
values q2 = m2

V .

In the so-called vector meson dominance (VMD) model
for photoproduction, a real photon can fluctuate into a
virtual vector meson, which subsequently scatters off the
target proton. Therefore, the amplitude Aγp→V ′p′ is re-
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lated to AV p→V ′p′ as

Aγp→V ′p′ =
∑
VT

e

γV
AV p→V ′p′ , (1)

where VT indicates that the summation is only over the
transverse polarization states of the vector meson (a real
photon has no longitudinal polarization), γV is the V -γ
coupling constant and e is the electric charge. Tradi-
tionally, the φ vector meson has played a special role
in our understanding of this VMD picture. Since the
SU(6)-based quark model assigns an almost pure |ss̄〉
configuration to the φ, assuming the strangeness com-
ponent of the proton to be small, the OZI rule [4] sup-
presses direct exchanges of quarks between the φ and
the proton. Therefore, φ photoproduction is predicted
to proceed by the exchange of color singlet gluonic ob-
jects. From quite early on, several authors [5] gave very
general arguments that φp scattering should proceed by
the exchange of the universal Pomeron (IP ) trajectory
which has the same quantum numbers as the vacuum
and the maximal Regge intercept of α0 ≈ 1 (the Froissart
bound [6]). In terms of Regge theory, for pp or πN scat-
tering at low energies, t-channel ρ and ω exchanges can
occur and the forward-angle differential cross sections ex-
hibit “shrinkage”. However, at very high energies, both
the total and the differential cross section show only a
slow (logarithmic) variation with the total energy and
almost no shrinkage. This is also known as “diffractive”
scattering at s → ∞ and t → 0, where s and t are the
squares of the total center-of-mass (c.m.) energy and the
exchanged momentum, respectively. The shape of the
differential cross section (dσ/dt plotted against t) resem-
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bles the intensity distribution in ordinary diffraction of
light around a small object. For diffractive scattering
with Pomeron exchange, the total cross section stays al-
most constant with energy and the width of the forward
peak decreases only logarithmically with energy. That is,
there is only a very slow shrinkage.

In the case of φp scattering, since meson exchanges
are suppressed, diffractive Pomeron exchange dominates
even at low energies. The early (1972) SLAC beam-
asymmetry measurements for φp photoproduction by
Halpern et al. [7] confirmed the dominance of natural-
parity (Pomeron) exchange over unnatural-parity (π) ex-
change. It is this decoupling from the light quark (u
and d) sector that makes the φ a very “clean” system to
study gluonic interactions, the gluonic structure of the
Pomeron, for example. There is also speculation that
at near threshold and forward angles, the φ channel will
give access to the 0++ glueball f0(1710) [8, 9].

Experimentally, most of the world data exist in the
high energy diffractive region. These include results
from DESY (Erbe 1968 [10]; Alvensleben 1972 [11];
Behrend 1978 [12]), Cornell (McClellan 1971 [13];
Berger 1972 [14]), SLAC (Anderson 1970 [15]; Anderson
1973 [16]; Ballam 1973 [17]), Fermilab (Egloff 1979 [18];
Busenitz 1989 [19]), Daresbury (Barber 1978 [20]; Bar-
ber 1982 [21]) and HERA (Derrick 1996 [22]; Breitweg
2000 [23]). Due to the inherently small φ cross sec-
tions, these data are generally sparse with wide energy
bin-widths and limited statistical precision. Also, since
dσ/dt drops exponentially with increasing |t| and vari-
ations with the total c.m. energy (

√
s) are logarithmic,

the “natural” scale for comparison purposes at these high
energies seems to be logarithmic and not linear.

The earliest low energy near-threshold measurement
(the ABBHHM results [10] had some low energy data as
well) was at Bonn (Besch 1978 [24]), with more recent re-
sults coming from SAPHIR (Barth 2003 [25]) and LEPS
(Mibe 2005 [26]). Although both the Bonn and SAPHIR
results covered the Eγ = 2.0 GeV (or

√
s ≈ 2.15 GeV)

energy region, it was the LEPS 2005 paper that first took
note of a localized “bump” around Eγ = 2.0 GeV, when a
simple Pomeron exchange model predicts a smooth rise
from threshold. To explain this non-monotonic behav-
ior, theoretical groups have put forward two different ex-
planations. First, the works by Ozaki et al. [27] and
Ryu et al. [28] relate this to a coupling between the
φp and K+Λ(1520) channels. In the kinematic regime
2 GeV ≤

√
s ≤ 2.2 GeV, the φp → K+K−p charged-

mode and the K+Λ(1520) → K+pK− decay-mode have
the same final states. Therefore, rescattering effects
can occur between the two channels. Our neutral-mode
(φ → K0

SK
0
L) results can play a critical role in this

situation, since the φ neutral-mode does not share the
same final states with K+Λ(1520). Second, Kiswandhi
et al. [29, 30] have attempted to explain this as a J = 3

2
resonance of mass around

√
s ∼ 2080 MeV. Ultimately,

the resolution could come from a combination of both ap-
proaches and would require a coupled-channel analysis of

the φ, Λ(1520) and ω channels.

The first CLAS measurements at Eγ = 3.6 GeV (An-
ciant 2000 [31], McCormick 2004 [32]) also noted an
interesting feature, a slight rise in the cross section at
the backward-angles from nucleon exchanges via the u-
channel. As mentioned earlier, the strangeness content
of ordinary nucleons is usually assumed to be very small.
However, u-channel nucleon exchanges points directly to-
wards an appreciable strangeness content (possibly sea
quarks) of the nucleon, or a violation of the OZI rule.
We also note that a related CLAS analysis [33] has pre-
sented differential cross sections for the purely neutral
mode of φ photoproduction that are consistent with the
more extensive results presented here.

In this work, we report on a precision study of φ
photoproduction using a high statistics dataset. The
φ mass (≈ 1.0195 GeV) is close to the the KK pro-
duction threshold. Therefore, the natural line-shape de-
viates from a relativistic-Breit-Wigner (rBW). We ap-
proximate the lineshape as a mass-dependent rBW with
a P -wave barrier factor. Further, the φ natural width
(Γ0 ≈ 4.26 MeV) is comparable to the CLAS resolu-
tion (1-2 MeV, see Fig. 7). In general, the resolution
can be a complicated mass-dependent function by itself
(see Ref. [34] for example). We approximate the resolu-
tion function as a single Gaussian and convolve it with
the natural rBW lineshape to give the measured signal-
lineshape. We incorporate three different KK topolo-
gies that have different resolutions, and calibrate them
against each other, to reduce systematic uncertainties on
the φ lineshape. We also dwell on the issues pertaining
to K+Λ∗ backgrounds.

For the spin-density matrix elements (SDME), it has
long been observed that diffractive vector meson pho-
toproduction roughly follows s-channel helicity conser-
vation (SCHC), while t-channel helicity conservation
(TCHC) is broken. Helicity non-conservation in any
frame refers to the deviation of the ρ000 SDME from 0
in that frame (see Sec. XII C). SCHC indicates that in
one particular reference frame (the Helicity frame), the
outgoing vector meson has the same helicity as the in-
cident photon. Gilman et al. [35] observed that even
though in the Regge picture, the Pomeron acts like a
spin-1 trajectory in the diffractive limit (t → 0), its
coupling is not well known. Naively, one ascribes the
quantum numbers of the vacuum, JPC = 0++, to the
Pomeron. This means that the coupling for the Pomeron
in the t-channel is the same as the exchange of a spin-0
(scalar) particle. If so, one expects TCHC (no helicity
flip in the t-channel), while experiments show violation
of TCHC, and instead, support for SCHC. Phenomeno-
logically, Gilman et al. showed that (in a sufficiently high
energy limit) the spin-flip and non-flip components of the
Pomeron in the t-channel exchange have to be related in
a special manner to conserve helicity in the s-channel.
However, there is no fundamental principle that predicts
SCHC. With a fine binning in both

√
s and cos θφc.m.,

where θφc.m. is the meson production angle in the c.m.
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frame, our new precision results show that TCHC and
SCHC are both violated.

With an unpolarized beam, one has access to only the
ρ0 elements, while ρ1 and ρ2 require a linear polarized
beam, and ρ3, a circularly polarized beam. Recently, the
LEPS Collaboration [36] has published near-threshold
measurements for the ρ1 and ρ2 SDME’s. From their
ρ11−1 measurements in the Gottfried-Jackson frame, they
have estimated a non-zero contribution from unnatural-
parity (π, η) exchanges in the t-channel, at these low
energies. With the beam and target both polarized, the
FROST experiment [37] at Jefferson Lab will give access
to several of the double polarization observables [38] as
well.

II. EXPERIMENTAL SETUP

The data that we use in this analysis were obtained
using real photons produced via bremsstrahlung from a
4.023-GeV electron beam produced by the Continuous
Electron Beam Accelerator Facility (CEBAF) at Jeffer-
son Lab. The photons were energy-tagged by measur-
ing the momenta of the recoiling electrons with a dipole
magnet and scintillator hodoscope system [39]. A sepa-
rate set of scintillators was used to make accurate timing
measurements. The photon energy resolution was about
0.1% of the incident beam energy and the timing res-
olution was 120 ps. These tagged photons were then
directed toward a 40-cm-long cylindrical liquid-hydrogen
cryotarget inside the CEBAF Large Angle Spectrometer
(CLAS) detector system. Immediately surrounding the
target cell was a “start counter” scintillator, used in the
event trigger.

Both the start counter and the CLAS detector were
segmented into sectors with a six-fold azimuthal symme-
try about the beam line. A non-uniform toroidal mag-
netic field with a peak strength of 1.8 T was used to
bend the trajectories of charged particles and a series of
drift chambers was used for charged particle tracking. In
this manner, CLAS could detect charged particles and
reconstruct their momenta over a large fraction of the 4π
solid angle. The overall momentum resolution of the de-
tector was ∼ 0.5%. A system of 342 scintillators placed
outside the magnetic field and drift chamber regions pro-
vided timing information by measuring the time-of-flight
(TOF) for each charged particle trajectory. A fast trig-
gering and fast data-acquisition system (capable of run-
ning at ∼ 5k events/s) allowed for operating at a photon
flux of a few times 107 photons/s. Further details of
CLAS can be found in Ref. [40].

