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ABSTRACT

The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the
proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quark
parton distribution functions, ∆d/d, tends towards -1/2 at large x, in disagreement with
the perturbative QCD prediction that ∆d/d approaches 1 but more in line with constituent
quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin
asymmetries were measured in the scattering of a longitudinally polarized electron beam
of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target
in the deep inelastic scattering and resonance region, allowing for the extraction of the
neutron asymmetry An

1 and the ratios ∆d/d and ∆u/u. We will discuss our analysis of the
data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting
quark ratios for the up and down quarks in the kinematic range of 0.2 < x < 0.6 and 2 <

Q2 < 5 GeV2 for our deep inelastic scattering data. Invoking duality, we also extract An
1

and gn
1/Fn

1 in the resonance region, characterized by 0.6 < x < 0.8 and 3.3 < Q2 < 7 GeV2.
Our measurements are compared to the world data and various theoretical models and more
recent predictions using the Dyson-Schwinger Equation approach. We also present analysis
of the unpolarized cross section data, which contributes to the g1 spin structure function and
eventually the a2 matrix element, an x2-weighted moment of g1. The extracted a2 data are
compared to a Lattice QCD calculation.
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4.22 The difference between reconstructed tracks projected onto the shower
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reproduced from [169]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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5.5 The figure on the left shows the cut used (semi-trapezoidal black line) to
select the electron sample in the two-dimensional energy plot in the Pion
Rejector. On the right is its resulting gas Čerenkov ADC (sum) spectrum. . 141
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pions via a cut on the gas Čerenkov either firing or not firing. The fit used
is a simple Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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5.8 Gas Čerenkov cut efficiency study results. From this plot, we deduce that
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of the electron sample chosen (between the vertical dashed lines) in the
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and subtracted from the original electron sample. . . . . . . . . . . . . . . 146
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5.12 This figure gives an example drawing of how the background was deter-
mined in the gas Čerenkov. Good electrons (in red) populate the region
above the green dashed line. If we choose the näive ‘inverse,’ (i.e., having
the E/p and PRL1 values less than some value(s)) we will not sample the
full contamination (the magenta region). The full contamination seen in
the gas Čerenkov is obtained when we plot the events shown in the ma-
genta dashed line plus the region shown with the light blue slashes. This
corresponds to the cut written in quotes in the lower right of the drawing. . 147
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cut on E/p and the gas Čerenkov (cut result shown in red). The ratio of the
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and varied. See text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.18 Live time study. Plotted on the x-axis is the production run number. Plotted
on the y-axis is the live time. The black points are the estimated values
during the experiment, while the red points represent the offline calculation
taking into account the removal of beam trips. . . . . . . . . . . . . . . . . 156

5.19 The effective acceptance for each momentum bin measured in the LHRS.
The red data points indicate the E = 4.74 GeV data, while the blue data
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5.20 SAMC compared to data for the target variables. The black curves show
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vertical slope of the track x′. Negatively charged events are highlighted
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reproduced from [169]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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5.22 A representative TDC for a PMT in the gas Čerenkov. The black histogram
has no cuts. The blue histogram shows the TDC distribution after data qual-
ity cuts have been applied. The vertical red lines indicate the cut window.
Figure reproduced from [169]. . . . . . . . . . . . . . . . . . . . . . . . . 164

5.23 The effect of using the vertical and horizontal PMT acceptance cuts on an
arbitrary TDC distribution. The black histogram shows the TDC distribu-
tion without PMT acceptance cuts; the red histogram has TDC cuts applied.
Figure reproduced from [169]. . . . . . . . . . . . . . . . . . . . . . . . . 165

5.24 The effect of using all of the gas Čerenkov TDC and PMT acceptance cuts
and how it affects that PMT’s ADC spectrum. The various colors indicate
the application of a different cut, see text. Figure reproduced from [169]. . . 166
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5.28 Gas Čerenkov pion rejection factors for T1 events for a beam current of
1 µA (left) and T6 events at a beam current of 15 µA (right). The blue
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curve is for results over the full acceptance. Figure reproduced from [169]. . 170

5.29 Pion rejection factors for the preshower (top left), scintillating plane (top
right), and the shower E/p (bottom left). Each result is plotted as a function
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5.30 Raw 3He, positron, and diluted N2 cross sections. The subtraction of all
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background signal are shown with thier respective error bands. These fits
were used to obtain σrad. (a): Es = 4.74 GeV data; (b): Es = 5.89 GeV data.
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5.33 Unfolded Born cross sections. The error bars shown on the Born cross
section are statistical. The systematic errors are given by the gray band
(Sect. 5.4.5). (a): Es = 4.74 GeV data; (b): Es = 5.89 GeV data. Tables of
all data may be found in Appendix E.1. . . . . . . . . . . . . . . . . . . . 180
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points are statistical errors; the blue points are background subtraction er-
rors; the green points are errors due to radiative corrections, and the ma-
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5.42 Low-level kinematic variables for E = 4.74 GeV. These variables go into
the calculation of d, D, η and ξ , needed for the A1 extraction. The errors
indicated are statistical only. Plots reproduced from [169]. . . . . . . . . . 198

5.43 Low-level angular kinematic variables for E = 4.74 GeV. These variables
go into the calculation of d, D, η , ξ and d′, needed for the A1 and g1/F1 ex-
traction. The errors indicated are statistical only. Plots reproduced from [169].199
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5.53 A
3He
1 using the MAID [141] and F1F209 [200] models to illustrate the res-

onance behavior in our kinematics. The blue curve indicates Q2 = 3 GeV2,
the red curve is for Q2 = 3.89 GeV2 and the green curve shows Q2 =

4.9 GeV2. The vertical black line indicates the upper edge of the highest x

bin of our (rebinned) resonance data. . . . . . . . . . . . . . . . . . . . . . 209
5.54 The quantity Rdu = (d + d̄)/(u+ ū) computed from the CJ12 model [127]
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〈
Q2〉= 3.67 GeV2 data. . . 211

