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Quantum Monte Carlo methods have proved very valuable to study the structure and
reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions
and currents. These ab-initio calculations reproduce many low-lying states, moments
and transitions in light nuclei, and simultaneously predict many properties of light nuclei
and neutron matter over a rather wide range of energy and momenta. We review the
nuclear interactions and currents, and describe the continuum Quantum Monte Carlo
methods used in nuclear physics. These methods are similar to those used in condensed
matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,
and three-body interactions. We present a variety of results including the low-lying
spectra of light nuclei, nuclear form factors, and transition matrix elements. We also
describe low-energy scattering techniques, studies of the electroweak response of nuclei
relevant in electron and neutrino scattering, and the properties of dense nucleonic matter
as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges
based upon rather simple but realistic interactions and currents.
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I. INTRODUCTION

Nuclei are fascinating few- and many-body quantum
systems, ranging in size from the lightest nuclei formed
in the big bang to the structure of neutron stars with
∼10 km radii. Understanding their structure and dy-
namics starting from realistic interactions among nucle-
ons has been a long-standing goal of nuclear physics.
The nuclear quantum many-body problem contains many
features present in other areas such as condensed mat-
ter physics, including pairing and superfluidity and shell
structure, but also others that are less common includ-
ing a very strong coupling of spin and spatial degrees
of freedom, clustering phenomena, and strong spin-orbit
splittings. The challenge is to describe diverse physical
phenomenon within a single coherent picture.

This understanding is clearly important to describe nu-
clear properties and reactions, including reactions that

synthesized the elements and the structure of neutron-
rich nuclei. An accurate picture of interactions and cur-
rents at the nucleonic level is critical to extend this un-
derstanding to the properties of dense nucleonic matter
as occurs in neutron stars, and to use nuclei as probes
of fundamental physics through, for example, beta de-
cay, neutrinoless double-beta decay, and neutrino-nucleus
scattering.

Over the last three decades it has become possible us-
ing Quantum Monte Carlo (QMC) methods to reliably
compute the properties of light nuclei and neutron mat-
ter starting from realistic nuclear interactions. While
many of the most basic properties of nuclei can be ob-
tained from comparatively simple mean-field models, it
has been a challenge to relate the two- and three-nucleon
interactions inferred from experiments to the structure
and reactions of nuclei. This challenge arises because the
scale of the nuclear interactions obtained by examining
nucleon-nucleon phase shifts is of order (50-100) MeV or
more, significantly larger than a typical nuclear binding
energy of 8 MeV per nucleon.

In addition, the nucleon-nucleon interaction is much
more complex than the Coulomb force used in molecular
and atomic physics, the van der Waals potential between
atoms used, for example, in studies of liquid helium sys-
tems, or the contact interaction that dominates dilute
cold-atom physics. The primary force carrier at large
nucleon separations is the pion, which couples strongly
to both the spin and isospin of the nucleons with a strong
tensor component. In addition there are significant spin-
orbit forces. As a consequence, there is strong coupling
between the spin and isospin and spatial degrees of free-
dom.

These features lead to complex nuclear phenomena.
The interactions are predominantly attractive at low mo-
menta, resulting in large pairing gaps in nuclei and as-
sociated superfluidity in matter. In light nuclei, there
is further clustering of neutrons and protons into alpha-
particle like configurations that are very evident in the
low-lying excitations of some nuclei. At moderate nu-
cleon separations, the tensor character of the neutron-
proton interaction produces significant high-momentum
components in the nuclear wave function that impact the
electroweak response observed in electron and neutrino
scattering. The nuclear correlations also significantly
quench the single-particle description of nucleon knock-
out and transfer reactions. A major challenge has been to
include both the short-range high-momentum phenom-
ena and the long-range superfluid and clustering proper-
ties of nuclei and matter in a consistent framework.

QMC methods based upon Feynman path integrals for-
mulated in the continuum have proved to be very valu-
able in attacking these problems. The sampling of con-
figuration space in variational (VMC) and Green’s func-
tion (GFMC) Monte Carlo simulations gives access to
many of the important properties of light nuclei includ-
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ing spectra, form factors, transitions, low-energy scatter-
ing and response. Auxiliary Field Diffusion Monte Carlo
(AFDMC) uses Monte Carlo to also sample the spin-
isospin degrees of freedom, enabling studies of, for ex-
ample, neutron matter that is so critical to determining
the structure of neutron stars. In this review we concen-
trate on continuum Monte Carlo methods. Lattice QMC
methods have also recently been employed to study both
neutron matter (Abe and Seki, 2009; Lee and Schäfer,
2006; Muller et al., 2000; Roggero et al., 2014; Seki and
van Kolck, 2006; Wlaz lowski et al., 2014) and certain
nuclei (Epelbaum et al., 2012; Lee, 2009). Other Monte
Carlo methods combined with the use of effective interac-
tions and/or space models like the shell model have been
also developed to study properties of larger systems; see
for example (Abe et al., 2012; Bonett-Matiz et al., 2013;
Bonnard and Juillet, 2013; Koonin et al., 1997; Otsuka
et al., 2001).

Other many-body methods, many of which have direct
analogues in other fields of physics, have also played im-
portant roles in the study of nuclei. These include the
coupled cluster method (Hagen et al., 2014; Hagen et al.,
2014), the no core shell model (Barrett et al., 2013), the
similarity renormalization group (Bogner et al., 2010),
and the Self Consistent Green’s Function (Dickhoff and
Barbieri, 2004). Each of these methods has distinct ad-
vantages, and many are able to treat a wider variety
of nuclear interaction models. Quantum Monte Carlo
methods, in contrast, are more able to deal with a wider
range of momentum and energy and to treat diverse phe-
nomenon including superfluidity and clustering.

Progress has been enabled by simultaneous advances
in the input nuclear interactions and currents, the QMC
methods, increasingly powerful computer facilities, and
the applied mathematics and computer science required
to run efficiently these calculations on the largest avail-
able machines (Lusk et al., 2010). Each of these factors
have been very important. QMC methods have been
able to make use of some of the most powerful com-
puters available, through extended efforts of physicists
and computer scientists to scale the algorithms success-
fully. The codes have become much more efficient and
also more accurate through algorithmic developments.
The introduction of Auxiliary Field methods paved the
way to scale these results to much larger nuclear systems
than would otherwise have been possible. Equally im-
portant, advances in algorithms have allowed to expand
the physics scope of our investigations. Initial applica-
tions were to nuclear ground states, including energies
and elastic form factors. Later advances opened the way
to study low-energy nuclear reactions, the electroweak
response of nuclei and infinite matter.

Combined, QMC and other computational methods
in nuclear physics have allowed us, for the first time,
to directly connect the underlying microscopic nuclear
interactions and currents with the structure and reac-

tions of nuclei. Nuclear wave functions that contain
the many-nucleon correlations induced by these interac-
tions are essential for accurate predictions of many ex-
periments. QMC applications in nuclear physics span a
wide range of topics, including low-energy nuclear spec-
tra and transitions, low-energy reactions of astrophysi-
cal interest, tests of fundamental symmetries, electron-
and neutrino-nucleus scattering, and the properties of
dense matter as found in neutron stars. In this review
we briefly present the interactions and currents and the
Monte Carlo methods, and then review results that have
been obtained to date across these different diverse and
important areas of nuclear physics.

II. HAMILTONIAN

Over a substantial range of energy and momenta the
structure and reactions of nuclei and nucleonic matter
can be studied with a non-relativistic Hamiltonian with
nucleons as the only active degrees of freedom. Typical
nuclear binding energies are of order 10 MeV per nucleon
and Fermi momenta are around 1.35 fm−1. Even allow-
ing for substantial correlations beyond the mean field,
the nucleons are essentially non-relativistic. There is a
wealth of nucleon-nucleon (NN) scattering data available
that severely constrains possible NN interaction mod-
els. Nuclear interactions have been obtained that pro-
vide accurate fits to these data, both in phenomenolog-
ical models and in chiral effective field theory. This is
not sufficient to reproduce nuclear binding, however, as
internal excitations of the nucleon do have some impact.
The lowest nucleon excitation is the ∆(1232) resonance
at ∼290 MeV. Rather than treat these excitations as dy-
namical degrees of freedom, however, it is more typical
to include them and other effects as three-nucleon (3N)
interactions.

Therefore, in leading order approximation, one can in-
tegrate out nucleon excitations and other degrees of free-
dom resulting in a Hamiltonian of the form

H = K + V , (1)

where K is the kinetic energy and V is an effective in-
teraction, which, in principle, includes N -nucleon poten-
tials, with N ≥ 2:

V =
∑
i<j

vij +
∑
i<j<k

Vijk + . . . . (2)

The NN interaction term is the most studied of all,
with thousands of experimental data points at labora-
tory energies from essentially zero to hundreds of MeV.
Attempts are now being made to understand this inter-
action directly through lattice QCD, though much more
development will be required before it can be used di-
rectly in studies of nuclei (Beane et al., 2013; Ishii et al.,
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2007). Traditionally the NN scattering data has been fit
with phenomenological interactions that require a rather
complicated spin-isospin structure because of the way the
nucleon couples to the pion, other heavier mesons, and
nucleon resonances. More recently, advances have been
made using chiral effective field theory, which employs
chiral symmetry and a set of low-energy constants to fit
the NN scattering data. This has led to an understand-
ing of why charge-independent NN terms are larger than
isospin-breaking ones, why 3N interactions are a small
fraction (∼ 10%) of NN interactions, and has provided a
direct link between interactions and currents.

In what follows we will focus on potentials developed
in coordinate space, which are particularly convenient
for QMC calculations. Many phenomenological models
are primarily local interactions (although often specified
differently in each partial wave) and local interactions
can be obtained within chiral effective theory, which is
an expansion in the nucleon’s momentum. The inter-
action is predominantly local because of the nature of
one-pion exchange, but at higher orders derivative (mo-
mentum) operators must be introduced. Local interac-
tions are simpler to treat in continuum QMC methods
because the NN propagator is essentially positive defi-
nite, a property that is not always true in non-local in-
teractions. The Monte Carlo sampling for such positive
definite propagators is much easier, reducing statistical
errors in the simulation.

A number of very accurate NN potentials constructed
in the 1990s reproduce the long-range one-pion-exchange
part of the interaction and fit the large amount of em-
pirical information about NN scattering data contained
in the Nijmegen database (Stoks et al., 1993b) with a
χ2/Ndata ∼ 1 for lab energies up to ∼ 350 MeV. These
include the potentials of the Nijmegen group (Stoks et al.,
1994), the Argonne potentials (Wiringa and Pieper, 2002;
Wiringa et al., 1995) and the CD-Bonn potentials (Mach-
leidt, 2001; Machleidt et al., 1996). Of those potentials
derived more recently by using chiral effective field the-
ory, the most commonly used is that of Entem and Mach-
leidt (2002). The most practical choice for QMC cal-
culations is the Argonne v18 potential (Wiringa et al.,
1995), which is given in an r-space operator (non-partial
wave) format and has a very weak dependence on non-
local terms. The latter are small and hence are tractable
in QMC calculations. Another less sophisticated interac-
tion that, apart from charge-symmetry breaking effects,
reproduces the gross features of Argonne v18 is the Ar-
gonne v′8. These are the potentials adopted in most of
the QMC calculations.

However all of these NN interactions, when used alone,
underestimate the triton binding energy, indicating that
at least 3N forces are necessary to reproduce the physics
of 3H and 3He. A number of semi-phenomenological 3N
potentials, such as the Urbana (Carlson et al., 1983; Pud-
liner et al., 1996) series, were developed to fit three- and

four-body nuclear ground states. The more recent Illinois
(Pieper, 2008a; Pieper et al., 2001) 3N potentials repro-
duce the ground state and low-energy excitations of light
p-shell nuclei (A ≤ 12). More sophisticated models may
be required to treat nucleonic matter at and above satu-
ration density ρ & ρ0. Particularly in isospin-symmetric
nuclear matter, the many-body techniques for realistic
interactions also need to be improved. Effective field the-
ory techniques and QMC methods may help to provide
answers to these questions.

A. The nucleon-nucleon interaction

Among the realistic NN interactions, the Argonne v18

(AV18) NN potential (Wiringa et al., 1995) is a finite,
local, configuration-space potential that is defined in all
partial waves. AV18 has explicit charge-independence
breaking (CIB) terms, so it should be used with a kinetic
energy operator that keeps track of the proton-neutron
mass difference by a split into charge-independent (CI)
and charge-symmetry breaking (CSB) pieces:

K =
∑
i

KCI
i +KCSB

i (3)

≡ −~2

4

∑
i

[(
1

mp
+

1

mn

)
+

(
1

mp
− 1

mn

)
τzi

]
∇2
i ,

where mp and mn are the proton and neutron mass, and
τzi is the operator that selects the third component of the
isospin. AV18 is expressed as a sum of electromagnetic
and one-pion-exchange (OPE) terms and phenomenolog-
ical intermediate- and short-range parts, which can be
written as an overall operator sum

vij = vγij + vπij + vIij + vSij =
∑
p

vp(rij)O
p
ij . (4)

The electromagnetic term vγij has one- and two-photon-
exchange Coulomb interaction, vacuum polarization,
Darwin-Foldy, and magnetic moment terms, with appro-
priate form factors that keep terms finite at rij=0. The
OPE part includes the charge-dependent (CD) terms due
to the difference in neutral and charged pion masses:

vπij = f2
[
Xijτ i · τ j + X̃ijTij

]
, (5)

where the coupling constant is f2 =0.075, τ are the Pauli
matrices that operate over the isospin of particles, and
Tij = 3τziτzj−τ i ·τ j is the isotensor operator. The radial
functions are

Xij =
1

3

(
X0
ij + 2X±ij

)
, (6)

X̃ij =
1

3

(
X0
ij −X±ij

)
, (7)

Xm
ij =

(
m

ms

)2
1

3
mc2 [Y (µrij)σi · σj + T (µrij)Sij ] ,

(8)
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where m = mπ± or mπ0 , µ = m/~c, the scaling mass
ms = mπ± , σ are Pauli matrices that operate over the
spin of nucleons, and Sij = 3σi · r̂ijσj · r̂ij −σi · σj
is the tensor operator. The Y (x) and T (x) are the

normal Yukawa Y (x) = e−x

x ξ(r) and tensor T (x) =(
1 + 3

x + 3
x2

)
Y (x) ξ(r) functions with a short-range cut-

off ξ(r) = 1− exp(−cr2) with c = 2.1 fm−2.
The intermediate- and short-range strong-interaction

terms have eighteen operators and are given the func-
tional forms

vIij =

18∑
p=1

IpT 2(µrij)O
p
ij , (9)

vSij =

18∑
p=1

[
P p +Qpr +Rpr2

]
W (r)Opij , (10)

where T 2 is constructed with the average pion mass,
µ = ( 1

3mπ0 + 2
3mπ±)/~c, and W (r) is a Woods-Saxon

potential with radius r0 = 0.5 fm and diffuseness a = 0.2
fm. Thus the former has two-pion-exchange (TPE)
range, while the short-range part remains finite and is
constrained to have zero slope at the origin, except for
tensor terms which vanish at the origin. The first four-
teen operators are CI terms:

OCI
ij =

[
1,σi · σj , Sij ,L · S,L2,L2(σi · σj), (L · S)2

]
⊗ [1, τ i · τ j ] , (11)

where Lij = 1
2i (ri−rj)×(∇i−∇j) is the relative angular

momentum of the pair ij, and Sij = 1
2 (σi + σj) is the

total spin. The remaining operators include three CD
and one CSB terms:

OCD
ij = [1,σi · σj , Sij ]⊗ Tij , (12)

OCSB
ij = τzi + τzj . (13)

The maximum value of the central (p=1) potential is ∼ 2
GeV.

The AV18 model has a total of 42 independent pa-
rameters Ip, P p, Qp and Rp. A simplex routine (Nelder
and Mead, 1965) was used to make an initial fit to the
phase shifts of the Nijmegen PWA93 analysis (Stoks
et al., 1993a), followed by a final fit direct to the data
base, which contains 1787 pp and 2514 np observables for
Elab ≤ 350 MeV. The nn scattering length and deuteron
binding energy were also fit. The final χ2/Ndata = 1.1
(Wiringa et al., 1995). While the fit was made up to 350
MeV, the phase shifts are qualitatively good up to much
larger energies ≥ 600 MeV (Gandolfi et al., 2014).

The CD and CSB terms are small, but there is clear ev-
idence for their presence. The CD terms are constrained
by the long-range OPE form and the differences between
pp and np scattering in the 1S0 channel. The CSB term
is short-ranged and constrained by the difference in pp
and nn scattering lengths, and is necessary to obtain the
correct 3He–3H mass difference.

b c

∆
∆ ∆

∆

a d

π

π

π

π
π

π π

π

ππ

FIG. 1 Three-nucleon force diagrams for (a) two-pion P -
wave, (b) two-pion S-wave, and (c–d) three-pion ring terms.

Direct GFMC and AFDMC calculations with the full
AV18 potential are not practical because the spin-isospin-
dependent terms which involve the square of the orbital
momentum operator have very large statistical errors.
However, these terms in AV18 are fairly weak and can be
treated as a first-order perturbation. Using a wave func-
tion of good isospin also significantly reduces the cost
of calculations in GFMC. Hence it is useful to define a
simpler isoscalar AV8′ potential with only the first eight
(central, spin, isospin, tensor and spin-orbit) operators
of Eq. (11); details are given in (Pudliner et al., 1997;
Wiringa and Pieper, 2002). The AV8′ is not a simple
truncation of AV18, but a reprojection that preserves
the isoscalar average of the strong interaction in all S
and P partial waves as well as the deuteron. It has been
used in benchmark calculations of 4He by seven different
many-body methods, including GFMC (Kamada et al.,
2001).

It has proved useful to define even simpler reprojec-
tions of AV8′, particularly an AV6′ potential without
spin-orbit terms that is adjusted to preserve deuteron
binding. The AV6′ has the same CI OPE potential as
AV8′ and preserves deuteron binding and S-wave and
1P1 partial wave phase shifts, but 3P0,1,2 partial waves
are no longer properly differentiated. Details are given
in Wiringa and Pieper (2002), where the evolution of nu-
clear spectra with increasing realism of the potentials was
investigated.

B. Three-body forces

The Urbana series of 3N potentials (Carlson et al.,
1983) is written as a sum of two-pion-exchange P -wave
and remaining shorter-range phenomenological terms,

Vijk = V 2π,P
ijk + V Rijk . (14)

The structure of the two-pion P -wave exchange term
with an intermediate ∆ excitation (Fig. 1a) was origi-
nally written down by Fujita and Miyazawa (1957); it
can be expressed simply as

V 2π,P
ijk =

∑
cyc

AP2π{Xπ
ij , X

π
jk}{τ i · τ j , τ j · τ k}

+ CP2π[Xπ
ij , X

π
jk][τ i · τ j , τ j · τ k] , (15)
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where Xπ
ij is constructed with the average pion mass and∑

cyc is a sum over the three cyclic exchanges of nucle-

ons i, j, k. For the Urbana models CP2π = 1
4A

P
2π, as in

the original Fujita-Miyazawa model, while other poten-
tials like the Tucson-Melbourne (Coon et al., 1979) and
Brazil (Coelho et al., 1983) models, have a ratio slightly
larger than 1

4 . The shorter-range phenomenological term
is given by

V Rijk =
∑
cyc

ART
2(µrij)T

2(µrjk) . (16)

For the Urbana IX (UIX) model (Pudliner et al., 1995),
the two parameters AP2π and AR were determined by fit-
ting the binding energy of 3H and the density of nuclear
matter in conjunction with AV18.

While the combined AV18+UIX Hamiltonian repro-
duces the binding energies of s-shell nuclei, it somewhat
underbinds light p-shell nuclei. A particular problem
is that the two-parameter Urbana form is not flexible
enough to fit both 8He and 8Be at the same time. A new
class of 3N potentials, called the Illinois models, has been
developed to address this problem (Pieper et al., 2001).
These potentials contain the Urbana terms and two addi-
tional terms, resulting in a total of four strength param-
eters that can be adjusted to fit the data. The general
form of the Illinois models is

Vijk = V 2π,P
ijk + V 2π,S

ijk + V 3π,∆R
ijk + V Rijk . (17)

One term, V 2π,S
ijk , is due to πN S-wave scattering as il-

lustrated in Fig. 1b and is parametrized with a strength
AS2π. It has been included in a number of 3N poten-
tials like the Tucson-Melbourne and Brazil models. The
Illinois models use the form recommended in the latest
Texas model (Friar et al., 1999), where chiral symme-
try is used to constrain the structure of the interaction.
However, in practice, this term is much smaller than the
V 2π,P
ijk contribution and behaves similarly in light nuclei,

so it is difficult to establish its strength independently
just from calculations of energy levels.

A more important addition is a simplified form for
three-pion rings containing one or two ∆s (Fig. 1c,d).
As discussed by Pieper et al. (2001), these diagrams re-
sult in a large number of terms, the most important of
which are used to construct the Illinois models:

V 3π,∆R
ijk = A∆R

3π

[
50

3
SIτS

I
σ +

26

3
AIτA

I
σ

]
. (18)

Here the SIx and AIx are operators that are symmetric or
antisymmetric under any exchange of the three nucleons,
and the subscript σ or τ indicates that the operators act
on, respectively, spin or isospin degrees of freedom.

The SIτ is a projector onto isospin- 3
2 triples:

SIτ = 2 +
2

3
(τ i · τ j + τ j · τ k + τ k · τ i) = 4PT=3/2 .

(19)

To the extent isospin is conserved, there are no such
triples in the s-shell nuclei, and so this term does not
affect them. It is also zero for Nd scattering. However,
the SIτS

I
σ term is attractive in all the p-shell nuclei stud-

ied. The AIτ has the same structure as the isospin part of
the anticommutator part of V 2π,P , but the AIτA

I
σ term

is repulsive in all nuclei studied so far. In p-shell nuclei,
the magnitude of the AIτA

I
σ term is smaller than that of

the SIτS
I
σ term, so the net effect of the V 3π,∆R

ijk is slight
repulsion in s-shell nuclei and larger attraction in p-shell
nuclei. The reader is referred to the appendix of Pieper
et al. (2001) for the complete structure of V 3π,∆R

ijk .

The first series of five Illinois models (IL1-5) explored
different combinations of the parameters AP2π, AS2π, A∆R

3π ,
and AR, and also variation of the OPE cutoff function
ξ(r). One drawback of these models is that they appear
to provide too much attraction in dense neutron matter
calculations (Sarsa et al., 2003). To help alleviate this
problem, the latest version Illinois-7 (IL7) introduced an
additional repulsive term with the isospin- 3

2 projector:

V
R,T=3/2
ijk =

∑
cyc

AR,T=3/2T
2(µrij)T

2(µrjk)PT=3/2 .

(20)
After fixing AS2π at the Texas value, and taking ξ(r) from
AV18, the four parameters AP2π, A∆R

3π , AR, and AR,T=3/2

were searched to obtain a best fit, in conjunction with
AV18, for energies of about 20 nuclear ground and low-
lying excited states in A ≤ 10 nuclei (Pieper, 2008a).

C. Nuclear Hamiltonians from chiral effective field theory

Chiral effective field theory (χEFT) has witnessed
much progress during the two decades since the pioneer-
ing papers by Weinberg (1990, 1991, 1992). In χEFT, the
symmetries of quantum chromodynamics (QCD), in par-
ticular its approximate chiral symmetry, are employed to
systematically constrain classes of Lagrangians describ-
ing, at low energies, the interactions of baryons (in par-
ticular, nucleons and ∆-isobars) with pions as well as
the interactions of these hadrons with electroweak fields.
Each class is characterized by a given power of the pion
mass and/or momentum, the latter generically denoted
by P , and can therefore be thought of as a term in a
series expansion in powers of P/Λχ, where Λχ ' 1 GeV
specifies the chiral-symmetry breaking scale. Each class
also involves a certain number of unknown coefficients,
called low-energy constants (LEC’s), which are deter-
mined by fits to experimental data. See, for example, the
review papers Bedaque and van Kolck (2002) and Epel-
baum et al. (2009), and references therein. Thus χEFT
provides a direct connection between QCD and its sym-
metries and the strong and electroweak interactions in
nuclei. From this perspective, it can be justifiably ar-
gued to have put low-energy nuclear physics on a more
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fundamental basis. Just as importantly, it yields a practi-
cal calculational scheme, which can, at least in principle,
be improved systematically.

Within the nuclear χEFT approach, a variety of stud-
ies have been carried out in the strong-interaction sec-
tor dealing with the derivation of NN and 3N po-
tentials (Bernard et al., 2011; Entem and Machleidt,
2003; Epelbaum et al., 1998, 2002; Girlanda et al., 2011;
van Kolck, 1994; Machleidt and Entem, 2011; Navratil,
2007; Ordonez et al., 1996) and accompanying isospin-
symmetry-breaking corrections (Epelbaum and Meiss-
ner, 1999; Friar and van Kolck, 1999; Friar et al., 2004,
2005). In the electroweak sector additional studies
have been made dealing with the derivation of parity-
violating NN potentials induced by hadronic weak in-
teractions (Girlanda, 2008; Haxton and Holstein, 2013;
Viviani et al., 2014; Zhu et al., 2005) and the construc-
tion of nuclear electroweak currents (Kölling et al., 2009,
2011; Park et al., 1993; Pastore et al., 2011, 2009; Piarulli
et al., 2013).

Recently chiral nuclear interactions have been devel-
oped that are local up to next-to-next-to-leading order
(N2LO) (Gezerlis et al., 2013). These interactions employ
a different regularization scheme from previous chiral in-
teractions, with a cutoff in the relative NN momentum
q. They are therefore fairly simple to treat with stan-
dard QMC techniques to calculate properties of nuclei
and neutron matter (Gezerlis et al., 2013; Lynn et al.,
2014).

As explained in Gezerlis et al. (2014), up to N2LO,
the momentum-dependent contact interactions can be
completely removed by choosing proper local operators.
For example, at LO there are several operators that are
equivalent for contact interactions: 1, σ1 · σ2, τ 1 · τ 2,
and σ1 · σ2τ 1 · τ 2. Similarly, interactions at NLO
and N2LO can be constructed by adding extra opera-
tors that include the S12, S12τ 1 · τ 2, and L · S. The
short-range regulators are also chosen to be local, i.e.,
fcut = [1− exp(−r/R0)4]. In this way, by fitting the low-
energy constants, the chiral potentials are completely lo-
cal up to N2LO. At the next order N3LO non-local opera-
tors start to appear, but their contributions are expected
to be very small (Piarulli et al., 2015).

III. QUANTUM MONTE CARLO METHODS

There is a large variety of Quantum Monte Carlo algo-
rithms, and it would be out of the scope of this review to
cover all of them. We will limit ourselves to describing
a specific subset of QMC algorithms that has been con-
sistently applied to the many nucleon problem, namely
algorithms that are based on a coordinate representation
of the Hamiltonian, and that are based on recursive sam-
pling of a probability density or of a propagator. This
set of methods includes the standard Variational Monte

Carlo (VMC), Green’s Function Monte Carlo (GFMC)
and Diffusion Monte Carlo methods.

These methods have been successfully applied to a
broad class of problems. The major fields of application
of this set of algorithms are quantum chemistry and ma-
terials science (B.J. Hammond, 1994; Foulkes et al., 2001;
Nightingale and Umrigar, 1999), where QMC is a natu-
ral competitor of methods such as Coupled Cluster the-
ory and standard Configuration Interaction methods that
are very accurate for problems where the uncorrelated or
Hartree-Fock state provides already a good description of
the many-body ground state. In these fields several soft-
ware packages have been developed with the aim of mak-
ing the use of QMC methods more and more widespread
across the community. Other applications in condensed
matter theory concern the physics of condensed helium
systems, both 4He and 3He (Ceperley, 1995; Schmidt and
Ceperley, 1992). Several QMC calculations have been
extensively performed to investigate properties of both
bosonic and fermionic ultracold gases; see for example
Carlson et al. (2003b); Giorgini et al. (2008).