III. DATA

The specific dataset that we analyze in this work was
collected in the summer of 2004, during the CLAS “g11a”
run period. Roughly 20 billion triggers were recorded

during this time, out of which only a small fraction cor-
responded to pφ events. Each event trigger required a co-
incidence between the photon tagger Master OR (MOR)
and the CLAS Level 1 trigger. The MOR consisted of a
logical OR of the signals from the 40 tagger counters cor-
responding to the high-energy part of the tagged photon
beam. The Level 1 trigger required that two tracks be
present in the CLAS detector. A single track was defined
on a sector-wise basis and required a coincidence between
the start counter and the TOF counters within the given
sector. The two-track trigger required that at least two
sectors in CLAS satisfied the single-track trigger within
a 150 ns window of each other. In addition to the MOR
and Level 1 trigger, we required the tagger MOR and an
OR of all the start counter hits occur within 15 ns of
each other. This constraint was used to reduce out-of-
time contamination. The beam structure contained one
or a few photons within bunches separated by 2.0 ns.

During offline processing, before any physics analysis
began, the CLAS detector sub-systems had to be cali-
brated. This included determining the relative offsets be-
tween the photon tagger, start counter and TOF counter
times, as well as calibration of the drift times in the
drift chambers and the pulse heights of the TOF scin-
tillators. Energy and momentum corrections were made
for individual particles to account for their energy and
momentum losses during passage through several lay-
ers of the detector sub-systems. Corrections were also
made to the incident photon energy (Eγ) to account for
mechanical sagging in the tagger hodoscope. A discus-
sion of the collection and calibration of this data set can
be found in Ref. [41]. Several meson photoproduction

channels (ωp [42, 43], η(
′)p [44], K+Λ [45], K+Σ0 [46],

KY ∗ [47, 48]) have already been analyzed using this
dataset. In the vector meson sector, the present work
extends our recently published ω results [42] to the φ
channel.

IV. REACTION TOPOLOGIES AND EVENT
SELECTION

In the reaction γp → φp, the φ subsequently decays
most of the time into two kaons: K+K− (charged-mode)
and K0

SK
0
L (neutral-mode). For the neutral-mode, the

daughter K0
S further decays into π+π− (60.2%) and π0π0

(39.7%). Since CLAS is optimized for detecting charged
particles, we only employed the K0

S → π+π− decay in
this analysis.

The “charged-two-track” topology was then defined as
γp → K+(K−)p, where only the proton and the K+

were detected and the undetected K− was reconstructed
as the missing 4-momentum using a 1-C kinematic fit to
a total missing mass of mK− = 0.493 GeV. The polarity
setting of the drift chamber magnets inside CLAS bent
negatively charged particles like K− inwards towards the
beam line, where the detector acceptance was the lowest.
Therefore, not detecting the K− led to a substantial in-
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Cut
Topology

K+(K−)p, K+K−p π+π−(K0
L)p

CL X X

Timing X X

K+Λ∗ X –

Fiducial cuts X X

M(KK) cut X X

TABLE I: List of cuts applied to the two topologies in this
analysis. The CL, timing and fiducial volume cuts applied
to both topologies. The charged-mode analysis had an extra
hard cut to remove K+Λ∗ events. Lastly, both topologies
had a 1.0 GeV < M(KK) < 1.06 GeV cut placed at the very
end, after the completion of the signal-background separation
process.

crease in the overall statistics, allowing for a fine energy
binning (10-MeV-wide

√
s bins) and wide kinematic cov-

erage for this topology. The main bulk of our results
derives from this mode.

The “charged-three-track” topology was a subset of
the charged-two-track data sample where all three final-
state charged tracks were required to be detected. A 4-C
fit to zero missing 4-momentum and subsequent confi-
dence level (CL) cut was used to remove background.
Due to the 4-C fit, this topology had a very high pu-
rity of pK+K− final states and the highest resolution in
the reconstructed φ lineshape, but with very low accep-
tance. It is mainly used for understanding some of the
systematics and our final set of results do not include this
topology.

As mentioned in the introduction, it is also important
to examine the neutral decay mode of the φ, since this is
relatively immune (see discussion in Sec. XIIB) to effects
from the K+Λ∗ final states. We defined the “neutral-
mode” topology as γp → π+π−(K0

L)p, where only the
π+, the π− and proton were detected, and the undetected
K0
L was reconstructed as the missing 4-momentum using

a 2-C kinematic fit to mK0 = 0.497 GeV total missing
mass andM(π+π−) = mK0 . Since this topology required
detection of a negatively charged π−, the acceptance was
substantially lower compared to the charged-two-track
mode, especially at high energies and backward-angles.
To bolster statistics, therefore, we employed wider 30-
MeV-wide energy bins in

√
s for this case.

Each event trigger recorded by CLAS consisted of one
or more tagged photons. To begin the event selection
process, at least two positively charged particle tracks
were required to have been detected. These were hy-
pothesized as a proton and a K+ for the charged-modes,
and as a proton and a π+ for the neutral-mode. The
charged-two-track (neutral-) mode topology required an
extra negatively charged particle track that was assumed
to be a K− (π−). To minimize bias, all possible photon-
particle combinations allowed by the given topology were
taken to be a candidate signal event. Events with incor-
rectly assigned photons or particle hypotheses were re-

) (GeV)KM(K

1 1.02 1.04

E
v
e
n

ts
/0

.5
-M

e
V

2000

4000

6000

8000
Post-fit

Pre-fit

FIG. 1: (Color online) The dotted blue and the continuous
red histograms represent the reconstructed φ mass prior to
and after kinematic fitting, respectively, for the neutral-mode.
The resolution is markedly improved due to the kinematic fit.

moved by subsequent cuts. In the following sub-sections,
we describe each of these event selection cuts, referring
the interested reader to Ref. [41] for further details. Since
the two topologies followed significantly different analy-
sis chains, to avoid confusion, we list the various cuts
as applicable to each of the charged- and neutral-mode
topologies in Table I.

A. Confidence level cut

Each event candidate in the charged-two-track data
set was kinematically fit [41] to an overall mK− miss-
ing mass hypothesis for the undetected K−. For every
event recorded by CLAS, both “K+ : p” and “p : K+”
combinations were treated as independent event hypothe-
ses, where the two-particle assignment (separated by the
colon) corresponds to the two detected positively charged
particles. Similarly, for the neutral-mode, every event
was kinematically fitted to an overall mK0 missing mass
hypothesis for the undetected K0

L. Both “π+ : p : π−”
and “p : π+ : π−” combinations, corresponding to dif-
ferent particle assignments to the two positively charged
tracks, were taken as independent event hypotheses. For
the charged-three-track mode, both “K+ : p : K−” and
“p : K+ : K−” combinations were allowed as event
candidates. Incorrect particle hypothesis assignments
were removed by subsequent timing cuts. The kine-
matic fitter adjusted the momentum of each individual
detected particle, while constraining the total missing
mass to be either mK− (charged-two-track mode) or mK0

(neutral-mode), and the total missing 4-momentum to
be zero for the charged-three-track mode. The shifts in
the momenta, combined with the known detector reso-
lution within the current experiment, gave a CL for the
event to be the desired reaction. For the charged-two-
track and neutral-mode topologies, only events with a
CL greater than 5% were retained for further analysis.
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FIG. 2: (Color online) Timing cuts for background removal: (a) and (b) charged-two-track topology, (c) neutral-mode topology.
In subfigures (a) and (c), events lying outside the “iron-cross” shaped quadruplet of black curves were removed from further
analysis. For the charged-two-track mode, an additional cut was placed for further pion removal by rejecting events on the left
of the curve in subfigure (b).

For the charged-three-track mode, we required the CL to
be greater than 1%.

Fig. 1 demonstrates the effect of kinematic fitting for
the neutral-mode topology. After kinematic fitting, both
K0’s were mass constrained, so that the threshold value
of M(KK)min = 2mK0 was enforced. The reconstructed
φ mass lineshapes were markedly different between before
(blue dashed histogram) and after (red histogram) kine-
matic fitting. In topologies with the initial 4-momenta
known and a single missing particle in the final states,
kinematic fitting amounts to measurement of the miss-
ing particle’s 4-momentum. In particular, the present
analysis is very sensitive to the reconstructed φ mass res-
olution relative to the φ natural linewidth Γ0 ≈ 4.26 MeV
(see also Sec. VI A for a discussion). Therefore kinematic
fitting plays a critical role here.

B. Timing cuts

Track reconstruction through the different CLAS de-
tector segments yielded both the momentum ~p and the
path length l from the reaction vertex to the TOF scin-
tillator wall. The expected time-of-flight for a track hy-
pothesized to be a particle of mass m was then given
by

texp =
l

c

√
1 +

(
m

|~p|

)2

. (2)

CLAS also measured the time-of-flight tmeas as the differ-
ence between the tagged photon’s projected arrival time
at the reaction vertex for the given event and the time
the given particle track hits the TOF scintillator wall.

The difference between these two time-of-flight calcula-
tions gave ∆tof = tmeas− texp. For each track there was
also a calculated mass mc, given by

mc =

√
|~p|2(1− β2)

β2c2
, (3)

where β = l/(ctmeas).

Timing information in the form of ∆tof or mc was
used to place particle identification cuts on the proton
and K+ tracks for the charged-mode, and the proton and
π+ tracks for the neutral-mode. As mentioned earlier, for
each pair of positively charged particle tracks, all possible
combinations of particle assignments were considered and
treated as independent event hypotheses. Figs. 2a and 2c
show our ∆tof cuts placed on proton-K+ (charged-two-
track mode) and proton-π+ (neutral-mode) tracks, re-
spectively, where events outside the “iron-cross” shaped
quadruplet of black curves were rejected. The clusters
along the diagonal in the ∆tof plots, more prominent in
Fig. 2c, were due to accidental coincidences with events
in different beam bursts corresponding to the 2 ns radio-
frequency pulses used by the CEBAF electron accelera-
tor.

For the charged-mode, even after the application of
the ∆tof iron-cross cut, a remnant pion leakage was still
visible, as seen in the left hand side “blob” in Fig. 2b.
To further remove this pion background, we placed an
additional cut on the calculated mass of the proton and
K+ tracks by rejecting events that lie on the left of the
curve in Fig. 2b.
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FIG. 3: (Color online) φ-Λ∗ overlap for the charged-mode
topology: if the M(K+K−) invariant mass is fixed at mφ =
1.020 GeV, M(pK−) is bounded between an upper and lower
limit depending on

√
s. Phase-space overlaps with different

K+Λ∗ production channels occur in different
√
s ranges.

