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S. Nanda,9 E. Nappi,2 V.V. Nelyubin,13 B.E. Norum,13 Y. Okasyasu,23 K.D. Paschke,20 C.F. Perdrisat,16

E. Piasetzky,25 V.A. Punjabi,26 Y. Qiang,14 P.E. Reimer,27 J. Reinhold,3 B. Reitz,9 R.E. Roche,28

V.M. Rodriguez,29 A. Saha,9, ∗ F. Santavenere,12 A.J. Sarty,30 J. Segal,9 A. Shahinyan,31 J. Singh,13

S. Širca,32 R. Snyder,13 P.H. Solvignon,11 M. Sotona,10, ∗ R. Subedi,33 V.A. Sulkosky,16 T. Suzuki,23

H. Ueno,34 P.E. Ulmer,15 P. Veneroni,12 E. Voutier,35 B.B. Wojtsekhowski,9 X. Zheng,27, 13 and C. Zorn9

(Jefferson Lab Hall A Collaboration)
1Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale A. Moro 2, I-00185 Rome, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Bari and University of Bari, I-70126 Bari, Italy

3Florida International University, Miami, Florida 33199, USA
4California State University, Los Angeles, Los Angeles California 90032, USA
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Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of
hypernuclei can provide information on the details of the effective hyperon-nucleon interaction.

Purpose: To obtain a high-resolution spectrum for the 9Be(e, e′K+)9ΛLi reaction.

http://arxiv.org/abs/1405.5839v2
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Method: Electroproduction of the hypernucleus 9
ΛLi has been studied for the first time with sub-MeV energy

resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide
unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector
(RICH) were added to the Hall A standard equipment.

Results: The cross section to low-lying states of 9
ΛLi is concentrated within 3 MeV of the ground state and can

be fitted with four peaks. The positions of the doublets agree with theory while a disagreement could exist with
respect to the relative strengths of the peaks in the doublets. A Λ separation energy, BΛ, of 8.36 ± 0.08 (stat.)
± 0.08 (syst.) MeV was measured, in agreement with an earlier experiment.

PACS numbers: 21.80.+a, 25.30.Rw, 21.60.Cs, 24.50.+g

I. INTRODUCTION

Hypernuclei provide a unique laboratory for the inves-
tigation of hadronic many-body systems with strangeness
-1 and for the study of new aspects of the strong and weak
interactions in nuclei. Because direct measurements of
hyperon-nucleon (Y N) scattering at low energies are pro-
hibited by the short hyperon lifetime, hypernuclear spec-
tra are the only way to study this interaction. Thus, a
unique opportunity to obtain this information is provided
by observing the fine structure of hypernuclei caused by
the specific spin-dependence of the hyperon-nucleon in-
teraction. Such characteristics are realized in practice
only in Λ hypernuclei and are hardly seen in other hy-
pernuclei. Thus the spectroscopy of Λ hypernuclei has a
unique value in strangeness nuclear physics.
In the past, hypernuclear spectroscopy has been car-

ried out with limited resolution only by means of
hadronic reactions, such as the strangeness exchange and
associated production reactions, that use meson beams
and in which a neutron is converted into a Λ [1]. More
recently, γ-ray spectroscopy has been used to measure
hypernuclear transition energies. Here, a few-keV energy
resolution has been obtained, which has allowed precise
level assignments and the measurement of doublet spac-
ings [2]. However, the method is limited to the bound
region below particle emission thresholds and to bound
levels reached following particle emission.
The experimental knowledge can be enhanced using

the (e, e′K+) electroproduction reaction. This reaction
is characterized by a large momentum transfer to the hy-
pernucleus (q >

∼ 250 MeV/c) and strong spin-flip contri-
butions, even at zero K+ production angles [3], resulting
in the excitation of both natural- and unnatural-parity
states [4, 5]. In the (e, e′K+) reaction a proton is con-
verted into a Λ hyperon so that one can produce and
study new hypernuclei, not accessible in the standard re-
actions.
Together with experiments in Hall C [6–8], the E94-

107 experiment in Hall A at Jefferson Lab [9] started a
systematic study of high resolution hypernuclear spec-
troscopy in the 0p-shell region of nuclei, such as the
hypernuclei produced in electroproduction on 9Be, 12C,

∗ Deceased

and 16O targets. Results on 12
ΛB and 16

ΛN have been
published [4, 5]. The results for 9

ΛLi, which was long
ago suggested as a good candidate for electroproduction
studies [10] because of the predicted large splitting of the
ground-state and second-excited-state doublets are pre-
sented in this paper.

II. THEORY

As in the previous experiments [4, 5], the data are
interpreted using shell-model calculations that include
both Λ and Σ hyperons in 0s states coupled to p-shell core
wave functions optimized to fit a wide range of p-shell
properties [11, 12]. The (e, e′K+) reaction is described
with distorted-wave impulse approximation (DWIA) cal-
culations [10] that use the Saclay-Lyon (SLA) model [13]
for the elementary p(e, e′K+)Λ reaction. The SLA model
was successfully applied in the analysis of electroproduc-
tion experiments on 12C and 16O targets [4, 5], which
suggests that this model provides a reasonable predic-
tion for the elementary cross section at very small K+

production angles and at the center of mass energy of
this experiment.
In a shell-model approach, one can define five pNsΛ

two-body matrix elements for a hypernucleus with an s-
level Λ coupled to a p-shell nuclear core. These can be
put into a one-to-one correspondence with the param-
eters (radial integrals) V , ∆, SΛ, SN , and T associated
with the average central, spin-spin, Λ-spin-orbit, nucleon-
spin-orbit, and tensor components of the in-medium (ef-
fective) ΛN interaction [14], given by

VΛN = V +∆sN ·sΛ+SΛlN ·sΛ+SN lN ·sN +TS12, (1)

where s denotes the spin and l the angular momentum.
The constant V simply contributes nV to the binding en-
ergy of every pnsΛ configuration and therefore does not
affect the spectrum, only the overall binding energy BΛ.
The value of V = −1.23 MeV used is very close to the
value that reproduces the experimental BΛ value (Table
2 of Ref. [12]). In the weak-coupling limit (quite good be-
cause the ΛN interaction for sΛ is a spatial monopole),
only operators that depend on the spin of the Λ particle
(∆, SΛ, T ) contribute to doublet spacings while SN con-
tributes to the spacing between doublets. We use values
(in MeV)

∆ = 0.43 SΛ = −0.015 SN = −0.39 T = 0.03 , (2)
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FIG. 1. The spectrum of 9
ΛLi. The 8Li core states are shown

on the left along with the spectroscopic factors for proton
removal from 9Be. All excitation energies are in keV. On the
right, the factors giving the relative population of levels in
purely non-spin-flip (∆S = 0) and purely spin-flip (∆S = 1)
production reactions on 9Be are given.

that fit the spectrum of the five bound levels of 7
ΛLi de-

termined from (π+,K+γ) and (K−, π−γ) experiments.
The main parameters used for the corresponding ΛN -

ΣN interaction are V
′

=1.45 and ∆′=3.04 MeV, making
a total of six Y N parameters that affect the spectrum.