Because of the strong correlations induced by nuclear
Hamiltonians, QMC methods have proved to be very
valuable in understanding properties of nuclei and nu-
cleonic matter. Variational Monte Carlo methods were
introduced for use with nuclear interactions in the early
1980s (Lomnitz-Adler et al., 1981). VMC requires an ac-
curate understanding of the structure of the system to
be explored. Typically, a specific class of trial wave func-
tions is considered, and using Monte Carlo quadrature to
evaluate the multidimensional integrals, the energy with
respect to changes in a set of variational parameters is
minimized.

GFMC was introduced in nuclear physics for spin-
isospin-dependent Hamiltonians in the late 1980s (Carl-
son, 1987, 1988). It involves the projection of the ground
state from an initial trial state with an evolution in imag-
inary time in terms of a path integral, using Monte Carlo
techniques to sample the paths. GFMC works best when
an accurate trial wave function is available, often devel-
oped through initial VMC calculations. This method is
very accurate for light nuclei, but becomes increasingly
more difficult moving toward larger systems. The growth
in computing time is exponential in the number of par-
ticles because of the number of spin and isospin states.
The largest nuclear GFMC calculations to date are for
the 12C nucleus (Lovato et al., 2013, 2014, 2015), and
for systems of 16 neutrons (Gandolfi et al., 2011; Maris
et al., 2013) (540,672 and 65,536 spin-isospin states, re-
spectively).

Auxiliary Field Diffusion Monte Carlo (AFDMC) was
introduced in 1999 (Schmidt and Fantoni, 1999). In this
algorithm the spin- and isospin-dependence is treated us-
ing auxiliary fields. These fields are sampled using Monte
Carlo techniques, and the coordinate-space diffusion in
GFMC is extended to include a diffusion in the spin and
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isospin states of the individual nucleons as well. This al-
gorithm is much more efficient at treating large systems.
It has been very successful in studying homogeneous and
inhomogeneous neutron matter, and recently has been
shown to be very promising for calculating properties of
heavier nuclei, nuclear matter (Gandolfi et al., 2014), and
systems including hyperons (Lonardoni et al., 2013, 2015,
2014). It does require the use of simpler trial wave func-
tions, though, and is not yet quite as flexible in the com-
plexity of nuclear Hamiltonians that can be employed.
Extending the range of interactions that can be treated
with AFDMC is an active area of research.

A. Variational Monte Carlo

In VMC, one assumes a form for the trial wave function
ΨT and optimizes variational parameters, typically by
minimizing the energy and/or the variance of the energy
with respect to variations in the parameters. The energy
of the variational wave function EV

EV =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

≥ E0, (21)

is greater than or equal to the ground-state energy with
the same quantum numbers as ΨT . Monte Carlo methods
can be used to calculate EV and to minimize the energy
with respect to changes in the variational parameters.

For nuclear physics, the trial wave function |ΨT 〉 has
the generic form:

|ΨT 〉 = F|Φ〉. (22)

With this form, a factorization of the wave function
into long-range low-momentum components and short-
range high-momentum components is assumed. The
short-range behavior of the wave functions is controlled
by the correlation operator F , and the quantum num-
bers of the system and the long-range behavior by |Φ〉.
In nuclei the separation between the short-distance cor-
relations and the low-momentum structure of the wave
function is less clear than in some systems. For example,
alpha particle clusters can be very important in light nu-
clei, and their structure is of the order of the interparticle
spacing. Also the pairing gap can be a nontrivial frac-
tion of the Fermi energy, and hence the coherence length
may be smaller than the system. Nevertheless this gen-
eral form has proved to be extremely useful in both light
nuclei and nuclear matter.

1. Short-range structure: F

The correlation operator is dominated by Jastrow-like
correlations between pairs and triplets of particles:

F =

S ∏
i<j<k

(1 + Fijk)

 S∏
i<j

Fij

 , (23)

where S is the symmetrization operator, Fij is a two-
body and Fijk is a three-body correlation. The two-
body correlation operator can include a strong depen-
dence upon spin and isospin, and is typically taken as:

Fij =
∑
p

fp(rij)O
p
ij , (24)

where

Opij = 1, τ i · τ j ,σi · σj , (σi · σj)(τ i · τ j), Sij , Sijτ i · τ j ,
(25)

and the fp are functions of the distance rij between par-
ticles i and j. The pair functions fpij are usually obtained
as the solution of Schrödinger-like equations in the rela-
tive distance between two particles:[

− ~2

2µ
∇2 + vS,T (r) + λS,T (r)

]
fS,T (r) = 0 . (26)

The pair functions are obtained by solving this equation
in different spin and isospin channels, for example S = 0,
T = 1, and can then be recast into operator form. For
S=1 channels the tensor force enters and this equation
becomes two coupled equations for the components with
L = J − 1 and L = J + 1.

The λS,T (r) are functions designed to encode the vari-
ational nature of the calculation, mimicking the effect
of other particles on the pair in the many-body system.
Additional variational choices can be incorporated into
boundary conditions on the fS,T (r). For example, in nu-
clear and neutron matter the pair functions are typically
short-ranged functions and the boundary condition that
fp=1 = 1 and fp>1 = 0 at some distances d, which may
be different in different channels, is enforced. Usually
it is advantageous for the tensor correlation to be finite
out to longer distances because of the one-pion-exchange
interaction. The distances d are variational parameters,
and the equations for the pair correlations are eigenvalue
equations; the eigenvalues are contained in the λ(r). See
Pandharipande and Wiringa (1979) for complete details.

For the lightest s-shell nuclei (A= 3 and 4), on the
other hand, the asymptotic properties of the wave func-
tion are encoded in the pair correlation operators fp.
To this end the λ(r) are determined by requiring the
product of pair correlations S

∏
j Fij to have the cor-

rect asymptotic behavior as particle i is separated from
the system. These boundary conditions are described in
Schiavilla et al. (1986) and Wiringa (1991).

It has been found advantageous to reduce the strength
of the spin- and isospin-dependent pair correlation func-
tions Fij when other particles are nearby, with the simple
form above altered to

Fij =
∑
p

fp(rij)
∏
k

qp(rij , rik, rjk)Opij , (27)

where the central (spin-isospin independent) quenching
factor qp=1 is typically 1, while for other operators it is
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parametrized so as to reduce the pair correlation when
another particle k is near the pair ij (Pudliner et al.,
1997).

The Fijk becomes particularly important when the
Hamiltonian includes a 3N force. A good correlation
form is:

Fijk =
∑
x

εxV
x
ijk(r̃ij , r̃jk, r̃ki) , (28)

with r̃ = yxr, yx a scaling parameter, and εx a (small
negative) strength parameter. The superscript x denotes
various pieces of the 3N force like (2π, P ) and R, so
Eq. (28) brings in all the spin-isospin dependence in-
duced by that piece of the 3N potential. In practice the
S
∏
i<j<k(1 + Fijk) in Eq. (23) is usually replaced with

a sum (1 +
∑
i<j<k Fijk) which is significantly faster and

results in almost as good a variational energy. For three-
and four-body nuclei and nuclear matter, pair spin-orbit
correlations have also been included in Eq. (23), but they
are expensive to compute and not used in the work re-
viewed here.

The typical number of variational parameters for s-
shell nuclear wave functions is about two dozen for a two-
body potential like AV18, as shown in Wiringa (1991)
and Pudliner et al. (1997). Another four to six param-
eters are added if a three-body potential is included in
the Hamiltonian. One can also add a few additional pa-
rameters to break charge independence, e.g., to generate
T = 3

2 components in the trinucleon wave functions, but
these are generally used only for studies of isospin vi-
olation. For p-shell nuclei, the alpha-particle pair and
triplet correlations are varied only minimally, and most
optimization is done with the long-range correlations dis-
cussed below.

The variational parameters have generally been opti-
mized by hand. Variational wave functions with signif-
icantly larger numbers of parameters and more sophis-
ticated optimization have since been developed (Usmani
et al., 2012, 2009), but are not in general use. However,
they have provided useful insight for improving the sim-
pler parameter sets. The calculation of light nuclei is now
sufficiently fast that automated optimization programs
might be profitably employed in the future.

2. Long-Range Structure: |φ〉

The quantum numbers and long-range structure of the
wave function are generally controlled by the |Φ〉 term
in Eq. (22). For nuclear and neutron matter this has
often been taken to be an uncorrelated Fermi gas wave
function. Recently, the crucial role of superfluidity has
been recognized, particularly in low-density neutron mat-
ter. In such cases the trial wave function includes a |Φ〉 of
BCS form. For the s-wave pairing relevant to low-density

neutron matter, this can be written:

|Φ〉 = A [φ(r11′), φ(r22′), φ(r33′), ...] , (29)

where the finite particle number projection of the BCS
state has been taken, with φ(r) the individual pair
functions, and the unprimed and primed indices refer
to spin-up and spin-down particles respectively. These
pair states are functions of the distance between the
two nucleons in the pair. The operator A is an anti-
symmetrization operator (Carlson et al., 2003a; Gezerlis
and Carlson, 2008). For a more general pairing, a Pfaf-
fian wave function is needed (see for example Gandolfi
et al. (2008a, 2009a) and references therein).

For light nuclei, the simplest |Φ〉 can be written as the
sum of a few Slater determinants, essentially those aris-
ing from a very modest shell-model treatment of the nu-
cleus. The single-particle orbitals in such calculations are
written in relative coordinates so as to avoid introducing
any spurious center-of-mass (CM) motion. An explicit
antisymmetrization of the wave function summing over
particles in s-wave, p-wave, etc., orbitals is required to
compute |Φ〉.

Improved wave functions can be obtained by consider-
ing the significant cluster structures present in light nu-
clei. For example the ground state of 8Be has a very large
overlap with two well-separated alpha particles. Alpha-
cluster structures are important in many light nuclei, for
example states in helium and carbon. To this end, it
is useful to use a “Jastrow” wave function |ΦJ〉 which
includes spin-isospin independent two- and three-body
correlations and the cluster-structure for the |Φ〉:

|ΦJ〉 = A
∏

i<j<k

f cijk
∏
i<j≤4

fss(rij)
∏

k≤4<l≤A

fsp(rkl)

×
∑
N

∏
4<l<m≤A

fpp(rlm)|ΦN (1234 : 56...A)〉. (30)

This wave function must be explicitly antisymmetrized
as it is written in a particular cluster structure, with par-
ticles 1 . . . 4 being in an alpha-particle cluster, summed
over the N =

(
A
4

)
possible partitions. The spin-isospin

independent two-body correlations fss, fpp, and fsp are
different for pairs of particles where both are in the s-
shell, both in the p-shell, or one in each. The fss comes
from the structure of an alpha particle, the fsp is con-
structed to go to unity at large distances. The fpp is set
to give the appropriate cluster structure outside the α-
particle core, for example it is similar to a deuteron for
6Li and to a triton for 7Li; see Pudliner et al. (1997) for
more details.

Except for closed-shell nuclei, the complete trial wave
function is constructed by taking a linear set of states of
the form in Eq. (30) with the same total angular momen-
tum and parity. Typically these correspond to the lowest
shell-model states of the system. QMC methods are then
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used to compute the Hamiltonian and normalization ma-
trix elements in this basis. These coefficients are often
similar in magnitude to those produced by a very small
shell-model calculation of the same nucleus. In light nu-
clei LS coupling is most efficient; examples of the diago-
nalization may be found in Pieper et al. (2002); Pudliner
et al. (1997); Wiringa et al. (2000) and compared to tra-
ditional shell model studies such as Kumar (1974). The
VMC calculations give very good descriptions of inclu-
sive observables including momentum distributions, but
the energies and other observables can then be improved,
using the results of the VMC diagonalization to initiate
the GFMC calculations.

3. Computational Implementation

The spatial integrals in Eq. (21) are evaluated using
Metropolis Monte Carlo techniques (Metropolis et al.,
1953). A weight function W (R) is first defined to sample
points in 3A-dimensional coordinate space. The simplest
choice is W (R) = 〈ΨT (R)|ΨT (R)〉, where the brackets
indicate a sum over all the spin isospin parts of the wave
function. For spin-isospin independent interactions the
A-particle wave function is a function of the 3A coordi-
nates of the system only, and the weight function W is
the square of the wave function. The Metropolis method
allows one to sample points in large-dimensional spaces
with probability proportional to any positive function W
through a suitable combination of proposed (usually lo-
cal) moves and an acceptance or rejection of the proposed
move based upon the ratio of the function W at the orig-
inal or proposed points. Iterating these steps produces
a set of points in 3A dimensional space with probability
proportional to W(R).

For spin-isospin dependent interactions, the wave func-
tion |ΨT (R)〉 is a sum of complex amplitudes for each
spin-isospin state of the system:

|ΨT (R)〉 =
∑

s≤2A,t≤2A

φs,t(R) χs(σ) χt(τ), (31)

and the spin states χs are:

χ1 = | ↓1↓2 ... ↓A〉,
χ2 = | ↑1↓2 ... ↓A〉,
χ3 = | ↓1↑2 ... ↓A〉,
...

χ2A = | ↑1↑2 ... ↑A〉, (32)

and similarly for the isospin states with n and p instead
of ↓ and ↑. The 2A isospin states can be reduced by
using charge conservation to A!/(N !Z!) states and, by
assuming the nucleus has good isospin T , further reduced
to

I(A, T ) =
2T + 1

1
2A+ T + 1

(
A

1
2A+ T

)
(33)

components. The weight function in this case is the sum
of the squares of the individual amplitudes: W (R) =∑
s,t |φs,t(R)|2.
Given a set of coordinates {R}, to calculate the wave

function one must first populate the various amplitudes
in the trial state by calculating the Slater determinant,
BCS state, or Jastrow wave function |Φ〉. Spin-isospin
independent operators acting on |Φ〉 are simple multi-
plicative constants for each amplitude φs,t. Pair corre-
lation operators then operate on the Φ; these are sparse
matrix multiplications for each pair. The sparse matri-
ces are easily computed on-the-fly using explicitly coded
subroutines (Pieper, 2008b). The product over pair cor-
relations is built up by successive operations for each pair.
For example, the effect of the operator σ1 ·σ2 on the wave
function of three-particles can be written as follows (The
notation a(↑1↓2↓3) means the amplitude for nucleon 1
being spin up and nucleons 2 and 3 being spin down; the
isospin components have been omitted for simplicity):

σ1 · σ2



a(↓1↓2↓3)
a(↑1↓2↓3)
a(↓1↑2↓3)
a(↑1↑2↓3)
a(↓1↓2↑3)
a(↑1↓2↑3)
a(↓1↑2↑3)
a(↑1↑2↑3)


=



a(↓1↓2↓3)
2a(↓1↑2↓3)− a(↑1↓2↓3)
2a(↑1↓2↓3)− a(↓1↑2↓3)

a(↑1↑2↓3)
a(↓1↓2↑3)

2a(↓1↑2↑3)− a(↑1↓2↑3)
2a(↑1↓2↑3)− a(↓1↑2↑3)

a(↑1↑2↑3)


.

(34)

Metropolis Monte Carlo is used to sample points in
the 3A-dimensional space by accepting and rejecting trial
moves of the particles. Enforcing detailed balance en-
sures that the asymptotic distribution of such points will
be distributed according to the weight W (R). The en-
ergy can then be computed as the average over the N
points in the random walk:

EV =
1

N

N∑
i=1

〈ΨT (Ri)|H|ΨT (Ri)〉
W (Ri)

, (35)

where the angled brackets imply the sum over spin and
isospin states for each set of spatial coordinates Ri. The
matrix elements of the Hamiltonian are evaluated using
the same techniques as those used for the pair correlation
operators.

The computational time for the VMC method scales
exponentially with the particle number. At first glance,
this may seem to be because of the explicit sums over ex-
ponentially large number of spin-isospin amplitudes cal-
culated from the trial wave function. If that were the only
reason, it would be trivial to sample the spin-isospin state
and evaluate the trial wave function’s amplitude for that
sampled spin-isospin state. This sampling can in fact
be done but the fundamental problem remains that good
trial wave functions constructed as described in Eqs. (22–
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24), require exponential in the particle number opera-
tions to evaluate either a single spin-isospin amplitude or
all of them. Evaluating a single amplitude provides neg-
ligible savings, so the computational time is reduced by
explicitly summing over the amplitudes, which removes
any variance that would occur from sampling. If trial
wave functions could be constructed which capture the
important physics, while requiring computational time
that scales polynomially with particle number for a sin-
gle spin-isospin amplitude, VMC calculations would be
straightforward for all nuclei.

In reality one does not usually compute the full wave
function with all orders of pair operators implied by the
symmetrization operator S in the definition of the wave
function. One can sample the orders of the pairs indepen-
dently for the left and right (bra and ket) wave functions
of Eq. (35), and define a slightly more complicated pos-
itive definite form for the weight function W in terms
of the two sets of amplitudes φs,t,l and φs,t,r for the or-
der of pair operators l and r in the left- and right-hand
wave functions. From several thousand to several tens of
thousands of points are sufficient for a typical evaluation
of the energy, and statistical errors are obtained using
standard techniques.

To search for optimal variational parameters embed-
ded in ΨT , it is very useful to first generate a Monte
Carlo walk with configurations Ri and weights W (Ri)
for a given parameter set. Then one can change one or
more parameters and reuse the same set of configurations
to evaluate the change in the energy. The correlated en-
ergy difference will have a much smaller statistical error
than differencing two large energies obtained from inde-
pendent random walks. In this manner, a chain of small
incremental improvements can be developed that leads
to a lower variational energy. When the norm of the im-
proved wave function starts to differ significantly from
the original walk, a new reference walk can be made and
the search continued from that set.

One way to overcome the exponential growth in com-
putational requirements and access larger nuclei is to
use a cluster expansion. Cluster expansions in terms of
the operator correlations in the variational wave function
were developed more than two decades ago and used in
the first QMC calculations of 16O (Pieper et al., 1992).
In these calculations a full 3A-dimensional integral was
done for the Jastrow part of the wave function while up
to four-nucleon linked-clusters were used for the operator
terms. Earlier versions of the Argonne NN and Urbana
3N interactions were used. Given the tremendous in-
crease in computer power since then, this method might
profitably be reconsidered for calculations of much bigger
nuclei.

B. Green’s function Monte Carlo

GFMC methods are used to project out the ground
state with a particular set of quantum numbers. GFMC
methods were invented in the 1960s (Kalos, 1962) and
have been applied to many different problems in con-
densed matter, chemistry, and related fields. They are
closely related to finite-temperature algorithms which
calculate the density matrix (Ceperley, 1995), but they
use trial wave functions on the boundaries of the paths
to project out the quantum numbers of specific states.

GFMC typically starts from a trial wave function |ΨT 〉
and projects:

|Ψ0〉 ∝ lim
τ→∞

exp[−(H − E0)τ ]|ΨT 〉, (36)

where E0 is a parameter used to control the normaliza-
tion. For strongly-interacting systems one cannot com-
pute exp[−(H−E0)τ ] directly, however one can compute
the high-temperature or short-time propagator, and in-
sert complete sets of states between each short-time prop-
agator,

|Ψ0(RN )〉 =
∏
1..N

〈RN | exp[−(H − E0)δτ ]|RN−1〉

...〈R1| exp[−(H − E0)δτ ]|R0〉|ΨT (R0)〉 , (37)

and then use Monte Carlo techniques to sample the paths
Ri in the propagation. The method is accurate for small
values of the time step δτ , and the accuracy can be de-
termined by simulations using several different values of
the time step and extrapolating to zero. In the GFMC
method, Monte Carlo is used to sample the coordinates
R; Eq. (37) also has an implied sum over spin and isospin
states at each step of the walk which is calculated explic-
itly.

1. Imaginary-Time Propagator

In the simplest approximation the propagator:

Gδτ (R′,R) ≡ 〈R′| exp(−Hδτ)|R〉 (38)

≈ 〈R′| exp(−V δτ/2) exp(−Tδτ) exp(−V δτ/2)|R〉 ,

where T is the non-relativistic kinetic energy:

G0(R′,R) = 〈R′| exp[−Tδτ ]|R〉

=

[
1

λ3π3/2

]A
exp[−(R−R′)2/λ2] , (39)

with λ2 = 4 ~2

2mδτ , yielding a Gaussian diffusion for the
paths. The matrix V is the spin- and isospin-dependent
interaction:

〈R| exp(−V δτ)|R〉 ≈ S
∏
i<j

exp[−Vij(rij)δτ ] , (40)
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where S indicates a symmetrization over orders of pairs.
Each pair interaction can be simply evaluated as the ex-
ponent of a small spin-isospin matrix. This treatment is
adequate for static spin-dependent NN interactions.

In practice one needs to include momentum-dependent
spin-orbit NN interactions as well as 3N interactions. It
is more efficient to calculate the NN propagator explic-
itly, storing the radial and spin-isospin dependence on a
grid for each initial and final NN state. This is done
by calculating the propagator independently in each par-
tial wave and then summing them to create the full NN
propagator. This was first done in studies of liquid He-
lium (Ceperley, 1995; Schmidt and Lee, 1995) and then
adapted to the nuclear physics case (Pudliner et al.,
1997). This has the advantage of summing all NN inter-
actions for each pair explicitly, allowing for larger time
steps in the path-integral simulation. The NN propaga-
tor gij is defined:

〈χ′σχ′τ |gij(r′ij , rij ; δτ)|χσχτ 〉 =

〈χ′σχ′τr′ij | exp[−Hijδτ ]|χσχτrij〉, (41)

where rij and r′ij are the initial and final NN relative co-
ordinates, Hij is the NN Hamiltonian including relative
kinetic energy and the NN interaction, and χ′σ, χσ and
χ′τ , χτ are NN initial and final spin and isospin states,
respectively. The pair propagator is calculated for the
AV8′ Hamiltonian, denoted as gv8

ij . At present higher or-

der terms in the momenta (p2,L2, (L · S)2, ...) are treated
perturbatively. Though the pair propagator can be cal-
culated for these interactions, the Monte Carlo sampling
can lead to large variance (Lynn and Schmidt, 2012).

The pair propagators are then combined to produce the
full propagation matrix for the system. The 3N interac-
tion Vijk is included symmetrically, and the full propaga-
tion matrix for each step Gδτ (R′,R) can then be written
as:

Gδτ (R′,R) = 〈R′|

1−
∑
i<j<k

Vijkδτ/2

 |R′〉G0(R′,R)

× S
∏
i<j

gv8ij (R′,R)

g0
ij(R

′,R)
〈R|

1−
∑
i<j<k

Vijkδτ/2

 |R〉.
(42)

The spin-orbit interaction in the product of propagators
with the full v8 interaction yields spurious interactions
resulting from quadratic terms in the difference R′ −R
from different pairs. One can correct for this but in prac-
tice the effect is not significant. Using the calculated NN
propagators allows for a factor of 5-10 larger time steps
δτ than the simple approximation in Eq.(39) (Pudliner
et al., 1997).

2. Implementation

Once the propagator for each step is specified, an algo-
rithm must be chosen to sample over all possible paths.
A branching random walk algorithm very similar to that
used in standard diffusion Monte Carlo (DMC) (Foulkes
et al., 2001) is used. This random walk does not sam-
ple the entire path at once; it uses Markov Chain Monte
Carlo to perform each step given the present coordinates
and amplitudes in the propagated wave function. One
difference with standard DMC is that the importance
sampled Green’s function is explicitly sampled rather
than using a small time-step extrapolation for the wave
functions.

A positive definite “weight” W (ΨT ,Ψ(τ)) is first de-
fined as a function of the trial function ΨT and the prop-
agated wave function Ψ(τ). Typically the form used is

W =

∣∣∣∣∣∑
s,t

〈ΨT |χsχt〉〈χsχt|Ψ(τ)〉

∣∣∣∣∣
+ ε
∑
s,t

|〈ΨT |χsχt〉〈χsχt|Ψ(τ)〉| , (43)

where ε is a small parameter. Sampling of the paths and
branching for the importance function are then imple-
mented with the scalar function W . Given the present
position R, several different possible final states R′ =
R + δR are sampled from the free propagator G0. For
each sample of δR the corresponding −δR configuration
is included in the sample. The weight function Wi is
then calculated for each of the possible new points R′i,
and the final point is chosen according to the relative
weights and scaled with the ratio of the average Wi to
the actual Wi. Branching is performed with the ratio of
weight functions after and before the step, or typically
after several steps. The weights of different paths used
to calculate observables will eventually diverge, yielding
the entire contribution from only a few paths that dom-
inate. This is commonly avoided by using the branching
technique, in which the configurations are redistributed
by killing or making N copies of each one according to

Ni = [Wi + ξ] , (44)

where Wi is the weight of the i-th configuration ob-
tained by multiplying the weight of Eq. (43) by exp([E0−
V (R)]δτ) (V is the spin/isospin independent part of the
potential), ξ is a random number with uniform distri-
bution between 0 and 1, and in the above equation [...]
means the truncated integer number of the argument.
Different random number seeds are given to new copies
generated from the same walker. This procedure guar-
antees that the configurations with small weight, con-
tributing by generating only noise to the observables,
are dropped. The full procedure is described in Pudliner
et al. (1997).
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After every typically 20 to 40 steps, the energy as a
function of imaginary time τ is calculated as:

E(τ) =
〈ΨT |H|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

=

∑
i〈ΨT (i)|H|Ψ(τ, i)〉/Wi∑
i〈ΨT (i)|Ψ(τ, i)〉/Wi

, (45)

where the sum over i indicates the sum over samples of
the wave function. The brackets in the numerator and
denominator of the last expression indicate sums over
spins and isospins for each sample. The E(τ) initially
decrease rapidly from the VMC (τ = 0) energy but then
stabilizes and just fluctuates within the statistical errors;
examples of this are shown in Fig. 2, discussed below,
and also in Sec. V.D. These stable values are averaged
to get the converged GFMC results.

In principle, the GFMC propagation should con-
verge to the lowest-energy state of given quantum num-
bers Jπ;T . The nuclei considered here may have a
few particle-stable and multiple particle-unstable excited
states of the same quantum numbers. In practice, GFMC
propagation can obtain good energy estimates for many
of these additional states.

First, a set of orthogonal VMC trial functions are gen-
erated that are diagonalized in the small single-particle
p-shell basis of differing LS and spatial symmetry combi-
nations that can make a given Jπ;T . These are pseudo-
bound wave functions that fall off exponentially at long
range, with matter radii not much larger than the ground
state. Then independent GFMC propagations are carried
out starting from each of these trial functions. An exam-

ple is shown in Fig. 2 for the four 5
2

−
p-shell states in 7Li,

all of which are particle-unstable (Pieper et al., 2004).
The GFMC propagations stay nearly orthogonal to fairly
large τ ∼ 1 MeV−1, as shown by the solid symbols in the
figure. The overlaps between different states can be eval-
uated, and an explicit reorthogonalization made, shown
by the open symbols. The states remain well-separated
in energy.

The first 5
2

−
state in Fig. 2 is physically wide (∼ 900

keV) because it has the spatial symmetry of alpha plus
triton and is several MeV above the threshold for breakup
into separated clusters. Consequently, a GFMC propaga-
tion is expected to eventually drop to that threshold en-
ergy, and the figure shows, after a rapid initial drop from
−26 to −32 MeV by τ = 0.1 MeV−1, a slowly decreas-
ing energy as τ increases, reaching −33 MeV at τ = 1
MeV−1. In cases like this, the energy is quoted at the
small value of τ where the rapid initial improvement over
the variational starting point has saturated. The second
5
2

−
state in Fig. 2 is physically narrow (∼ 80 keV) be-

cause it has a spatial symmetry like 6Li+n and is only
20 keV above that breakup threshold. The GFMC prop-
agation shows the same rapid initial drop in energy, and
then no appreciable further decline, allowing us to iden-

0 0.2 0.4 0.6 0.8 1
-35

-30
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-20

-15

τ (MeV-1)

E
(τ

) 
 (

M
eV

)

4th 5/2-

3rd 5/2-

2nd 5/2-

1st 5/2-

7Li(5/2-)
AV18 + Illinois-2

GFMC Propagation

FIG. 2 GFMC energies of four 5
2

−
states in 7Li vs. imaginary

time τ . The solid symbols show the computed energies at each
τ , open symbols show the results of rediagonalization.

tify a clear energy for this state. The third and fourth
5
2

−
states are not experimentally identified, but from the

GFMC propagation behavior we would expect the third
state to be physically narrow, and the fourth to be fairly
broad. An alternative approach to calculate systems in
the continuum by imposing specific boundary conditions
is presented in sec. IV.F.