5.55 The fit function used to interpolate and extrapolate the measured cross sec-
tions (Sect. 5.4.4). The error bars shown are the in-quadrature sum of the
statistical and systematic errors. Figure reproduced from [169]. . . . . . . 213

5.56 The g
3He
1 results for E = 4.74 GeV (5.89 GeV) are given in the top (bottom)

panel. The error bars indicate the statistical errors, while the red band in-
dicates the systematic error. The world data are from SLAC E142 [60] and
JLab E99-117 [71], both of which are DIS data; resonance data from JLab
E01-012 [72] are also plotted. The gray band represents global analyses
from [87, 89, 220, 234, 235]. Figure reproduced from [169]. . . . . . . . . 214

5.57 The world data [51, 60, 82, 236] on gn
1 in the range 0 < x < 0.25. The
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dependence is minimal. Our fit is given by the green curve, and its error is
given by the gray band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
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E (red) and Gn

M (blue) elastic form factors, using
the Riordan [245] and Kelly [246] parameterizations, respectively. The
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2. . . . . . . . . . . . . . . . 220
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1 and g
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1 results for E = 4.74 GeV (5.89 GeV) shown in red

(blue). The statistical errors are indicated by the error bars, while the col-
ored bands show the systematic errors. The models displayed are from
Bourrely et al. (orange) [89], Avakian et al. (magenta) [88], and Leader
et al. (cyan) [86]. (a): A
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6.2 An
1 results compared to world data and models. Our data for E = 4.74 GeV

(5.89 GeV) are given by the red (blue) data points; the error bars indicate
the statistical errors, while the bands give the systematic errors. Also plot-
ted are the world data from SLAC E142 [60] and E154 [61], JLab E99-
117 [71] and HERMES [64]. The models shown are from Isgur [81] (gray
band), Bourrely et al. [89, 90] (orange), Leader et. al [86] (cyan), Avakian
et al. [88] (magenta), and Cloët et al. (green) [114]. . . . . . . . . . . . . 224

6.3 gn
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1 results compared to world data and models. Our data for E =

4.74 GeV (5.89 GeV) are given by the red (blue) data points; the error bars
indicate the statistical errors, while the bands give the systematic errors.
Also plotted are the world data from SLAC E143 [51] and E155 [229] and
JLab E99-117 [71]. The models shown are those from Bourrely et al. [89]
(solid), Avakian et al. [88] (magenta), and Leader et al. [86] (cyan). . . . . 225

6.4 An
1 results for the DIS and resonance regions, compared to world data and

models. (a): Our data for E = 4.74 GeV (5.89 GeV) are given by the red
(blue) data points; the error bars indicate the statistical errors, while the
bands give the systematic errors. The same world data and models are
plotted as seen in Figure 6.2, but now includes resonance data from JLab
E01-012 [72], where we have applied the nuclear corrections, see text. (b):
Same plot as the top panel, but now our data are averaged over the two
beam energies of E = 4.74 GeV and 5.89 GeV. . . . . . . . . . . . . . . . 226

6.5 gn
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1 results for the DIS and resonance regions, compared to world data
and models. (a): Our data for E = 4.74 GeV (5.89 GeV) are given by the
red (blue) data points; the error bars indicate the statistical errors, while
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6.6 Flavor decomposition DIS results compared to world data and models. (a):
Our data for E = 4.74 GeV (5.89 GeV) are given by the red (blue) data
points; the error bars indicate the statistical errors, while the bands give the
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cal quark model [89, 90] (orange), a pQCD calculation requiring HHC [86]
(cyan), and a pQCD calculation that allows quark orbital angular momen-
tum to be non-zero [88] (magenta). A modified NJL model [114] (green)
is also plotted. The predictions at x = 1 are from DSE treatments [126].
(b): Same plot as the top panel, but now our data are averaged over the two
beam energies of E = 4.74 GeV and 5.89 GeV. . . . . . . . . . . . . . . . . 229
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C.1 A top-view of Hall A showing the electron’s path before entering the LHRS.
Unfortunately, the plastic target enclosure thickness was not known. Var-
ious material types of the enclosure’s thickness were tested and found to
be negligible relative to the other materials [247]. The electron path to the
BigBite spectrometer is similar, but is not shown; it would be on the right
side of the beamline, at an angle of 45◦. . . . . . . . . . . . . . . . . . . . 251

C.2 Phase space coverage for Es = 4.74 and 5.89 GeV. The vertical blue lines
indicate a cross section spectrum for a given Es from the E94-010 experi-
ment, while the green lines indicate spectra for E01-012. . . . . . . . . . . 253

C.3 F1F209 fits compared to E94-010 data. . . . . . . . . . . . . . . . . . . . . 254
C.4 F1F209 fits compared to E01-012 data. . . . . . . . . . . . . . . . . . . . . 255
C.5 F1F209 fits compared to Marchand et. al. data. . . . . . . . . . . . . . . . 256

xxvii
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CHAPTER 1

INTRODUCTION

1.1 The Structure of Matter

One of the most fundamental questions that scientists have tried to answer is “what is matter
made of?” It was believed prior to 1897 that atoms were the most basic, indivisible building
blocks of matter. However, in that year, J. J. Thompson discovered the negatively charged
electron. This changed the way the atom was viewed, and sparked further investigation
into its structure. In 1911, Ernest Rutherford discovered the nucleus when scattering alpha
particles from a thin gold foil. With the observation of the backward scattering of the alpha
particles, it was determined that the atom was composed of mostly empty space with a
dense core at the center, called the nucleus. This piqued the interest as to what makes up the
nucleus, and protons and neutrons were discovered thereafter. In particular, J. Chadwick’s
discovery of the neutron was rewarded with a Nobel prize. Protons and neutrons are the
particles that make up the nucleus, and are collectively called nucleons.

