
Abstract

A high finesse Fabry-Perot cavity with a frequency doubled green laser (CW,

532 nm) have been built and installed in Hall A of Jefferson Lab for high precision

Compton polarimetry project in spring of 2010. It provides a high intensity circularly

polarized photon target for measuring the polarization of electron beam with energies

from 1.0 GeV to 11.0 GeV in a nondestructive manner. The IR beam (CW, 1064 nm)

from a Ytterbium doped fiber laser amplifier seeded by a Nd:YAG narrow linewidth

NPRO laser is frequency doubled in by a single-pass Periodically Poled Lithium Nio-

bate (PPMgLN) crystal. The maximum achieved green power at 5 W IR pump power

was 1.74 W with a total conversion efficiency of 34.8%. The frequency locking of this

green light to the cavity resonance frequency is achieved by giving a feedback to

Nd:YAG crystal via laser piezoelectric (PZT) actuator by Pound-Drever-Hall (PDH)

technique. The data shows the maximum amplification gain of our cavity is about

4,000 with a corresponding maximum intra-cavity power of 3.7 kW. The polariza-

tion transfer function has been measured in order to determine the intra-cavity laser

polarization within the measurement uncertainty of 0.7%. The PREx experiment at

JLab, used this system for the first time and achieved 1.0% precision in electron beam

polarization measurement at 1.0 GeV.
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Chapter 1

Introduction

Before the discovery of parity violation (parity non-conservation), it was widely ac-

cepted that the laws of physics describing a process were the same under spatial

inversion. At that time, the parity conservation in the electromagnetic and strong

interactions was confirmed by experimental data, but the parity conservation in the

weak interaction was not yet verified. In 1956, C. S. Wu [1] and collaborators reported

the parity violating weak interaction in their polarized 60Co beta-decay experiment.

The electroweak theory developed by Weinberg, Salam and Glashow unified the elec-

tromagnetic and weak interactions and predicted the existence of the charged bosons

(W±) and a neutral boson (Z0) in addition to the known neutral massless boson

(γ). The discovery of a parity violating asymmetry in inelastic electron scattering of

longitudinally polarized electrons off unpolarized deuterium was pivotal to confirm

Weinberg-Salam-Glashow’s electroweak model [2]. Since then, weak neutral current

interactions have become a useful tool for testing the structure of the Standard Model

and for probing the structure of the nucleon.

The physics program at JLab includes many experiments using a polarized electron

beam in the 1 ∼ 6.0 GeV energy range for currents up to ∼200 µA. A polarized

source produces a beam polarized up to 90%. Some experiments and in particular

the high precision parity violation experiments will need a fast and an accurate beam

polarization measurement and monitoring. These experiments will seek to extract

1
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the contribution of strange quarks to the charge density and magnetization of the

nucleon by measuring the parity violating asymmetry in elastic scattering:

APV =
(σR − σL)

(σR + σL)
, (1.1)

where σR(σL) is the cross section for incident electrons of right(left) helicity. When

the electron spin is parallel(antiparallel) to the beam direction, it is defined as the

right(left) helicity state. APV arises from the interference of the weak and electro-

magnetic amplitudes. The physics asymmetry Aphy is formed from Araw by correcting

for beam polarization, backgrounds, and finite acceptance:

Aphy =
K

Pb
Araw − Pb

∑
iAifi

1−
∑

i fi
, (1.2)

where Pb is the beam polarization, fi are background fractions and Ai the associated

background asymmetries, and K accounts for the range of kinematic acceptance.

Since this asymmetry is scaled by the beam polarization, therefore the beam polar-

ization must be carefully measured and monitored throughout the experiment. The

systematic error in the physics asymmetry due to the beam polarization is just the

fractional error in the beam polarization because the polarization contributes as a

scale factor to the asymmetry. For this reason, the systematic error due to polariza-

tion is one of the dominant errors in the asymmetry.

At JLab energies, the simplest way to measure the polarization is through Mott

and Møller Polarimeters. Unfortunately, both techniques are destructive, so that

measuring the polarization prevents running an experiment downstream of the beam

line. Furthermore, they can only be used at low current, and experiments requir-

ing high intensity have to assume that beam polarization is intensity independent.

Compton polarimetry offers an alternative to the above two techniques by providing

the opportunity to follow the variations of polarization of the electron beam during

the experiment. It is based on Compton scattering of circularly polarized photons off

electrons. Compton polarimetry, although it is more complicated, is a very attractive

technique, since it is minimally destructive to the electron beam so that the beam
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polarization can be measured simultaneously with the data acquisition and that can

be used at high current.

The Saclay and Clermont-Ferrand LPC was the first to design and construction

of Compton polarimeter in Hall A at JLab in the late 90s. Due to a special energy

(1 ∼ 6 GeV) and current range (100 nA ∼ 100 µA) of JLab electron beam, unlike

those storage rings and high energy accelerators such as SLAC [3], NIKHEF [4],

HERA [5], MIT Bates [6] and MAMI [7], it requires the use of high power density

as well as high energy photons which cannot be achieved by commercially available

lasers. The polarimeter Saclay and LPC built uses a high-finesse monolithic Fabry-

Perot optical cavity which amplifies a 300mW laser beam about 7,000 times of its

power coupled to the cavity [8]. The power density available at the center of the

cavity for interaction with the electron beam was then of the order of 800 kW/cm2.

The Compton chicane consists of 4 dipole magnets that bend the electron beam

pass through to the interaction region. The back scattered photons and electrons

are collected by a photon calorimeter [9] which composed of 5 × 5 array of PbWO5

crystals and a silicon micro-strip electron detector respectively.

However, this Polarimeter uses an infra-red (1064 nm, 1.16 eV) laser as its photon

source, which is not capable of giving a good signal to noise ratio at beam energies

below 2 GeV. To reach an accuracy of 1% in the polarization measurement, as required

by high-precision parity violation experiments like PREx [10] and Qweak [11], a green

laser (532 nm, 2.33 eV) with a Fabry-Perot cavity was proposed.

This thesis describes all the experimental techniques we used and developed to

meet the required specifications for building a green laser source and Fabry-Perot

cavity for an upgraded Compton polarimeter for Jefferson Lab’s experimental Hall

A.

Chapter 2 gives a general overview of the Lead Radius Experiment (PREx), which

tested the green Compton polarimeter for the first time, and polarized electron source

and its basic principle at TJNAF. It also describes general Hall A equipment, es-

pecially the beam position and current monitors, target, raster, High Resolution
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Spectrometer(HRS)s and polarimetry techniques used for measuring electron beam

polarization etc.

Chapter 3 presents the mechanism of Compton polarimeter, its components, the

data acquisition system and the working principle of them. The motivation for choos-

ing the photon source is discussed.

Chapter 4 explains the optical principle of building a green laser source via second

harmonic generation. A brief description of nonlinear optics, the frequency doubling

setup and results are presented in here.

Chapter 5 is dedicated to Fabry-Perot cavity. It includes the mechanical design

characteristics of the adjustable cavity. The principle of cavity response to an electro

magnetic wave, cavity feedback control, the performance of cavity during PREx ex-

periment that includes the cavity parameters and the optical coupling of laser light

to the cavity is discussed.

Chapter 6 studies the polarization of the laser light. It describes the modeling of an

optical cavity in Jones representations and determines the transfer function between

Compton Interaction Point(CIP) and the cavity exit. It summarizes the sources

of errors in the determination of the degree of circular polarization of light inside

the cavity and gives an estimate of birefringence in cavity mirrors. The Compton

spectrum, asymmetry and polarization measurements during PREx experiment will

be presented.

Chapter 7 summarizes our work and discusses the limitations of this system and

points to future direction for building a new laser system for a Compton polarimeter.



Chapter 2

Experimental Apparatus

2.1 Overview

The Lead Radius Experiment (PREx) [10] ran from March to June, 2010 in Hall A of

the Thomas Jefferson National Accelerator Facility (TJNAF) in Newport News, VA.

The goal of this experiment was to measure the RMS charge radius of the neutron in

1% precision in a model independent way as compared to the classic measurements

[12]. The experiment measures the parity violating asymmetry in elastic scattering

in equation(1.1). This asymmetry arises due to the interference of the Z0 boson

amplitude of the weak neutral interaction with the photon amplitude. The asymmetry

is sensitive mainly to the neutron radius Rn because the weak charge of the neutron is

much larger than that of the proton. In Plane Wave Impulse Approximation (PWIA),

the relationship between the asymmetry and the neutron form factor is:

ALR =
GFQ

2

4πα
√

2

[
1− 4 sin2 θW −

Fn(Q2)

Fp(Q2)

]
, (2.1)

where GF is the Fermi constant, α =
1

137
is the fine structure constant, θW is the

Weinberg angle, Fn(Q2) and Fp(Q
2) are the neutron and proton form factors of the

nucleus. The proton form factor is well known, so one can extract the neutron density

distribution from the neutron form factor from the measured asymmetry. Therefore,

the physics results of the experiment are the weak charge density, the point neutron

5
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density and Rn.

PREx ran at 1.063 GeV energy and a 50 scattering angle in Hall A using the two

high resolution spectrometer (HRS) system with a new warm-temperature septum

magnet which focus elastically scattered electrons onto quartz detectors in their focal

planes. A 50 µA, 85% polarized beam at 120 Hz helicity reversal rate scatters from

a foil of lead (208Pb). The PREx detectors measure the detector flux normalized to

beam current integrated in the helicity period and the parity violating asymmetry

is calculated by dividing the helicity-correlated difference over the sum as shown in

equation(1.1). Separate studies at lower current measure backgrounds, acceptance,

and Q2. Polarization measurements are done by Møller and Compton polarimeters.

2.2 TJNAF

The Thomas Jefferson National Accelerator Facility (TJNAF) is a medium energy

electron scattering laboratory designed to conduct research for understanding sub-

atomic particles such as quarks and gluons. The accelerator consists of an injector,

two linear accelerators (‘linacs’), and two recirculation (ARC) magnets (Figure 2.1).

In the injector, the electrons are polarized up to 90% with current up to 200 µA by

shining circularly polarized laser light on a strained superlattice GaAs photo-cathode.

An RF chopping system operating at 499 MHz is used to create a 3-beam 1497 MHz

bunch train at 100 keV. The beam is then longitudinally compressed in the bunch-

ing section to provide 2 ps bunches, which are then accelerated up to 67 MeV and

injected into north linac. Each linacs are composed of 20 RF cryomodules composed

of 8 superconducting 5-cell Nb cavities that further accelerate the electron up to 570

MeV with acceleration gradient of 15MV/m. More than 2000 quadrupole and dipole

magnets in two arcs provide the field which focuses and steers the beam as it passes

through each arc and keeps the beam on a precise orbit. The linacs have identical

gain which can be set from 400 to 600 MeV. Once the RF cavities tuned correctly,

after maximum 5 passes, the linacs can provide an energy from 0.8 GeV to maximum
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Figure 2.1 (color) TJNAF Accelerator Layout and Experimental Halls.

6.07 GeV. After passing through the south linac, the RF separator that operates at

499 MHz can be activated to extract every third beam bunch, sending one pulse to

one of the Halls (Hall A, B, C) so that each hall can run simultaneously at three

different currents and energies.

2.3 Hall A

At TJNAF, all three experimental halls located underground and shielded with thick

layers of concrete walls. Hall A is the largest in volume with a diameter of 174 ft and

height of 55 ft. Figure 2.2 shows a general Hall A configuration. The central elements

include the beamline, target in the scattering chamber and two High Resolution

Spectrometers (HRS).

2.3.1 Beam Monitors

Beam current monitors (BCMs) and beam position monitors (BPMs) are located

throughout the accelerator and the experimental halls. Selected monitors from the
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Figure 2.2 (color) General Hall A configuration.

injector region and the Hall A beamline are read out in the data stream. For parity

violation experiments, the beam monitors should be quiet and sensitive in order

to precisely measure the helicity-correlated beam differences which affect the raw

asymmetry measurement.

The BCMs of Hall A is designed for a stable, low-noise, non-interfering beam

current measurement [13]. They located ∼ 25 m upstream of the target. They

consist of an Unser monitor, two RF resonant cavities called “BCM1” and “BCM2”,

associated electronics and a data-acquisition system. The RF cavities are used to

measure the beam current during production running. The cavities are tuned to the

frequency of the accelerator such that they output a voltage signal proportional to

the beam current.

There are two BPMs, BPM4A and BPM4B, both of them are located ∼ 6 m and

∼ 1 m upstream of the target respectively, determine the helicity-correlated position



2.3 Hall A 9

and angle differences of the beam. Another BPM, called BPM12, located in the highly

dispersive region of Hall A bend used to measuring energy differences. For PREx,

the required beam position differences is ≤ 1± 0.1 nm.

Beam modulation, also referred to as “dithering”, is a technique used by the

experiment to measure the change in the detector flux for a known change in position

and energy on the target.

2.3.2 Target and Raster

The cryogenic target system is mounted inside the scattering chamber along with

sub-systems for cooling, gas handling, temperature and pressure monitoring, target

control and motion, and an attached calibration and solid target ladder. PREx used

208Pb as its main target. Improving the thermal properties of the target is necessary

since lead has a low melting temperature. A 0.5 mm foil of lead is sandwiched between

two 0.15 mm sheets of diamond, which is pure 12C [10]. This sandwich is clamped in

a spring loaded copper block assembly which is cooled by liquid helium. The copper

block has a hole to allow the beam to pass through; the beam only sees 208Pb and

12C. The extremely high thermal conductivity of diamond keeps the lead thermally

stable at high current.

Because of its small size, the beam spot can cause local damage to the target

at high beam currents. To minimize this, two simultaneous methods are used to

control beam heating of the target. Heat is quickly dissipated by using a flow of

helium transverse to the beam direction, and the heat is distributed by rastering

the electron beam to a diameter of a few mm. The raster consists of two pairs of

horizontal and vertical air-core dipoles located 23 m upstream of the target. The

raster is driven by certain waveforms, sinusoidal or triangular, such that the beam

is uniformly distributed over a rectangular area on the target. With rastered beam,

usually the density fluctuations from beam heating can be controlled at the ppm level.
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Figure 2.3 (color) Two High Resolution Spectrometers (HRS).

2.3.3 High Resolution Spectrometers (HRS)

The core of the Hall A equipment is a pair of identical spectrometers, each weighing

about 1000 tons. Their basic layout is shown in Figure 2.3. The vertically bending

design includes a pair of superconducting quadrupoles followed by a 6.6 m long dipole

magnet with focussing entrance and exit polefaces and including additional focussing

from a field gradient in the dipole. Following the dipole is a third superconducting

quadrupole. The second and third quadrupoles of each spectrometer are identical in

design and construction because they have similar field and size requirements. As

the electron beam is incident on the target, the right HRS serves as a electron arm

and the left HRS detects recoiled hadrons. The combination of quadrupoles and

dipole provides a momentum resolution of better than 2 × 10−4 and a horizontal

angular resolution of better than 2 mrad at a designed maximum central momentum

of 4GeV/c [13]. For PREx, the required spectrometer angular resolution is ±0.020.
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Due to large volume of HRSs, they can only be positioned at an angle larger than

12.5 degrees. To achieve the requested 5 degrees in PREx, two warm-temperature

septum magnets were installed to bend the scattered charged particles by additional

7.5 degrees.

There are other important Hall A components such as detectors, trigger electronics

and Data Acquisition System (DAQ) for successful running of an experiment, which

will not be discussed here.

Specific to PREx, its DAQ system is unique from the standard Hall A DAQ be-

cause it integrates and digitizes the signals from the detectors and beam monitors. To

obtain the necessary statistical precision and achieve the necessary electronic noise

requirement, the DAQ uses high resolution 18-bit ADCs (analog-to-digital convert-

ers). It is triggered at 120 Hz synchronized to the helicity signal. To achieve a narrow

pulse-pair width from the integrating detector for 1 GeV, new quartz detectors are

developed.

2.4 Electron Beam

Polarized electron sources have been developed since the early 70’s and the first

beam of high energy polarized electrons was delivered at SLAC in 1974 [14]. In this

paragraph, we describe the physical principle that allows the production of polarized

electron beam at the electron source of TJNAF.

2.4.1 Polarized Electron Source

The polarized electrons are generated by photoemission from a GaAs photocathode

while shined by circularly polarized laser light onto it. Photons incident on the

photocathode are absorbed in the crystal exciting electrons from the valence band

to the conduction band. Inverting the high voltage on the Pockels cell changes the

helicity of the circular polarization and thus the helicity of the electrons. The crystal
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is held at a bias voltage of -100 kV in order to pull the electrons from the conduction

band into the accelerator.

The wavelength of the circularly polarized laser light is tuned such that it matches

the energy gap between the energy levels. As long as the wavelength tuning is precise

enough such that it falls between Eg and Eg + ∆, angular momentum selection rules

will only allow the transitions shown in Figure 2.4. The electrons are released from

the cathode in a polarized state because of the properties of the crystal and laser

light incident on the cathode. The crystal structure of the cathode consists of a P 3
2

valence band and an S 1
2

conduction band. There are two types of cathodes have

been used in TJNAF injector which are described as the “strained-layer” cathode

and the “superlattice” cathode [15]. The strained-layer cathode has a 100 nm thick

layer of GaAs grown on a 250 µm thick layer of GaAsP. The superlattice cathode

is made up of alternating layers of GaAs and GaAsP only a few nanometers thick

grown on a 2.5 µm thick layer of GaAsP. One can get higher polarized (∼ 90%)

electrons with a higher quantum efficiency (∼ 1.0%) from a superlattice cathode

while the strained-layer cathode gives somewhat lower polarization (∼ 75%) and has

lower quantum efficiency (∼ 0.2%). Quantum efficiency is defined as the number of

electrons emitted from the cathode relative to the intensity of light incident on the

cathode. For PREx, a high-power Ti-Sapphire laser with wavelength of 781 nm was

used with a superlattice cathode. The intensity of the electron beam emitted by the

photocathode can be written as the function of quantum efficiency as [16],

Ie[mA] = P [W ] · λ(nm) ·QE(%) · 8.065× 10−3, (2.2)

where P is the laser power and λ is its wavelength. For example, with a laser of

λ = 781 nm,P = 25 mW and a quantum efficiency of 1.0%, we obtain a beam

intensity of 150 µA.

In strained-layer cathode, the lattice mismatch causes the strain which breaks

the four-fold degeneracy of the valence band found in “bulk” GaAs. Because of

the degeneracy breaking, it is theoretically possible for the cathode to produce a
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Figure 2.4 (color) A diagram of the bandgap and energy levels for strained
GaAs. The arrows indicate the allowed transitions for right and left helicity
photons.

100% polarized beam of electrons when illuminated with laser light of the proper

wavelength. Left-circularly polarized light excites electrons into the mj = −1

2
state

in the conduction band while right-circularly polarized light excites electrons into the

mj = +
1

2
state in the conduction band [22].

In order to have three experimental halls to operate simultaneously and indepen-

dently, the light from the three lasers needs to be combined into a single beam that

will then pass through the same location of the subsequent optical elements [16]. The

pulses of the three lasers are out of phase with each other and synchronized with

the frequency of accelerating cavities (1497 MHz). Using three independent pulsed

lasers each producing short light pulses with 499 MHz repetition frequency (1/3 of

the accelerating frequency) creates three bunch trains; the bunch trains are offset in

phase (by one 1497 MHz RF period or 1200) to form a single 1497 MHz bunch train.

The charge of every third bunch is the same; it can be varied by varying the intensity

of the corresponding laser.

The photo-cathode is kept in a vacuum chamber (< 10−11 Torr) and held at a

negative voltage so as to generate an initial acceleration of the ejected electron. It is

then injected into the north linac. The nature of this process means that the electron
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Figure 2.5 (color) One of the electron beam helicity patterns (octet) used
for PREx. There are three pairs of electron beam polarization in each cy-
cle. Each pair is composed of a polarization state +|Pe| and −|Pe| which
corresponds to a voltage +V and −V applied to the Pockels cell respectively.

beam will be polarized when leaving the injector site. The electron gun is situated at

an angle of 150 with respect to the accelerator beamline. A solenoid is used to bend

the electrons into the accelerator. Since the electron beam is “steered” along its way

to the Halls by magnetic fields, the spins of the electrons precess according to the

beam’s energy, Eb, and bend angle θbend [22]:

Se =
(g − 2)

2me

· Eb · θbend, (2.3)

where g and me are the g - factor and mass of the electron, respectively. A Wien

filter is used to compensate the beam’s precession by setting the polarization angle

of the electrons as they enter the accelerator. The angle is set such that the electron

is longitudinally polarized in the experimental hall. A Wien filter is a static electro-

magnetic device. It consists of crossed electric and magnetic fields transverse to the

particle motion. The usefulness of a Wien filter is that the polarization of a beam

passing through the device can be rotated without deflecting the outgoing central

orbit. The beam polarization measured in the Hall is a function of the Wien angle

and for PREx a double Wein filter was used.

The electron beam at JLab has about 90% polarization, and it can also be flipped



2.4 Electron Beam 15

to reduce systematic effects. For PREx, the polarity of the HV on Pockels cell is

switched at a rate of 120 Hz to reverse the helicity of the outgoing laser light. The

corresponding helicity schematic is shown in Figure 2.5. There is also an insertable

half-wave plate (IHWP) just upstream of the Pockels cell which provides a slow

reversal of the laser beam helicity; and therefore, a reversal of the electron beam

helicity. If a half-wave plate is inserted into the system before the light reaches the

cathode, the laser will be left-circularly polarized. The exiting electrons would then

have the opposite polarization.

2.4.2 Polarized Electron Beam

The polarization of a beam of particles is an important concept to understand as we

talk about the polarimeter.

Spin of a Particle

In classical mechanics, a rigid object has two kinds of angular momentum: orbital

(~L = ~r × ~P ), associated with the motion of the center of mass, and spin (~S = I~ω),

associated with motion about the center of mass [17]. In quantum mechanics, the

electron carries another form of angular momentum, which has nothing to do with

motion in space, but which is somewhat analogous to classical spin. Like the other

elementary particles, it carries an “intrinsic” angular momentum, which is called spin

(~S), in addition to its “extrinsic” angular momentum (~L) [18].

The concept of spin was first introduced by W. Pauli in 1927. When P. Dirac

proposed his relativistic quantum mechanics in 1928, electron spin was an essential

part of it. In quantum mechanics, it is represented by an operator ŝ. In Cartesian

coordinate frame, we can decompose this operator into three components ŝx, ŝy and

ŝz which describe the spin value measured respectively in the x̂, ŷ and ẑ. These

components are such that:

ŝ2 = ŝx
2 + ŝy

2 + ŝz
2, (2.4)
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which satisfies the following commutation rule,

[ŝx, ŝy] = iŝz, [ŝy, ŝz] = iŝx, [ŝz, ŝx] = iŝy, (2.5)

These non-commuting relationships tell us that two components of intrinsic angular

momentum can be measured simultaneously. The operator ŝ2 commutes with each

of the components ŝx, ŝy and ŝz. It means that we can simultaneously determine its

own value and another component of it.

The number s, the eigenvalue of the operator ŝ can take either integer or half-

integer numbers. For a given s, the component sz takes values between s, s−1, ...,−s.

Every elementary particles has a specific and immutable values of its spin: π mesons

have spin 0; photons have spin 1; deltas have spin
3

2
; gravitons have spin 2; and so

on. Electrons, positrons, protons, neutrons, muons, hyperons have spin
1

2
, therefore

they are called Fermions. In case of spin
1

2
(s =

1

2
, sz = ±1

2
), which is the spin of the

particles that make up ordinary matter (protons, neutrons, and electrons), as well as

all quarks and all leptons, the components ŝx, ŝy and ŝz can be expressed by a 2× 2

matrices in the following way,

ŝ =
1

2
σ̂, (2.6)

σ̂x ≡

0 1

1 0

 ; σ̂y ≡

0 −i

i 0

 ; σ̂z ≡

1 0

0 −1

 , (2.7)

which are the famous Pauli spin matrices.
For a particle which carries a spin, the wave-function must not only depend on the

three continuous variables that are the coordinates of the particle, but also a discrete

variable indicating the value of the projection of spin in a given direction in space

according to the chosen quantization axis. i.e. Φ(x, y, z, σ). The position variables

are independent of the spin variable, therefore it can be separated into two functions

Φ(x, y, z, σ) = Ψ(x, y, z)χ(σ), where χ(σ) is called a spin wave-function. For a spin
1

2

case, there are just two eigenstates: |1
2
,
1

2
〉, which we call spin up, and |1

2
,−1

2
〉, which
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we call spin down. Using these vectors, the χ(σ) can be expressed as a two-element

column matrix (or spinor):

χ =

a1

a2

 = a1

1

0

+ a2

0

1

 , (2.8)

where
|a1|2

|a1|2 + |a2|2
is the probability of finding the state |1

2
,
1

2
〉, and

|a2|2

|a1|2 + |a2|2
is

the probability of finding the state |1
2
,−1

2
〉.

Polarization of Electron Beam

An ensemble of electrons is said to be polarized if the electron spins have a preferential

orientation so that there exists a direction for which the two possible spin states are

not equally populated.

(1) Pure Spin State:

We assume that all the electrons have the same spin direction with respect to

their quantization axis ẑ and can be described by the spin wave-function χ. The

polarization of a set of electrons with spin
1

2
can be defined as the average over all

electrons of the Pauli spin operator,

P = 〈σ〉 = 〈χ|σ|χ〉 = (a∗1, a
∗
2) σ

a1

a2

 , (2.9)

after applying the operators of a spin wave-function, we obtain:

σx

a1

a2

 =

a2

a1

 , σy

a1

a2

 =

−ia2

ia1

 , σz

a1

a2

 =

 a1

−a2

 , (2.10)

and the three components of the polarization vector P can be written in the following

way:

P =


Px
Py
Pz

 =


a∗1a2 + a∗2a1

i(a∗2a1 − a∗1a2)

|a1|2 − |a2|2

 , (2.11)
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or the norm of P is:

|P| =
√
P2
x + P2

y + P2
z , (2.12)

after we normalized the wave-function, the polarization can be written as:

P =
〈χ|σ|χ〉
〈χ|χ〉

, (2.13)

We define the propagation direction of electron beam in the coordinate frame

Oxyz as in Figure 2.6. Let ~u be the unit vector, characterized by the angles θ and

φ, which denotes the spin orientation of electrons in this frame [19]. In general, we

write its components:

ux = sin θ cosφ, (2.14)

uy = sin θ sinφ, (2.15)

uz = cosφ, (2.16)

where ~σ · ~u represents the projection of the spin operator on the direction defined by

the vector ~u. If we want to determine the components of the spin wave function, we

must solve the eigenvalue equation:

(~σ · ~u)χ = λχ, (2.17)

Now we can write the three components of equation(2.17) in the following way: S

(σxux)χ =

a2 sin θ cosφ

a1 sin θ cosφ

 , (2.18)

(σyuy)χ =

−ia2 sin θ sinφ

ia1 sin θ sinφ

 , (2.19)

(σzuz)χ =

 a1 cos θ

−a2 cos θ

 , (2.20)

and the eigenvalue of equation(2.17) is:

(~σ · ~u)χ =

a2 sin θe−iφ + a1 cos θ

a1 sin θeiφ − a2 cos θ

 = λ

a1

a2

 , (2.21)
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Figure 2.6 (color) Spin orientation of electrons in the electron beam refer-
ence.(redrawn from [19])

after solving it for λ = ±1 cases, we can determine the values of a1 and a2:

λ = +1, a1 = cos
(θ

2

)
, a2 = sin

(θ
2

)
eiφ, (2.22)

λ = −1, a1 = sin
(θ

2

)
, a2 = − cos

(θ
2

)
eiφ, (2.23)

The spin wave-functions which we have to determine the components are the eigen-

functions of the spin operator with respect to the direction ~u and it has eigenvalues

±1. One can notice that in equation(2.23), if we replace θ with π − θ and φ with

φ + π, we will get the same a1 and a2 as in equation(2.22). Both wave-functions are

respectively associated to the case where one considers the direction +~u and −~u. It

is enough from now to consider the wave-function associated with the spin direction

+~u. It represents the states where the spin in the direction ~u possesses value ±1

2
.

With these notations and using the equation(2.11), we can determine the compo-

nents of the polarization vector when the spin of the electron beam is oriented along

the direction defined by the vector ~u:

P =


Px
Py
Pz

 =


sin θ cosφ

sin θ sinφ

cos θ

 , (2.24)
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The longitudinal polarization is the component of polarization vector which is

parallel to the direction of propagation:

PL = Pz = cos θ, (2.25)

and transverse component (component in plane Oxy and perpendicular to ẑ axes) is

defined by:

P⊥ =
√
P2
x + P2

y = sin θ, (2.26)

The case study of a pure spin state (for a spin
1

2
) can bring out the general

properties of the polarization vector. In this case, all the spins are aligned to one

direction and the polarization is one. The projection of the polarization vector, or

P · ~u, on any axis, gives the degree of polarization along that axis.

(2) Statistical Mixture of Polarized States:

Now consider a partially polarized beam. It is a mixture of different pure spin

states. In this case, the total polarization of the system is the average of polarization

vector P(n) over non-normalized individual systems χ(n) in pure spin states [19].

P =

∑
n

〈χ(n)|σ|χ(n)〉∑
n

〈χ(n)|χ(n)〉
=
∑
n

(
〈χ(n)|χ(n)〉∑
n

〈χ(n)|χ(n)〉

)
P(n), (2.27)

If we introduce the concept of density matrix operator, the polarization vector

can be written as following:

ρ =
∑
n

w(n)

 |a(n)
1 |2 a

(n)
1 a

(n)∗
2

a
(n)∗
1 a

(n)
2 |a(n)

2 |2

 =
∑
n

w(n)|χ(n)〉〈χ(n)|, (2.28)

where the weighting factors w(n) take into account the relative proportion of the states

χ(n) by w(n) =
N (n)∑
n

N (n)
, and N (n) is the number of electrons in the state χ(n). The

individual matrices of this sum are the density matrices of pure states. Using the

definition of the Pauli matrices, we can show that the density matrix of the global
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system and its polarization are linked by the relationship:

P =
tr(ρσ)

tr(ρ)
, (2.29)

We can then express the elements of the density matrix by the components of

polarization and we get:

ρ

tr(ρ)
=

1

2

 1 + Pz Px − iPy
Px + iPy 1− Pz

 =
1

2
[I + Pσ], (2.30)

where I is the identity matrix.

The density matrix will have its simplest form if one takes the direction of the

resultant polarization as the ẑ axis of the coordinate system shown in Figure 2.6, i.e.

chooses Px = Py = 0, P = Pz. Then one has:

ρ =
1

2

1 + P 0

0 1− P

 , (2.31)

This form of the density matrix illustrates the meaning of P : since |a(n)
1 |2 is

the probability that the eigenvalue +
1

2
will be obtained from a spin measurement

in the ẑ direction on the nth subsystem, the probability is
∑
n

w(n)|a(n)
1 |2 that this

measurement on the total beam will give the value +
1

2
. This probability can also

be expressed as N+/(N+ + N−), where N+ is the of measurements that yield the

value +
1

2
and (N+ + N−) is the total number of measurements. (Correspondingly,∑

n

w(n)|a(n)
2 |2 = N−/(N+ + N−) is the probability that the value −1

2
will be ob-

tained.) Now if we compare equation (2.28) and equation (2.31), we will obtain the

polarization:

P =
N+ −N−
N+ +N−

, (2.32)

In general, the polarization is also described as the sum of the polarization vector

P of pure spin states. In the pure case, the P is 1 and we call the beam is completely

polarized. In mixed case, the P is between 0 and 1 and we call the beam is partially

polarized. A system with P = 0 called non-polarized.



2.5 Electron Beam Polarimetry 22

(3) Average Value of the Helicity:

In many experiments, the term helicity (h) of an individual electron is defined

as the value of the projection of spin on its axis of propagation. Strictly speaking,

the quantization axis varies from one particle to another when one considers a beam.

At TJNAF, a very good and parallel beam with the emittance of ∼ 10−9 mrad [20]

is routinely achievable (a non-invasive method called Tiefenbach method is being

used to measure the beam energy), this means the value of helicity is very close to

that of the polarization along the beam axis. For a system of N electrons with spin

σi and individual and mean momentum of ki and k, one can define the helicity as

following [19]:

〈h〉 = 〈σi · ki
|ki|
〉 =

1

N

N∑
i=1

σi · ki
|ki|

(2.33)

By introducing the polarization vector: P =
1

N

N∑
i=1

σi , we finally obtain:

〈h〉 = P · k
|k|
− 〈σi ·∆di〉 (2.34)

where ∆di =
k

|k|
− ki
|ki|

called energy dispersion. Given the characteristics of electron

beam (energy spread better than 10−5), after Schwartz inequality, we have:

〈σi ·∆di〉 ≤
1

2
|∆di| ≤ 10−5 (2.35)

Therefore the difference between 〈h〉 and P · k
|k|

is negligible in the experimental

precision point of view. For PREx, the required precision of polarization measurement

is about 1%.