In general the GFMC method suffers from the fermion
sign problem, in that the numerator and denominator
of Eq. (45) tend to have an increasing ratio of error to
signal for a finite sample size and large imaginary times
τ . Other than for a few special cases such as purely at-
tractive interactions, Hubbard models at half-filling, or
lattice QCD at zero chemical potential, QMC methods
typically all have this difficulty. This is basically because
when ΨT is not exact it contains contamination from
the Bosonic ground-state that will be unavoidably sam-
pled. For scalar potentials, or in any case where a real
wave function can be used, the sign problem is avoided
by using the fixed-node approximation, and the prob-
lem is solved in a restricted (Bosonic) sub-space, where
the trial wave function always maintains the same sign.
In this case the problem would be exactly solved if the
nodes of the true ground-state were known. Because this
is not the case, the solution obtained is a rigorous up-
perbound to the true ground-state energy (Moskowitz
et al., 1982). For spin-isospin dependent Hamiltonians
a complex wave function must be used, and the gen-
eral fixed-node approximation does not apply. Instead
the sign problem is circumvented by using a ‘constrained
path’ algorithm, essentially limiting the original propa-
gation to regions where the propagated and trial wave
functions have a positive overlap. This approximation,
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like the fixed-node algorithm for spin-independent inter-
action, involves discarding configurations that have zero
overlap with the trial wave function. As such, they are
exact for the case when the trial wave function is exact
and are therefore variational. However, unlike the fixed-
node case, the constrained path method does not provide
upper bounds (Wiringa et al., 2000).

To address the possible bias introduced by the con-
straint, all the configurations (including those that would
be discarded) for a previous number of steps Nuc are used
when evaluating energies and other expectation values.
Nuc is chosen to be as large a number of time steps as
feasible with reasonable statistical error (again typically
20 to 40 steps). Tests using different trial functions and
very long runs indicate that energies in p-shell nuclei are
accurate to around one per cent using these methods.
This has been tested in detail in Wiringa et al. (2000),
where the use of different wave functions is discussed.

Expectation values other than the energy are typically
calculated from “mixed” estimates; for diagonal matrix
elements this is:

〈O(τ)〉 ≈ 2
〈ΨT |O|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

− 〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

. (46)

The above equation can be verified by assuming that
the true ground state is well represented by the vari-
ational wave function and a small perturbation, i.e.,
|Ψ(τ)〉 ≈ |ΨT 〉+ λ|Ψ〉, and λ is a small parameter. Since
the variational wave functions are typically very good the
extrapolation is quite small. This can be further tested
by using different trial wave functions to extract the same
observable, or using the Hellman-Feynman theorem. For
the case of simple static operators, improved methods are
available that propagate both before and after the inser-
tion of the operator O (Liu et al., 1974), i.e. directly
calculating operators with Ψ(τ) on both sides. However
these techniques might be very difficult to apply for non-
local operators.

Because a Hamiltonian commutes with itself, the total
energy of the Hamiltonian used to construct the propa-
gator [Eq. (42)] is not extrapolated; thus this total en-
ergy is not the sum of its extrapolated pieces, rather the
sum differs by the amount the ΨT energy was improved.
As was noted above, the full AV18 NN potential can-
not be used in the propagator; rather an H ′ containing
the AV8′ approximation to AV18 is used. In practice
AV8′ gives slightly more binding than AV18 so the the
repulsive part of the 3N potential is increased to make
〈H ′〉 ≈ 〈H〉. The difference 〈H − H ′〉 must be extrap-
olated by Eq. (46). The best check of the systematic
error introduced by this procedure is given by comparing
GFMC calculations of 3H and 4He energies with results
of more accurate few-nucleon methods; this suggests that
the error is less than 0.5% (Pudliner et al., 1997).

In the case of off-diagonal matrix elements, e.g., in
transition matrix elements between initial Ψi and final

Ψf wave functions, Eq. (46) generalizes to:

〈O(τ)〉 ≈
〈Ψf

T |O|Ψi(τ)〉
〈Ψi

T |Ψi(τ)〉
|Ψi
T |

|Ψf
T |

+
〈Ψf (τ)|O|Ψi

T 〉
〈Ψf (τ)|Ψf

T 〉
|Ψf
T |

|Ψi
T |

−
〈Ψf

T |O|Ψi
T 〉

|Ψf
T ||Ψi

T |
. (47)

Technical details can be found in Pervin et al. (2007).
Recently, the capability to make correlated GFMC

propagations has been added (Lovato et al., 2015). In
these calculations, the values of R for every δτ time step,
the corresponding weights W , and other quantities are
saved during an initial propagation. Subsequent propa-
gations for different initial ΨT or different nuclei (such
as isobaric analogs) then follow the original propagation
and correlated differences of expectation values can be
computed with much smaller statistical errors than for
the individual values.

C. Auxiliary Field Diffusion Monte Carlo

The GFMC method works very well for calculating the
low lying states of nuclei up to 12C. Its major limitation
is that the computational costs scale exponentially with
the number of particles, because of the full summations
of the spin-isospin states. An alternative approach is to
use a basis given by the outer product of nucleon posi-
tion states, and the outer product of single nucleon spin-
isospin spinor states. An element of this overcomplete
basis is given by specifying the 3A Cartesian coordinates
for the A nucleons, and specifying four complex ampli-
tudes for each nucleon to be in a |s〉 = |p ↑, p ↓, n ↑, n ↓〉
spin-isospin state. A basis state is then defined

|RS〉 = |r1s1〉 ⊗ |r2s2〉 · · · ⊗ |rnsn〉 . (48)

The trial functions must be antisymmetric under inter-
change. The only such functions with polynomial scaling
are Slater determinants or Pfaffians (BCS pairing func-
tions), for example,

〈RS|Φ〉 = A [〈r1s1|φ1〉〈r2s2|φ2〉 . . . 〈rAsA|φn〉] (49)

or linear combinations of them. Operating on these with
the product of correlation operators, Eq. (23), again gives
a state with exponential scaling with nucleon number. In
most of the AFDMC calculations, these wave functions
include a state-independent, or central, Jastrow correla-
tion:

〈RS|ΨT 〉 = 〈RS|

∏
i<j

f c(rij)

Φ〉 . (50)

Calculations of the Slater determinants or Pfaffians scale
like A3 when using standard dense matrix methods, while
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the central Jastrow requires A2 operations if its range is
the same order as the system size. These trial functions
capture only the physics of the gross shell structure of
the nuclear problem and the state-independent part of
the two-body interaction. Devising trial functions that
are both computationally efficient to calculate and that
capture the state-dependent two- and three-body corre-
lations that are important would greatly improve both
the statistical and systematic errors of QMC methods
for nuclear problems.

The trial wave functions above can be used for varia-
tional calculations. However, the results are poor since
the functions miss the physics of the important tensor
interactions. More recently the improved form

〈RS|ΨT 〉 =

〈RS|

∏
i<j

f c(rij)

1 +
∑
i<j

Fij +
∑
i<j<k

Fijk

 |Φ〉 ,
(51)

has been employed, where f c are spin-isospin indepen-
dent correlations, and the correlations F have a form
similar to those discussed in the previous sections. These
wave functions can be used as importance functions for
AFDMC calculations where they have been found ade-
quate for this purpose in a variety of problems.

Using the basis state as in Eq. (48) requires the use of
a different propagator, with at most linear spin-isospin
operators. The propagator can be rewritten using the
Hubbard-Stratonovich transformation:

e−O
2/2 =

1√
2π

∫ ∞
−∞

dx e−x
2/2exO , (52)

where the variables x are called auxiliary fields, and O
can be any type of operator included in the propagator.

It is helpful to apply the auxiliary field formalism to
derive the well known central potential diffusion Monte
Carlo algorithm (Anderson, 1976). The Hamiltonian is

H =

A∑
n

p2
n

2m
+ V (R) , V (R) =

∑
i<j

v(rij) , (53)

and v(rij) is a generic potential whose form depends on
the system. Making the short-time approximation, the
propagator can be written as

e−(H−E0)δτ ≈ exp

(
−

A∑
n

p2
n

2m
δτ

)
exp [−(V (R)− E0)δτ ] .

(54)
Since the Hamiltonian does not operate on the spin, the
spin variables can be dropped from the walker expressions
to leave just a position basis |R〉. Operating with the
local-potential term gives just a weight factor:

e−[V (R)−E0]δτ |R〉 = W |R〉 . (55)

The kinetic energy part of the propagator can be applied
by using the Hubbard-Stratonovich transformation:

exp

(
−
∑
n

p2
n

2m
δτ

)
≈
∏
n

exp

(
− p

2
n

2m
δτ

)
(56)

=
∏
n

1

(2π)3/2

∫
dxne

−x2
n/2 exp

(
− i
~
pnxn

√
~2δτ

m

)
.

This propagator applied to a walker |R〉 generates a new
position |R+∆R〉, where each particle position is shifted
as

r′n = rn +
~2δτ

m
xn . (57)

This is identical to the standard diffusion Monte Carlo
algorithm without importance sampling. Each particle is
moved with a Gaussian distribution of variance ~2δτ/m,
and a weight of exp[−(V (R) − E0)δτ ] is included. The
branching on the weight is then included to complete the
algorithm.

The NN potential in the general form of Eq. (4) can
be written as

V =
∑
i<j

vp(rij)O
p
ij =

1

2

∑
i,j

Oαi Aiα,jβO
β
j =

1

2

∑
n

λnO2
n

(58)
where Oαi are σi, τ i or similar combinations; see Gandolfi
(2007) for more details. The new operators O are defined

On =
∑
jβ

ψ
(n)
jβ O

β
j . (59)

Here ψ
(n)
jβ and λn are the eigenvectors and eigenvalues

obtained by diagonalizing the matrix Aiα,jβ .
It is easy to see that applying the Hubbard-

Stratonovich transformation consists in a rotation of the
spin-isospin states of nucleons:∏
i<j

e−Vijδτ |RS〉 = (60)

∏
n

1

(2π)3/2

∫
dxne

−x2
n/2 e

√
−λnδτxnOn |RS〉 = |RS′〉 ,

The propagation is performed by sampling the auxiliary
fields from the probability distribution exp(−x2

n/2), and
applying the rotations to the nucleon spinors. At order
δτ the above propagator is the same as that described in
the previous sections. The advantage of this procedure is
that a wave function with the general spin-isospin struc-
ture of Eq. (49) can be used, at a much cheaper compu-
tational cost than that of including all the spin-isospin
states of Eq. (31). However, one must then solve the inte-
gral in Eq. (52), which is done by Monte Carlo sampling
of the auxiliary fields x.

The inclusion of importance sampling within the auxil-
iary fields formalism is straightforward, and is currently
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done as described in Sec. III.B.2. At each time-step a
random vector ∆R for the spatial coordinates, and the
required auxiliary fields X are sampled. The four weights
corresponding to these samples are

Wi =
〈ΨI |R±∆RS′(±X)〉

〈ΨI |RS)〉
exp [−Vc(R)δτ ] , (61)

where ΨI is used for the importance sampling, S′(X) are
obtained by rotating the spinors S of the previous time-
step using the auxiliary fields X, and Vc includes all the
spin-isospin independent terms of the interaction. The
procedure is then completed as done in GFMC: one of
the above configurations is taken according to the proba-
bilities, and the branching is done by considering the cu-
mulative weight. This procedure lowers the variance as
the ”plus-minus” sampling cancels the linear terms com-
ing from the exponential of Eqs. (56,60). Note that in the
example of the kinetic energy presented above, the effect
of sampling using ±∆R is identical to sampling config-
urations using ∇ΨI/ΨI commonly adopted in standard
diffusion Monte Carlo (Foulkes et al., 2001).

The importance function ΨI must be real and positive,
and an efficient algorithm to deal with complex wave
functions has been proposed by Zhang and Krakauer
(2003), i.e., consider 〈ΨI |RS〉 = |〈ΨT |RS〉|, and mul-
tiply the weight terms Wi by cos ∆θ, where ∆θ is the
phase of 〈ΨT |R′ S′〉/〈ΨT |RS〉, and for each Wi, |R′ S′〉
is the corresponding configuration obtained from the cor-
responding ±∆R and ±X sampling. This method sam-
ples configurations with a very low variance.

Previous applications of the AFDMC method used a
somewhat different importance sampling, using ∇ΨI/ΨI

for the kinetic energy, and the strategy described
by Sarsa et al. (2003) and Gandolfi et al. (2009b) for
the spin; the two methods become the same in the limit
of δτ → 0. In Gandolfi et al. (2014) it has been found
that the procedure described above is much less time-
step dependent for calculations including protons. This
is due to the strong tensor force in the np channel that
in the case of pure neutron systems is very weak. The
two algorithms give very similar results.

The energy and other observables are calculated after
a block of steps in imaginary time, where each block com-
prises a number of steps that is chosen to be large enough
(typically around 100-500) such that the configurations
are statistically uncorrelated. This is done to save com-
puting time in calculating observables for data that are
not useful to reduce the statistical errors.

While the Hubbard-Stratonovich transformation is the
most common, there are many other possibilities. For
example, the propagator for the relativistic kinetic energy
can be sampled by using

exp
[
−
(√

p2c2 +m2c4 −mc2
)
δτ
]

=

∫
d3xf(x)e−ip·x/~

(62)

with

f(x) =

∫
d3p

(2π)3
eip·x/~ e

−
(√

p2c2+m2c4−mc2
)
δτ

= emc
2δτ K2

(mc
~
√
x2 + c2δτ2

)
(63)

where K2 is the modified Bessel function of order 2 (Carl-
son et al., 1993).

IV. LIGHT NUCLEI

A. Energy spectra

Results of GFMC calculations for light nuclei using the
AV18+IL7 Hamiltonian are compared to experiment in
Fig. 3 and Table I (Brida et al., 2011; Lovato et al., 2013;
McCutchan et al., 2012; Pastore et al., 2013, 2014; Pieper
and Carlson, 2015; Wiringa et al., 2013). Results using
just AV18 with no 3N potential are also shown in the
figure. Figure 3 shows the absolute energies of more than
50 ground and excited states. The experimental energies
of the 21 ground states shown in the table are reproduced
with an rms error of 0.36 MeV and an average signed
error of only 0.06 MeV. The importance of the three-
body interaction is confirmed by the large corresponding
numbers for AV18 with no 3N potential, namely 10.0 and
8.8 MeV. About sixty additional isobaric analog states
also have been evaluated but are not shown here.

Table I gives the ground state energies E, proton (neu-
tron) point radii rp (rn), magnetic moments µ (includ-
ing two-body current contributions, see Sec. V), and
quadrupole moments Q for all the particle-stable ground
states of A ≤ 10 nuclei, plus 12C and the resonant ground
states of 7He and 8Be. Many of these results were ob-
tained in recent studies of spectroscopic overlaps, electro-
magnetic transitions and sum rules, and isospin mixing.
The energies, radii, and electromagnetic moments are in
generally good agreement with experiment.

A detailed breakdown of the AV18+IL7 energies into
various pieces for some of the nuclear ground states is
shown in Table II. The components include the total
kinetic energy K, the contribution v18 of the strong in-
teraction part of AV18, the full electromagnetic potential
vγij , the two-pion-exchange parts of IL7 V 2π

ijk , the three-

pion-ring parts V 3π
ijk , and the short-range repulsion V Rijk.

In the last column, δvij is the expectation value of the
difference between v18 and v8′ , which is the part of the
NN interaction that is treated perturbatively because v8′

is used in the propagation Hamiltonian. The sum of the
six contributions K through V Rijk does not quite match
the total energy reported in Table I because they have
been individually extrapolated from the mixed energy
expression Eq. (46).

Several key observations can be drawn from Table II.
First, there is a huge cancellation between kinetic and



17

-100

-90

-80

-70

-60

-50

-40

-30

-20
E

ne
rg

y 
(M

eV
)

AV18
AV18
+IL7 Expt.

0+

4He
0+
2+

6He 1+
3+
2+
1+

6Li
3/2−
1/2−
7/2−
5/2−
5/2−
7/2−

7Li

0+
2+

8He
0+

2+
2+

2+
1+
3+

1+

4+

8Li

1+

0+
2+

4+
2+
1+
3+
4+

0+

8Be

3/2−
1/2−
5/2−

9Li

3/2−
1/2+
5/2−
1/2−
5/2+
3/2+

7/2−

3/2−

7/2−
5/2+
7/2+

9Be

1+

0+
2+
2+
0+
3,2+

10Be 3+
1+

2+

4+

1+

3+
2+

3+

10B

3+

1+

2+

4+

1+

3+
2+

0+

2+
0+

12C

Argonne v18
with Illinois-7

GFMC Calculations

FIG. 3 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to
experiment. See Table I for references.

TABLE I AV18+IL7 GFMC results for A ≤ 12 nuclear ground states (Brida et al., 2011; Lovato et al., 2013; McCutchan et al.,
2012; Pastore et al., 2013, 2014; Pieper and Carlson, 2015; Wiringa et al., 2013), compared to experimental values (Amroun
et al., 1994; NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994;
Tilley et al., 2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors;
errors of less than one in the last decimal place are not shown.

AZ(Jπ;T ) E (MeV) rp [rn] (fm) µ (µN ) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) −2.225 −2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+
; 1
2
) −8.47(1) −8.482 1.59 [1.73] 1.58 2.960(1) 2.979

3He( 1
2

+
; 1
2
) −7.72(1) −7.718 1.76 [1.60] 1.76 −2.100(1) −2.127

4He(0+; 0) −28.42(3) −28.30 1.43 1.462(6)
6He(0+; 1) −29.23(2) −29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) −31.93(3) −31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) −0.082(2)
7He( 3

2

−
; 3
2
) −28.74(3) −28.86 1.97 [3.32(1)]

7Li( 3
2

−
; 1
2
) −39.15(3) −39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 −3.9(2) −4.06(8)

7Be( 3
2

−
; 1
2
) −37.54(3) −37.60 2.51 [2.32] 2.51(2) −1.42(1) −1.398(15) −6.6(2)

8He(0+; 2) −31.42(3) −31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) −41.14(6) −41.28 2.10 [2.46] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) −56.5(1) −56.50 2.40(1)
8B(2+, 1) −37.51(6) −37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) −24.53(3) −24.81 2.94 [1.85]
9Li( 3

2

−
, 3
2
) −45.42(4) −45.34 1.96 [2.33] 2.11(5) 3.39(4) 3.439 −2.3(1) −2.74(10)

9Be( 3
2

−
, 1
2
) −57.9(2) −58.16 2.31 [2.46] 2.38(1) −1.29(1) −1.178 5.1(1) 5.29(4)

9C( 3
2

−
, 3
2
) −38.88(4) −39.04 2.44 [1.99] −1.35(4) −1.391 −4.1(4)

10Be(0+; 1) −64.4(2) −64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) −64.7(3) −64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) −60.2(2) −60.32 2.51 [2.25]
12C(0+; 0) −93.3(4) −92.16 2.32 2.33
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FIG. 4 GFMC excitation energies of light nuclei for the AV18 and AV18+IL7 Hamiltonians compared to experiment. See
Table I for references.

two-body terms. Second, the net perturbative correction
δvij is tiny (< 2%) compared to the full v18 expectation
value. Third, the total Vijk contribution is ∼ 5% of vij ,
suggesting good convergence in many-body forces, but it
is not negligible compared to the binding energy. Finally,
the V 3π

ijk contribution that is unique to the Illinois poten-

tials is a small fraction of the V 2π
ijk in T = 0 states, but

does get as large as 35% in T = 2 states.

In describing the structure of the light nuclei, it is con-
venient to characterize specific Jπ;T states by their dom-
inant orbital and spin angular momentum and spatial
symmetry 2S+1LJ [n] where [n] denotes the Young dia-
gram for spatial symmetry (Wiringa, 2006). (This classi-
fication is essentially a modern update of the discussion
in Feenberg and Wigner (1937).) For example, 4He is
a 1S0[4] state, and the ground state of 6Li is predomi-
nantly 3S1[42], with admixtures of 3D1[42] and 1P1[411].
Because NN forces are strongly attractive in relative S-
waves, and repulsive in P -waves, ground states of given
Jπ;T have the maximum spatial symmetry allowed by
the Pauli exclusion principle. For the same spatial sym-
metry, states of higher L are higher in the spectrum.
Further, due to the effect of NN spin-orbit forces, iter-
ated tensor forces and also 3N forces, the spin doublets,
triplets, etc., are split, with the maximum J value for
given [n] lying lowest in the spectrum (up to mid p-shell).
These features are evident in the excitation spectra dis-

TABLE II Breakdown of GFMC energy contributions for
AV18+IL7, in MeV. See Table I for references.

AZ(Jπ;T ) K v18 vγij V 2π
ijk V 3π

ijk V Rijk δvij
2H(1+; 0) 19.81 −22.05 0.02 0.09
3H( 1

2

+
; 1
2
) 50.9 −58.5 0.04 −1.8 −0.03 0.7 0.18

4He(0+; 0) 112.(1)−136.(1) 0.9 −9.8 −0.3 3.9 1.4
6He(0+; 1) 141.(1)−167.(1) 0.9 −11.5 −1.5 5.1 1.8
6Li(1+; 0) 154.(1)−184.(1) 1.7 −11.4 −1.0 4.9 1.8
7He( 3

2

−
; 3
2
) 160.(1)−185.(1) 0.9 −13.3 −2.9 6.4 2.3

7Li( 3
2

−
; 1
2
) 196.(1)−231.(1) 1.8 −15.4 −2.0 7.1 2.6

8He(0+; 2) 208.(1)−235.(1) 0.9 −17.1 −6.8 9.0 3.6
8Li(2+; 1) 236.(2)−274.(2) 2.0 −19.0 −4.7 9.4 3.7
8Be(0+; 0) 238.(2)−290.(2) 3.2 −20.1 −1.4 8.8 3.3
9Li( 3

2

−
; 3
2
) 283.(1)−322.(1) 2.1 −25.1 −10.3 13.6 5.9

9Be( 3
2

−
; 1
2
) 282.(2)−336.(2) 3.5 −25.0 −4.7 11.9 4.9

10Be(0+; 1) 331.(2)−391.(1) 3.7 −31.1 −8.3 15.7 6.6
10B(3+; 0) 339.(2)−405.(2) 5.7 −32.7 −8.8 16.0 6.9
12C(0+; 0) 437.(3)−534.(2) 8.3 −45.0 −14.1 23.9 10.9

cussed next.

The excitations relative to the ground state energies
for many states are shown in Fig. 4 and tabulated in
Table III. These excitation energies are each the differ-
ence of two independent GFMC calculations; the quoted
statistical errors are the uncorrelated combination of the
errors of each calculation. In general, the excitation en-
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ergies are quite satisfactory with an rms error of 0.5 MeV
for 58 A ≤ 10 states using AV18+IL7 compared to 1.8
MeV using just AV18. Thus we see that AV18 alone does
a much better job on excitation energies than it does for
absolute binding, and that the addition of IL7 greatly
improves both aspects.

The 6He ground state is a 1S0[42] combination, with a
1D2[42] first excited state; the AV18+IL7 Hamiltonian
gets an excitation in fair agreement with experiment.
The first three T = 0 excited states in 6Li constitute
a 3DJ [42] triplet, and the spin-orbit splitting between
the 3+, 2+, and 1+ states is also reproduced very nicely.
The first two states in 7Li are a narrowly split 2PJ [43]
pair, while the next two are a 2FJ [43] pair, followed
by the lowest member of a 4PJ [421] triplet, all with a
reasonably good reproduction of experiment. The 8Be
nucleus exhibits a strong 2α rotational spectrum, with
a 1S0[44] ground state and widely spaced 1D2[44] and
1G4[44] excited states, also with excitation energies in
excellent agreement with experiment. Above this rota-
tional band are 3P2[431], 3P1[431], and 3D3[431] T = 0
states that isospin mix with the T = 1 isobaric analogs
of the 8Li ground and first two excited states.

The A = 10 nuclei, which are mid p-shell nuclei, have
the interesting feature of having two linearly independent
ways of constructing 2S+1DJ [442] states. In 10Be, the
ground state is 1S0[442] (much like 6He with an added
α) followed by two 1D2[442] excited states. In 10B, the
lowest state might be expected to be a 3S1[442] state
similar to 6Li ground state plus an α, but there are also
two 3DJ [442] triplets, one of which is so widely split by
the effective one-body spin-orbit force that one 3D3[442]
component becomes the ground state leaving the 3S1[442]
state as the first excited state (Kurath, 1979).

The IL7 3N force plays a key role in getting these
spin-orbit splittings correctly. The AV18 NN force alone
splits the 6Li 3DJ [42] states in the correct order, but
with insufficient spacing. It leaves the 7Li 2PJ [43] dou-
blet degenerate, as well as the two 1D2[442] states in
10Be, and the 3S1[442] state in 10B is predicted to be
the ground state. IL7 not only splits the two 2+ states
in 10Be by about the correct amount, but splits them
in the correct direction, making the predicted E2 transi-
tions to the ground state significantly different in size as
experimentally observed (McCutchan et al., 2012). By
increasing the splitting of the 3DJ [442] states in 10B, IL7
also gives the correct 3+ ground state for 10Be. Addi-
tion of the older Urbana 3N potentials fixes some, but
not all of these problems. The superior behavior of the
Illinois 3N interactions is also seen in 5He, i.e., αn scat-
tering, as discussed in Sect. IV.F. The importance of
3N interactions is also observed in no-core shell model
calculations (Navrátil et al., 2007).

TABLE III GFMC excitation energies in MeV for the
AV18+IL7 Hamiltonian compared to experiment (Tilley
et al., 2004) for selected A ≤ 12 states; those marked with
a * are the empirical isospin-unmixed values. See Table I for
references.

AZ(Jπ;T ) GFMC Expt.
6He(2+; 1) 2.0(1) 1.80
6Li(3+; 0) 2.3(1) 2.19
6Li(2+; 0) 4.1(1) 4.31
6Li(1+; 0) 5.4(1) 5.37
7Li( 1

2

−
; 1
2
) 0.2(1) 0.48

7Li( 7
2

−
; 1
2
) 5.0(1) 4.65

7Li( 5
2

−
; 1
2
) 6.6(2) 6.60

7Li( 5
2

−
2

; 1
2
) 7.8(2) 7.45

8He(2+; 2) 4.7(3) 3.1(4)
8Li(1+; 1) 1.4(3) 0.98
8Li(3+; 1) 3.0(5) 2.26
8Be(2+; 0) 3.2(2) 3.03(1)
8Be(4+; 0) 11.2(3) 11.35(15)
8Be(2+

2 ; 0) 16.8(2) 16.75∗
8Be(1+; 0) 18.0(2) 18.13∗
8Be(3+; 0) 19.9(2) 19.21∗
9Li( 1

2

−
; 3
2
) 2.0(5) 2.69

9Be( 1
2

+
; 1
2
) 1.5(3) 1.68

9Be( 5
2

−
; 1
2
) 2.4(3) 2.43

10Be(2+; 1) 3.4(3) 3.37
10Be(2+

2 ; 1) 5.3(3) 5.96
10B(1+; 0) 1.3(4) 0.72
10B(1+

2 ; 0) 2.4(5) 2.15
10B(2+; 0) 3.3(5) 3.59

B. Isospin breaking

Energy differences among isobaric analog states are
probes of the charge-independence-breaking parts of the
Hamiltonian. The energies for a given isospin multiplet
can be expanded as

EA,T (Tz) =
∑
n≤2T

an(A, T )Qn(T, Tz) (64)

where Q0 = 1, Q1 = Tz, Q2 = 1
2 (3T 2

z − T 2), and
Q3 = 1

2 (5T 3
z − 3T 2 + TZ) are orthogonal isospin poly-

nomials (Peshkin, 1960). GFMC calculations of the co-
efficients an(A, T ) for a number of isobaric sequences and
various contributions for the AV18+IL7 Hamiltonian are
shown in Table IV along with the experimental values.
The contributions are the CSB component of the kinetic
energyKCSB, all electromagnetic interactions vγ , and the
strong CIB interactions, vCIB = vCSB +vCD. The experi-
mental values were computed using ground-state energies
from (NNDC, 2014) and excitation energies from (TUNL,
2014). By using the correlated GFMC propagations de-
scribed in Sec. III.B, it is possible to extract statistically
significant values for some of the a3(A, T ). An additional
contribution is the second-order perturbation correction
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TABLE IV GFMC isovector and isotensor energy coefficients
an(A, T ) computed using AV18+IL7, in keV, compared to
experiment (Pieper, 2015; Wiringa et al., 2013).

an(A, T ) KCSB vγ vCIB δHCI Total Expt.
a1(3, 1

2
) 14 670(1) 65(0) 8(1) 755(1) 764

a1(6, 1) 18 1056(1) 44(0) 68(3) 1184(4) 1174
a1(7, 1

2
) 23 1478(2) 83(1) 27(10) 1611(10) 1644

a1(7, 3
2
) 17 1206(1) 45 85(4) 1358(3) 1326

a1(8, 1) 25 1675(1) 77 43(6) 1813(6) 1770
a1(8, 2) 22 1557(1) 63 104(4) 1735(3) 1651
a1(9, 1

2
) 19 1713(6) 55(1) 1786(7) 1851

a1(9, 3
2
) 26 1976(1) 91(0) 84(7) 2176(7) 2102

a1(10, 1) 25 2155(7) 85(1) 2170(8) 2329
a2(6, 1) 153(1) 112(2) 5(4) 270(5) 223
a2(7, 3

2
) 106(0) 34(1) 13(2) 158(5) 137

a2(8, 1) 136(1) −3(2) 10(5) 139(5) 127
a2(8, 2) 130(0) 38(0) 9(2) 178(1) 151
a2(9, 3

2
) 150(1) 44(1) 4(5) 200(4) 176

a2(10, 1) 178(1) 119(18) 297(19) 241
a3(7, 3

2
) −3(0) 0(0) 0(2) −3(1) −20(8)

a3(8, 2) −1(0) 0(0) −1(1) −2(1) −3(1)
a3(9, 3

2
) −1(1) 0(0) −0(4) −1(3) −2(5)

to the CI part of the Hamiltonian δHCI due to differ-
ences in the wave functions. Although this term is small,
it is the difference between two large energies and has the
greatest Monte Carlo statistical error of any of the con-
tributions; again correlated GFMC propagations make
its extraction possible.