With the discovery of nucleons, the interest then turned to understanding their struc-
ture. In 1956, W. McAllister and R. Hofstadter published experimental results of elastic
scattering of electrons from a hydrogen target, revealing that the proton has internal struc-
ture [1]. Hofstader’s work on electron scattering from nuclei and discoveries concerning
nucleon structure resulted in a Nobel prize in 1961. In 1964, Gell-Mann [2] (and inde-
pendently) Zweig [3] proposed a theory that nucleons are composed of pointlike particles
called quarks. These quarks were postulated to have spin-1/2, a fractional electric charge,
and came in three different types called flavors, known as up (u), down (d) and strange
(s). Their fractional charges are 2/3, -1/3 and -1/3, respectively. Combinations of different
flavors of quarks yields protons and neutrons, which belong to the type of particles called
baryons (built up from three quarks) and mesons (a quark and an anti-quark). These two
groups of particles are categorized as hadrons.
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1.2 Early Electron Scattering Experiments

The first electron scattering experiment that showed that nucleons are composed of quarks
took place at the Stanford Linear Accelerator Center (SLAC). The experiment [4, 5] con-
sisted of scattering a high-energy electron beam from a hydrogen target, measuring the
scattered electron. These measurements allow for the study of the internal structure of the
target. The electrons interact with the target through the electromagnetic force, mediated
by a virtual photon∗.

The kinematics of the experiment consisted of beam energies E from 7 to 17 GeV
and scattering angles θ of 6◦ to 10◦. Cross sections were measured for Q2 values up to
7.4 GeV2†. The square of the four-momentum of the virtual photon, Q2, is a measure of the
resolution of the experiment. Figure 1.1 shows the ratio of the measured cross section to
the Mott cross section (which describes electron scattering from a point particle) is plotted
as function of Q2 for a scattering angle of θ = 10◦, for invariant mass W = 2–3.5 GeV‡. A
curve is also displayed for elastic scattering of electrons (e) from protons (p).

It is clear from Figure 1.1 that as the invariant mass increases, the dependence of the
cross section on the resolution

(
Q2) decreases. The lack of structure in the cross section

or “flatness” indicates that the particles the electrons are scattering from—the quarks—are
particles without structure, or pointlike.

The results of the SLAC experiment lead to the postulation from J. Bjorken that electron
scattering cross sections are dependent upon a single variable x, later labeled Bjorken-x.
The variable x is a dimensionless quantity, defined as x≡Q2/(2Mν), where M is the mass
of the target nucleon, and ν = E − E ′, the energy lost by the electron in the scattering
process. This x-dependence (and independence of Q2) is known as scaling [6], which will
be discussed in more detail in Section 1.4.5.1. Such scaling behavior lead to Feynman’s
model, where protons are described in terms of pointlike constituents called partons at the
time, and later known to be quarks. Feynman’s Quark Parton Model (QPM) (Sect. 1.4.5.2)
described electron deep inelastic scattering data well and was an excellent complement to
the theories of Gell-Mann et al. concerning the quarks and how they describe the properties
of the proton. However, as new and unexpected experimental results were obtained, new
questions arose which required a refined approach to the QPM and also the formulation of
a new theory to describe the new data.

∗In electron scattering processes, it is this virtual photon—not the electron—that probes the nucleon. It
carries a fraction of the momentum of the incident electron and transfers it to the nucleon. More details about
the virtual photon follow in Section 1.4.2.2.

†Natural units where h̄ = c = 1 are used throughout this thesis.
‡The invariant mass is the mathematical combination of the energy and momentum of the particle or

system of particles in question, and is independent of the inertial frame of reference. See Section 1.4.2.2.
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Figure 1.1: The ratio of the measured cross section σ to the Mott cross section σMott for a
scattering angle of 10◦ as a function of Q2 for W = 2, 3 and 3.5 GeV. The elastic curve is also
shown. Figure reproduced from [5].

1.3 Quantum Chromodynamics

While the QPM was successful in describing various aspects of hadrons in terms of quarks,
it had its limitations. For instance, it could not explain how only half of the nucleon’s
momentum comes from the constituent quarks. The concept of how quarks were bound
together via the strong force to form a nucleon—called confinement—is another topic of
great interest. Confinement is accounted for by introducing the concept of quarks possess-
ing color charge. There are three different types of color: red, blue and green. The mathe-
matics of color charge dictates that hadrons, composed of these color-charged quarks, are
in fact colorless; that is, hadrons are in color singlet states. This effectively describes how
quarks cannot be observed directly. From a theoretical standpoint, one approach of im-
plementing confinement is through defining gauge fields on a discrete lattice in Euclidean
space-time∗.

While quarks are bound inside the nucleon, there is a possibility for them to behave
like free particles. This is the concept of asymptotic freedom, which corresponds to how
quarks behave when the nucleon is probed via a virtual photon at large momentum transfers
(Q2 > 1 GeV2) and large invariant mass W > 2 GeV, which characterizes the so-called deep

∗This sub-field of particle physics is called lattice QCD [7, 8].
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inelastic scattering regime∗. Asymptotic freedom was described by D. Gross, F. Wilczek
and D. Politzer, utilizing non-abelian quantum field theory. This was soon followed by
Quantum Chromodynamics (QCD), which is a theory of the strong interaction, describing
how the quarks and gluons bind together, forming hadrons. It is called chromodynamics
since it is a field theory that describes the color interactions [9–11].

QCD follows the formalism of Quantum Electrodynamics (QED), which has a cou-
pling constant α that describes the strength of the electromagnetic interaction; in QCD,
the coupling constant αs gives the strength of the strong (color) interaction. The concept
of asymptotic freedom can be described in the framework of QCD. Since the strength of
the quark interactions are small at large Q2, corresponding to probing the nucleon at small
distance scales, this results in αs being small. As a result, a perturbative approach can be
taken in the mathematical description of the interactions, with αs as the expansion param-
eter. This kinematic regime is called perturbative QCD or just pQCD. On the other hand,
when Q2 is small (probing the nucleon at large distances), pQCD is no longer applica-
ble; the coupling constant αs is large, and the interactions between quarks are very strong.
This is referred to as the non-perturbative QCD regime. The functional form of the QCD
coupling constant is shown in Figure 1.2.