2.5 Electron Beam Polarimetry

It is important to measure the electron beam polarization and orientation during the

experiment. Electron beam polarimetry is the technique of separating scattered parti-

cles for detection using a spin dependent interaction between the polarized electrons
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(Pe) and the known total analyzing power (Atot) of the polarimeter’s target. The

target is itself polarized in many polarimeters and Atot is then proportional to the

product of the target polarization and the analyzing power of the interaction. Elec-

tron beam polarization (Pe) is deduced from the measured experimental asymmetry

(Aexp) and total analyzing power of the polarimeter’s target (Atot):

Aexp = Atot · Pe (2.36)

The kinematics and design of each polarimeter determine which components of

the total beam polarization can be measured. At TJNAF, the polarization of the

beam electrons is measured in a number of different ways, the spin-dependent Mott

polarimetry at the injector, and the Compton and Møller polarimetry. In this para-

graph we will describe the Mott and Møller polarimetries. The Compton polarimetry

will be discussed in detail in the following chapter.

2.5.1 Mott Polarimetry

In order to measure the spin polarization near the injector at TJNAF, a 5 MeV Mott

scattering polarimeter has been developed [21] (see Figure 2.7). The polarimeter uses

the counting rate asymmetry in the single elastic Mott scattering process which exists

if the polarization vector is not parallel to the scattering plane. The Sherman function

determines the relation between measured asymmetry and the degree of polarization

of the electron beam. Accurate polarimetry is ensured by addressing three concerns:

• The determination of the theoretical Sherman function for the single elastic

scattering process.

• The correct measurement of the asymmetry for every target by the achievement

of pure energy spectra.

• The understanding of the foil - thickness extrapolation to target thickness zero.
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Figure 2.7 Schematic of the 5 MeV Mott scattering chamber with detectors.
[21]

The Mott scattering asymmetry results from the spin-orbit coupling between the

incident polarized beam electrons and the potential of the target nucleus of atoms with

a large nuclear charge (gold, silver, copper) [22]. The scattered electron experiences

a magnetic field in its rest frame resulting from the motion of the electric field of

the nucleus. The interaction of the orbital angular momentum (magnetic field) with

the magnetic moment of the scattered electron (spin) leads to a spin-orbit coupling

term in the scattering potential. The results in a term in the Mott cross-section which

depends on the incident electron spin orientation. The cross-section for the scattering

angle θ is written as:

σ(θ) = σ0(θ)[1 + S(θ) ~P · n̂], (2.37)

where σ0(θ) is the unpolarized cross-section.

σ0(θ) =

(
Ze2

2mc2

)2
(1− β2)(1− β2 sin2( θ

2
))

β4 sin4( θ
2
)

, (2.38)

where S(θ) is known as the Sherman function and ~P is the incident electron polar-

ization. n̂ is the unit vector normal to the scattering plane.
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The importance of the value of the Sherman function is that it determines the size

of the scattering asymmetry, or how well the interaction distinguishes between the

two spin states. The unpolarized part of the cross-section effectively averages over

the initial spin state, whereas, the Sherman function contains the angular scattering

amplitude which includes the initial spin state. This formalism describes the scat-

tering from a single atom where the Sherman function is calculated from the basic

electron nucleus cross-section. In reality, a target foil contains so many atoms that

multiple and plural scattering also occurs. Therefore, the effective Sherman function

Seff (θ) should be measured.

Consider an electron beam with polarization P transverse to the scattering plane

of a target, i.e., parallel or antiparallel to n̂. The number of electrons scattered

through an angle θ to the right and detected, N+, is proportional to 1+PSeff (θ) and

the number scattered to left and detected, N−, is proportional to 1−PSeff (θ). The

scattering asymmetry is defined as,

A =
N+ −N−
N+ +N−

= PSeff (θ), (2.39)

The effective Sherman function depends upon the foil material (Z) and target

thickness (density). Measurement is done by measuring the experimental asymmetries

for a fixed polarization (known or unknown) for a variety of target thicknesses. The

measured asymmetries are plotted versus target thickness and extrapolated to the

zero target thickness to give A0, the asymmetry expected for scattering from a single

atom. The functional form of the fit is made assuming that the scattering rate depends

to first and second order on the target thickness. The linear dependence carries the

single elastic scattering dependence. The quadratic term carries no analyzing strength

and corresponds to multiple scattering in the target.

N± = (1± PA0) · t+ α · t2, (2.40)

By applying equation(2.39) the resulting scattering asymmetry is determined.

A ∼ PA0

1 + αt
, (2.41)
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In this way A0 and α are determined. Using the single atom Sherman function S(θ)thy

the polarization of the beam is finally calculated

P =
A0

S(θ)thy
, (2.42)

The polarimeter measures only the transverse components of the beam polariza-

tion over a range of energies (2 - 5 MeV). It is an invasive measurement and accuracy

is limited by determination of Sherman function.

2.5.2 Møller Polarimetry

The Møller polarimeter along the Hall A beamline measures the polarization of the

electron beam delivered to the Hall [23]. The system (see Figure 2.8) consists of,

• A magnetized iron foil placed in the beam path. The foil acts as a polarized

electron target and it can be selected from a set of four different foils. A pair

of superconducting Helmholtz coils (∼ 4 T peak field) magnetizes the in-beam

foil. The foils are located 17.5 m upstream of the nominal pivot of the Hall A

High Resolution Spectrometers.

• A magnetic spectrometer system consisting of three quadrupole magnets and

a dipole magnet. The spectrometer focuses electrons scattered in a certain

kinematic range onto the Møller detector package.

• The detector package and its associated shielding house.

• An stand-alone data acquisition system.

• An off-line analysis software package to extract the beam polarization. Roughly,

the beam polarization is calculated by taking the difference in the counting rates

of two different beam helicity samples.

A Møller polarimeter exploits the process of Møller scattering of polarized elec-

trons off polarized atomic electrons in a magnetized foil ~e− + ~e− → e− + e−. The
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Figure 2.8 Layout of Hall A Møller polarimeter. (a) presents a side view
while, (b) represents a top view. [23]

reaction cross section depends on the beam and target polarizations Pbeam and P target

as:

σ ∝
[
1 +

∑
i=X,Y,Z

(Aii · P targeti · Pbeami )
]
, (2.43)

where i = X, Y, Z defines the projections of the polarizations. The analyzing power

A depends on the scattering angle in the center of mass (CM) frame, θCM . Assuming

that the beam direction is along the Z-axis and that the scattering happens in ZX

plane:

AZZ = −sin2 θCM(7 + cos2 θCM)

(3 + cos2 θCM)2
, AXX = − sin4 θCM

(3 + cos2 θCM)2
, AY Y = −AXX , (2.44)

The analyzing power does not depend on the beam energy. At θCM = 900 the

analyzing power has its maximum AmaxZZ = 7/9. A transverse polarization also leads

to an asymmetry, though the analyzing power is lower: AmaxXX = AmaxZZ /7. The main

purpose of the polarimeter is to measure the longitudinal component of the beam

polarization. The Møller polarimeter in Hall A detects pairs of scattered electrons in

a range of 750 < θCM < 1050. The average analyzing power is about 〈AZZ〉 = 0.76.
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The target consists of a thin magnetically saturated ferromagnetic foil. In such

a material about 2 electrons per atom can be polarized. The maximal electron po-

larization for fully saturated pure iron is 8.52%. In Hall A Møller polarimeter, the

foil is magnetized by a 3 T field parallel to the beam axis and perpendicular to the

foil plane. Proper levels of liquid nitrogen and helium are required for the magnet to

become superconducting and remain so while performing a polarimetry measurement.

The target foil can be tilted at various angles to the beam in the horizontal plane, pro-

viding a target polarization that has both longitudinal and transverse components.

The spin of the incoming electron beam may have a transverse component due to

precession in the accelerator and in the extraction arc. The asymmetry is measured

at two target angles of about ±200 and the average is taken. Because the transverse

contributions have opposite signs for these target angles, the transverse contributions

cancel in the average. Additionally, this method reduces the impact of uncertainties

in the target angle measurements. At a given target angle two sets of measurements

with opposite directions of the target polarization are taken. Averaging the results

helps to cancel some of the false asymmetries, such as that coming from the residual

helicity-driven asymmetry of the beam flux.

The secondary electron pairs pass through a magnetic spectrometer (Figure 2.8)

consisting of a sequence of three quadrupole magnets and a dipole magnet which

selects particles in a certain kinematic region. Two electrons are detected with a two-

arm detector which consists of lead-glass calorimeter modules and the coincidence

counting rate of the two arms is measured. The non-scattered electron beam passes

through a 4 cm diameter hole in a vertical steel plate 6 cm thick, positioned at the

dipole midplane, which serves as a collimator for the scattered electrons and as a

magnetic shield for the beam. The helicity driven asymmetry of the coincidence

counting rate is used to derive the beam polarization.

The beam longitudinal polarization is measured as:

PbeamZ =
N+ −N−
N+ +N−

· 1

Pfoil · 〈AZZ〉
, (2.45)
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where N+ and N− are the measured counting rates with two opposite mutual orienta-

tion of the beam and target polarizations, while 〈AZZ〉 is obtained using Monte-Carlo

calculation of the Møller spectrometer acceptance, Pfoil is derived from special mag-

netization measurements in bulk material.

The polarization measurements with the Møller polarimeter are invasive and the

asymmetry is independent of electron beam energy. Target heating limits maximum

beam current to ∼ 5µA. Accuracy limited by target polarization uncertainties. Usu-

ally one measurement takes few hours, providing a statistical accuracy of about 0.2%.



Chapter 3

Compton Polarimetry

3.1 Measurement Principle

The principle of Compton polarimetry is based on the elastic scattering of two polar-

ized particles: the electron and photon. The Compton effect was observed by A. H.

Compton in 1923 [24], and earned the 1927 Nobel Prize in Physics for the discovery.

The reaction cross section depends on the orientation of the spin of the electron rela-

tive to that of the spin of photon (Figure 3.1). The reversing of electron and photon

beam polarizations allows measurement of an experimental asymmetry proportional

to them and the known theoretical Compton asymmetry.

 

e


e

ee



Figure 3.1 (color) Feynman Diagrams for Compton Scattering.

30
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3.1.1 The Physics of Compton Scattering

Compton scattering is the elastic scattering of a photon on an electron. Let us

consider the laboratory frame with the conventions used in Figure 3.2. The Z-axis

is defined as the direction of incoming electrons and the incoming photons lie on the

X − Z plane and cross the electron beam with an angle αc. The polar angles noted

as θγ and θe are the scattering angles of a photon and an electron respectively, and

the azimuth angle φ defines the scattering plane.

Z

Scattering Plane





e

e



X

c



e

Reaction Plane



Figure 3.2 (color) A diagram of Compton scattering.

The four-vector energy-momentum pµ = (E, ~p) of an incident electron e with

energy E and kµ = (k,~k) of an incident photon γ with energy k can be written as:

pµ = (E, p sinψ, 0, p cosψ), (3.1)

kµ = (k, − k sin(ψ + αc), 0, − k cos(ψ + αc)), (3.2)

Similarly, for the scattered electron e′ with energy E ′ and photon γ′ with energy

k′, we have,

p′µ = (E ′, p′ sin θe cosφ, p′ sin θe sinφ, p′ cos θe), (3.3)

k′µ = (k′, k′ sin θγ cosφ, k′ sin θγ sinφ, k′ cos θγ), (3.4)
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Since the momentum and energy is conserved, the angle ψ can be expressed as,

tanψ =
k sinαc

p− k cosαc
, (3.5)

In this 2-body kinematic, we only need to know the φ to determine the whole pro-

cess. The relationship between the initial and final photon energy with the relevant

scattering angle can be expressed as following,

k′ =
k(E + p cosαc)

E − p cos θγ + k[1 + cos(αc − θγ)]
, (3.6)

From this equation, it is easy to determine the crossing angle αc dependence of the

maximum scattered photon energy k′max with the following condition on the scattering

angle,
dk′

dθγ θmaxγ

= 0 ⇐⇒ θmaxγ = arctan
( k sinαc
k cosαc − p

)
, (3.7)
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Figure 3.3 (color) Maximum energy of the scattered photon as a function
of the crossing angle with two different lasers (λγ = 532 nm, 1064 nm) and
electron beam energies (Ee = 1.0 GeV, 6.0 GeV).

We can see from the curve in Figure 3.3 that the crossing angle αc reduces the

energy range of the scattered photon, but it is pretty flat for small angles (< 100)
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and then falls down to 0 for αc = 1800. In the real Compton polarimeter, we can

only detect the those photons which interact in the opposite direction to the electron

beam. The other photons, almost collinear to the electron beam also interact but

their scattered energy is very low (∼ 0) and always below the threshold of detection.

For a green photon (λγ = 532 nm, kγ = 2.33 eV) scattered from a 1.0 GeV electron,

the maximum energy of scattering, which often called a Compton edge, lies at 34.5

MeV. While this energy is at about 1.05 GeV for the same photon scattered from a

6.0 GeV electron.

For a small crossing angle (usually few degrees) between electron and photon

beams, the αc has a negligible effect on the scattered photon beam energy. For a case

of αc = 0 and θγ � 1, the equation(3.6) has a simplified form,

k′ =
E(1− a)

1 + a
(
θγE
m

)2 , (3.8)

where a =
m2

m2 + 4kE
and m is the rest mass of an electron. Here we used an ultra-

relativistic approximation of β =
p

E
= 1 and the limit of |~k| � |~p|.

From Figure 3.4, one can see that for an incident electron beam of Ee = 1.0

GeV, and a given laser beam of λγ = 532 nm (kγ = 2.33 eV), used in our Compton

polarimeter, most of the scattered photons are emitted in a cone of 4.0 mrad. However,

for the same photons scattered from higher energy electrons, this cone angle is much

smaller.

The maximum scattered photon energy k′max, correspond to the minimum scat-

tered electron energy E ′min, is reached for θγ = 0.,

k′max = E(1− a), (3.9)

E ′min = E − k′max + k ' Ea, (3.10)

while the minimum scattered photon energy k′min, correspond to the maximum scat-
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Figure 3.4 (color) Scattered photon energy k′ as a function of scattering
angle θγ with two different lasers (λγ = 532 nm, 1064 nm) and electron beam
energies (Ee = 1.0 GeV, 6.0 GeV).

tered electron energy E ′max, is for θγ = π,

k′min = k, (3.11)

E ′max = E − k′min + k = E, (3.12)

The scattered electron energy E ′ is related to the scattered electron angle θe

through its momentum p′ by a second-order equation,

p′2(C2 −B2)− 2ABp′ +m2C2 − A2 = 0,

p′ =
AB ± C

√
(A2 −m2(C2 −B2))

C2 −B2
, (3.13)

where

A = m2 + Ek + kp cosαc,

B = p cos θe − k cos(θe − αc),

C = E + k,



3.1 Measurement Principle 35

 (GeV) ,E
0.97 0.98 0.99 1

ra
d)

µ ( eθ

0

1

2

3

4

5

6

7

8

9

Scattered Electron Energy

 = 2.33 (eV)γk

 = 532 (nm)γλ

 = 1.0 (GeV)eE

 = 23.5 (mrad)cα

 = 1.165 (eV)γk

 = 1064 (nm)γλ

 = 1.0 (GeV)eE

 = 23.5 (mrad)cα

 (GeV) ,E
5 5.2 5.4 5.6 5.8 6

ra
d)

µ ( eθ
0

1

2

3

4

5

6

7

8

9

Scattered Electron Energy

 = 2.33 (eV)γk

 = 532 (nm)γλ

 = 6.0 (GeV)eE

 = 23.5 (mrad)cα

 = 1.165 (eV)γk

 = 1064 (nm)γλ

 = 6.0 (GeV)eE

 = 23.5 (mrad)cα

Figure 3.5 (color) Scattered electron energy E ′ as a function of scattering
angle θe with two different laser (λγ = 532 nm, 1064 nm) and electron beam
energies (Ee = 1.0 GeV, 6.0 GeV).

Figure 3.5 shows the scattered electron energy E ′ as a function of scattered electron

angle θe at different electron and photon beam energies. We can see both from Figure

3.4 and Figure 3.5 that scattered electrons and photons have a very small cone angle.

If we want to separate those particles from incident electrons and photons and be

able to detect them, we need a magnetic field. This is done by using a magnetic

chicane which deflects and separates the scattered and incident electrons and makes

the scattered photon and electron detection possible in photon and electron detectors

respectively. We will discuss the Compton chicane later in this chapter.

3.1.2 Compton Cross Section and Asymmetry

A cross section is a prediction of a probability of a particle being scattered by another

particle. It is always measured by the effective surface area seen by the incident par-

ticles. In polarized Compton scattering, a circularly polarized photon beam interacts

with a polarized electron beam. In Figure 3.2, lets consider the electron polarization
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vector ~Pe which has an angle ψ with respect to the Z-axis in X−Z plane. We can de-

compose it along the longitudinal and transverse directions, such that PLe = Pe cosψ

and PTe = Pe sinψ. The photon beam has a circular polarization of Pγ with a crossing

angle αc relative to the propagation direction of the electron beam. Given the fact

that the newly installed Compton polarimeter has a crossing angle of 24.0 mrad (1.4

degree) and the effect of a small αc (order of 10−2 rad) to the polarized cross section

is very small (order of α2
c) [25], we can neglect the influence of αc for this case.

In the laboratory frame, in the case of zero crossing angle with circularly polarized

photons, the second order differential cross section can be expressed in terms of a

dimensionless parameter ρ [26],

d2σ∓

dρdφ
=
d2σ0

dρdφ
∓ PePγ

[
cosψ

d2σL
dρdφ

+ sinψ cosφ
d2σT
dρdφ

]
, (3.14)

where

ρ =
k′

k′max
=

1

1 + a
(
θγE
m

)2 ,

and the unpolarized differential cross section is defined as,

d2σ0

dρdφ
= r2

0a

[
1 +

ρ2(1− a)2

1− ρ(1− a)
+

(
1− ρ(1 + a)

1− ρ(1− a)

)2]
, (3.15)

and the longitudinal and transverse differential cross sections are defined as,

d2σL
dρdφ

= r2
0a

[
(1− ρ(1 + a))

(
1− 1

(1− ρ(1− a))2

)]
, (3.16)

d2σT
dρdφ

= r2
0a

[
ρ(1− a)

√
4aρ(1− ρ)

1− ρ(1− a)

]
, (3.17)

where r0 is the classical electron radius. The “ + ” and “− ” signs are defined by the

helicity states of electrons and photons. The last term represents an azimuthal de-

pendence in the cross section. It appears because of transverse component of electron

spin. It is the same if the incident photon contains a linear polarization component
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mixed with a circular polarization. This dependence will vanish if our detector is

symmetric in azimuth angle φ. After integration over φ, the equation (3.14) becomes,

dσ∓

dρ
=
dσ0

dρ
∓ PePγ cosψ

dσL
dρ

, (3.18)

the term
dσL
dρ

is the origin of the cross section asymmetry when the helicity of the

electron and photon beam is reversed. The above equation now can be rewritten as,

dσ∓

dρ
=
dσ0

dρ

(
1∓ PLe PγAL

)
, (3.19)

where AL is called the longitudinal differential asymmetry and it is defined as,

AL =

(
dσL/dρ

)
(
dσ0/dρ

) , (3.20)
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Figure 3.6 (color) The left plot shows the unpolarized (black line), trans-
verse (blue line) and longitudinal (red line) differential cross section as a
function of scattered photon energy k′. The right plot shows the longitudinal
(blue line) and transverse (red line) Compton asymmetry as a function of
scattered photon energy k′.
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Similarly the transverse differential asymmetry AT also can be defined as,

AT =

(
dσL/dρ

)
(
dσ0/dρ

) , (3.21)

Figure 3.6 plots the differential cross sections (unpolarized, longitudinal and trans-

verse) and asymmetries (longitudinal and transverse) for an electron beam of 1.0 GeV

and a photon beam of kγ = 2.33 eV (λγ = 532 nm) as a function of scattered photon

energy k′.

Figure 3.7 shows the longitudinal asymmetry values as a function of scattered

photon energy for 1.0 and 6.0 GeV electrons with green (λγ = 532 nm) and infrared

(λγ = 1064 nm) photons. From the plot one can see that for green photons scattered

from an electron beam of 1.0 GeV, the maximum longitudinal differential asymmetry

is at about 3.5 %, but for infrared photons, it is at about 1.8 %. For an electron beam

of 6.0 GeV, these values are at about 18.0 % and 10.0 % respectively.

The longitudinal differential asymmetry is in its maximum when the scattered
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photon energy k′ = k′max and becomes negative, zero and positive when k′ is less

than, equal and greater than k′0, where k′0 is defined as,

k′0 =
E(1− a)

(1 + a)
, (3.22)

We use the characteristics of differential asymmetry as a function of scattered

photon energy to determine the electron beam polarization which will be described

later in this chapter.

3.1.3 Interaction Luminosity

The luminosity is an important value to characterize the total number of events in

Compton scattering. Let’s assume that the electron and photon beam intersects at

an angle αc in X − Z plane with a relative velocity c(1 + αc) in laboratory frame, as

shown in Figure 3.8. The luminosity of interaction between two beams with densities

ρe(x, y, z) and ργ(x, y, z) has the general expression [20],

L =

∫ ∫ ∫
c(1 + cosαc)ρe(x, y, z)ργ(x, y, z)dxdydz, (3.23)

Z

X

Y

Electron beam Laser beam

αc

Figure 3.8 (color) Electron and Photon Beam Crossing.
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The beam density is the product of two normalized Gaussians in X and Y direc-

tions with a normalization factor N0,

ρ(x, y, z) = N0

(
1√

2πσx(z)
e
− x2

2σ2
x(z)

)(
1√

2πσy(z)
e
− y2

2σ2
y(z)

)
, (3.24)

where σx(z) and σy(z) are the beam sizes inX and Y direction at z. The normalization

factor N0 for electron beam with current Ie and photon beam with laser power PL

and wavelength λ is defined as,

N0e =
Ie
ec

and N0γ =
PLλ

hc2
, (3.25)

With the assumption of the angular divergence of two beams is small as compared

to the crossing angle αc so that the beam sizes σx,y are constant, the total luminosity

can be written as,

L0 '
1√
2π

Ie
ec

PLλ

hc

(1 + cosαc)

sinαc

1√
σ2
ey + σ2

γy

, (3.26)

Note that in equation (3.26), only the transverse component of beam sizes σey

and σγy are involved in the luminosity after the integration, which means in cur-

rent coordinate frame, only the transverse size of the two beams is playing a role in

luminosity.

In Figure 3.9, the left plot shows the total luminosity L0 as a function αc for green

(λγ = 532 nm) and infrared (λγ = 1064 nm) photons with 3.5 kW laser power at 100

µA electron beam current with a size of σe = 100 µm. On the right plot the photon

beam size σγ dependence of luminosity is shown. From the figure, one can see that,

the L0 is very sensitive to αc while it is relatively less sensitive to σγ. For the same

photon beam power and electron beam current, L0 is inversely proportional to photon

beam energy. That is the reason of green photons generally give smaller luminosity

than the infrared photons. In general, we prefer to have smaller beam sizes and a

smaller crossing angle in order to maximize the interaction.

In reality, for a good sampling of electrons beam polarization, we would like a good

overlap between two beams which requires σe ∼ σγ. From Figure 3.8, one can see
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Figure 3.9 (color) On the left, the luminosity as function of crossing angle
for the green (λγ = 532 nm) (green line) and infrared (λγ = 1064 nm) (red
line) photons. On the right, luminosity as a function of photon beam size for
green (green line) and infrared (red line) photons.

that, If the crossing takes place with a vertical gap ∆y = ye−yγ between the centroids

of two beams, then the luminosity becomes less. We can calculate it by integrating

the differential luminosity dL/dy over ∆y and then the luminosity becomes [20],

L = L0 e
−

(∆y)2

2(σ2
ey + σ2

γy) , (3.27)

As plotted in Figure 3.10, the luminosity L decreases exponentially as a function

of the distance separating the two beams. In order to get the maximum luminosity so

that the scattering rate which contributes to measure the the Compton asymmetry

is maximum, we always hope to make ∆y equals to 0. This is done by steering the

electron beam vertically by a pair of dipoles in Compton chicane and this procedure

is often called “vertical scan”.

3.1.4 Methods of Electron Beam Polarization Measurement

We defined the polarization of an electron beam in equation 2.32, where N+(−) is the

number of electrons with spin parallel (anti parallel) to the beam direction. In Comp-
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ton polarimetry, the longitudinal polarization PLe of the electron beam is extracted

from from the experimental asymmetry Aexp between two measurements of Compton

scattering with electron polarization is parallel (+) and anti parallel (−) to the laser

polarization states. This asymmetry may be defined as,

Aexp =
n+ − n−

n+ + n−
= PLe PγAL, (3.28)

where n± is the scattering rate for events before and after the laser polarization

reversal (Pγ → −Pγ). In each measurement, n± will be measured with a luminosity

L± during a time T± and will be normalized to the same integrated luminosity. In

equation 3.28, the Aexp and Pγ are the measured quantities and AL is calculated

in the framework of the standard model, so that the only unknown quantity is the

longitudinal electron beam polarization PLe . From now on, we call the longitudinal

polarization PLe electron beam polarization and label it as Pe for simplicity. In reality,
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we calculate the average value of AL in finite interval by taking into account the

detector resolution and 〈AL〉 is often called an analyzing power. There are three

methods of extracting electron beam polarization measurement.

Differential Polarization Measurement

The numbers of Compton scattering events ni± are measured as a function of the

scattered photon or electron energy in energy bin Nb by a following integral,

ni± = L± T±
∫ ρi+1

ρi

ε±(ρ)
dσ0(ρ)

dρ

(
1± PePγAL(ρ)

)
dρ, (3.29)

where
dσ0(ρ)

dρ
is the unpolarized differential cross section (Eq. 3.15), AL(ρ) is the dif-

ferential longitudinal asymmetry (Eq. 3.20), ε±(ρ) is the detection efficiency, [ρi, ρi+1]

is the width of each energy bin and ρ is the scattered photon energy normalized to

its maximum.

Now, the experimental asymmetry for each energy bin is defined as,

Aiexp =
ni+ − ni−
ni+ + ni−

= P iePγ

∫ ρi+1

ρi

ε(ρ)
dσ0(ρ)

dρ
AL(ρ) dρ∫ ρi+1

ρi

ε(ρ)
dσ0(ρ)

dρ
dρ

= P iePγ〈AL〉i ' P iePγAiL,

(3.30)

where AiL is the longitudinal asymmetry at the center of the bin. The electron

polarization P ie measured for each energy bin i is given by,

P ie =
Aiexp
Pγ〈AL〉i

'
Aiexp
PγAiL

, (3.31)

which is independent of detection efficiency. The relative statistical error in this

measurement is,

∆P ie
P ie

=
∆Aiexp
Aiexp

=

[
4ni+n

i
−

(ni+ + ni−)3

] 1
2

× 1

Aiexp
, (3.32)

After defining the total number of events nit for the bin i as,

nit = ni+ + ni− = LT
∫ ρi+1

ρi

ε(ρ)
dσ0(ρ)

dρ
dρ = LTσi0, (3.33)
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The statistical error has the following form,

∆P ie
P ie

=

[
1− (P iePγAiL)2

LTσi0

] 1
2

1

P iePγAiL
, (3.34)

The final electron polarization is the weighted mean of these polarization mea-

surements,

Pe =

Nb∑
i=1

P ie
∆P ie

2

Nb∑
i=1

1

∆P ie
2

, (3.35)

∆Pe =

Nb∑
i=1

∆P ie =
1√
LTPγ

Nb∑
i=1

[
1− (P iePγAiL)2

σi0AiL
2

] 1
2

, (3.36)

with the assumption that AiL is very small (few %) and P iePγ < 1, we can neglect

(P iePγAiL)2 and the above equation becomes,

∆Pe =
1√
LTPγ

Nb∑
i=1

(
1

σi0AiL
2

) 1
2

, (3.37)

for a limit of ∆ρ = ρi+1 − ρi → 0 and a threshold energy ρmin below which no

Compton event is detected, we will have the following relation,(
∆Pe
Pe

)2

=
1

LTP2
eP2

γσ
t
0〈A2

L〉
, (3.38)

where

〈AL2〉 =

∫ 1

ρmin

ε(ρ)
dσ0(ρ)

dρ
A2
L(ρ) dρ∫ 1

ρmin

ε(ρ)
dσ0(ρ)

dρ
dρ

, σt0 =

∫ 1

ρmin

ε(ρ)
dσ0(ρ)

dρ
dρ, (3.39)

The time tD to get a statistical precision
∆Pe
Pe

is,

tD =
1

L
(∆Pe
Pe

)2

P2
eP2

γσ
t
0〈A2

L〉
, (3.40)

Note that the needed time tD and the square of the error are inversely proportional

to the value of 〈A2
L〉 through ρmin.
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Integrated Polarization Measurement

Without energy measurement for the scattered particles, only the numbers of Comp-

ton scattering events integrated over the energy range n+ and n− can be measured

and they are,

n± = L± T±
∫ 1

ρmin

ε±(ρ)
dσ0(ρ)

dρ

(
1± PePγAL(ρ)

)
dρ, (3.41)

The experimental integrated asymmetry is defined as,

Aexp =
n+ − n−
n+ + n−

= PePγ

∫ 1

ρmin

ε(ρ)
dσ0(ρ)

dρ
AL(ρ) dρ∫ 1

ρmin

ε(ρ)
dσ0(ρ)

dρ
dρ

= PePγ〈AL〉, (3.42)

The measured electron polarization,

Pe =
Aexp
Pγ〈AL〉

, (3.43)

is proportional to the inverse of the mean longitudinal asymmetry which is depend

on the detection efficiency and on the energy threshold ρmin. The relative statisti-

cal error in measurement of electron polarization is equal to the error in integrated

experimental asymmetry,(
∆Pe
Pe

)2

=

(
∆Aexp
Aexp

)2

=
1− P2

eP2
γ〈AL〉2

LTP2
eP2

γσ
t
0〈AL〉2

' 1

LTP2
eP2

γσ
t
0〈AL〉2

, (3.44)

where the σt0 is given by equation 3.39. The needed time tI to achieve an accuracy
∆Pe
Pe

is,

tI =
1

L
(∆Pe
Pe

)2

P2
eP2

γσ
t
0〈AL〉2

, (3.45)

here the needed time tI and the square of the error are inversely proportional to the

value of 〈AL〉2 through ρmin and detection efficiency ε(ρ).
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Energy Weighted Polarization Measurement

We only measure the energies E+ and E− over the energy range and over the time t

and they are given by,

E± = L± T±
∫ 1

0

E ε±(ρ)
dσ0(ρ)

dρ

(
1± PePγAL(ρ)

)
dρ, (3.46)

with a statistical error dE± due to the fluctuation of the unmeasured number of events
dN±
dρ

,

dN±
dρ

= L±T±ε±(ρ)
dσ0(ρ)

dρ
(1± PePγAL),

dE2
± = LT

2

∫ 1

0

E2 ε±(ρ)
dσ0(ρ)

dρ

(
1± PePγAL(ρ)

)
dρ, (3.47)

The experimental integrated energy asymmetry is related to the electron polar-

ization by,

Aexp =
E+ − E−
E+ + E−

= PePγ

∫ 1

0

ε(ρ)
dσ0(ρ)

dρ
EAL(ρ)dρ∫ 1

0

ε(ρ)
dσ0(ρ)

dρ
Edρ

= PePγ
〈EAL〉
〈E〉

, (3.48)

and the measured electron polarization,

Pe =
Aexp

Pγ
〈EAL〉
〈E〉

, (3.49)

The time needed to achieve an accuracy
∆Pe
Pe

is,

tE =

1 + P2
eP2

γ

(
〈EAL〉2

〈E〉2
− 2
〈EAL〉〈E2AL〉
〈E〉〈E2〉

)

L

(
∆Pe
Pe

)2

P2
eP2

γσ
t
0

〈EAL〉2

〈E2〉

' 1

L

(
∆Pe
Pe

)2

P2
eP2

γσ
t
0

〈EAL〉2

〈E2〉

,

(3.50)

In Hall A Compton polarimeter at JLab, a new technique based on energy weighted

method has been developed. It computes the longitudinal asymmetry AL in the
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energy-weighted integral of the photon signal and it is less sensitive to low-energy un-

certainties in the detector response function as compared to the differential method.

In this method the actual asymmetry is weighted by detector signal S±,

S± = LT
∫ 1

0

S(ρ)
dσ0(ρ)

dρ

(
1± PePγAL(ρ)

)
dρ, (3.51)

where S(ρ) is the average detector signal for normalized photon energy ρ. The ex-

perimental energy weighted asymmetry Aexp is,

Aexp =
S+ − S−
S+ + S−

= PePγ

∫ 1

0

S(ρ)
dσ0(ρ)

dρ
AL(ρ)dρ∫ 1

0

S(ρ)
dσ0(ρ)

dρ
dρ

= PePγ〈AL〉S, (3.52)

where 〈AL〉S is the signal asymmetry which is called the analyzing power. The mea-

sured electron polarization is then,

Pe =
Aexp

Pγ〈AL, 〉S
(3.53)

The energy weighted method is mainly driven by the need of PREx experiment

which runs at an electron beam of ∼1.0 GeV and results a very small Compton

asymmetry (few %). It removes two of the main systematic errors, those due to the

detector response function and the deadtime.