The dominant piece in all these terms is the Coulomb
interaction between protons, giving 85-95% (70-100%) of
the experimental isovector (isotensor) total. However the
strong CSB and CD interactions give important correc-
tions, and the other terms are not negligible. In particu-
lar, the vCSB contribution is just the right size to fix the
3He – 3H mass difference and is a strong constraint on the
difference of nn and pp scattering lengths. Overall, the
isoscalar terms are in good agreement with experiment,
while the isotensor terms are perhaps a little too large.
One can understand the negative values of a3(A, T ) as
coming from the increasing Coulomb repulsion as Tz in-
creases; this expands the nucleus and reduces vC1(pp).

Another place that CSB interactions play a role is in
the isospin mixing of nearby states with the same spin
and parity but different isospins (Wiringa et al., 2013).
A classic case is the appearance in the 8Be excitation
spectrum of three pairs of states with Jπ of 2+ (at 16.6–
16.9 MeV), 1+ (at 17.6–18.2 MeV) and 3+ (at 19.0–19.2
MeV). The unmixed states come from three T = 0 states,
including the second 2+ excitation and first 1+ and 3+

states in the 8Be spectrum and three T = 1 states that
are the isobaric analogs of 8Li ground state and its first
two excited states. These states have the same dominant
[431] spatial symmetry, so it is not surprising that their
energies are closely paired. The CSB components of the
Hamiltonian have ∼ 100 keV off-diagonal (in isospin) ma-

TABLE V GFMC isospin mixing matrix elements H01 in
8Be spin doublets computed using AV18+IL7 (augmented
by class IV CSB contributions) in keV, compared to experi-
ment (Wiringa et al., 2013).

H01(Jπ) KCSB vγ vCSB vIV Total Expt.
H01(2+) -4 -99(1) -23 -2(1) -128(2) -145(3)
H01(1+) -3 -74(1) -19 3(1) -93(2) -103(14)
H01(3+) -3 -87(1) -17 -6(2) -113(3) -59(12)

trix elements H01 leading to significant isospin mixing..
Experimentally this is observed in the two-alpha decay of
the 2+ states, which have comparable widths and which
can only go via the T = 0 component of the wave func-
tions. The mixing of the 1+ doublet is apparent in their
M1 decays (Pastore et al., 2014).

GFMC calculations of the isospin-mixing matrix ele-
ments are shown in Table V. The table includes a small
contribution from class IV CSB terms vIV that can con-
nect T = 0 and T = 1 np pairs (Henley et al., 1979).
The theoretical total provides about 90% of the inferred
experimental values in the 2+ and 1+ doublets, but is too
large for the (poorly determined) 3+ case.

C. Densities

The one- and two-nucleon density distributions of light
nuclei are interesting in a variety of experimental set-
tings. They are evaluated as the expectation values

ρN (r) =
1

4πr2
〈Ψ|

∑
i

PNi
δ(r − |ri −Rcm|)|Ψ〉 , (65)

ρNN (r) =
1

4πr2
〈Ψ|

∑
i<j

PNi
PNj

δ(r − |ri − rj |)|Ψ〉 , (66)

where PN is a proton or neutron projector.
Ground state proton and neutron rms point radii are

tabulated in Table I. These can be related to the charge
radii, which have been measured very accurately for the
helium, lithium, and beryllium isotopic chains in recent
years by a combination of electron scattering from sta-
ble nuclei and isotopic differences by atomic spectroscopy
on rare isotopes. A recent review (Lu et al., 2013) dis-
cusses these developments and the conversion between
point and charge radii and presents figures for the GFMC
one- and two-body densities of the helium isotopes.

The proton and neutron one-body densities for the
lithium isotope chain are shown, as red up triangles and
blue down triangles, respectively, in the upper panels of
Fig. 5. As the binding energy increases with A, the cen-
tral proton density increases, even though the number of
protons is constant. Consequently, the proton point ra-
dius decreases by 0.4 fm in going from 6Li to 9Li, in fair
agreement with the experimentally observed reduction of
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FIG. 5 GFMC point proton (red up triangles) and neutron (blue down triangles) densities (upper panel) and magnetic spin
densities (lower panel) for the chain of lithium isotopes; also shown are proton magnetic orbital density (green diamonds), and
total magnetic density in IA (black circles) (Wiringa, 2015).

0.34 fm. In contrast, the neutron point radius is relatively
constant, even though neutrons are being added, varying
only 0.15 fm over the same range.

The magnetic moments of A ≤ 9 nuclei have been cal-
culated in GFMC (Marcucci et al., 2008; Pastore et al.,
2013; Pervin et al., 2007) including contributions from
two-body meson-exchange currents (MEC), as discussed
in Sec. V. The MEC can give 20–40% contributions over
the impulse approximation (IA) values, resulting in very
good agreement with experiment as shown in Table I.

The origin of the IA contributions from the proton
and neutron spin densities and proton orbital density
are illustrated in the bottom panels of Fig. 5, also for
the lithium isotope chain. Here, the proton spin con-
tribution µp[ρp↑(r)− ρp↓(r)] is shown by red upward-
pointing triangles, the neutron spin contribution by blue
downward-pointing triangles, the proton orbital contri-
bution by green diamonds, and the total by black cir-
cles. The proton spin density, due to one unpaired p-
shell proton, is similar in all cases, with a negative region
at short distance from the core and a positive peak near
2 fm that gradually shifts inward as the binding increases.
The neutron spin density has the opposite sign and al-
ternates between a significant unpaired neutron contri-
bution in 6,8Li and a very small paired contribution in
7,9Li. The proton orbital piece gets progressively larger
as A increases. The MEC contributions are discussed in
more detail below, but come largely from pion exchange
and are primarily isovector in character, ranging from 2%
in 6Li to 10% in 7Li and 20% in 8,9Li.
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FIG. 6 GFMC pp densities for the chain of lithium iso-
topes (Wiringa, 2015).

The two-nucleon density for pp pairs in the lithium
isotopes is shown in Fig. 6 and all four curves integrate
to three pairs. Because the third proton is in the p-
shell, the behavior of ρpp(r) is rather different from the
one pp pair in the core of the helium isotopes shown in
Fig. 12 of Lu et al. (2013). In that case, there is a slight
decrease in the peak value as A increases because the p-
shell neutrons in 6,8He tug the core protons out a little. In
lithium the peak value of ρpp(r) gets progressively larger
with increasing A due to the increasing binding, so the
pair rms radius decreases from 4.03 fm in 6Li to 3.20 fm
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FIG. 7 VMC proton momentum distributions in T = 0 light
nuclei (Wiringa et al., 2014).

in 9Li.

D. Momentum distributions

Momentum distributions of individual nucleons, nu-
cleon pairs, and nucleon clusters reflect features of the
short-range structure of nuclei. They can provide use-
ful insight into various reactions on nuclei, such as
(e, e′p) and (e, e′pp/pn) electrodisintegration processes or
neutrino-nucleus interactions.

The probability of finding a nucleon with momentum
k and spin-isospin projection σ,τ in a given nuclear state
is proportional to the density

ρστ (k)=

∫
dr′1 dr1 dr2 · · · drA ψ†JMJ

(r′1, r2, . . . , rA)

× e−ik·(r1−r
′
1) Pστ (1)ψJMJ

(r1, r2, . . . , rA) . (67)

Pστ (i) is the spin-isospin projection operator for nucleon
i, and ψJMJ

is the nuclear wave function with total spin
J and spin projection MJ . The normalization is

Nστ =

∫
dk

(2π)3
ρστ (k) , (68)

where Nστ is the number of spin-up or spin-down protons
or neutrons.

Early variational calculations of few-nucleon momen-
tum distributions (Schiavilla et al., 1986) evaluated
Eq. (67) by following a Metropolis Monte Carlo walk in
the dr1 dr2 · · · drA space and one extra Gaussian integra-
tion over dr′1 at each Monte Carlo configuration. This
was subject to large statistical errors originating from
the rapidly oscillating nature of the integrand for large
values of k.
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FIG. 8 VMC pn (blue diamonds) and pp (red circles) back-
to-back (Q = 0) pair momentum distributions for T = 0
nuclei (Wiringa et al., 2014).

A more efficient method is to rewrite Eq. (67) as

ρστ (k) =
1

A

∑
i

∫
dr1 · · · dri · · · drA

∫
dΩx

∫ xmax

0

x2dx

× ψ†JMJ
(r1, . . . , ri + x/2, . . . , rA) e−ik·x

× Pστ (i)ψJMJ
(r1, . . . , ri − x/2, . . . , rA) . (69)

and perform the Gaussian integration over x. How-
ever, this requires re-evaluating both initial and final
wave functions at multiple configurations, which limits
the present calculations to VMC. A comprehensive set
of single-nucleon momentum distributions for A ≤ 12
nuclei, evaluated with the AV18+UX Hamiltonian, has
been published (Wiringa et al., 2014) with figures and
tables available on-line (Wiringa, 2014a).

The overall evolution of the proton momentum distri-
bution in light T = 0 nuclei is shown in Fig. 7. The shape
of the distributions shows a smooth progression as nucle-
ons are added. As A increases, the nuclei become more
tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm−1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm−1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1−k2)/2 and total center-of-mass mo-
mentum Q = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
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FIG. 9 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm−1 (Wiringa et al.,
2014).

be formulated analogously to Eqs. (67,69), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Jeffer-
son Laboratory. In an (e, e′pN) experiment on 12C at
JLab, a very large ratio ∼ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm−1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ρpN (q,Q = 0) are shown in Fig. 8 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm−1, while the pn pairs
are in deuteron-like 3S1 −3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 9, where ρpp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast, the
deuteron-like distribution in pn pairs is maintained as Q
increases, as shown in Fig. 10, with only a gradual de-
crease in magnitude because there are fewer pairs at high
total Q. Recently, these momentum distributions for 4He
have been tested in new JLab experiments and found to
predict the ratio of pp to pn pairs at higher missing mo-
mentum very well (Korover et al., 2014).

0 1 2 3 4 5
10-1

101

103

105
Q=0.00

4He

0 1 2 3 4 5
10-1

101

103

105
0.25

0 1 2 3 4 5
10-1

101

103

105
0.50

0 1 2 3 4 5
10-1

101

103

105
0.75

0 1 2 3 4 5
10-1

101

103

105
1.00

0 1 2 3 4 5
10-1

101

103

105

q (fm-1)

ρ pn
(q

,Q
) 

(f
m

3 )

1.25

FIG. 10 VMC proton-neutron momentum distributions in
4He averaged over the directions of q and Q as a function of
q for several fixed values of Q from 0 to 1.25 fm−1 (Wiringa
et al., 2014).

E. Spectroscopic overlaps, spectroscopic factors, and ANCs

Determining the influence of nuclear structure on nu-
clear reactions is a challenging subject. One source of
theoretical input is the calculation of spectroscopic over-
laps, spectroscopic factors (SFs), and asymptotic normal-
ization coefficients (ANCs). They are steps on the way
to calculating reaction cross sections in direct nuclear re-
actions, like nucleon knockout or radiative capture.

A one-nucleon spectroscopic overlap is the expectation
value of the nucleon removal operator between states of
nuclei differing by one particle. It can be written as

R(β, γ, ν; r) =
√
A
〈

[ΨA−1(γ)⊗ Y(ν; rCv)]JA,TA∣∣∣∣δ(r − rCv)r2
Cv

∣∣∣∣ΨA(β)

〉
(70)

where β ≡ {A, JπA, TA, Tz,A} denotes the quantum num-
bers of a parent A-body nucleus, γ ≡ {C, JπC , TC , Tz,C}
specifies an (A − 1)-body core, and ν ≡ {v, l, s, j, t, tz}
specifies the valence nucleon. Here rCv is the distance
between the valence nucleon and the center of mass of
the core, and Y(ν; r) ≡ [Yl(r̂)⊗ χs(σv)]j χt,tz (τv) is the
valence angle-spin-isospin function. The SF is then de-
fined as the norm of the overlap:

S(β, γ, ν) =

∫
|R(β, γ, ν; r)|2 r2dr. (71)

In standard shell model calculations (Cohen and Ku-
rath, 1967), the SFs obey various sum rules (Macfarlane
and French, 1960), including that for a given state of
the parent nucleus, the SFs to all possible final states
of the core plus valence nucleon add up to the parent’s
number of such nucleons. For example,

∑
γ,ν〈6He(γ) +

p(ν)|7Li(β)〉 = 1 because 7Li has one p-shell proton.
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tails.

Overlap functions R(r) satisfy a one-body Schrödinger
equation with appropriate source terms (Pinkston and
Satchler, 1965). Asymptotically, at r →∞, these source
terms contain core-valence Coulomb interaction at most,
and hence the long-range part of overlap functions for
parent states below core-valence separation thresholds is
proportional to a Whittaker function W−η,l+1/2:

R(β, γ, ν; r)
r→∞−−−→ C(β, γ, ν)

W−η,l+1/2(2kr)

r
, (72)

where η = ZCZνα
√
µc2/2|B| depends on proton num-

bers ZC and Zν , the fine-structure constant α, and the
core-valence reduced mass µ and the separation energy B
(negative for parent states below core-valence separation
thresholds). The wave number k is defined as

√
2µ|B|/~,

and l is the orbital momentum in Y(ν). The proportion-
ality constant C(β, γ, ν) in Eq. (72) is the ANC.

VMC calculations of overlaps and SFs for s-shell nuclei
were first reported in (Schiavilla et al., 1986), followed
by calculations in various p-shell nuclei for application
to (e, e′p) experiments (Lapikás et al., 1999), transfer re-
actions like (d, p) and (d,3 He) (Wuosmaa et al., 2005,
2008), and single-neutron knockout reactions (Grinyer
et al., 2011, 2012). The first GFMC calculations for
A ≤ 7 nuclei were reported in Brida et al. (2011). These
are off-diagonal calculations, as in Eq. (47), so the final
GFMC result is extrapolated from two different mixed
estimates, one where Ψ(τ) is propagated for the A-body
nucleus and one where it is propagated for the (A − 1)-
body nucleus. A large collection of VMC and GFMC
results can be found on-line (Wiringa and Brida, 2014).

For the s-shell nuclei, VMC energies and densities are
very close to the exact GFMC results, so VMC and
GFMC overlaps R(r) for cases like 〈3H + p(s1/2)|4He〉
are in excellent agreement, both in the peak values at
small r and in the asymptotic regime. This translates
into very similar SF and ANC predictions. However, for
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FIG. 12 The ratios C(r) of the VMC and GFMC 〈6He(0+) +

p(p3/2)|7Li( 3
2

−
)〉 overlaps to the asymptotic Whittaker func-

tion (Brida et al., 2011); see text for details.

p-shell nuclei, the VMC energies are progressively smaller
in magnitude relative to GFMC as A increases, although
the one-body densities remain fairly close. Consequently
the overlaps have similar peak values but different asymp-
totic behavior.

An example of p-shell overlap calculations is shown in

Fig. 11 for 〈6He(0+)+p(p3/2)|7Li( 3
2

−
)〉. The VMC calcu-

lation is shown by black squares, the two GFMC mixed
estimates by red down (blue up) triangles for GFMC
propagation of the 6He (7Li) states, and the final GFMC
result by green circles. In this case, the VMC overlap and
the GFMC mixed estimate when 6He is propagated give
virtually identical results, so the GFMC mixed estimate
when 7Li is propagated coincides with the final result.
The smooth fit to the GFMC result shown by the solid
purple line is parallel at large r to the Whittaker function
W/r (constructed with the experimental separation en-
ergy) shown by the dot-dash orange line. The integrated
VMC and GFMC SFs for this case are 0.44 and 0.41, re-
spectively. These values are consistent with experiment
(Lapikás et al., 1999; Wuosmaa et al., 2008) but much
smaller than the standard shell model value (corrected
for center of mass) of 0.69 (Cohen and Kurath, 1967).

In general, the SFs predicted by the VMC and GFMC
calculations show a significant quenching relative to stan-
dard shell model estimates which are based on notions of
independent particle motion. The low-energy states of
light nuclei can be interpreted as having quasiparticles
in single-particle orbitals (Pandharipande et al., 1997).
The difference between physical particles and quasiparti-
cles is the consequence of the correlations in the system,
which push a significant fraction of nucleons above the
nominal Fermi sea, as noted in the momentum distribu-
tion calculations of Sec. IV.D. The SF is the quasihole
strength, i.e., the probability of the quasiparticle being
a physical particle. A variety of experiments find that,
for a broad range of nuclei from 4He to 208Pb, SFs are
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FIG. 13 Overlaps for various bound states as computed by 1) VMC sampling (points with error bars), 2) a bound-state integral
relation with the VMC as input but imposing experimental separation energies (solid curves) evaluated by Nollett (2012), and
3), GFMC overlaps (dashed curves) from Brida et al. (2011).

quenched ∼ 0.5 relative to standard shell model, consis-
tent with the VMC and GFMC calculations (Kay et al.,
2013).

The ratio C(r) of the VMC and GFMC overlaps with
the Whittaker function constructed with the experimen-
tal separation energy are shown in Fig. 12. The incorrect
asymptotic behavior of the VMC calculation means the
C(r) does not reach a constant value and precludes ex-
tracting a reasonable ANC from this ratio. However the
GFMC calculation, with its much better asymptotic be-
havior, does go to a constant at large r, as indicated by
the purple line fit.

There is an alternative method to obtain overlaps,
ANCs, and estimates of widths from variational wave
functions using integral constraints that are insensitive
to their asymptotic behavior (Barletta et al., 2009; Nol-
lett, 2012; Nollett and Wiringa, 2011). As an example,
the ANC is given by a sort of modified overlap integral
with a finite-range potential insertion:

C(β, γ, ν) =
2µ

k~2w
×A

∫ M−η,l+ 1
2
(2kr)

r
(73)

Ψ†A−1(γ)Y†(ν; r) (Urel − VC) ΨA(β) d3r .

The integral extends over all particle coordinates, A is
an antisymmetrization operator for the core and valence
particle, M−η,l+ 1

2
is the Whittaker function that is irreg-

ular at infinity, and w is its Wronskian with the regular
Whittaker function W−η,l+ 1

2
. The Urel is a sum of two-

and three-body potentials involving the last nucleon

Urel =
∑
i<A

viA +
∑

i<j<A

VijA , (74)

where we have labeled the last nucleon A. The point-
Coulomb potential between the residual nucleus and last
nucleon is VC = ZA−1Zνα~c/r and in the limit of large
separation, typically r > 7 fm, (Urel−VC) vanishes. This
provides a natural cutoff to the integral of Eq. (73).

This integral method has been implemented, using
VMC wave functions obtained for the AV18+UIX Hamil-
tonian, for 19 one-nucleon removals from nuclear states
with 3 ≤ A ≤ 9. Detailed tables are given in Nollett and
Wiringa (2011), as well as comparisons to available ex-
perimental determinations and previous theoretical work.
In general, when the experimental binding energyBexpt is
used in the wave number k, the ANCs derived from VMC
wave functions through Eq. (73) are in excellent agree-
ment with experiment. The results also agree with the
GFMC determinations discussed above at ∼ 10% level,

e.g., the GFMC ANC for 〈6He(0+) + p(p3/2)|7Li( 3
2

−
)〉

from Fig. 12 is 3.5, while the VMC integral value is
3.7. Of particular note, the astrophysical S-factor for
8B → p +7 Be is related to the ANCs by S17(0) =

[38.7 eV b fm]
∑

j |C(2+, 3
2

−
, j)|2 (Esbensen, 2004). In-

serting the VMC ANC values gives the result 20.8 eV b,
which is exactly the current recommended value from the
Solar Fusion II analysis (Adelberger et al., 2011).
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Relations similar to Eq. (73) can be used to gener-
ate overlaps and also to estimate the widths of resonant
states (Nollett, 2012). Examples of overlaps evaluated in
this way are shown in Fig. 13, where they are compared
to the VMC input and the GFMC overlaps of Brida et al.
(2011). Many widths in 5 ≤ A ≤ 9 nuclei have also been
evaluated, using as input VMC pseudo-bound wave func-
tions from the AV18+UIX Hamiltonian. Detailed tables
are given in Nollett (2012). The agreement with experi-
ment is generally satisfactory when the physical states are
narrow, but the method fails for broad states; the over-
laps can help differentiate these cases. For broad states,
true scattering wave functions need to be developed, as
discussed below.

While the preceding discussion has focused on single-
nucleon spectroscopic overlaps, SFs, ANCs, and widths,
the techniques involved are readily adaptable to other
cluster-cluster pairings, e.g., with deuterons or αs as the
valence cluster. Spectroscopic overlaps for dd in 4He, αd
in 6Li, and αt in 7Li are included in the on-line overlap
tabulations of Wiringa and Brida (2014) and spectro-
scopic factors can be obtained from the cluster-cluster
momentum distribution tables in Wiringa (2014a). It
should be possible in future to evaluate α ANCs and
widths from the VMC wave functions and generalized
integral relations.

F. Low-Energy Scattering

Quantum Monte Carlo methods can also be used to
treat low-energy scattering in nuclear systems (Carlson
et al., 1987; Nollett et al., 2007). The methods employed
are similar to bound-state methods, and are easily appli-
cable at low energies where the combined system breaks
up into at most two clusters. One enforces one or more
boundary conditions on the asymptotic wave function at
large cluster separations and then solves for the energy
levels with these boundary conditions. The resulting en-
ergies can be used with the boundary conditions to de-
termine the elements of the S-matrix for those energies.

The simplest example is for a one-channel case with
only elastic scattering, for example n−α scattering. The
asymptotic wave function for the relative motion of the
neutron and the alpha particle is given by:

Ψ ∝ {Φc1Φc2YL}J [cos δJLjL(kr)− sin δJLnL(kr)] ,
(75)

where Φc1 and Φc2 are the internal wave functions of the
two clusters, k and r are the relative momentum and
spatial separation between the two clusters, and δJL is
the phase shift in the JL partial wave. For problems with
Coulomb interactions between the clusters the relative
wave function will contain Coulomb rather than Bessel
functions.

The original QMC scattering calculations required the
wave function to be zero at a specified cluster separa-

tion (Carlson et al., 1987), while in recent work the log-
arithmic derivative γ of the relative wave function at a
boundary r = R0 is specified (Nollett et al., 2007):

γ =
∇rΨ

Ψ

∣∣∣∣∣
r=R0

. (76)

In VMC calculations this is enforced within the form of
the trial wave function, which is required at large dis-
tances to go like Eq. (75). The radius R0 should be large
enough so that there is no strong interaction between
the clusters at that separation. The scattering energy
and hence the relative momentum between clusters is un-
known initially, but these are obtained by variationally
solving for states confined within the boundary r = R0.
Knowledge of the energy and the boundary condition is
then sufficient to determine the phase shift at that en-
ergy. The method for GFMC is very similar, except that
the logarithmic derivative of the wave function must also
be enforced in the propagator. This can be incorporated
through an image method. For each point R near the
boundary r = R0 reached during the random walk, the
contribution to the internal wave function from points
originally outside the boundary are added. Consider an
image at a cluster separation re = r(R0/r)

2; simple ma-
nipulations yields

Ψn+1(R′) =

∫
|r|<R0

dRc1 dRc2 dr G(R′,R) (77)

×
[
Ψn(R) + γ

G(R′,Re)

G(R′,R)

(re
r

)3

Ψn(Re)

]
,

where R and R′ are the initial and final points of all the
particles, Rc1 and Rc2 are the internal coordinates of the
clusters, and r is the separation between clusters. The
image point for all the particles is denoted by Re, and re
is its cluster separation. The image contribution ensures
the correct logarithmic derivative of the wave function at
the boundary is preserved in the propagation.

The n−α system is interesting as it is the lightest sys-
tem where T = 3/2 triplets play a significant role. QMC
methods have been used to study low-energy scattering in
n−α, including the two low-lying P -wave resonances and
S-wave scattering (Nollett et al., 2007). The spin-orbit
splitting is especially interesting, as it can be examined
by comparing the 3P1/2 and 3P3/2 partial waves.

The results of calculations with the AV18 NN inter-
action and with different 3N interactions are shown in
Fig. 14. The various calculations are also compared with
an R-matrix analysis of the experimental data. As is ev-
ident from the figure, the AV18 interaction alone signif-
icantly underpredicts the spin-orbit splitting. The two-
pion-exchange in the UIX 3N interaction increases the
splitting, but not enough to agree with the experimental
data. The IL2 model of the 3N interaction results in good
agreement with the experimental spin-orbit splitting.
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FIG. 14 (Color online) Phase shifts for n-α scattering. Filled
symbols (with statistical errors smaller than the symbols) are
GFMC results, dashed curves are polynomial fits, and solid
curves are from an R-matrix fit to data (Nollett et al., 2007).

These scattering methods have many possible appli-
cations. They can be extended to inelastic multichan-
nel processes in a fairly straightforward manner. In this
case there are multiple independent solutions for a given
scattering energy, hence one must study the energy as
a function of the boundary conditions in each channel
and obtain multiple independent solutions for the same
energy. From the boundary conditions, the energy, and
the relative asymptotic magnitude of the wave functions,
one can obtain the full multichannel S-matrix. It should
be possible to treat a variety of low-energy strong reac-
tions, as well as electroweak transitions involving scat-
tering states using these methods. In addition, hadronic
parity violation in few-nucleon systems is an important
application.

G. Chiral Interactions

Local NN potentials derived within chiral effective
field theory have been used to calculate properties of
A=3,4 nuclei with GFMC by Lynn et al. (2014). Al-
though the calculations do not yet include 3N interac-
tions that also appear at N2LO, they are nevertheless
interesting, showing the order-by-order results for the
binding energies and also the range of results for different
cutoffs. Also the question of perturbative treatments of
higher-order corrections has been investigated, as well as
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FIG. 15 GFMC 4He binding energies at LO, NLO, and N2LO
compared with experiment (dashed line) and with the Ar-
gonne AV8′ energy. Also shown is a first-order perturbation-
theory calculation of the N2LO binding energy using the NLO
wave function (Lynn et al., 2014).

one- and two-nucleon distributions.