We now turn to examining the structure of the nucleon in the context of QCD. In par-
ticular, we investigate how the quark spins contribute to the nucleon spin and how this spin
content is determined via electron scattering.

∗Deep inelastic scattering (DIS) will be discussed in further detail in Sections 1.4.2.2 and 1.4.5.
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Figure 1.2: The QCD coupling constant αs as a function of Q =
√

Q2. The curves represent
QCD predictions for the combined world average value of αs. MZ is the rest mass of the Z0 bo-
son. Open triangles and squares are from next-to-leading order (NLO) QCD calculations; open
circles are based on next-to-next-to-leading order (NNLO) calculations; Filled in symbols are
from N3O QCD calculations. The cross-filled square is from lattice QCD. Figure reproduced
from [12].

1.4 Nucleon Structure

1.4.1 Nucleon Spin

Spin is an intrinsic property of quarks and nucleons. Despite numerous theoretical models
and experiments conducted to understand the origin of spin, not much is known for certain.

On the theoretical front, Ellis and Jaffe [13] predict the contribution of the quarks’ spin
to that of the nucleon to be ∼ 58%, excluding the components due to the gluons and the
orbital angular momentum. The sea quark∗ contribution is also assumed to be zero.

In order to probe the spin structure of the nucleon through electron scattering, polarized
electrons and polarized nucleon targets are needed. The first polarized electron-polarized
proton experiments were carried out at SLAC, called E80 [14, 15] and E130 [16, 17].
They focused on the measurement of spin-dependent asymmetries in inclusive† DIS of
longitudinally polarized electrons scattering from a longitudinally polarized proton target.

∗Sea quarks refer to quark-anti-quark (q-q̄) pairs that appear due to pair-production and disappear in
annihilation processes in the nucleon. The lightest quarks are most probable, u, d and s quarks. Heavier
flavors like charm, bottom and top are less likely in nucleons.

†Inclusive means that only the scattered electron was measured, while the recoiling target fragment was
not measured.
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The results of the experiments, despite their limited kinematic range and relatively low
precision by modern standards, supported the identification of quarks with partons such
that nearly all of the proton spin was composed of the spins of the valence (non-sea) quarks,
and that the other possible sources of angular momentum could be neglected.

This picture of the nucleon spin was changed drastically however, with the results from
the European Muon Collaboration (EMC) experiment [18, 19]. Instead of scattering po-
larized electrons from polarized protons, the EMC experiment used polarized muons, and
measured their spin asymmetry. The results gathered here disagreed greatly with the pre-
dictions of Ellis and Jaffe, as it was found that the quark spin makes up only a small fraction
of the nucleon spin. Such results were later confirmed by CERN’s SMC and SLAC’s E142
and E143 experiments. The combination of EMC and SLAC E143 data showed that the
spin contribution from the valence and sea quarks was only 12% ± 17% [19] of the total
proton spin of 1/2. This big disagreement between theory and experiment is referred to as
the nucleon spin crisis.

The big question now is “where is the spin?” Inside the nucleon, there is also the
presence of gluons, which also have spin (∆G). The gluons and quarks have orbital angular
momentum, LG and Lq, respectively. Including the contribution from of the helicities of
the valence and sea quarks

(
∑q ∆q

)
, the nucleon spin may be written as:

1
2
=∑

q

1
2

∆q+Lq +∆G+LG. (1.1)

The form of Equation 1.1 was originally given by Jaffe and Manohar [20]; an alternative
form is given by Ji [21], where the spin of the nucleon may be expressed in the form:

1
2
=∑

q

1
2

∆q+Lq + JG. (1.2)

In both forms, ∑q ∆q = ∆Σ is understood to be the contribution due to the helicities of
valence and sea quarks. Current measurements show ∆Σ to be ∼ 30–35% [22]. The defi-
nition of the quark orbital angular momentum, given as Lq or Lq, for the two equations is
not equivalent. In Equation 1.2, Lq contains a covariant derivative and is necessarily sen-
sitive to gluonic degrees of freedom. In Equation 1.1, Lq is defined such that a covariant
derivative is not present. Because of this, the interpretation of the two forms of the quark
orbital angular momentum is not the same; recently, the difference between the two forms
has been described as due to a torque on the struck quark in final state interactions [23].
Experimentally, Jq = (1/2)∆Σ+Lq may be accessed through deeply-virtual Compton scat-
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tering or deeply virtual meson production∗; in extracting Lq from such measurements, the
experimental value of (1/2)∆Σ would need to be subtracted. The quantity ∆G is interpreted
as the contribution due to the gluon spin in Equation 1.1, and has been measured to be ∼
20% [25]. Under the interpretation of Ji, JG cannot be cleanly separated into its spin and or-
bital components [21]. It is clear that when discussing the spin content of the nucleon, one
has to take care to indicate which convention is being used. A more thorough discussion
may be found in the literature [26–34].

1.4.2 Methods of Probing the Nucleon

When investigating the structure of the nucleon, particle scattering proves to be a vital tool.
With the size of the nucleus being on the order of 2–15 femtometers (1 fm = 10−15 m) and
the nucleon being smaller than that (the proton’s charge radius is ∼0.877 fm [35]), con-
ventional tools of classical physics like X-rays and microscopes are not capable of probing
the substructure of these objects. In scattering processes between two particles, however,
measurements of how often the interaction takes place, the types of particles produced and
their kinematics—the energies, momenta and angles—allows one to determine the nature
of the interaction and describe the structure of the target.

In this section we outline the two broad sub-fields of particle scattering used to probe
nucleus and nucleon structure.