We just explained the principle of Compton polarimetry. We will now describe

the Compton polarimetry projects around the world and then discuss how we chose

a photon source to build a new Compton polarimeter at JLab.

3.2 Compton Polarimetry

3.2.1 Overview

Originally suggested by Baier and Khoze [27], the Compton polarimeter with a laser

beam has become a part of the standard equipment in many accelerators. The first

Compton polarimeter ever built was at SLAC in the late 70s [32], which monitors the
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transverse polarization of beams circulating in the SLAC e+e− storage ring SPEAR. In

this setup, a circularly polarized photon beam from an Ar-Ion laser was focused on an

electron or positron beam at an angle of 8 mrad and the backscattered photons were

collected by a NaI crystal combined with a set of scintillators and a drift chamber. The

polarization measurement was achieved by a measurement of up-down asymmetry in

the backscattered gamma rates. A statistical precision of ± 5.0% was achieved by

peak laser power of 80 W and at a beam energy of 3.7 GeV in 2 minutes. Since then

many high-energy storage rings [3,28–31,33] have adopted the Compton polarimeter

as a powerful diagnostics tool to measure beam polarization. In these storage rings,

the Compton analyzing powers are large, and the measurement is non-destructive.

Therefore no reduction of beam lifetime is expected. The common feature of these

polarimeters is that they all use a single shot pulsed or continuos wave (CW) laser with

a wavelength of 514.5 nm or 532 nm, and the required average laser power was only

from few Watts to tens of Watts in order to achieve a reasonable statistical precision in

beam polarization in a relatively short time. Furthermore they all uses the scattered

photon detection as their main tool to extract the e+ or e− beam polarization.

For JLab experimental conditions, getting a fast and precise beam polarization

with a Compton polarimeter is challenging. Mainly due to the relatively low beam cur-

rent combined with an insufficient laser power from commonly available commercial

lasers results very low electron-photon collision luminosity, and it makes the polariza-

tion measurements rather difficult to achieve a good precision in a reasonable amount

of time. In 1996, JLab proposed to build a Compton polarimeter in its experimental

Hall A [20]. It involves to build an optical cavity, a scattered photon and an electron

detector and a Compton chicane which consists of four magnetic dipoles. The heart of

this polarimeter is a high-finesse monolithic Fabry-Perot cavity, pumped by a narrow

linewidth CW laser. It amplifies a primary 300 mW infrared laser (λγ = 1064 nm)

beam by about a gain factor of 7000. The electron beam crosses a highly circularly

polarized laser beam at an angle of 23.5 mrad in the middle of the cavity [8], and the

scattered photons and electrons are detected by an array of PbWO4 crystals [34] and
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a Si micro-strip detector respectively in downstream [9]. This large enhancement in

laser power by optical cavity resulted in a system capable of making polarization mea-

surements with 1% statistical precision in about an hour at beam currents of 10 µA

and at beam energy of 3 GeV [38]. More recently, Compton polarimetry has been ap-

plied with good success to lower energy accelerators in the few GeV regime [4,6,7,36].

Project Electron Electron Average

Energy Current Photon Source Photon Date

Name (GeV) (mA) Power

SPEAR [32] 3.7 20 Ar-Ion pulsed Laser, λγ = 514.5 nm 1.0 W 1979

LEP [33] 46.0 0.8 Nd:YAG pulsed laser with 30 Hz 5.7 W 1989

repition rate, λγ = 532 nm

SLD [3] 45.6 0.001 Nd:YAG pulsed Laser with 17 Hz 100 mJ 1992

repition rate, λγ = 532 nm

AmPS [4] 0.75 200 Ar-Ion CW Laser, λγ = 514.5 nm 10 W 1998

CEBAF [8] 3.0 0.1 Nd:YAG CW Laser amplified by an 1.5 kW 2001

external FP cavity, λγ = 1064 nm

TESLA [35] 250 0.045 Nd:YAG pulsed laser, λγ = 524 nm 0.5 W 2001

ELSA [36] 3.5 100 Ar-Ion CW Laser, λγ = 514.5 nm 10 W 2002

Bates [6] 1.0 200 Nd:YAG CW Laser, λγ = 532 nm 5 W 2003

MAMI [7] 1.5 0.11 Ar-Ion CW Laser amplified by an 90 W 2003

internal FP cavity, λγ = 514.5 nm

HERA [37] 27.5 80 Nd:YAG CW Laser amplified by an 3.0 kW 2003

external FP cavity, λγ = 1064 nm

This 1.0 0.05 Nd:YAG CW Laser amplified by an 3.5 kW 2010

Project external FP cavity, λγ = 532 nm

Table 3.1 A summary table of Compton polarimetry projects.
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Figure 3.11 (color) A summary plot of Compton polarimetry projects in
terms of beam energy and current it operates.

The existing and past Compton polarimetry projects have been summarized in Table

3.1. Since the first implementation of Fabry-Perot enhancement technique in JLab

Hall A, similar cavities have been built at other labs [7,37] for Compton polarimetry

purpose.

However, the small asymmetry of the Compton scattering process at low energies

makes it difficult to control systematic errors. This was addressed using simultaneous

measurement of the backscattered photon and scattered electron, combined with novel

analysis techniques to minimize sensitivity to the detector response function, resulting

in systematic errors approaching 1% at 3 GeV [38].
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3.2.2 Compton Upgrade Project in Hall A at JLab

Through the evolvement of JLab physics program, the idea of using parity violat-

ing electron scattering to do precision measurements of Standard Model parameters

is becoming increasingly popular. These type measurements have stringent require-

ments on the measurement of the beam polarisation, with this often being the leading

systematic uncertainty. Some experiments like PREx [10] also uses parity violating

electron scattering to precisely measure the neutron skin thickness at 1.0% level,

which requires to get 1.0% relative polarization accuracy at 1 GeV1 which cannot

be achieved by the old infrared (λγ = 1064 nm) laser based Compton polarimeter.

Therefore an upgrade of existing Compton polarimeter was proposed [39].

At 1.0 GeV and with the infrared laser (λγ = 1064 nm), the scattered Compton

electrons remain too close to the primary beam (< 3 mm) (see Table 3.2) to be

detected. With no response function of the photon detector, the only way to keep

the systematics below the 2% level is to perform an energy weighted polarization

measurement where the beam polarization is deduced from asymmetry of counting

rates integrated over the whole Compton energy range. If the detection threshold is

negligible compared with the Compton edge the uncertainties from the resolution and

the calibration don’t contribute, only the detection efficiency has to be known. This

method is well-suited to stand-alone photon detector running: accurate asymmetries

may be measured even without calibration against the scattered-electron detector.

However the drawback is that the mean Compton asymmetry is very small (0.88%)

(see Table 3.2) and leads to long running time to reach the
δPe
Pe

= 1% statistical

accuracy.

Requirements for the photon detector are a good detection efficiency in the range

of few 100 keV to 35 MeV, a large light yield to reach low detection thresholds and

high counting rate. Using a photon detector with a high light yield can bring the

detection threshold small enough with respect to the Compton edge so that it can be

1PREx initially proposed to run at 0.85 GeV, later changed to run at 1.063 GeV
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kγ = 1.165 eV kγ = 2.33 eV kγ = 5.00 eV

PL = 0.25 W PL = 1.0 W PL = 0.5 W

G = 6000 G = 3000 G = 3000

k′max (MeV) 17.5 34.5 71.1

θγ(Eγ > 10 MeV ) (µrad) 447 813 1311

E ′emin (GeV) 0.982 0.965 0.929

θemax (µrad) 4.56 9.12 19.57

YDet (mm) 4.1 8.3 17.8

σtotal (barn) 0.653 0.642 0.618

ALmax (%) 1.77 3.51 7.37

〈ALE〉 (%) 0.88 1.72 3.53

Rate (kHz) 118 116 26

L (µbarn−1 s−1) 0.1807 0.1807 0.0421

tE (s) 1351 360 381

Table 3.2 Comparison of relevant quantities of the Compton kinematics for
the infrared (λγ =1064 nm), green (λγ = 532 nm) and ultraviolet (λγ = 248
nm) lasers with different cavity gain G for achieving a statistical precision of
δPe
Pe

= 1.0%. The following parameters are used: Ee = 1.0 GeV, Ie = 50 µA,

Pe = 90%, Pγ = 100%, σe = 100 µm, σγ = 100 µm, αc = 23.5 mrad. 〈ALE〉 is
the longitudinal mean analyzing power for the energy weighted method with
a detection threshold set to 0. YDet is the maximum vertical gap between the
primary and scattered electron beams after the 3rd dipole. The detection
efficiency of photon detector assumed as 100%.

assumed to be negligible. Then the sensitivity to the detector response, main source

of systematic errors, is highly reduced.

The beam polarization obtained from the electron detector is also a way to cross

check the systematic errors in polarization measured by photon detector as well. The

energy of the scattered Compton electron is directly related to its measured position

in the detector. A detector made of micro strip Si has been used to detect the
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scattered Compton electrons in the past. Usually a high segmentation in the strips

gives better energy resolution of the scattered electron energy. To first order, reducing

the micro-strip size can reduce the systematic error.

The most efficient way to improve the Compton figure of merit is to shorten the

laser wavelength. Going to a green laser (λγ = 532 nm) brings the mean asymmetry

to 1.72% (see Table 3.2) at 1.0 GeV. At the Compton edge the photon energy is

34.5 MeV and the associated scattered electron is 8.3 mm (see Table 3.2) above the

primary beam at the location of the electron detector. Assuming that laser power

is 3.0 kW at the Compton interaction point and the detection efficiency of photon

detector is 100%, a 1% statistical accuracy is achieved within 6 minutes.

The upgrade project includes building a green laser, a Fabry-Perot cavity, a single

crystal Gd2SiO5 (GSO) photon detector with an integrating data acquisition system

based on 12-bit FADC (Flash Analog-to-Digital Converter) and a high resolution Si

micro-strip electron detector. In the following section, we describe these elements.

3.3 Elements of Compton Polarimeter

Installed in the accelerator tunnel of Hall A, the Compton polarimeter consists of a

magnetic chicane, a photon source (a laser system, optical elements and an optical

cavity), a photon detector, and an electron detector as shown in Figure 3.13. The

electron beam enters from the left and deflects vertically by four identical dipoles

of the chicane referred to as D1, D2, D3 and D4, and crosses the photon beam at

the center of the chicane which we call it Compton Interaction Point (CIP). The

crossing angle between the two beams is 24.0 mrad. The electrons undergo Compton

scattering with circularly polarized photons in resonance in a Fabry-Perot cavity fed

by a frequency doubled CW green laser (λγ = 532 nm). The photon polarization is

periodically flipped between right- and left-circular in order to control for systematic

effects. The backscattered photons are detected in the single crystal GSO photon

detector. The scattered electrons can be detected in the Si micro strip detector located
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a few mm above the primary beam in front of D4. Approximately one electron in

every 109 undergoes Compton scattering. Unscattered electrons, separated from the

Compton-scattered particles by D3 in the chicane, continue on into the hall for the

primary experiment. A fast front-end electronics and data acquisition system collects

the data at rates of up to 250 MHz.

The optical cavity is located between the dipoles D2 and D3 (Figure 3.13). It is

inclosed in a vacuum chamber connected to the beam pipe upstream and downstream

and sits on an optics table where the laser and optical elements are located. The CIP

is in the center of the cross section between the dipoles D2 and D3. There are two

beam position monitors (BPM) located on both sides of the cavity. They are used

to monitor changes in beam position of the electron beam during measurements.

Elements called “beam diagnostics” (BD) can detect the beam halo at four positions

of the chicane (Figure 3.14). Each element is composed of 4 scintillator bars fixed

to photomultiplier tubes. The beam pipes are surrounded by those scintillator bars

attached to them at those positions. Pneumatic gate valves are used to control the

chicane vacuum so that it can isolate the chicane beam pipe from the rest of the beam

pipe when it is necessary. Two ion pumps in section D2 - D3 can provide a vacuum

of 10−9 Torr inside the cavity.

The photon detector is located under the dipole D4 after the dipole D3. It is

Electron Detector

Fabry-Perot Cavity
Photon Detector

Electron Beam

Magnetic Chicane

GSO

D1 D4

D2 D3

Figure 3.12 (color) A schematic of a simplified view of Compton polarime-
ter in Hall A at JLab.
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mounted on a motorized table with remote-controllable motion along both axes (hor-

izontal and vertical) transverse to the beam direction. The scattered photons from

the CIP go through a vacuum tube before they hit the detector window. A 5 cm

thick lead collimator with a diameter of opening of 2 cm combined with a 1 mm thick

lead filter was used to block the unwanted backgrounds and synchrotron radiation.

The electron detector is mounted in between dipole D3 and dipole D4. It consists

of four Si micro strip planes mounted on a motorized vertical stage which is also

remote controlled during measurements.

We will now describe more in detail the magnetic chicane and then the optical

part of the polarimeter. Finally, we will describe the photon detector and electron

detector and their data acquisition systems.

3.3.1 Magnetic Chicane

When the polarimeter is in operation, the dipoles are powered and the beam is de-

flected by the magnetic field they produced and travels through the optical cavity. A

vacuum pipe between D1 and D4 allows the electron beam moving in a straight line

to the Hall A target located downstream of the polarimeter when it is not in use.

The chicane has a total length of 15.35 m. The length of each dipole is 1m. The

distances between the dipoles are shown in Figure 3.14. The dipoles are powered in

series and each can provide a magnetic field up to 1.5 Tesla. This allows the transport

of electron beams of energy up to 8 GeV (the applied field varies linearly with the

energy of the electron beam).

For a constant ~B field along the magnetic length (Ld) of a dipole (Figure 3.15),

the bending radius (Rd) of the trajectory of the incident electrons is given by [20],

Rd[m] =
p[GeV ]

0.3B[T ]
, (3.54)

where p is the momentum of incident electrons. The bending angle θe has the following

relation,

sin θe =
Ld
Rd

, (3.55)
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If we call H12 is the vertical deflection of the beam over a horizontal distance D12

between the exit of dipole D1 and the entrance of dipole D2,

tan θe =
H12

D12

, (3.56)

Now, the total vertical deflection (d) of the beam between the entrance of the

dipole D1 and the exit of the dipole D2 is,

d = 2h+H12 = 2Rd(1− cos θe) +D12 tan θe, (3.57)

The deflection of the electron beam by a dipole is also given by the following

equation:

tan θe = 0.3

∫
~B~dl

p[GeV ]
, (3.58)

where

∫
~B~dl is the line integral of the magnetic field. For JLab energy range of

1.0 - 6.0 GeV, and given the fact that the maximum magnetic field each dipole can

provide is 1.5 Tesla, calculations have shown that this angle is very small [20]. For

example, a PREx beam energy of 1.061 GeV, the bending radius and angle obtained

for the corresponding magnetic field B = 0.204 T is Rd = 17.36 m, θe = 57.62 mrad.

Therefore under the assumption of θe is being very small, and using the results of

equations (3.54) and (3.55), we obtain,

d ' Rdθ
2
e +D12θe = 0.3

B

p
Ld(Ld +D12), (3.59)

From the equation (3.59), one can see that, for a fixed energy E (momentum p)

of the electron beam, the angular deviation of the beam depends on the integral field

along its trajectory. Therefore, when the field is changed simultaneously in the four

dipoles, we do vary the vertical position of the electron beam in the section between

D2 and D3. If we call the change in magnetic field ∆B = B′ − B , then the vertical

displacement ∆d is,

∆d = 0.3
∆B

p
Ld(Ld +D12), (3.60)
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Δd
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D2 D3

D4

B
→

B’
→

Ld

LdD12

D2

D1

Rd

Rd

θe
B
→

B
→

H12

h

h

B’ > B

Figure 3.15 (color) Vertical deviation of electron beam trajectory in mag-
netic chicane (redrawn from [43]).

This procedure allows to maximize the luminosity of electron photon crossing at

the CIP by steering the electron beam in the vertical direction. For example, for a

beam energy of 1.0 GeV, a change in the dipole field of 1.0 mT can move the beam

vertically by ∼1 mm.

One of the beauties of Compton polarimeter is that it is non-destructive. This

means that we must design a system that allows both to detect scattered photons

and scattered electrons and return the primary beam to the downstream elements

of polarimeter without changing the direction of polarization, the orientation and

position of it. Because all the physics is happening at the target which is located at

the downstream of the polarimeter. We mentioned in equation 2.3 that a magnetic
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field can introduce a precession of the electron spin. These constraints require the

selection of a magnetic chicane dipoles such that they must have the same magnetic

length and same magnetic fields with opposite signs resulting the four dipoles have

a total

∫
~B~dl = 0. In other words, each dipole must deflect the electrons the same

angle and the next dipole should cancel this angle given by the previous dipole by an

exactly opposite field.

3.3.2 Optical Setup

The optical elements of polarimeter are mounted on an optics table placed in a little

room located between the dipoles D3 and D4. The room equipped with a laminar

flow fan filter system at the top in order to keep the optics clean from the dust and

contaminations in the environment.

The optical system of polarimeter has the following considerations:

• Transport, align and focus the laser beam required by the cavity so that there

is a resonance on the cavity with a fundamental mode (TEM00). This will be

discussed in detail in Chapter 5.

• Ensure that the polarization of the photon beam is circular at the interaction

point. This is crucial not only to get high experimental asymmetry but also

to achieve a good precision in electron polarization measurement. This will be

discussed in detail in Chapter 6.

• Maintaining the gain in the optical cavity requires a feedback control of the

laser frequency. This technique uses the reflected light from the cavity which

can be extracted from the incident light by an optical element. We will study

this in Chapter 5.

• The crossing angle between the electron and photon beams must be as small as

possible to maximize the luminosity of Compton scattering.
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Figure 3.16 (color) A 3D view of the Fabry-Perot cavity and optical el-
ements on optics table in Hall A Compton polarimeter at JLab (adapted
from [8]).

A schematic of optical and electronic system of the polarimeter is illustrated in

Figure 3.16 and Figure 5.30. Based on their main functionality, we can categorize

them into four groups necessary for achieving the required power and circular polar-

ization in the cavity.

The first group is the laser source which provides a green beam at the wave-

length of λ = 532 nm. It is based on three combinations. The seed laser is a diode

pumped neodymium-doped yttrium aluminum garnet (Nd:Y3Al5O12; Nd:YAG) Light-

wave laser delivers a continuous wave (CW) IR (λ = 1064 nm) beam up to 250 mW.

It is fiber coupled to a single mode ytterbium doped fiber laser amplifier capable of

generating a CW IR (λ = 1064 nm) beam up to 10 W. A frequency doubling unit
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consists of a MgO doped periodically poled lithium niobate (PPLN) crystal and tem-

perature controller necessary for achieving quasi phase matching which doubles the

frequency of the IR light. Two dichroic mirrors separate the green beam from the

residual IR beam. We will discuss this part more in detail in Chapter 4.

The second group consists of the elements related to transport, align and focus

the incident beam to the optical cavity which will be discussed in Chapter 5. The

focusing of the incident beam at the CIP is accomplished by three lenses noted as

L1, L2 and L3 respectively. Two motorized mirrors noted as M1 and M2 allow four

degrees of freedom of motion for the laser beam (2 translations, 2 rotations) with

respect to the optical axis of the cavity formed by two cavity mirrors. The mirror

Mr1, Mr2, Me and Ms are fixed at 45 degrees with respect to the incident beam. A

CCD camera facing the mirror Mr2 monitors the position of incident and reflected

beam from the cavity. Another CCD camera at the cavity exit monitors the profile

of the transmitted beam.

The third group includes elements for controlling and measuring the polarization

that we will discuss in Chapter 6. The polarization of the frequency doubled laser

beam is linear before it is being converted to circular by a quarter-wave plate mounted

on a stepper motor. At the exit of the cavity, the polarization is measured by a system

consists of a quarter-wave plate, a Wollaston prism and two detectors each is mounted

on an integrating sphere.

The last group consists of elements which allows the use of the reflected beam in

the electronic feedback (servo) system to achieve the frequency locking of the laser

to the cavity. This will be discussed more in detail in Chapter 5. A polarized beam

splitter combined with a quarter-wave plate used to extract the reflected beam from

the incident beam. A fast Si photodiode mounted on an integrating sphere detects

the reflected signal and sends it to the servo system.
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3.3.3 Photon Detector

The photon detector is a calorimeter with a single crystal Gd2SiO5 (GSO) (Figure

3.17(a)) doped with cerium for improved radiation hardness. The crystal has a cylin-

drical shape with a diameter of 6 cm and a length of 15 cm, it is large enough to

capture most of the shower from an incident photon, without the extended cross-

calibration and gain matching required for a crystal array. Signal readout is per-

formed with a 12-stage PMT [46]. The calorimeter is located approximately 6 m

downstream of the Compton interaction point, and is mounted on a motorized table

with remote-controllable motion along both axes (horizontal and vertical) transverse

to the beam direction (Figure 3.17(b)). Two narrow converter-scintillator pairs allow

precise centering on the beam of Compton-scattered photons, which forms a cone

with higher-energy photons at the center.

(a) GSO crystal mounted to a PMT (b) inside a steeltube housing mounted in the scattered-

photon beamline

Figure 3.17 (color) The GSO photon detector.

The GSO crystal has the following feature: A good detection efficiency in the

range of 100 keV - 50 MeV. A high light output with a light yield of ∼ 20 % gives a

high energy resolution and a fast decay time of < 500 ns is good for high event rate.
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3.3.4 Electron Detector

In principle, a Compton asymmetry may also be measured using scattered electrons,

or detections of both the scattered photons and electrons in coincidence mode. After

the interaction with laser beam, the scattered electrons lose some of their energy and

bent a larger angle than the unscattered ones by the dipole D3, and can be separated

from the primary beam between the dipole D3 and dipole D4 in the chicane.

Translator

Si μ-strips

Electronic 

Box

Bellow
Beam Pipe

(a) A vacuum chamber houses the electron de-

tector

(b) Micro strip planes in electron detector

Figure 3.18 (color) Electron detector assembly and Si micro strips.

The electron detector is located between the dipoles D3 and D4 at a distance of

4.102 m from the center of the dipole D3. It consists of four parallel planes spaced

horizontally 1 cm from each other and there is a 200 micron vertical upward offset

between planes. Each plane consists of 192 strips of silicon with the width of 240

microns. The planes are inclined at an angle of 58 mrad from the vertical position.

Figure 3.18(a) shows the vacuum chamber houses the detector and Figure 3.18(b)

shows the micro strip planes. The detector is mounted on a translator with remote-

controllable stepper motor and can travel vertically up to 120 mm from the main

beam.

If we denote p and θe as the momentum and bending angle of the primary beam,
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and denote p′ and θ′e as the momentum and bending angle of the the scattered beam

(Figure 3.19), using equation (3.58), we have the following,

∆θ′e = θ′e − θe ' 0.3

∫
~B~dl (

1

p′
− 1

p
), (3.61)

where

∫
~B~dl is the line integral of the magnetic field given by the dipole D3. Usually,

the detector is kept few mm out of the primary beam so that it can detect the scattered

electron tracks. By knowing its secure location YDet from the primary beam, we

can reconstruct the trajectory of the scattered electron and deduce its momentum

(energy).

Photon Detector

D4

D3
Prim

ary Beam

Scatte
red Electro

ns

Si µ-strips

58 mrad

θe

Δθe

YDet

Dispersive Axis

L = 4.102 m

GSO
θ
’
e

Figure 3.19 (color) Schematic of electron and photon detector layout in
polarimeter.

There are two methods used to determine the YDet. One is using two tungsten

wires of 20 microns in diameter placed on a mount in the bottom of the first plane.

When a wire moves vertically and crosses the beam, the particles emitted are de-

tected by a scintillation crystal coupled to a photomultiplier tube and the position is

recorded. This procedure is performed for beam currents of about 2 µA in order not

to break the wires. The precision of this method depends on the precision of the verti-

cal motion of the wire controlled by the stepper motor. Another one is measuring the
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experimental asymmetry of Compton events as a function of the momentum (energy)

of the scattered electrons for each strip, and YDet is determined from this asymmetry

by fitting the asymmetry spectrum to strip locations. Once YDet is determined, the

analyzing power corresponds to strip i is given by [44],

〈AL〉i =

∫ Eimax

Eimin

dσ0(Ei)

dEi
AL(Ei)dEi∫ Eimax

Eimin

dσ0(Ei)

dEi
dEi

, (3.62)

and the polarization from each strip is determined by,

P ie =
Aiexp
Pγ〈AL〉i

, (3.63)

by fitting the same asymmetry spectrum again to strip numbers in each detector plane.

Here Aiexp is the experimental asymmetry obtained from each individual strips, Pγ is

the laser polarization.

3.3.5 Data Acquisition

The data acquisition system of polarimeter has three modes: photon only mode,

electron only mode and electron-photon coincidence mode. Depending on the need

and the beam condition, we can run one of the modes independent of another.

Data Acquisition of Photon Detector

The original Compton polarimeter used a counting data acquisition system based on

differential polarization measurement method of Compton polarimetry, as described

in Section 3.1.4. A small, prescaled percentage of raw waveforms were retained from

each helicity window. The remainder of the data were analyzed online by one of

two CPU cards in the data acquisition VME (Versa Module Europa) crate; only this

analyzed summary was written to disk. This strategy to reduce the amount of disk

space required to store the Compton data was made possible by equipping the VME

crate with a dual CPU: as one CPU handled the acquisition of data from a helicity
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window, the other worked on the online analysis of data from the previous helicity

window. Each CPU card handed off control of the crate at the end of its helicity

window [44].

The new integrating data acquisition system (DAQ) performs the energy-weighted

integration method of Compton polarimetry as described in Section 3.1.4. This in-

tegral is performed automatically by the FADC (Flash Analog-to-Digital Converter),

so that a minimal amount of information must be written to disk. It is based on a

modified 12-bit FADC from Struck [40], running with a sampling rate of 200 MHz.

The timing of the write commands is based on helicity timing board that controls

the helicity flip rates (usually from 30 Hz to 1 kHz) and provides start-acquisition,

stop-acquisition, and write commands based on the master pulse signal (MPS), which

marks a brief period of indeterminate beam helicity between helicity windows. Figure

3.20 shows the simplified schematic of the integrating Compton DAQ.

Figure 3.20 Simplified schematic of the upgraded integrating Compton
DAQ [45].

A photon detected in the GSO crystal produces a negative pulse via the photo-

multiplier tube (PMT) attached to it; the area between the waveform of this pulse

and the FADCs baseline level (pedestal), is proportional to the energy the photon

has deposited in the crystal. Figure 3.21 shows the shape of typical signals from the

GSO’s PMT. If we know the pedestal value of our data, we can compute our energy-
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weighted integral simply by summing the sampled signal in a hardware accumulator.

There are six different accumulators, each perform a slightly different integral with

several programmable parameters. We introduce two programmable thresholds, one

near the pedestal (T1) and one far from the pedestal (T2), shown with a plot of two

sample photon pulses in Figure 3.21. The first threshold allows us to integrate over a

region including only pedestal noise or to exclude that region from an integral. The

second threshold allows the exclusion of large background pulses from the integral.

When the signal crosses a threshold to enter the range of an accumulator, the N before

preceding samples can also be added into the accumulator; the same can be done

with the Nafter samples following a threshold crossing out of the accumulators range.

T2

T1

Figure 3.21 (color) Typical small (normal) and big (background) signals
with the thresholds for the Integrating FADC DAQ.

Six accumulators with their programmable parameters defined as following [46]:

• Accum0 (All): Accumulates all signal over the entire input range of the FADC.

• Accum1 (Near): Accumulates signal between T1 and the high (pedestal) end of

the input range. This is used to examine pedestal noise.

• Accum2 (Window): Accumulates signal between T1 and T2 . Ideally, this should



3.3 Elements of Compton Polarimeter 69

be set to include nearly the entire range of Compton-scattered photons (with

the possible exception of photons with very low energies).

• Accum3 (Far): Accumulates signal between T2 and the low (saturation) end of

the input range. This is used to examine high-energy background pulses.

• Accum4 (Stretched Window): Accumulates signal between T1 and T2 , plus the

N before
4 samples before the signal crosses T1 as it enters the window, plus the

Nafter
4 samples after the signal crosses T1 as it leaves the window. This accumu-

lator excludes any samples that contribute to the Stretched Far accumulator.

• Accum5 (Stretched Far): Accumulates signal between T2 and the low (satura-

tion) end of the input range, plus the N before
5 samples before the signal crosses

T2 as it enters the accumulator range, plus the Nafter
5 samples after the signal

crosses T2 as it leaves the accumulator range.

In typical running, three accumulators Accum0, Accum2, and Accum4 access the

energy range of Compton-scattered photons and can be used to extract a Compton

asymmetry.

Data Acquisition of Electron Detector

The electron detector contains four planes of Si detectors, each is 500 µm thick with

192 strips at a 250 µm pitch. The strips are connected to a kapton flex cable connected

to a vacuum feed-thru circuit board bus. The analog signals are then fed to a charge

sensitive preamplifier. On the standard Front End cards, the output of pre-amp is

sent to a Constant Fraction Discriminator.

The threshold condition can be set by either triggering the photon detector or trig-

gering a specific strip in the electron detector plane. The signals that pass the thresh-

old are directed to a logic module based a field-programmable gate array (FPGA).

According to the logical “hit-condition” in the strips of specific planes, the acquisition

records the voltages of each strip.



Chapter 4

Building Green Laser Source via Second

Harmonic Generation

4.1 Motivation

As we discussed in previous chapter, photons with higher energy (shorter wavelength)

give us higher asymmetry and therefore a smaller systematic error in Compton po-

larimetry. The Hall A Compton Polarimeter Upgrade [39] requires a 532 nm green

laser with a narrow line-width and PZT-based tuneability. Amid concerns about

the difficulty of locking the very high finesse (∼50,000) cavity with the commercially

available low power narrow line-width green laser (100 mW Prometheus laser [41]),

we pursued an approach in which a tunable, narrow line-width 1064 nm laser (Light-

wave) used as a pumping source for the ytterbium (Yb) doped fiber amplifier and the

frequency of the amplified light is doubled by using a single-pass second harmonic

generation in a nonlinear optical crystal called PPLN (Periodically Poled Lithium

Niobate).

In this chapter we briefly introduce the basic principles of nonlinear optics, in

particular the second harmonic generation and quasi phase matching. The limitations

of nonlinear devices will be described. The experimental setup and properties of the

frequency doubled green beam will also be discussed.

70
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4.2 Nonlinear Optics

4.2.1 Nonlinear Optical Interactions

Nonlinear optics studies the interaction between a light and a nonlinear media while

the light propagates through the medium within its transparency range. The oscil-

lating optical (electromagnetic) field exerts an electrical force on electrons bounded

to the medium and as a result it polarizes the medium with an oscillating electric

dipoles at the same frequency as that of the driving optical field. With ordinary light

sources the field is much smaller than the fields that bind the electrons to the atom

and therefore the oscillation is also small. However, if the optical field is sufficiently

large so that it is comparable with interatomic fields (108 V/cm), then the dielectric

polarization responds nonlinearly to the electric field of the light.

In some media, a small portion of the electric dipoles oscillates at a frequency

different from the driving optical field and this leads to a generation of new optical

field within the medium. During this process, some photons from the driving field are

destroyed in order to provide energy for the creation of new photons, and generally

it does not involve absorption.

The polarization P(t) of a medium depends on the strength E(t) of an applied

optical field. In the case of ordinary optics, the induced polarization depends lin-

early on the electric field strength in a manner that can often be described by the

relationship [47]

P(t) = ε0χ
(1)E(t), (4.1)

where ε0 is the permittivity of free space and χ(1) is known as the linear susceptibility

and is responsible for refraction, dispersion, and diffraction and in this process no

new frequencies will be generated. In nonlinear optics, the optical response can often

be described by generalizing equation (4.1) by expressing the polarization P(t) as a
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power series in the field strength E(t) as,

P(t) = ε0

[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
≡ P(1)(t) + P(2)(t) + P(3)(t) + · · · (4.2)

The quantity χ(2) is the second-order nonlinear optical susceptibility which describes

the second-order nonlinearities, such as frequency doubling, electro-optic effect, and

parametric oscillation, etc. The quantity χ(3) is called third-order nonlinear optical

susceptibility which describes the third-order nonlinearities, such as quadratic Kerr-

effect, intensity-dependent refractive index, four-wave mixing, self-focusing, etc. The

expression in equation (4.2) often written as the sum of two terms,

P(t) = PL(t) + PNL(t), (4.3)

where the linear polarization is,

PL(t) = ε0χ
(1)E(t), (4.4)

The remainder is the nonlinear polarization and is given by,

PNL(t) = ε0

[
χ(2)E2(t) + χ(3)E3(t) + · · ·

]
, (4.5)

The higher order terms of this equation represent terms which can generate new fre-

quencies and these processes are often called as Second Harmonic Generation (SHG),

Third Harmonic Generation (THG), High Harmonic Generation (HHG), Sum Fre-

quency Generation (SFG), and Difference Frequency Generation (DFG) etc. In gen-

eral, the third-order and higher terms in equation (4.5) are very small compared to

the second-order term and here we denote the PNL(t) ' P(2)(t) as,

P(2)(t) = ε0χ
(2)E2(t), (4.6)

The amount of second harmonic light that is produced depends heavily on the

form of the χ(2) tensor. In order for the χ(2) not to vanish, the medium(crystal)

must not possess inversion symmetry (non-centrosymmetric). Since liquids, gases,

amorphous solids (such as glass), and even many crystals display inversion symmetry,

and therefore they cannot produce second-order nonlinear optical interaction.
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4.2.2 Second Harmonic Generation

Second harmonic generation is also called frequency doubling. It was first demon-

strated by P. A. Franken et al. at the University of Michigan in 1961 [48]. It is

a process whereby an electromagnetic wave oscillating at ω generates a polarization

oscillating at 2ω in the nonlinear medium, which in turn the medium radiates an elec-

tromagnetic wave oscillating at 2ω - the second harmonic. Another way to interpret

this occurrence is as the combination of two pump photons to form a single photon

with double the frequency. The efficiency of the process is dictated by the nonlinear

coefficients of the crystal, the polarization and intensity of the driving field, and the

phase mismatch between the driving and the second harmonic field. Figure 4.1 shows

the geometry and energy level diagram of second harmonic generation.