C. Overlap with K+Λ∗

Consider the process γp → M(
√
s) → K+K−p from

the perspective of a 3-body decay, where M(
√
s) denotes

a general s-channel state with total invariant mass
√
s.

If M(K+K−) is fixed at mφ = 1.02 GeV, M(pK−) is
bound between a minimum (MpK,min) and a maximum
(MpK,max). The specific values of MpK,min and MpK,max

depend on
√
s, and the masses of the φ, the proton and

the kaon. Fig. 3 shows the variation of MpK,min and
MpK,max with

√
s.

In the region 2 GeV≤
√
s ≤ 2.2 GeV, M(pK−) =

1.52 GeV lies within these bounds. This implies that in
this energy regime, the kinematics for production of φp
and K+Λ(1520) overlap in phase-space. Figs. 4a and 4b
show plots of M(pK−) vs. M(K+K−) at two differ-
ent energies for the charged-two-track mode. The φ
and Λ(1520) “bands” are clearly visible in both figures.
Above

√
s ≈ 2.2 GeV there is no overlap between the φ

and the Λ(1520). To reduce the Λ(1520) contamination
in the charged modes, we keep the additional option of
placing a hard cut around the Λ(1520) mass as

|M(pK−)− 1.52| ≥ 0.015 GeV. (4)

Similarly, there are several broad Λ∗ states around
1800 MeV that overlap with the φ in the region 2.3 GeV≤√
s ≤ 2.8 GeV. Figs. 5a and 5b show the M(pK−)

vs. M(K+K−) distributions in this
√
s region for the

charged two- and three-track topologies, respectively.
Given that these higher Λ∗ states have large widths, it is
difficult to place hard cuts without significant signal loss
in the φ. Moreover, from Fig. 5, the poorer resolution
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FIG. 4: (Color online) φ-Λ(1520) overlap for the charged-
two-track mode topology: between

√
s = 2 and 2.2 GeV, the

Λ(1520) mass lies within the allowed M(pK−) bounds and the
φp and K+Λ(1520) channels overlap in phase-space. A plot
of M(pK−) vs. M(K+K−) is shown in (a) and (b) for two
different energies in the charged-two-track mode. (a) Shows
the overlap for the

√
s = 2.105 GeV bin, while (b) shows

that above
√
s ≈ 2.2 GeV, the φ and Λ(1520) “bands” are

separated.

in the two-track compared to the three-track means that
the M(pK−) cuts have to be tighter, for the former case.
We consider the cuts

|M(pK−)− 1.8| ≥ δ1800, (5)

where δ1800 = 0.04 GeV for charged-two-track and
0.02 GeV for the charged-three-track mode.
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FIG. 5: (Color online) φ-Λ(1800) overlap for the charged-
track mode topology: between

√
s = 2.3 and 2.8 GeV, several

broad Λ∗ states with masses around 1800 MeV within the
allowed M(pK−) bounds. A plot of M(pK−) vs. M(K+K−)
is shown for the charged (a) two-track and (b) three-track
mode.

D. Effectiveness of cuts

The effectiveness of these cuts can be gauged by the
percentage of signal events lost due to them. The
M(KK) distributions were fit to a signal lineshape (see
Sec. V) plus a quartic background function before and af-
ter placing the cuts. From this study, the losses in signal
yields due to the cuts were estimated to be ∼ 4.5% and
∼ 5% for the charged- and neutral-mode topologies, re-
spectively. We quote these as the upper limits of the sys-

tematic uncertainties in our particle identification/event
selection for this analysis.

E. Fiducial cuts

In addition to the above particle identification cuts,
fiducial volume cuts were required to remove events be-
longing to regions where our understanding of the de-
tector performance was relatively poor. These cuts were
motivated by differences in an empirical efficiency calcu-
lation between the actual data and Monte Carlo which
indicated discrepancies in the forward-angle region and
at the boundaries of the six sectors of the CLAS detec-
tor due to edge effects in the drift chambers. Therefore,
events with any particle trajectory falling near the sector
boundary regions were removed. A φlab-dependent cut on
cos θlab along with a hard cut at cos θlab ≥ 0.985 removed
extremely forward-going particles that coincided with the
beam-dump direction. Localized inefficiencies within the
CLAS detector volume such as inside the drift chambers
were accounted for by placing trigger efficiency cuts on
the Monte Carlo data as functions of φlab, θlab and |~p|
for each particle track. Additional cuts were placed on
backward-going tracks (cos θlab ≤ −0.5). A minimum
proton momentum cut at 375 MeV removed slow mov-
ing protons, whose energy losses were difficult to model
in the detector simulation. Events with particles corre-
sponding to poorly performing TOF scintillator counters
were removed as well.

V. THE φ LINESHAPE

We first define our notation for the 2-body breakup
momentum of a parent particle of mass m decaying into
two daughters of masses m1 and m2 as

pm→m1m2
=

√
(m2 − (m1 +m2)2)(m2 − (m1 −m2)2)

2m
.

(6)

The phase-space element contribution from each such de-
cay is

dN

dm2
∝
(pm→m1m2

m

)
. (7)

The φ has three main decay modes, viz., K+K−,
K0
SK

0
L and π+π−π0, with the approximate branching

fractions being 0.489, 0.342 and 0.153, respectively. The
neutral and charged kaons have different masses and the
ratio between the neutral and charged KK branching
fractions is consistent with a p3

φ→KK dependence on the

breakup momentum, as expected from a P -wave decay.
The mass-dependent rBW amplitude for φ → KK is
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given by

Aφ→KK ∼
(
p

p0

)L
BL(p,R)

BL(p0, R)

1

m2
0 −m2 − im0Γtotal

.

(8)

Here m ≡ M(KK) is the φ mass, p ≡ pφ→KK is the
mass-dependent breakup momentum and, p0 is p evalu-
ated at the φ mass m = m0. BL(p,R) is the phenomeno-
logical Blatt-Weisskopf barrier factor with R ≈ 5 GeV−1,
corresponding to a meson radius of 1 fm. For a P -wave
decay, L = 1 and this is given by

BL=1(p,R) =
1√

1 + p2R2
. (9)

The total mass-dependent width, Γtotal, comprises four
parts

Γtotal = ΓK+K− + ΓK0
SK

0
L

+ Γ3π + Γ4, (10)

corresponding to the different decay modes of the φ (Γ4

accounts for any mode other than KK and 3π). For each
of the KK modes, the contribution is

ΓKK = Γ0 BKK
p3

p30

m0

m

1 + p20R
2

1 + p2R2
, (11)

where BX denotes the branching fraction of φ into a par-
ticular final state X. The dynamics of the φ→ 3π decay
is more complicated and beyond the scope of this work;
we assume the corresponding amplitude to be approxi-
mately constant in the small range of M(KK) that we
are interested in. To incorporate the mass-dependence
from the 3-body phase-space factor, we consider m12 as
the mass of the (π+, π−) system. The 2-body phase-space
element is then

dN

dm2dm2
12

∼
(pm→m12mπ0

m

)
×
(
pm12→mπmπ

m12

)
, (12)

which gives

dN

dm
∼
∫ m−mπ0

2mπ

(
pm→m12mπ0

)
(pm12→mπmπ ) dm12.

(13)

This integration is performed numerically. The φ → 3π
contribution to Γtotal is then

Γ3π = Γ0 × B3π ×
dN/dm

[dN/dm]0
, (14)

where [dN/dm]0 corresponds to computation at m = m0.
The fourth component, we simply take as a constant:

Γ4 = Γ0(1− BK+K− − BK0
SK

0
L
− B3π). (15)

The mass-dependent natural lineshape in each
√
s bin

is then

S̃(m) ∼
p√s→m mp√

s
|A|2 ×

( p
m

)
∼ p√s→m mp

p3

m

1

1 + p2R2

1

(m2
0 −m2)2 + (m0Γtotal)2

,

(16)

where p√s→m mp/
√
s is the phase-space factor for the

c.m. mass pseudoparticle decaying into a φ and a proton.
Near production threshold, this factor suppresses events
with large values of m.

We next convolve the natural lineshape with a Gaus-
sian function to obtain our ansatz for the measured signal
lineshape

S(m) =

∫ m+5σ

m−5σ
S̃(m′)

e−
(m−m′)2

2σ2

√
2πσ

dm′, (17)

where σ represents the smearing due to the detector res-
olution. Ideally, σ should incorporate any possible m
dependence as well. However, since our φ mass window
is narrow enough, we neglect this effect, and treat σ as
a constant for each fit. However, the resolution can de-
pend on kinematics and this is appropriately accounted
for during our signal background separation procedure,
by performing independent fits in small phase-space re-
gions (see Sec. VI).

VI. SIGNAL BACKGROUND SEPARATION

The event selection cuts were very effective in clean-
ing the data sample for both topologies. Further removal
of background, non-φp events is done by an event-based
technique that preserves correlations between all inde-
pendent kinematic variables [41, 49]. The motivation be-
hind this approach, as opposed to a more conventional
sideband-subtraction method, is as follows.

For a reaction with multiple decays, such as in the
present case, there are several independent kinematic
variables (decay angles, for instance). To perform a back-
ground subtraction, one typically bins the data in a par-
ticular variable, such as the production angle cos θφc.m..
This is because both the background shape and scale can
vary widely within the range of the kinematic variable
chosen. However, this binning in a single variable gen-
erally does not preserve correlations present in the other
independent kinematic variables of interest. Therefore,
one needs to bin the data in multiple kinematic vari-
ables, such that in any particular bin, the background
level (both shape and scale) remains roughly the same.
Finally, the event-based fits using partial wave ampli-
tudes and Monte Carlo simulation, to calculate the de-
tector acceptance (see Sec. VII), are specifically intended
to reproduce the correlations present in the data. Thus,
the need for a more sophisticated background separation
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approach that preserves multi-dimensional correlations
in the signal component of the data.