1.4.2.1 Hadronic Collisions

The first scattering method we consider is Drell-Yan [36]. It consists of hadron-hadron
collisions, where the two hadrons are accelerated to high energies in opposite directions
(towards one another) so that they collide. A quark inside one of the incident hadrons an-
nihilates with an anti-quark from the other hadron. This produces a virtual photon, which
typically decays into an electron-positron or muon-antimuon pair at large energies rela-
tive to the hadrons involved in the collision. Due to this process consisting of interactions
between quarks and anti-quarks, Drell-Yan processes are sensitive to the sea quark distri-
bution and even gluons [37, 38]. However, the desired yields tend to be small relative to
those for the hadronic final states. Low-luminosity beams limit the precision with which
measurements may be made using the Drell-Yan processes.

∗In this interaction, a virtual photon is absorbed by a nucleon target, and a real photon or meson is
released into the final state and the target nucleon remains intact. The theoretical description is given in terms
of generalized parton distributions (GPDs) [24]. Different combinations of polarized electron beams and
targets allows for access to different GPDs.
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For the second method, we have lepton scattering. Since the work in this dissertation
is done for an experiment that utilized electrons, we will focus on electrons as our leptons;
however, the general theory is necessarily true for other leptons, like muons.

1.4.2.2 Electron Scattering

In electron scattering, the electrons are accelerated to high energies and scatter from a
nuclear or nucleon target. In practice, the target is typically at rest. The electron interacts
with the target by exchanging a so-called virtual photon with the target object, where its
energy and momentum are transferred to the target. An advantage of lepton scattering is
that the interaction at the scattering vertex (where the photon is exchanged) is described
by QED, which simplifies the mathematics. The electromagnetic nature of the interaction
also results in the process being a “clean” probe into the structure of the nucleon, where the
QCD Physics is contained entirely in the description of the nucleon and is not convoluted
with the scattering process itself.

To describe the process more quantitatively, consider Figure 1.3. The incident and scat-
tered electron has the four-momenta k = (E,~k) and k′ = (E ′,~k′), respectively. The target
has a four-momentum of p = (ET ,~p). The virtual photon exchanged between the inci-
dent electron and the target is described by the four-momentum q = (ν ,~q). If the incident
electron has enough energy, the target can break up into a number of distinct hadrons; oth-
erwise, the nucleus or nucleon would remain intact. In the latter case, the recoiling target
object would have a four-momentum p′ in the final hadronic state. Electron scattering data
is presented and discussed in terms of a number of invariant variables, namely ν , y, Q2,
W and x. Starting with ν , we first consider q. Since the four-momentum at each vertex is
conserved, we can define q in terms of the incoming and outgoing electron four-momenta:

Figure 1.3: Lowest-order Feynman diagram of inclusive electron-nucleon scattering, en→ eX .
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q = k− k′ = (E−E ′,~k−~k′) = (ν ,~q), (1.3)

where ν can be defined in an invariant form:

ν ≡ p ·q/M, (1.4)

with M being the mass of the nucleon. In the target rest frame, p = (M,~0), so Equation 1.4
reduces to ν = E−E ′, and is known as the electron energy loss. A related invariant term,
called the fractional energy loss is defined as:

y≡ p ·q
q · k =

E−E ′

E
. (1.5)

There are two distinct situations considering the energy and momentum exchanged be-
tween the electron and the target, represented by q. If q2 = 0, then the photon is real. If
q2 6= 0, then the photon is off its mass shell, and therefore does not necessarily behave like
a regular photon; hence, it is referred to as a virtual photon. In this case, it carries a “bor-
rowed” quantity of energy for a small period of time, satisfying the Heisenberg uncertainty
principle [39]. In computing q2, it is less than zero. For convenience, we define a positive
quantity Q2:

Q2 ≡−q2 = 4EE ′ sin2 (θ/2) , (1.6)

where θ is the scattering angle of the electron in the laboratory frame and we have neglected
the electron mass.

Shifting our focus to the hadronic side of Figure 1.3, there are two possibilities for the
final state: there is one object (the target remains intact) or several, determined by the en-
ergy with which the target is probed. Furthermore, the overall interaction may be described
by two general terms: exclusive or inclusive scattering. In the case of exclusive scattering,
the scattered electron and a final-state hadron is detected. For inclusive scattering, only the
scattered electron is detected in the final state.

Inclusive scattering can be represented as en→ eX , where e is the electron, n is the tar-
get nucleon and X is the final (unmeasured) hadronic state. In the context of an unmeasured
final hadronic state, we can define the invariant mass of the system, W :

W 2 ≡ (q+ p)2 = M2 +2Mν−Q2. (1.7)

where W 2 defines the final hadronic state X which could consist of any of the multitude of
particle states for a given combination of ν and Q2 values.
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Finally, we come to the variable x. It is defined in terms of the other invariants ν and
Q2 as:

x≡ Q2

2p ·q =
Q2

2Mν
. (1.8)

The simplest interpretation of x comes in the infinite momentum frame, where the nu-
cleon is traveling with a large momentum along ~q. In this frame, the active quark in the
interaction (struck by the virtual photon) carries the momentum fraction x of the nucleon
momentum [39].