)2(

(a) (b)

ω

ω

2ω

ω

ω

2ω

Figure 4.1 (color) (a) Geometry of Second Harmonic Generation. (b)
Energy level diagram of Second Harmonic Generation process.

If we assume an optical field of a single frequency ω propagating through a medium

that has the necessary type of symmetry to produce the second harmonic 2ω. The

field can be noted as E(t) = Acos(ωt) and the equation (4.6) becomes,

P(2)(t) = ε0χ
(2)
[
Acos(ωt)

]2
= dε0A

2
[
1 + cos(2ωt)

]
, (4.7)

where d = χ(2)/2 is the effective nonlinear coefficient, which is obtained from the

third-order tensor χ(2). The susceptibility χ(2) may be determined by calculating

P(2)(t) quantum mechanically and then determine χ(2) by comparison with equation
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(4.7). We see that the second-order polarization consists of a zero frequency term

and a 2ω frequency term.The first term leads to the generation of a static electric

field in the nonlinear medium known as optical rectification and the the second term

contributes to the generation of second-harmonic frequency.

The propagation of light field in the nonlinear media is always dictated by Maxwell’s

equations.

∇ ·D = ρ, (4.8)

∇ ·B = 0, (4.9)

∇× E = −∂B

∂t
, (4.10)

∇×H = J− ∂D

∂t
, (4.11)

where E is the electric field, and D is the displacement (electric-flux density) vector, J

is the free-current density, and ρ is the free charge density. H and B are the magnetic

field vector and flux density respectively and have the following relationship,

B = µ0H, (4.12)

Maxwell’s equations in a homogenous source-free (J = 0) medium can be written as,

∇2E = µ0
∂2D

∂t2
, (4.13)

The displacement vector D and the polarization vector P has the following relation-

ship in MKS unit,

D = ε0E + P, (4.14)

using the relation in equation (4.13),

∇2E = µ0

(
ε0
∂2E

∂t2
+
∂2PNL

∂t2

)
, (4.15)

The nonlinear polarization term PNL leads to the generation of new field. For in-

teractions where the amplitudes of the fields change slowly on the time scale of the
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wavelength in space and the optical period in time, one can invoke the Slowly Varying

Envelope Approximation (SVEA) [47],

Ei(x,y, z, t) =
Ai(x,y, z, t)

2
ei(ωit−kiz) + c.c., (4.16)

where ki = ωini/c and c is the speed of light and ni is the refractive index of the

medium at ωi, propagating along the z-axis and substituting into equation (4.15)

reduces to,
∂Ai
∂z

ei(ωit−kiz) + c.c. = i

√
µ0

ε0εi

1

ωi

∂2PNL

∂t2
, (4.17)

one can obtain the approximate solution of the above equation,

2iki
∂Ai
∂z

= µ0ε0ω
2
iP

NL, (4.18)

This is a fundamental equation that collects all the nonlinear polarization source

terms into one vector PNL which describes the generation of a new field Ei(x,y, z, t).

According to one of the first theoretical treatments of second-harmonic generation

by Armstrong et al. [49], if we examine the case where there are two optical fields with

frequency ω1 (driving field) and ω2 (second-harmonic field) simply co-propagating in

the medium,

E1 =
A1

2
ei(ω1t+k1z) + c.c., (4.19)

E2 =
A2

2
ei(ω2t+k2z) + c.c., (4.20)

at the tensor notation for the three-wave mixing process (SHG is a special case of

three-wave mixing),

PNL
i = ε0χ

(2)
ijkEjEk, (4.21)

by examining the special case for SHG where ω2 = 2ω1 and χ(2) = d/2 = dSHG/2,

the nonlinear polarization is given by,

PNL =
d

2

[
A2

1e
i(ω2t−2k1z) + 2A∗1A2e

i(ω1t−(k2−k1)z) + c.c.
]
, (4.22)
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by substituting the above equation into equation (4.18), we can get two differential

equations that describe the evolution of the fundamental and second harmonic fields,

∂A1

∂z
= −i ω1d

2cn1

A∗1A2e
−i∆kz, (4.23)

∂A2

∂z
= −i ω2d

2cn2

A2
1e
−i∆kz, (4.24)

where ∆k = k2 - 2k1 which represents the phase mismatch of the material at the two

different wavelengths. These two equations are the coupled mode equations for SHG

and n1 and n2 are the refractive index of the frequencies ω1 and ω2 in the medium.

In the limit of low conversion efficiency (∼ 25 %) and with the assumption of no

absorption and no depletion for the fundamental frequency (
∂A1

∂z
= 0), if we integrate

equation (4.24) in z direction from 0 to L (length of nonlinear medium/crystal),

A2(L)− A1(0) = −i ω2d

2cn2

e−i
∆kL

2 A2
1sinc

(∆kL

2

)
, (4.25)

We can see that the function is at its maximum when ∆k = 0, and it is called phase-

matching. We also can define the conversion efficiency by taking the ratio of the

second harmonic intensity I2(L) = cε0n2|A2|2/2 to the first harmonic intensity I1(0)

= cε0n1|A1|2/2 by [50],

ηSHG =
I2(L)

I1(0)
=

2ω2
1d

2

n2
1n2c3ε0

I1L
2 sin2

(∆kL

2

)
, (4.26)

It can be seen from the equation that the conversion efficiency is dependent on

the intensity of the pump beam (I1), nonlinear coefficient of the medium (d) and

the length of the medium (L). Other than that it is strongly depend on the phase

mismatch ∆k. Figure 4.2 shows the relationship between η and ∆k.

Although equation (4.26) is obtained under the undepleted pump approximation

and it is appropriate in many situations, in some cases where the conversion efficiency

is moderate to high, it is necessary to include depletion of the fundamental field.

Under proper phase matching conditions, the nonlinear oscillations of all dipoles in

the medium constructively interfere and the process of SHG can be so efficient that
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Figure 4.2 (color) SHG conversion efficiency as a function of phase mis-
match.

nearly all of the energy in the driving field at frequency ω1 is transferred to the second-

harmonic frequency 2ω1 and it leads to the depletion of ω1. This requires a proper

phase-matching. A detailed analysis for a depleted plane-wave SHG is described in

Ref [49] and for a perfect phase matching condition, the efficiency is reduced to,

ηdepleted = tanh2

(√
2ω2

1d
2

n2
1n2c3ε0

I1L2

)
, (4.27)

In the following section we will describe the interactions involve phase matching.

4.2.3 Phase-matching

Efficient frequency conversion requires phase matching between the fundamental and

second harmonic waves. If phase matching is not achieved (∆k 6= 0), the power will

oscillate periodically along the length of the medium due to the oscillation of the

relative phase between the driving nonlinear polarization and the generated second

harmonic. This oscillation is shown in Figure 4.3. The coherence length Lc =
π

∆k
,

is the length over which the driving nonlinear polarization and the generated second



4.2 Nonlinear Optics 78

harmonic stay in a phase relationship where the power flows from the driving nonlinear

polarization to the second harmonic. There are two types of techniques to achieve

phase matching: birefringent phase matching; quasi-phase matching.

Birefringent Phase Matching

Birefringent phase matching (BPM) was suggested independently by Giordmaine [51]

and Maker et al [52]. It is a precision technique exploits the birefringence of the

nonlinear crystal. The phase matching is achieved by carefully choosing the direction

and polarization of the pump beam so that both the fundamental and the second

harmonic will experience the same index of refraction: n1 = n2. In this case, the

power of the second harmonic beam will grow the square of the crystal length as

shown in Figure 4.3.
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Figure 4.3 (color) SHG output power as a function of crystal length (L) nor-
malized to the coherence length (Lc) for various phase matching conditions:
perfectly phasematched, first-order quasi-phasematched, not phasematched.

Birefringent phase matching is not possible in all cases. For a given crystal and

a given wavelength combination, there may not be an angle at which the index of
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refraction is the same for both wavelengths. Conversely, even if such an angle exists,

it may not allow coupling to the highest efficiencies. The effective nonlinear optical

coefficient of the crystal depends on the polarization angles of the beams, and it is

often not maximized for the birefringent phase matching solution.

Quasi-phase Matching

Quasi-phase matching (QPM) uses a periodic flipping of the sign of the nonlinear

susceptibility of the medium to reverse the relative phase between the driving nonlin-

ear polarization and the generated second harmonic at a regular interval. It relies on

resetting of the phase mismatch ∆k to 0 every coherence length Lc. After one coher-

ence length of propagation, ∆k becomes π. If the sign of the nonlinear susceptibility

χ(2) is changed at that location, an additional π phase shift is added to the nonlinear

polarization, resetting ∆k to 0. If we keep adding this periodic structure correctly,

the SHG power grows quasi-quadratically along the entire length of the crystal as

shown in Figure 4.3.

In order to better understand the basics of QPM interactions, let us consider

a plane-wave SHG with an undepleted continuous-wave pump field. The periodic

structure of QPM medium allows for spatially varying nonlinear coefficient d(z) in

the form of a square-wave, and equation (4.24) for this case is [53, 54],

∂A2

∂z
= −iω2d(z)

2cn2

A2
1e
−i∆kz, (4.28)

where ∆k = k2 − 2k1. For a crystal of length L, integrating equation (4.28) from

z = 0 to z = L gives,

A2(L)− A2(0) = −i ω2

2cn2

A2
1

∫ L

0

d(z′)e−i∆kz
′
dz′, (4.29)

In periodically poled QPM medium, only the sign not the amplitude of the non-

linear susceptibility is flipped with a period Λ and a fundamental spatial frequency

Kg, where Λ = 2Lc = 2π/Kg. We can write d(z) as a Fourier series,

d(z) =
∑
m

dme
iKmz, (4.30)
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where the mth spatial harmonic Km = mKg, and dm is the corresponding Fourier

coefficient. With such a periodic medium, equation (4.29) becomes [54],

A2(L)− A2(0) = ie−
i∆k′L

2
ω2

cn2

A2
1Ldmsinc(∆k

′L), (4.31)

where the effective phase mismatch is ∆k′ = ∆k−Km. In this case, QPM in period-

ically poled medium can produce the same result as an SHG process in homogenous

medium with an effective nonlinear coefficient dm and the phase mismatch ∆k shifted

from 0 to Km = 2πm/Λ. Since the periodic structure of the medium leads to the

modulation of d(z) from +deff to −deff with duty cycle D, the Fourier transform of

equation (4.30) can be written as,

dm =
( 2

mπ

)
sin(πD)deff , (4.32)

It can be seen from the above equation that the QPM nonlinear coefficient is

reduced by a factor of 2/mπ as compared to the effective nonlinear coefficient deff in

homogenous medium. Interactions involving higher-order QPM further reduces the

dm. Therefore, the strongest nonlinear mixing is obtained in a QPM medium with

first-order phase matching and 50% duty cycle. Figure 4.3 shows the first-order QPM

plot in green. Following equation (4.26), the conversion efficiency of QPM can also

be written as [55],

ηQPM =
I2(L)

I1(0)
=

2ω2
1d

2
m

n2
1n2c3ε0

I1L
2sinc2

(∆k′L

2

)
, (4.33)

The dependencies of QPM efficiency is the same as phase matching in homogenous

materials except there is a difference in nonlinear coefficient depend upon the phase

matching method we use and there is a factor m which dictates the order of QPM

interaction. From Figure 4.3, it seems the first-order QPM is 4/π2 times less efficient

than that the perfect BPM for the same nonlinear coefficient, in reality QPM is often

more efficient than the BPM for the following reasons [55]:

• QPM couples the waves of same polarization with the largest nonlinear coeffi-

cient and in PBM this coefficient is always very small.
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• QPM always allows non-critically phase matched interactions, but BPM cannot

be achieved without critical phase matching.

• QPM can provide a level of engineerability through the use of spatially inho-

mogeneous gratings.

4.2.4 Nonlinear Interactions with Focused Gaussian Beam

So far we have treated all the optical fields involved in nonlinear interactions as plane

waves. However, in practical experiments, the incident fundamental beam is focussed

into the bulk crystal in order to increase its intensity and hence to increase SHG

efficiency. Although tighter focussing allows for higher intensity, but it reduces the

interaction length. Loose focusing increases the interaction length, but also reduces

the intensity. The most common way to obtain high intensity is to use pulsed lasers.

For continuous-wave (CW) lasers, there are two ways to increase the intensity: cavity

enhancement and tight focusing. The general theory of focused Gaussian beam is de-

scribed in Ref [50] and in the low conversion efficiency limit (η ≤ 0.2), the undepleted

conversion efficiency is [55],

ηfocussed =
16π2d2

m

λ3n1n2cε0
I1 L h

(
α,B, κ, ξ,

∆kLconf
2

)
, (4.34)

where dm is the nonlinear coefficient of the mth-order QPM, λ is the fundamental

wavelength, ε0 is the permittivity of free space, I1 is the fundamental power, L is

the length of the crystal and h is called the Boyd-Kleinman h-factor. The h-factor

has the following parameters: the absorptivity (α), the Poynting vector walk-off (B),

the focussing parameter (ξ =
L

Lconf
, Lconf =

2πω2n1

λ
, ω is the 1/e2-intensity radius),

the focus position (µ) and the phase-mismatch (∆k). For a QPM interaction, the

h-factor is maximized by proper tuning of the phase and usually it is achieved by

adjusting the temperature of the crystal. Maximizing h is the collective contribution

from other parameters and usually it is depend on the properties of the QPM medium,

fundamental beam and the phase matching condition. In general h = 0.8 is taken
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for confocal focussing and h = 1.1 is taken for the optimum, tighter than confocal

focus. Confocal focussing is used to reduce the stress on the crystal. Ref [50] gives a

detailed information on the relationship between η and h.

For a perfect phase matching with a high-conversion efficiency, we can extend

equation (4.34) to the depleted regime. Ref [56] shows a numerical solution which

follows the following relation,

ηdepleted,focussed = tanh2

(√
16π2d2

m

λ3n1n2cε0
I1 L h

)
, (4.35)

4.2.5 Periodically Poled Materials

Even though QPM was discovered prior to birefringent phase matching [48, 49], but

did not get much attraction due to difficulties in fabricating such a micron-scaled

structure. The fabrication of periodically poled QPM materials were possible only

after the development in lithographically controlled patterning technology in late 80s.

Periodic poling is a technique which involves an engineering process to periodically

reverse the domain orientation of a transparent nonlinear material in order to achieve

quasi-phase matching. Periodic poling technology enables the generation and con-

version of new laser frequency via periodically poled nonlinear crystals. This type of

high-efficiency new frequency generation processes were not possible with traditional

laser technology before. When phase matched, periodically poled crystals exhibit up

to two-orders of magnitude more efficiency as compared to the same crystal without

periodic poling. The materials usually made of wide band gap inorganic crystals such

as lithium niobate (LiNbO3), lithium tantalate (LiTaO3) and potassium titanyl phos-

phate (KTiOPO4) or organic polymers. The periodically poled version of them are

often abbreviated as PPLN (periodically poled LN), PPLT (periodically poled LT)

and PPKTP (periodically poled KTP).

Quasi-phase matching imposes several constraints on the crystal. Due to difficul-

ties in generating a uniform electric field for the poling process, the crystal thickness

(T ) is limited to few millimeters or less. Usually, the poling period (Λ) is between a
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few microns and some tens of microns which determines the wavelengths for which

certain nonlinear processes can be quasi-phase matched. Furthermore, although all

types of SHG are temperature dependent (due to thermal variation in refraction in-

dices), the quasi-phase matched process has a stronger temperature dependence due

to thermal expansion and contraction of the poling period(Λ). Figure 4.4 shows a

typical uniformly structured periodic pattern for periodically poled nonlinear bulk

crystal.

Λ = 2Lc

ω1

ω2

zx

y

L

W

T

Figure 4.4 (color) Schematic representation of second harmonic generation
in a periodically poled nonlinear crystal with a uniform grating period.

Periodic poling can be realized by several techniques such as pulsed electric field

[60], thermal pulsing [61], vapor transport equilibration [55, 62] and other methods

to relocate the atoms to create reversed domains. This can be achieved either during

the growth of the crystal, or subsequently. Domain engineering with pulsed electric

field is one of the most common techniques that involves the application of a strong

electric field to a ferroelectric crystal via patterned electrodes on the crystal surface.

4.3 Tuning and Tolerances in Quasi-phase Matching

In second harmonic generation the phase matching condition is very sensitive and

can be changed by changing one of the following parameters: the domain width of

the nonlinear crystal, the wavelength of the laser, the temperature of the nonlinear
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crystal and the angle of the nonlinear crystal with respect to the polarization ori-

entation of the laser beam. In designing and tuning the periodically poled devices,

one should understand how sensitive the phase matching conditions and therefore

the conversion efficiency to these parameters. For example, if the line-width of the

laser is larger than the acceptance bandwidth of the crystal, the conversion efficiency

will be reduced. If the temperature tuning device has a lower resolution than the

temperature tuning bandwidth of the crystal, one may not be able to get maximum

conversion efficiency. We will briefly describe these effects for an isotropic medium

with plane wave approximation. The more complicated anisotropic medium case is

explained in Ref [53] in more detail and it will not be described in here.

4.3.1 Domain Period

For a nonlinear device of length L with a uniform period of Λ, one can define the

acceptance bandwidth of QPM interaction by solving the following equation,

sin2

(
∆k′L

2

)
(

∆k′L

2

)2 =
1

2
(4.36)

from which we can find the full width at half maximum (FWHM) acceptance

bandwidth for several parameters which effect the phase-mismatch ∆k′. Solving the

above equation yields ∆k′L/2 = 0.4429π. Fejer et al. [53] described a theoretical

model which estimates the bandwidth of domain error (∆Λ) in periodic poling. For

a crystal with domain number of N and a period of Λ,

∆Λ =
1.77Λ

Nm
, (4.37)

where m is the order of QPM. We can see from the above equation that a material

with more number of domains and short poling period makes the domain acceptance

bandwidth smaller when the conversion efficiency dropped to its half.
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4.3.2 Spectral Bandwidth

The second harmonic wavelength acceptance ∆λ is defined by material properties

and can be calculated by [53],

∆λ =
0.4429λ

L

∣∣∣∣∣n2 − n1

λ
+
∂n1

∂λ
− 1

2

∂n2

∂λ

∣∣∣∣∣
−1

, (4.38)

where λ is the fundamental wavelength, n1 and n2 are the refractive indexes at funda-

mental and second harmonic wavelengths. The dispersion relations can be obtained

numerically from Sellmeier’s equation [69] for the material being used. For a BPM

case, n1 = n2 = n and equation (4.38) become,

∆λ =
0.22145λ

L

∣∣∣∣∣∂n∂λ
∣∣∣∣∣
−1

, (4.39)

At longer wavelength the spectral bandwidth increases due to decrease in dis-

persion. It can also be seen from the equation that longer crystal also makes the

wavelength acceptance narrower.

4.3.3 Temperature Bandwidth

The temperature acceptance for a QPM interaction is an important parameter, be-

cause it defines the amount of temperature to be stabilized in order to maintain phase

matching. Temperature tuning not only changes the phase matching by changing the

temperature dependent refractive index of the material, but also induces a thermal

expansion which can alter the poling period Λ and the total length L of the device.

According to the derivation of Fejer et al. [53], the temperature acceptance bandwidth

∆T for a QPM case can be is defined as,

∆T =
0.4429λ

L

∣∣∣∣∣∂∆n

∂T
+ α∆n

∣∣∣∣∣
−1

, (4.40)

where ∆n = n2−n1 and the temperature dependence of refractive index is calculated

from the Sellmeier’s equation [69] and the thermal expansion coefficient α is,

α = L−1
c

∂Lc
∂T

, (4.41)
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where Lc is the coherence length. Like the spectral bandwidth, the thermal band-

widths decreases with longer crystal length and increases with longer wavelength.

4.3.4 Angle Tuning and Angular Acceptance

Even though QPM is called noncritical phase matching, since it is carried out in

birefringent crystals, both QPM and BPM can occur simultaneously. Therefore,

tuning of it still depends on the angle between domain vector Km and the fundamental

wave vector k1. If we assume crystal is perfectly phasematched in all the other

direction but not in the direction where the domain vector Km points to. The phase

mismatch is the function of the internal angle (θ) between the beam propagation

direction and the vector Km. Let’s assume a case where there is a tilt (ν) between

the domain vector Km and the transverse direction of the crystal. Fejer [53] defined

the angular bandwidth ∆θ for this critical phasematched case as,

∆θ ≈ 0.886
cos θ

sin(ν − θ)
Λ

L
, (4.42)

It explains that for critical phase matching the angular acceptance is inversely

proportional to crystal length or inversely proportional to number of domains N =

L/Λ which indicates that it is harder to achieve angular phase matching in longer

devices than shorter devices.

For a noncritically phasematched case, the angular acceptance ∆θ can be defined

as [53],

∆θ = 2

√
1.772

n2

n1

Lc
L

cos θ, (4.43)

We can see that ∆θ depends inversely on the square root of the crystal length.

It is also possible to calculate the angular acceptances with respect to a rotation

about the other crystal axes. The calculation is slightly more complicated in those

cases, because we have to take into account the angular dependence of index of

refraction. But in these cases, the angular acceptance is slightly smaller than the

case we just discussed above. Ref [53] has detailed discussion for these cases as well,

therefore we will not describe them in here.
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4.4 Limitations on Nonlinear Devices

Nonlinear optical materials have been widely used in photonics technology as a good

source for generating new optical frequencies. However, there are many factors which

could impose a limitation on the performance of nonlinear devices that made of these

materials. Some of these factors are material dependent which is intrinsic to the

specific material we use. For example, in the case of lithium niobate, they are lattice-

defects and polarons [63] in its structure and they can reduce the second harmonic

conversion efficiency and also cause an absorption of both fundamental and second

harmonic beams. They can only be reduced by carefully controlling the fabrication

process or post-processing of the material such as annealing. Another limitations also

come from extrinsic defects such as impurities in the nonlinear material. Sometimes,

impurities induced externally can be useful to improve the performance of the de-

vice. Intrinsic and extrinsic impurities absorb light, and they both strongly effect the

properties of nonlinear crystals.

Due to above factors, nonlinear optical devices are susceptible to “optical-damage”

which can be categorized as photo-refraction and thermo-optic effect induced by the

laser beam.

4.4.1 Photo-refraction

Optical field induces redistribution of charge which causes a change in refractive

index. This redistribution of charge is caused by electronic excitation due to photon

absorption. Ref [64] describes a model which explains the photo-refraction in various

materials. When a nonlinear optical crystal with defects (impurities and intrinsic

defects) pumped by a laser beam, space charges (electrons and holes) will build up

and generate a current that induces a change in refractive index through electro-optic

effect. It reduces the conversion efficiency by dephasing and distorts the wavefront of

the laser beam and causes a scattering of light.

The performance of nonlinear devices can also degrade over time since these



4.4 Limitations on Nonlinear Devices 88

charges can accumulate. Doping with MgO [65] and composition control [66] can

greatly reduce the effect of photo-refraction. If photo-refraction effect is excessive, it

is also called “photorefractive damage”.

4.4.2 Thermo-optic Effect

Absorbed photons causes heat accumulation due to impurities and intrinsic defects in

the crystal. If the absorbed energy is not dissipated instantly it heats the crystal and

also changes refractive index due to thermo-optic effect. Absorption of the pump beam

or nonlinear output induces dephasing and thermal lensing which ultimately causes

either subsequent beam quality degradation or reduction of conversion efficiency or

even damage. Laser induced damage can be either on the crystal surface or in the

bulk crystal. Laser damage threshold under various conditions is vary depend on the

crystal type and its growth conditions. Thermal stresses at cooling interfaces can

cause fracture and permanent damage.

Other than extrinsic impurities, color centers can arise from intrinsic defects. The

electronic state of intrinsic defects can be altered by the illumination with optical

radiation. This change of electronic state can then alter the absorption spectra of the

intrinsic defects [55]. For example, green induced infrared absorption (GRIIRA) in

lithium niobate (LN) and lithium tantalate (LT) causes the increase of the infrared

absorption substantially when illuminated with small intensities of green light. Dop-

ing with MgO also can reduce this effect [68]. However, absorption is not always

harmful to nonlinear optical interactions. Optical parametric oscillation (OPO) is

only possible if the pump power exceeds a certain threshold power. For example, for

continuous-wave (CW) singly-resonant OPOs, this threshold power is proportional to

the roundtrip losses of the resonant wave [67]. One portion of these losses is attributed

to optical absorption in the nonlinear crystals. Therefore, depend on the need, one

has to chose what kind doping level to pursue in order to achieve the desired nonlinear

optical process.
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4.5 Frequency Doubling with PPLN Crystal

4.5.1 Periodically Poled Lithium Niobate Crystals

Lithium niobate (LiNbO3) is a non-centrosymmetric ferroelectric crystal below the

Curie temperature TC = 1165 oC. The crystal structure is shown in Figure 4.5. Due

to its unique crystal structure, lithium niobate possess a spontaneous polarization

Ps = 10 µC/cm2 at room temperature [63], and a change in temperature leads to

the change in spontaneous polarization Ps of the crystal which we call pyroelec-

tricity. Lithium niobate crystal is not only ferroelectric, but also piezoelectric and

birefringent. It is used extensively as optical modulators, acousto-optic devices, op-

tical waveguides, pockels cells, Q-switching devices for lasers and optical switches for

gigahertz frequencies.

Figure 4.5 (color) Crystal structure of LiNbO3 [70].

Lithium niobate has been widely used in nonlinear optics due to its high nonlin-

earity, and the availability of high optical quality substrates. It is transparent from

350 nm to 5000 nm and provides low loss for both the fundamental and second har-

monic for visible light generation. When periodically poled, it possesses the highest

nonlinear coefficient (d33 = 27 pm/V) for visible light generation among the all inor-

ganic materials. First-order quasi-phase matching provides 2/π (63 %) of the full d33,

or about 17 pm/V. Table 4.1 summarizes the nonlinear coefficients of some popular
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nonlinear materials for a fundamental wavelength of 1064 nm.

Material Transparency Nonlinear Phase Matching Refractive

Range (nm) Coefficient (pm/V) Schemes Index (ne)

LiNbO3, LN 330–5500 d33 = 27 QPM 2.2

d31 = 4.3 BPM

LiTaO3, LT 280–5500 d33 = 13.8 QPM 2.2

d31 = 0.85 BPM

KTiOPO4, KTP 350–4500 d33 = 15.3 QPM 1.86

d31 = 1.95 BPM

KH2PO4, KDP 200–1500 d36 = 0.39 BPM 1.5

BaB2O4, BBO 185–2600 d31 = 0.08 BPM 1.6

LiB3O5, LBO 160–2600 d31 = 0.85 BPM 1.6

Table 4.1 Nonlinear coefficients of some popular nonlinear materials (The
comparisons are for the wavelength of 1064 nm). [57–59]

Frequency doubling with periodically poled materials enables the making of visible

or ultraviolet light at wavelengths for which lasers are not available traditionally.

The advancement in periodic poling technique in nonlinear optical materials made

the second harmonic generation (SHG) by quasi-phase matching (QPM) an efficient

way to build a compact and low cost lasers. Two most common configurations of

frequency doubling have been used so far are single-pass and intra-cavity doubling.

The fundamental beam passes through the crystal only once in the single-pass case

whereas intra-cavity is makes use of amplified fundamental power inside a resonator.

The crystal is placed inside the cavity in the later case and cavity mirrors are designed

such that they are highly reflective to the fundamental but transparent to the doubled

beam. Generally intra-cavity doubling gives higher efficiency than the single-pass

case, but it is difficult to construct.
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Potential QPM materials being fabricated with periodic poling technique include

KTiOPO4, LiTaO3, LiB3O5 and LiNbO3. Among them periodically poled LiNbO3

(PPLN) has been a very attractive material not only due to its high nonlinear coeffi-

cient and therefore high conversion efficiency but also due to its low cost and easiness

of fabrication. Quasi-phase matching in PPLN was first demonstrated in 1991 [71].

However, just like other nonlinear materials, it suffers from photo-refractive damage

and pointing instability [72] at high powers. To overcome this effect, it is always

doped with magnesium oxide (MgO) [73]. Since then few mW levels of frequency

doubled light at wavelengths from 437 nm [74] down to 340 nm [75] have been re-

ported. There are more reports on single-pass generation of green light (510 nm ∼

540 nm) with a power level of few Watts [72,76–79]. According to our knowledge, the

highest conversion efficiency reported for 532 nm generation in MgO doped PPLN

was 42% [72] in a single-pass and 82% [78] using intra-cavity method.

The Hall A Compton polarimeter requires a Watt level tunable narrow line-width

green laser source with good power stability and beam quality in order to establish

a frequency locking of it to the Fabry-Perot cavity. In the following section, based

on the successes of previous techniques of frequency doubling in PPLN crystal, we

will describe our experimental setup and discuss the properties of frequency doubled

green beam.

4.5.2 Experimental Setup

Our experimental setup is shown in Figure 4.6. The seed laser (Lightwave series 126

from JDSU) is a diode pumped Nd:YAG narrow line-width (∆ν = 5.0 kHz) linearly

polarized free space laser that delivers a continuous wave (CW) IR (λ = 1064 nm)

beam up to 250 mW. The output of this laser has been fiber coupled to a single-mode

polarization-maintaining fiber through a fiber port collimator at the laser head and is

used as the input to an IPG Photonics fiber amplifier (YAR-10K-1064-LP-SF). The

amplifier provides a linearly polarized (polarization extinction ratio 20 dB) output
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with a maximum power of 10 W at 1064 nm in CW mode.

Yb Doped Fiber 
Amplifier

PPLN DC1

DC2

La Lb BD

Nd:YAG Laser
1064 nm Oven

L0

Hardboard Enclosure

Figure 4.6 (color) A schematic of experimental setup used for frequency
doubling in PPLN.

The frequency doubling crystal (from HC Photonics) is PPLN doped with 5%

MgO in order to minimize both photo-refractive damage [64] and GRIIRA [68]. The

crystal is 0.5 mm thick, 3 mm wide and 50 mm long, and the QPM period is 6.92 µm

with a 50% duty cycle. The input and output surfaces have been antireflection (AR)

coated for 1064 and 532 nm, respectively. Figure 4.7 illustrates the basic geometry of

our PPLN crystal.

Λ = 6.92 µm

1064 nm

532 nm

zx

y

50 m
m

3 mm

0.5 mm

Figure 4.7 (color) The geometry of PPLN Crystal.

The PPLN crystal is placed in an externally controlled, temperature stabilized

oven, which was developed in the lab. The oven makes contact with the crystal via

a copper holder glued to a 15 × 60 mm thermoelectric cooler (TEC) Peltier plate

(from Custom Thermoelectric). The copper holder has been machined to have a
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groove (0.5 mm deep) running across one surface. The bottom of TEC is also glued

to a copper heat sink to achieve good thermal stability. The whole temperature

stabilizing unit is mounted on a stage composed of four-axis tilt aligner (Model 9071-

V from Newport) in order to establish precise alignment for phase matching (Figure

4.9). Due to a small thickness of the crystal, care must be taken to ensure that the

beam is not clipped and passing through the center of the crystal. The crystal is held

into position by a copper plate with four screws that applies a tiny pressure against

its top when they are tightened against the copper holder. A thin layer (∼ 100 µm)

of indium foil was used between the bottom of the crystal and copper holder in order

to establish good heat conductivity. A temperature sensor (from Thermometrics)

mounted underneath of the PPLN measures the temperature of the copper holder,

which the controller compares to the set point. The copper holder is glued to the hot

side of the TEC. The TEC can be turned on to raise the temperature, or turned off to

allow the crystal to cool. The temperature controller (from Arroyo Instruments) has

a nominal resolution of 0.01 oC and during normal operation provides the required

phase matching temperature for sustained periods of time. A teflon lid with a small

window at the crystal’s entry and exit faces provides thermal stability. Figure 4.8

shows the schematics of temperature stabilizing oven for PPLN crystal to achieve

quasi phase matching.

