Overview of Polarized 3He Gas Targets

Jian-ping Chen, Jefferson Lab
Spin2014, Beijing, China, October 24, 2014

- Introduction to spin and polarized 3He
- Polarized 3He gas targets for high-energy nuclear physics
- Polarized 3He for other applications
- Summary

Acknowledgement: some slides provided by my collaborators
some “borrowed” from colleague’s talks on the web
Introduction to Polarized ^3He

Spin-Exchange Optical Pumping
Metastability-Exchange Optical Pumping
Asymmetry for Nucleon Spin Measurements

- Double spin symmetries for polarized beam on polarized targets

\[A = \frac{1}{P_b P_t f} \frac{N^{\uparrow\uparrow} - N^{\downarrow\uparrow}}{N^{\uparrow\uparrow} + N^{\downarrow\downarrow}} \]

- Figure of Merit (FOM) depends on luminosity, beam and target polarization (squared), dilution factor (squared)

\[FOM = P_b^2 \times P_t^2 \times f^2 \times L \]

\[L = I \times \rho \left[\text{cm}^2 \text{ s}^{-1} \right] \]
Polarized Luminosity and Polarization

- **Luminosity**
 - Internal targets (storage ring) \(10^{31}\)
 - Polarized external (fixed) targets
 - Solid (p/d) \(10^{35}\)
 - Gas \((^3\text{He})\) \(10^{36}\) (JLab)

World highest luminosity/FOM

- **Polarization** (in high-intensity beam)
 - \(P_{^3\text{He}} > 70\%\) (~60\%) (JLab)
 - \(P_H > 90\%\) (70\%)
 - \(P_D > 70\%\) (40\%)
Polarized 3He

- Polarized atomic electrons, then spin exchange with 3He nuclei
 - Issue: ground state, two electrons (full shell), opposite spin, can not be polarized (exclusion principle)

- Solutions:
 1) Alkali (Rb) Optical Pumping Spin Exchange
 2) Meta-stability Exchange Optical Pumping
Spin exchange Optical Pumping for 3He

Optical Pumping on Rb atom

Spin exchange

Collisional Mixing

$5S_{1/2}$

795 nm

$5P_{1/2}$

σ^+

Zeeman Splitting

$M = -1/2$

$M = +1/2$

3He

Rb
Meta-stability Exchange Optical Pumping

$2^3P_0 \rightarrow \{ \begin{array}{c}
2^3S_1 \\
1^1S_0
\end{array} \} \quad 2^3P_0 \rightarrow \{ \begin{array}{c}
2^3S_1 \\
1^1S_0
\end{array} \} \quad m_F = -3/2

CP Laser 1083 nm

RF Excitation (~1 ppm)

σ^+

Equal Probability Decay

Net Polarization

Metastability Exchange

F=1/2

3/2

1/2

-1/2

1/2

-1/2
History/Progress in Polarized 3He

- **Spin-Exchange Optical Pumping**

 1960: Bouchiat/Carver/Varnum (Princeton), PRL 5, 373 (1960)

 2.8 atm 3He, optically pumped 0.001 mm partial pressure of Rb, \(P = 0.01\% \)

 we have observed enhancement of the nuclear polarization by a factor of

 \(10^4 \) above the initial Boltzmann distribution of

 \(10^{-8} \).

 Now: 10 atm 3He, Rb-K optical pumping, \(P > 70\% \) (JLab/UVa/W&M...)

- **Meta-stability Exchange Optical Pumping**

 1963: Colegrove/Schearer/Walters (Texas Instruments), PR, 132, 2561 (1963)

 \(\sim 0.001 \text{ atm} \) 3He, achieved \(\sim 40\% \) polarization

 The highest polarization measured by nuclear magnetic resonance was \(40 \pm 5\% \) in a 5 cm-diam Pyrex sphere with the 3He gas pressure at 1 mm Hg.