1.4.3 The Scattering Cross Section

In electron scattering, the description of the target particle is realized in terms of the scatter-

ing cross section, denoted as d2σ/(dE ′dΩ). Experimentally, it describes the probability

of scattering with an energy (E ′,E ′+ dE ′) into a solid angle dΩ; thus, it can be seen as
an intrinsic strength of the interaction. The units of the quantity work out to be those of
area (cm2), hence the name cross section. It displays a strong dependence on ν and Q2,
as shown in Figure 1.4, which represents a cross section of inclusive electron scattering
from a light nucleus. Note that Q2 effectively defines the spatial resolution of the virtual
photon that probes the target (cf. the frequency of a real photon used in an X-ray image or
a microscope, which defines the spatial resolution of the image). With this in mind while
examining Figure 1.4, one can define different regimes of scattering based on the ν and Q2

dependence, each with their own unique dynamics.
In the region of low ν and Q2, we have elastic scattering. The spatial resolution is not

high enough to see the target’s composition. The target nucleus stays intact and recoils
coherently in the scattering interaction. For a nuclear target, the momentum transferred to
the target is shared equally among all nucleons. The invariant mass of the system is given
as W 2 = M2

T , where MT is the mass of the (nucleus or nucleon) target.
When ν is larger than the binding energy of the nucleon in the nucleus, the nucleus

breaks apart as a result of the interaction. The electron effectively scatters elastically from
a nucleon, which is ejected from the nucleus. This is called quasi-elastic scattering. Un-
like the elastic case, the nucleons in the nuclear medium are not at rest in the laboratory
frame. The nucleons carry an initial momentum of ∼ 55–250 MeV due to their motion in
the nucleus, behaving like a Fermi gas [41, 42]. This so-called Fermi motion leads to a
broadening of the quasi-elastic peak, located at ν = Q2/(2M), with M being the nucleon
mass, and ν is the energy loss due to elastic scattering from a free nucleon. The invariant
mass of the system is given as W 2 = M2.
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Figure 1.4: Inclusive electron scattering cross section from a light nuclear target. Figure re-
produced from [40].

As ν and Q2 increase further such that 1.2 < W < 2 GeV, we come to the resonance

region, where we explore the substructure of the nucleon. In this energy range, it is the
quarks that make up the nucleon absorbing the energy of the virtual photon, leading to
(unstable) excited states of the nucleon called nucleon resonances. The most prominent
resonance occurs at W = 1.232 GeV, known as the ∆ resonance. Higher resonances are also
possible at W > 1.4 GeV, but are difficult to discern from one another, as their peaks and
tails tend to overlap.

In the region for W > 2 GeV, ν and Q2 become large enough so that the quarks can be
resolved inside the nucleon. This region is known as the deep inelastic scattering (DIS)
region. In this case, the electron is scattering from an asymptotically free quark (or anti-
quark) in the nucleon. The smooth cross section in Figure 1.4 at large ν and Q2 indicates
the large number of multiparticle states which are accessible via a large combination of ν

and Q2 values.

1.4.3.1 Scattering Formalism

In this section we give a mathematical description of the DIS cross section for electrons
scattering from a nucleon target. The process can be represented by the contraction of
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two tensors∗. We can describe the lepton vertex of Figure 1.3 with the tensor Lµν , and
in a similar fashion we can represent the hadron vertex by a tensor W µν . Assuming one
photon exchange between the incident electron and the target nucleon, one can write the
differential cross section for detecting a scattered electron in the energy range (E ′,E ′+dE ′)
in a solid angle of dΩ in the laboratory frame as:

d2σ

dΩdE ′
=

α2

2Mq4
E ′

E
LµνW µν , (1.9)

where α is the electromagnetic structure constant, ∼ 1/137; M is the mass of the nucleon
in GeV; q is the four-momentum transfer to the target; E ′ is the scattered electron energy
in GeV; E is the incident electron energy in GeV; Lµν is the leptonic tensor, and W µν is
the hadronic tensor. The leptonic tensor is understood from quantum electrodynamics and
may be written in terms of the Dirac γ matrices and Dirac electron spinors u and ū = u†γ0:

Lµν

(
k,s;k′,s′

)
=
[
ū
(
k′,s′

)
γµu(k,s)

]∗ [ū
(
k′,s′

)
γνu(k,s)

]
, (1.10)

where the electron spinors are functions of the incident and scattered electron four-momenta
k and k′, respectively, as well as their spin four-vectors s and s′. We can separate Lµν into
symmetric and antisymmetric components under the interchange of the µ and ν indices,
which will prove to be useful shortly:

Lµν

(
k,s;k′,s′

)
= L(S)

µν

(
k;k′
)
+ iL(A)

µν

(
k,s;k′

)
+L

′(S)
µν

(
k,s;k′,s′

)
+ iL

′(A)
µν

(
k;k′,s′

)
. (1.11)

The individual symmetric (S) and anti-symmetric (A) terms are written as:

L(S)
µν

(
k;k′
)

= kµk′ν + k′µk′ν −gµν

(
k · k′−m2) , (1.12)

L(A)
µν

(
k,s;k′

)
= mεµναβ sα

(
k− k′

)β
, (1.13)

L
′(S)
µν

(
k,s;k′,s′

)
=

(
k · s′

)(
k′µsν + sµk′ν −gµνk′ · s

)
−
(
k · k′−m2)(sµs′ν + s′µsν −gµνs · s′

)

+
(
k′ · s

)(
s′µkν + kµs′ν

)
−
(
s · s′
)(

kµk′ν + k′µkν

)
, (1.14)

L
′(A)
µν

(
k;k′,s′

)
= mεµναβ s′α

(
k− k′

)β
, (1.15)

where ε is the Levi-Civita symbol, evaluated to +1 for cyclic permutations of ε0123, and
-1 for reverse-cyclic permutations like ε3210. Upon summing Equation 1.10 over s′ and

∗For this discussion, we will follow the work of Anselmino et al. [43].
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averaging over s, we obtain the unpolarized leptonic tensor 2L(S)
µν . Summing over just the

final spin states s′ yields the combination 2L(S)
µν +2iL(A)

µν .
The hadronic tensor W µν contains QED and QCD physics, and therefore is not as well-

known as Lµν . However, we can still define it in terms of symmetric and anti-symmetric
components in a similar fashion to what was done for the leptonic tensor:

Wµν (q;P,S) =W (S)
µν (q;P)+ iW (A)

µν (q;P,S) , (1.16)

where q is the four-momentum transfer, P is the four-momentum of the target nucleon and
S is its spin four-vector. The symmetric and anti-symmetric components are written as:

1
2M

W (S)
µν (q;P) =

(
−gµν +

qµqν

q2

)
W1
(
P ·q,q2)

+

[(
Pµ −

P ·q
q2 qµ

)(
Pν −

P ·q
q2 qν

)]
W2
(
P ·q,q2)

M2 (1.17)

1
2M

W (A)
µν (q;P,S) = εµναβ qα

{
MSβ G1

(
P ·q,q2)

+
[
(P ·q)Sβ − (S ·q)Pβ

]G2
(
P ·q,q2)

M

}
. (1.18)

Here, we have introduced the spin-averaged structure functions W1 and W2, which appear
in the symmetric component, and the spin-dependent structure functions G1 and G2, which
appear in the anti-symmetric component of Wµν . These structure functions effectively
parameterize the unknown internal hadronic structure [39].