To execute this technique for a given event, first, an
Nc number of “closest neighbor” events are chosen in the
phase space of all independent kinematic variables. Nc is
typically of the order of a hundred. These Nc + 1 events
are then fitted to a signal function s(m) plus a back-
ground function b(m) using an event-based, unbinned
maximum likelihood method (the fit variable m being
M(KK)). Once the functions si(m) and bi(m) have been
obtained from this fit for the ith event, the event is as-
signed a signal quality factor Qi given by:

Qi = si(mi)/ (si(mi) + bi(mi)) . (18)

The Q-factor is then used to weigh the event’s contri-
bution for all subsequent calculations. In particular, the
signal yield in a kinematic bin with N events is obtained
as

Y =

N∑
i

Qi. (19)

A. Specific issues for the φ channel

The above-mentioned procedure has already been em-
ployed for several other photoproduction channels [42–46]
from the same dataset, with excellent results. For the φ,
however, there are some unique issues which need to be
carefully dealt with. The main source of the problem is
that the φ mean mass (m0 ≈ 1.019 GeV) is very close to
the KK threshold (≈ 0.99 GeV). Therefore, conventional
side-band subtraction is difficult to perform, since there
are fewer events on the low mass side. Furthermore, the
natural width of the φ (Γ0 ≈ 4.26 MeV) is non-negligible,
leading to two complications. First, there are theoretical
difficulties associated with determining the exact line-
shape when multiple channels (in this case, the φ(1020)
and f0(980)) open up close to each other near thresh-
old [50]. Second, Γ0 is of the same order as the detector
resolution (O(1 MeV)). The convolution of the resolu-
tion function with an asymmetric natural lineshape can
result in a complicated measured lineshape.

Previous experiments often used a Gaussian function
to represent the φ signal. In this analysis, we use an
asymmetric relativistic Breit-Wigner appropriately con-
volved with a Gaussian (as described in Sec. V) to better
characterize the measured φ lineshape. The next issue in-
volves the background function shape and scale. The gen-
eral scheme found in previous φ analyses [25, 26, 31] has
been to assume various “template” shapes arising from an
underlying KK phase-space, a0/f0 and the K+Λ∗ chan-
nels (for the charged-mode). Several problems arise from
this approach. First, all three of the above physics back-
grounds correspond to a pKK final-state topology, which
in turn implies that the particle identification procedure
has cleanly separated any pion leakage, a highly improb-
able prospect. Second, the use of the a0/f0 or K+Λ∗
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FIG. 6: (Color online) Sample global fit for in the charged-
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The phase-space suppression in the high-mass side is clearly
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template shapes require a good understanding of the pro-
duction mechanism of these channels themselves, which
we do not have as yet. This is especially true of the S-
wave a0/f0, which remains poorly understood. Third, we
have found that the background underneath the φ is de-
pendent on the phase-space region one is examining, and
fits to cumulative yields are almost certainly bound to
be incorrect. The only proper way of performing signal-
background separation for the φ is to bin the data in all
independent kinematic variables {

√
s, cos θφc.m., cos ζ, ϕ}

(ζ and ϕ are the polar and azimuthal decay angles for
φ → KK) and perform independent fits in each phase-
space volume.

In this work, therefore, we have specifically avoided
the use of such templates for the background. Instead,
we perform independent fits for each event in a suitably
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small volume of phase-space denoted by the Nc number
of closest-neighbor points. We assume a core linear back-
ground function (corresponding to a flat production am-
plitude), but include the phase-space factors correspond-
ing to the two-body decays M(

√
s)→ pφ and φ→ KK,

as described in Sec. V. The signal lineshape is given by
Eq. 17.

Fig. 6 shows a global fit in the near-threshold bin√
s = 1.995 GeV for the charged-two-track dataset. The

dwindling phase-space at higher M(KK), applicable to
both the signal and background lineshapes is clearly vis-
ible here. Fig. 7 shows the energy-dependence of the
detector resolution term σ in Eq. 17, extracted via such
global fits (integrated over all angles) in each

√
s bin.

The resolutions worsen with increasing track momenta at
higher

√
s. The charged-two-track and neutral topologies

have almost the same resolution in the entire
√
s range,

while the charged-three-track has a markedly better reso-
lution due to all final-state tracks being detected directly,
which enables the use of the 4-C kinematic fit. Since the
detector resolution and the φ natural linewidth are of
same order of magnitude, the measured signal lineshape
is highly sensitive to the resolution. By improving the
reconstructed φ mass resolution, kinematic fitting plays
an important role in this analysis.

We note that since fits are done for individual events
in small phase-space bins, the assumed linearity of the
background is local. The start values of the signal and
background lineshapes are taken from the global fits, but,
event-by-event, both the signal and the background func-
tions in Eq. 18 can be different. Fits with several different
values of Nc were tried out and were seen to give stable
results. Our final results are present with Nc = 100 and
φ mass range M(KK) ∈ [1.0, 1.06] GeV.

B. Results

Fig. 8 shows the signal-background separation quality
checks for the charged-two-track topology in the

√
s ∈

[2.12, 2.15] GeV and cos θφc.m. > 0.33 kinematic regime.
Events are further categorized into nine phase-space vol-
umes in the φ → KK decay angles. The red dashed
and blue dot-dashed histograms represent the extracted
signal and background components, respectively. The
y-axis units are number of events per 10-MeV-wide

√
s

bin. The dependence of the background (both in shape
and size) on phase-space is clearly borne out. Fig. 8 cor-
responds to the forward-angle regime in cos θφc.m.. The
background levels were found to be different in the mid-
and backward-angles. This strong phase-space depen-
dance arises because the composition and dynamics of
the background components vary in phase-space. Simi-
lar checks were performed in other kinematic regions and
topologies as well.
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FIG. 8: (Color online) Signal-background separation qual-
ity checks for the charged-two-track topology in the

√
s ∈

[2.12, 2.15] GeV and cos θφc.m. > 0.33 kinematic regime, fur-
ther broken up into nine phase-space volumes in the φ→ KK
decay angles in the Adair (Ad) frame. The red dashed and
blue dot-dashed histograms represent the extracted signal and
background components, respectively. The y-axis units are
number of events per 1-MeV-wide M(KK) bin.

C. Further discussion

Seen in one way, there is some difference in philoso-
phy between our approach and that in some of the pre-
vious analyses – instead of “subtracting away the back-
ground”, we are “pulling out the signal”. Furthermore,
by performing independent fits in very small regions of
phase-space for each event (where the background shape
is assumed to be roughly constant), we are not making
any a priori guesses about the global features of the back-
ground. Even if there is an f0/a0 or Λ∗ underneath the φ,
unless this background interferes strongly with the φ, our
method should work properly and provide a much bet-
ter handle on the systematics of the signal-background
separation process than in the older methods. While
there is certainly an S-wave underneath the φ, the ex-
tent of the S-wave contribution is usually estimated to
be small, the presently accepted value being at the per-
cent level [51, 52]. We leave the S-P -wave interference
issue as beyond the scope of this work.

VII. DETECTOR ACCEPTANCE

Detector efficiency was modeled using GSIM, a
GEANT-based simulation package of the CLAS detector.
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A Monte Carlo sample containing 108 γp → φp events
were pseudo-randomly generated according to phase-
space distributions and allowed to propagate through
the simulation. The simulator also handled the decay
of the φ into the KK charged- and neutral-modes ac-
cording to the corresponding branching fractions. An
additional momentum smearing algorithm was applied
to better match the resolution of the Monte Carlo with
the real data. After processing, the “raw” (i.e., original
phase space generated) events yielded a set of “accepted”
Monte Carlo events. The “accepted” Monte Carlo data
then underwent the exact same series of event recon-
struction, analysis cuts and energy-momentum correction
steps as applied to the real data events.

To account for the characteristics of the event trigger
used in this experiment, an additional correction for the
Monte Carlo came from a trigger efficiency study using
the γp → pπ+π− channel (see Refs. [41, 53] for details).
This study computed the probability that an individual
particle trajectory did not fire the trigger, when the re-
action kinematics strongly demanded (via total missing
mass) that the particle should have been there. The av-
erage effect of this correction was found to be 5-6%.

To form a more accurate characterization of the de-
tector acceptance pertaining to the kinematics of the re-
action of interest, one should use a Monte Carlo event
generator based on a physics model, instead of a sim-
ple phase-space generator. Typically, this is achieved in
an iterative fashion; one starts with phase-space gener-
ated Monte Carlo events, extracts the differential cross
sections, fits these cross sections to a model and uses
the model to generate new Monte Carlo events for the
next iteration. After several such iterations, the accepted
Monte Carlo and data distributions are expected to re-
semble each other to a fair degree.

However, the above procedure assumes that one has a
very good handle on the signal-background separation.
For a complicated reaction with multiple decay angles,
the detector acceptance can depend on several kinematic
variables and it becomes more difficult to disentangle the
effect of the detector acceptance on signal events from
that on the background. Our signal-background sepa-
ration procedure, as described in the previous section,
specifically addresses this issue. By weighting every event
by its Q-value, we are able to produce distributions of
any particular kinematic variable that include only sig-
nal events.

In the next step, we expand the scattering amplitude
M for the complete reaction γp → φp in a basis of s-

channel production amplitudes AJP :

M~m(~x, ~α) ≈
11
2∑

J= 1
2

∑
P=±

AJ
P

~m (~x, ~α), (20)

where ~m = {mγ ,mi,mφ,mf} denotes spin projections
quantized along the beam direction for the incident pho-
ton, target proton, intermediate φ and final-state pro-
ton, respectively. The vector ~x represents the set of

kinematic variables that completely describes the reac-
tion, while the vector ~α denotes a set of 56 fit parame-
ters, estimated by a fit to the data distribution using the
method of extended unbinned maximum likelihoods. The
only assumption made here is that any distribution can
be expanded in terms of partial waves (denoted by the
spin-parity combination JP ). Ideally, one needs to use
a “complete” basis of such JP waves, but we found that

a “large-enough” (JP = 1
2

±
, 32
±
, . . . , 112

±
) set of waves

was sufficient to fit the data very well. The s-channel
JP waves were constructed using the relativistic Rarita-
Schwinger formalism [54] and numerically evaluated us-
ing the qft++ software package [55]. A full description
of the amplitude construction and fitting procedure can
be found in Refs. [41, 42], but a salient feature was a
Q-value weighted contribution of each data event to the
total negative log likelihood

− lnL =

Ndata∑
i

Qi ln Ii +N , (21)

where the intensity Ii corresponds to the differential rate
calculated using the M amplitudes and the normaliza-
tion integral N that ensures that all probabilities are
normalized to unity, is numerically calculated using the
Monte Carlo. This function is then minimized with re-
spect to the parameters ~α to obtain the fit results.