The calculated spectrum for 9
ΛLi is shown in Fig. 1,

together with the core states for 8Li (the first four are
known and the other two are taken from the p-shell cal-
culation), while Table I shows the contributions to the
various level spacings for the three lowest doublets. The
contributions listed in Table I do not add up to exactly
the spacings in Fig. 1 because small contributions from
configuration mixing are not included (see the caption to
Table I). The spectroscopic factors (C2S with C2=2/3)
for proton removal from 9Be control the population of
9
ΛLi states via electroproduction. The structure factors
on the right of the figure for pure non-spin-flip and spin-
flip transitions [12] are normalized such that in the weak-
coupling limit (Y N interactions turned off) the ∆S = 0
and ∆S=1 values for a doublet each sum to C2S for the
core state.

The C2S values for 9Be → 8Li in Fig.1 are in good
agreement with the values from (d,3 He) studies [15, 16]
(see Table II). From a (t, α) study [18], larger relative
values were extracted for the excited 1+ and 3+ states
of 8Li. The C2S values for the interaction used in the
present work are listed in Fig. 1. The values for all the p-
shell interactions derived in connection with these hyper-

TABLE I. Contributions to energy-level spacings (in keV)
from the components of the ΛN interaction. The corefficients
of the parameters are determined by numerical differentia-
tion. The contribution from Λ-Σ coupling is determined by
diagonalizing with the coupling switched on and off. The dif-
ference between the total contribution of 601 keV in the first
line of the table and the 592 keV from diagonalization (see
Fig. 1) is due to small differences in the sum of diagonal core
energies caused by configuration mixing. Such differences are
usually only a few tens of keV.

Jπ
i −Jπ

f ΛΣ ∆ SΛ SN T

5

2

+

1
−

3

2

+

1
116 531 −18 −18 −10

1

2

+

1
−

3

2

+

2
79 −229 13 11 91

7

2

+

1
−

5

2

+

2
90 494 −34 −15 −51

3

2

+

2
−

3

2

+

1
63 441 −12 56 −42

7

2

+

1
−

5

2

+

1
-6 8 −7 −77 −22

TABLE II. The C2S values for proton removal from 9Be. The
second through fourth columns contain the normalized exper-
imental values, for the (d,3 He) reactions (second and third
columns) and normalized to the same summed strength (num-
ber of p-shell protons in 9Be) for the (t, α) reaction (fourth
column). The values for one of the other interactions used
in hypernuclear calculations are listed in the fifth column
and the values from the Cohen and Kurath (6-16)2BME and
the (8-16)2BME interactions [17] in the sixth and seventh
columns.

Jπ
i [15] [16] [18] fit4 (6-16) (8-16)

2+1 1.00 1.03 0.78 1.00 1.00 0.95

1+1 0.42 0.39 0.47 0.45 0.40 0.20

3+1 0.33 0.30 0.51 0.36 0.35 0.33

1+2 0.04 0.06 0.24

nuclear studies are similar and in agreement with those
for the Cohen and Kurath (6-16)2BME interaction [19].
The values for the other two Cohen and Kurath inter-
actions put more strength in the second 1+ state than
in the first (as noted in Ref. [19] for the (8-16)POT in-
teraction). The reason for this is that the 1+1 states are
rather purely L = 1, S = 1, rather than with strongly
mixed S = 0 and S = 1 components, as happens for the
other interactions. Strength for the 1+2 state would be
immediately noticeable in electroproduction because the
9
ΛLi states based on the 1+2 state lie close to the neutron
threshold at 3.73 MeV and should therefore be narrow.

The states in the first-excited doublet are predicted to
be nearly degenerate, in part because of the contribu-
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tions from Λ-Σ coupling (see Table I). In addition, the
3/2+2 state contains a 3.5% admixture of a Λ coupled to
the 8Li ground state which lowers the 3/2+2 state by an-
other ≈ 35 keV. Thus, if the shell-model predictions are
reasonable, five peaks should, in principle, be resolved in
9
ΛLi below the particle-decay threshold by an electropro-
duction experiment with good energy resolution.

III. EXPERIMENT

Hall A at JLab is well suited to perform (e, e′K+) ex-
periments. Scattered electrons are detected in the High
Resolution Spectrometer (HRS) electron arm while coin-
cident kaons are detected in the HRS hadron arm [20].
The disadvantage of smaller electromagnetic cross sec-
tions is compensated for by the high current and high
duty cycle properties of the beam. Throughout the ex-
periment, the same equipment has been used in very sim-
ilar kinematical conditions on C, Be, and H2O targets.
The use of a pair of septum magnets permitted particle
detection at very forward angles [21] and a Ring Imag-
ing CHerenkov (RICH) detector [22–25] has been used
in the hadron arm to provide an unambiguous identifi-
cation of kaons when combined with the standard parti-
cle identification apparatus of Hall A, based on aerogel
Cherenkov detectors [26–28]. In the present experiment
a 92.5 mg/cm2 solid 9Be target with a beam current of
∼100 µA was used at a beam energy of 3775 MeV. Both
HRSs were physically positioned at an angle of 12.5◦, but
the pair of septum magnets yielded an effective angle for
both the scattered electron and the hadron detection of
∼ 6◦.
Fig. 2 shows the observed binding-energy spectrum of

9
ΛLi. The broad peak centered at a small positive bind-
ing energy corresponds to the 9