 Now: \(\sim 1 \text{ atm} \) 3He, mass production with MEOP, \(P > 70\% \) (Mainz)
Polarized 3He Target @ JLab: 1998-now

Spin-Exchange Optical Pumping

https://hallaweb.jlab.org/wiki/index.php/Hall_A_He3_Polarized_Target
http://hallaweb.jlab.org/equipment/targets/polhe3/polhe3_tgt.html

JLab (J. P. Chen), UVa (G. Cates), W&M (T. Averett), Duke (H. Gao), Temple (Z.E. Meziani), Kentucky (W. Korsch), Caltech(E. Hughes)…
JLab Polarized 3He Target

- $P = 40-45\%$
- $I = 15\mu A$
- **Diode Laser**
- **Diode Laser**
- **Diode Laser**
- **Photo-Diode for EPR**
- **Helmholtz Coils**
- **Cell: $L = 40\,cm$**
- **windows: $\sim 100\mu m$**
- **NMR RF Drive Coils**

- **3x30W @795nm**
- **$e^-\text{beam}$**
- **$e^-\text{beam}$**
- **Cell**
- **Pickup Coils**

✓ longitudinal, transverse and vertical

✓ Luminosity=10^{36} (1/s) (highest in the world) upgrade on the way to 10^{37}

✓ High in-beam polarization ~ 60% (>70% no beam)

✓ Effective polarized neutron target

✓ 13 completed experiments 8 approved with 12 GeV (A/C)
Figure-of-Merit History for High Lumiosity Polarized 3He

Figure of Merit $\equiv (\text{Target Polarization})^2 \times \text{Beam Current}$

SLAC

Jefferson Lab

E142
35% @ few μA
1990

E154
35% @ few μA
1992

E94-010
35% @ 10 μA
1994

E97-110
40% @ 12 μA
1996

E99-117
40% @ 12 μA
1998

E02-013
50% @ 8 μA
2000

E06-010
60% @ 15 μA
2002

Year
Rb-K Hybrid Optical Pumping for 3He

Collisional Mixing

$5P_{1/2}$

795 nm σ^+

$5S_{1/2}$

$M = -1/2$ $M = +1/2$

Zeeman Splitting
Narrow-width Lasers

With new narrow-width lasers, polarizations > 70%

Left: Blue is current lasers, Red is Comet laser
Right: Absorption spectrum of Rb
Polarimetry

- Two methods: **NMR and EPR**, precision 2-3%
- **NMR** (nuclear magnetic resonance)
 - RF field
 - AFP (adiabatic fast passage) sweep through resonance when target spin flips, induced signal through pickup coils
 - Needs calibration from a known (water calibration)
- **EPR** (electron-paramagnetic resonance)
 - Rb energy level splitting (D2 light) corresponding to main field +/- a small field due to 3He polarization
 - Using AFP to flip 3He spin. Frequency difference of lights emitted proportional to 3He polarization
 - No calibration needed
- Cross checking with elastic asymmetry measurements
EPR and Water NMR

EPR

Water NMR
Ongoing Upgrade for Future Experiments

- 8 approved new experiments at JLab
- Aiming for luminosity $L \sim 10^{37} \text{ cm}^{-2}\text{s}^{-1}$
 - Single transfer tube \rightarrow two transfer tubes allowing convection-driven gas flow
 - Metal target chamber to withstand high beam current
- Pulsed NMR Polarimetry
Other US Polarized 3He Facilities

UVa, W&M, Duke, New Hampshire, NIST, Wisconsin, Michigan, …
Polarized 3He at UVa (Gordon Cates)/ W&M (Todd Averett)

- Collaborating on JLab polarized 3He program
- Produce target cells for JLab experiments
- R&D on upgrade for polarized 3He for JLab experiments

- UVa Center for In-vivo Hyperpolarized Gas MR Imaging (2000)
- Both 3He and 129Xe

- 3He Spin density MRI

Courtesy of T. Altes et al., University of Virginia

Inhaled Bronchodilator
Asymptomatic Asthmatic

G. Cates’ talk
Polarized 3He at Duke (Haiyan Gao)

- Collaborating on JLab polarized 3He program
- 3He spin structure with High Intensity γ Source (HIγS)
- Neutron Electric Dipole Moment (EDM)
- Search for Spin-Dependent Short-Range Force (collaboration with Fudan U.)
- Establishing collaboration on polarized 3He R&D for at Tsinghua
New Hampshire Center for Xenon Imaging
(W. Hersman)