Based on these fit results, each accepted Monte Carlo
event was assigned a weight Ii given by,

Ii =
∑

mγ ,mi,mf

|
∑
mφ

M~m(~xi, ~α)×Mφ→KK |
2∆Φi, (22)

where we have coherently summed over the intermediate
φ spins and ∆Φi is the phase-space element. The ac-
cepted Monte Carlo, weighted by the fits, matched the
data in all physically significant distributions and corre-
lations. Fig. 9 shows comparisons between the data and
the accepted MC weighted by the fit results in the pro-
duction angle for the charged-mode

√
s = 2.155 GeV bin.

The detector acceptance as a function of the kinematic
variables ~x was then calculated as

ηwtd(~x) =

(
Nacc∑
i

Ii

)
/

Nraw∑
j

Ij

 , (23)

where Nraw and Nacc denote the number of events in the
given kinematic bin for the raw and the accepted Monte
Carlo data sets, respectively.

VIII. NORMALIZATION

To calculate differential cross sections, the data yields
were normalized by the photon flux and the target factors
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FIG. 9: (Color online) Shown are the cos θφc.m. distributions
for the data, accepted Monte Carlo and accepted Monte Carlo
weighted by the PWA fit in the

√
s = 2.155 GeV bin for

the charged-two-track topology. Weighting by the fit results
brings the weighted Monte Carlo distribution into excellent
agreement with the data.

as

dσ

d cos θφc.m.

(
√
s, cos θφc.m.) =

(
At

F(
√
s)ρt`tNA

)
×

Y(
√
s, cos θφc.m.)

(∆ cos θφc.m.)η(
√
s, cos θφc.m.)

, (24)

where At, ρt, and `t are the target atomic weight, density
and length, respectively, NA is the Avogadro constant,
F(
√
s) is the photon flux incident on the target for the

given
√
s bin, ∆ cos θφc.m. is the angular binning width,

and Y(
√
s, cos θφc.m.) and η(

√
s, cos θφc.m.) are the number

of data events and the acceptance for the given kinematic
bin, respectively.

Photon flux normalization for this analysis was carried
out by measuring the rate of out-of-time electrons at the
photon tagger, that is, hits that did not coincide with any
event recorded by CLAS [56]. Corrections were made to
account for photon losses along the beam line and the
detector dead-time.

A separate correction to the photon flux normaliza-
tion was required to account for the fact that only the
first two-thirds of the photon tagger counters (1-40) went
into the trigger. “Accidental” events corresponding to
tagger counters 41-61 could trigger if a simultaneous hit
occurred in the lower (1-40) counters within the same
time window. Such “accidental” events would be trig-
gered as usual and recorded by CLAS just as any other
“normal” event. However, the photon flux calculation
would not incorporate the associated photon correspond-
ing to an invalid tagger counter. By utilizing the trig-
ger rates in counters 1-40 and assuming a Poisson dis-
tribution for the probability of occurrence of such “ac-
cidental” events, we were able to correct for this fea-
ture. Faulty tagger electronics prevented accurate elec-

tron rate measurements for photons in the energy bins√
s = 2.735 and 2.745 GeV [41]. Differential cross sec-

tions are therefore not reported at these two energies.
However, polarization measurements do not depend on
flux normalizations and are reported in these two bins.

IX. UNCERTAINTIES

The statistical uncertainties for the differential cross
sections were comprised of the uncertainty in the data
yield and the acceptance calculation. For the ith event,
the covariance matrix from the signal-background fit de-
scribed in Sec.VI gave the uncertainty σQi in our estimate
of the signal quality factor Qi. Summing up these uncer-
tainties, assuming 100% correlation for events in a given
(
√
s, cos θφc.m.) bin, the statistical uncertainty in the data

yield was given by

σ2
data = Y +

(
Ndata∑
i

σQi

)2

. (25)

The relative statistical uncertainty in the acceptance cal-
culation was computed using the expression for binomial
errors

δη/η =

√
1/η − 1

Nraw
. (26)

An overall detector acceptance uncertainty between
4 to 6%, depending on

√
s was estimated based on pre-

vious studies [42, 46] on the same dataset. A study of
the cross sections for three different reactions (ωp, K+Λ
and ηp) using the same (present) data set in compar-
ison with other experiments gave a flux normalization
uncertainty of 7%. Data collection for the present ex-
periment occurred in bunches of about 10 million event
triggers (called “runs”). Our estimated photon flux nor-
malization uncertainty from a “run”-wise comparison of
flux-normalized yields was 3.2% [46]. Combining these
in quadrature with the contributions from photon trans-
mission efficiency (0.5%), a current-dependent normal-
ization (3%) and target density and length (0.2%), we
quote an overall normalization uncertainty of 8.3%. The
other contributions come from the φ → KK branch-
ing fractions (0.5% and 0.4% [57] for the charged- and
neutral-modes, respectively) and φ full-width (0.9%) [57].
A list of all the systematic uncertainties pertaining to
dσ/d cos θφc.m. measurements for each of the two topolo-
gies is given in Table II.

X. SPIN DENSITY MATRIX ELEMENTS

A massive vector boson like the φ meson has three
physical spin components. As in Eq. 20, we take the
beam direction as our spin quantization axis, as well as
the positive ẑ direction. The ŷ direction is the normal to
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Source of Uncertainty
Topology

K+(K−)p π+π−(K0
L)p

Particle ID 4.5% 5%

Kinematic Fitter 3% 3%

Relative Acceptance 4%-6% 4%-6%

Normalization 8.3% 8.3%

φ→ KK BF 0.5% 0.4%

φ Full Width 0.9% 0.9%

Overall estimate 10.7%-11.6% 10.9%-11.8%

TABLE II: List of systematic uncertainties for this analysis.
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FIG. 10: (Color online) A schematic diagram of the reaction
chain γp → φ(→ KK)p′ in the overall c.m. frame. The
beam direction is taken as the positive z-axis, and the y-axis
is normal to the φ production plane.

the production plane (i.e, along ~pγ × ~pφ), and x̂ = ŷ× ẑ.
This is schematically shown in Fig. 10. The three spin
operators are

Sx =
1√
2

 0 1 0

1 0 1

0 1 0

 , (27a)

Sy =
1√
2

 0 −i 0

i 0 −i
0 i 0

 , and (27b)

Sz =

 1 0 0

0 0 0

0 0 −1

 , (27c)

and a pure spin-state |α〉 is an eigenstate of the full ~S
operator. For a classical ensemble of states, the spin
of the vector particle is described by the density matrix
ρ =

∑
wα|α〉〈α|, where the sum is over a complete basis

of states and wα is the classical probability of finding the
particle in the state |α〉. For the general case, however, ρ
will not be diagonal and the different polarization states
will be correlated. A general 3× 3 complex matrix ρ has

2 × 32 real elements. Hermiticity constrains the diago-
nal elements of ρ to be real (3 real elements) and the
off-diagonal elements to be conjugate transpose of each
other (3 complex elements or 6 real elements). The unit
trace constraint further reduces the number of indepen-
dent elements by 1. Therefore, in all, the most general
3×3 density matrix will have 8 real and independent ele-
ments. A convenient basis to expand the density matrix
is given by three rank-1 tensors, Si (i = x, y, z) and five
rank-2 tensors τij given by

τij =
3

2
(SiSj + SjSi)− 2δij . (28)

Therefore, by construction, in the tensorial space indexed
by the two rank-1 tensors Si and Sj , τij is symmetric and
traceless.

The above tensors were written in the Cartesian basis.
Following Ref. [58], we switch to the helicity basis where
the spin-1 operators are written as [38]

S1±1 = ∓Sx ± iSy√
2

, S10 = Sz. (29)

Explicitly, they are

S10 =

 1 0 0

0 0 0

0 0 −1

 (30a)

S11 = −

 0 1 0

0 0 1

0 0 0

 (30b)

S1−1 =

 0 0 0

1 0 0

0 1 0

 . (30c)

In the helicity basis, the rank-2 operators τ2µ are given by
the tensor products [S1 ⊗ S1]µ, µ = {0,±1,±2}. Substi-
tuting the appropriate Clebsch-Gordan coefficients, the
tensor polarization operators are

τ22 = S11S11 (31a)

τ2−2 = S1−1S1−1 (31b)

τ21 =
1√
2

(S11S10 + S10S11) (31c)

τ2−1 =
1√
2

(S1−1S10 + S10S1−1), and (31d)

τ20 =
1√
6

(S11S1−1 + 4S10S10 + S1−1S11). (31e)

For the sake of completeness, we give the explicit form
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of these five matrices:

τ22 =

 0 0 1

0 0 0

0 0 0

 (32a)

τ2−2 =

 0 0 0

0 0 0

1 0 0

 (32b)

τ21 = − 1√
2

 0 1 0

0 0 −1

0 0 0

 (32c)

τ2−1 = − 1√
2

 0 0 0

−1 0 0

0 1 0

 (32d)

τ20 =
1√
6

 1 0 0

0 −2 0

0 0 1

 . (32e)

The full expression of the density matrix is then given as

ρ =
1

3

[
I +

3

2
~S · ~P +

√
3τ · T

]
, (33)

with the vector polarizations defined as

P1±1 = ∓Px ± iPy√
2

, P10 = Pz, (34)

and the sum over the tensor polarizations defined as

τ · T =
∑

µ=0,±1,±2
(−1)µτ2−µT2µ. (35)

Therefore, the density matrix can be written as

ρλλ′ =

 ρ−1−1 ρ−10 ρ−11
ρ0−1 ρ00 ρ01
ρ1−1 ρ10 ρ11

 =
1

3


1 + 3

2P10 +
√

1
2T20 −

3
2P11 +

√
3
2T2−1

√
3T2−2

3
2P1−1 −

√
3
2T21 1−

√
2T20 − 3

2P11 −
√

3
2T2−1√

3T22 + 3
2P1−1 +

√
3
2T21 1− 3

2P10 +
√

1
2T20

 . (36)

For unpolarized beam and target polariza-
tions, parity conservation leads to the condition
ρλλ′ = (−1)λ−λ

′
ρ−λ−λ′ . Along with the hermiticity

property ρλλ′ = ρ∗λ′λ, Eq. 36 implies [58] Px = Pz = 0,
T20, T21 and T22 be real, T2−1 = −T21, and T2−2 = T22,
so that the most general form of the density matrix for
unpolarized photoproduction is given as (following the
sign conventions in Ref. [59])

ρ0 =


1−ρ000

2 ρ010 ρ01−1
ρ0∗10 ρ000 −ρ0∗10
ρ01−1 −ρ010

1−ρ000
2

 , (37)

where ρ000 and ρ01−1 are purely real and only ρ010 has
both real and imaginary parts (the superscript denotes
the unpolarized beam-target case). The physical inter-

pretation of the SDME’s are [58] Py = −2
√

2Imρ010,

T20 = 1
2 (1− 2ρ000), T21 = −

√
6Reρ010 and T22 =

√
3ρ01−1.