ΛLi states in Fig. 1 cor-
responding to the lowest three states of 8Li. The rise
in cross section starting at 0 MeV corresponds to states
with the Λ in a p orbit and, because these states are
unbound, the states are broad and no structure is ob-
served. As in Ref. [4, 5], the background was determined
from the binding energy spectrum obtained with a coin-
cidence time shifted with respect to the coincidence time
between secondary electrons and produced kaons and was
rather flat for values of binding energy ranging from 15
MeV to 0 MeV. Its value was calculated as the average
of the counts in the range 9.95 MeV ≤ Binding energy ≤
18.35 MeV.
For the calculation of the absolute cross section, we

computed the following quantities: detector efficiencies,
detector dead time, detector phase space, kaon survival in
HRS, integrated luminosity. The calculation of efficien-
cies for the standard HRS package are well established
and implemented in the Hall A analysis software. There-
fore, those procedures were used for that purpose. For
the RICH and aerogel Cherenkov detectors, we used one
detector to determine the efficiency of the other one in
the following way: we selected a pure sample of kaons

by means of aerogel detectors and we measured the frac-
tion of those kaons detected by the RICH and vice versa.
The detector dead time was measured by the Hall A data
acquisition system. The detector phase space was calcu-
lated using the SIMC code [29]. Kaon survival is calcu-
lated considering the average path length inside the HRS
arm. The integrated luminosity was calculated by means
of beam current monitor devices. Then, the absolute
cross section σ was computed according to

σ =
Counts

Ksur ·Eff · Luminosity · PhaseSpace · Livetime
,

(3)
where Counts is the event number in the experiment,
Eff is the global detector efficiency, Livetime is 1-
detector dead time, PhaseSpace is the detector phase
space, Ksur is the kaon survival in the HRS, and
Luminosity is the integrated luminosity.
Fig. 3 shows the background-subtracted experimen-

tal binding-energy spectrum, together with Monte Carlo
simulations[29] (red curve) and the same simulations with
the radiative effects turned off (blue curve). The error
bars in the data are statistical. The simulations used the
five peak positions and widths listed as configuration α
in Table IV. The red curve fits the experimental data
well with a corresponding χ2/ndf value of 36.69/35. Sev-
eral other peak configurations, with different numbers,
heights, positions and widths of the peaks, have been
found to reproduce the red curve. All of those are also
expected to generate the same spectrum (the blue curve
of Fig. 3) when radiative corrections are turned off, since
radiative corrections are independent of the assumptions
regarding the number and type of the peaks that build
up the experimental spectrum. In practice, the simulated
data do not overlap perfectly with the experimental data,
which produces small systematic errors on the radiatively
corrected spectrum.
The unfolding for radiative corrections has been done

bin-by-bin. The content of each bin of the radiatively
corrected spectrum was obtained by multiplying the cor-
responding bin of the experimental spectrum by the ratio
of the blue and red curves of Fig. 3 for that bin. In order
to avoid possible removals of background enhancements
or to artificially null the spectrum in the regions where
the blue curve is zero, the ratio between the blue and
red curves of Fig. 3 was performed after summing the
background to each of them. The background value was
then subtracted from the result of the product of the
ratio with the corresponding bin. The result is shown
in Fig. 4 which presents the radiatively unfolded exper-
imental data (points with statistical errors) compared
to a theoretical prediction (thin green line). The band
at the bottom of the histogram represents the system-
atic errors in the radiative unfolding. The theoretical
histogram was obtained using the procedure described
in section II assuming an energy resolution of 730 keV
(FWHM). Once radiative corrections have been applied,
the binding-energy spectrum resolution is small enough
to clearly show a three-peak structure in the spectrum.
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FIG. 2. The binding-energy spectrum obtained after kaon selection with aerogel detectors and RICH in (a) the whole energy
range and (b) restricted to the region of interest.
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FIG. 3. (Color online) The 9
ΛLi differential cross section as

a function of the binding energy. Experimental points vs.
Monte Carlo results (red curve) and vs. Monte Carlo results
with radiative effects turned off (blue histogram).

A more detailed description of the procedure employed
to determine the radiatively unfolded spectrum of Fig. 4
is given in Appendix A.

IV. RESULTS

When analyzing the experimental spectrum in Fig. 4
one has to consider that, as explained in section II, the
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FIG. 4. (Color online) The radiatively unfolded experimental
spectrum compared to a theoretical prediction (thin green
line). The solid black line represents a fit to the data with
four Gaussians of a common width. The theoretical curve was
calculated with the width extracted from the fit (FWHM =
730 keV).

spectrum is made up by doublets and hence that each of
the three peaks that appears in it is actually produced by
the convolution of two “elementary” peaks. Because the
peaks of the spectrum are radiatively corrected, we as-
sumed that all the elementary peaks were well described
by Gaussian distributions. Considering the energy res-
olution to be constant over the whole spectrum range,
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TABLE III. Excitation energies, widths, and cross sections obtained by fitting the 9Be(e, e′K+)9ΛLi spectrum (first three
columns), compared with theoretical predictions (last four columns). The last column gives the summed cross sections for the
three doublets, to be compared with the experimental results in the third column.

Experimental data Theoretical predictions
Ex Width (FWHM) Cross section Ex Jπ Cross section Cross section

(MeV) (MeV) (nb/(sr2 GeV)) (MeV) (nb/(sr2 GeV)) Sum
0.00 ± 0.08 0.73 ± 0.06 0.59 ± 0.15 0.00 3/2+ 0.18 1.22
0.57 ± 0.12 0.73 ± 0.06 0.83 ± 0.13 0.59 5/2+ 1.04

1.47 ± 0.09 0.73 ± 0.06 0.79 ± 0.07 1.43 3/2+ 0.29 0.59
1.45 1/2+ 0.30

2.27 ± 0.09 0.73 ± 0.06 0.54 ± 0.06 2.27 5/2+ 0.17 0.48
2.74 7/2+ 0.31

we assumed in addition that the standard deviations of
these Gaussians were equal. Although six Gaussian el-
ementary peaks are expected, the possible existence of
nearly degenerate doublets, or of doublets where one
peak overwhelmingly dominates on the other, could re-
duce the number of elementary Gaussian peaks needed
for the fit procedure following the Occam razor principle.
The experimental spectrum in Fig. 4 was fitted in order
to determine the positions, the heights, and the common
standard deviation of the elementary peaks. The best
fit was obtained with four Gaussian elementary peaks
with a χ2/n.d.f. value of 41.82/41. The energy resolu-
tion extracted from the fit, 730 keV (FWHM), is con-
sistent with the value obtained in our previous analysis
[30] and is in agreement with the measurements on 12