• Functional Lung Imaging
• Low-field and ultra-low-field imaging
• Functional dissolved-state imaging
• Biomedical imaging simulations
• Also R&D on polarize 3He

(Xemed LLC)
Polarized $^3\text{He} @ \text{NIST and Wisconsin}$

- NIST, SEOP polarized ^3He as Neutron Spin Filter for material science experiments with neutron scattering

- Wisconsin: R&D on SEOP polarized ^3He to improve performance
 - Search for Axion-like Particles using dual-species NMR ^{129}Xe and ^{131}Xe
 - Optically pumped alkali magnetometers for biomedical applications
Polarized 3He at Michigan (T. Chupp)

- R&D on SEOP polarized 3He
- Nuclear physics (neutron spin structure)
- Fundamental Physics with Neutron
- Atomic EDM

Polarized 3He Beam Source R&D for EIC @ MIT (R. Milner)

- Based on MEOP
- Doubly ionization 3He++ for injection
- Goal: ~70% @ 30G 1 torr
- Transfer $\sim 10^{-14}$ 3He/s to EBIS @ 5T & 10$^{-7}$ torr
- Deliver 1.5×10^{11} 3He++ per 20 µs pulse

RHIC’s Electron Beam Ion Source
Polarized 3He Facility in Europe
Mainz (W. Heil et al.), …

Meta-Stability Exchange Optical Pumping
Current 3He Polarizing Facility in Mainz

- $P=75-78\%$ @ 1 bar-liter/Hour for fundamental science
- $P\approx 65\%$ @ 2-3 bar-liter/Hour for medical application
- "Polarized Helium Lung Imaging Network"
- "Magnetic Resonance Imaging for Diagnosis and Monitoring of COPD and Asthma"
Applications of Polarized 3He @ Mainz

- **Fundamental applications**
 - Symmetry test He3/Xe-129
 - Search for new short-rang force (axion-like)
 - Search for Electric Dipole Moment of Xe-129
 - Accurate measurements of high magnetic field
 - Medium energy physics: neutron form factor, GDH sum rule
 - F. Allmendinger’s talk

- **Fundamental physics with cold and ultracold neutrons**
 - angular correlation of beta-particle and neutrino in beta-decay
 - Neutron lifetime

- **Medical Applications**
 - MRI of the lung with 3He and 129Xe

- K. Tullney’s talk
Polarized 3He Facilities in Asai

Japan, Korea, China (Lanzhou, Tsinghua, …)
Polarized 3He in Japan: Neutron Spin Filter

- Japan: SEOP polarized 3He as Neutron Spin Filter
- Developed for the pulsed neutron beam at J-PARC BL10 beamline

Figure 3. (a) Wavelength dependence of the transmitted neutron beam intensity for the NSF with polarized and depolarised 3He gas. (b) Calculated neutron polarization. (c) Pumping time dependence of the 3He gas polarization measured during in-situ SEOP.
Polarized 3He @ Lanzhou Univ.

B. Hu, Y. Zhang, et al.

- clean room
- gas filling system
- SEOP
- Obtained 1st polarization
- NMR (3He and water)
- EPR (commissioning)
Polarized 3He Lab at Tsinghua for fundamental symmetry studies

H. Gao et al.
Summary

- Spin and polarization: amazing phenomenon with broad applications
- Introduction to polarized 3He: SEOP and MEOP, tremendous progress
- Polarized 3He: critical for neutron spin structure study, wide range of fundamental physics, medical imaging and other applications
- JLab: SEOP, neutron and 3He spin physics
 Highest polarized luminosity and highest FOM
 Future: improve luminosity by one order of magnitude
- Polarized 3He groups in USA, Europe and Asia
- Pioneering work just started in China (Lanzhou/Hefei, Tsinghua, …)
- Useful tool for spin physics and great potential for applications