Utilizing Equations 1.9, 1.10 and 1.16, the cross section may be written as:

d2σ

dΩdE ′
=

α2

2Mq4
E ′

E

[
L(S)

µνW µν(S)+L
′(S)
µν W µν(S)−L(A)

µν W µν(A)−L
′(A)
µν W µν(A)

]
. (1.19)

The individual terms in the square brackets of Equation 1.19 are in general, measurable
quantities. Experimentally, they can be investigated by considering different combinations
of initial- and final-state lepton and hadron spin polarizations. For example, the unpolarized
cross section is obtained by averaging over the initial spin states and summing over the final
spin states, yielding the L(S)

µνW µν(S) term:

d2σunpol.

dΩdE ′
=

1
4 ∑

s,s′,S

d2σ

dΩdE ′
(
k,s;k′,s′

)
=

α2

2Mq4
E ′

E
2L(S)

µνW µν(S), (1.20)
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whereas the difference of cross sections that have opposite target spins gives the combina-
tion of the anti-symmetric terms:

∑
s′

[
d2σ

dΩdE ′
(
k,s,P,−S;k′,s′

)
− d2σ

dΩdE ′
(
k,s,P,S;k′,s′

)]
=

α2

2Mq4
E ′

E
4L(A)

µν W µν(A).

(1.21)
It should be noted that, in practice, experimentally it is typically easier to control the in-
cident spins s and S, while not measuring the final spins s′ and S′. This tends to limit the
experimental investigation of the hadronic tensor.

1.4.4 Nucleon Structure Functions

Consider scattering unpolarized electrons from point-like, unpolarized spin-1/2 particles
that are infinitely heavy with a charge of +1. In this case, energy conservation would give
E ′ = E and the cross section would be given by:

(
dσ

dΩ

)

Mott
=

α2 cos2 (θ/2)
4E2 sin4 (θ/2)

, (1.22)

with θ being the scattering angle of the electron. This quantity is known as the Mott cross

section. However, since the nucleon is a composite object and is not infinitely massive,
the cross section is more complicated than that seen in Equation 1.22, and is given by (cf.
Equation 1.20):

d2σunpol.

dΩdE ′
=

(
dσ

dΩ

)

Mott

[
W2
(
ν ,Q2)+2tan2 (θ/2)W1

(
ν ,Q2)] , (1.23)

where we have expressed the structure functions W1 and W2 in terms of ν , using P ·q = Mν .
We see from Equation 1.23 that the internal structure of the nucleon effectively augments
the Mott cross section with the inclusion of structure functions. These functions parame-
terize how the nucleon structure deviates from a point particle, which is explicitly seen in
their dependence on the energy scale, Q2.

1.4.4.1 Unpolarized Structure Functions

By convention, the structure functions W1 and W2 are replaced by the structure functions F1

and F2, and also expressed in terms of the Bjorken-x variable and Q2. They are defined as:
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F1
(
x,Q2)= MW1

(
ν ,Q2) (1.24)

F2
(
x,Q2)= νW2

(
ν ,Q2) . (1.25)

The use of x instead of ν arises because of the phenomenon of Bjorken scaling, which will
be discussed in detail in Section 1.4.5.1. In essence, in the limit of large ν and Q2 at fixed
x, the structure functions F1,2 lose a lot of their dependence on Q2 and may be expressed as
functions of x alone. In this limit, F1 may be related to F2 in a simple fashion.

Utilizing the expressions of W1,2 in terms of F1,2, the unpolarized cross section is ex-
pressed as:

d2σunpol.

dΩdE ′
=

(
dσ

dΩ

)

Mott

[
1
ν

F2
(
ν ,Q2)+2tan2 (θ/2)

1
M

F1
(
ν ,Q2)

]
. (1.26)

For experiments that use targets that are not nucleons (A 6= 1), there are two conventions
for expressing the quantities F1 and F2. The first is per nucleon, written as F1/A and F2/A.
The second is per nucleus, where the structure functions are reported without dividing by
A. The latter representation is used in this dissertation.

1.4.4.2 Polarized Structure Functions

We have seen how F1 and F2 allow one to access the symmetric part of the hadronic tensor
(Eqn. 1.26). In a similar way, G1 and G2 gives access to the antisymmetric part of the
hadronic tensor. First, we rewrite G1,2 in terms of g1,2, to follow the conventional repre-
sentation (comparable to F1 and F2):

g1
(
x,Q2)= M2

νG1
(
ν ,Q2) (1.27)

g2
(
x,Q2)= Mν

2G2
(
ν ,Q2) . (1.28)

In order to learn more about g1 and g2, we consider the experiment of scattering longi-
tudinally polarized electrons (with their spins parallel or anti-parallel to their momentum)
from polarized nucleons, which are at rest. Again, we follow the description in Anselmino
et al. [43]. The spin four-vectors s for the electron and S for the target may be written as:

sµ

↑ =−sµ

↓ =
1
m

(
|k|,Ek̂

)
and Sµ =

(
0, Ŝ
)
, (1.29)
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where k̂ =~k/|k|; ↑ indicates that the electron spin is parallel to its momentum, ↓ indicates
an anti-parallel electron spin.