ΛB
[4] and 16

ΛN [5]. The excitation energies (Ex) and cross
sections extracted from the four-peak fit are reported in
Table III where they are compared with the results cal-
culated using the procedure described in section II for
the six lowest states shown in Fig. 1. A fit with five
Gaussian peaks produced the same result as shown in
Table III with a χ2/ndf value of 41.82/39 and a common
FWHM for the peaks of 730 keV. The first three peaks
had the same heights and positions of the corresponding
peaks in Table III while the fourth and fifth peaks had
equal positions, coincident with the binding energy of the
fourth peak in Table III and heights whose sum was equal
to the cross section value of the fourth peak in Table III.
The result of the five-peak fit showed hence that only the
ground-state doublet splitting could be detectable with
the energy resolution of the experiment. A fit with three
peaks also produced a result consistent with Table III,
with a χ2/ndf value of 47.52/43 and a common peak
resolution extracted from the fit of 970 keV (FWHM).
The first peak’s strength and position were equal (within
one standard deviation) to the sum of the strengths and
to the baricenter of the positions in the binding-energy
spectrum of the first two states of Table III respectively.
The other two peaks had strengths and positions equal
(within one standard deviation) to the third and fourth

peaks in Table III respectively. Fig. 4 and Table III
show that the observed peak positions agree quite well
with the predictions of the standard model for p-shell
hypernuclei. The first multiplet can be decomposed into
two peaks with a separation of 570 ± 120 keV that cor-
responds very well with the theoretical value of 590 keV.
On the other hand, there is a systematic disagreement
for the multiplet cross sections. In the first multiplet the
0.59 MeV (5/2+) peak does not dominate as theoretically
predicted (see Table III). The second and third multi-
plets are each observed as a single peak. This is probably
due to the very close excitation energies of their two con-
stituents (see Table III), although for the third multiplet
it might be due to the fact that the strength of the 2.27
MeV (5/2+) peak dominates over that of the other state.

In terms of the cross section, the spin-spin interaction
(∆) tends to deplete the spin-flip strength to the ground-
state doublet and increase the non-spin-flip strength (see
Fig. 1). The full reaction calculations include a number of
spin-flip and non-spin-flip amplitudes, making the cross
sections sensitive to the choice of the elementary reaction
model. The SLA model was selected from the various iso-
bar models because it gives the best results for the cross
section. Spin-flip amplitudes are dominant in the SLA
model which favors states in Fig. 1 with large ∆S = 1
structure amplitudes. It is then clear that a model with
larger non-spin-flip amplitudes might increase the rela-
tive cross sections for the 3/2+1 and 5/2+2 states and pro-
vide better agreement with the results of the experimen-
tal analysis. The cross section depends very much on
the proton removal spectroscopic factors for 9Be but, as
is evident from Table II, theory agrees very well with
the relative C2S values derived from the analysis of two
(d,3 He) studies, a reaction that has proven to be very
reliable for such a comparison.

From the binding-energy spectrum of Fig. 4, a Λ sepa-
ration energy BΛ of 8.36 ± 0.08 (stat.) ± 0.08 (syst.)
MeV was obtained. This value agrees very well with
the value 8.50 ± 0.12 MeV from emulsion data [33]. To
determine this value the missing-mass scale needed to



7

be calibrated because of uncertainties in the kinemat-
ical variables such as the primary electron energy and
the central momenta and the central scattering angles of
the scattered electrons and the produced kaons. For this
calibration we took advantage of the fact that the ex-
periment was performed just after the determination of
the 12

ΛB excitation spectrum [4] that used the same ex-
perimental settings. Thus, the kinematical variables of
the present experiment were determined, reproducing the
binding energy of the 12

ΛB ground state at 11.37 ± 0.06
MeV [33]. A more detailed description of this missing-
mass scale calibration is given in Appendix B.

V. SUMMARY

A high-quality 9
ΛLi hypernuclear spectrum has been ob-

tained for the first time with sub-MeV energy resolution.
The measured cross sections and the excitation energies
of the doublets are in a good agreement with the values
predicted using the SLA model and simple shell-model
wave functions while a disagreement could exist with re-
spect to the relative strengths of the states making up the
first multiplet. As noted in the Sec. IV, an elementary
model for the (e, e′K+) reaction with a different balance
of spin-flip and non-spin-flip amplitudes might help to
resolve this disagreement. A Λ separation energy BΛ of
8.36 ± 0.08 (stat.) ± 0.08 (syst.) MeV was obtained, in
good agreement with the emulsion value.

Appendix A: Radiative corrections

The procedure of unfolding radiative effects from an
experimental spectrum does not depend on the choice of
the peak structure used to fit the spectrum itself, provid-
ing that the fit describes the data reasonably. This prop-
erty is very useful when the peak structure underlying an
experimental spectrum is unknown as in Fig. 3, where
several peak structures fit the experimental spectrum
quite well and it is not obvious which of these structures
is “the right one”. To demonstrate the independence
of radiative corrections from the energy spectrum struc-
ture, we define Exp(E) as the function that describes the
experimental spectrum. Exp(E) · dE is proportional to
the number of events whose corresponding energy is in
the interval E ± dE. We define S(E′) as the function
that describes the experimental spectrum in the absence
of radiative effects. Lastly, we define R(E′ − E) as the
probability that an event whose corresponding energy in
the absence of radiative effects would have been E′ has,
because of the radiative effects, an energy equal to E.
Exp(E), S(E′) and R(E − E′) are related by

Exp(E) · dE = dE ·

∫

dE′ · R(E′ − E) · S(E′) (A1)

For the sake of simplicity, we suppose in the following
that S(E′) is equal to a sum of Gaussian peaks

S(E′) =

N
∑

k=1

Ak · e
−

(E′
−Ek)2

2·σ2
k , (A2)

where Ak, Ek and σk are the amplitude, central value
and standard deviation of the kth peak, respectively.
Let us assume two different peak configurations α and

β, with N and M peaks, respectively, that produce two
functions Sα(E′) and Sβ(E′) that are equal within the
statistical error

Sα(E′) =
N
∑

k=1

Ake
−

(E′
−Ek)2

2·σ2
k ≈

M
∑

l=1

Ale
−

(E′
−El)

2

2·σ2
l = Sβ(E′)

(A3)
This implies that for every value of E′, Sα(E′) and
Sβ(E′) have statistically compatible values and the χ2

test

χ2 =
∑

j

(Sα
j − Sβ

j )
2

Sα
j

, (A4)

with

Sα,β
j =

∫ E′

j

E′

j−1

dE′ · Sα,β(E′) , (A5)

is acceptable within our confidence level. In Eq. (A5),
[Ej−1;Ej] is the jth interval that the energy spectrum is
divided into.
It is obvious from Eq. (A1) that if Sα(E′) = Sβ(E′) the

two peak configurations α and β will produce the same
experimental spectrum, that is Expα(E) = Expβ(E).
The reverse is also true: if two peak configurations