A pair of 0.5 inch lenses with a focal lengths of 13.8 and 15 mm are then used

to focus the beam waist (∼80 µm) into the center of the crystal. The generated

green light is separated from the IR light after the crystal via a pair of 1.0 inch

dichroic mirrors (from Altos Photonics) noted as DC1 and DC2 with high reflectivity

(99%) in the green and high transmission (95%) in the IR. The residual IR light that

transmitted through DC1 is stopped on a beam dump (BD), while the green light

power after DC2 is monitored by Thorlabs PM140 powermeter.

The lenses, temperature stabilizing unit and dichroic mirrors are all mounted on

separate linear translation stage that seats on a rail, and the whole system is contained

in a black hardboard enclosure box with a foot print of 355mm × 190mm and the
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Figure 4.8 (color) The schematic of temperature stabilizing oven for PPLN
crystal to achieve quasi-phase matching.

Figure 4.9 (color) The PPLN crystal is mounted inside an oven on a stage.
The green beam is generated after the incoming IR beam is passing through
the crystal that effectively doubles its frequency.
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height of 200mm. There is a small opening on entry side of the box which allows the

fiber collimator that coupled to the output fiber of the fiber amplifier to be inserted

to the box. Inside the box, the collimator can be mounted and aligned for properly

pumping the PPLN. On exit side of the box, a shutter is placed after a transparent

AR coated window which is also mounted on the wall of the box so that the beam

can be blocked when it is not in use. The whole setup is sealed to protect from any

contamination and the box is mounted on a breadboard so that it can be put on the

optics table for use.

4.5.3 Properties of the Second Harmonic Beam

With the experimental setup as described above, we measured several properties of

the second harmonic beam. The measurements were consistent with our expecta-

tions from the theory of second harmonic generation in periodically poled nonlinear

crystals.

Generally, after a good alignment of PPLN facet with respect to fundamental 1064

nm beam, we should be able to see some green light after the crystal. We measure

the green power as a function of the nominal crystal temperature in order to establish

temperature phase matching. We expect a curve that is much look like Figure 4.2.

The temperature scan was conducted with an automated procedure run by a Tcl

script that controls both the temperature controller and the power meter, and also

records the corresponding green power and crystal temperature. The temperature

of PPLN can be set remotely via the temperature controller. It takes few seconds

to few minutes for the temperature to stabilize depend on the amount of change of

set temperature in the controller. The step size of the temperature scan was set to

0.05oC. Figure 4.10 shows the measured temperature bandwidth for 5W IR beam. The

red circles show the experimental data while the blue line represents the theoretical

fit for first-order QPM interaction predicted by the Sellmeier equations for PPLN

crystal [80]. The equation for temperature acceptance bandwidth ∆T can be derived



4.5 Frequency Doubling with PPLN Crystal 96

from equation (4.40),

∆T = 0.4429
λ

L

[
∂

∂T

(
n(
λ

2
)− n(λ)

)
+ α

(
n(
λ

2
)− n(λ)

)] , (4.44)

where λ is the wavelength of fundamental IR beam, L is the crystal length, α is the

linear thermal expansion coefficient of PPLN and n is the refractive index which is

given by Sellmeier equations,

n2 = a1 + b1f +
a2 + b2f

λ2 − (a3 + b3f)2
+
a4 + b4f

λ2 − a2
5

− a6λ
2, (4.45)

f = (T − 24.5 oC)(T + 570.82), (4.46)

where λ is in µm. According to Jundt’s [80] calculation, the Sellmeier coefficients

a1,2,3,4,5,6 and b1,2,3,4 for PPLN are summarized as in Table 4.2

Parameter Value Parameter Value

a1 5.35583 a2 0.100473

a3 0.20692 a4 100

a5 11.34927 a6 1.5334 × 10−2

b1 4.629 × 10−7 b2 3.862 × 10−8

b3 -0.89 × 10−8 b4 2.657 × 10−5

Table 4.2 Sellmeier coefficients for PPLN crystal.

Calculation gives the FWHM phase matching temperature bandwidth ∆T = 0.72

oC, whereas the experimental results (open circles) show ∆T of about 0.6 oC at phase

matching temperature 64.0 oC.

It is important to note that the location of the peak changes slightly when the

pump power level is changed. The peak, representing the phase matching tempera-

ture, lies between 64.0 oC and 64.3 oC for a IR pump power level between 200 mW

to 5 W. At each point the crystal should be maintained at the peak phase match-

ing temperature. Figure 4.11 shows the average green power (solid circles) in PPLN
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Figure 4.10 (color) Measured temperature tuning curve for PPLN. The
solid line is the theoretical values and the dotted points are the experimental
results.

and corresponding phase matching temperature (open squares) versus 1064 nm pump

power of the Yb doped fiber amplifier. The maximum achieved green power at 5 W

pump power was 1.74 W with a conversion efficiency of 34.8%. The continuous line in

Figure 4.11 is the theoretical fit to extract the normalized SHG conversion efficiency.

According to equation (4.33), for a loosely focussed gaussian beam, the normalized

conversion efficiency for first-order QPM is defined as,

I2 = ηnor,QPMLI
2
1 , (4.47)

ηnor,QPM =
8ω2

1d
2L

n2
1n2c3ε0π2

, (4.48)

where I1 and I2 are the fundamental and SHG powers, L is the length of the crystal,

n1 and n2 are refractive index at these wavelengths.

In Figure 4.11, as the theoretical fit shows, the green power does indeed vary

quadratically with the infrared pump power with normalized conversion efficiency
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Figure 4.11 (color) 532 nm average power (solid circles) in PPLN and
corresponding phase matching temperature (open squares) versus 1064 nm
pump power of the Yb doped fiber amplifier. The continuous line is the
theoretical fit to extract the normalized SHG conversion efficiency.

ηnor of 1.37%/W-cm. It is necessary to point out that all powers are the direct mea-

surements without correction to the residual reflection at the crystal facet and losses

in dichroic mirrors. The experimental results also show that there is no sign of sat-

uration in SHG power at 5 W fundamental power. On the other hand, the achieved

conversion efficiency is much lower than the ideal conversion efficiency of 2.62%/W-

cm which is a case for pump depletion. All of this suggest that thermal lens effects

or the optical damages should be negligible. It is worth to note that conversion ef-

ficiency of nonlinear crystals grow as a square function of fundamental power. Our

data shows that it is possible to get even higher doubling efficiency than the achieved

efficiency of 34.8%, and therefore more green power with a higher pump power from

the fiber amplifier. One of the goals of Compton green laser project is to develop a

frequency doubled, stable and good quality green beam at Watt level, and that is the

reason for us not trying to get very high conversion efficiency from PPLN.
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Figure 4.12 (color) IR and Green beam profiles in 2D and 3D measured
by Spiricon CCD camera.
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Figure 4.13 (color) Divergence profile of green beam. Closed and Open
circles are the beam waist sizes in x (horizontal) and y (vertical) directions,
respectively and continuous line shows the theoretical fit to extract the M2

factor.

We evaluated the quality of frequency doubled green beam at 1.73 W right after

PPLN. Figure 4.12 shows the IR and green beam profiles that monitored by Spiricon



4.5 Frequency Doubling with PPLN Crystal 100

CCD camera. In order to get a beam quality factor (M2), we focused the 532 nm

beam after PPLN into 200 µm diameter waist with an additional lens and measured

the diameter at different axial position. Figure 4.13 shows the measured beam profile

versus theoretical value. Closed and open circles are the measured beam waist sizes

in x (horizontal) and y (vertical) directions, respectively. The result of theoretical

fit (solid lines) to experimental data indicates that the green beam demonstrates

a quality factor M2 of less than 1.1 in both dimensions. M2 or beam parameter

product (BPP) is a quantity to show the quality of laser beam as a Gaussian beam.

It tells how well it can be focused to a small spot or how close the laser to a Gaussian

shape. Mostly laser beams have M2 values greater than 1.0 and only very high quality

(Gaussian) beams can have values very close to 1.0. We will describe the definition

of M2 in chapter 5.

The stabilities of green power was evaluated at 1.74 W and are shown in Figure

4.14. The output power stability was about 0.8% for the entire period of 12 hours

operation.
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Figure 4.14 (color) The stability of SHG output power was monitored at
1.74 W for 12 hours.
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In conclusion, we have demonstrated a high quality, Watt level, stable green laser

source based on single-pass SHG of Yb doped fiber laser. It was adequate for achieving

several kW intra-cavity power in Fabry-Perot cavity by frequency locking of the IR

seed laser to the cavity. The frequency doubled green beam has been used as a laser

source for Compton polarimeter during three months of PREx running and shows

no sign of degradation. In the following chapter we will describe how we used this

frequency doubled green beam to establish Fabry-Perot cavity locking and obtained

multi-kW intra-cavity power in Compton polarimeter in Hall A of Jefferson Lab.



Chapter 5

Fabry-Perot Cavity

The heart of the new Compton polarimeter installed in JLab’s Hall A is a high-finesse

Fabry-Perot cavity which amplifies a primary 1.74 W continuous wave frequency

doubled green laser coupled to it. In this chapter, we will start from Gaussian beams

and Fabry-Perot cavity basics, and explain the response of Fabry-Perot cavity to the

optical field. We will introduce the locking mechanism and feedback technique to

achieve power amplification inside the cavity and describe the feedback system used

in our setup. The mechanics of the cavity system along with the optical method to

increase the laser beam coupling to the cavity will also be presented. At the end, we

will discuss the optical parameters that characterize the cavity.

5.1 Cavity in an Electro Magnetic Field

This section is a brief description of the Gaussian laser beam propagation and Fabry-

Perot cavities. It gives an overview of the basic introduction to standard spherical

mirrors cavities, and their response to optical field generated by Gaussian beams.

The reader familiar with these techniques can jump to section 5.2.

102
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5.1.1 Gaussian Beams

Paraxial Wave Equation

The electromagnetic radiation from lasers is monochromatic, the electric and magnetic

fields have minimal phase and amplitude variations in the first-order approximation.

The behavior of these fields in free space (homogeneous and isotropic medium) can

be described by the scalar wave equation(Helmholtz equation) [81],[
∇2 + k2

]
E(x, y, z) = 0, (5.1)

where E(x, y, z) is the phasor amplitude of a complex electric field,∇2 is the Laplacian

operator and k is the laser wavenumber. If the field propagates mainly in the z

direction, with a slow variation of amplitude and phase along the transverse direction,

the field can be written as,

E(x, y, z) = u(x, y, z)e−ikz, (5.2)

where u is called envelope function which describes the transverse profile of the beam.

Substituting this into equation (5.1) gives,

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2ik

∂u

∂z
= 0, (5.3)

If the z dependence of the envelope function is slow compared to the optical wave-

length and to the transverse variations of the field, we can describe their properties

using the paraxial wave approximation,∣∣∣∂2u

∂z2

∣∣∣ � ∣∣∣2k∂u
∂z

∣∣∣, (5.4)∣∣∣∂2u

∂z2

∣∣∣ � ∣∣∣∂2u

∂x2

∣∣∣, (5.5)∣∣∣∂2u

∂z2

∣∣∣ � ∣∣∣∂2u

∂y2

∣∣∣, (5.6)

and the equation (5.3) reduces to the paraxial wave equation [81],

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0, (5.7)
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Gaussian Beams

A simplest solution of Helmholtz equation in the paraxial approximation (5.7) can be

expressed as,

u(r, z) = u0
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
− ik r2

2R(z)

]
exp

[
− ikz+ i arctan

( z
zR

)]
, (5.8)

where z is the axial distance from the beam’s narrowest point (the “waist”); w0 and

w(z) are the beam radius at the waist and at z where the field intensity drops to

1/e2 of their axial values, respectively; r =
√
x2 + y2 is the radial distance from the

center axis of the beam; u0 is the amplitude of the field at u(0, 0); R(z) is the radius

of curvature of the beam’s wavefronts at z; zR is a constant called the Rayleigh range.

All these parameters are defined by following equations,

w0 =

√
λzR
π
, (5.9)

w(z) = w0

√
1 +

( z
zR

)2

, (5.10)

R(z) = z
[
1 +

(zR
z

)2]
, (5.11)

The intensity (or irradiance) distribution is the square modulus of equation (5.8),

I(r, z) = |u(r, z)|2 = |u0|2
( w0

w(z)

)2

exp
[
− 2r2

w2(z)

]
, (5.12)

which shows it has a Gaussian distribution and therefore it is called Gaussian beam.

In general, outputs of spherical mirror cavities (resonators) and lasers are often close

to Gaussian beams. Figure 5.1 shows a notation for a Gaussian beam diverging away

from its waist.

Note that the beam radius w(z) has a hyperbolic shape along z and has a focus

w0 at z = 0. The Rayleigh range zR defines if the beam radius w(z) is close to its

focus or diverging from it. From Figure 5.1 we can see that in far field (|z| � zR) the

beam radius w(z) approaches straight line and the beam propagates in the form of a

cone of an angle θ, called beam divergence, given by

θ ≈ tan θ =
2λ

πw0

, (5.13)
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Figure 5.1 (color) A longitudinal profile of a Gaussian beam.

where we used a small angle approximation for the paraxial Gaussian beam. Due to

diffraction, a Gaussian laser beam that is focused to a small spot diverges rapidly as

it propagates away from that spot. Therefore a well collimated Gaussian laser beam

usually has a larger diameter.

When we work with laser beam, depend on the need of our work, we may need

the laser beam has specific shapes such as a Gaussian or a top hat (super Gaussian).

Usually there is a quantity to show how close the laser beam to the ideal Gaussian

beam. The laser beam quality factor (mostly known as M2 factor) is quantified by the

beam parameter product (BPP) which is the product of the beam’s divergence and

waist radius w0. The ratio of the BPP of the real beam to that of an ideal Gaussian

beam at the same wavelength is known as M2 (“M squared”). It is often tricky to

accurately measure the beam divergence in the far field that effects the accuracy of

BPP. There is another way of measuring M2 defined as [82],

σ2(z) = σ2
0 +

(
M2λ

πσ0

)2

(z − z0)2, (5.14)

where σ2(z) is the second moment of the distribution (4σ beam width) in the x or y

direction, λ is the wavelength of the laser beam, and z0 is the location of the beam

waist with second moment width of σ0. Fitting the data points (at least 10) yields
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M2, z0, and σ0.

The last exponential term in equation (5.8) contains an important phase infor-

mation about the Gaussian beam. The first term in the exponential is the phase of

a plane wave ikz propagating with the same frequency as the Gaussian beam. The

second term is called the Gouy phase shift and represents a small deviation from pla-

narity. The Gouy term represents a phase retardation compared to the plane wave.

Because of the arctan form, the retardation amounts to a total of π in phase over

all z. The Gouy phase is important in computing the resonant frequencies of optical

cavities.

By analyzing equation (5.11), we can see that at the waist (z = 0), R(z)→∞, i.e.,

the wavefront is flat, and that in far field (|z| � zR), R(z) ∼ z, i.e., the wavefront is a

sphere centered at beam waist. In a cavity, the boundary conditions imposed by the

cavity mirrors require that the curvature of the spherical mirrors and the curvature

of the wave fronts match.

Even though it is complex, the Gaussian beam can be uniquely characterized by

a few parameters such as w0 (or zR) and λ. The propagation of Gaussian beam in

free space can be easily computed by using a complex radius of curvature q(z), or

q-parameter, defined by [81],

1

q(z)
=

1

R(z)
− i λ

πw2(z)
, (5.15)

and this parameter obeys the propagation law,

q(z) = z + izR, (5.16)

Between two planes along the optical axis z, one can have two parameters q(z2) and

q(z1) with the following propagation law,

q(z2) = q(z1) + z2 − z1, (5.17)

which is the basics of so-called “ABCD” matrix formalism for propagating Gaussian

beam through various optical elements.
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The Gaussian beam is the fundamental mode solution of Helmholtz equation in

the paraxial approximation (5.7). However, Helmholtz equation has other solutions

with more complex combination of functions and they are useful when we deal with

Gaussian beam coupling to the optical cavity. In contrary to the fundamental mode,

those solutions are often called higher order modes.

Higher Order Modes

As we mentioned earlier, Gaussian beams are just one possible (simplest) solution to

the paraxial wave equation (5.7). In fact it has other solutions with a combination of

a complete and orthogonal set of functions called propagation modes. Any real laser

can be described as the superposition of these modes and they are particularly useful

when we model the laser beam circulating inside optical cavities.

(1) Hermite-Gaussian Modes

In cartesian coordinates, Hermite-Gaussian modes describe the reflection symme-

try in the plane perpendicular to the laser beam’s propagation direction. They can

be written as,

um,n(x, y, z) =

√
2

π2m+nm!n!w2(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp

[
− x2 + y2

w2(z)

]
exp

[
− ikz + i(m+ n+ 1) arctan

( z
zR

)]
exp

[
− ikx

2 + y2

2R(z)

]
,

(5.18)

where the functions Hm(x) are the Hermite polynomials of order m and the parame-

ters w(z), R(z) and zR are the same as for the fundamental Gaussian mode as given in

equation (5.7). The corresponding electromagnetic waves to these laser modes usually

can be approximated as transverse electric and magnetic (TEMm,n) waves or called

TEMm,n modes, where m and n are the polynomial indices in the x and y directions.

A Gaussian beam is a fundamental mode called TEM0,0 mode. Figure 5.2 shows the

intensity pattern of some common Hermite-Gaussian modes with different orders.
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Figure 5.2 (color) Hermite-Gaussian Modes.

(2) Laguerre-Gaussian Modes

In cylindrical coordinates (r, φ, z), we can equally express the Hermite-Gaussian

modes in Laguerre-Gaussian polynomials and they are called Laguerre-Gaussian (LG)

modes,

upm(r, φ, z) =

√
4p!

π(1 + δm0)(m+ p)!

(√
2r

w(z)

)m

Lmp

(
2r2

w2(z)

)exp
[
− r2

w2(z)

]
w(z)

cos(mφ)

exp
[
− ikz + i(2p+m+ 1) arctan

(
z

zR

)]
exp

[
− ik r2

2R(z)

]
, (5.19)
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Figure 5.3 (color) Laguerre-Gaussian Modes.

where the integer p ≥ 0 is the radial index and the integer m is the azimuthal mode

index; the Lmp are the generalized Laguerre polynomials and all other quantities w(z),

R(z) and zR are exactly the same as in the Hermite-Gaussian case. Figure 5.3 shows

the intensity pattern of some common Laguerre-Gaussian modes with different orders.

5.1.2 High Reflectance Mirrors

For a light amplification purpose, Fabry-Perot cavity allows the laser light to make

a maximum number of round trips between two high reflective mirrors so that light
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intensity gets amplified without suffering of absorption and scattering. The charac-

teristics of high reflectivity mirrors such as transmittivity (T ) and loss (P ) determine

the maximum amplification gain.

The high reflectivity of the mirrors is achieved by a stack of quarter-wave (
λ

4
)

dielectric thin layers with alternating high-low index pairs with a high index layer on

the outer most sides. The layers are deposited on a super polished mirror substrate

which is mostly fused silica (SiO2) by a technique called Ion Beam Sputtering (IBS).

Usually, the constituent materials of layers are tantalum pentoxide (Ta2O5) with

refractive index nH ≈ 2.1 and silicon oxide (SiO2) with refractive index nL ≈ 1.47.

The number of
λ

4
layers deposited on the substrate determine wanted transmittivity

and therefore the reflectivity.

We consider the case of a single layer of dielectric of index n1 and thickness l,

between a vacuum (index n0) and mirror substrate (index ns) (Figure 5.4). Suppose

two monochromatic plane waves propagating perpendicularly to this medium. the

amplitude of the incident and reflected beam are a0 and b0, respectively. The electric

field amplitudes in the dielectric medium are a1 and b1 for the forward and backward

l

a0

b0

substrate
dielectric

layer

z

n1 nsn0

a1

b1

as

Figure 5.4 (color) Reflection and transmission of optical fields from a di-
electric layer on a mirror substrate.
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traveling waves. The amplitude of the transmitted field is as. We put the origin of

propagation axis to the center of dielectric layer as indicated in the figure.

The boundary condition requires that the electric and magnetic fields be contin-

uous at each interface. Therefore [91],

a0 + b0 = a1 + b1, (5.20)

a1e
ikl + b1e

−ikl = as, (5.21)

n0a0 − n0b0 = n1a1 − n1b1, (5.22)

n1a1e
ikl − n1b1e

−ikl = nsas, (5.23)

where k = 2π/λ and we assumed the length of vacuum and substrate are very large

as compared to the thickness of dielectric layer.

If we eliminate a1 and b1 from above equations, we have a matrix form, 1

n0

 +

 1

n0

 b0

a0

=

 cos kl − i

n1

sin kl

−in1 sin kl cos kl

  1

ns

 as
a0

, (5.24)

If we call r and t reflection and transmission coefficients at the interface,

r =
b0

a0

, (5.25)

t =
as
a0

, (5.26)

and the transfer (characteristic) matrix of dielectric layer is,

M =

 cos kl − i

n1

sin kl

−in1 sin kl cos kl

 , (5.27)

From equation (5.24) we can solve r and t,

r =
n1(1− ns) cos kl − i(ns − n2

1) sin kl

n1(1 + ns) cos kl − i(ns + n2
1) sin kl

, (5.28)

t =
2n0n1

n1(n0 + ns) cos kl − i(nsn0 + n2
1) sin kl

, (5.29)

The essential design parameter for use of thin layer is the thickness l which de-

termines the layer’s effects on propagating light. If the thickness is half-wave (
λ

2
),
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then the film is transmissive. In a multilayer film, a stack of alternate layers of high

index, nH , and low index, nL, each with thickness
λ

4
, the product of a characteristic

matrices of two adjacent layers is, 0 − i

nL

−inL 0

  0 − i

nH

−inH 0

 =

−nHnL 0

0 − nL
nH

 , (5.30)

If the stack consists of 2N layers, then the characteristic matrix of complete

multilayer is,

M2N =

−nHnL 0

0 − nL
nH


N

=


(
− nH
nL

)N
0

0
(
− nL
nH

)N
 (5.31)

The reflectivity of a mirror with a layer structure (nH , nL, nH , nL, . . . , nH , nL)

is,

R2N =
∣∣∣r2N

∣∣∣2 =

1− ns
n0

(nH
nL

)2N

1 +
ns
n0

(nH
nL

)2N


2

, (5.32)

High reflectivity can be achieved from an odd number of
λ

4
dielectric thin films

with alternating high-low index pairs with a high index film on the outer most sides,

and the reflectivity of a mirror with this kind of layer structure (nH , nL, nH , nL, . . . ,

nH , nL, nH) is,

R2N+1 =
∣∣∣r2N+1

∣∣∣2 =

1− nH
n0

nH
ns

(nH
nL

)2N

1 +
nH
n0

nH
ns

(nH
nL

)2N


2

, (5.33)

Under this circumstance, there is a constructive interference at each subsequent

high to low index interfaces, and mirror total reflectivity actually builds up gradually

through each layers successively.

For a mirror with no losses, we denote R =
∣∣r∣∣2 and T =

∣∣t∣∣2, and if we apply

the principle of energy conservation and taking losses into account, we will have the

relation:

R + T + P = 1, (5.34)
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where P represents the losses in the mirror (both in substrate and coating) in terms

of scattering (S) and absorption (A), and P = A + S. The scattering loss mostly

comes from an imperfect reflection at the mirrors. Surface roughness and the defects

in the substrate are the main factor to affect it. Super polishing technology enables

the manufacturing of substrates with surface RMS roughness of few Å or less [92].

Absorption loss is mostly the result of the impurities in the coatings and contamina-

tion on the mirror surface. Due to this, mirror coating materials have to be highly

pure and mirrors need to be operated in a clean environment.

5.1.3 Optical Response of Fabry-Perot Cavity

Fabry-Perot cavity or Fabry-Perot interferometer, first invented by C. Fabry and A.

Perot in 1899 [83], is a resonator which consists of two high reflective mirrors that

form a standing light waves between them. Due to constructive interferences, the laser

power circulating in the cavity will be enhanced by a factor G with respect to the laser

power coupled to it. Since the availability of high reflectivity mirrors, Fabry-Perot

cavities have been used widespread and played a crucial role in many physical fields,

such as telecommunications, lasers and spectroscopy, quantum electrodynamics [90],

vacuum structure measurements [89], gravitational wave detection [88], and metrology

[87]. More recently, Fabry-Perot cavities have been used successfully in storage rings

and linear accelerators for various beam diagnostics [85], X-ray generation [84,86] and

beam polarimetry techniques [5, 8].

Basic Principles

Let us consider an incident laser beam on an optical cavity made of two dielectric

mirrors. The electric field of this beam can be written,

E = Eince
i(ωt−kz), (5.35)

where ω is the frequency of the light and k =
ω

c
=

2π

λ
is the wave-vector. If we

note reflectivity and transmittivity of the input mirror (r1, t1) and the output mirror
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Figure 5.5 (color) Fabry-Perot cavity in optical field.

(r2, t2), the beam incident on one mirror is partially transmitted and partially re-

flected. The transmitted part enters the cavity and is reflected back and forth many

times. On each reflection a fraction escapes the cavity (see Figure 5.5). Since this

process is coherent, the amplitudes of the reflections will interfere.

The transmitted field amplitude is the sum of all amplitudes after the second

mirror [81],

Etrans = Einct1t2

[
1 + r1r2e

i2Lk + (r1r2e
i2kL)2 + · · ·

]
= Einc

t1t2
1− r1r2ei2kL

, (5.36)

where we assumed the mirrors are in high vacuum (P < 10−8 Torr) and neglected

the absorption loss from any residual gas in the cavity and L is the length of the

cavity. We also can see there is a round-trip phase 2kL of the light wave in the cavity.

Similarly, the reflected field is,

Eref = Einc

[
− r1 + t21r2e

i2kL + t21r1(r2e
i2kL)2 + · · ·

]
= Einc

[ r1t
2
1e
i2kL

1− r2ei2kL
− r1

]
, (5.37)

The field in the cavity is a standing wave and when properly tuned, the back

and forth reflections inside the cavity interfere constructively and give the resonant

intra-cavity field,

Ecav =
−iEtrans

t2
ei2kL = −iEinc

t1e
i2kL

1− r1r2ei2kL
, (5.38)

In order to simplify the equations, we assume that the two mirrors have the same

transmission and reflection coefficients (practically, we select pairs whose character-
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istics are the closest). This allows us to write r1 = r2 = r and t1 = t2 = t. The above

equations can then be rewritten in this form,

Etrans = Einc
t2

1− r2ei2kL
, (5.39)

Eref = Einc

[ rt2ei2kL

1− rei2kL
− r
]
, (5.40)

Ecav = −iEinc
tei2kL

1− r2ei2kL
, (5.41)

Intra-cavity Field

The intensity of an electromagnetic wave in vacuum is written in the following form,

I =
∣∣∣E∣∣∣2, (5.42)

From equation (5.41), we can write the intensity of intra-cavity field Icav in this form,

Icav(ν) = Iinc ×
T

(1−R)2
× 1

1 +
4R

(1−R)2
sin2

(
2πνL

c

) , (5.43)

where Iinc is the intensity of the incident field. This function reaches its maxima

when we have the relation,

ν = n
c

2L
, n ∈ integer, (5.44)

which is the resonance condition for a resonator. The parameter
c

2L
only depends on

the cavity length and is called Free Spectral Range (FSR).

FSR =
c

2L
, (5.45)

Therefore the cavity defines resonance frequencies, which are multiple of the frequency

gap FSR. This is a condition allows us to get constructive interferences in the cavity

between the incident field and the field circulating in the cavity. When it is satisfied,

the intra-cavity field and the incident field has the same phase. In other words, we

have kL = nπ. In the case of the cavity we built (L = 0.85 m), the resonance

frequency is defined by its FSR = 176.5 MHz.
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From equation (5.43), we can also identify the gain of the cavity,

G =
T

(1−R)2

1

1 +
4R

(1−R)2
sin2

(
2πνL

c

) , (5.46)

and the maximum gain is,

Gmax =
T

(1−R)2
(5.47)

If we look for the deviation to the resonance frequency ∆νc for which G = Gmax/2,

from equation (5.46), we have,

∆νc =
FSR

π
× arcsin

1−R√
R

, (5.48)

where ∆νc is called cavity bandwidth. An important quantity called finesse is written

by the relation,

F =
FSR

∆νc
=

π
√
R

1−R
, (5.49)

Note that the cavity bandwidth depends on intrinsic characteristics of the mirrors

such as reflectivity R and cavity length L while the finesse only depends on mirror

reflectivity R. For a given cavity length, an increasing R leads to an increasing Gmax

but results a decreasing ∆νc. For a symmetric 85 cm cavity made of two mirrors

with R = 99.982%, T = 180 ppm, the cavity bandwidth is ∆νc ≈ 10kHz, the finesse

is F = 17400 and the maximum gain is Gmax ≈ 5500. For cavity mirrors with R

= 99.992%, T = 80 ppm, the cavity bandwidth is ∆νc ≈ 4.5kHz, the finesse is

F = 39000 and the maximum gain is Gmax ≈ 12500. Here we didn’t consider the

mirror loss P . When we have high reflectivity and low transmission mirrors, cavity

gain is very sensitive to loss P and we have to minimize P in order to keep the actual

gain closer to Gmax.

Transmitted Field

The expression of transmitted intensity can be deduced easily form the intensity in the

cavity Icav, as transmitted intensity is equal to the intensity in the cavity multiplied
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by the transmittivity of the output mirror,

Itrans(ν) = Iinc ×
T 2

(1−R)2
× 1

1 +
4R

(1−R)2
sin2

(
2πνL

c

) , (5.50)

Reflected Field

The field reflected from the cavity is shown in equation (5.41). Understanding the

cavity reflected field is important, since the technique used for establishing the cavity

gain uses this signal. If we call ρ(ν) is the field reflection coefficient of the cavity,

using equation (5.41), we have the following relation,

ρ(ν) =
Eref (ν)

Einc(ν)
= r
[ t2ei2kL

1− rei2kL
− 1
]
, (5.51)

If we introduce a phase Φr(ν) to the function ρ(ν), we have,

ρ(ν) = R(ν)× eiΦr(ν), (5.52)

where R(ν) is the module. By the same way as above, and using a relation: P =

Figure 5.6 (color) Circulating and reflected power in a cavity plotted versus
the resonance frequency ν is normalized to the cavity free spectral range
(FSR).
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1−R− T , we can determine the intensity reflected by the cavity,

Iref = Iinc

R
( P

1−R

)2

+ 4(1− P )
F
π2

sin2
( πν

FSR

)
1 + 4(1− P )

F
π2

sin2
( πν

FSR

) , (5.53)

This expression allows us to determine R(ν),

R2(ν) =
R
( P

1−R

)2

+ 4(1− P )
F
π2

sin2
( πν

FSR

)
1 + 4(1− P )

F
π2

sin2
( πν

FSR

) , (5.54)

The phase Φr(ν) of the reflection coefficient ρ(ν) is deduced from equation (5.51) and

can be written in the following form,

tan(Φr(ν)) =
T sin

( 2πν

FSR

)
1 +R(R + T )− (2R + T ) cos

( 2πν

FSR

) , (5.55)

As we described before, when we have a match between the laser frequency and

cavity resonance frequency, we have the relation: ν = n × FSR, n is an integer. If

we get closer to the resonance region, we can rewrite last relations by replacing the

frequency of the incident wave ν by the frequency deviation (detuning parameter)

∆ν = ν−νc between the resonance frequency and the laser frequency. Then we have:

ρ(∆ν) = R(∆ν)eiΦr(∆ν), (5.56)

with,

R2(∆ν) =
R
( P

1−R

)2

+ 4(1− P )
F
π2 sin2

( π∆ν

FSR

)
1 + 4(1− P )F

π2 sin2
( π∆ν

FSR

) , (5.57)

and,

tan(Φr(∆ν)) =
T sin

(2π∆ν

FSR

)
1 +R(R + T )− (2R + T ) cos

(2π∆ν

FSR

) (5.58)

The relations (5.56), (5.57) and (5.58) allow us to define a reflection coefficient of the

cavity within a resonance region. When the frequency deviation (detuning parameter)
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is zero (ν = n×FSR), the gain is maximum, that means the quantity of energy stored

in the cavity is maximum, and when |∆ν| increases, the gain decreases fast (Figure

5.7). If we consider the evolution of the reflected wave’s phase as a function of ∆ν

(Figure 5.7), we notice the phase is positive when ∆ν > 0 and negative when ∆ν < 0.

So the phase carries an information on the frequency deviation between the cavity

resonance frequency and the laser frequency sign. Moreover, if we express R(∆ν)

and Φr(∆ν) when
∆ν

FSR
goes to zero (and particularly when |∆ν| < ∆νc where ∆νc

is the cavity bandwidth defined by the equation (5.48), we have,

R(∆ν) =
F · P
π

, (5.59)

Φr(∆ν) =
2π∆ν

FSR
× T

P (1−R)
, (5.60)

In resonance region, the phase Φr(∆ν) of the wave reflected by the cavity is propor-

tional to the frequency deviation ∆ν.
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Figure 5.7 (color) Cavity gain G(∆ν) and phase Φr(∆ν) of a 85 cm sym-
metric cavity, with two different sets of identical mirror with bandwidth of
3kHz and 10 kHz, respectively.