Even though the density matrix given by Eq. 37 con-
sists of four real independent observables, for the vec-
tor meson decaying into pseudoscalar mesons (φ→ KK,
ρ → ππ or ω → πππ), there are only three measurable
quantities. For these decays, the intensity distribution is

given by the Schilling’s equation [59]

I(
√
s, cos θφc.m.) ∼

1

2
(1− ρ000) +

1

2
(3ρ000 − 1) cos2 ζ

−
√

2Reρ010 sin 2ζ cosϕ

−ρ01−1 cos 2ϕ, (38)

where ζ and ϕ are the polar and azimuthal angles
of the vector meson decay into pseudoscalar mesons
(see Eq. 39), and we have explicitly retained the
(
√
s, cos θφc.m.) dependence. Since Eq. 38 does not include

Imρ010, Py is not measurable. Since Px and Pz are also
constrained to be 0 for unpolarized beam-target config-

urations, the vector polarization ~P is not measurable at
all. Kloet et al. [58] have shown that the only way to mea-
sure the vector polarization is through leptonic decays of
the vector mesons, with the additional requirement that
one of the lepton spins also be measured.

A. Helicity conservation and choice of reference
frames

The choice of the reference frame for the two decay an-
gles in the intensity distribution of Eq. 38 can be made to
emphasize various exchange mechanisms. The reaction is
shown in the c.m. frame in Fig. 10. However, since the
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FIG. 11: (Color online) The spin-quantization axes for the
Helicity (Hel, in green), Adair (Ad, in red) and Gottfried-
Jackson (GJ, in blue) frames, in relation to the overall c.m.
frame. The z-axis for the c.m. frame points along the beam
direction and coincides with zAd. Since zHel points along the
direction of the φ meson, the angle between the Helicity and
Adair frames is θφc.m.. The Gottfried-Jackson frame is defined
as the direction of the incoming photon, as seen in the rest
frame of the φ meson. The angle between the Helicity and
Gottfried-Jackson frame is given by Eq, 42b.

SDME’s are not Lorentz invariant quantities, an analyz-
ing direction for the vector-meson must be chosen. Three
common choices exist in the literature, the Adair frame,
the Helicity frame, and the Gottfried-Jackson frame, as
shown in Fig. 11. In the Adair (Ad) frame, the polariza-
tion axes for both the incoming and outgoing states are
chosen as the z-axis (along the beam direction).

The Adair frame is convenient when the production
mechanism conserves spin in the s-channel c.m. frame.
For the Helicity (Hel) frame, the vector meson direction
in the c.m. system defines the quantization axis. This
is preferred for s-channel helicity conservation (SCHC).
Under the assumptions of SCHC, ρHel00 = ρHel10 = ρHel1−1 =
0 [35]. For the Gottfried-Jackson (GJ) frame, one makes
a further boost to the vector meson rest-frame from the
overall c.m. frame. The quantization axis is along the di-
rection of the incoming photon seen in the vector meson
rest-frame. For a t-channel exchange of X, the momen-
tum of the incoming photon and X is collinear in the GJ
frame. Therefore the ρ elements measure the degree of
helicity flip due to the t-channel exchange of X in the GJ
frame. For example, if the t-channel exchange particle is
a JP = 0+ state, then no helicity flip will occur (TCHC)
and the vector meson will have the same helicity as the in-
coming photon. For this case ρGJ00 = ρGJ10 = ρGJ1−1 = 0 [35].
The quantization axes for these three frames are shown
in Fig. 11.

It is clear that knowing the ρ elements in one frame,
one can immediately calculate them in any other frame
by a Wigner rotation. The y-axis is always the normal

to the vector meson production plane; ŷ = k̂× q̂/|k̂× q̂|,
where k̂ is the incoming photon direction and q̂ is the

outgoing vector meson (φ) direction. The choice of the
z-axis is frame dependent, as described above. For the

Adair frame ẑ = k̂, for the Helicity frame, ẑ = q̂, and for

the GJ frame, ẑ = k̂′, where k̂′ points along the incoming
photon direction in the vector meson rest frame. Once
the y- and the z-axis have been fixed, x̂ = ŷ × ẑ. Let
π̂ be the direction of the daughter K (for φ → KK) in
the chosen reference frame. Then the angles ζ and ϕ in
Eq. 38 are given as [59]:

cos ζ = π̂ · ẑ, cosϕ =
ŷ · (ẑ × π̂)

|ẑ × π̂|
, sinϕ = − x̂ · (ẑ × π̂)

|ẑ × π̂|
.

(39)
In the Rose convention of the signs (this is followed by
Schilling in Ref. [59]), the Wigner rotation matrix for a
spin-1 system by an angle α is

d1(α) =


1
2 (1 + cosα) − 1√

2
sinα 1

2 (1− cosα)
1√
2

sinα cosα − 1√
2

sinα
1
2 (1− cosα) 1√

2
sinα 1

2 (1 + cosα)

 .

(40)
To rotate the density matrix from reference frame A to
B, the transformation is

ρB = d1(−αA→B)ρAd1(αA→B). (41)

The rotation angles (counter-clockwise is positive) are
given by [59]

αAd→Hel = θφc.m. (42a)

αHel→GJ = − cos−1
(
β − cos θφc.m.

β cos θφc.m. − 1

)
(42b)

αAd→GJ = αAd→Hel + αHel→GJ , (42c)

where β = |~pK |/EK is the velocity of the daughter kaon
in the φ rest frame (for the φ→ KK decay).

B. “PWA” method and “Schilling’s” method of
SDME extraction in the Adair frame

The expansion of the production amplitudes using par-
tial wave analysis (PWA) techniques in Sec. VII allows
for an elegant way of extracting the SDME’s. For this,
we follow Schilling [59] and express the SDME’s in terms
of the production amplitudes as

ρmφm′φ =

∑
mfmγmi

MmφmfmimγM∗m′φmfmimγ∑
mφmfmγmi

|Mmφmfmimγ |2
, (43)

where Mmφmfmimγ are the same amplitudes as in the
PWA fit in Eq. 20, and mγ , mi and mf and mφ are
the spins of the incoming photon, target proton, outgo-
ing proton and the φ vector meson, respectively. Note
that the φ→ KK decay portion of the full amplitude in
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Eq. 20 occurs as a constant factor that cancels between
the numerator and the denominator in Eq. 43. The φ de-
cay portion of the full amplitude in Eq. 20 can therefore
be suppressed for SDME extraction.

The above “PWA” method is completely equivalent to
a direct application of the Schilling’s expression for the
intensity given by Eq. 38 (“Schilling’s” method). Since
the spin-quantization axis for our PWA amplitudes was
along the beam direction, the PWA method of extrac-
tion yields results in the Adair frame. The PWA expan-
sion was specifically tuned to represent distributions in
all kinematic variables, in particular, the intensity dis-
tribution given by Eq. 38. The equivalence between the
two methods were demonstrated previously [41, 42]. The
final results for the SDME’s we present in this analysis
use the PWA method.

XI. RESULTS

A. Differential cross section results

From here on, by charged-mode, we will denote only
the charged-two-track topology; no final results are pre-
sented for the charged-three-track topology. Figs. 12-14
show our differential cross section results in different en-
ergy bins for the charged-mode. Unless otherwise men-
tioned, for all plots, we nominally include the Λ∗ cuts
as described in Sec. IV C. Fig. 15 shows the differential
cross sections for the neutral-mode. The energy binning
for the charged-mode is uniformly 10-MeV-wide, while
the minimum bin-width for the neutral-mode is 30-MeV-
wide (a few bins at high energies are 40- and 50-MeV
wide). We do not report cross section results for the bins√
s = 2.735 and 2.745 GeV, due to normalization issues,

as described in Sec. VIII.
The diffractive nature of φ production means that

most of the yields are concentrated in the forward-angle
regime. Hence, we choose 0.1-unit-wide cos θφc.m. bins for
cos θφc.m. ≤ 0.35 and finer 0.05-unit-wide cos θφc.m. bins in
the cos θφc.m. > 0.35 forward-angle regime, where more
statistics are available.

Figs. 16 and 17 show comparisons between the charged-
and neutral-mode differential cross section results. Note
that the angular bins are uniformly 0.1-unit- and 0.05-
unit-wide in cos θφc.m. for Fig. 16 and Fig. 17, respectively.
The two sets of results should not be taken as inde-
pendent measurements, since the topology-wise analyses
were not performed blind to each other. For any future
theory fits to these data, we suggest that the charged-
and neutral-mode results be taken together as a single
set of measurements involving some degree of correlation.
Any remnant difference between the two modes should be
taken as an additional systematic uncertainty. With this
caveat in mind, Figs. 16 and 17 show reasonable to good
agreement between the two modes.

The forward-most angular bin shows a localized struc-
ture around

√
s ≈ 2.2 GeV as already mentioned in Sec. I.

This feature is discussed further in Sec. XII B. We note
that the structure is present in both the modes.