α and β produce two statistically compatible spectra
(Expα(E) = Expβ(E)) then Sα(E′) = Sβ(E′). In fact,
defining

Expi =

∫ Ei

Ei−1

dE · Exp(E) , (A6)

and

Rij =

∫ Ei

Ei−1

dE ·R(E′ − E) , (E′ ∈ [E′

j−1;E
′

j ]) (A7)

we have from Eq. (A1)

∫ Ei

Ei−1

dE ·Exp(E) =

∫

dE′ · S(E′)

∫ Ei

Ei−1

dE · R(E′ − E)

(A8)
Eq. (A8) means that

Expi =
∑

j

Rij · Sj (A9)



8

Excitation Energy (MeV)
0 2 4 6 8 10 12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

FIG. 5. (Color online) One peak of the excitation energy
spectrum of the hypernucleus 9

ΛLi obtained through the reac-
tion 9Be(e, e′K+)9ΛLi as predicted by the Monte Carlo SIMC
when including all effects (red curve) and “turning off” the
radiative effects (blue curve). Arbitrary units. The position
of the peak has been made coincident with the ground state.

or, defining the arrays
−−→
Exp ≡ {Exp1, Exp2, ...Expi, ...}

and
−→
S ≡ {S1, S2, ...Sj , ...}, and the matrix R ≡

{R11, R12, ..., Rij , ...}

−−→
Exp = R ·

−→
S (A10)

Defining at last R−1 as the inverse of the matrix R, we
have

−→
S = R−1 ·

−−→
Exp (A11)

From Eq. (A11) it follows that if Expα(E) = Expβ(E)
then Sα(E′) = Sβ(E′). In fact,

Expα = Expβ ⇒ 0 = R−1 · (
−−−→
Expα −

−−−→
Expβ)

=
−→
Sα −

−→
Sβ ⇒ Sα = Sβ (A12)

means that the spectrum with the radiative effects sub-
tracted (S(E′)) does not depend on the peak configura-
tions α, β, · · · as long as all the configurations considered
Expα, Expβ , · · · fit the experimental spectrum with no
radiative effects applied. It has to be noted that only
two assumptions were made in deriving the conclusion
quoted above

• the single intervals [Ej−1;Ej ] are so small that Rij

defined by Eq. (A7) is constant in it.

• The matrix R is invertible. This is usually the case
considering that usually Rii 6= 0 and Rji = 0 if
Rij 6= 0 and i 6= j

TABLE IV. Columns 2 and 3: peak positions and relative
amplitudes of five configurations α, β, γ, δ and ǫ for which the
Monte Carlo SIMC predicts a 9

ΛLi excitation energy spectrum
that fits the experimental data. Column 4: the χ2 test values
calculated through Eq. (A13) for these configurations.

Configuration Peak Positions Peak Amplitudes χ2

MeV Arbitrary units 35 ndf
0.00 2.23
0.64 3.54

α 1.32 1.90 36.685
1.71 2.61
2.35 2.33

0.00 2.08
0.58 3.48

β 1.54 3.38 38.247
2.37 2.10

0.00 2.34
0.54 3.88

γ 1.49 3.78 46.088
2.36 3.28

0.00 1.86
0.54 3.08

δ 1.49 3.00 39.068
2.36 2.06

0.00 1.85
0.65 3.09

ǫ 1.43 3.00 39.000
2.39 2.06

To determine the spectrum with the radiative effects
“turned off” (blue curve of Fig. 3) the Monte Carlo SIMC
was employed [29]. The red curve of Fig. 5 shows a single
peak of the 9

ΛLi excitation energy spectrum as predicted
by SIMC for the reaction 9Be(e, e′K+)9ΛLi when using
the E94-107 experimental apparatus (position and am-
plitude of the peak are arbitrary). The blue curve of
Fig. 5 shows the same peak when the radiative effects in
the Monte Carlo SIMC are “turned off”. Several peak
configurations, made up by a number of peaks like the
one of Fig. 5 red curve, fit the experimental 9ΛLi excitation
energy spectrum after being normalized to it. Table IV
quotes five of them. Their corresponding excitation en-
ergy spectra (normalized to the experimental data) are
shown in Fig 6. For each configuration, Table IV quotes
the position and relative amplitude of the peaks (here
and in the following the amplitude of a peak is defined as
the integral of the peak over the whole energy spectrum)
and the value of the χ2 test,

χ2 =
∑

i

(Cconf
i − Expi)

2

Expi
, (A13)

where conf = α, β, γ, δ, or ǫ, Expi is the number of
counts in the ith interval of the experimental excitation

energy spectrum, and Cconf
i is the number of counts in

the same interval as predicted by the normalized peak



9

Excitation Energy (MeV)
-1 0 1 2 3 4 5

 G
e

V
 M

e
V

)]
2

C
ro

s
s
 S

e
c
ti
o

n
 [

n
b

/(
s
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 (a)

Excitation Energy (MeV)
-1 0 1 2 3 4 5

 G
e

V
 M

e
V

)]
2

C
ro

s
s
 S

e
c
ti
o

n
 [

n
b

/(
s
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 (b)

Excitation Energy (MeV)
-1 0 1 2 3 4 5

 G
e

V
 M

e
V

)]
2

C
ro

s
s
 S

e
c
ti
o

n
 [

n
b

/(
s
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(c)

Excitation Energy (MeV)
-1 0 1 2 3 4 5

 G
e

V
 M

e
V

)]
2

C
ro

s
s
 S

e
c
ti
o

n
 [

n
b

/(
s
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 (d)

Excitation Energy (MeV)
-1 0 1 2 3 4 5

 G
e

V
 M

e
V

)]
2

C
ro

s
s
 S

e
c
ti
o

n
 [

n
b

/(
s
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 (e)

FIG. 6. 9
ΛLi excitation energy spectra as predicted by the Monte Carlo SIMC for the peak configurations α, β, γ, δ and ǫ

quoted in Table IV (Panels (a), (b), (c), (d) and (e), respectively).