We will show in the next section that the frequency deviation (detuning parameter)

∆ν varies rapidly around a resonance region, in order to keep the maximal gain in

the cavity, we need a system to keep this deviation to zero. This system will use the

information given by the phase of the wave reflected by the cavity.
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5.2 Laser Frequency Control

5.2.1 Variations in Laser and Cavity Resonance Frequencies

We just described that the maximum gain is obtained when the frequency deviation

(detuning parameter) is zero. However, in free running condition, due to thermal

and mechanical noises, drift and jitter in the laser, both the laser frequency and

cavity resonance frequency vary with time, so that the detuning parameter would

never become zero. Therefore we need a system to allow us to establish a frequency

matching between laser and cavity.

For a single-frequency laser, there is a central frequency within its frequency dis-

tribution and a quantity called linewidth which is the full width at half-maximum

of this optical spectrum that quantifies it. Usually the line width of lasers without

frequency stabilization can be on the order of 1 GHz. On the other hand, the laser

linewidth from stabilized low-power continuous-wave lasers can be very narrow and

reach down to less than 1 kHz. For almost all the lasers, the central frequency is

subject to fast deviations called “jitter” and slow deviation called “drift”, depending

on time.

The seed laser we use has a linewidth of 5kHz and wavelength equals to λ =

1064nm, that corresponds to a frequency ν ≈ 2 ×105GHz. For our seed laser, jitter

and drift given by the manufacturer to be 30kHz/s and 50MHz/h, respectively [93].

These two frequency variations are different in their nature: the first one corresponds

to fast variations around the central laser frequency. The second leads to a drift

of this central frequency. Compared to the value of the central frequency, these

variations seem very tiny. However, we saw in equation (5.48) that a Fabry-Perot

cavity defines the width of its resonance peak ∆νc spaced in frequency by FSR. For

average reflectivity mirrors (R ≈ 99.9%), ∆νc ≈ 56kHz, and for nominal mirrors (R

≈ 99.982%) that we used for the Compton polarimeter, ∆νc ≈ 10kHz.

So intrinsic drifts in laser frequency can lead to deviations that are large enough to
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lose the gain in the cavity. If we take the example of the nominal cavity, a deviation

of 5.0kHz of the laser frequency with respect to the cavity resonance frequency leads

to a 50% loss of the total gain in the cavity. This problem is more and more critical

as the finesse of the cavity gets bigger, because the width of the resonance peak ∆νc

is inversely proportional to the finesse.

We just considered the deviations between cavity resonance frequency and laser

frequency by only taking into account the intrinsic laser frequency variations. How-

ever, the cavity resonance frequency also varies in time.

As we showed in equation (5.44), the cavity resonance peaks are spaced in multiple

of the FSR =
c

2L
. Therefore, if we call νres the resonance frequency, we have,

νres = n× c

2L
, n ∈ integer, (5.61)

If we take into account a variation of the cavity length ∆L due to a mechanical or

thermal perturbation, we will have a relative resonance frequency variation ∆νres,

∆νres
νres

=
∆L

L
, (5.62)

Knowing that the laser frequency we use is around ν ' 2 × 1014Hz, and for

a resonance frequency of the same magnitude νres ' 2 × 1014Hz, If we consider a

deviation ∆L = 1µm for a cavity length L = 0.85m, we obtain then a shift of the

resonance frequency of ∆νres ≈ 235MHz, which is more than a free spectral range.

If we compare this shift to the nominal cavity resonance bandwidth of ∆νc = 10kHz,

we notice that a tiny perturbation in cavity length will lead to a mismatch between

the resonance frequency and the laser frequency, therefore a total loss in cavity gain.

In other words, if we want to have ∆νres = ∆νc = 10kHz, the largest ∆L allowed

would be 4.25 × 10−2nm. It is impossible to achieve such a tiny stability with any

conventional mechanical device. Therefore, a fast feedback system is required in order

to achieve this condition.

For a real system where the laser permanently drifts in frequency and we have

mechanical, thermal and acoustic perturbations related to the fact that the cavity
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is attached to the beam pipe of an electron accelerator, we need a system which

maintains all time equality between the cavity resonance frequency and the laser

frequency. We will now describe a method called feedback control, which enables us

to achieve this equality in these two frequencies.

5.2.2 Feedback Control of Laser Frequency

A feedback control is an engineering technique which controls the input parameter(s)

of a dynamic system to achieve a desired output over time. A feedback loop controller

usually composed of a discriminator and a controller. The discriminator provides

information on the deviation between values of the reference parameter and input

parameter we want to control. The controller uses this deviation and modifies the

value of input parameter to achieve zero deviation.

For a feedback control between the laser and optical cavity, the feedback loop can

act on the cavity length through a piezo-electric transducer attached to the cavity

mirror or on the laser frequency also through a piezo-electric actuator bonded to

the laser crystal. In the case of the feedback control of the laser frequency, the

instantaneous frequency of the laser (ν) is monitored and compared to the reference

frequency (νc) provided by the optical cavity. The discriminator converts the optical

frequency fluctuations into voltage fluctuations with a conversion gain of Dv(V/Hz),

thus producing an error signal. This error signal is amplified and compensated in the

servo circuit which has a frequency dependent gain coefficient G(V/V). The amplified

voltage fluctuations are then fed back negatively to the laser through the actuator

which converts them into frequency fluctuations with a conversion gain A(Hz/V). The

actuator can be a piezo-electric module or a Peltier module (TEC). In this way the

feedback loop monitors and actively suppresses the frequency fluctuations (noise) of

the laser. Figure 5.8 illustrates a block diagram for a laser frequency feedback loop.

The free running frequency of a laser, in the absence of any fluctuation, is simply

an integral multiple of the laser cavity free spectral range. There are however, sev-
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Figure 5.8 A block diagram shows a laser frequency stabilization feedback
loop.

eral noise processes which perturb the frequency of the laser. Using active frequency

control the spectral density of laser frequency noise can be suppressed over the band-

width of the feedback loop. The spectral density of the frequency difference between

the laser and a resonance of the cavity in closed loop, in terms of the other noise

sources, is [95],

Ncl =

√
N2
L +

∣∣∣A NG

∣∣∣2 +
∣∣∣A G ND

∣∣∣2∣∣∣1 + A G Dv

∣∣∣ , (5.63)

where NL is the free running frequency noise of the laser, NG is the voltage noise in

the servo amplifier, and ND is the voltage noise in the discriminator (photodetector in

the system). The photodetector gain Dv is just the slope of the error signal multiplied

by the voltage response of the photodetector. For a very large servo gain, G� 1, the

closed loop noise spectrum is,

Ncl ≈
ND

Dv

, (5.64)

and it indicates that the closed loop noise of the system is dominated by the noise in

the photodetector.

A very effective technique to obtain fast frequency discrimination is through the

use of an optical cavity [94]. In this technique, the instantaneous frequency of the laser
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Figure 5.9 (color) A PZT transducer bonded to the top non-optical face
of the Nd:YAG crystal of a non-planar ring oscillator (NPRO) laser for fast
frequency actuation while the Nd:YAG crystal is placed on a Peltier module
(TEC) for slow frequency variation.

is compared to the resonance frequency of the cavity and an error signal proportional

to the difference is generated. The most common method by which the error signal

is generated is the Pound-Drever-Hall locking techniques [97] which will be described

in the next section.

According to our knowledge, the fine tunable lasers available from the industry

are non-planar ring oscillator (NPRO) Nd:YAG lasers. The laser (Lightwave, model

126) we use, operates at λ = 1064nm, its Nd:YAG crystal is pumped by a GaAlAs

laser diode normally emitting 810 nm is cooled by a TEC in order to emit at 808.5

nm, a highly efficient wavelength for Nd:YAG pumping. The principle of non-planar

ring oscillator is shown in Figure 5.9.

The light emitted by the diode enters the Nd:YAG crystal at point A. The crystal

surfaces are finely polished and coated in such a way that a total internal reflection

occur at points B, C, and D on the planar surface, while there is a partial transmission

at point A where the surface is curved. The crystal is surrounded by a magnetic field

H to match the polarization state of the resonant mode (garnet is a magneto-optic

crystal). The main advantage of such a ring laser is the reduction of heat inside

the crystal, therefore results in a narrower spectral linewidth as compared to an
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Nd:YAG laser with a standard linear laser cavity. The stability is obtained through

the monolithic structure of the oscillator and stable output power of the diode itself.

There are two ways to tune the laser frequency:

Slow frequency tuning: The crystal temperature can be varied by applying a

DC voltage to a Peltier module (TEC) under the Nd:YAG crystal. The temperature

variation leads to a change in index of refraction of the crystal and in oscillator length.

The effect of both leads to a change in laser frequency. It has a tuning range of tens

of GHz with relatively slow time constant (1 - 10s). Its tuning coefficient AS is 1.6

GHz/V in a ±10V range.

Fast frequency tuning: A piezo-electric transducer (PZT) is bonded to the top,

non-optical face of the nonplanar ring oscillator and an applied voltage modulates

the oscillator length and therefore the frequency of the laser. The frequency of the

laser can vary by tens of MHz at a rate up to 30 kHz. The tuning coefficient AF is

3.2 MHz/V.

5.2.3 Pound-Drever-Hall Technique

As we described in equation (5.60), around resonance region, the phase Φr(∆ν) of the

reflected light is proportional to the frequency deviation ∆ν between the laser and

cavity resonance frequency. Since there is no detector which is sensitive to the phase

of a laser wave, we need to find a system which converts a phase information to an

intensity information. Pound-Drever-Hall (PDH) technique uses the cavity resonance

frequency as a reference frequency, extracts a voltage signal (error signal) proportional

to the frequency deviations of the laser against this reference, and then suppress them

using feedback on either the cavity or laser [97]. Since our laser is tunable and cavity

mirrors are fixed, we choose to feed this error signal back to the laser actuator and

therefore lock the laser to our cavity.

The PDH technique supplies this discriminator by performing a frequency modu-

lation of the incident laser beam into the cavity at the frequency
Ω

2π
. This modulation
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Figure 5.10 (color) Principles of Pound-Drever-Hall method. The beam
reflected by the cavity is extracted from the incident beam and detected by
a fast photodiode. The signal obtained is then multiplied by a demodulation
signal in mixer. The electronic circuit allows to build an error signal which
is summed with the modulation signal before being sent to an actuator to
control the laser frequency.

creates two sidebands ν± Ω

2π
around the carrier frequency ν (Figure 5.11). When we

have the condition: FSR � Ω

2π
� ∆νc, the reflected wave contains two sidebands

that simply reflected without phase shift (because they are out of resonance), and a

phase shifted main peak. The interferences between the main peak and the side bands

create an amplitude modulated term that a photodiode can detect. The error signal is

obtained by mixing photodiode’s output signal with a so-called demodulation signal

at the same frequency as modulation signal, but with a different amplitude and phase

shifted with respect to it. An electronic filtering allows to detect only the amplitude

modulated term that contains information on frequency deviation ∆ν. The obtained

error signal is transferred to an electronic servo, summed with the phase modulation



5.2 Laser Frequency Control 127

signal from the modulator, and fed back to the laser frequency control system (Figure

5.10).
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Figure 5.11 (color) The Pound-Drever-Hall error signal along (red curve)
with the corresponding reflected signal (blue curve) versus the frequency
deviation between the laser frequency (ν) and cavity resonance frequency
(νc). The modulation frequency Ω = 928 kHz, cavity finesse (F) is around
10,000, the phase modulation index β = 0.4 and cavity length is 85 cm.

If we start with a laser beam with an electric field E = E0e
iωt. To modulate the

phase of this beam, in our case, we apply a sinusoidal voltage signal V (t) = Vm cos(Ωt)

on PZT bonded onto the Nd:YAG crystal. After a phase modulation, φ(t) = β sin(Ωt),

the incident electric field to the cavity becomes,

Einc = E0e
i(ωt+β sin(Ωt)), (5.65)

where β =
2πAFVm

Ω
is the phase modulation index and AF is the tuning coefficient of

PZT. After taking care of residual amplitude modulation (RAM) [96] that determines

the optimal modulation frequency Ω and modulation amplitude Vm, we have the

exponential term of equation (5.65) in first order Bessel function,

Einc ≈ E0e
iωt
[
J0(β) + 2iJ1β sin(Ωt)

]
(5.66)

= E0

[
J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t

]
, (5.67)
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This expression shows that there are three different beams, a carrier with frequency

ω and two sidebands with frequencies ω ± Ω, contained in a phase modulated beam

incident on the cavity.

In reality, in order to match the carrier frequency ν = ω/2π with the cavity

resonance frequency νc, we need to regulate temperature of the laser crystal and by

this way to correct the laser frequency by the Peltier module described above. This is

accomplished by providing a triangular voltage signal to the “Slow” input of the laser.

This only corrects the slow drifts in laser frequency and results an occasional resonance

in the cavity. However, due to jitter in laser frequency and noise in the cavity, this

frequency need to be fine tuned so that there will be a frequent resonance in the cavity.

This is also accomplished by a triangular voltage signal with an amplitude of ±10V

send through a function generator to the “FAST” input of the laser so that the PZT

bonded onto the laser crystal scans the laser frequency. When there is a resonance,

we will have voltage signals reflected from and transmitted through the cavity shown

as in Figure 5.11 that are detected by a pair of fast photodiodes, respectively. In this

procedure, we have three signals (Modulation, Slow Scan and Fast Scan) being sent

to the laser and it is called the “open loop” mode, because the feedback loop is not

closed and there is no feedback to the laser.

For a small modulation index (β < 1), most of the intensity is in the carrier Ic

and first-order sidebands Is,

I0 ≈ Ic + 2Is, (5.68)

where I0 = |E0|2 is the total intensity of the beam and Ic and Is are given by,

Ic = J2
0 (β)I0, (5.69)

Is = J2
1 (β)I0, (5.70)

When the cavity is in resonance, only the carrier enters the cavity and the sidebands

are simply reflected by a mirror of well known reflectivity R. The reflected field is

then the incident field, Einc, multiplied by the complex reflection coefficient, F (ω), of
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the cavity,

Eref = E0

[
F (ω)J0(β)eiωt + F (ω + Ω)J1(β)ei(ω+Ω)t − F (ω −Ω)J1(β)ei(ω−Ω)t

]
, (5.71)

the complex reflection coefficient F (ω) of symmetric cavity with no losses is,

F (ω) =

√
R
[

exp
(
i
ω

FSR

)
− 1
]

1−R exp
(
i
ω

FSR

) , (5.72)

where FSR =
c

2L
is the free spectral range of the cavity of length L. The intensity

of the reflected beam Iref = |Eref |2 is,

Iref = Ic|F (ω)|2 + Is

(
|F (ω + Ω)|2 + |F (ω − Ω)|2

)
+2
√
IcIs

(
Re
[
F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)

]
cos Ωt

+Im
[
F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)

]
sin Ωt

)
+(2Ω terms), (5.73)

Around resonance region, in the case that
Ω

2π
is large compared to the cavity

bandwidth ∆νc, we can assume that the side bands are totally reflected, F (ω±Ω) ≈

−1, and equation (5.73) becomes,

Iref ≈ Ic|F (ω)|2 + 2Ic − 4
√
IcIsIm[F (ω)] sin Ωt+ (2Ω terms), (5.74)

The reflection signal is mixed with the same but phase shifted modulation signal and

then go through a low-pass electronic filter centered on modulation frequency
Ω

2π
.

This will filter out the constant and higher order terms of Ω in the expression and

therefore allows us to extract the error signal,

ε = 2
√
IcIsIm

[
F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)

]
, (5.75)

A typical error signal is plotted in Figure 5.11. The slope of the error signal (Figure

5.12) around resonance region is found by approximating the reflection coefficient

F (ω) for a high finesse cavity (F ≈ π/(1−R)),

F (ν) = 2i
∆ν

∆νc
, (5.76)
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Figure 5.12 (color) The Pound-Drever-Hall error signal ε (red curve) versus
the frequency deviation between the laser frequency ν and cavity resonance
frequency νc. The slope (blue curve) shows the proportionality constant D.
The modulation frequency Ω = 928 kHz, cavity finesse (F) is around 10,000
and the phase modulation index β = 0.4.

where ∆ν = ν−νc is the frequency deviation of the laser frequency ν from the cavity

resonance frequency νc in Hz. The error signal can now be proportional to ∆ν by

following relation,

ε = −D∆ν, (5.77)

D =
8
√
IcIs

∆νc
, (5.78)

where ∆νc is the cavity bandwidth. It is important to note that this linearity is

only valid between the interval of ±∆νc
2

. The proportionality constant D defines the

ultimate noise limit for a given system. It also indicates that for a narrower bandwidth

(higher finesse) cavity the corresponding proportionality constant D is larger so that

the required noise level in the feedback loop is lower and therefore harder to lock [97].

As we described above, in the “open loop” mode, the error signal is generated after
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the low-pass filter but the feedback loop remains open. When there is a resonance

and the intensity of the reflected resonance peak below certain limit (set by us), the

servo loop will be activated and the triangular voltage ramp signals applied on the

laser PZT and TEC will stop instantaneously. We call this process the “closed loop”

mode.

In the next section, we will describe the complete system composed of a cavity

and its feedback electronics and control units.

5.3 Description of the Cavity System

We will first describe the mechanical structure of our cavity system and then explain

the feedback electronics and control systems.

5.3.1 Mechanical Design of the Cavity

The original cavity in Hall A was built by Saclay. It was a monolithic cavity with

fixed cavity mirrors. The two mirrors forming the cavity are aligned by design due to

high tolerances applied on the cavity enclosure and the mirror’s substrate. It consists

of two mirrors of diameter D = 10.0mm and radius of curvature R = 0.5m placed

parallel to each other at a distance of L = 0.85m [8]. In order to keep the interaction

luminosity high between the electron and photon beams, the crossing angle αc chosen

to be 23.5mrad. This makes the cavity mirrors stay very close to the electron beam

(the distance between the electron beam and the mirror edge is 5 mm), and the

performance of the mirrors degrades over time. Therefore, the cavity, which is placed

along the beam line, needs to be removed completely to replace the mirrors. This

is to be followed by a tedious task of bench-top alignment. During this process, the

mirrors are susceptible to misalignment due to operator error or manufacturing flaws

that exist in the mirror itself. After this, the cavity has to be replaced in the beam line

and the laser, re-aligned to the cavity. This procedure requires a few days of vacuum
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and alignment work. If the alignment is disturbed during this procedure, the entire

task needs to be repeated. Hence, a cavity with adjustable mirrors, in-situ mirror

replacement and in-situ alignment method has better advantages over a monolithic

cavity. To keep the mirrors in position and ensure their alignment, it is possible to

use adjustable frames [42].

αc
L

Laser Beam

Electron Beam

D

Δ

Figure 5.13 (color) Schematic of crossing angle between the laser beam
and electron beam.

The geometry of the cavity is determined by the total distance (L) between the

two mirrors, the radius of the curvature (R) of the mirrors and the crossing angle (αc)

between the laser beam and electron beam. The constraint defined by small crossing

angle αc is,

αc ≈
(2∆ +D)

L
, (5.79)

where D is the diameter of the mirror and ∆ is the gap between the electron beam axis

and the edge of the mirror. The small crossing angle is aiming to increase the electron

photon interaction luminosity defined by equation (3.26). Figure 5.13 illustrates the

crossing of the laser and electron beams.

We chose to keep the original cavity length L = 0.85m and designed adjustable

cavity frames that houses two cavity mirrors. The cavity mirrors are manufactured

and coated in a company called Advanced Thin Films (ATF). The substrate is made

of fused silica (SiO2) with a thickness of 4mm, its diameter is D = 7.75mm, and

its radius of curvature is R = 0.5m. The coating is made of alternating dielectric

quarter-wave layers of SiO2 (n = 1.47) and Ta2O5 (n = 2.1). Figure 5.14 shows a
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simplified mirror geometry.

4 mm

ROC = 0.5 m

7
.7

5
 m

m

Fused Silica coating

Figure 5.14 (color) Schematic of cavity mirror geometry.

With this design the crossing angle is αc = 24.0mrad, the σ beam size at the

CIP should be 87 µm, and the gap between the electron beam and mirror edge

∆ = 6.125mm. The small crossing angle also gives some constrains to the mirror

diameter. This means we must chose a mirror diameter as small as possible. However,

the minimum diameter of the mirrors can not be too small as compared to the laser

beam spot size on them. Due to a mode matching requirement between the laser

beam and cavity, the size of the laser beam on the mirrors depends on the choice of

cavity length (L), mirror radius of curvature (R) and laser wavelength (λ). Given the

values of L, R and λ, we should have a beam size of σ = 224 µm on the mirrors.

The mechanical scheme of the cavity is shown in Figure 5.15. The cavity along

with all the other optical elements are mounted on an optics table with a size of

1500mm × 1200mm from Newport. This table is placed on a laminar flow damping

system consists of four pneumatic posts with auto-leveling valves to isolate the vibra-

tions from the ground [98]. In order to ensure the thermal and mechanical stability,

a frame consists of three cylindrical rods and two vertical plates with an octagonal

cutout forms the backbone of the cavity structure. The whole structure is made of

Invar, FeNi36, a nickel steel alloy known for its uniquely low coefficient of thermal

expansion (αT = 1.2 × 10−6K−1). The optics table is located inside a small room
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Figure 5.15 (color) A front view of the cavity sitting on an optics table
with pneumatic isolators.

equipped with a laminar flow fan filter unit.

Picomotor

Actuator

Spring
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Dowel

Pin

Cavity

Mirror
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Mount
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Locking

Screw
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x y
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Figure 5.16 (color) The structure of gimbal mounts used for cavity mirror
alignment.
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Figure 5.17 (color) Two picomotors are mounted to a pair of gimbal mounts
that are used to align a cavity mirror on one side of the cavity.

A cylindrical vessel made of stainless steel with a diameter of 4.5 inches (Figure

5.15) connected to two soft bellows on either side of the gimbals forms the vacuum

chamber. The bellows give gimbals a freedom to move freely when they are adjusted

by piezo actuators and the whole structure is under vacuum (∼ 10−9 Torr). The

cavity mirror is mounted on a mirror holder with a fine threaded retaining ring and

the mirror holder is attached to a set of two octagonal shaped gimbal mounts that

are made of Invar (Figure 5.16). The gimbal mounts are supported by four stainless

steel cylindrical bearings from C-Flex that form two axes for each gimbal mounts

that allow the gimbals to rotate around them. The mirror holder is machined such

that the optical axes of mirror lies on the same axes as the gimbals. The bearings

have a diameter of 0.25 inch and length of 0.4 inch, and each can support a load

up to 100 lbs. Two remote controlled motorized piezo actuators (picomotors) from

Newfocus attached to the gimbal mounts by two “L” shaped brackets used for aligning

the mirrors by rotating each gimbal around its axes in a plane transverse (horizontal

and vertical) to the laser beam direction. A pair of counteracting spring plungers

attached to the gimbals are also hold by two “L” shaped brackets keep the alignment

in position. Each spring can support a load up to 13 lbs. According to factory
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specification [99] the picomotors have an angular resolution of < 1.0µrad and a linear

resolution of < 30nm under a resistive force of 5 lbs. We found that, under a vacuum

load, this number is small and the alignment reproducibility is poor. The picomotors

are not servo motors and their drivers are interfaced to EPICS [100] slow control

system that allows us to give a pre-calibrated step size when we want to tilt the

mirrors.

Figure 5.18 (color) (a) Technical drawing of the stainless steel flange with
the vacuum window is welded to it. (b) Technical drawing of the aluminum
mount that holds a 0.5 inch turning mirror oriented at 450 with respect to
the incident laser beam.

Figure 5.19 (color) A slot with an opening of 1cm in the aluminum mount
allows the electron beam passes through and crosses with the laser beam at
the center of the cavity.

The vacuum windows (We and Ws in Figure 5.30) are 3mm thick and 0.7 inch
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Figure 5.20 (color) Technical drawing of the cavity with two ion pumps
attached to it.

diameter fused silica substrates. They allow the laser beam to enter and exit the cavity

via a pair of 0.5 inch turning mirrors (Me and Ms in Figure 5.30) oriented at 450 with

respect to the incident laser beam. The vacuum windows are anti-reflection coated for

532nm and welded to a stainless steel flanges according to a special procedure called

glass-metal soldering. The flanges connect the beam pipe to the outer bellows of the

cavity gimbal. Each of the 450 turning mirrors mounted to an aluminum holder that

is attached to the stainless steel flange (Figure 5.18). The aluminum holders have a

slot of 4cm long and 1cm wide (Figure 5.19) that allows the electron beam to pass

through and steered by a pair of dipoles in Compton chicane at the time of improving

the interaction luminosity by “vertical scan”. When the cavity is installed in the

beam line, the stainless steel flanges are connected to the beam pipe by another soft

bellow that is used to isolate the vibrations from the rest of beam pipe.

Inside the cavity, the vacuum is maintained by two ion pumps (Figure 5.20) and

the pressure is measured by a vacuum gauge attached to the cavity. The heavy ion

pumps are hold by two posts attached to the optics table and isolated from the cavity

by two soft bellows. Figure 5.21 shows the cavity installed in Hall A accelerator
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Figure 5.21 (color) A picture shows the cavity installed in Hall A acceler-
ator tunnel at JLab. The electron beam pipe above the cavity is used for a
straight beam when the Compton chicane is not used.

tunnel at JLab.

5.3.2 The Control System

Almost all of the optical elements, the lasers and the locking electronics are interfaced

to a remote controlled system. The electronic feedback system that uses the Pound-

Drever-Hall method has been designed and built by SIG group of Saclay based on

the experiences of PVLAS group [101]. It is the same old system that has been used

for the locking of the previous IR laser based system [8]. The complete system is

composed of the following elements:

Electronics specific to the control loop, the ramp generator, the sinusoidal sig-

nal generator (for frequency modulation), the oscilloscope and the workstation are

situated in the Hall A Counting House.
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The lasers (seed laser, PPLN and fiber amplifier), stepper and servo motors, and

their control units, the photodiodes, the preamplifiers and the cavity are situated on

the optics table in the tunnel.

The VME crate, used for controlling the electronics, is located in Hall A of Jeffer-

son Lab. The electronics are completely controlled from a workstation in the Counting

House, with the help of an interface card. This card permits us to transport numerical

signals to the optics table area which is about 100 meters from where the crate is

located.

An automatic switching system from “open-loop” mode to “closed-loop” mode

around the cavity resonance region permits the system to function automatically.

It consists of an electronic circuit and an EPICS program that manages the laser

temperature scan.

Figure 5.22 illustrates a functional view of the feedback electronics which consists

of the following modular cards:

The “PREAMP” card amplifies signals from the PDR and PDT photodiodes.

A 10 V peak-to-peak ramp, together with the 50 mV amplitude and Ω = 928kHz

modulation, is supplied on the laser PZT. The photodiodes are held at a continuous

voltage level of 5 V. The current from the photodiodes is transformed into a voltage

signal via a transimpedance amplifier that allow us to transmit signals across 100

meters of coaxial cables.

The “ACQSIGN” card builds the error signal from the signal produced by the

photodiode preamplifier. A band-pass filter is applied on the reflected signal before it

mixed with the modulation signal at frequency Ω and amplified. This filter, centered

on Ω, eliminates all harmonics of the modulation frequency Ω except the fundamental

one. The value of Ω was determined by minimizing the laser Residual Amplitude

Modulation (RAM) [43]. The amplification gain is controllable from the command

station. The error signal is then used to build the feedback signals supplied on the

fast and slow channels.

The “SERVO” card creates the fast and slow feedback signals applied to the laser
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Figure 5.22 (color) Functional view of the feedback electronics built by
Saclay (redrawn from [43]).
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Figure 5.23 (color) A printed circuit board (PCB) layout of the feedback
electronics built by Saclay used for cavity locking.

frequency. The error signal is injected into a series of three separate integrators com-

mon to the Slow and Fast control loops. The two control modes play complementary

roles: the slow mode is for compensating the slow drift in laser frequency while the

fast mode allows the efficient reduction of the laser frequencys jitter. The output

signals of these two modules are applied directly to the two laser control ports.

The “TRIGGER” card switches between the open loop and closed loop modes.

The correction signals must be applied only when the laser frequency is close to a

cavity resonance frequency. To decide when the corrections must be applied, the

reflected signal is also sent to another module called “hysteresis comparator” where,

according to its amplitude, the system is switched between the “closed loop” and

“open loop” modes. In the “open loop” mode, the corrections to the laser frequency

are not sent to the laser PZT whereas in the “closed loop” mode, these slow and

fast correction signals are sent to the laser and the ramp is switched off. Figure 5.24

illustrates the automatic locking procedure by this card.

A trigger threshold Vthreshold is regulated from the control station based on the

intensity of the reflection signal monitored by an oscilloscope. The release signal VDC

is placed 100 mV above Vthreshold. When the laser frequency crosses a resonance, the

reflection signal from the PDR photodiode displayed as a drop in voltage and we call it

the “reflection dip”. When the “reflection dip” below Vthreshold, the “TRIGGER” card
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Figure 5.24 (color) A schematic illustration of automatic locking procedure
of cavity. (redrawn from [43]).

sends the signal to close the loop that results an interruption of the Slow ramp at the

output of the Fast and Slow integrators(Figure 5.22). The sequencer automatically

achieves frequency agreement when the laser frequency finds itself near a resonance

frequency. To cross the resonance, a voltage ramp must be applied to the laser PZT

via the Fast input in the “open loop”. When the loop is closed, if the photodiode

signal (PDR) climbs above VDC , then the inverse operations are performed. If the

laser frequency is far from the frequency range of the Fast ramp (10 V correspond

to FSR/2 ≈ 45MHz), an EPICS program in the system applies a slowly varying

triangular voltage ramp to a Peltier module attached to the laser crystal via laser’s

Slow input until the frequency crosses the resonance. When the loop is closed, power

builds up in the cavity. The laser frequency scans are stopped when the power

detectors (S1 and S2 in Figure 5.25) at the cavity exit measures a nonzero power.
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The “Command Controller” module is part of the slow control program. It is used

for regulating and activating the entire system from the work station in Counting

House. This includes the optical elements, as well as the electronic controls. It allows

the real-time control of analog and digital inputs and outputs to the various crates

and modules via the EPICS interface. A VME crate in Hall A takes the following

cards: an ICV150 card (digital-analog converter ADAS) that measures the voltages of

the control signals (PDR, PDT, fast ramp, slow ramp); an ICV196 card that provides

the digital interface between the electronic-card sequencer and the control screens by

sending and receiving TTL signals; an MV712 card that allows RS232 commands to

control devices such as the laser, PPLN temperature controller and fiber amplifier.

With the help of “Command Controller” module we can control the entire locking

assembly from a control station with the following functionality: threshold voltage

level Vthreshold; the servo loop gain; the state of the feedback loop and integrators

(ON/OFF); and the laser frequency scan program. Figure 5.25 shows a functional

view of the cavity system with control units that are connected to optical elements

and lasers.

5.4 Experimental Procedures

In chapter 3, we presented very briefly the optical setup of the Compton polarime-

ter. Previously, we explained the technique to achieve power amplification inside the

cavity. In order to achieve the highest possible cavity gain, the laser beam needs to

be shaped appropriately required by the cavity geometry so that it couples to the

cavity with most of its power before gets amplified in a fundamental mode. Except

for that, there are also some additional conditions, such as the incoming beam needs

to be very well aligned with respect to the cavity optical axis, and two cavity mirrors

have to be highly parallel with respect to each other.

Characterizing and understanding the cavity mirrors are as important as getting

the maximum cavity gain. Because intra cavity parameters are inaccessible for a
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measurement, therefore there is an indirect method to estimate them.

In this section, we will describe techniques related to these procedures.

5.4.1 Cavity Mode Matching

Cavity Optics

Light trapped in a cavity will reflect multiple times from the mirrors, and due to the

effects of interference, only certain modes which are reproduced on every round-trip

of the light through the cavity are the most stable and will be sustained, the others

being suppressed by destructive interference. The most common types of optical

cavities consist of two facing plane (flat) or spherical mirrors. The geometry and

length of the cavity require the incoming Gaussian beam to be matched in order to

have resonances. In other words, the wavefront radius of curvature of the Gaussian

beam must be equal to the radius of the curvature of the one of the mirrors in order

to minimize losses by diffraction.

z

L

R1 R2

ω0
θ

    ω02

ω(z)

zRzR

Figure 5.26 (color) A Gaussian beam in a cavity.