Figure 15 shows results at various orders and for differ-
ent values of the cutoff R0 used to regulate the small-r
behavior of the pion-exchange potentials, flong = 1 −
exp[−(r/R0)4]. The LO result is extremely overbound,
whereas the NLO and N2LO results are underbound as
expected because of the lack of the 3N interaction. The
NLO interaction includes pion-exchange diagrams, and
the N2LO two-pion exchange terms. On the right, the
column labeled ‘NLO+pert’ shows the results for the
N2LO binding energy using the NLO wave function plus
the perturbative contribution of the difference between
the two interactions. The perturbative treatment is rea-
sonable, but the spread of energies is significantly larger
and of course the binding is less than in the full nonper-
turbative calculation. The role of chiral 3N interactions
in light nuclei and in matter are currently being investi-
gated.

It should be noted that lattice QMC approaches to the
study of chiral interactions have been pursued (Epelbaum
et al., 2012, 2014, 2011; Lee et al., 2004). These meth-
ods have also been used to study, for example, the Hoyle
state in 12C and the ground state and excitations in 16O.
While the lattices used to date are rather coarse, using
a lattice spacing near 2 fm corresponding to a maximum
momenta of ∼ 1.5 fm−1, they obtain very good results
for the energies of the Hoyle state and for other nuclei
with alpha particle substructure. Comparisons for dif-
ferent forms of chiral interactions and for a variety of
observables could prove very valuable.
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V. ELECTROWEAK CURRENTS

A. Conventional nuclear electroweak currents

A fundamental aspect in the description of electroweak
processes in nuclei is the construction of a realistic set
of nuclear electroweak currents. The electromagnetic
current is denoted by jµγ , and the neutral and charge-
changing weak currents as jµNC and jµCC , respectively. In
the Standard Model of particle physics, the latter consist
of polar-vector (jµγ or jµ) and axial-vector (jµ5) parts,
and read

jµNC = −2 sin2θW jµγ,S + (1− 2 sin2θW ) jµγ,z + jµ5
z ,

jµCC = jµ± + jµ5
± j± = jx ± i jy , (78)

where θW is the Weinberg angle (sin2θW = 0.2312 Naka-
mura (2010)), jµγ,S and jµγ,z are, respectively, the isoscalar
and isovector pieces of the electromagnetic current, and
the subscript b with b=x, y, or z on jµγ,b , jµb , and jµ5

b

denotes components in isospin space. The conserved-
vector-current constraint relates the polar-vector com-
ponents jµb of the charge-changing weak current to the
isovector component jµγ,z of the electromagnetic current
via [

Ta , j
µ
γ,z

]
= i εazb j

µ
b , (79)

where Ta are isospin operators, the implication being that
(jµx , j

µ
y , j

µ
γ,z) form a vector in isospin space. There are in

principle isoscalar contributions to jµNC associated with
strange quarks, but they are ignored in Eq.(78), since
experiments at Bates (Beise et al., 2005; Spayde et al.,
2000) and Jefferson Lab (Acha et al., 2007; Ahmed et al.,
2012; Aniol et al., 2004) have found them to be very
small.

The leading terms in jµγ and jµNC/CC are expected to

be those associated with individual nucleons. A single
nucleon absorbs the momentum and energy of the exter-
nal electroweak field, and can later share this momentum
and energy with other nucleons via two- and three-body
interactions. These interactions determine the final state
of the nucleus, and are not part of the current operator.
They are known as final state interactions in approaches
based on perturbation theory. Interactions between nu-
cleons that take place before the absorption of the ex-
ternal field momentum and energy are known as initial
state interactions. Nonperturbative approaches, such as
those discussed in this review, use eigenstates of the nu-
clear Hamiltonian as initial and final states, and treat
only the interaction with the external field, described by
the above currents, as a weak perturbation. The nuclear
eigenstates contain all the effects of nuclear forces includ-
ing those of the electroweak interaction between nucleons
in the nucleus.

The one-body electroweak operators follow from a non-
relativistic expansion of the single-nucleon covariant cur-
rents. By retaining terms proportional to 1/m2 in this

expansion, one finds in the electromagnetic case the fol-
lowing time-like (charge) and space-like (current) com-
ponents

j0
γ(q; i) =

[
1√

1 +Q2/(2m)2
εi(Q

2)

− i

4m2

[
2µi(Q

2)− εi(Q2)
]
q · (σi × pi)

]
eiq·ri ,

(80)

jγ(q; i) =
εi(Q

2)

2m

{
pi , eiq·ri

}
− i

2m
µi(Q

2) q× σi eiq·ri

(81)

where q and ω are the momentum and energy trans-
fers (due to the external field) with Q2 = q2 − ω2, pi
is the momentum operator of nucleon i with its charge
and magnetization distributions described by the form
factors εi(Q

2) and µi(Q
2),

εi(Q
2) =

1

2

[
GSE(Q2) +GVE(Q2) τi,z

]
, (82)

µi(Q
2) =

1

2

[
GSM (Q2) +GVM (Q2) τi,z

]
. (83)

Here GSE(Q2) and GSM (Q2), and GVE(Q2) and GVM (Q2),
are, respectively, the isoscalar electric and magnetic, and
isovector electric and magnetic, combinations of the pro-
ton and neutron form factors, normalized as GSE(0) =
GVE(0) = 1, GSM (0) = µS , and GVM (0) = µV , with µS and
µV denoting the isoscalar and isovector combinations of
the proton and neutron magnetic moments, µS = 0.880
and µV = 4.706 in units of nuclear magnetons µN . These
form factors are obtained from fits to elastic electron scat-
tering data off the proton and deuteron; for a recent re-
view see Hyde-Wright and de Jager (2004).

The isoscalar jµγ,S and isovector jµγ,z pieces in jµNC are

easily identified as the terms proportional to GSE/M and

GVE/M in the expressions above, while the isovector com-

ponents jµ5
z are given by

j05
z (q; i) = − 1

4m
τi,z

[
GA(Q2)σi ·

{
pi , eiq·ri

}
+
GPS(Q2)

mµ
ωσi · q eiq·ri

]
, (84)

j5z(q; i) = −GA(Q2)

2
τi,z

[
σi eiq·ri

− 1

4m2

(
σi
{

p2
i , eiq·ri

}
−
{
σi · pi pi , eiq·ri

}
− 1

2
σi · q

{
pi , eiq·ri

}
− 1

2
q
{
σi · pi , eiq·ri

}
+iq× pi eiq·ri

)]
− GPS(Q2)

4mmµ
τi,z qσi · q eiq·ri ,

(85)
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where GA and GPS are the nucleon axial and induced
pseudoscalar form factors. The former is obtained from
analysis of pion electro-production data (Amaldi et al.,
1979) and measurements of the reaction n(νµ, µ

−)p in
the deuteron at quasi-elastic kinematics (Baker et al.,
1981; Kitagaki et al., 1983; Miller et al., 1982) and of
νµ p and νµ p elastic scattering (Ahrens et al., 1987). It
is normalized as GA(0) = gA, where gA is the nucleon
axial coupling constant, gA = 1.2694 (Nakamura, 2010).
The form factor GPS is parametrized as

GPS(Q2) = − 2mµm

m2
π +Q2

GA(Q2) , (86)

where mµ and mπ are the muon and pion masses, respec-
tively. This form factor is not well known; see Gorringe
and Fearing (2003) and Kammel and Kubodera (2010)
for recent reviews. The parametrization above is consis-
tent with values extracted (Czarnecki et al., 2007; Mar-
cucci et al., 2012) from precise measurements of muon-
capture rates on hydrogen (Andreev et al., 2007) and
3He (Ackerbauer et al., 1998), as well as with the most
recent theoretical predictions based on chiral perturba-
tion theory (Bernard et al., 1994). Lastly, the polar-
vector jµ± and axial-vector jµ5

± components in jµCC fol-
low, respectively, from jµγ,z and jµ5

z by the replacements
τi,z/2 −→ τi,± = (τi,x ± τi,y)/2.

In a nucleus, these one-body (1b) contributions lead to
the impulse approximation (IA) electroweak current

jµ1b(q) =
∑
i≤A

jµ(q; i) . (87)

In the limit of small momentum transfers qµ, and ig-
noring relativistic corrections proportional to 1/m2 and
neutron charge contributions, it is easily seen that jµγ,1b

reduces to the charge and convection current operators
of individual protons, and to the magnetization current
operator of individual protons and neutrons, while the
time-like j0

± and space-like j5± components in jµCC reduce,
respectively, to the familiar Fermi and Gamow-Teller op-
erators.

There is ample evidence for the inadequacy of the IA
currents to provide a quantitatively satisfactory descrip-
tion of electroweak observables at low and intermediate
values of energy and momentum transfers, especially in
light s- and p-shell nuclei with A ≤ 12, for which es-
sentially exact calculations can be carried out. This ev-
idence is particularly striking in the case of electromag-
netic isovector transitions. Well-known illustrations are,
among others, the 10% underestimate of the np radia-
tive capture cross section at thermal neutron energies,
which in fact provided the initial impetus to consider
two-body terms in the nuclear electromagnetic current
operator (Riska and Brown, 1972), the 15% underesti-
mate of the isovector magnetic moment of the trinucle-
ons and the large discrepancies between the experimen-
tal and calculated magnetic and charge form factors of

the hydrogen and helium isotopes (Hadjimichael et al.,
1983; Schiavilla et al., 1989, 1990; Strueve et al., 1987),
particularly in the first diffraction region at momentum
transfers in the range of (3.0–3.5) fm−1, the large under-
prediction, by respectively about 50% and 90%, of the
nd and n 3He radiative capture cross sections (Girlanda
et al., 2010; Marcucci et al., 2005), and, finally, the sig-
nificant underestimate, in some cases as large as 40%, of
magnetic moments and M1 radiative transition rates in
A=7–9 nuclei (Pastore et al., 2013).

In the case of charge-changing weak transitions, dis-
crepancies between experimental data and theoretical re-
sults obtained with the IA operators are not as large and
are all limited to the low momentum and energy transfers
of interest in β decays and electron- and muon-capture
processes. They are nevertheless significant. Examples
of these in the few-nucleon systems are the few % un-
derestimate of the Gamow-Teller matrix element in tri-
tium β decay (Schiavilla et al., 1998) and the 10% under-
prediction (Marcucci et al., 2012) of the precisely mea-
sured (Ackerbauer et al., 1998) 3He(µ−, νµ)3H rate.

Many-body terms in the nuclear electroweak current
operators arise quite naturally in the conventional meson-
exchange picture as well as in more modern approaches
based on chiral effective field theory. Below we provide a
brief review of both frameworks; a recent review on reac-
tions on electromagnetic reactions in light nuclei (Bacca
and Pastore, 2014) is also available.

1. Two- and three-body electromagnetic currents

We first discuss electromagnetic operators. There is
a large body of work dealing with the problem of their
construction from meson-exchange theory, crystallized
in a number of reviews of the 1970s and 1980s, e.g.,
Chemtob and Rho (1971); Mathiot (1989); Riska (1989);
Towner (1987). Here we describe an approach, origi-
nally proposed by Riska (Riska, 1985a,b; Riska and Pop-
pius, 1985), that leads to conserved currents, even in the
presence of NN and 3N potentials, not necessarily de-
rived from meson-exchange mechanisms (as is the case
for the AV18 and UIX or IL7 models). This approach
has been consistently used to study many photo- and
electro-nuclear observables, and has proved to be quite
successful in providing predictions systematically in close
agreement with experiment.

Leading electromagnetic two-body charge and cur-
rent operators are derived from the static (that is,
momentum-independent) components of the NN poten-
tial, consisting of the isospin-dependent central, spin, and
tensor terms. These terms are assumed to be due to ex-
changes of effective pseudo-scalar (PS or π-like) and vec-
tor (V or ρ-like) mesons, and the corresponding charge
and current operators are constructed from nonrelativis-
tic reductions of Feynman amplitudes with the π-like and
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ρ-like effective propagators. For the π-like case (we de-
fer to Carlson and Schiavilla (1998) and Marcucci et al.
(2005) for a complete listing) they are given in momen-
tum space by

j0,PS
γ (ki,kj) =

[
FS1 (Q2) τ i · τ j + FV1 (Q2) τj,z

]
×

vPS(kj)

2m
σi · q σj · kj + (i
 j) , (88)

jPSγ (ki,kj) = iGVE(Q2)(τ i × τ j)z×

vPS(kj)

[
σi −

ki − kj
k2
i − k2

j

σi · ki
]
σj · kj + (i
 j) .

(89)

Here ki and kj are the fractional momenta delivered
to nucleons i and j, with q = ki + kj , and vPS(k) is
projected out of the (isospin-dependent) spin and ten-
sor components of the potential (Marcucci et al., 2005).

The Dirac nucleon electromagnetic form factors F
S/V
1

are related to those introduced previously via F
S/V
1 =(

G
S/V
E + η G

S/V
M

)
/(1 + η) with η = Q2/(4m2), and

therefore differ from G
S/V
E by relativistic corrections pro-

portional to η. The representation of these operators in
coordinate space follows from

jµ,PSγ (q; ij) =

∫
dki

(2π)3

dki
(2π)3

(2π)3× (90)

δ(ki + kj − q) eiki·ri eikj ·rj jµ,PSγ (ki,kj) ,

and explicit expressions for them can be found in Schi-
avilla et al. (1989).

By construction, the longitudinal components of the
resulting jPSγ and jVγ currents satisfy current conservation
with the static part of the potential vij(static),

q·
[

jPSγ (q; ij) + jVγ (q; ij)
]

=[
vij(static) , j0

γ(q; i) + j0
γ(q; j)

]
, (91)

where j0
γ(q; i) is the one-body charge operator of Eq. (80)

to leading order in an expansion in powers of 1/m. The
continuity equation requires that the form factor GVE(Q2)
be used in the longitudinal components of the PS and
V currents. However, it poses no restrictions on their
transverse components, in particular on the electromag-
netic hadronic form factors that may be used in them.
Ignoring this ambiguity, the choice GVE has been made
for both longitudinal and transverse components.

Additional conserved currents follow from minimal
substitution in the momentum-dependent part of the po-
tential vij(nonstatic). In a realistic potential like the
AV18, this momentum dependence enters explicitly via
the spin-orbit, quadratic orbital angular momentum, and
quadratic spin-orbit operators, and implicitly via τ i · τ j ,
which for two nucleons can be expressed in terms of
space- and spin-exchange operators as

τ i · τ j = −1− (1 + σi · σj) e−i rij ·(pi−pj) . (92)

Both the explicit and implicit (via τ i · τ j) momentum-
dependent terms need to be gauged with pi −→ pi −
εi(Q

2) A(ri), where A(r) is the vector potential, in or-
der to construct exactly conserved currents with vij(non-
static) (Sachs, 1948). The procedure, including the non-
uniqueness inherent in its implementation, is described
in Marcucci et al. (2005) and Sachs (1948). In contrast
to the purely isovector jPSγ and jVγ , the currents from
vij(non-static) have both isoscalar and isovector terms,
which, however, due to their short-range nature lead to
contributions that are typically much smaller (in magni-
tude) than those generated by jPSγ and jVγ .

Conserved three-body currents associated with the
V 2π
ijk term of the 3N potential have also been derived

by assuming that this term originates from the exchange
of effective PS and V mesons with excitation of an in-
termediate ∆ isobar. However, their contributions have
been found to be generally negligible, except for some of
the polarization observables, like T20 and T21, measured
in proton-deuteron radiative capture at low energy (Mar-
cucci et al., 2005).

It is important to stress that the two- and three-body
charge and current operators discussed so far have no free
parameters, and that their short-range behavior is con-
sistent with that of the potentials—for the NN potential,
in particular, this behavior is ultimately constrained by
scattering data. It is also worthwhile noting that in a
nucleus AZ global charge conservation requires that

〈AZ |
∫

dx j0
γ(x) |AZ〉 = Z . (93)

This condition is obviously satisfied by j0
γ,1b(q=0) (equiv-

alent to the volume integral of the charge density above);
it implies that two-body (and many-body) charge oper-
ators must vanish at q=0, to which both j0,PS

γ and j0,V
γ

conform. As emphasized by Friar (1977), a proper deriva-
tion of the leading two-body charge operator j0,PS

γ nec-
essarily entails the study of nonstatic corrections to the
OPE potential. However, these corrections are neglected
in the AV18, and in fact in most modern realistic poten-
tials. These issues have recently been re-examined (and
extended to the two-pion-exchange potential and charge
operator) within the context of chiral effective field the-
ory (Pastore et al., 2011).

There are many-body currents arising from magnetic-
dipole excitation of ∆ resonances. They have been de-
rived in a number of different approaches, the most accu-
rate of which is based on the explicit inclusion of ∆-isobar
degrees of freedom in nuclear wave functions. In this
approach, known as the transition-correlation-operator
(TCO) method and originally developed by Schiavilla
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et al. (1992), the nuclear wave function is written as

ΨN+∆ =

S∏
i<j

(
1 + UTR

ij

)Ψ '

1 +
∑
i<j

UTR
ij

Ψ

(94)

where Ψ is the purely nucleonic component and S is
the symmetrizer, and in the last expression on the
r.h.s. only admixtures with one and two ∆’s are re-
tained. The transition operators UTR

ij convert NN into
N∆ and ∆∆ pairs and are obtained from two-body
bound and low-energy scattering solutions of the full
N+∆ coupled-channel problem, including transition po-
tentials vTR

ij (NN → N∆) and vTR
ij (NN → ∆∆); see

Wiringa et al. (1984). The simpler perturbative treat-
ment of ∆-isobar degrees of freedom, commonly used in
estimating the ∆-excitation current contributions, uses
the approximation

UTR,PT
ij =

1

m−m∆

[
vTR
ij (NN → N∆) + (i
 j)

]
+

1

2 (m−m∆)
vTR
ij (NN → ∆∆) , (95)

and m∆ (1232 MeV) is the ∆ mass. This perturbative
treatment has been found to overestimate ∆-isobar con-
tributions (Schiavilla et al., 1992), since UTR,PT

ij ignores
the repulsive core in the N∆ 
 N∆ and ∆∆ 
 ∆∆
interactions as well as the significant kinetic energies of
the ∆’s in these channels.

In the presence of an electromagnetic field, N 
 ∆
and ∆
 ∆ couplings need to be accounted for. For the
first process, the coupling and associated electromagnetic
form factor are taken from N(e, e′) data in the resonance
region (Carlson, 1986), while for the second, experimen-
tal information on the magnetic moment µγ∆∆ comes
from soft-photon analysis of pion-proton bremsstrahlung
data near the ∆ resonance (Lin and Liou, 1991). The as-
sociated currents give important contributions to isovec-
tor transitions, comparable to those from the PS current.
In particular, the leading N → ∆ current is parametrized
as

jγ(q; i,N → ∆) =
i

2m
GγN∆(Q2) Si × qTi,z eiq·ri ,

(96)
where Si and Ti are spin and isospin transition operators
converting a nucleon into a ∆. The ∆ → N current
follows from the expression above by replacing Si and Ti

by their adjoints S†i and T†i . The electromagnetic γN∆
form factor, obtained from fits of γN data at resonance,
is normalized as GγN∆(0) = µγN∆ with µγN∆ ' 3µN
(Carlson, 1986). There can also be an electric quadrupole
transition between the N and ∆ states. However, this
coupling is very weak compared to the magnetic dipole,
and has typically been neglected. In the perturbative

approach above, the N � ∆ current in Eq.(96) leads to
a two-body current given by

j∆,PT
γ (q; ij) =[

vTR
ij (NN → ∆N)

]† 1

mN −m∆
jγ(q; i,N → ∆)

+ jγ(q; i,∆→ N)
1

mN −m∆
vTR
ij (NN → ∆N)

+ (i
 j) . (97)

This current is obviously transverse, and hence uncon-
strained by current conservation.

The ∆-excitation currents in either perturbation the-
ory or in the nonperturbative TCO approach can be re-
duced to effective two- and many-body operators depend-
ing on UTR

ij , but acting only on the nucleonic component
Ψ of the full wave function. This is accomplished by
making use of standard identities which allow one to ex-
press products of spin and isospin transition operators in
terms of Pauli spin and isospin matrices. Both pertur-
bation theory and the TCO method have been used to
obtain results reported in the present review.

Finally, additional short-range isoscalar and isovector
two-body charge and (purely transverse) current opera-
tors follow from, respectively, the ρπγ and ωπγ transition
mechanisms. The coupling constants and hadronic and
electromagnetic form factors at the ρNN , ωNN , ρπγ,
and ωπγ vertices are poorly known (Carlson and Schiav-
illa, 1998). In reference to the ρπγ current, it is impor-
tant to note that, because of the large tensor coupling of
the ρ-meson to the nucleon, a nonrelativistic expansion
of jµ,ρπγ which only retains the leading order is not ac-
curate (Schiavilla and Pandharipande, 2002). The inade-
quacy of this approximation becomes especially apparent
in the deuteron magnetic form factor at high momentum
transfers. However, with the exception of this observ-
able, these transition currents typically lead to very small
corrections to charge and magnetic form factors of light
nuclei, in the momentum transfer range where data are
available.

2. Two- and three-body weak currents in the conventional
approach

Among the axial current operators, the leading terms
are those associated with the excitation of ∆ resonances.
The N → ∆ axial current is

j5a(q; i,N → ∆) = −GAN∆(Q2)

2
Si Ti,a eiq·ri , (98)

where the (unknown) N to ∆ axial form factor is
parametrized as

GAN∆(Q2) =
gAN∆

(1 +Q2/Λ2
A)

2 , (99)
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and the cutoff ΛA is taken of the order 1 GeV (as in the
case of the nucleon). The coupling constant gAN∆ is not
known. In the static quark model, it is related to the
nucleon axial coupling constant via gAN∆ = (6

√
2/5)gA.

This value has often been used in the literature in the
calculation of ∆-induced axial current contributions to
weak transitions (Carlson et al., 1991; Saito et al., 1990).
However, in view of the uncertainty in the naive quark
model predictions, a more reliable estimate of gAN∆ is
obtained by determining it phenomenologically in the fol-
lowing way. It is well established that the one-body axial
current leads to a 3–4% under-prediction of the measured
Gamow-Teller matrix element of tritium β-decay (Schi-
avilla et al., 1998), the relatively small spread depending
on the particular realistic Hamiltonian adopted to gen-
erate the trinucleon wave functions. Since the contribu-
tions due to ∆ → ∆ currents (Schiavilla et al., 1992),
and to the other mechanisms discussed below, have been
found to be numerically small, this 3–4% discrepancy
can be used to determine gAN∆. Of course, the result-
ing value depends on how the ∆ degrees of freedom are
treated in nuclear wave functions, whether perturbatively
as in Eq. (97) or nonperturbatively in the full TCO ap-
proach (Marcucci et al., 2000; Schiavilla et al., 1992). In
any case, this value is typically significantly smaller than
the quark-model estimate.

There are additional axial two-body currents due to π-
and ρ-meson exchange and ρπ transition; explicit expres-
sions have been listed most recently in Shen et al. (2012).
They are derived from nonrelativistic reduction of Feyn-
man amplitudes (Towner, 1987). However, the contribu-
tions of these two-body operators to weak transitions in
light nuclei have been found to be numerically far less im-
portant than those from ∆ degrees of freedom (Carlson
et al., 1991; Schiavilla et al., 1992).

Finally, in the axial charge there is a two-body operator
of pion range, whose model-independent structure and
strength are determined by soft-pion theorem and current
algebra arguments (Kubodera et al., 1978) and it arises
naturally in chiral effective field theory:

j05,π
a (ki,kj) = −i GA(Q2)

4 f2
π

h2
π(ki)

k2
i +m2

π

(τ i × τ j)a×

σi · ki + (i
 j) . (100)

Here fπ is pion decay amplitude (fπ ' 93 MeV), the Q2

dependence of the form factor GA is assumed to be the
same as in the nucleon, and the hadronic form factor hπ
is parametrized as

hπ(k) =
Λ2
π −m2

π

Λ2
π + k2

. (101)

The Λπ is in the range (1.0–1.5) GeV, consistent with
values inferred from the OPE component of realistic NN
potentials. Because of the absence of Jπi

i = 0+ → J
πf

f =

0− weak transitions in light nuclei, it does not play a
significant role in these systems.

(a)
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FIG. 16 Diagrams illustrating one- and two-body electro-
magnetic current operators at (P/Λχ)−2 (LO), (P/Λχ)−1

(N1LO), (P/Λχ)0 (N2LO), and (P/Λχ)1 (N3LO). Nucleons,
pions, and photons are denoted by solid, dashed, and wavy
lines, respectively. The square in panel (d) represents the rel-
ativistic correction to the LO one-body current, suppressed
relative to it by an additional (P/Λχ)2 factor; the solid circle
in panel (j) is associated with a γπN vertex in HγπN involv-
ing the low-energy constants (LECs) d′8, d′9, and d′21; the solid
circle in panel (k) denotes two-body contact terms of mini-
mal and nonminimal nature, the latter involving the LECs
C′15 and C′16. Only one among all possible time orderings is
shown for the N1LO and N3LO currents, so that both direct-
and crossed-box contributions are retained.

B. Electromagnetic currents in chiral effective field theory

Electromagnetic charge and current operators were de-
rived up to one loop originally by Park et al. (1996)
in the heavy-baryon formulation of covariant perturba-
tion theory. More recently, however, two independent
derivations, based on time-ordered perturbation theory
(TOPT), have appeared in the literature, one by Pastore
et al. (2011, 2009); Piarulli et al. (2013) and the other by
Kölling et al. (2009, 2011). In the following, we only dis-
cuss briefly the electromagnetic current operator, since
it has been used recently in QMC calculations of mag-
netic moments and M1 transition rates in light p-shell
nuclei (Pastore et al., 2013, 2014). For a derivation of
this as well as of the electromagnetic charge operator, we
refer the reader to the original papers.

The contributions to the current operators up to one
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loop are illustrated diagrammatically in Fig. 16, where
the NnLO terms correspond to the power counting
(P/Λχ)

n×(P/Λχ)
LO

. The electromagnetic currents from
LO, N1LO, and N2LO terms and from N3LO loop cor-
rections depend only on the known parameters gA and
fπ (N1LO and N3LO), and the nucleon magnetic mo-
ments (LO and N2LO). Note that the LO and N1LO
currents are the same as the conventional ones, while
the N2LO current consists of relativistic corrections to
the LO one. Unknown low-energy constants (LECs) en-
ter the N3LO OPE contribution involving a γπN vertex

from a higher order chiral Lagrangian L(3)
πN (proportional

to the LECs d′i) and contact currents implied by nonmin-
imal couplings (Pastore et al., 2009; Piarulli et al., 2013).
They are given by

jN3LO
γπN (ki,kj) = i

gA
F 2
π

σj · kj
ω2
kj

[
d′8 τj,z kj + d′9 τi · τj kj

− d′21(τi × τj)z σi × kj

]
× q + (i
 j) ,

(102)

jN3LO
γ,nm (ki,kj) = −i e

[
C ′15 σi + C ′16(τi,z − τj,z)σi

]
× q

+ (i
 j) . (103)

Before discussing the determination of these LECs, we
note that the loop integrals in the N3LO diagrams of
Fig. 16 are ultraviolet divergent and are regularized us-
ing dimensional regularization. The divergent parts of
these loop integrals are reabsorbed by the LECs multi-
plying contact terms. Finally, the resulting renormalized
electromagnetic operators have power-law behavior for
large momenta, and must be further regularized before
they can be sandwiched between nuclear wave functions.
This is accomplished by the inclusion of a momentum-
space cutoff of the type CΛ(k) = exp(−k4/Λ4) with Λ in
the range ' (500–700) MeV/c. The expectation is that
observables, like magnetic moments and M1 transitions
in light nuclei are fairly insensitive to variations of Λ in
this range.

The d ′i , entering the OPE N3LO current, could be fit-
ted to pion photo-production data on a single nucleon or
related to hadronic coupling constants by resonance sat-
uration arguments (Pastore et al., 2009; Piarulli et al.,
2013). Both procedures have drawbacks. While the
former achieves consistency with the single-nucleon sec-
tor, it nevertheless relies on single-nucleon data involving
photon energies much higher than those relevant to the
threshold processes under consideration and real (in con-
trast to virtual) pions. The second procedure is question-
able because of poor knowledge of some of the hadronic
couplings, such as gρNN . Alternative strategies have been
investigated for determining the LECs d′i as well as C ′15

and C ′16 (Piarulli et al., 2013). In this respect, it is con-

venient to define the dimensionless LECs dS,Vi (in units

of the cutoff Λ) related to the original set via

C ′15 = dS1 /Λ
4 , d′9 = dS2 /Λ

2,

C ′16 = dV1 /Λ
4 , d′8 = dV2 /Λ

2 , d′21 = dV3 /Λ
2 , (104)

where the superscript S or V on the dS,Vi characterizes
the isospin of the associated operator.