configuration conf . The χ2 tests were performed in the
interval -1.515 MeV < Excitation Energy < 3.735 MeV,
corresponding to 35 degrees of freedom.
Because of the properties of the subtraction of radia-

tive effects from spectra quoted above, all the peak con-
figurations α, β, γ, δ, and ǫ produce the same “radiatively
corrected” spectrum. The spectra of Fig. 7 are obtained
from Fig. 6 by turning off the radiative effects, that is
replacing the “Fig. 5 red curve-like” peaks with “Fig. 5
blue curve-like” peaks, without changing positions and
amplitudes of the peaks. All plots of Fig. 7 are quite
equal, as confirmed by the χ2 test,

χ2 =
∑

i

(Cconf1
i − Cconf2

i )2

Cconf1
i

, (A14)

with conf1 and conf2 = α, β, γ, δ, or ǫ. In the worst case
(conf1 = α and conf2 = γ) Eq. (A14) yielded a value of
28.387 with 40 degrees of freedom.
In Fig. 8(a), Fig. 7(a) (dashed line) and Fig. 7(c) (con-

tinuous line) are shown together. Because the configura-
tions α and γ produce the two most different “radiatively
corrected” SIMC results, the difference between the two
curves plotted in Fig. 8(a) was chosen as the systematic

error due to the ambiguity of the peak structure under-
lying the energy spectrum. As shown in Fig. 8(b) this
error is small compared to the statistical error.

The method to obtain radiative corrected spectra de-
scribed in this Appendix was used, in the analysis of
the 9

ΛLi spectrum, because of the difficulties in estab-
lishing the peak structure underlying the experimental
spectrum. It is relatively new and it could be worth-
while hence to make some considerations about its reli-
ability. The method relies on Eq. (A11) that is math-
ematically correct. The uncertainties on the radiative

corrected spectrum
−→
S derived by Eq. (A11) originate ob-

viously from the uncertainties on the experimental spec-

trum
−−→
Exp and on the function R−1 (”detector function”

in the following) that provides
−→
S once

−−→
Exp has been

measured. If
−−→
Exp and R−1 were exempt from errors

−→
S

would be ”perfect”. To understand the effects on the
reconstructed radiative spectrum of the uncertainties on
the measured spectrum and on the detector function it
could be worthwhile to look at the results of the method
to derive a neutron energy spectrum from the proton re-
coil energy measurement (see for example [31, 32]). This
method consists in determining a neutron energy spec-
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FIG. 7. 9
ΛLi excitation energy spectra as predicted by the Monte Carlo SIMC for the peak configurations α, β, γ, δ and ǫ

quoted in Table IV, when the radiative effects are “turned off” (Panels (a), (b), (c), (d) and (e), respectively).
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Monte Carlo SIMC when the radiative effects are “turned off”. (b) the statistical errors (error bars) and the systematic errors
(full band) as a function of the excitation energy. The systematic error was defined as the difference between the dashed line
and the continuous line of panel (a), see text for details.
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trum measuring the energies of the protons generated
by scatterings of the neutrons in a radiator and is for-
mally similar to the one described in this Appendix to
derive radiative corrected spectra from the experimen-
tal ones. Formally, the connection between the neutron
energy spectrum and the proton recoil energy spectrum
can be expressed by a formula like Eq. (1) quoted in Ref.
[31] that can be concisely expressed as:

F (En)dEn = D−1 · Y (Ep)dEp. (A15)

Here F (En)dEn is the number of neutrons in the neu-
tron spectrum with an energy included in the interval
En − dEn < En < En + dEn, Y (Ep)dEp is the number
of protons in the experimental spectrum with an energy
Ep − dEp < Ep < Ep + dEp, and D−1 is the ”detec-

tor function”. Defining
−→
N and

−→
P the arrays whose el-

ements are F (En)dEn and Y (Ep)dEp respectively (En

and EP covering the whole neutron and proton spectra),
Eq. (A15) transforms into:

−→
N = D−1 ·

−→
P . (A16)

Eq. (A16) is formally equivalent to Eq. (A11) (in Eq.
(A16) D−1 is a diagonal matrix).

However, in Eq. (A16) the knowledge on
−→
P is (some-

times greatly) affected by the uncertainties on the mea-
sured recoil proton energy. These uncertainties mean
that the determination of the number of protons YpdEp

whose real energy is included in the ith interval of the

proton energy spectrum
−→
P and hence the proton energy

spectrum itself are affected by (sometimes not negligi-
ble) uncertainties too. Several factors affect the proton
energy measurement: detector calibration, background
subtraction, and, above all, proton energy losses in the
detector elements (including their entrance windows) and
in the air between them. To correct for proton energy
losses, the proton energies are shifted by the estimated
average energy loss over possible proton paths, or, some-
times, in low energy regions, by unfolding techniques.
The proton energy losses set usually the low limit of the
reconstructed neutron energy spectrum. The detector
function D−1 in Eq. (A16) is affected by uncertainties
too. It includes the detector efficiency that depends on
the geometry (and on the connected problem of the de-
termination of the scattering angle of the detected pro-
ton) and on the differential n - p scattering cross section
which are both sources of systematic errors. The differ-
ential n - p scattering cross section is often obtained by
parameterizations. Despite these problems, the method
to derive a neutron energy spectrum from the proton re-
coil energy measurement provides usually satisfactorily
results. In Ref [31], the method was applied to deter-
mine the spectra of nearly monoenergetic neutrons form
the reaction 7Li(p,n)7Be measured for eight incident pro-
ton energies. The situation was here complicated by the

fact that, together with the neutrons generated in the re-
action under study, which corresponded to a well-defined
peak in the neutron energy spectrum, the experiment
detected neutrons by other reactions, as the three-body
breakup process 7Li(p,n3He)α, that generated a long tail
in the low energy region of the neutron energy spectrum.
Despite that, the reproduction of the peaks of the eight
neutron energy spectra was excellent, while the neutron
counts in the tails of these spectra was somehow big-
ger than the corresponding parts of the spectra obtained
with a Time Of Flight (TOF) detector for three of the
eight incident proton energies. The authors decided to
rely on the TOF detector results for the tails of these
three spectra because the TOF detector was free from
the problems concerning the effects of the proton energy
loss by reactions in the detectors and becuase it extended
to lower energies than the method based on the proton
recoil energy measurement. In Ref. [32] the situation
was improved with respect to Ref. [31] because the de-
tector function D−1 was simply equal, for all the proton
energies, to 1