B. Comparison with previous world data for
differential cross sections

Previous world data for φ photoproduction cross sec-
tions are generally scarce and no world data exists for
the neutral-mode topology at all. We therefore restrict
our discussion in this section to the charged-mode topol-
ogy only, and unless otherwise mentioned, inclusive of
the hard Λ∗ cuts. Most of the earlier results have very
low statistics, wide energy bins and forward-angle cov-
erage only. The current analysis incorporates substan-
tial improvements on all of these factors along with so-
phisticated data analysis techniques. Therefore, we sug-
gest that caution be taken while interpreting these com-
parisons. For low energy and forward-angle kinematics,
there are two previous results from the SAPHIR (2003,
Barth et al. [25]) and LEPS (2005, Mibe et al [26])
Collaborations. Both data sets have wide energy bin-
nings, Eγ ≈ 200-MeV-wide and 100-MeV-wide bins for
SAPHIR and LEPS, respectively. However, the com-
mon feature in both results is that of a prominent en-
hancement around Eγ ≈ 2 GeV (

√
s ≈ 2.2 GeV) in the

forward-angle dσ/dt, in agreement with our current re-
sults.

Since the SAPHIR and LEPS kinematics were mostly
at forward-angles, these results were presented as dσ/dt
vs. |t − t0|, where t0 was the value of t at cos θφc.m. = 0.
From the phenomenology of diffractive production, dσ/dt
was expected to show a simple exponential fall off with
|t − t0|. The conversion of cos θφc.m. to t or |t − t0| de-
pends on

√
s. With wide energy bins, it is not immedi-

ately clear which
√
s should be chosen for this conversion.

Therefore, we convert our results into the units chosen by
SAPHIR and LEPS and make independent comparisons
with both of them. Since our energy binning is much finer
(10-MeV-wide in

√
s), we overlay our results at the en-

ergy bin-center of the SAPHIR or LEPS results. Figs. 18
and 19 show the comparison between our results with
SAPHIR and LEPS, respectively.

The only existing world data for large |t| are the CLAS
(2000, Anciant et al. [31]) results for a bin-center at Eγ =
3.6 GeV (tagged photon energy range 3.3 to 3.9 GeV).
The chief motivation of the previous CLAS experiment
was to investigate whether u-channel processes (at small
u or large t) contribute to the φ channel. Assuming that
the φ is almost pure |ss̄〉 and the strangeness content in
ordinary nucleons is small, the coupling constant gφNN
is expected to be small and therefore nucleon exchanges
in the u-channel are supposed to the suppressed. How-
ever, as shown in Fig. 20, both the CLAS 2000 and the
current CLAS results show a small but distinct rise in
the backward-angles, suggestive of a non-negligible value
for gφNN .

Last, Fig. 21 compares our results with the Eγ =
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FIG. 12: (Color online) dσ

d cos θ
φ
c.m.

(µb) vs. cos θφc.m.: Differential cross section results for the charged-mode topology in the

energy range 1.98 GeV ≤
√
s < 2.3 GeV. The centroid of each 10-MeV-wide bin is printed on the plots. The y-axis range

is constant over each horizontal row and is shown in the left-most column for every row. All error bars represent statistical
uncertainties only.
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c.m.

(µb) vs. cos θφc.m.: Differential cross section results for the charged-mode topology in the

energy range 2.3 GeV ≤
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s < 2.62 GeV. The centroid of each 10-MeV-wide bin is printed on the plots. The y-axis range

is constant over each horizontal row and is shown in the left-most column for every row. All error bars represent statistical
uncertainties only.
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FIG. 14: (Color online) dσ

d cos θ
φ
c.m.

(µb) vs. cos θφc.m.: Differential cross section results for the charged-mode topology in the

energy range 2.62 GeV ≤
√
s < 2.84 GeV. The centroid of each 10-MeV-wide bin is printed on the plots. The y-axis range

is constant over each horizontal row and is shown in the left-most column for every row. No results are presented for the
bins

√
s = 2.735 and 2.745 GeV due to the normalization issues, as described in Sec VIII. All error bars represent statistical

uncertainties only.

3.3 GeV bin-center results from Daresbury (1982, Bar-
ber et al. [21]). The Daresbury binning was 1-GeV in
Eγ , and away from the t → 0 region, the error bars are
large. Overall, within the limitations of statistical uncer-
tainties, agreement between the two results is fair.

C. Spin density matrix elements results

Since polarization measurements are sensitive to inter-
ference between amplitudes and require enhanced statis-

tics compared to cross sections which measure sum of
the squared amplitudes, we retain a uniform 0.1-unit
cos θφc.m. binning for the SDME results. Figs. 22-24 show
the SDME’s for the charged-mode topology in the Adair
frame. The most prominent feature is the large value of
ρ000, while ρ010 and ρ01−1 are small, but non-zero. There
is a similarity with the corresponding results for the ω
channel [42] in a “hump-like” structure, followed by a
“dip”, for the ρ000 element. At high

√
s, the ω results

had a distinct “dip” for ρ000 in the mid-forward angles.
For the φ, there are indications of a “dip” for ρ000 in
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FIG. 15: (Color online) dσ

d cos θ
φ
c.m.

(µb) vs. cos θφc.m.: Differential cross section results for the neutral-mode topology. The

minimum(maximum) bin-width is 30-MeV(50-MeV) and the bin-centroid is printed on the plots. The y-axis range is constant
over each horizontal row and is shown in the left-most column for every row. Note that no events are included from the√
s ∈ [2.73, 2.75] GeV region. All error bars represent statistical uncertainties only.

the mid- to mid-backward angles, though the structure
is much less well-defined due to statistical limitations at
high

√
s and cos θφc.m. < 0. Fig. 25 shows the SDME’s

for the neutral-mode topology in the Adair frame. The
energy bins are at least 30-MeV-wide in

√
s. Figs. 26-

27 and 28-29 show the energy dependence of the Adair

frame SDME’s in different angular bins for the charged-
and neutral-mode, respectively.

For systematic uncertainties, we adopt the results from
our previous ω analysis [42] where the maximal effect
of incorrect acceptance on the extracted SDME’s was
studied by distorting the decay distributions in Eq. 38
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FIG. 16: (Color online) Comparison of the charged- and neutral-mode dσ/d cos θφc.m. results in 0.1-cos θφc.m. bins, at mid-
and backward-angles. The charged-mode results comprise the two-track dataset with additional Λ∗ cuts as explained in the
text. The y-axis range is constant over each horizontal row and is shown in the left-most column for every row. All error bars
represent statistical uncertainties only.
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FIG. 17: (Color online) Comparison of the charged- and neutral-mode dσ/d cos θφc.m. results in 0.05-cos θφc.m. bins, at forward-
angles. The charged-mode results comprise the two-track dataset with additional Λ∗ cuts as explained in the text. The y-axis
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uncertainties only.
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FIG. 22: (Color online) SDME vs. cos θφc.m.: spin density matrix elements in the Adair frame for the charged-mode (with Λ∗

cuts) topology in the energy range 1.98 GeV ≤
√
s < 2.28 GeV. The centroid of each 10-MeV-wide bin is printed on the plots.

All error bars represent statistical uncertainties only.
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FIG. 23: (Color online) SDME vs. cos θφc.m.: spin density matrix elements in the Adair frame for the charged-mode (with Λ∗

cuts) topology in the energy range 2.28 GeV ≤
√
s < 2.62 GeV. The centroid of each 10-MeV-wide bin is printed on the plots.

All error bars represent statistical uncertainties only.
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FIG. 24: (Color online) SDME vs. cos θφc.m.: spin density matrix elements in the Adair frame for the charged-mode (with Λ∗

cuts) topology in the energy range 2.62 GeV ≤
√
s < 2.84 GeV. The centroid of each 10-MeV-wide bin is printed on the plots.

All error bars represent statistical uncertainties only.

by the uncertainties in our acceptance calculation. The
SDME systematic uncertainties from this study were
δ(ρ000) = 0.0175, δ(ρ01−1) = 0.0125 and δ(ρ010) = 0.01
and we quote these for the present φ analysis as well,
since the underlying assumption is only the Schilling’s
equation for vector mesons.

D. Comparison with previous world data for
SDME

Previous (pre-2010) world data on the φ SDME’s are
extremely limited. Although many of the older papers
did report a few results, the overall general conclusion
was that the ρ0 SDME’s in the helicity frame were all

near-zero. An important drawback in the SDME ex-
traction method employed in these older data was that
instead of fits to the full Schilling’s equation as given
by Eq. 38, fits were performed to integrated intensity
profiles. There are several problems that arose due to
this. First, the SDME’s are functions of both

√
s and the

production angle cos θφc.m.. Second, the detector accep-
tance is a function of every independent kinematic vari-
able ({

√
s, cos θφc.m., ζ, ϕ} in Eq. 38) and therefore such

integrated distributions are not properly acceptance cor-
rected. Furthermore, it was claimed that the only way
to obtain a good fit was to incorporate S-P -wave inter-
ference effects (see McCormick et al. [32]). As we have
stressed earlier in Sec. VI, a certain amount of S-P -wave
interference effect indeed must occur. However, claims to
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FIG. 25: (Color online) SDME vs. cos θφc.m.: spin density matrix elements in the Adair frame for the neutral-mode topology.
The minimum bin-width is 30-MeV in

√
s and the centroid of each bin is printed on the plots. All error bars represent statistical

uncertainties only.

the degree of this effect based on such integrated inten-
sity fits have to be considered with caution. In keeping
with these facts, and the very limited physics conclusions
from previous φ SDME measurements, we choose not to
compare our present results to any of the older data.

Recently, however, the LEPS Collaboration [36] has
published φ SDME’s by performing fits to the full
Schilling’s expression and properly accounting for accep-
tance as well. Fig. 30 shows the comparisons between

the LEPS and the current CLAS results. The LEPS bin-
ning was 200-MeV in Eγ , while our bins are much finer.
Therefore, the CLAS results are shown at the approx-
imate LEPS bin-centers. Also, the LEPS results were
quoted as functions of the variable |t − t0|. The conver-
sion of |t−t0| to cos θφc.m. depends on the energy

√
s. Since

the LEPS energy bins were wide, this conversion process
brings an extra degree of uncertainty into the compar-
isons. Keeping in mind these approximations, the CLAS
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FIG. 26: (Color online) The energy dependence of SDME’s (Adair frame) in the backward-angle bins for the charged-mode
(with Λ∗ cuts) topology. All error bars represent statistical uncertainties only.

and LEPS results show good agreement. XII. PHYSICS DISCUSSION

A. Diffractive exchange parameters Bφ and Cφ

As mentioned in the introductory section, the φ pho-
toproduction channel is ideally suited to study the phe-
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FIG. 27: (Color online) The energy dependence of SDME’s (Adair frame) in the forward-angle bins for the charged-mode
(with Λ∗ cuts) topology. All error bars represent statistical uncertainties only.

nomenology of Pomeron exchange in the diffractive limit
of t → t0, where t0 = |t|min corresponds to cos θφc.m. = 1
for a given

√
s. The Pomeron Regge trajectory is approx-

imately given by α(t) ≈ 1.08 + 0.25t, where dσ/dt scales
as ∼ (β(t)sα(t))2/s2 and β(t) is the Regge residue that
behaves like a form-factor. Therefore, in the diffractive
limit of small t and large s, dσ/dt should show a very
slow variation with s.