For a Gaussian beam confined in a cavity with two curved mirrors of radii of

curvature R1 and R2, and a length L (see Figure 5.26), the wavefront radius of

curvatures R(z1) and R(z2) can be calculated by equation (5.11),

R(z1) = z1

[
1 +

(zR
z1

)2]
= −R1, (5.80)

R(z2) = z2

[
1 +

(zR
z2

)2]
= +R2, (5.81)



5.4 Experimental Procedures 146

where z2 − z1 = L and zR is the Rayleigh range. For a symmetric cavity with

R1 = R2 = R, we have z2 = −z1 and the beam waist w0 will locate at the center of

the cavity, and if we substitute zR with L and R in equation (5.9), we have,

w0 =
(λL

2π

) 1
2
(1 + g

1− g

) 1
4
, (5.82)

where g = 1− L

R
is the cavity stability parameter. It is obvious that when parameter

g is in range −1 ≤ g ≤ 1, the Gaussian beam spot sizes can exist. In other words,

for a cavity with two mirrors with radius of curvature R and spacing L, when g is

within that range, it forms a stable periodic focusing system for optical rays. From

equation (5.82), we can also determine the beam size on cavity mirror face,

w1 = w0

√
2

1 + g
, (5.83)

In our cavity, R = 0.5m, L = 0.85m therefore the stability factor g = −0.7. The

beam sizes (4σ or 1/e2) required at the center of the cavity and on the mirrors are

w0 = 348µm and w1 = 896µm, respectively. Due to the special requirement for the

cavity waist size, our cavity was chosen between a concentric and confocal cavity.

Power Loss Due to Mode Mismatch

Misalignment of laser beam with respect to aligned cavity mirrors breaks axial sym-

metry inside the cavity and leads to the excitation of higher order modes. Therefore

the fundamental Gaussian mode is attenuated and the power inside the cavity is

reduced.

As shown in Figure 5.27, there are two independent geometrical misalignments:

a shift ∆ between the cavity optical axis and the laser beam axis, an angular tilt α

between the laser beam axis and the cavity axis. For a small misalignment, TEM10

will be excited (Figure 5.2), and the power losses ∆P/P (∆P = P0 − Pin, P0 is the

power coupled to the cavity without any mismatch) due to axial ∆ and angular α
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Δ

α

Axial location mismatch

Angular mismatch

Figure 5.27 (color) A schematic illustration of axial and angular mismatch
of the laser to the cavity.

mismatch can be calculated as [102,103],

∆P

P
=

[απw0

λ

]2

, (5.84)

∆P

P
=

[∆

w0

]2

, (5.85)

For the case of the cavity we have installed, the cavity waist size required is

w0 = 348µm, and for a power loss ∆P/P of 1%, the required tolerances for ∆ and α

are 35µm and 50µrad, respectively.

d

ωo’ ωo

Waist size mismatch

Waist location mismatch

Figure 5.28 (color) A schematic illustration of waist size and location
mismatch.

There is also a mode mismatch due to mismatches in laser and cavity waist sizes
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and locations which can cause power losses in the laser beam coupling to the cavity

(Figure 5.28). When these mismatches are present, LG10 mode will be excited (Figure

5.3). In first order one gets [102,103],

∆P

P
=

[∆w

w0

]2

, (5.86)

∆P

P
=

[ λd

2πw2
0

]2

, (5.87)

where ∆w = w′0 − w0 is the mismatch in waist sizes between the laser and cavity, d

is the shift of the laser waist location with respect to the cavity waist location and λ

is the laser wavelength.

Theoretically one can model the power loss due to mismatches in waist sizes and

locations. Figure 5.29 shows the coupling coefficient of fundamental mode (TEM00)

to the cavity versus mismatch in waist sizes and locations of the laser and cavity.
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Figure 5.29 (color) A counter plot shows the coupling coefficient of funda-
mental mode (TEM00) to the cavity versus mismatch in waist sizes and waist
locations of the laser and cavity.

Mismatches from alignment, waist size and locations are always coupled together.

The effect is loss of coupling in the fundamental mode so that there is less power
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available for amplification in the cavity and results to a smaller amplification gain.

Astigmatism and ellipticity of laser beam are also the causes of mode mismatch.

Since the optical cavity is symmetric in both direction (x: horizontal and y: vertical)

and optimized for one waist size and location, these effects also can excite higher

order modes such as TEM20 (Figure 5.2). These effects have been evaluated in [104].

If we define the ellipticity of a laser beam with β =
wy
wx

, the relative power loss due

to this ellipticity is,

δP =
β

1 + β2

(
β2 − 1

β2 + 1

)
, (5.88)

This power loss can be reduced further by using a pair of cylindrical lenses that make

the beam spot more circular and also reduce the astigmatism as well.

Mode Matching of Laser Beam to the Cavity

As we described above, the laser and cavity mirrors not only have to be highly aligned

to each other but also have to be matched in waist sizes and locations in the cavity.

This will ensure that the laser beam is focused at the center of the cavity with the

correct size (4σ or 1/e2) of 348 µm so that we can minimize the higher order modes

and increase the coupling in the fundamental TEM00 mode. In order to achieve this,

a careful study of laser beam transport to the cavity is necessary.

In our optical system, the frequency doubled green beam after the two dichroic

mirrors DC1 and DC2 (Figure 5.30) is focused by lens L0 with a focal length of

f0 = 75mm. The dimensions of this beam were measured by Spiricon [105] CCD

camera which has a precision of 5µm and it shows that the beam was focused at

6.0cm after the enclosure box with sizes of wx = 370µm and wy = 450µm, in the

horizontal and vertical plane, respectively. A diverging lens L1 with a focal length of

f1 = −1.0m at 405mm from the PPLN Doubler expands the beam very slowly. Here

we want to keep the beam collimated so that it doesn’t get clipped when it passes

through the Faraday optical isolator (FOI) which has a small aperture diameter of

3.5mm. Another reason is that, it is the region where we want to keep all the
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polarization shaping elements, such as
λ

2
plate, polarized beam splitter (PBS) and

λ

4
plate. These elements have a stringent angular acceptance requirements for preserving

the purity of polarization states, therefore a well collimated beam is desired. Here we

also have taken into account the power damage threshold of these elements. For the

power level we have (1.74 W after the doubling setup), it was not an issue. In order

get a correct waist size at the cavity center, we installed another two lenses L2 and

L3 with focal lengths of f2 = −50mm and f3 = 200mm at 820mm and 1.0m from the

PPLN doubler, respectively. Figure 5.31 shows the distances of each optical elements

with respect to each other. Here in our setup, L1 and L2 are on fixed mounts and L3

is mounted on a remote controlled translation stage. This will allow a fine tuning by

remote control after the cavity is installed.
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Figure 5.31 (color) Schematic view of the optical scheme with the locations
of optical elements (units are in mm).

The beam transport calculation was done by a software called OptoCad [106] that

traces Gaussian beams through optical systems. It is a Fortran95 based open source
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package, written and maintained by Roland Schilling. It is mainly used in gravita-

tional physics community for modeling and designing their optical setups. OptoCad

automatically traces the laser beam through all given components and computes the

parameters of the optical system (beam sizes, eigen-modes, mode-matching factors,

etc.); optionally, it plots the beams and optical components to a PostScript file. A

to-scale schematic drawing of the laser and cavity system is shown in Figure 5.32.

Since OptoCad only plots components in 2D, in order to properly model the system,

we had to compensate the optical paths for some optical elements which is not lying

on the optics table plane (in the propagation direction of laser beam, optical elements

from M2 to Me in Figure 5.31).
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Figure 5.32 (color) A to-scale schematic drawing of laser and optical com-
ponents by OptoCad.



5.4 Experimental Procedures 153

Distance from Laser Head (mm)
0 500 1000 1500 2000 2500 3000 3500

) (
m

m
)

2 e1
B

ea
m

 D
ia

m
et

er
 (

-3

-2

-1

0

1

2

3

(PPLN Profile)

vertical
horizontal

 = -1.0 m1L
 = -0.05 m2L

 = 0.2 m3L

Cavity

ceM csM

Figure 5.33 (color) The calculated beam size versus the distance along the
beam path from the face of PPLN doubler.

Figure 5.33 shows the calculated beam sizes from OptoCad versus the distance

along the beam path from the face of the PPLN doubler. We also took into account

the focusing effect comes from the curvature of cavity mirrors. The experimental

checking of laser waist size at the center of cavity is not possible with the Spiricon

CCD camera. Therefore, we created an optical path (2.375m) from the doubling unit

to a spare cavity mirror substrate which has the same path length from the doubling

unit to the cavity with all the lenses and optical elements are in place. This substrate

is uncoated and made of the same material (fused silica) and has the same radius

of curvature as cavity mirrors. Since we have a space to mount the Spiricon CCD

camera, we can experimentally check the beam sizes and the waist location after this

mirror substrate, and therefore compare it to our calculation. A small correction with
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L3 (fewmm) was necessary in order to get an average beam size of 350µm at a distance

of 425mm from this mirror substrate. Due to the ellipticity and small astigmatism

in our beam, the maximum possible theoretical mode matching coefficient defined by

equations (5.86) and (5.87) was 96.7%. Using cylindrical lenses could correct it, but

it would also make the optics more complex, therefore we decided to ignore it. A

final alignment and fine tuning with L3 were still needed once the cavity is closed up

and evacuated with vacuum pumping, and it is done by monitoring the cavity power

while it stays locked. We will describe the cavity and beam alignment procedure in

the next section.

5.4.2 Cavity and Beam Alignment

Beam Alignment

As we described in the previous section, misalignments of laser beam with respect to

aligned cavity cavity mirrors often come from the axial and angular misalignments in

x (horizontal) and y (vertical) directions. Therefore, they can be described by four

parameters: ∆x, ∆y, ∆αx, ∆αy.

In order to control these parameters, we need to have an alignment scheme with

four degrees of freedom. In our setup, a periscope system consists of two remote

controlled steering mirrors M1, M2 (Figure 5.25) is used to align the incoming laser

beam with respect to the cavity optical axis with an angular resolution of 10 µrad

[8]. The mirrors are mounted on motorized servo frames from Physik Instrumente

(PI) [107] (Figure 5.34). The controller box C-844 can take up to four motors. The

motors are connected to the controller box through RS-232 mode and interfaced to

the VME crate that holds the command-control cards.

Beam position variations are monitored with two 4-cell quadrant photodiodes

noted as 4Q1 and 4Q2 that detect a small amount of transmitted light (< 0.1%) behind

Mr2 and Me (Figure 5.25). These photodiodes are made of Si and have an active area

of 6.5mm × 6.5mm and a resolution of 250µm. There is a pinhole diaphragm with
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Figure 5.34 (color) A picture shows the steering mirror M1 mounted on a
motorized mirror frame with two servo actuators and the lens L3 is placed
on a motorized linear stage equipped with another servo actuator.

Δx

Δy

π/4 + Δα

Δα

M2 

(Motorized)

Mr2

M1 

(Motorized)

Figure 5.35 (color) A schematic shows a periscope system composed of
two motorized mirrors achieve displacement and tilt of laser spot on cavity
mirror (redrawn from [43]).

a diameter of 2.5mm in front of each photodiodes. The analog signals read by their

electronics are fed to ICV150 card connected to VME crate and being monitored by
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control system.

A displacement parallel to the cavity optical axis is obtained by performing a

rotation of the same angle in directions correspond to mirror M1 and M2. But the

directions x and y are reversed between M1 and M2 (Figure 5.35). To get a displace-

ment in the horizontal plane, we need to use motor “M2V” and “M1H” with twice

more steps on M2 than M1 and do the opposite for the vertical plane. For a tilt

around the cavity optical axis, we only need to tilt M2 in its horizontal or vertical

axis. Since these motors are servo motors, after each alignment that gives maximum

cavity power, we can take note of their corresponding positions for future reference.

Before we install the cavity mirrors, we need to align the incident beam to the

cavity optical axis. This can be accomplished by using a pair of pinhole diaphragms

that have the same geometry as the cavity mirrors. They can be mounted on the

mirror mount in the adaptor ring mounted to the cavity gimbals (Figure 5.16). The

hole has a diameter of 1mm (Figure 5.36), the alignment is achieved by maximizing

the intensity transmitted by the diaphragm.

4
.0

 m
m

1.0 mm

7.75 mm

1
.0

 m
m

1.0 mm

7.75 mm

1.0 mm

Figure 5.36 (color) A schematic of a pinhole used for aligning the laser
beam to cavity optical axis.

Cavity Alignment

After determining the moving sequences of motors for each steering mirrors, we can

optimize the coupling. But since our cavity is an adjustable cavity, the cavity mirrors

also need to be highly aligned. There are two kinds of misalignments need to be

considered: an angular tilt θ and an axis shift ρ of one mirror with respect to the
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other. Ref. [104] estimated the mechanical tolerance for the alignment of cavity

mirrors by,

D ≤ R2

2R− L

( ρ
R

+ θ
)
, (5.89)

where R and L are the radii of curvature of the mirrors and length of the cavity,

respectively. D is the distance between the optical center and geometrical center of

a mirror. For our cavity, R = 0.5m, L = 0.85m, we get,

D[mm] =
5

3

(
2ρ[mm] + θ[mrad]

)
, (5.90)

the order of magnitude of the mechanical tolerances for our cavity are O(0.3mm)

for the axis shifts and O(0.6mrad) the angle tilts both in horizontal and vertical

directions.

Once the step of aligning the incident beam to the cavity optical axis is complete,

we can align the cavity entry mirror to the incident beam. This is accomplished

by coinciding the spot of reflected beam from the cavity entry mirror, Mce, to the

incident beam spot on mirror Mr2. It can be monitored by a CCD camera (CCD1)

in front of Mr2 (Figure 5.25). After this step, we can align the exit cavity mirror,

Mcs, to the incident. While the laser frequency being scanned and cavity is “open

loop”, the criteria to check the cavity mirror alignment is to observe the resonance

modes that are monitored by CCD2 at the exit of cavity and the reflection signal

being monitored by an oscilloscope connected to the fast photodiode PDR. We might

see some higher order modes (Figure 5.37) and occasionally the fundamental mode

at the beginning. But when tuned right, there should always be a fundamental mode

(TEM00) and some TEM10 modes present.

Getting a bigger reflection peak (reflection dip) that correspond to a fundamental

mode can be tedious and may take a long time to achieve depending on the specific

cavity tune. But there is simpler and easier method.

This method consists of performing the incident beam tuning in closed loop. Sup-

pose that the initial coupling in the fundamental mode is good enough to allow the

feedback loop to be used. When the locking parameters are setup correctly, cavity can
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Figure 5.37 (color) The fundamental mode and higher order modes ob-
served by a CCD camera at the end of the cavity.

be locked to a fundamental mode even with a smaller reflection peak (for example,

100 mV peak out of a 800 mV base signal). Since our motors are extremely quite, a

small motion in any of them does not perturb the lock. Now we can play with mirrors

M1 and M2 combined with lens L3 to improve the tune by monitoring the intra-cavity

power measured by two photodiodes S1 and S2. During any of these steps, if we loose

the lock, we can wait for sometime for the lock to come back or go to the opposite

direction or use the previous settings of steering mirror positions to recover.

5.4.3 Determination of Cavity Parameters

Once laser beam and cavity is aligned with respect to each other, cavity can be locked.

But we need to know the real parameters correspond to a “running cavity”. It is

obvious that, it is impossible to directly measure parameters like the cavity gain (G),

bandwidth (∆νc) and the corresponding power (Pcav) inside the cavity. Therefore,

all of the various methods developed so far for measuring cavity parameters rely on

“external” information. A simplest method is the measurement of the cavity decay

time.
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When the laser frequency is locked to the cavity resonance frequency, the energy

built up in the interior of the cavity is at a maximum. We thus observe a reflection

signal at a low level, corresponding to the fact that nearly all of the incident wave is

transmitted by entrance mirror into the cavity. Inversely, we simultaneously observe

that the the transmission of the cavity is at a high level proportional to the stored

energy. If we suddenly cut off the trajectory of the laser beam before it enters the

cavity, we then see, in the transmission and reflection of the cavity since the laser is

extinguished, a decrease in the power level from the established power level to the

dark current of the diodes. Cutting off the trajectory of the laser beam can be done

in three ways: use an acousto-optic modulator (AOM) which deflects the beam when

a high voltage signal applied to the acousto-optic crystal; or one can block the laser

beam with a fast mechanical system called “chopper” (it is much too slow); or switch

off the laser pumping diode so that the incident laser power is off. For both cases,

we need to correct the measured decay time for the response time of the AOM or

laser diode. We chose not to introduce an AOM in the system, due to a reason that

it changes the mode matching of the system. In the later method, while the cavity

is locked and the laser is on its “standby” mode, we switch off the laser diode and

immediately record the transmitted power via a digital oscilloscope triggered to it.

The intensity of the trapped light will decrease by a constant factor during each

round trip within the cavity due to both absorption and scattering losses in the

cavity mirrors. The intensity of light (I(t)) within the cavity is then determined as

an exponential function of time.

I(t) = Imaxe
− t
Td , (5.91)

where Imax correspond to the maximum laser intensity inside the cavity and Td is

called as cavity decay time. For high finesse, Td is directly related to the cavity

parameters by [101,108],

Td ≈
FL
πc

=
1

2π∆νc
, (5.92)

where F is the finesse, L is cavity length, c is speed of light and ∆νc is cavity
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Figure 5.38 (color) Decay time of the cavity. The theoretical curve (red
line) is fitted to the experimental data (black dots) to extract the cavity
decay time. The finesse is corrected for the laser decay time of 6µs.

bandwidth. The measurement of Td allows us to access the value of the finesse and

the value of the cavity bandwidth. Here, it is necessary to take into account of

the decay time of the laser itself in order to determine the decay time of the cavity

correctly. The decay of the laser diode can be described by,

P (t) = Pmaxe
− t
TL , (5.93)

where TL is the laser decay time. If we convolute equation (5.92) with equation (5.93),

we will get [43],

I(t) = Imax
TL

Td − TL

(
Tde

− t
Td − TLe

− t
TL

)
, (5.94)

which describes the decay of the laser light inside the cavity with the correction of

laser decay time.

Figure 5.38 shows a cavity decay curve measured for our installed cavity and a

theoretical fit uses equation (5.94) to extract the decay time. Here, after correcting the
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fitted value of decay time to the measured laser decay time and taking the sampling

error of oscilloscope as 0.5µs, we have Td = 11.40± 0.5 µs.

Now, the maximum cavity gain Gmax, optical coupling c00 of TEM00 mode and

mirror characteristics such as loss (P ) and transmittivity (T ) need to be calculated

before we determine the intra-cavity power. Several papers have discussed theoretical

models to calculate these parameters [8, 109, 110]. The models in Refs. [8, 109] are

similar and one needs to measure the power going into the cavity Pinc and the power

transmitted out of the cavity Ptrans externally. Other parameters still need to be

determined by more auxiliary measurements from the reflection signal. If we ignore

the power contained in modulation sidebands, the loss ratio β =
P

T
of the mirrors

can be written as,

β =
1

2

[
Pinc
Ptrans

(
1− V locked

r

V unlocked
r

)
− 1

]
, (5.95)

where V locked
r is the reflected voltage measured when the cavity is in locked state, and

V unlocked
r is the reflected voltage measured when the cavity is in unlocked state. Now

the optical coupling c00 is related to β by,

c00 =
Ptrans
4Pinc

[
1 +

Pinc
Ptrans

(
1− V locked

r

V unlocked
r

)]2

=
Ptrans
Pinc

(1 + β)2, (5.96)

According to Figure 5.39, and measured values of Pinc and Ptrans, we can calculate

β and c00, which eventually allow us to calculate T , P , Gmax and Pcav. Table 5.1

summarizes the cavity parameters measured during PREx. Note that the incident

and transmitted powers are measured by Thorlabs PM140 powermeter which has an

overall accuracy of 1%.

There is also a graphical method which uses the cavity reflection signal to measure

the cavity bandwidth. In this method we determine the full width at half-maximum

(FWHM) of the reflection peak in a unit of time. Then, one converts from time

units to frequency units, by getting the gap between the two sidebands equal to

twice the modulation frequency. This measurement is difficult to make, because

perturbations (cavity length variation due to vibrations etc.) may deform the peak
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Figure 5.39 (color) A snapshot of a digital oscilloscope shows cavity locking
signals correspond to locked and unlocked state of the cavity.

Parameters Value

Incident Laser Power: Pinc (W) 1.24 ± 0.012

Transmitted Power: Ptrans (W) 0.75 ± 0.007

Finesse: F 12600 ± 550

Cavity Bandwidth: ∆νc (kHz) 14.00 ± 0.32

Optical Coupling: Coefficient c00 0.79 ± 0.08

Loss Ratio: β 0.14 ± 0.013

Mirror Transmittivity: T =
π

F(1 + β)
(ppm) 200 ± 9

Mirror Losses: P =
πβ

F(1 + β)
(ppm) 30 ± 3

Maximum Gain: Gmax =
T

(P + T )2
3800 ± 170

Intra-cavity Power: Pcav = c00GmaxPinc (W) 3750 ± 120

Table 5.1 Characterization of the cavity parameters during PREx.
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when the laser frequency sweeps the resonance region defined by the cavity. Therefore,

the measurement is not very accurate. Figure 5.40 shows a theoretical fit to the

reflection and transmission signals used to extract the cavity bandwidth and therefore

the cavity finesse.
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Figure 5.40 (color) A theoretical fit to the reflection and transmission
signals used to extract the cavity bandwidth when the cavity is in “open
loop” mode.
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The analysis of the shape of the reflected and transmitted signals, when the cavity

is in “open loop”, may also give some information on cavity bandwidth. Several

papers [111,112] discuss the dynamic behavior of Fabry-Perot cavities with very high

finesse or very large length. They exhibit an oscillatory reflection and transmission

signals around the resonance peak when the input laser frequency or cavity length is

being scanned by a triangular ramp. They show that oscillations in the signals are the

result of interferences between the amplitude and the phase of the cavity and laser

fields. Based on the analysis of “ringing” on the transmitted and reflected power,

they created a theoretical model to predict the cavity finesse by fitting the measured

signals to the theoretical curve.
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Figure 5.41 (color) The intra-cavity power stability is monitored for 7
hours.

The stability of cavity gain therefore the intra-cavity power is monitored for more

than 7 hours with a statistical stability of 1.5%. Figure 5.41 shows the time evolution

of the power for a lock achieved during PREx with electron beam passing through

the Compton chicane.
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We have described the optical and electronic principles of our laser and cavity

system and described the results. Robust cavity locking with stable high power is

essential, but in order to pursue a Compton polarimetry, we have to create a highly

circularly polarized photon beam at the Compton interaction point (CIP) in order

to observe Compton scattering asymmetry and therefore to be able to measure the

electron beam polarization. We will describe the polarization aspects of our system

in the next chapter.



Chapter 6

Beam Polarization

The goal of building a high finesse green Fabry-Perot cavity for a Compton polarimeter

is not only to provide a high energy photon flux but also to create highly circular

photons for the longitudinally polarized electrons, so that there will be an efficient

Compton scattering. Creating a highly circular photon beam and knowing its degree

of circular polarization (DOCP) with good precision are vital to achieve high precision

Compton polarimetry.

In this chapter, we will first describe the basic concepts of polarized light and tech-

niques of measuring it. The combination of Fabry-Perot cavity with a polarized laser

light, once more makes the creation and measurement of the polarization inside the

cavity more complex. Therefore, we have to measure a transfer function that allows

us to determine the DOCP indirectly. Knowing the birefringence of our system is

important for systematic error estimation in intra-cavity polarization determination.

Finally, we will briefly present the results of electron beam polarization measurement

based on the integration of the Compton photons scattered off the longitudinally

polarized electrons.

166
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6.1 Polarization of Light

6.1.1 Introduction

For a monochromatic plane wave with angular frequency ω and wave vector k (|k| =

k =
2π

λ
) traveling along the axis Oz, its electric field E(x,y, z, t) in an isotropic

media can be written by,

E(x,y, z, t) = (Exx̂ + Eyŷ)e−i(ωt−kz), (6.1)

where Ex and Ey are the transverse components in x and y directions and can be

defined by,

Ex = Ax, (6.2)

Ey = Aye
iδ, (6.3)

where Ax and Ay are real amplitudes, and δ is the angular phase difference between

them. On plane Oxy, the electric field vector E(x,y, t) can be written with its real

components in the following matrix form [113],

E(x,y, t) =

X(t)

Y (t)

 =

 Ax cos(ωt)

Ay cos(ωt− δ)

 , (6.4)

The evolution of equation (6.4) defines an ellipse with the following form,

X2(t)

Ax
+
Y 2(t)

Ay
− 2

X(t)Y (t)

AxAy
cos δ = sin2 δ, (6.5)

and the sign of δ defines the helicity of this ellipse. The most general polarization

state of an electro-magnetic wave is an elliptical one.

Elliptic polarization may be referred to as right-handed or left-handed, and clock-

wise or counter-clockwise, depending on the direction in which the electric field vector

rotates. Unfortunately, two opposing historical conventions exist. In this chapter, we

follow a convention of defining the polarization from the point of view of the receiver.

Using this convention, left or right handedness is determined by pointing one’s

left or right thumb toward the source, against the direction of propagation (-z), and
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then matching the curling of one’s fingers to the temporal rotation of the field. If

we choose the propagation direction of the field is along Oz, the helicity state hγ is

related to δ by using the following relationship,

hγ =

 +1, Left-handed (counter-clockwise), if δ ∈ [0, π]

−1, Right-handed (clockwise), if δ ∈ [−π, 0]

Ax

Ay

yy’

x

x’

O

θ

χ

ε
A’x

A’y

Figure 6.1 (color) The rotated polarization ellipse.

In Figure 6.1, we may determine the axes of the polarization ellipse by changing

from the coordinate frame Oxy to a frame Ox′y′ by the rotation angle θ,

tan(2θ) =
2AxAy
A2
x − A2

y

cos δ, (6.6)

where θ is the orientation of the ellipse which takes a value from 0 to
π

2
. We can also

define the ellipticity in two coordinate frames as,

tan(ε) =
A′y
A′x

, (6.7)

tan(χ) =
Ay
Ax

, (6.8)

There are particular configurations for which the ellipse reduces to a line or a

circle. Therefore, we can define the linear and circular polarization as,
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• If δ = 0 (π), then the polarization is linear.

• If δ = ±π
2

and Ax = Ay, the polarization is circular (Left/Right).

6.1.2 Jones Representation

We also use vector notation to represent the polarization states of light that was

proposed by R. C. Jones [114,115] in 1941. In Jones representation, polarized light is

represented by a Jones vector, and linear optical elements are represented by Jones

matrices. When light passes through an optical element, the resulting polarization

of the transmitted light is found by taking the product of the Jones matrix of the

optical element and the Jones vector of the incident light. The polarization state

of the previous case can be represented by Jones vector J with two components

(amplitudes),

J =

 Ax

Aye
iδ

 , (6.9)

where the propagator e−iωt was deliberately omitted because it does not contribute to

the description of the polarization state. It is convenient to work with Jones vector of

various polarization states. Waves linearly polarized along x-(y-) direction and those

linearly polarized at an angle θ from the x-axis are written as,

Ĥ =

1

0

 , V̂ =

0

1

 , Θ̂ =

cos θ

sin θ

 , (6.10)

elliptically polarized and, particularly left or right circularly polarized states can be

written as,

Ê =

 cosχ

sinχeiδ

 , L̂ =
1√
2

 1

+i

 , R̂ =
1√
2

 1

−i

 , (6.11)

Here it can be seen that, two linearly independent vectors form a basis in the

representation of a polarization state. The general state of elliptical polarization can
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be expressed as the superposition of both left and right circular states,

Ê =
1√
2

[
(cosχ− i sinχeiδ)L̂ + (cosχ+ i sinχeiδ)R̂

]
, (6.12)

The power carried by the left and right circular components of the field is written,

IL =
1

2
(1 + sin 2χ sin δ), (6.13)

IR =
1

2
(1− cos 2χ sin δ), (6.14)

For an elliptically polarized light, it carries certain number of left and right circu-

larly polarized photons with spin equal to +~ and −~ along the direction of propaga-

tion of the light with powers IL and IR carried by each components respectively. The

number of left (NL
γ ) and right (NR

γ ) circularly polarized photons define the degree of

circular polarization (DOCP) as,

DOCP =
NL
γ −NR

γ

NL
γ +NR

γ

=
2AxAy
A2
x + A2

y

sin δ, (6.15)

For a fully polarized light with pure circular polarization, DOCP = ±1, and with

pure linear polarization the DOCP = 0. The Compton asymmetry measured at the

point of interaction is directly proportional to the DOCP . Therefore, a photon beam

with DOCP ∼ 100% is desired. A difference in amplitude (Ax 6= Ay) and a phase

shift between the two components (δ 6= π

2
) give rise to an elliptical polarization. As

soon as the polarization becomes elliptical, it introduces some quantity of photons

with spins opposed to the desired direction with the power proportional to them.

Jones representation uses the amplitude and phase information (which are not

observables) of the wave for calculating the DOCP . It is suitable to light that is

already fully polarized. Light which is randomly polarized, partially polarized, or

incoherent must be treated using the Stokes vector and Mueller matrix formalism.

6.1.3 Stokes Parameters

The Stokes parameters are based on Mueller matrix with a set of values that describe

the polarization state of light. They were defined by G. G. Stokes in 1852, as a
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mathematically convenient way to describe the polarization state of light with its

observable quantities, such as, intensity and the orientation of the polarization ellipse.

The Stokes vector is defined by [113],

P =


P0 = A2

x + A2
y

P1 = A2
x − A2

y

P2 = 2AxAy cos δ

P3 = 2AxAy sin δ

 =


I

Ix − Iy
I+π

4
− I−π

4

IL − IR

 , (6.16)

where I is the beam intensity; Ix, Iy, I+π
4

and I−π
4

are the internsities after a linear

polarizer oriented along x̂, ŷ, x̂ + ŷ and x̂ - ŷ respectively. IL and IR are the

intensities after circular left and right polarizers respectively. For a fully polarized

wave, we have,

P0 =
√
P 2

1 + P 2
2 + P 2

3 , (6.17)

In this formalism, the left and right circular states are defined by,

L̂ =


1

0

0

1

 , R̂ =


1

0

0

−1

 , (6.18)

The ellipticity (ε) and the orientation (θ) of polarization ellipse with respect to

the reference axis Ox is represented by,

tan(ε) =
A′y
A′x

=
P3

P0 +
√
P 2

1 + P 2
2

, (6.19)

tan(2θ) =
P2

P1

, (6.20)

The degree of linear polarization (DOLP ) and the degree of circular polarization

(DOCP ) also can be defined as [113],

DOLP =

√
P 2

1 + P 2
3

P0

, (6.21)

DOCP =
P3

P0

, (6.22)
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and the total degree of polarization (DOP ) is,

DOP =
√
DOLP 2 +DOCP 2 =

√
P 2

2 + P 2
2 + P 2

3

P1

, (6.23)

6.1.4 Creating Circularly Polarized Light

In terms of polarization aspect, our optical setup needs to fulfill several functions:

• Creation of a highly circularly polarized photon beam at the interaction point

inside the cavity and switching of left and right polarization at regular intervals.

• Extraction of the reflection signal from the cavity for the feedback system.

• Monitoring of laser beam polarization in situ.

In our setup, the IR beam from the fiber amplifier comes out as vertically po-

larized with the extinction ratio of 20dB (
1

100
). The frequency doubled green beam

after the PPLN doubler is linear and the DOLP is measured as 99.88%. The beam

then passes through a Faraday isolator (FOI) composed of two Glan-Laser polarizers

(made of calcite) at the entry and at the exit, and a Faraday rotator (see Figure

5.25). The FOI used to protect the laser from the light reflected by the rest of the

optical elements. The entry polarizer creates a vertical polarized light with respect

to its optical axis. The polarization is rotated by 45o by the Faraday rotator made of

terbium gallium garnet (Tb3Ga5O12) crystal located inside a permanent magnet. Af-

ter the exit polarizer, the incident beam will be polarized at 45o. When the reflected

beam from the rest of the optics passes the exit polarizer, it will have a polarization

at 45o and will be rotated at the Faraday rotator by another 45o so that it become

horizontally polarized at the entry polarizer. The entry polarizer will deflect the hor-

izontally polarized beam so that there will be no reflection send back to the PPLN

therefore to the laser itself. The FOI will lead to an isolation up to 40 dB.

The next element is half-wave plate (
λ

2
) that rotates the output polarization from

FOI to make it horizontally polarized all the way up to the polarizing beamsplitter
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(PBS). Table 6.1 summarizes the transport of linearly polarized light from the PPLN

doubler to quarter-wave plate (
λ

4
).

Optical Element DOLP (%) Angle (degree)

PPLN Doubler 99.88 ± 0.1 89.9 ± 0.5

Faraday Isolator (FOI) 99.98 ± 0.1 -45.0 ± 0.5

Half Wave Plate (
λ

2
) 99.99 ± 0.1 0.11 ± 0.5

Fixed Turning Mirror (Mr1) 99.20 ± 0.1 0.00 ± 0.5

Polarizing Beam Splitter (PBS) 99.99 ± 0.1 0.00 ± 0.5

Table 6.1 Measurement of the degree of linear polarization (DOLP) after
various optical elements.

Here the measurement is made with the help of a rotatable Glan laser polarizer

(from Thorlabs) with an extinction ratio of 50dB. The principle of polarization

measurement with rotatable linear polarizer will be described in the next section.The

angle is measured with respect to a plane defined by the optics table.

A left or right circularly polarized beam can be achieved by sending a linearly

polarized beam through a quarter-wave plate (
λ

4
) with its optical axis oriented at

± 45o with respect to it. Our quarter-wave plate (from Thorlabs) is a zero-order

crystalline quartz with a total thickness of 2 mm. It is placed on a motorized mount

(from Suruga) which allows us to reverse the helicity of circular polarization in a time

interval of 40 seconds.