cos2(θ) , with θ, the proton scattering angle,

measured by two silicon strip detectors for the most ener-
getic protons and, less precisely, through the coordinates
of the conversion point of the neutron inside the con-
verter and the coordinates of the silicon detector closer
to the converter for the protons whose energies were not
big enough to make them reach the other silicon strip
detector. The use of a segmented converter decreased
the uncertainties on the proton energies due to energy
losses inside the converter itself. As a consequence, the
minimum neutron energy detectable was lower than the
one of Ref. [31]. The double differential neutron yield
for the reaction 13C(d,n) at 40 MeV was obtained this
way. The good successes obtained in determining neu-
tron spectra from the measurements of the proton recoil
energies and the understanding of the effects that could
make this method less effective ensure that we can rely
on the method described in this Appendix to obtain, in
the experiments performed at JLab, radiative corrected
spectra from experimental binding energy spectra of hy-
pernuclei. In fact, in these experiments, the hypernuclei
are generated in point-like targets and the experimental
binding energy spectra are obtained by the measurements
of the momenta and the scattering coordinates of the sec-
ondary electrons and of the produced kaons in the reac-
tion Z(e, e′K+)Z − 1. These momenta and scattering
coordinates are determined very precisely by magnetic
spectrometers (at the level of 10−4 for the momenta mea-
sured by HRS arms). The energy losses of the secondary
electrons and of the produced kaons inside the target
and along the path to the detectors are small. Moreover,
thanks to the excellent Particle Identification apparatus
employed, the experimental spectrum of the experiment
E94-107 was pratically background free, the only small
background coming from kaons from accidental coinci-

dences. The uncertanties on
−−→
Exp of Eq. (A11) are hence

much smaller than the uncertanties on
−→
P of Eq. (A16).

Besides, the uncertainties on the detector function R−1
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in Eq. (A11) are smaller than the uncertainties on the
corresponding function D−1 in Eq. (A16) because of the
simpler geometries involved, the smaller uncertainties on
the scattering angles of the detected particles and of the
QED cross sections involved in the function R−1 better
known than the neutron - proton cross sections involved
in the function D−1.

Appendix B: Missing-mass scale

In the Hall A experimental setup, scattered electrons
and produced kaons of the reactions 9Be(e, e′K+)9ΛLi
and 12C(e, e′K+)12ΛB were detected by the High Res-
olution Spectrometer (HRS) electron arm and by the
HRS hadron arm, respectively, while the primary elec-
trons were provided by the CEBAF accelerator. The
CEBAF accelerator electron beam energy and the cen-
tral momenta and angles of the HRS electron and hadron
arms were set according to the kinematics of the reactions
and are taken as constant for the course of the experi-
ment (their variations being of the order of 10−5 for the
CEBAF electron beam energy and the central momenta
of the HRS electron and hadron arms, and practically
zero for the spectrometer central angles). However, the
actual values of the CEBAF accelerator electron beam
energy and of the central momenta and angles of the
HRS electron and hadron arms, although constant, differ
by unknown amounts from the nominal set values, and
are referred to as “kinematical uncertainties”. Although
small (the experimental uncertainties on the CEBAF ac-
celerator electron beam energy and on the spectrometer
central momenta being of the order of 10−4 - 10−3 and
those on the spectrometer central angles of the order of
10−2), these kinematical uncertainties cause a global shift
in the binding-energy spectrum that hence has to be cal-
ibrated. In fact, the binding energy is expressed as

Ebind = −
√

(Em)2 − (Pm)2 +Mresidue +MΛ , (B1)

with

Em = MTarget + Ee − Ee′ − EK , (B2)

and

~Pm = ~Pe − ~Pe′ − ~PK , (B3)

where Ee, ~Pe, Ee′ , ~Pe′ , EK , and ~PK are the energies and
the momenta of the primary electron, of the scattered
electron and of the produced kaon respectively, MΛ is the
Λ mass, MTarget is the target mass, and Mresidue is the
mass of the residual nucleus, that is of the nucleus with
A-1 nucleons and Z-1 protons (where A is the number
of nucleons and Z is the atomic number of the target,
respectively).
The change in the binding-energy spectrum ∆Ebind

caused by the kinematical uncertainties can be expressed

by the formula

∆Ebind =
∂Ebind

∂Ee

·∆Ee +
∂Ebind

∂PE Arm

·∆PE Arm

+
∂Ebind

∂PH Arm

·∆PH Arm +
∂Ebind

∂φE Arm

·∆φE Arm

+
∂Ebind

∂φH Arm

·∆φH Arm , (B4)

where Ee is the CEBAF electron beam energy, PE Arm

and PH Arm are the central momenta of HRS electron
arm and HRS hadron arm, φE Arm and φH Arm are the
central angles (defined as the angles between the central
axes and the CEBAF beam line) of HRS electron arm
and HRS hadron arm, and ∆Ee, ∆PE Arm, ∆PH Arm,
∆φE Arm and ∆φH Arm are the kinematical uncertain-
ties, that is the differences between the nominal and the
actual values of the CEBAF electron beam energy and of
the central momenta and the central angles of HRS elec-

tron and HRS hadron arms. ~Pe, Ee′ , ~Pe′ , EK , and ~PK

in Eq. (B1) - (B3) are functions of Ee, PE Arm, PH Arm,

φE Arm and φH Arm, as well as (with the exception of ~Pe)
of the scattering variables. For example, the components

normal to the beam line in the horizontal plane of ~Pe′ and
~PK respectively (called here Pe′x

and PKx
, respectively)

are given by the expressions Pe′x
= PE Arm · (1 + δe′) ·

cos(θe′) · sin(φE Arm+φe′) and PKx
= PH Arm · (1+ δK) ·

cos(θK) ·sin(φH Arm+φK), while Ee′ = PE Arm ·(1+δe′ )

and EK =
√

(PH Arm · (1 + δK))2 +m2
k, where δe′ (δK)

is the percentage difference between the momentum of
the scattered electron (produced kaon) and the central
momentum of the HRS electron arm (HRS hadron arm),
φe′ (φK) is the angle between the electron (produced
kaon) direction in the horizontal plane, and φE Arm

(φH Arm), θe′ (θK) are the angles between the electron
(produced kaon) direction in the vertical plane and the
CEBAF beam line, and mK is the kaon mass.
Considering Eqs. (B1), (B2), and (B3), Eq. (B4) is

equal to

∆Ebind = (−∆Ee +∆PE Arm +∆PH Arm)