The isoscalar dS1 and dS2 have been fixed by reproduc-
ing the experimental deuteron magnetic moment µd and
isoscalar combination µS of the trinucleon magnetic mo-
ments. It turns out that in calculations based on the
AV18 and AV18+UIX Hamiltonians the LEC dS1 mul-
tiplying the contact current assumes reasonable values,
dS1 ' 2.5 and 5.2 corresponding to Λ = 500 MeV and 600
MeV, while the LEC dS2 values are quite small ' −0.17
and –0.20 for the same range of cutoff Λ (Piarulli et al.,
2013).

Three different strategies, referred to as I, II, and III,
have been investigated to determine the isovector LECs
dV1 , dV2 , and dV3 . In all cases I-III, dV3 /d

V
2 = 1/4 is as-

sumed as suggested by ∆ dominance in a resonance sat-
uration picture of the N3LO OPE current of panel (j)
in Fig. 16. In set I, dV1 and dV2 have been constrained
to reproduce the experimental values of the np radiative
capture cross section σnp at thermal neutron energies and
the isovector combination µV of the trinucleon magnetic
moments. This, however, leads to unreasonably large val-
ues for both LECs, and is clearly unacceptable (Piarulli
et al., 2013). In sets II and III, the LEC dV2 is fixed by as-
suming ∆ dominance while the LEC dV1 multiplying the
contact current is fitted to reproduce either σnp in set
II or µV in set III. Both alternatives still lead to some-
what large values for this LEC: dV1 ' −9.3 and –11.6 in
set II and dV1 ' −5.2 and –1.0 in set III. There are no
three-body currents at N3LO (Pastore et al., 2009), and
therefore it is reasonable to fix the strength of the NN
contact operators by fitting a 3N observable such as µS

and µV .

C. Elastic and inelastic form factors

The longitudinal FL and transverse FT form factors for
elastic and inelastic transitions are extracted from elec-
tron scattering data by measuring the cross section (Don-
nelly and Sick, 1984)

dσ

dΩ
= 4π σM f−1

rec

[
Q4

q4
F 2
L +

(
Q2

2 q2
+ tan2θe/2

)
F 2
T

]
,

(105)
where σM is the Mott cross section, q and Q are the
electron three- and four-momentum transfers, frec is the
recoil correction frec = 1 + (2 ε/mA) sin2θe/2, ε and θe

are the electron initial energy and scattering angle in the
laboratory, and mA is the mass of the target nucleus. In
the case of elastic scattering, the electron energy trans-
fer is ωel =

√
q2 +m2

A − mA and the four-momentum



34

transfer Q2
el = 2mA ωel. The form factors FL and FT are

expressed in terms of reduced matrix elements (RMEs) of
charge (CL), magnetic (ML), and electric (EL) multipole
operators, defined below, as

F 2
L (q) =

1

2 Ji + 1

∞∑
L=0

| 〈Jf || CL(q) || Ji〉 |2 , (106)

F 2
T (q) =

1

2 Ji + 1

∞∑
L=1

[
| 〈Jf ||ML(q) || Ji〉 |2

+ | 〈Jf || EL(q) || Ji〉 |2
]
. (107)

We note that for elastic scattering Ji = Jf = J and the
EL RMEs vanish because of time reversal invariance.

Standard techniques (Walecka, 1995) are used to
carry out the multipole expansion of the electromagnetic
charge j0

γ(q) and current jγ(q) operators in a reference
frame in which the ẑ axis defines the spin-quantization
axis, and the direction q̂ is specified by the angles θ and
φ:

0γ(q) =

∫
dx eiq·x j0

γ(x)

=
∑
LML

4π iL Y ∗LML
(q̂)CLML

(q) , (108)

jγ,qλ(q) =

∫
dx eiq·x êqλ · jγ(x)

= −
∑

LML(L≥1)

√
2π (2L+ 1) iLDL

ML, λ(−φ,−θ, φ)

× [λMLML
(q) + ELML

(q)] , (109)

where λ = ±1, the YLML
are spherical harmonics, and

the DL
ML, λ

are rotation matrices (Edmonds, 1957). The
unit vectors êqλ denote the linear combinations

êq±1 = ∓ 1√
2

(êq1 ± i êq2) , (110)

with êq3 = q̂, êq2 = ẑ× q/ | ẑ× q |, and êq1 = êq2 × êq3.
These relations are used below to isolate the contributing
RMEs to elastic transitions in nuclei with A ≤ 12. The
ground states of nuclei in the mass range 6 ≤ A ≤ 12
have spins ranging from J = 0 (as in 12C) to J = 3
(as in 10B), and are described by VMC or GFMC wave
functions. For reasons of computational efficiency, it is
convenient to determine the RMEs of charge and mag-
netic multipoles contributing to a specific transition by
evaluating the matrix elements of j0

γ(q) and jγ(q) be-
tween states having a given spin projection MJ , usually
the stretched configuration with MJ = J , for a number of
different q̂ directions. The matrix element of the charge
operator can then be written as

〈JJ ; q|j0
γ(q)|JJ〉 =

∞∑
L=0

√
4π iL cLJ PL(cos θ) 〈J ||CL(q)||J〉

(111)

where θ is the angle that q̂ makes with the ẑ spin-
quantization axis, the PL are Legendre polynomials, and
cLJ is the Clebsch-Gordan coefficient 〈JJJ−J |L0〉. Gen-
erally, for a nucleus of spin J the number of contributing
(real) RMEs of charge multipole operators is [J ]+1 (here
[J ] denotes the integer part of J) and the allowed L are
the even integers between 0 and 2 J . Thus, it is possible
to select [J ] + 1 independent q̂ directions, evaluate the
matrix element of the charge operator for each of these
different q̂, and then determine the RMEs by solving a
linear system. For example, for a nucleus of spin J = 1
(like 6Li)

〈11; q ẑ|j0
γ(q ẑ)|11〉 =

√
4π

3

(
C0 −

1√
2
C2

)
, (112)

〈11; q x̂|j0
γ(q x̂)|11〉 =

√
4π

3

(
C0 +

1

2
√

2
C2

)
, (113)

where CL is a short-hand notation for 〈1||CL(q)||1〉.
For the transverse elastic form factor, it is possible to

proceed in a similar fashion. Since electric multipoles do
not contribute in elastic scattering

〈JJ ; q | êqλ · jγ(q) | JJ〉

= −λ
∑
L≥1

iL
√

2π cLJ D
L
0, λ(−φ,−θ, φ) 〈J ||ML(q)||J〉 ,

(114)

where the unit vectors êqλ, λ = ±1, have been defined
in Eq. (110). Using the identity (Edmonds, 1957)

DL
0, λ(−φ,−θ, φ) = −

√
4π

2L+ 1
YLλ(θ, φ) , λ = ±1 ,

(115)
and, rather than considering the spherical components
jqλ(q) of the current, it is possible to work with its com-
ponent along the unit vector eq2 defined earlier; further,
q can be taken in the xz-plane (φ = 0), in which case eq2
is along the ŷ axis, leading to

〈JJ ; q |jγ,y(q) | JJ〉 =
√

4π
∑
L≥1

iL+1 cLJ√
L (L+ 1)

× P 1
L(cos θ) 〈J ||ML(q)||J〉 , (116)

where P 1
L(x) are associated Legendre functions. For a

nucleus of spin J > 0, the number of contributing (purely
imaginary) RMEs of magnetic multipole operators is [J−
1/2] + 1, and the allowed L are the odd integers between
0 and 2 J . In the case of a J = 1 nucleus, for example,
it is possible to take q along the x̂ axis (θ = π/2), and
determine M1 ≡ 〈1||M1(q)||1〉 from

〈11; q x̂ | jy(q x̂) | 11〉 =
√
πM1 . (117)

Finally, the small q behavior of the charge monopole
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and quadrupole, and magnetic dipole RMEs is given by:

〈J ||C0(q = 0)||J〉 =

√
2 J + 1

4π
Z , (118)

〈J ||C2(q)||J〉 ' 1

12
√
π c2J

q2Q , J ≥ 1 , (119)

〈J ||M1(q)||J〉 ' i√
2π c1J

q

2m
µ , J ≥ 1/2 , (120)

where Q and µ are the quadrupole moment and mag-
netic moment, defined in terms of matrix elements of the
charge and current density operators j0

γ(x) and jγ(x) re-
spectively as

Q = 〈JJ |
∫

dx j0
γ(x) (3 z2 − x2) | JJ〉 , (121)

µ

2m
= 〈JJ | 1

2

∫
dx [x× jγ(x)]z | JJ〉 . (122)

They are determined by extrapolating to zero a polyno-
mial fit (in powers of q2) to the calculated C2/q

2 and
M1/q on a grid of small q values. Consequently, the lon-
gitudinal form factor at q = 0 is normalized as

F 2
L (q = 0) =

Z2

4π
, (123)

while the transverse form factor F 2
T (q) vanishes at q = 0.

Note that experimental data for F 2
L (q) are often reported

in the literature as normalized to one at q = 0.
In QMC, matrix elements are evaluated as described in

Sec. III.B.2. The results of elastic and inelastic electro-
magnetic form factors for 6Li are shown in Fig. 17. The
calculations were performed within the impulse approxi-
mation (IA), and two-body operators added (IA+MEC).
Overall, the agreement with the experimental data is ex-
cellent. The contribution of MEC is generally small but
its inclusion improves the agreement between theory and
data. In particular, it shifts the longitudinal elastic and
inelastic form factors to slightly lower values, and sensi-
bly increases the transverse inelastic form factor.

The longitudinal form factor of 12C is shown in Fig. 18.
The calculation has been performed including only one-
body operators (empty symbols), and one- plus two-body
operators (Lovato et al., 2013). The experimental data
are from a compilation by Sick (1982, 2013), and are well
reproduced by theory over the whole range of momentum
transfers. The two-body contributions are negligible at
low q, and become appreciable only for q > 3 fm−1, where
they interfere destructively with the one-body contribu-
tions, bringing theory into closer agreement with experi-
ment.

D. Second 0+ state of 12C: Hoyle state

The second 0+ state of 12C is the famous Hoyle state,
the gateway for the triple-alpha burning reaction in stars.
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FIG. 17 The 6Li longitudinal elastic (upper left panel), in-
elastic (bottom left), and transverse elastic (upper right), and
inelastic (bottom right) calculated with VMC in the impulse
approximation (IA), and with the addition of MEC contribu-
tions (Wiringa and Schiavilla, 1998). The results are com-
pared to the experimental data indicated in the legend. See
Wiringa and Schiavilla (1998) and references therein.
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FIG. 18 The longitudinal elastic form factor of 12C including
one- (empty circles) and one- plus two-body operators (red
filled circles) calculated with GFMC. The results are com-
pared to the experimental data (Lovato et al., 2013).
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FIG. 19 GFMC propagated energy versus imaginary time for
the first two 0+ states of 12C.

It is a particularly difficult state for shell model calcu-
lations as it is predominantly a four-particle four-hole
state. However the flexible nature of the variational trial
functions allows us to directly describe this aspect of the
state.

To do this (Pieper and Carlson, 2015) two different
types of single-particle wave functions have been used in
the |ΦN 〉 of Eq. (30): 1) the five conventional 0+ LS-
coupled shell model states and 2) states that have an
explicit three-alpha structure. The first alpha is in the
0s shell, the second in the 0p shell and the third in either
the 0p or 1s0d shells. The latter can have four nucleons in
1s or four in 0d or two in 1s and two in 0d. In addition we
allow the third alpha to have two nucleons in 0p and two
in 1s0d (a two-particle two-hole excitation). This gives
us a total of 11 components in |ΦN 〉; a diagonalization
gives the ΨT for the ground and excited 0+ states.

The resulting ground state has less than 1% of its ΨT

in the 1s0d shell while the second state has almost 70% in
the 1s0d shell. The GFMC propagation is then done for
the first two states; the resulting energies are shown as a
function of imaginary time τ in Fig. 19 which has results
for two different initial sets of ΨT . The GFMC rapidly
improves the variational energy and then produces stable
(except for Monte Carlo fluctuations) results to large τ .
The resulting ground state energy is very good, −93.3(4)
MeV versus the experimental value of −92.16 MeV. How-
ever the Hoyle state excitation energy is somewhat too
high, 10.4(5) versus 7.65 MeV.

Figure 20 shows the resulting VMC and GFMC den-
sities for one of the sets of ΨT . The GFMC propagation
builds a dip at r = 0 into the ground-state density which
results in good agreement with the experimental value.
However the Hoyle-state density is peaked at r = 0 in
both the VMC and GFMC calculations. A possible in-
terpretation of these results is that the ground state is
dominated by an approximately equilateral distribution
of alphas while the Hoyle state has an approximately lin-
ear distribution.
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FIG. 20 VMC and GFMC point-proton densities for the first
two 0+ states of 12C. The experimental band was unfolded
from electron scattering data in Ref. (De Vries et al., 1987)

.

0 1 2 3 4
10-4

10-3

10-2

10-1

k (fm-1)

f pt
(k

)

VMC

GFMC

Experiment

0 0.2 0.4
0
1
2
3
4
5
6

k2 (fm-2)

6 
Z

 f tr
(k

) 
/ k

2  
  (

fm
2 )

FIG. 21 VMC and GFMC E0 transition form factor between
the first two 0+ states of 12C in the impulse approximation.
The data is from Chernykh et al. (2010)

The calculated impulse E0 transition form factor is
compared to the experimental data in Fig. 21. The insert
is scaled such that (linear) extrapolation to k2 = 0 gives
the B(E0). The GFMC more than doubles the VMC
result and gives excellent agreement with the data.

E. Magnetic moments and electroweak transitions

In the impulse approximation (IA), magnetic moments
are calculated as

µIA =
∑
i

(eN,iLi + µN,iσi) , (124)

where eN,i = (1 + τi,z)/2, µN = eN + κN , κN =
(κS+κV τi,z)/2, and κS = −0.120 and κV = 3.706 are the
isoscalar and isovector combinations of the anomalous
magnetic moment of the proton and neutron. The mag-
netic moment corrections associated with the two-body
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FIG. 22 Magnetic moments in nuclear magnetons for A ≤ 10
nuclei. Black stars indicate the experimental values (Tilley
et al., 2002, 2004), while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (full χEFT current up to N3LO); asterisks denote first
excited states. Results are from (Pastore, 2014; Pastore et al.,
2013).

operators discussed in the previous sections are obtained
from diagonal nuclear matrix elements

µMEC = −i lim
q→0

2m

q
〈Jπ,MJ ;T |jMEC

y (qx̂)|Jπ,MJ ;T 〉 ,

(125)
where the nuclear wave function is taken withM = J , the
momentum transfer q is taken along x̂, m is the nucleon
mass, and the extrapolation to determine µ is done from
calculations performed at several small values of q.

The total magnetic moments, including MEC de-
rived within χEFT, have been presented in Table I of
Sec. IV.A. Results obtained using MEC derived in the
conventional approach and within χEFT are very simi-
lar, and have been discussed in detail in Pastore et al.
(2013). Here it is interesting to discuss the role of MEC
compared to the IA. GFMC calculations using AV18+IL7
and chiral two-body currents of the magnetic moments
are shown in Fig. 22. The experimental magnetic mo-
ments of A = 2, 3 nuclei were used to constrain the LECs
of the χEFT; all the results for heavier nuclei are predic-
tions.

In many cases the two-body currents significantly
change the IA results and in all of these much better
agreement with experiment is achieved. The contribu-
tion of MEC is generally larger for even-odd and odd-
even nuclei, in particular for 9Li and 9C. The exceptions
are 9Be and 9B, which with their [441] spatial symmetry
are essentially single nucleons outside a 8Be(0+) core; on
average, these have no OPE interaction with the core and
therefore no significant MEC contribution. For odd-odd
isoscalar nuclei, the IA results are already in good agree-
ment with experimental data; only for the T = 1 nuclei
8Li and 8B are the MEC contributions significant.
M1 and E2 electromagnetic transitions for A=6–9 nu-

clei have been calculated with GFMC. The one-body part
of these operators are given by

M1 = µN
∑
i

(Li + gpSi)(1 + τi,z)/2 + gnSi(1− τi,z)/2 ,

E2 = e
∑
i

[
r2
i Y2(r̂i)

]
(1 + τi,z) (126)

where Y is a spherical harmonic, L and S the orbital and
spin angular momentum operators, and gp and gn the
gyromagnetic ratio of protons and neutrons. MEC are
also included in the M1 transitions. The nuclear matrix
elements can be compared with the experimental widths.
In units of MeV, they are given by (Preston, 1962)

ΓM1 =
16π

9

(
∆E

~c

)3

B(M1) ,

ΓE2 =
4π

75

(
∆E

~c

)5

B(E2) , (127)

where ∆E is the energy difference between the final and
initial state and B(M1) = 〈JF ||M1||JI〉2/(2JI + 1) is in
units of µ2

N and B(E2) = 〈JF ||E2||JI〉2/(2JI + 1) is in
units of e2 fm4.

A number of calculated electromagnetic transition
strengths are compared to experiment in Fig. 23. Many
additional transitions within 8Be are reported in Pastore
et al. (2014). Again GFMC calculations were made using
AV18+IL7 and chiral two-body currents. The two-body
currents make large corrections to the IA results for the
M1 transitions; these often result in excellent agreement
with experiment.

Weak decays of A=6, 7 nuclei have been evaluated us-
ing QMC but much more needs to be done in the future.
In IA, the weak Fermi (F) and Gamow-Teller (GT) op-
erators to be evaluated are:

F =
∑
i

τi± ,

GT =
∑
i

σiτi± . (128)

A first calculation for the weak decays 6He(β−)6Li and
7Be(ε)7Li was made by Schiavilla and Wiringa (2002)
using VMC wave functions for the AV18+UIX Hamilto-
nian, and incorporating conventional MEC as discussed
in Sec. V.A.2. Parameters in the MEC were fixed to
reproduce 3H β-decay (Schiavilla et al., 1998).

The 6He β-decay is a pure GT transition, while the
7Be electron capture is a mixed F+GT transition to the
ground state, and a GT transition to the first excited
state of 7Li. These are superallowed decays where the
dominant spatial symmetry of the parent and daughter
states is the same, e.g., [42]→[42] in A=6 and [43]→[43]
in A=7. In these cases, the F and GT matrix elements
are of order 1–2 and the MEC contributions are only a
2–4% correction.
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FIG. 23 Ratio of calculated to experimental M1, E2 (Pastore
et al., 2013), and GT reduced transition probabilities (Pervin
et al., 2007) in A ≤ 9 nuclei. Symbols are as in Fig. 22.

Subsequently, a GFMC calculation for these transi-
tions was made by Pervin et al. (2007) based on the
AV18+IL2 Hamiltonian, but only in the IA. The GFMC
results for these three B(GT) reduced transition proba-
bilities are shown at the bottom of Fig. 23. These are
already in fairly good agreement with experiment, and
small MEC corrections will not shift the results by much.

Weak decays in the A=8,9 nuclei pose a much bigger
challenge. For example, 8He(β−)8Li goes from a pre-
dominantly [422] symmetry state to multiple 1+ excited
states, but primarily to the first excited state in 8Li. The
latter is predominantly a [431] symmetry state with only
a small [422] component, so the allowed GT matrix ele-
ment is of order 0.1–0.2. Similarly, the 8Li(β−)8Be and
8B(β+)8Be decays are transitions from large to small
components, with the added complication that the final
2+ state in 8Be is a moderately broad resonant state.
GFMC calculations in impulse approximation underpre-
dict the A=8 experimental matrix elements by a factor of
two (Pastore, 2014). It is possible that GFMC does an
inadequate job of accurately determining small compo-
nents in the final state wave functions, or that the spe-
cific Hamiltonian does not induce the required correla-

tions. However, if the magnitude of the MEC corrections
is comparable to that in the A=6,7 superallowed decays,
then the MEC will be relatively much more important in
the allowed decays and may resolve the problem. This is
an important task for future QMC studies.

F. Electroweak Response of Light Nuclei

The response to electroweak probes provides direct in-
formation on dynamics in the nucleus. The rich structure
of nuclear interactions and currents, combined with the
availability of different probes, offers the opportunity to
study many intriguing aspects of nuclear dynamics. Here
we describe theoretical approaches for describing inclu-
sive scattering of electrons and neutrinos from a nucleus,
including both sum-rule techniques and direct compu-
tations of response functions, as well as comparisons to
available experimental data. In the last few years in-
clusive neutrino scattering from nuclear targets has seen
a surge in interest, spurred by the excess, at relatively
low energy, of measured cross section relative to theoret-
ical calculations observed in recent neutrino quasi-elastic
scattering data on 12C (Aguilar-Areval, 2008; Butkevich,
2010). Analyses based on these calculations have led to
speculations that our present understanding of the nu-
clear response to charge-changing weak probes may be
incomplete (Benhar et al., 2010). However, it should be
emphasized that the calculations on which these analyses
are based use rather crude models of nuclear structure—
Fermi gas or local density approximations of the nuclear
matter spectral function—and simplistic treatments of
the reaction mechanism, and should therefore be viewed
with some skepticism. The differential cross section for
neutrino ν and antineutrino ν inclusive scattering off a
nucleus, specifically the processes A(νl, νl) and A(νl, νl)
induced by neutral weak currents (NC), and the processes
A(νl, l

−) and A(νl, l
+) induced by charge-changing weak

currents (CC), can be expressed in terms of five response
functions Rαβ as(

dσ

dε′dΩ

)
ν/ν

=
G2

2π2
k′ε′ F (Z, k′) cos2 θ

2

[
R00 +

ω2

q2
Rzz

− ω

q
R0z +

(
tan2 θ

2
+
Q2

2 q2

)
Rxx

∓ tan
θ

2

√
tan2 θ

2
+
Q2

q2
Rxy

]
, (129)

where G=GF for the NC processes and G=GF cos θC for
the CC processes, and the − (+) sign in the last term is
relative to the ν (ν) initiated reactions. The value of GF
is 1.1803× 10−5 GeV−2 as obtained from an analysis of
super-allowed 0+ → 0+ β-decays by Towner and Hardy
(1999)—this value includes radiative corrections—while
cos θC is taken as 0.97425 from Nakamura (2010). The
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initial neutrino four-momentum is kµ = (ε,k), the final
lepton four momentum is kµ ′ = (ε′,k′), and the lep-
ton scattering angle is denoted by θ. The lepton energy
and momentum transfers are defined as ω = ε − ε′ and
q = k−k′, respectively, and the squared four-momentum
transfer as Q2 = q2 − ω2 > 0. The Fermi function
F (Z, k′) accounts for the Coulomb distortion of the fi-
nal lepton wave function in the charge-raising reaction,

F (Z, k′) = 2 (1+γ) (2 k′ rA)2 γ−2 exp (π y)

∣∣∣∣∣Γ(γ + i y)

Γ(1 + 2 γ)

∣∣∣∣∣
2

,

(130)
with

γ =

√
1− (Z α)

2
; (131)

otherwise it is set to one. Here y = Z α ε′/k′, Γ(z) is
the gamma function, rA is the nuclear radius, and α
is the fine structure constant. There are in principle
radiative corrections for the CC and NC processes due
to bremsstrahlung and virtual photon- and Z-exchanges.
These corrections have been evaluated in the deuteron
by Towner and Hardy (1998), and Kurylov et al. (2002)
at the low energies (∼ 10 MeV) relevant for the SNO
experiment, which measured the neutrino flux from the
8B decay in the sun. They are not considered further
below, since our focus here is primarily on scattering of
neutrinos with energies larger than 100 MeV, and we are
not concerned with discussing cross section calculations
with % accuracy in this regime. The nuclear response
functions are defined as

R00(q, ω) =
∑
f δ(ω + E0 − Ef )

× 〈f | j0(q, ω) |0〉〈f | j0(q, ω) |0〉∗ , (132)

Rzz(q, ω) =
∑
f δ(ω + E0 − Ef )

× 〈f | jz(q, ω) |0〉〈f | jz(q, ω) |0〉∗ , (133)

R0z(q, ω) = 2
∑
f δ(ω + E0 − Ef )

× Re
[
〈f | j0(q, ω) |0〉〈f | jz(q, ω) |0〉∗

]
,(134)

Rxx(q, ω) =
∑
f δ(ω + E0 − Ef )

×
[
〈f | jx(q, ω) |0〉〈f | jx(q, ω) |0〉∗

+ 〈f | jy(q, ω) |0〉〈f | jy(q, ω) |0〉∗
]
,(135)

Rxy(q, ω) = 2
∑
f δ(ω + E0 − Ef )

× Im
[
〈f | jx(q, ω) |0〉〈f | jy(q, ω) |0〉∗

]
,(136)

where | 0〉 represents the initial ground state of the nu-
cleus of energy E0, |f〉 its final state of energy Ef , and
an average over the initial spin projections is understood.
The three-momentum transfer q is taken along the z-
axis (i.e., the spin-quantization axis), and jµ(q, ω) is the
time component (for µ = 0) or space component (for
µ = x, y, z) of the NC or CC. Note that in the model of

electroweak currents adopted here, their ω-dependence
enters through the dependence on Q2 of the electroweak
form factors of the nucleon and N -to-∆ transition. Be-
low, when discussing QMC calculations of Rαβ(q, ω), the
four-momentum Q2 transfer is fixed at the top of the
quasi-elastic peak, and the form factors are evaluated
at Q2

qe = q2 − ω2
qe with ωqe =

√
q2 +m2 − m, so that

the only ω-dependence left in Rαβ(q, ω) is that from the
energy-conserving δ-function.

The expression above for the CC cross section is valid
in the limit ε′ ' k′, in which the lepton rest mass is
neglected. At small incident neutrino energy, this ap-
proximation is not correct. Inclusion of the lepton rest
mass leads to changes in the kinematical factors multi-
plying the various response functions. The resulting cross
section can be found in Shen et al. (2012).

The cross section for inclusive electron scattering fol-
lows from Eq. (129) by using current conservation to re-
late the longitudinal component of the current to the
charge operator via jzγ(qẑ) = (ω/q)j0

γ(qẑ) and by noting
that the interference response Rxy vanishes, since it in-
volves matrix elements of the vector and axial parts of the
current jNC or jCC of the type Im (〈jx〉〈jy5 〉∗ + 〈jx5 〉〈jy〉∗).
One finds(

dσ

dε′dΩ

)
e

= σM

[
Q4

q4
RL +

(
tan2 θ

2
+
Q2

2 q2

)
RT

]
,

(137)

where σM is the Mott cross section, and the longitudinal
(L) and transverse (T ) response functions are defined as
in Eqs. (132) and (135) with jµ replaced by jµγ .

The accurate calculation of the inclusive response at
low and intermediate energy and momentum transfers
(say, q . 0.5 GeV/c and ω in the quasi-elastic region)
is a challenging quantum many-body problem, since it
requires knowledge of the whole excitation spectrum of
the nucleus and inclusion in the electroweak currents of
one- and two-body terms. In the specific case of inclusive
weak scattering, its difficulty is compounded by the fact
that the energy of the incoming neutrinos is not known
(in contrast to inclusive (e, e′) scattering where the ini-
tial and final electron energies are precisely known). The
observed cross section for a given energy and angle of the
final lepton results from a folding with the energy distri-
bution of the incoming neutrino flux and, consequently,
may include contributions from energy- and momentum-
transfer regions of the nuclear response where different
mechanisms are at play: the threshold region, where the
structure of the low-lying energy spectrum and collective
effects are important; the quasi-elastic region, which is
dominated by scattering off individual nucleons and nu-
cleon pairs; and the ∆ resonance region, where one or
more pions are produced in the final state.