One of our highest priorities is to provide the highest degree of circular polar-

ization at the Compton interaction point (CIP). In our setup, the polarization state

is controlled by polarizing beamsplitter and the quarter-wave plate. This will en-

sure that we have a circularly polarized beam generated after the quarter-wave plate

and the signal reflected by the cavity can be separated from the incident beam after

the polarizing beamsplitter. However, we must take into account the unavoidable
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degradation of the polarization between the output of the quarter-wave plate and the

CIP. A mirror can induce a parasitic phase shift δ = δs − δp between the vertical (s-

polarized) and horizontal (p-polarized) components of electric field vector Ax and Ay

by reflecting different quantities of light between the two components. This effect is

called birefringence. Birefringence induces ellipticity in the polarization and therefore

degrades the DOCP. This effect can be reduced by using dielectric mirrors. In our

setup, the main source of birefringence is the dielectric steering mirrors after the first

quarter-wave plate since they have different reflection coefficient for TE (s-polarized)

and TM (p-polarized) waves with 45o angle of incidence. The dielectric mirrors we

use (from CVI, part number: Y2-1025-45-UNP) thus have a difference of ≈ 0.5%

between reflection coefficients Rp and Rs at 45o.

In order to minimize this effect, we adopted a well established compensated mir-

ror scheme for polarization transport used in previous Saclay setup [8] which was

originally proposed by SLAC [3]. In this scheme, two pairs of identical 45o dielectric

mirrors (M1 – Mr2 and M2 – Me) are oriented at the same angle of incidence, but with

perpendicular incident planes. In this way, the s-wave at the first mirror becomes the

p-wave at the second mirror. If the mirrors are identical, then the difference in re-

flectivity and in phase between the components may be canceled after the last mirror

(Me). With this scheme, without the cavity mirrors in place, we obtained a maximum

left circular polarization of 99.6% for a quarter-wave plate angle of -50o (counter clock

wise) and a maximum right circular polarization of -98.1% for an angle of 50o (clock

wise). The difficulty of making the incident angle exactly 45o for all the mirrors drive

us to adjust the optical axis of quarter-wave plate. Table 6.2 summarizes the DOCP

and corresponding ellipse orientation measurement after the quarter-wave plate and

at the CIP without cavity mirrors in place. Here, we think the asymmetry of 1.5%

between the two polarization states may be due to the fact that the mirrors may not

be manufactured in the same coating process. We also checked a possible birefrin-

gence effect comes from the cavity vacuum window (We) (see Figure 5.30) without

vacuum. We measured an unnoticeable difference in circular polarization before and
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after the vacuum window. However, when the cavity is under vacuum (10−9 Torr),

there would be birefringence coming from the pressure difference between air and

vacuum. We will discuss the vacuum birefringence more in the following section.

Optical Element DOCP (%) Angle (degree)

quarter-wave plate 99.96 ± 0.1 (Left) 45.0 ± 0.5 (Left)

(after QWP1) -99.98 ± 0.1 (Right) -45.0 ± 0.5 (Right)

at the CIP 99.57 ± 0.1 (Left) 50.0 ± 0.5 (Left)

(without cavity) -98.07 ± 0.1 (Right) -50.0 ± 0.5 (Right)

Table 6.2 Measurement of the degree of circular polarization (DOCP) after
quarter-wave plate and at the CIP without cavity mirrors.

One of the advantages of combining the quarter-wave plate with the polarizing

beamsplitter (PBS) is being able to extract the cavity-reflected beam from the incident

beam. Figure 6.2 illustrates the principle of this scheme. The PBS (from Edmund

Optics, extinction ratio: 27 dB) is made of two optically glued right angle BK-7

prisms. It transmits the beam with horizontal polarization to the plane of incidence

(p-polarized), and reflects the beam with vertical polarization to the plane of incidence

(s-polarized). In our system, we oriented the half-wave plate so that the direction

of incoming polarization to the PBS is horizontal by maximizing the transmitted

power after the PBS. Then the quarter-wave plate after the PBS creates a left or

right circular polarized beam at the cavity entry mirror. When it reflects back, it

experiences a phase shift of π and becomes right or left circular. This reflected beam

now will become vertically polarized after it passes through the quarter-wave plate.

The PBS reflects this beam at 90o before it gets collected by a fast photo diode called

PDR.
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Figure 6.2 (color) A schematic illustration of extracting the cavity-reflected
beam from the incident beam (redrawn from [43]).

6.2 Intra-Cavity Polarization

As we stated in previous chapter, when it is locked, the cavity is closed under high

vacuum. Therefore, there is no direct way to measure the intra-cavity parameters

including the cavity polarization. Just like measuring the transmitted power out of the

cavity and determining the intra-cavity power from it, we can only measure the laser

polarization at the cavity exit and determine the intra-cavity polarization according

to cavity polarization transfer function. We first start with methods polarization

measurement and then describe the model on which the transfer function based.
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6.2.1 Laser Polarization Measurement

According to our knowledge, there are two most frequently used methods for light

polarization measurement. Both involves the rotating polarization retarders such as

linear polarizer and quarter wave plate. There are also many commercial equipments

which have the capability of measuring the degree of polarization with relatively

good accuracy and speed. Based on the experience of Jefferson Lab Compton group,

we decided to pursue laser polarization measurement with half-commercial solution

which uses rotatable linear polarizers, quarter-wave plates and Wollaston prism.

Measurements with Linear Polarizer

One type of polarization measurement is made with the help of a rotatable linear

polarizer and a detector. The detector consists of a 2 inch integrating sphere (from

Thorlabs) and a Si photodiode (from Newport). The Si photodiode has a minimum

measurable power of 1pW (with 1% measurement accuracy) and an acceptable power

density of 2W/cm2 (2mW/cm2) with an attenuator (without attenuator). The polar-

izer is a Glan laser polarizer (from Thorlabs) with an extinction ratio of 50 dB and

a power damage threshold of 1.0 MW/cm2 and surface quality of λ/10.

θx

y

Fast
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Integrating

Sphere

Rotatable

GL Polarizer

x

k

RIGHT/LEFT 

Circular 

Polarization

y

Ax

Ay

Figure 6.3 (color) A schematic illustration of a polarization measurement
station with linear polarizer and a detector.
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Figure 6.3 illustrates our polarization measurement station. In the reference frame

of the axes of the polarization ellipse, the normalized Jones vector is written,

ÊL/R =
1√

A2
x + A2

y

 Ax

±iAy

 , (6.24)

where the sign “±” correspond to a left or right polarization state, respectively. The

Jones matrix of a polarizer whose optical axis rotates an angle θ with respect to the

reference axis Ox is,

Pθ =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 , (6.25)

and the polarization after the polarizer is,

Ê ′L/R = PθÊL/R, (6.26)

and the intensity at the exit of the polarizer can be expressed as,

IL/R = |Ê ′L/R|2 =
A2
x cos2 θ + A2

y sin2 θ

A2
x + A2

y

, (6.27)

Turning the polarizer, we find the extrema:

Imax =
A2
x

A2
x + A2

y

, (6.28)

Imin =
A2
y

A2
x + A2

y

, (6.29)

and a functional relationship between the rotating angle θ and the intensity I(θ),

I(θ) = Imax cos2 θ + Imin sin2 θ, (6.30)

Using the definition of DOCP in equation (6.15), for a fully polarized beam, we

find,

DOLP =
Imax − Imin
Imax + Imin

, (6.31)

DOCP =
2√

Imax
Imin

+

√
Imin
Imax

, (6.32)
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Here the relative error in the DOCP measurement can be estimated by,

∆DOCP

DOCP
=

1

2

Imax − Imin
Imax + Imin

√(∆Imin
Imin

)2

+
(∆Imax
Imax

)2

(6.33)

Figure 6.4 shows a typical polarization measurement scheme with a rotating linear

polarizer and a detector we described above. The dots are the data and the blue and

red curves are the theoretical fit to extract the polarization. The fit function uses the

beam intensity defined by equation (6.30). Here the polarizer is mounted on a remote

controlled stepper motor (from Suruga) and we chose 5o for the step size of a scan

angle and made a full ellipse rotation. The measured power from the Si photodiode

is also being recorded along with the corresponding angle position with the help of

an automated script. In order to cancel out the systematic error, the transmitted

power after the polarizer is also normalized to the laser power fluctuation upstream

which was measured together in-situ. The whole process takes about 10 minutes to

complete.

Measurements at the Cavity Exit Line

Polarization measurement at the cavity exit is made with an ellipsometer; a system

composed of a quarter-wave plate, holographic beam sampler (HBS), a Wollaston

prism and two Si photodiodes (S1 and S2) (see Figure 6.5). This system is also used

for an online monitoring of cavity exit polarization. This scheme has been developed

by Saclay and used in the previous IR setup [8]. It has also been adopted by other

groups [5].

At the exit of the cavity, the beam reflects from a pair of compensating mirrors

Ms and M3. It then passes through a quarter-wave plate followed by the HBS (from

Gentec-EO). The HBS allow us to sample two beams at an angle of 10o on either side

of the incident beam, each carrying 1% of its total power. One of the sampled beams

will be used for monitoring the cavity resonance mode by a CCD camera known

as CCD2 and the other will be collected by a fast Si photodiode known as PDT.

The signal in PDT will be send to the Compton polarimeter data acquisition system
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Figure 6.4 (color) A plot of linear polarizer scan angle versus the trans-
mitted power that was used for measuring the polarization. The dots are
the data and the blue and red curves are the theoretical fit to extract the
polarization.

(DAQ) for cavity status determination (Locked/Unlocked). The Wollaston prism is

made of two calcite prisms that are optically glued together. The optical axes of

prisms oriented orthogonal to each other and it leads to an angular separation of the

s- and p-waves once a elliptic polarized light passes through them. The Wollaston

prism we use (from CVI) has an extinction ratio of 50 dB, a power damage threshold

of 5W/cm2 and a separation angle of 20o.

We describe our ellipsometer using the Stokes formalism. The polarization state

(Ŝ) of incident beam is characterized by a Mueller matrix composed of four Stokes

parameters by Ŝ = (P0, P1, P2, P3). During polarization measurement, when the

quarter-wave plate rotated to an angle θ from its optical axis, the powers at the exit

of Wollaston will be read by detectors S1 and S2. The scan makes a full rotation and

two powers correspond to a rotation angle position will be recorded and analyzed

later.
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Figure 6.5 (color) A schematic of polarization measurement station at the
cavity exit line (redrawn from [43]).

If we denote the powers read by S1 and S2 as Ŝ1 and Ŝ2, just like the Jones matrix,

we can construct its transfer matrix with Meuller matrices representing each optical

elements in the system. If we let Px/y be the matrix of a polarizer (prism in the

Wollaston) aligned along the axis Ox/Oy, T2θ the rotation matrix for an angle θ in

quarter-wave plate and Mλ
4

the matrix for the quarter-wave plate whose optical axis

is on Oy, we can write,

Ŝ1 = PxT−2θMλ
4
T2θŜ, (6.34)

Ŝ2 = PyT−2θMλ
4
T2θŜ, (6.35)

where

Px/y =


1 ±1 0 0

±1 1 0 0

0 0 0 0

0 0 0 0

 , Mλ
4

=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

 , (6.36)
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and

T2θ =


1 0 0 0

0 cos 2θ − sin 2θ 0

0 sin 2θ cos 2θ 0

0 0 0 1

 , (6.37)

we obtain expressions for the vectors Ŝ1 and Ŝ2,

Ŝ1 =
1

2
(P0 − P1 cos2 2θ + P2 cos 2θ sin 2θ − P3 sin 2θ)


1

1

0

0

 , (6.38)

Ŝ2 =
1

2
(P0 + P1 cos2 2θ − P2 cos 2θ sin 2θ + P3 sin 2θ)


1

−1

0

0

 , (6.39)

The intensities I1 and I2 received by the spheres S1 and S2 are given, respectively, by

the first component of Ŝ1 and Ŝ2.

For an angle θ =
π

4
, the DOCP is expressed by the intensities I1 and I2 as,

DOCP =
I1 − I2

I1 + I2

=
P3

P0

, (6.40)

This scheme requires a very precise alignment of the slow axis of the quarter-wave

plate to the horizontal axis of the Wollaston prism. It was experimentally determined

with a Glan polarizer. We oriented the Wollaston in such a way as to make its axes

correspond to the horizontal (Ox) and vertical (Oy) directions on the optics table.

Without the quarter-wave plate, we oriented the fast axis of the polarizer parallel to

the axis (Ox) by maximizing the power on S1. Then inserted the quarter-wave plate

between them and rotated it until we see a maximum on S1 again. This will calibrate

the fast axis of quarter-wave plate and we found it to be 1.5o from its mechanical zero

on the frame it is mounted to.
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Here, equation (6.40) tells us that when θ =
π

4
, our system can provide an online

monitoring of polarization after the cavity. But it does not provide the information

about the orientation of polarization ellipse. It can be done by complete character-

ization of all four Stokes parameters by a full rotation (scan) of quarter-wave plate.

We can express them in terms of rotation angle θ as [44],

P0 = I1(θ) + I2(θ),

P1 =
I2(θ)− I1(2π − θ)

cos2 2θ
,

P2 =
I1(θ − π

2
)− I1(2π − θ)

cos 2θ sin 2θ
, (6.41)

P3 =
I1(θ − π

2
)− I1(θ)

sin 2θ
,

Figure 6.6 shows a plot of typical quarter-wave plate scan at the cavity exit used
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Figure 6.6 (color) Extraction of Stokes parameters from a quarter-wave
plate scan at the cavity exit. The plot shows a total power measured by two
photodiodes S1 and S2 versus the scan angle.



6.2 Intra-Cavity Polarization 184

for the extraction of Stokes parameters. The plot shows a total power measured by

two photodiodes S1 and S2 versus the quarter-wave plate scan angle. The red dots are

data and black curve is the theoretical formula based on equation (6.41). Equations

(6.19) and (6.20) allow us to determine the orientation and ellipticity of polarization

ellipse.

We have discussed two independent way of measuring the degree of polarization.

When we make the polarization transfer function measurement, we use linear polarizer

method for measuring the CIP polarization and the exit line polarization measurement

can be accomplished by both methods.

6.2.2 Polarization Transfer Function

The principle of our approach is to be able to characterize the state of polarization

at the center of cavity for a measured state of polarization at the cavity exit. The

transfer function gives a full information of the elements of Jones matrix for a given

optical system based on a well known initial and final state of polarization. Therefore,

using transfer matrix, one can propagate a polarized beam through this system and

predict (calculate) its final state or using the inverse of transfer matrix, a final state

of polarization can be back propagated to its initial state.

In our case, the transfer function allows us to determine the polarization and

its orientation at the cavity center (or CIP) based on the degree and orientation of

polarization measured at the cavity exit. Since this can only be done without the

cavity, the system we have to model is composed of two mirrors Ms and M3 (see

Figure 6.7). The Jones vector representing the state of polarization at the CIP can

be written as,

ĴCIP =
1√

a2 + b2

 a

±ib

 , (6.42)

it will have the following relationship with the Exit polarization vector JExit,

ĴExit = [TF ] • ĴCIP , (6.43)
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where [TF ] represents the transfer function between them. [TF ] is a matrix which

includes information about a phase shift δ upon reflection on the mirror, a polarization

orientation rotation θ introduced by the mirror with respect to the axis Ox and

another rotation angle α caused by any change of orientation of the coordinate frame.

The associated matrices will have the following form,

R(δ) =

ei δ2 0

0 e−i
δ
2

 , T (α) =

cosα − sinα

sinα cosα

 , (6.44)

Exit Mount

(Turning Mirror Ms)

x

y

θ

x

y

θ

JCIP

JExit

Entrance Mount

(Turning Mirror Me)

Mirror M3

e
_

e
_



Figure 6.7 (color) A propagation of polarization ellipse from the CIP to
the entrance of cavity exit line. The schematic illustrates a case when the
cavity between the two stands is removed.
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P (θ) =

 cos θ sin θ

− sin θ cos θ

 (6.45)

The characteristic transfer matrix of a dielectric mirror is represented by the

product of above matrices,

M(δ, θ, α) = P (−θ)R(δ)P (θ)T (α)

=

cos
δ

2
+ i sin

δ

2
cos 2θ i sin

δ

2
sin 2θ

i sin
δ

2
sin 2θ cos

δ

2
− i sin

δ

2
cos 2θ


cosα − sinα

sinα cosα

 , (6.46)

and the total transfer matrix of a system composed of two mirrors Ms and M3 is,

[TF ] = [Ms(δs, θs, αs) •M3(δ3, θ3, α3)], (6.47)

and ĴCIP is calculated by,

ĴCIP = [TF ]−1 • ĴExit, (6.48)

As we can see from equation (6.47), for a system with two dielectric mirrors, in order

to get its full transfer matrix, we have six parameters to characterize. This can be

accomplished first by preparing a set of polarization states with well known DOCP

and ellipse angle at the CIP and then measure the corresponding polarization state

at the cavity exit. Once we have the initial and final state vectors based on these

states with orientations covering from 0 to π, theoretically we have enough number of

equations to solve and determine the parameters. Figure 6.8 illustrates a station used

for generating a set of eigenstates for transfer function measurement. It composed of

a Glan-Laser polarizer and a quarter-wave plate. When we have a desired polarization

state is generated with an ellipse orientation, we rotate both elements by the same

angle which leads to a rotation of ellipse angle for a fixed degree of polarization.

The measurement of DOCP after this station (which we call CIP here) was done by a

system explained in Figure 6.3. The exit polarization measurement was accomplished

by the ellipsometer shown in Figure 6.5.
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Figure 6.8 (color) A schematic illustration of an eigenstate generator at
the CIP.

CIP

DOCP (%) Angle (o)

91.7 50.1

91.6 30.3

91.6 9.9

91.6 169.8

91.4 149.7

92.2 129.4

92.7 109.0

92.2 89.4

92.1 69.5

Exit

DOCP (%) Angle (o)

78.5 137.1

78.2 124.5

82.8 111.6

90.0 97.6

96.2 79.1

99.1 40.0

96.8 179.3

90.4 163.2

83.4 149.9

Table 6.3 A DOCP and ellipse orientation measurement at the cavity exit
line with respect to a series of left circular polarization states of 92.0% set
at the CIP.
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In summer 2010, we spent more than one month to experimentally determine the

polarization transfer function of newly installed green cavity system in the Hall A of

Jefferson Lab. It involves breaking up the cavity vacuum, removing the cavity mirrors

and conduct a set of polarization measurements both at the CIP and at cavity exit

line. Table 6.3 summarizes a measurement DOCP and orientation of the ellipse at

the CIP and Exit for the incident left circular polarization of 92.0%. We also have

another set of data for the right circular polarization state of -92.0% to be used in

transfer function determination.

The data in Table 6.3 are used in a root [116] program to extract the transfer

matrix parameters for mirrors Ms and M3. We also have an auxiliary set of mea-

surement for the circular polarization states of ±97% to validate the transfer func-

tion. Our calculation shows that using ±97% data gave an average uncertainty of

(∆DOCP )CIP/(DOCP )CIP = 0.12% in determination of DOCP at the CIP. We also

validated this transfer function for our nominal polarization state created by the first

quarter-wave plate (QWP1).

State of Polarization Left Right

Measurement

DOCP (%) 99.57 -98.07

Angle (o) 58.60 19.35

Calculation

DOCP (%) 99.26 -97.59

Angle (o) 83.52 17.5

Table 6.4 The measured and calculated values of DOCP and ellipse angle
at the CIP.

Table 6.4 shows a comparison between the measured and calculated values of

DOCP and corresponding angle at the CIP. It can be seen from the table that, the

DOCP calculation from the transfer function agrees with the measurement at the
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Figure 6.9 (color) A counter view of the transfer function for the left and
right circularly polarized states of the CIP with respect to the exit DOCP
and ellipse angle.

level of (∆DOCP )CIP/(DOCP )CIP = 0.49%, while the largest uncertainty in the

determination of polarization angle orientation was δθ = 25o.

Once we have the parameters extracted and validated with good precision (<

0.5%), the transfer function is fully established and can be used for determining the

CIP polarization from any exit polarization state. Figure 6.9 shows a counter view of

transfer function for the left and right circularly polarized states obtained with the

above measurement.

In the next subsection, we will discuss how we used this transfer function to

determine the CIP polarization during PREx experiment.

6.2.3 Determination of the DOCP at the CIP

The determination of DOCP at the CIP needs two parameters from the exit line

measurement: the DOCP and angle θ. We can write the functional relationship

between them as following,

(DOCP )CIP = TF [DOCPExit, θExit] (6.49)
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As we mentioned before, the ellipsometer at the cavity exit line is capable of mon-

itoring the exit polarization online. But, in order to get a full information about the

CIP polarization, we have need to have ellipse angle information available, therefore

a full quarter-wave plate scan is necessary. Since running the quarter-wave plate

(QWP2) disrupts the signal going into the Compton DAQ, we can only do a quarter-

wave plate scan when the DAQ is not running and the cavity stay locked. For a

typical running condition of the Compton polarimeter, we do as many quarter-wave

plate scans as possible at the cavity exit and analyze them in order to determine the

CIP polarization. Table 6.5 shows a list of exit line polarization and corresponding

CIP polarization calculated by the transfer function during PREx running conditions.

As we can see from the table, the stabilities of DOCPExit and θExit over the 2 month

period were at the level of 0.1% and 0.6o, respectively.

Left Circular

DOCPExit θExit DOCPCIP

95.7 % -60.6 o 99.3 %

96.0 % -60.3 o 99.4 %

96.0 % -61.8 o 99.3 %

95.7 % -61.4 o 99.3 %

95.8 % -62.0 o 99.2 %

95.9 % -62.1 o 99.2 %

95.9 % -61.9 o 99.2 %

95.8 % -62.6 o 99.1 %

Right Circular

DOCPExit θExit DOCPCIP

-96.6 % 15.5 o -97.4 %

-96.6 % 15.5 o -97.5 %

-96.4 % 17.0 o -97.7 %

-96.3 % 17.3 o -97.7 %

-96.5 % 16.0 o -97.5 %

-96.5 % 16.0 o -97.5 %

-96.5 % 15.5 o -97.4 %

-96.5 % 16.7 o -97.6 %

Table 6.5 Calculation of the DOCP at the CIP from the DOCP and θ
measured at the cavity exit line using the transfer function.

The stability of intra-cavity polarization is also very important. During the locked

state of the cavity, we monitored the long term stability of the exit line polarization
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online. Figure 6.10 shows a record for right-circular polarization state monitored for

7 hours. The data shows the measured variations are on the order of 0.03%.
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Figure 6.10 (color) The evolution of polarization at the cavity exit versus
time with electron beam in Compton chicane.

After averaging the above measurements and calculations, we can summarize the

average DOCP and corresponding ellipse angle orientation correspond to the running

conditions during PREx as shown in Table 6.6.

CIP

DOCP (%) Angle (o)

99.26 83.52

-97.59 17.50

Exit

DOCP (%) Angle (o)

95.90 -61.05

-96.53 16.21

Table 6.6 The average DOCP and ellipse angle calculated at the CIP and
measured at the cavity exit line during PREx.

The source of systematic errors and their values are summarized in Table 6.7.

Since the measurement of transfer function was accomplished without cavity mirrors
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in place, we end up getting other sources of errors depend on their installation. Our

estimation shows that the total systematic error bounded to 0.7% by cavity versus

without cavity in place, assumed to be from other sources (birefringence of mirrors,

etc.).

Source of Error Error (%)

DOCP at exit line 0.02

θ at exit line 0.13

Variation in time 0.04

Validation of transfer function 0.49

Transmitting through Me 0.10

Transmitting through Ms 0.10

Coupling 0.10

Table 6.7 Summary of errors on the measurement of the polarization in the
center of the cavity.

Without a detailed study on various birefringence, we summarize the average left

and right laser polarizations (Pγ = DOCPCIP ) during PREx period as following,

PLγ = 99.26%± 0.70% (sys)± 0.10% (stat),

PRγ = −97.59%± 0.70% (sys)± 0.13% (stat),

So far we haven’t discussed about possible birefringence effect from cavity system.

Just like the birefringence of the steering mirrors we pointed out before, the cavity

mirrors or their dielectric layers could be birefringent and therefore raises the problem

of polarization at the CIP. In the next subsection, we will give a brief overview about

birefringence induced by various factors in our cavity system.
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6.2.4 The Birefringence of the Cavity System

Birefringence refers to the phase delay introduced between two perpendicular po-

larization components of a wave while traveling in an anisotropic medium. If the

birefringence is homogenous over the laser beam spot size, it can be compensated; if

it is not, it can not be compensated. For a system like we have, possible birefringence

effects could be induced by optical elements.

The cavity mirrors may introduce a birefringence because of thermoelastic defor-

mation due to high power circulating inside the cavity [118,119].

The mirror mounting system could be a source of birefringence. Ref. [104] esti-

mated the order of magnitude of the birefringence according to the pressure supplied

on the mirror and the mirror thickness.

The glass-metal welding [117] and the pressure difference between vacuum and air

acting on the vacuum window of the cavity [104] also can induce a birefringence.

A birefringence can also be induced by multi-layer coatings or a birefringent sub-

strate of the cavity mirrors [120–122, 124]. A substrate with birefringent qualities

acts simply like a retarder plate and, at the entrance and exit of the cavity, causes a

modification of polarization. This effect can be studied by measuring the difference

in polarization of the signal transmitted through the substrate.

In Ref. [43], according to a measured finesse, a method to estimate the birefrin-

gence induced by the multilayer coatings is described based on the following relation,

Φr <
π

2F
, (6.50)

where Φr is the birefringence of the mirrors and F is the finesse of the cavity. This im-

plies that, according to the measured finesse of our cavity, the maximum birefringence

Φr ≈ 1.0× 10−4 rad. The cavity gain related to this birefringence is [43],

G =
T 2

(1−R)2

1

1 +
(FΦr

π

)2
, (6.51)
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However, Ref. [43] also showed that the DOCP inside the cavity depends on the

frequency difference between the laser and cavity resonance defined by the cavity

bandwidth. This effect is ± 0.1% change in DOCP inside the cavity over the band-

width of our cavity.

In conclusion, estimating all these birefringence is not trivial. Furthermore, we

didn’t have enough knowledge about studying these birefringence effects before we

install the cavity in the accelerator tunnel. But the method based on the above

estimate, at least gives us an order of magnitude of the birefringence we have in our

system.

6.3 Electron Beam Polarization

All our effort so far is about how to make a reliable photon target for the electron beam

so that there is an efficient Compton scattering. In this section, without going into the

details, we will briefly present the results of electron beam polarization measurement

conducted for the first time with our newly installed setup during PREx.

6.3.1 Compton Spectrum

The electron beam polarization measurement can be achieved by one of the three

ways at the down stream of cavity: detecting the backscattered Compton photons,

detecting the scattered Compton electrons, detecting both the photons and electrons

simultaneously. The Compton polarimeter we have measures electron beam polariza-

tion based on the detection of scattered Compton photons during electron helicity

reversal at a rate of 120 Hz. In Chapter 3, we gave a small description about the

photon detector and the data acquisition system it uses.

Figure 6.11 shows the scattered photon rates measured with the photon detector

for an electron beam energy and current of 1.0 GeV and 50 µA, respectively. During

the data taking laser polarization flips from left to right state at a regular interval and
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Figure 6.11 (color) Scattered Compton photon rates (red) along with the
background rates (black) during a run.
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Figure 6.12 (color) A measured Compton photon energy spectrum.
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cavity is unlocked, in order to cancel the systematic effects caused by electron beam

properties. In this period, background and other noises are also being measured and

used for subtracting it from the rates measured when the cavity is locked.

The measured Compton photon energy spectrum is shown in Figure 6.12. The

horizontal axis is energy deposited in the GSO crystal in summed raw-ADC units.

6.3.2 Experimental Asymmetry

The integrating photon detector DAQ uses an FADC and stores the signal for each

electron helicity window, according to this relation [45],

Sn = Nn〈P 〉 − Accn, (6.52)

where the Sn is the physics signal extracted from one of the six FADC accumulator,

Nn is the number of samples that have been summed into accumulator n, 〈P 〉 is the

average pedestal value for each sample, and Accn is the integrated ADC value for the

helicity window.

The accumulator values are used to calculate the asymmetry Aexp according to

[45],

Aexp =
S+ − S−
S+ + S−

, (6.53)

for each laser helicity period, separate sums of accumulator values for all electron

helicity windows are made. A sum is also made of accumulator values for the adjacent

cavity-unlocked periods, to determine background, B, for the cavity-locked period.

The measured asymmetry needs to take into account the background, such that

equation (6.53) becomes,

Aexp =
(〈P 〉 − 〈B〉)− (〈M−〉 − 〈B〉)

(〈M+〉 − 〈B〉) + (〈M−〉 − 〈B〉)
, (6.54)

where 〈 〉 denotes the mean accumulator value per helicity window over each cav-

ity (-locked or -unlocked) period. Here, M± is the measured integrated signal plus

background for positive (negative) helicity electrons (where S = M − B). Aexp is

calculated separately for each laser polarization.
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Figure 6.13 (color) Histograms of the Compton asymmetry for an entire
run.

Figure 6.13(a) shows a histogram of difference in electron helicity pairs and Figure

6.13(b) shows the sum of helicity pairs. Figure 6.14 shows a histogram of a background

subtracted Compton asymmetry taken for every pair in a single two hour run.

Here it worth to mention that, before the measurement of experimental asymme-

try, the photon detector has to be calibrated to a well known photon energy combined

with a simulation result. Calibration procedures include the photon detector response

to the scattered Compton photons and data acquisition system (DAQ) and data anal-

ysis is well described in Ref. [45]. It is not the goal of this thesis to explain them,

therefore they will not be described in here.

6.3.3 Electron Beam Polarization

Finally electron beam polarization Pe is extracted from the measured experimental

asymmetry Aexp, according to,

Aexp = PePγAth, (6.55)

where Ath is the theoretical asymmetry. Figure 6.15 shows the electron polarization

measurement based on an average of two experimental asymmetry numbers obtained

for left and right laser cycles during a run.
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Figure 6.14 (color) Histogram of a background subtracted Compton asym-
metry taken for every pair in a single one hour run.
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tron beam polarization for a typical run.
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The system that we installed in the hall A tunnel allows us to obtain a reliable

intra-cavity power and stable photon-beam polarization for the measurement of elec-

tron beam polarization. The signal to noise ratio of the scattered Compton events

were adequate to reach a high precision electron beam polarimetry.



Chapter 7

Conclusions

This thesis work has shown that the green laser and cavity project was successful. The

laser power available for Compton scattering inside the cavity was enough to reach a

high luminosity electron photon interaction, even at low electron beam energy. The

frequency doubled green beam power was stable against the concern that PPLN may

not withstand at a high power for an extended period of time. The cavity mechanical

and locking stability was excellent during the three month period of PREx running,

despite the concern of very high radiation and acoustically noisy environment in Hall

A tunnel at JLab.

By making the green laser and cavity project successful, we provided Hall A with

a unique laser source to carry out precision Compton polarimetry. The green cavity

extends the operating dynamic range of Compton polarimeter from previous range of

3.0 GeV ∼ 10.0 GeV to a new range of 1.0 GeV ∼ 10.0 GeV. It cut short polarization

measurement time as compared to the previous IR system, due to the high luminosity

it generates. Through this project, we tested the low energy (1.0 GeV) electron beam

polarimetry for the first time in JLab history. During the running period of PREx,

the new Compton polarimeter based on green laser system achieved its 1.0% precision

goal.

We have demonstrated that the frequency locking of a frequency doubled green

laser generated by seeding an Nd:YAG NPRO laser to the fiber amplifier makes the
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intra-cavity power scalable. This allows a possibility of boosting the intra-cavity

power by increasing the injection power to the cavity. According to our estimate,

with the present performance of the PPLN and its doubling efficiency, it is feasible

to get ∼ 10 kW intra-cavity power in 532 nm. If this is demonstrated, in addition to

its Free Electron Laser (FEL) program, perhaps, it will bring a new photon source

for JLab with the possibility of opening up a new research area.

Regarding the photon beam polarization inside the cavity, its always tricky to get

a solid number. But with a careful and dedicated study, it should be possible to ac-

complish this in the near future. Recent study [125] at HERA shows that it is possible

get 0.3% level precision for the intra-cavity polarization. Future high precision parity

experiments at JLab would rely heavily on the green Compton polarimeter we built.

This requires to improve the current precision by at least a factor of two. Since the

systematic error in laser polarization is one of the dominant errors in our polarimeter,

it requires a careful and systematic study.

Finally, new concepts [123] regarding the future development of Compton po-

larimeter at JLab with a pulsed mode locked lasers seem very attractive. If this

concept is pursued and successful, it will make the system even more robust and effi-

cient, especially in more noisy and undesirable electron beam environment after the

12 GeV upgrade of JLab.

I hope this document will provide some technical information for future design,

construction and operation of an optical cavity in an accelerator environment.
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Technical Drawings of Cavity System
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