×
MTarget + Ee − Ee′ − EK

√

(MTarget + Ee − Ee′ − EK)2 − (~Pe − ~Pe′ − ~PK)2

+
f

2 ·
√

(MTarget + Ee − Ee′ − EK)2 − (~Pe − ~Pe′ − ~PK)2

(B5)

where

f =
∂(~Pm)2

∂Ee

·∆Ee +
∂(~Pm)2

∂PE Arm

·∆PE Arm

+
∂(~Pm)2

∂PH Arm

·∆PH Arm +
∂(~Pm)2

∂φE Arm

·∆φE Arm

+
∂(~Pm)2

∂φH Arm

·∆φH Arm (B6)
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For the kinematics of the experiment E94-107 (see the
nominal values of Ee, Ee′ , and EK at the end of this Ap-
pendix) or if MTarget ≫ Ee, Ee′ , EK , the change in the
binding-energy spectrum ∆Ebind caused by the kinemat-
ical uncertainties is

∆Ebind ∼ S + T , (B7)

where

S = −∆Ee +∆PE Arm +∆PH Arm , (B8)

and

T = M−1
Target ·

f

2
. (B9)

The term S does not depend on the target mass and
causes a global shift of the binding-energy spectrum
without changing the peak shapes and relative posi-
tions, while the term T is equal to zero only when
0=∆Ee=∆PE Arm=∆PH Arm=∆φE Arm=∆φH Arm.
When this condition is not fulfilled, the main effect of T
on the binding-energy spectrum is to broaden the peaks
because, in this case, depending on scattering variables

through ~Pm, it produces non-zero, scattering variable de-
pendent values of ∆Ebind and, as a consequence, an un-
physical dependence on the scattering variables of the
binding energy that broadens the peaks corresponding
to the bound states. Because of the presence of the co-
efficient M−1

Target, the effect of T on the position of the
peaks is negligibly small.
The actual values of Ee, PE Arm, PH Arm, φE Arm,

and φH Arm are hence those for which S=T =0 (which
places a peak at its known position in the binding energy
spectrum and minimizes its FWHM).
To determine the Λ binding energy of the hypernucleus

9
ΛLi produced in the reaction 9Be(e, e′K+)9ΛLi, we took
advantage of the fact that the experiment used the same
set-up employed for the study of the 12

ΛB hypernucleus.
The values of Ee, PE Arm, PH Arm, φE Arm, and φH Arm

were thus the same in the productions of both 9
ΛLi and

12
ΛB and were determined by positioning the 12

ΛB ground
state at its known position of 11.37 ± 0.06 MeV [33] in
the binding-energy spectrum and minimizing its FWHM.
When minimizing the 12

ΛB ground-state FWHM, it has to
be taken into account that this ground state is actually
a doublet whose energy splitting, assumed to be equal
to the 12

ΛC ground-state energy splitting, is 161.6 ± 0.2
keV [34, 35]. Minimizing the 12

ΛB ground-state FWHM
implies hence some sort of distortion because it artifi-
cially narrows the positions of the peaks making up the
doublet. However, the 12

ΛB ground-state doublet energy
splitting is small enough with respect to the energy res-
olution of the experiment to make the approximation of
assuming the 12

ΛB ground state as a single peak still valid.
No attempt to minimize the FWHM was performed on
the other peaks of the 12

ΛB binding-energy spectrum. An-
other possibile source of distortion comes from the term

T in Eq. (B7), which, although small because of the pres-
ence of the factor M−1

Target in it (see Eq. (B9)), can po-
tentially change the positions of the excited states with
respect to each other and with respect to the ground
state. During all the process of minimization of the kine-
matical uncertainties, the positions of the peaks of the
12
ΛB energy spectrum as resulted by a fitting procedure
were checked to ensure that the relative peak positions
did not change within the errors (the error of a position
peak being defined as the standard deviation resulting
by the fitting procedure). It has to be stressed that the
term S in the expression of ∆Ebind given by Eq. (B7)
dominates because of the presence of the factor M−1

Target

in the term T (see Eq. (B9)). The positioning of the
12
ΛB ground state at its known value in the binding spec-
trum was thus mainly performed choosing a set of values
∆Ee, ∆PE Arm, and ∆PH Arm that produced a value of
S equal to the difference between the measured and the
expected position of the 12

ΛB ground state. The mini-
mization of the 12

ΛB ground state peak FWHM produces
only second order effects on the position of the peaks in
the binding-energy spectrum and was peformed mainly
to choose the right set of values ∆Ee, ∆PE Arm, and
∆PH Arm among the ∞2 sets of values that produced
the desired value of S. Things are much different for the
reaction p(e, e′K+)Λ, where the target mass is small and
the minimization of the FWHM of the peak (which is a
single peak) plays a role as important as the positioning
of the peak in the binding-energy spectrum to its zero
value.

The procedure described above resulted in the set
of values Ee = 3775.38 MeV, PE Arm = 1573.63 MeV,
PH Arm = 1955.79 MeV, φE Arm = −5.940◦, and
φH Arm =6.050◦. Replacing with these values the nom-
inal ones Ee = 3774.96 MeV, PE Arm = 1570 MeV,
PH Arm =1960 MeV, φE Arm =−5.873◦, and φH Arm =
6.131◦) in the Ebind expression, a value of 8.36 ± 0.08
(stat.) MeV was obtained for the 9

ΛLi ground state.

The statistical error of ±0.08 MeV is the error in the
position of the first peak in the four-Gaussian fit of the
9
ΛLi binding-energy spectrum (see Fig. 4 and Table III).
When evaluating the systematic error of the 9

ΛLi bind-
ing energy, one has to consider that, as quoted above,
the term S in ∆Ebind dominates the effects of the term
T . When neglecting the energy loss in the target, this
means that if the single values of ∆Ee, ∆PE Arm, and
∆PH Arm were wrong, the 9

ΛLi binding energy would not
be affected significantly as long as the sum S (and hence
the position of the 12

ΛB ground state) is correctly repro-
duced. The major source of systematic error is hence due
to the energy loss in the target. The difference between
the shifts of the ground-state position in the 12

ΛB and
9
ΛLi binding-energy spectra due to the energy loss in the
targets of 12C and 9Be, respectively, was evaluated to be
equal to 50 keV through the use of the Monte Carlo code
SIMC [29]. This value was added in quadrature to the
error of 60 keV quoted for the 12

ΛB ground-state binding
energy [33] to give a 80 keV systematic error on the 9

ΛLi
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binding energy.
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