The simplest model of nuclear response is based on
the plane-wave impulse approximation (PWIA). The re-
sponse is assumed to be given by an incoherent sum of
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scattering processes off single nucleons that propagate
freely in the final state. In PWIA the struck nucleon
with initial momentum p absorbs the momentum q of
the external field and transitions to a free particle state of
momentum p+q without suffering any interactions with
the residual (A− 1) system. In the most naive formula-
tion of PWIA, the response is obtained from the single-
nucleon momentum distribution in the ground-state of
the nucleus and the nucleon electroweak form factors,

RPWIA
αβ (q, ω) =

∫
dpN(p)xαβ(q,p)

δ

[
ω − E − (p + q)

2

2m
− p2

2 (A− 1)m

]
, (138)

where xαβ describes the coupling to the external elec-
troweak field, N(p) is the nucleon momentum distribu-
tion, and the effects of nuclear interactions are subsumed
in the single parameter E, which can be interpreted as
an average binding energy. The remaining terms in the
δ-function are the final energies of the struck nucleon and
recoiling (A−1) system, respectively. In cases where the
momentum transfer q is large, it may be more appropri-
ate to use relativistic expressions for the coupling xαβ
and final nucleon kinetic energy.

More sophisticated formulations of PWIA are based
on the spectral function, thus removing the need for in-
cluding the parameter E. To this end, it is useful to first
express the response in terms of the real-time propaga-
tion of the final state as

Rαβ(q, ω) =
1

2π

∫ ∞
−∞

dt ei(ω+E0)t 〈0 | O†β(q) e−iHtOα(q) |0〉

≡ 1

2π

∫ ∞
−∞

dt ei(ω+E0)t R̃αβ(q, t) (139)

where the Oα’s denote the relevant components of the
electroweak current of interest. Since the interactions of
the struck nucleon with the remaining nucleons are ne-
glected, the A-body Hamiltonian reduces to H ' K(A)+
H(1, . . . , A−1), where K(A) is the kinetic energy opera-
tor of nucleon A (the struck nucleon) and H(1, . . . , A−1)
is the Hamiltonian for the remaining (and fully interact-
ing) A− 1 nucleons.

Ignoring the energy dependence in the spectral func-
tion reproduces the naive PWIA response, since integrat-
ing the spectral function S(p, E) recovers the momentum
distribution. At large values of the momentum transfer
(q ∼ 1 GeV/c), one would expect the spectral function
approach to be reasonably accurate. There will be signif-
icant corrections, however, arising from the fact that in
some instances the struck nucleon is not only in a mean
field, but is strongly interacting with one or more other
nucleons. More sophisticated treatments are required to
get a complete picture.

PWIA calculations of the longitudinal response mea-
sured in (e, e′) scattering, for example, grossly overesti-

mate the data in the quasi-elastic peak region (Carlson
and Schiavilla, 1998). They also lead to an incorrect
strength distribution, since they underestimate energy-
weighted sum rules of the longitudinal (and transverse)
response functions. Much of this overestimate can be at-
tributed to the fact the charge can propagate through the
interaction, not only through the movement of nucleons.

It is possible to compute sum rules of the electroweak
response as ground state expectation values that are
much more accurate than approximations to the full re-
sponse. One can also calculate integral transforms of the
response, which can be directly compared to experimen-
tal data and provide a great deal of information about
the full response. Here we review results for sum rules
and Euclidean response.

G. Sum rules of electroweak response functions

Sum rules provide a powerful tool for studying inte-
gral properties of the response of a nuclear many-body
system to an external probe. Of particular interest are
those at constant three-momentum transfer, since they
can be expressed as ground-state expectation values of
appropriate combinations of the electroweak current op-
erators (and commutators of these combinations with the
Hamiltonian in the energy-weighted case), thus avoiding
the need for computing the nuclear excitation spectrum.

In the electromagnetic case, the (non-energy-weighted)
sum rules are defined as (Carlson et al., 2002)

Sα(q) = Cα

∫ ∞
ω+

th

dω
Rα(q, ω)

Gp 2
E (Q2)

, (140)

where Rα(q, ω) is the longitudinal (α = L) or transverse
(α = T ) response function, ωth is the energy transfer
corresponding to the inelastic threshold, GpE(Q2) is the
proton electric form factor (evaluated at four-momentum
transfer Q2 = q2 − ω2), and the Cα’s are appropriate
normalization factors, given by

CL =
1

Z
, CT =

2(
Z µ2

p +N µ2
n

) m2

q2
. (141)

Here Z (N) and µp (µn) are the proton (neutron) num-
ber and magnetic moment, respectively. These factors
have been introduced so that Sα(q → ∞) ' 1 un-
der the approximation that the nuclear electromagnetic
charge and current operators originate solely from the
charge and spin magnetization of individual protons and
neutrons and that relativistic corrections to these one-
body operators—such as the Darwin-Foldy and spin-
orbit terms in the charge operator—are ignored. The
sum rules above can be expressed (McVoy and Van Hove,
1962) as ground-state expectation values of the type

Sα(q)=Cα

[
〈0|O†α(q)Oα(q)|0〉 − |〈0; q|Oα(q)|0〉|2

]
,

(142)
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where Oα(q) is either the charge j0
γ(q) (α = L) or

transverse current jγ,⊥(q) (α = T ) operator divided by
GpE(Q2), |0; q〉 denotes the ground state of the nucleus
recoiling with total momentum q, and an average over
the spin projections is understood. The Sα(q) as defined
in Eq. (140) only includes the inelastic contribution to
Rα(q, ω), i.e., the elastic contribution represented by the
second term on the r.h.s. of Eq. (142) has been removed.
It is proportional to the square of the longitudinal FL or
transverse FT elastic form factor. For Jπ = 0+ states
like 4He or 12C, FT vanishes, while FL(q), discussed in
Sec.V.B is given by FL(q) = GpE(Q2

el) 〈0; q|OL(q)|0〉/Z,
with the four-momentum transfer Q2

el = q2 − ω2
el and ωel

corresponding to elastic scattering, ωel =
√
q2 +m2

A −
mA (mA is the rest mass of the nucleus).

In the case of NC and CC weak response functions,
the (non-energy-weighted) sum rules are generally de-
fined as (Lovato et al., 2014)

Sαβ(q) = Cαβ

∫ ∞
ωel

dω Rαβ(q, ω) . (143)

and can be expressed as

Sαβ(q) = Cαβ 〈0|jα†(q) jβ(q) + (1− δαβ) jβ†(q) jα(q)|0〉
(144)

Sxy(q) = Cxy Im 〈0|jx†(q) jy(q)− jy†(q) jx(q)|0〉
(145)

where the Cαβ ’s are convenient normalization factors (see
below), αβ = 00, zz, 0z, and xx, and for αβ = xx the
expectation value of jx†jx + jy†jy is computed. Note
that the electroweak nucleon and N -to-∆ form factors in
jµNC/CC are taken to be functions of q only by evaluating

them at Q2
qe, at the top of the quasi-elastic peak. In con-

trast to the electromagnetic sum rules above, the Sαβ(q)
include the elastic and inelastic contributions; the former
are proportional to the square of electroweak form fac-
tors of the nucleus. In the large q limit, these nuclear
form factors decrease rapidly with q, and the sum rules
reduce to the incoherent sum of single-nucleon contribu-
tions. The normalization factors Cαβ are chosen such
that Sαβ(q →∞) ' 1, for example

C−1
xy = − q

m
GA(Q2

qe)
[
Z G̃pM (Q2

qe)−N G̃nM (Q2
qe)
]
,

(146)
where Z (N) is the proton (neutron) number, GA is
the weak axial form factor of the nucleon normalized as
GA(0) = gA, and G̃pM =

(
1− 4 sin2θW

)
GpM/2 − GnM/2

and G̃nM =
(
1− 4 sin2θW

)
GnM/2 − GpM/2 are its weak

vector form factors. The GpM and GnM are the ordinary
proton and neutron magnetic form factors, normalized to
the proton and neutron magnetic moments: GpM (0) = µp
and GnM (0) = µn. Thus the Sαβ(q) give sum rules of re-
sponse functions corresponding to approximately point-
like electroweak couplings.

Obviously, sum rules of weak response functions can-
not be compared to experimental data. Even in the elec-
tromagnetic case, a direct comparison between the cal-
culated and experimentally extracted sum rules cannot
be made unambiguously for two reasons. First, the ex-
perimental determination of Sα requires measuring the
associated Rα in the whole energy-transfer region, from
threshold up to ∞. Inclusive electron scattering exper-
iments only allow access to the space-like region of the
four-momentum transfer (ω < q). While the response in
the time-like region (ω > q) could, in principle, be mea-
sured via e+e− annihilation, no such experiments have
been carried out to date. Therefore, for a meaningful
comparison between theory and experiment, one needs to
estimate the strength outside the region covered by the
experiment. In the past this has been accomplished in the
case of SL(q) either by extrapolating the data (Jourdan,
1996) or, in the few-nucleon systems, by parametrizing
the high-energy tail and using energy-weighted sum rules
to constrain it (Schiavilla et al., 1989, 1993).

The second reason that direct comparison of theoret-
ical and “experimental” sum rules is difficult lies in the
inherent inadequacy of the dynamical framework adopted
in this review to account for explicit pion production
mechanisms. The latter mostly affect the transverse re-
sponse and make its ∆-peak region outside the range of
applicability of this approach. At low and intermediate
momentum transfers (q . 500 MeV/c), the quasi-elastic
and ∆-peak are well separated, and it is therefore rea-
sonable to study sum rules of the electromagnetic trans-
verse response. In the quasi-elastic region, where nucleon
and (virtual) pion degrees of freedom are expected to
be dominant, the dynamical framework adopted in the
present review should provide a realistic and quantita-
tive description of electromagnetic (and weak) response
functions.

In Figs. 24 and 25, we show recent results obtained
for the electromagnetic longitudinal and transverse sum
rules in 12C. The open squares give the experimental sum
rules SL(q) and ST (q) obtained by integrating up to ωmax

(in the region where measurements are available) the lon-
gitudinal and transverse response functions (divided by
the square of GpE) extracted from world data on inclusive
(e, e′) scattering off 12C (Jourdan, 1996); see Lovato et al.
(2013) for additional details. We also show by the solid
squares the experimental sum rules obtained by estimat-
ing the contribution of strength in the region ω > ωmax.
This estimate ∆Sα(q) is made by assuming that for ω >
ωmax, i.e., well beyond the quasi-elastic peak, the longi-
tudinal or transverse response in a nucleus like 12C (RAα )
is proportional to that in the deuteron (R d

α), which can
be accurately calculated (Shen et al., 2012). This scaling
assumes that the high-energy part of the response is dom-
inated by NN physics, and that the most important con-
tribution is from deuteron-like np pairs. It is consistent
with the notion that at short times the full propagator is



42

0 1 2 3 4

q (fm
-1

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
L
 (

q
)

exp+tail
exp
ρ

1b

ρ
1b+2b

FIG. 24 The longitudinal sum rule of 12C obtained with
GFMC from the AV18+IL7 Hamiltonian with one-body only
(empty circles, dashed line) and one- and two-body (solid cir-
cles, solid line) terms in the charge operator is compared to
experimental data without (empty squares), and with (solid
squares), the tail contribution (Lovato et al., 2013).
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FIG. 25 Same as in Fig. 26, but for the transverse sum
rule (Lovato et al., 2013). The open symbols do not con-
tain derivative terms while a VMC evaluation of the deriva-
tive terms is included for the solid red dots. The inset shows
ST (q)/CT in the small q-region.

governed by the product of pair propagators (assuming
3N interactions are weak), discussed earlier in Sec.V.F.
Thus, one sets RAα (q, ω > ωmax) = λ(q)R d

α(q, ω), and
determines λ(q) by matching the experimental 12C re-
sponse to the calculated deuteron one. It is worthwhile
emphasizing that, for the transverse case, this estimate
is particularly uncertain for the reasons explained ear-
lier; the data on RT (Jourdan, 1996) indicate that at
the higher q values for ω ∼ ωmax there might be already
significant strength that has leaked in from the ∆-peak
region.

The sum rules computed with the AV18+IL7 Hamil-
tonian and one-body only or one- and two-body terms
in the electromagnetic charge SL and current ST oper-

ators are shown, respectively, by the dashed and solid
lines in Figs. 24–25. In the small q limit, SL(q) vanishes
quadratically, while the divergent behavior in ST (q) is
due to the 1/q2 present in the normalization factor CT .
In this limit, OT (q = 0) = i [H ,

∑
i ri Pi ] (Carlson and

Schiavilla, 1998; Marcucci et al., 2005), where H is the
Hamiltonian and Pi is the proton projector, and there-
fore ST (q)/CT is finite; the associated strength is due
to collective excitations of electric-dipole type in the nu-
cleus. In the large-q limit, the one-body sum rules differ
from unity because of relativistic corrections in OL(q),
primarily the Darwin-Foldy term which gives a contri-
bution −η/(1 + η) to S1b

L (q), where η ' q2/(4m2), and
because of the convection term in OT (q), which gives a
contribution ' (4/3)CT Tp/m to S1b

T (q), where Tp is the
proton kinetic energy in the nucleus.

In contrast to SL, the transverse sum rule has large
two-body contributions. This is consistent with studies
of Euclidean transverse response functions in the few-
nucleon systems (Carlson et al., 2002), which suggest that
a significant portion of this excess transverse strength is
in the quasi-elastic region. Overall, the calculated SL(q)
and ST (q) are in reasonable agreement with data. How-
ever, a direct calculation of the response functions is
clearly needed for a more meaningful comparison between
theory and experiment.

While sum rules of NC or CC weak sum rules are of a
more theoretical interest, they nevertheless provide useful
insights into the nature of the strength seen in the quasi-
elastic region of the response and, in particular, into the
role of two-body terms in the electroweak current. Those
corresponding to weak NC response functions and rela-
tive to 12C are shown in Fig. 26: results S1b (S2b) corre-
sponding to one-body (one- and two-body) terms in the
NC are indicated by the dashed (solid) lines. Note that
both S1b

αβ and S2b
αβ are normalized by the same factor

Cαβ , which makes S1b
αβ(q) → 1 in the large q limit. In

the small q limit, S1b
00 (q) and S1b

0z (q) are much larger than
S1b
αβ for αβ 6= 00, 0z.

Except for S2b
00 (q), the S2b

αβ(q) sum rules are consid-

erably larger than the S1b
αβ(q), by as much as 30-40%.

This enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012). The increase due
to two-body currents is quite substantial even down to
small momentum transfers. At q ' 1 fm−1, the enhance-
ment is about 50% relative to the one-body values. In
general, the additional contributions of the two-body cur-
rents (j2b) to the sum rules are given by a combination
of interference with one-body currents (j1b), matrix el-

ements of the type 〈0 | j†1b j2b | 0〉 + 〈0 | j†2b j1b | 0〉, and

contributions of the type 〈0 | j†2b j2b | 0〉. At low momen-
tum transfers the dominant contributions are found to be
of the latter 〈0 | j†2b j2b | 0〉 type, where the same pair is
contributing in both left and right operators. Enhance-
ments of the response due to two-body currents could
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FIG. 26 The GFMC sum rules Sαβ in 12C, corresponding to
the AV18+IL7 Hamiltonian and obtained with one-body only
(dashed lines) and one- and two-body (solid lines) terms in
the NC (Lovato et al., 2014).

be important in astrophysical settings, where the neu-
trino energies typically range up to 50 MeV. A direct
calculation of the 12C response functions is required to
determine whether the strength of the response at low
q extends to the low energies kinematically accessible to
astrophysical neutrinos.

At higher momentum transfers the interference be-
tween one- and two-body currents plays a more im-
portant role. The larger momentum transfer in the
single-nucleon current connects the low-momentum com-
ponents of the ground-state wave function directly with
the high-momentum ones through the two-body current.
For nearly the same Hamiltonian as is used here, there
is a 10% probability that the nucleons have momenta
greater than 2 fm−1 implying that ≈ 30% of the wave
function amplitude is in these high-momentum compo-
nents (Wiringa et al., 2014). The contribution of np pairs
remains dominant at high momentum transfers, and ma-
trix elements of the type 〈0 | [ j1b(l)+j1b(m)]†j2b(lm) |0〉
+ c.c. at short distances between nucleons l and m are
critical.

Figure 27 shows the separate contributions associated
with the vector (VNC) and axial-vector (ANC) parts of
the Sxx/Cxx sum rule. The ANC piece of the Sxx sum
rule is found to have large two-body contributions of
the order of 30% relative to the one-body part. Simi-
lar results are found for the 0z and zz sum rules; the
xy sum rule is nonzero because of interference between
the VNC and ANC and vanishes in the limit in which
only one or the other is considered. The ANC two-
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FIG. 27 The GFMC Sxx/Cxx sum rules obtained with the
NC (curves labeled NC) and either its vector (curves labeled
VNC) or axial-vector (curves labeled ANC) parts only (Lo-
vato et al., 2014). The corresponding one-body (one- and
two-body) contributions are indicated by dashed (solid) lines.
Note that the normalization factor Cxx is not included.

body contributions in the sum rules are much larger than
the contributions associated with axial two-body currents
in weak charge-changing transitions to specific states at
low-momentum transfers, such as β-decays and electron-
and muon-capture processes involving nuclei with mass
numbers A=3–7 (Marcucci et al., 2011; Schiavilla and
Wiringa, 2002), where they amount to a few % (but are
nevertheless necessary to reproduce the empirical data).

In summary, two-body currents generate a significant
enhancement of the single-nucleon neutral weak current
response, even at quasi-elastic kinematics. This enhance-
ment is driven by strongly correlated np pairs in nuclei.
The presence of these correlated pairs also leads to impor-
tant interference effects between the amplitudes associ-
ated with one- and two-body currents: the single-nucleon
current can knock out two particles from a correlated
ground state, and the resulting amplitude interferes with
the amplitude induced by the action of the two-body cur-
rent on this correlated ground state.

H. Euclidean response functions

Direct calculations of Rαβ are difficult in systems with
A > 2, and at the moment one has to rely on techniques
based on integral transforms relative to the energy trans-
fer, which eliminate the need for summing explicitly over
the final states. Two such approaches have been devel-
oped: one based on the Lorentz-integral transform (LIT)
has been used extensively in the few-nucleon systems,
albeit so far by including only one-body electroweak cur-
rent operators. It has been reviewed recently (Leidemann
and Orlandini, 2013), and will not be discussed here. The
other approach is based on the Laplace transform (Carl-
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son and Schiavilla, 1992, 1994) and leads to Euclidean
(or imaginary time) response functions, defined as

Eαβ(q, τ) =

∫ ∞
0

dω e−τ ω Rαβ(q, ω)

= 〈0 |O†β(q) e−τ(H−E0)Oα(q) |0〉 . (147)

The Euclidean response is essentially a statistical me-
chanical formulation, and hence can be evaluated with
QMC methods similar to those discussed earlier. Elec-
tromagnetic Euclidean response functions have been cal-
culated for the few-nucleon systems (A=3 and 4) (Carl-
son et al., 2002; Carlson and Schiavilla, 1992, 1994), and
very recently for 12C (Lovato et al., 2015). It should be
realized that in a nucleus like 12C these are very computa-
tionally intensive calculations, requiring tens of millions
of core hours on modern machines.

In the case of (e, e′) scattering the electromagnetic
Euclidean response functions can be compared directly
with experimental data, by simply evaluating the Laplace
transforms of the measured response functions, at least
for values of τ large enough so as to make EL/T (q, τ)
mostly sensitive to strength in the quasi-elastic and low-
energy regions of RL/T (q, ω).

The response at τ = 0 is identical to the sum rule, and
its slope at τ = 0 is equivalent to the energy-weighted
sum rule. The simulation proceeds by calculating the
ground-state wave function using GFMC, and then evalu-
ating the imaginary-time dependent correlation functions
over a range of separations τ using the same paths sam-
pled in the original ground-state calculation. Since the
current operators couple to states of different spin and
isospin, the calculations require recomputing the path
integral for different current operators Oα(q).

To more easily compare the Euclidean response to data
for larger τ , we multiply by a scaling factor Ẽαβ(q, τ) =
exp[q2τ/(2m)]Eαβ(q, τ). For a free nucleon initially at
rest, this scaled response is a constant independent of
τ , since the response is a delta function in energy for
each momentum transfer q. The slope and curvature of
the calculated Euclidean response at low τ indicates the
strength at high energy, and the response at large τ is
related to the low-energy part of the nuclear response.
The calculated responses have a higher average energy
than simple PWIA-like approaches, and also have greater
strength at high energy (from NN processes) and at low
energy (from low-lying nuclear states).

The difference between the full response and the sim-
ple PWIA is most easily understood for the longitudinal
response, which is dominated by one-nucleon currents.
The PWIA is sensitive to the momentum distribution of
the protons, as it assumes that the struck nucleon does
not interact with other nucleons. The full calculation is
also sensitive to the propagation of charge through the
NN interaction, since the struck proton can charge ex-
change with other nucleons. This rapid propagation of

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Ẽ
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FIG. 28 The longitudinal (upper panel) and transverse (lower
panel) electromagnetic Euclidean responses for 12C at q =
570 MeV/c. The bands represent the transform of the exper-
imental data, and the calculations with single-nucleon and
two-nucleon currents are shown as open and filled symbols,
respectively.

charge leads to an enhanced strength at high energy.

In Fig. 28 we show recent calculations (Lovato et al.,
2015) of the 12C Euclidean electromagnetic longitudi-
nal and transverse response compared with experimental
data. The overall agreement with experiment in the lon-
gitudinal channel is excellent. Here the calculation with
the full currents is very similar to that with one-nucleon
currents alone. The error bars are higher at large τ (lower
energy) because of the required subtraction of the elastic
contribution.

The transverse response is shown in the lower panel of
Fig. 28. The difference between single-nucleon currents
and one- plus two-nucleon currents is quite substantial
and extends over the full range of τ . This implies a sub-
stantial enhancement of the cross section in the full en-
ergy region, including both the quasi-elastic peak and the
low-energy regime. The full calculation is in good agree-
ment with experiment. The enhancement can in some
cases be as large as 40%, somewhat larger than typical
effects of two-nucleon currents on the squared matrix el-
ements of low energy transitions, but not dramatically
so. The larger momentum transfers in these inclusive ex-
periments can be expected to lead to larger contributions
from pion- and ∆ currents, and these are found to be the
dominant two-nucleon current contributions.
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FIG. 29 The longitudinal (upper panel) and transverse
(lower panel) EM response of 4He at q=600 MeV/c recon-
structed from the Euclidean response compared to experi-
mental data (Lovato et al., 2015). The experimental results
are shown as symbols with error bars, and the bands show
the reconstructed responses and errors associated with the
maximum entropy reconstruction.

Ideally one would like to invert the Laplace transform
to obtain a more direct reconstruction of the response as
a function of momentum and energy transfer. This has
been accomplished already for A=4, where the calcula-
tions are much faster and hence the simulations can be
carried out with high accuracy. Recent calculations (Lo-
vato et al., 2015) agree with earlier calculations of the EM
response of 4He (Carlson et al., 2002), but the statistical
accuracy is at least an order of magnitude better.

For such accurate data the maximum entropy
method (Bryan, 1990; Jarrell and Gubernatis, 1996) can
be used to reconstruct the response. Results for 4He
at q=600 MeV/c are shown in Fig. 29, similar accu-
racy is obtained over a wide range of momentum trans-
fers. Again it is seen that the enhancement from two nu-
cleon currents is substantial and extends over the whole
quasielastic regime. At higher energies the calculated re-
sponse does not include pion production and hence fails
to reproduce the strength associated with ∆ production.

Imaginary time response functions for the neutral cur-
rent response of 12C have also been performed (Lovato
et al., 2015) and are shown in Fig. 30. At present the sta-
tistical accuracy is not sufficient to invert the response,
but the Euclidean response already gives important re-
sults. These calculations demonstrate an enhancement
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FIG. 30 The neutral current weak response of 12C at q=570
MeV/c. Calculations with single-nucleon currents are shown
as open symbols, and with the full currents as filled symbols.
The upper panel shows the transverse response and its vector-
vector and axial-axial contributions, while the lower panel
shows the interference vector-axial vector response.

of the axial currents in addition to the expected en-
hancement in the vector channels. In particular, the
vector-axial interference response (lower panel) is signif-
icantly enhanced by the two-nucleon currents. It is this
response that gives the difference between neutrino and
anti-neutrino cross sections. This is a very important
quantity in attempts to isolate the CP-violating phase in
the neutrino sector or the mass hierarchy in long-baseline
experiments; see for example (LBNE Collaboration et al.,
2013). Future work on charge current responses and in-
versions to the real-time response have many important
applications including accelerator neutrinos and neutri-
nos in astrophysical environments.

VI. THE EQUATION OF STATE OF NEUTRON MATTER

A. Pure neutron matter: Homogeneous phase

The equation of state (EoS) of neutron matter is a
key ingredient in understanding the static and dynamic
properties of neutron stars. In the region between the in-
ner crust and the outer core, neutron stars are primarily
neutrons, in equilibrium with a small fraction of protons,
electrons and muons in β-decay equilibrium. It has been
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argued that when the chemical potential is large enough,
heavier particles containing strange quarks may appear.
This is expected to happen at densities & 3ρ0 (Lonar-
doni et al., 2015). However, while the determination of
the maximum mass of neutron stars requires knowledge
of the EoS up to several times nuclear densities, the EoS
around nuclear density and up to about 2ρ0 largely de-
termines their radii (Lattimer and Prakash, 2001). As-
trophysical applications are not the only relevant ones.
The EoS of neutron matter is used to constrain effective
forces in the presence of large isospin-asymmetry. For
example, the bulk term of Skyrme models is sometimes
fitted with input from a neutron matter EoS.

Neutron matter is not directly accessible in terrestrial
experiments, and all the indirect experimental evidence
related to it is based on extrapolations of measurements
on heavy nuclei, and on astrophysical observations (see,
e.g., Danielewicz et al. (2002)). The role of ab-initio tech-
niques becomes therefore crucial as a tool for testing the
model Hamiltonians that can be directly fitted on ex-
perimental data for light nuclei against the constraints
deriving from indirect measurements.

At low densities ρ ≤ 0.003 fm−3 properties of neutron
matter are very similar to ultra-cold Fermi gases that
have been extensively studied in experiments. In this
regime, the interaction is mainly s-wave, and the system
strongly paired. The nuclear interaction can be simpli-
fied, the standard DMC method for central potentials
can be used, and very accurate results for the energy and
the pairing gap obtained (Carlson et al., 2012; Gezerlis
and Carlson, 2008, 2010). Other results obtained using
AFDMC with the full nuclear Hamiltonian are qualita-
tively similar (Gandolfi et al., 2008a, 2009a). At higher
densities, the contribution of higher partial waves be-
comes important, and the complete nuclear Hamiltonian
has to be used to calculate the EoS.

Argonne and other modern interactions are very well
suited to study dense matter. The NN scattering data
are described well with AV18 in a very wide range of lab-
oratory energies, and this gives an idea to their validity
to study dense matter. A laboratory energy of 350 MeV
(600 MeV) corresponds to a Fermi momentum kF ≈400
MeV (530 MeV) and to a neutron density 2 ρ0 (4 ρ0).
This is not the case of softer potentials fitted to very low
energy scattering data. The AV18 and AV8′ two-body in-
teractions combined with the UIX three-body force have
been extensively employed to calculate the properties of
neutron matter and its consequences for neutron star
structure (see, e.g., Akmal et al. (1998)). In the past,
several attempts to use Illinois three-body forces were
made, but they provided unexpected overbinding of neu-
tron matter at large densities (Sarsa et al., 2003), and will
not be discussed any further. It has been recently shown
that even the IL7 three-body interaction gives an EoS
too soft (Maris et al., 2013). It would be very interesting
to calculate the EoS of symmetric nuclear matter using

IL7, but unfortunately there are no such calculations.

The first AFDMC calculations of the EoS of neutron
matter including three-body forces has been produced
by Sarsa et al. (2003). Later using a different implemen-
tation of the constrained-path and with more statistics,
better agreement was obtained with GFMC where the
comparison is available (Gandolfi et al., 2009b). To date,
only the equation of state of pure neutron matter has
been calculated with QMC using realistic Hamiltonians,
while nuclear matter can be studied by including only
two-body forces (Gandolfi et al., 2014).