Such diffractive Pomeron exchanges are expected to
occur for all three vector mesons ρ, ω and φ. However,
for the ρ and ω, additional meson exchanges occur as well.
For the ω, t-channel π exchanges are thought to have a
more dominant contribution than the Pomeron. Since
the φ is almost purely |ss̄〉, such light-quark π exchanges
are suppressed and diffractive Pomeron exchange is the

dominant contribution to the production amplitude. In
the simplest VMD model [6], the photoproduction cross
section can be related to the elastic φp scattering cross
section as

dσ

dt
(γp→ φp) ≈ 4πα

γ2φ

(
|~pφ|
Eγ

)2

c.m.

dσ

dt
(φp→ φp), (44)

where γφ is the photon-φ coupling constant from Eq. 1.
For Pomeron exchanges, the form-factor β(t) is generally
taken as exp(−Bφ(|t − t0|)/2) and Eq. 44 can be recast
in the form

dσ

dt
(γp→ φp) = Cφ exp(−Bφ(|t− t0|)), (45)
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FIG. 28: (Color online) The energy dependence of SDME’s (Adair frame) in the backward-angle bins for the neutral-mode
topology. All error bars represent statistical uncertainties only.

with the parameters Bφ and Cφ as the slope and forward-
angle cross-sections, respectively. Fig. 31 shows the vari-
ation of the extracted Bφ and Cφ from the charged-mode
for this analysis, in comparison with previous world data.
It is important to note here that our fits to Eq. 45 in-

cluded data points with 0.55 ≤ cos θφc.m. ≤ 0.95, since it
is known that the slope shows a strong t-dependence as
well [12]. The overall trend in Fig. 31 shows only a slow
rise of both Bφ and Cφ with energy, the signature for
diffractive phenomenology.
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FIG. 29: (Color online) The energy dependence of SDME’s (Adair frame) in the mid- and forward-angle bins for the neutral-
mode topology. All error bars represent statistical uncertainties only.

B. Forward-angle structure at
√
s ≈ 2.1 GeV

As noted earlier in Sec. IV C, for
√
s between 2 and

2.2 GeV, the φp and K+Λ(1520) channels can kinemat-
ically overlap in phase space if they have the same K+,
K− and proton final-state particle configuration. For the
φ channel, this corresponds to the charged-mode topol-
ogy. Therefore any effect of the K+Λ(1520) channel on
φp photoproduction might be expected to be enhanced
for the charged-mode. Fig. 32 shows the extracted slope
parameter Bφ. Above

√
s ≈ 2.3 GeV, pure diffraction

sets in. However, below
√
s ≈ 2.2 GeV, the produc-

tion mechanism is no longer that of a simple diffractive
Pomeron exchange. The slopes extracted from the two

modes also show some slight difference here. Similarly,
Fig. 33 shows a “structure” around

√
s ≈ 2.2 GeV in

ρ000 (Helicity frame). The “structure” is also noticeably
enhanced for the charged-mode. Fig. 34 shows a compar-
ison between results including or excluding the hard Λ∗

cuts from Sec. IV C. No significant deviation between the
two set of results are found in the

√
s ≈ 2.2 GeV region.

It is therefore possible that there are two separate
phenomena occurring here. First, the φ-Λ(1520) re-
scatters [27, 28] due to kinematic overlap in phase-space
and this should affect the neutral-mode as well. Second,
there is an interference effect between the K+Λ(1520)
(pK− mode) and φp (charged-mode) when the final
states are the same. Therefore, we explicitly distin-
guish between the terms “interference” and “overlap”,
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(∆(
√
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also involve an energy-dependent conversion from |t − t0| to

cos θφc.m., which has an intrinsic approximation due to the
wide energy bins. All error bars represent statistical uncer-
tainties only.

though it is possible that the two phenomena mix in
some fashion. Fig. 35 illustrates the effect of the
Λ(1520) on the two topologies. Consider the process
γp → X → KK, where the the KK refers to either
K+K− (charged-mode) or K0

SK
0
L (neutral-mode), and

X refers to a generic intermediate state comprising of φp
and K+Λ(1520). If φ-Λ(1520) coupling is allowed, the
charged-mode case has three “paths” to the final-state,
while the neutral-mode has two “paths” and this can ac-
count for the mild remnant differences in the two results.

A deeper understanding of any possible rescattering
effects will require data on K+Λ(1520) photoproduction
(both cross sections and polarizations), in both pK and
Σπ decay modes of the Λ(1520). Using the same dataset
as the present analysis, the CLAS Collaboration has re-
cently published cross section results on the Σπ [60, 61],
and data on the pK mode are anticipated as well.

C. Helicity non-conservation and ρ000

If we ignore the spin-indices of the target- and
outgoing-proton (whose polarizations we do not measure)
in Eq. 43, the definition of ρ000 becomes

ρ000 ∝ |Mλφ=0,λγ=1|2 + |Mλφ=0,λγ=−1|2. (46)
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FIG. 31: (Color online) The variation of the parameters
(a) Bφ and (b) Cφ from a fit to dσ/dt using Eq. 45 for the
charged-mode with Λ∗ cuts included, compared to previous
world data. Only the forward-angle kinematic points satisfy-
ing 0.55 ≤ cos θφc.m. ≤ 0.95 were included in the fits for the
present analysis. See text for details.

Therefore, a non-zero value of ρ000 is a direct measure of
helicity flips between the incoming and outgoing vector
particles. Although we have presented most of our SDME
results in the Adair frame in Sec. XIB, these can eas-
ily be converted into the Helicity and Gottfried-Jackson
frames by applying Wigner rotations, as described in
Sec. X A. Doing so, one finds that ρ000 is distinctly non-
zero at all kinematics, in all the three reference frames.
For a long time, it was believed that diffractive vector
meson photoproduction proceeds via helicity conserva-
tion in the s-channel [6, 35]. That is, the ρ0 elements
are very small in the Helicity frame. It is indeed puz-
zling as to why a t-channel process (Pomeron exchange)
should conserve helicity in the s-channel. In Ref. [35],
Gilman et al. gave some phenomenological arguments
for SCHC. The problem boils down to how the Pomeron
(IP ) couples (note that Regge theory only gives the over-
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all energy behavior). In the Donnachie-Landshoff (DL)
model, the Pomeron couples to partons via a C = +1
isoscalar-photon-like γµ coupling [6, 62]. At very high
energies where the parton masses can be neglected, the
left- and right-handed sectors remain decoupled during a
γµ coupling and no helicity flips occur in the s-channel,
as shown in Fig. 36a. However, the DL model is a phe-
nomenological model after all, and there are no funda-
mental reasons to expect either SCHC or TCHC. In fact,
naively, one would assign a 0++ t-channel exchange-like
behavior to the Pomeron (which can only exchange the
quantum numbers of the vacuum), and this in turn would
lead to TCHC, as Fig. 36b. Others authors [63] have pos-
tulated a 2++ tensor-like coupling as well.

The earlier CLAS ω results [42] already corroborated
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FIG. 35: (Color online) If φ-Λ(1520) coupling is allowed, the
charged-mode case has three “paths” (enumerated as 1, 2 and
3) to its final-state, while the neutral-mode has two “paths”
(enumerated as 4 and 5) to its final state.

violation of SCHC for the ω channel and Fig. 36c shows
that ρ000 is non-zero in all three frames (Adair, Gottfried-
Jackson and Helicity) for the φ even at forward-angles
where soft-diffractive processes are generally expected to
be dominant. We hope that future partial wave anal-
yses on these new data will shed light on the Pomeron
amplitude.

XIII. SUMMARY

We have presented the first extensive data for the φ
vector meson photoproduction covering both the charged
and neutral modes of the φ → KK decay. The high
statistics, wide kinematic coverage and fine energy bin-
ning of these results give us a detailed picture of the
differential cross sections and ρ0 SDME observables. Ac-
cess to the neutral-mode results will help understand the
physics behind the 2.2 GeV forward-angle “bump” struc-
ture seen in the differential cross sections and any pos-
sible coupling between the φp and K+Λ(1520) channels.
Our high-precision SDME data shows that both helic-
ity conservation between the incoming photon and out-
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FIG. 36: (Color online) Helicity conservation in the process γp→ V p′, where V ∈ {ρ, ω, φ, J/ψ, ...} is a generic vector meson:
(a) s-channel (SCHC in Helicity frame) (b) t-channel (TCHC in the Gottfried-Jackson frame). If the IP couples like a 0+

object in (b), one would expect TCHC to hold. The V = φ data in (c) exhibits strong deviation from TCHC since ρ000 6= 0,
implying non-zero helicity flips. The filled arrows in (a) and (b) depict the spins of the incoming and outgoing vector particles.

going φ is broken in both the t- and s-channels. Elec-
tronic versions of the numerical data can be obtained
from Ref. [64].

A very important aspect of this work has been to en-
sure that systematic issues that were under very little
control in previous analyses due to statistical limitations,
have been carefully dealt with. In particular, this per-
tains to a detailed study of the signal-background sepa-
ration procedure, use of kinematic fitting and data-driven
acceptance calculations. We also note that any further
theory model fits to these data should incorporate both
the charged- and neutral-mode results as a single dataset,
and not as independent analyses, since they were not pro-
cessed blind to each other. In particular, any point-by-
point difference between the two sets of results should be
taken as an additional systematic uncertainty.

There is an enormous amount of physics information
in these data, in conjunction with the ω [42] results pub-
lished previously. With a wide angular coverage, these
latest CLAS results should lead to a better understand-
ing of the transition between the soft and hard Pomeron

exchanges.
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