By imposing periodic boundary conditions it is pos-
sible to simulate an infinite system using a finite num-
ber of particles. However, the energy and other physical
quantities are affected by the spatial cut-offs that are
required to make the wave function compatible with pe-
riodic boundary conditions. The effect of cutting the po-
tential energy at the edge of the simulation box is made
milder by summing the contributions due to periodic im-
ages of the nucleons included in a given number of shells
of neighboring image simulation cells. Finite size correc-
tions to the kinetic energy already appear for the Fermi
gas. In order to have a wave function that describes a
system with zero total momentum and zero angular mo-
mentum, it is necessary to fill up a shell characterized
by the modulus of the single particle momentum. This
fact determines a set of magic numbers, which are com-
monly employed in simulations of periodic systems. The
kinetic energy corresponding to each magic number is a
non-regular and non-monotonic function of the number
of Fermions (Ceperley et al., 1977). This fact suggests
that for an interacting system it is necessary to proceed
with an accurate determination of the closed shell ener-
gies in order to minimize the discrepancy with the infinite
system limit.

To this end, the effect of using different number of neu-
trons was carefully studied by means of the Periodic Box
Fermi hypernetted chain (FHNC) method (Fantoni and
Schmidt, 2001). This study showed that the particular
choice of 33 Fermions (for each spin state) is the clos-
est to the thermodynamic limit. Another strategy for
allowing an accurate extrapolation consists of using the
Twisted Averaged Boundary Conditions. The method,
described in Lin et al. (2001) is based on randomly drift-
ing the center of the Fermi sphere, which adds a phase
to the plane waves used in the Slater determinant, in or-
der to add contributions from wave vectors other than
those strictly compatible with the simulation box. This
procedure smooths the behavior of the energy as a func-
tion of N , giving the possibility of better determining the
N →∞ limit (Gandolfi et al., 2009b).

In Fig. 31 the EoS of neutron matter computed by
a simulation with N = 66 is presented. In order to
check the consistency of the results given by AFDMC,
a simulation was performed using only N = 14 neu-
trons and by imposing the same boundary conditions
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FIG. 31 The EoS of neutron matter as a function of the den-
sity, obtained using the AV8′ NN interaction alone (lower red
symbols/line), and combined with the UIX 3N force (Gan-
dolfi et al., 2014).

3N force Esym L a α b β
(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26
V PW2π + V Rµ=150 32.1 40.8 12.7 0.48 3.45 2.12
V PW2π + V Rµ=300 32.0 40.6 12.8 0.488 3.19 2.20
V3π + VR 32.0 44.0 13.0 0.49 3.21 2.47
V PW2π + V Rµ=150 33.7 51.5 12.6 0.475 5.16 2.12
V3π + VR 33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436

TABLE VI The parameters of Eq. (148) fitting the equation
of state computed with the full AV8′+UIX Hamiltonian and
with the NN interaction only (AV8′). The parametrization
of selected EoSs shown in Fig. 33 are also included. For each
EoS, the corresponding Esym and slope L are indicated.

to the interaction as in the GFMC calculation (Carlson,
2003; Carlson et al., 2003b). The comparison shows that
the two methods are in good agreement (Gandolfi et al.,
2009b). Particular care was taken in studying the effect
of finite-size effects by repeating each simulation using
a different number of neutrons and using Twisted Aver-
aged Boundary Conditions. The repulsive nature of the
three-neutron interaction is clear from the figure, where
the EoS obtained with and without UIX is shown.

The AFDMC results are conveniently fitted using the
functional form

E(ρn) = a

(
ρn
ρ0

)α
+ b

(
ρn
ρ0

)β
, (148)

where E is the energy per neutron (in MeV) as a function
of the density ρn (in fm−3). The parameters of the fit
for both AV8′ and the full AV8′+UIX Hamiltonian are
reported in Table VI.

The EoS of neutron matter up to ρ0 has been recently
calculated by Gezerlis et al. (2014, 2013) with nuclear
two-body local interactions derived within the chiral ef-
fective field theory. The AFDMC calculations for the
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FIG. 32 The EoS of neutron matter as a function of the
density, calculated by Gezerlis et al. (2014) using AFDMC
with chiral NN interactions at LO, NLO and N2LO for the
two different cutoff indicated in the figure (three-body forces
have not been included at N2LO). Also shown are the re-
sults obtained by Wlaz lowski et al. (2014) using lattice QMC
at N2LO, by including the 3N interaction (upper red dot-
dashed line) and without (lower red dot-dashed line), and the
results of Roggero et al. (2014) using the N2LOopt without
3N (orange dashed line).

χEFT interaction at LO, NLO, and N2LO orders are
shown in Fig. 32. (Note that three-body forces have not
been included at N2LO). At each order in the chiral ex-
pansion, it is important to address the systematic un-
certainties entering through the regulators used to renor-
malize short-range correlations; see Gezerlis et al. (2014)
for more comprehensive details. In the figure, the EoS
obtained using cutoffs of R0=1.0 fm and 1.2 fm are indi-
cated. The figure shows that the results are converging in
the chiral expansion, i.e. the energy per neutron at N2LO
is quite similar to NLO. The three-neutron interaction
entering at N2LO has not been included in the calculation
but its contribution is expected to be small (Tews et al.,
2015). Other approaches based on lattice-based QMC
methods have been explored recently by Wlaz lowski et al.
(2014) and Roggero et al. (2014), with very similar re-
sults also included in Fig. 32.

1. Three-neutron force and Symmetry energy

As described in Sec. II.A the NN force is obtained by
accurately fitting scattering data, but a 3N force is es-
sential to have a good description of the ground states
of light nuclei. The effect of the 3N force on the nuclear
matter EoS is particularly important, as it is needed to
correctly reproduce the saturation density ρ0 and the en-
ergy. The neutron matter EoS is also sensitive to the
particular choice of the 3N force, and consequently the
corresponding neutron star structure.

By assuming that the NN Hamiltonian is well con-
strained by scattering data, the effect of using different
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three-neutron forces to compute the EoS of neutron mat-
ter has been studied carefully. As described in Sec. II.B
the 3N force can be split into different parts: a long-range
term given by 2π-exchange, an intermediate part de-
scribed by 3π-rings and a phenomenological short-range
repulsion. The role of the latter term is the least un-
derstood, although in part it is probably mocking up a
relativistic boost correction to the NN interaction (Ak-
mal et al., 1998; Pieper et al., 2001). It is important to
address the effect of all these terms in the calculation of
neutron matter. These parts have been tuned and the
effective range of the repulsive term changed to explore
how these terms change the many-body correlations in
neutron matter. The main part that has been explored
is the short-range term. This term is purely phenomeno-
logical and it is mainly responsible for providing the cor-
relations at high densities. The expectation value of the
2π-exchange Fujita-Miyazawa operator in neutron mat-
ter is small compared to VR, and this limits almost the
whole effect of UIX to the short-range term (Gandolfi
et al., 2012).

From the experimental side, the EoS of neutron matter
cannot be measured, but strong efforts have been made
to measure the isospin-symmetry energy, see the review
by Tsang et al. (2012). By assuming a quadratic depen-
dence of the isospin-asymmetry δ = (ρn − ρp)/(ρn + ρp),
the symmetry energy can be interpreted as the difference
between pure neutron matter (δ = 1) and symmetric nu-
clear matter (δ = 0)

Esym(ρ) = EPNM(ρ)− ESNM(ρ) , (149)

where EPNM is the energy per neutron of pure neutron
matter, and ESNM is the energy per nucleon of symmetric
nuclear matter. The total energy of nuclear matter will
take the form

E(ρ, δ) = ESNM + Esym(ρ)δ2 . (150)

Several experiments aim to measure the symmetry en-
ergy Esym at the empirical saturation density ρ0=0.16
fm−3, and the parameter L related to its first derivative.
Around ρ0 the symmetry energy can be expanded as

Esym(ρ) = Esym +
L

3

ρ− ρ0

ρ0
+ · · · . (151)

The present experimental constraints to Esym have
been used to study the sensitivity of the EoS of neu-
tron matter to the particular choice of the 3N force.
The assumptions are that the empirical energy of nu-
clear matter at saturation is ESNM(ρ0) = −16 MeV, and
through Eq. (149) there is a consequent range of the en-
ergy of neutron matter at saturation, EPNM(ρ0). By fol-
lowing Tsang et al. (2009) the symmetry energy is ex-
pected to be in the range 32 ± 2 MeV, corresponding
to the neutron matter energy EPNM(ρ0) = 16 ± 2 MeV.
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FIG. 33 The energy per particle of neutron matter for differ-
ent values of the nuclear symmetry energy (Esym) (Gandolfi
et al., 2012). For each value of Esym the corresponding band
shows the effect of different spatial and spin structures of the
three-neutron interaction. The red and black line show the
same result of Fig. 31 where just the two-body alone and with
the original UIX three-body forces has been used. The in-
set shows the linear correlation between Esym and its density
derivative L.

Other papers report a wider range of values of Esym; see
for example Chen et al. (2010).

Following Pieper et al. (2001), different parametriza-
tions of APW2π , ASW2π and A3π have been considered. Start-
ing with the original strengths of these parameters, the
constant AR has been adjusted in order to reproduce a
particular value of EPNM(ρ0) and give a corresponding
symmetry energy. We show the various EoS computed
using different models of 3N interactions in Fig. 33, com-
pared to the AV8′ NN force alone and with the original
UIX 3N force. The blue and green bands in the figure
show the EoS with a symmetry energy corresponding to
33.7 and 32 MeV, respectively. Each band covers the var-
ious results obtained using different three-neutron forces
adjusted to have the same Esym. The parameters fitting
the higher and the lower EoS for each band are reported
in Table VI. It is interesting to note that the bands are
tiny around ρ0, and the uncertainty grows at larger den-
sities. The two bands show the sensitivity of the EoS to
the three-neutron force.

The EoS are used to determine the value of L as a
function of Esym in Eq. (151), and the result is shown in
the inset of Fig. 33. As expected, the uncertainty in L is
very small, producing a very accurate prediction of L as
a function of Esym (Gandolfi et al., 2012). These results
generally agree with experimental constraints (see Tsang
et al. (2012) and Lattimer and Lim (2013)), and with con-
straints from neutron stars (Steiner and Gandolfi, 2012),
as discussed in the next section. Future experiments with
the aim to measure simultaneously Esym and L will pro-
vide a strong test of the assumed model. Two important
aspects could be missing in this model: the relativistic
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in Sec. VI.A. The two green and blue bands show the results
obtained using different 3N forces constrained to have a par-
ticular value of the symmetry energy (indicate by numbers
near the bands and curves).

effects and the contribution of higher-order many-body
forces. However in the regime of densities considered,
these effects can probably be neglected. First, the rel-
ativistic effects have been previously studied in Akmal
et al. (1998), where it has been shown that the density
dependence of such effects has roughly the same behav-
ior as the short-range part of the three-body force, i.e.,
that they can be incorporated in its short-range part.
Second, the four-body force contributions should be sup-
pressed relative to the three-body force for densities up
to 2-3ρ0. Within χEFT this assumption can be justified
at nuclear density by the high precision fits to light-nuclei
obtained with only three-body forces (Epelbaum et al.,
2009). For phenomenological interactions, the contribu-
tion of the two-body potential energy is much larger than
that of the three-body, and the four-body is then ex-
pected to be much smaller than the three-body in dense
matter (Akmal et al., 1998).

2. Neutron star structure

While real neutron stars are very complicated ob-
jects, their main global properties can usually be well-
approximated by considering simple idealized models
consisting of a perfect fluid in hydrostatic equilibrium.
If rotation can be neglected to a first approximation (as
is the case for the spin rates of most currently-known pul-
sars) then the model can be taken to be spherical and its
structure obtained by solving the Tolman-Oppenheimer-
Volkoff (TOV) equations (Oppenheimer and Volkoff,
1939), enabling one to calculate, for example, the stellar

mass as a function of radius or of central density. Using
the energy density ε(ρ) defined as

ε(ρ) = ρ[E(ρ) +mnc
2] , (152)

where mn is the mass of neutron, and the pressure P (ρ)
at zero temperature is given by

P (ρ) = ρ2 ∂E(ρ)

∂ρ
, (153)

as inputs, the neutron star model is evaluated by inte-
grating the TOV equations:

dP

dr
= −G[m(r) + 4πr3P/c2][ε+ P/c2]

r[r − 2Gm(r)/c2]
, (154)

dm(r)

dr
= 4πεr2 . (155)

Here m(r) is the gravitational mass enclosed within a ra-
dius r, and G is the gravitational constant. The solution
of the TOV equations for a given central density gives
the profiles of ρ, ε and P as functions of radius r, and
also the total radius R and mass M = m(R), with R de-
fined as the distance where the pressure P drops to zero.
A sequence of models can be generated by specifying a
succession of values for the central density. In Fig. 34 the
mass M (measured in solar masses M�) as a function of
the radius R (measured in km) is showed, as obtained
from AFDMC calculations using different prescriptions
for the EoS presented in the previous sections.

It is interesting to make a comparison between these
results so as to see the changes caused by introduction
of the various different features in the Hamiltonian. An
objective of this type of work is to attempt to constrain
microphysical models for neutron-star matter by mak-
ing comparison with astronomical observations. This
has become possible in the last few years, as discussed
for example in Steiner et al. (2010), Ozel et al. (2010),
Steiner and Gandolfi (2012) and Steiner et al. (2015).
Further progress is anticipated within the next few years
if gravitational waves from neutron star mergers can be
detected. The most recently observed maximum neutron
star masses are 1.97(2) M� (Demorest et al., 2010) and
2.01(4) M� (Antoniadis et al., 2013). These observations
put the most severe constraints on the EoS, although the
precise hadronic composition is still undetermined.

B. Inhomogeneous Neutron Matter

While the mass and radius of a neutron star depend
primarily on the equation of state of neutron matter,
the inner crust of the star contains inhomogeneous neu-
tron matter immersed between very neutron-rich nu-
clei (Brown and Cumming, 2009; Ravenhall et al., 1983;
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Shternin et al., 2007). Similarly, the exterior of very
neutron-rich nuclei is believed to have a significant excess
of neutrons. This neutron distribution can be probed, for
example, in parity-violating electron scattering.

Mean-field models including Skyrme and related mod-
els are typically fit to bulk properties of known nuclei,
which are much nearer to isospin symmetry. They have
sometimes also included results from ab-initio calcula-
tions of neutron matter directly in their fits, e.g., Cha-
banat et al. (1997, 1998). Historically, this is the only
information used to constrain density functionals in the
pure neutron matter limit.

Therefore it is useful to perform ab-initio studies of in-
homogeneous neutron matter at low and moderate den-
sities. A study of neutron drops can provide constraints
on density-functional studies of neutron-rich inhomoge-
neous matter, as well as the properties of neutron-rich
nuclei that can be measured in terrestrial experiments.
(Gandolfi et al., 2011; Maris et al., 2013). It is also possi-
ble to study neutron-rich nuclei with an inert core of neu-
trons and protons, including realistic NN and 3N interac-
tions between the neutrons. This approach has been used
to study the binding energies of oxygen (Chang et al.,
2004; Gandolfi et al., 2006) and calcium isotopes (Gan-
dolfi et al., 2008b).

Calculations of neutron drops provide information
about a variety of quantities that enter in the energy-
density functional. Clearly the gradient term in pure
neutron matter is important in neutron drops, this term
has a large uncertainty in fits of known nuclei. The gradi-
ent term is important even in closed-shell arrangements
of neutrons in an external well. Studying drops between
the closed shell limits provides a variety of additional in-
formation. One can study the superfluid pairing of pure
neutron drops, a very different environment from nuclei.
The pairing is expected to play a more important role
in dilute neutron matter, and may affect the shell clo-
sure. Similarly one can look at the purely isovector spin-
orbit splitting by varying the number of neutrons around
closed shells and possible sub-shell closures.

Early QMC calculations of very small neutron drops
(N = 6,7,8) already indicated a substantial difference
from traditional Skyrme models, which overbind the
drops and yield a too-large spin-orbit splitting (Pederiva
et al., 2004; Pudliner et al., 1996; Smerzi et al., 1997).
However these calculations did not systematically cover
a wide range of neutron numbers and confinement poten-
tials.

Both GFMC and AFDMC have been used to pro-
vide ab-initio results for neutron drops. The AV8′+UIX
Hamiltonian, which produces an EoS consistent with
known neutron star masses (see the previous section),
has been used to constrain several modern Skyrme mod-
els (Gandolfi et al., 2011; Maris et al., 2013). Several
forms of the external well were considered, including har-
monic oscillators (HO) of various frequency, as well as
Wood-Saxon wells. The former produce a wider range of
densities, particularly higher densities near the center of
the trap, while in the latter the density saturates as in
nuclei.

The results of these calculations are shown in Figs. 35
and 36. For the harmonic traps the energy is divided by
the frequency of the trap times N4/3; this would be a con-
stant for a free Fermi Gas in the Thomas-Fermi or local
density approximation. The QMC results are shown as
solid points. For a given Hamiltonian, the agreement be-
tween GFMC and AFDMC is very satisfactory. Results
agree very well for the 10 MeV HO interaction, while
for ~ω = 5 MeV, the AFDMC results are slightly higher
than the GFMC ones; the maximum difference is 3%, and
more typically results are within 1%. The bigger differ-
ence for the low-density drops produced by the 5-MeV
well presumably arises because the importance function
used in AFDMC does not include pairing, in contrast to
the more complete treatment used in GFMC.

In both cases conventional Skyrme models overbind the
drops. Since some of the Skyrme functionals have been
fitted to the neutron matter EoS, the overbinding might
be explained by the contributions given by the gradient
term. As is evident from Fig. 35, closed shells are still
found at N = 8, 20, and 40 neutrons in the HO wells.
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Skyrme models (see text) from (Gandolfi et al., 2011).

These closed-shell states are almost exclusively sensitive
to the neutron matter EoS and the isovector gradient
terms, while the contributions from pairing and spin-
orbit terms are very small. Instead, by examining drops
with neutron numbers that differ slightly from closed
shells, one can constrain the spin-orbit interaction. It
has been found that a smaller isovector coupling, approx-
imately 1/6 of the isoscalar coupling, reproduces rather
accurately the ab-initio calculations for these drops. Re-
sults for half-filled-shell drops (e.g. N = 14 or 30) and
odd-even staggerings are sensitive to the pairing inter-
actions as well as the spin-orbit force. Fixing the spin-
orbit strength from near closed-shell drops, the pairing
strength can be adjusted to fit the calculated spectra.

Adjusting these three parameters in the density func-
tional to better describe energies for selected number of
neutrons in the HO as described in Gandolfi et al. (2011)
improves the agreement for all external fields and parti-
cle numbers considered. This is shown by the upper solid
curves (SLY4-adj) in Fig. 35 and in Fig. 36.

The rms radii and density distributions of neutron
drops are also useful checks of the density functionals.
GFMC accurately computes these quantities. In Fig. 37
the radii computed using GFMC for different drops are
compared to those computed using the original SLY4
Skyrme and the adjusted SLY4-adj for the two HO wells
considered. Comparisons of the densities for N = 8 and
14 in the HO wells are shown in Fig. 38. These two sys-
tems provide benchmarks of a closed-shell drop and of
a half-filled-shell respectively. The adjusted-SLY4 gives
much better evaluations of these observables than those
obtained using the original SLY4 functional.

The QMC calculations can also be compared to pre-
dictions given by other methods. For example, in Fig. 39
the AFDMC results obtained using different Hamiltoni-
ans (indicated in the legend) are compared to the no core
full configuration results obtained using the JISP16 inter-
action in no-core full configuration (NCFC) calculations
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FIG. 38 Calculated densities of neutrons in HO potentials
compared to Skyrme models (see text) from (Gandolfi et al.,
2011).
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FIG. 39 Energies divided by ~ωN4/3 for neutrons in HO fields
with ~ω = 10 MeV obtained using AV8′ with and without
three-neutron forces with AFDMC, and using JISP16 with
the NCFC method (Maris et al., 2013).

(Maris et al., 2013).
Recent density functionals successfully reproduce both

the properties of nuclei and neutrons drops. The new
Skyrme parametrizations UNEDF0, UNEDF1 and UN-
EDF2 (Kortelainen et al., 2014) are compared to QMC
calculations in Fig. 40. These new parametrizations pro-
vide a much better fit to neutron drops.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Quantum Monte Carlo methods have proved to be ex-
tremely valuable for studying the structure and reactions
of nuclei and nucleonic matter with realistic nuclear in-
teractions and currents. As illustrated in this review,
QMC methods can simultaneously treat diverse phenom-
ena across a range of momentum scales including strong
tensor correlations at short distances and the associated
electroweak responses, spectra and clustering and low-
energy EM transitions in light nuclei, and superfluidity
and the dense neutron matter equation of state. Across
this range from the lightest nuclei to neutron matter
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the same nuclear models of interactions and currents are
applicable. These models have been directly obtained
from nucleon-nucleon scattering data and properties of
the very lightest nuclei.

QMC methods and accurate interaction and cur-
rent models provide quantitative predictions for spec-
tra, electromagnetic moments, transition rates, form fac-
tors, asymptotic normalization constants, and other low-
momentum properties of nuclei up to A=12. The recent
results on electromagnetic transitions in light nuclei is
particularly encouraging, demonstrating conclusively the
importance of realistic models of two-nucleon currents
even at very low momentum transfer. The wide range of
energies (up to ∼ 350 MeV lab) covered by these interac-
tions also allow one to study the electroweak response at
rather large momentum transfers, and to study the neu-
tron matter equation of state up to the regime where the
Fermi momentum is ∼ 2.5 fm−1, a regime that controls
the radius and much of the structure of neutron stars.
Realistic models of the nuclear interaction predicted a
stiff equation of state at high densities from the two- and
three-nucleon repulsion. The recent observation of two-
solar mass neutron stars confirms this behavior.

Progress has been due to a concerted effort of physi-
cists studying nuclear interactions and currents, novel
quantum Monte Carlo methods, and computer scientists
and applied mathematicians enabling efficient computa-
tions on the largest available computers (Bogner et al.,
2013). The dramatic advances in computer architecture,
and the fairly wide availability of these machines, have
also been key.

Many important challenges will be addressed in the
near future, in both light and heavy nuclei and nucle-
onic matter. In light nuclei the study of more compli-

cated nuclear reactions will be important. These can
address problems where it is difficult to conduct exper-
iments, including reactions at very low energies where
the Coulomb barrier suppresses the reaction rate, or re-
actions on unstable nuclei. In addition tests of funda-
mental symmetries, including electric dipole moments in
light nuclei, can be addressed. Many of these problems
require only moderate advances in theory and compu-
tation and it should be possible to address a significant
number in the next few years.

Neutrino scattering and nuclear response is of funda-
mental interest in both fairly light nuclei like carbon and
oxygen, and also in heavier nuclei like argon. Calcu-
lations of the charged-current carbon response will be
very illuminating, in particular regarding the difference
of neutrino to anti-neutrino cross sections. This plays a
key role in future attempts to measure the neutrino mass
hierarchy and the CP-violating phase using accelerator
neutrinos. Calculations in heavier nuclei will allow us to
explore the nuclear dependence of the quasielastic scat-
tering, which is expected to be fairly small as in electron
scattering.

The properties of heavy neutron-rich nuclei are also
very important, particularly in light of the upcoming
FRIB facility. The extreme neutron-rich nuclei play an
important role in the r-process, and it will be very inter-
esting to explore questions including pairing in neutron-
rich nuclei and their weak response starting from fun-
damental interactions. Of course larger nuclei also pro-
vide important tests of fundamental symmetries, includ-
ing electric dipole moments and neutrinoless double beta
decay. It will be an important challenge to use quantum
Monte Carlo techniques to study these problems.

The reliability and dynamic range of these models are
extremely important in extrapolating to new regimes,
particularly the neutron-rich matter found in supernovae
and neutron stars. Questions to be addressed there in-
clude the equation of state and weak response of beta-
stable matter, relevant to the cooling of neutron stars,
and the response in hot low-density regimes character-
istic of the surface where the neutrinos decouple in the
core-collapse supernovae. Studies of the equation of state
and its relevance to neutron star mergers are also impor-
tant. Gravitational wave observations should be able to
give much more precise information on the mass-radius
relation in neutron stars.

We look forward to dramatic advances in theory and
computation, including a more refined understanding of
nuclear interactions and currents. Combined with excit-
ing prospects in experiments and observation, we believe
there is a bright future for nuclear physics and its con-
nections to quantum few- and many-body theory, astro-
physics, neutrino physics, and physics beyond the Stan-
dard Model.
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A. Nogga, J. Carlson, R. Machleidt, V. R. Pandharipande,
R. B. Wiringa, A. Kievsky, S. Rosati, and M. Viviani
(1998), Phys. Rev. C 58, 1263.

Schiavilla, R., and R. Wiringa (2002), Phys. Rev. C 65,
054302.

Schiavilla, R., R. B. Wiringa, and J. Carlson (1993), Phys.
Rev. Lett. 70, 3856.

Schiavilla, R., R. B. Wiringa, V. R. Pandharipande, and
J. Carlson (1992), Phys. Rev. C 45, 2628.

Schiavilla, R., R. B. Wiringa, S. C. Pieper, and J. Carlson
(2007), Phys. Rev. Lett. 98, 132501.

Schmidt, K., and D. Ceperley (1992), The Monte Carlo
Method in Condensed Matter Physics (ed by K. Binder
Springer, Berlin).

Schmidt, K. E., and S. Fantoni (1999), Phys. Lett. B 446,
99.

Schmidt, K. E., and M. A. Lee (1995), Phys. Rev. E 51,
5495.

Seki, R., and U. van Kolck (2006), Phys. Rev. C73, 044006.
Shen, G., L. Marcucci, J. Carlson, S. Gandolfi, and R. Schi-

avilla (2012), Phys. Rev. C86, 035503.
Shiner, D., R. Dixson, and V. Vedantham (1994), Phys. Rev.

Lett. 74, 3553.
Shternin, P. S., D. G. Yakovlev, P. Haensel, and A. Y.

Potekhin (2007), Mon. Not. R. Astron. Soc. 382, L43.
Sick, I. (1982), Phys. Lett. B 116, 212.
Sick, I. (2013), Private communication.
Smerzi, A., D. G. Ravenhall, and V. R. Pandharipande

(1997), Phys. Rev. C 56 (5), 2549.
Spayde, D. T., et al. ((SAMPLE Collaboration)) (2000),

Phys. Rev. Lett. 84, 1106.
Steiner, A. W., and S. Gandolfi (2012), Phys. Rev. Lett. 108,

081102.
Steiner, A. W., S. Gandolfi, F. J. Fattoyev, and W. G. New-

ton (2015), Phys. Rev. C 91, 015804.
Steiner, A. W., J. M. Lattimer, and E. F. Brown (2010),

Astrophys. J. 722, 33.
Stoks, V., R. Timmermans, and J. J. de Swart (1993a), Phys.

Rev. C 47 (2), 512.
Stoks, V. G. J., R. A. M. Klomp, M. C. M. Rentmeester, and



57

J. J. de Swart (1993b), Phys. Rev. C 48 (2), 792.
Stoks, V. G. J., R. A. M. Klomp, C. P. F. Terheggen, and

J. J. de Swart (1994), Phys. Rev. C 49 (6), 2950.
Strueve, W., C. Hajduk, P. Sauer, and W. Theis (1987),

Nucl. Phys. A 465 (4), 651.
Subedi, R., R. Shneor, P. Monaghan, B. Anderson, K. Aniol,

et al. (2008), Science 320, 1476, 0908.1514.
Tews, I., S. Gandolfi, A. Gezerlis, and A. Schwenk (2015),

In preparation.
Tilley, D. R., C. M. Cheves, J. L. Godwin, G. M. Hale, H. M.

Hofmann, J. H. Kelley, C. G. Sheu, and H. R. Weller
(2002), Nucl. Phys. A 708, 3.

Tilley, D. R., J. H. Kelley, J. L. Godwin, D. J. Millener, J. E.
Purcell, C. G. Sheu, and H. R. Weller (2004), Nucl. Phys.
A 745, 155.

Towner, I. S. (1987), Phys. Rep. 155 (5), 263.
Towner, I. S., and J. C. Hardy (1998), ArXiv Nuclear Theory

e-prints nucl-th/9809087.
Towner, I. S., and J. C. Hardy (1999), , 338Edited by P.

Herczeg, C.M. Hoffman, and H.V. Klapdor-Kleingrothaus
(World Scientific, Singapore).

Tsang, M. B., J. R. Stone, F. Camera, P. Danielewicz, S. Gan-
dolfi, K. Hebeler, C. J. Horowitz, J. Lee, W. G. Lynch,
Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Ri-
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