Consider the cross section for the target spin aligned in one direction, and when it
is flipped, keeping the electron spin direction fixed∗. The difference of these two cross
sections is written as:

d2σ↑,S

dΩdE ′
− d2σ↑,−S

dΩdE ′
= −4α2

Q2
E ′

E

[(
E cosβ +E ′ cosΘ

) 1
Mν

g1
(
x,Q2)

+ 2EE ′ (cosΘ− cosβ )
1

Mν2 g2
(
x,Q2)], (1.30)

where β is the angle between the incident electron momentum~k and the target spin ~S and
Θ is the angle between the scattered electron momentum~k′ and ~S, written as:

cosΘ = sinθ sinβ cosφ + cosθ cosβ . (1.31)

The electron scattering angle is θ , which is the angle between~k and~k′; φ is the angle
between the electron scattering plane (~k,~k′) and the polarization plane (~k,~S). see Figure 1.5.

φ
θ

Θ

k

k’

S

β

Figure 1.5: The kinematics of polarized electron-nucleon scattering. Figure reproduced
from [40].

The two special cases we are interested in are when the target spin is parallel to the
electron spin and when the target spin is perpendicular to the electron spin. When the
target spin and electron spins are parallel, β = 0 and Θ = θ and the cross section difference
is given as:

∗Alternatively, one could flip the electron spins and keep the target spin fixed, which would give the same
result; it is the relative spin between the electron and target that matters.
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d2σ↓,⇑

dΩdE ′
− d2σ↑,⇑

dΩdE ′
=

4α2

Q2
E ′

νE

[(
E +E ′ cosθ

)
g1
(
x,Q2)−2Mxg2

(
x,Q2)] . (1.32)

When the target spin is perpendicular to the electron spin, β = π/2 and Θ= arccos(sinθ cosφ),
and the cross section difference is written as:

d2σ↓,⇒

dΩdE ′
− d2σ↑,⇒

dΩdE ′
=

4α2

Q2
E ′2

νE
sinθ

[
g1
(
x,Q2)+ 2ME

ν
g2
(
x,Q2)

]
. (1.33)

1.4.5 Interpretation

Up until now in the discussion, the unpolarized structure functions F1 and F2 and the po-
larized structure functions g1 and g2 have served to parameterize the unknown structure of
the nucleon, simplifying our equations. In this section, we take a closer look at the physical
meaning of the structure functions and how they describe the physics of the interactions
inside the nucleon.

1.4.5.1 Bjorken Scaling

When probing an object of finite size, the measurement will depend upon the spatial resolu-
tion of our probe; in the case of electron scattering, this is the momentum transferred to the
target squared, Q2. If we consider the case where we increase Q2 so that we can resolve the
internal structure of the nucleon, the quarks will become visible. At this point, the inelastic
electron-nucleon scattering may be seen as elastic scattering from a single quark (Fig. 1.6),
while the other quarks remain undisturbed. Considering that quarks are point-like particles,
increasing the resolution Q2 will no longer affect the interaction.

electron

nucleon

quark

Figure 1.6: Lowest-order electron-quark scattering.
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In the limit where Q2 → ∞ and ν → ∞, with x = Q2/(2Mν) fixed (the Bjorken limit),
the phenomenon where experimental observables lose their Q2-dependence is known as
Bjorken scaling [44]. As a result, the structure functions depend upon a single variable x.
Furthermore, the F2 structure function can be related to the F1 structure function by the
Callan-Gross relation [45]:

F2(x) = 2xF1(x). (1.34)

1.4.5.2 The Quark-Parton Model

The Quark-Parton Model (QPM) is a model which allows us to connect the quark behavior
to the structure functions. In this model, the interaction is described by incoherent scatter-
ing of virtual photons from free partons (quarks and anti-quarks) inside the nucleon, which
holds in the limit where Q2 is large enough to resolve the internal structure of the nucleon
(Q2 > M2).

For convenience, we consider the infinite momentum reference frame, where the nu-
cleon moves along the ẑ-axis with infinite momentum. In this frame, the target momentum
is much larger than its mass∗, and the three-momentum of the quark may be written as
~p = x~P+~pT , where P is the nucleon momentum, and pT is the transverse quark momen-
tum. At short interaction times, pT is considered negligible. Hence, the momentum of the
quark is given as p = xP, a fraction x of the nucleon momentum.

At this point, the structure functions may be written in terms of parton distribution
functions (PDFs). If we define q(x) as the probability of finding a quark q with momentum
fraction x in a nucleon, we can express the unpolarized PDF as:

q(x) = q↑(x)+q↓(x). (1.35)

The ↑ and ↓ indicate that the quark is polarized parallel or anti-parallel to the parent nu-
cleon’s polarization. For the unpolarized structure functions F1 and F2, we then have:

F1(x) =
1
2 ∑

i
e2

i qi(x) (1.36)

F2(x) = x∑
i

e2
i qi(x), (1.37)

∗Because of this, we can safely neglect target mass effects [46].
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where ei is the electromagnetic charge of the ith quark, which arises because the quark-
virtual photon coupling is electromagnetic. The equation for F2 follows from the Callan-
Gross relation.

The polarized structure functions may be expressed in terms of the PDFs in a similar
manner. This time, we consider the polarized PDF, which is the difference of the polarized
quark distributions:

∆q(x) = q↑(x)−q↓(x). (1.38)

In an analogous fashion to F1, the polarized structure function g1 is given as:

g1(x) =
1
2 ∑

i
e2

i ∆qi(x), (1.39)

where we see that g1 is effectively the sum over the helicity distributions ∆q = q↑− q↓

for all quark flavors i. The spin structure function g2 has no clear interpretation in the
parton model, as it necessarily describes the transverse spin structure of the nucleon, which
vanishes in the QPM. To gain an understanding of g2, we have to examine the interactions
that occur between gluons and quarks which bind the nucleon together (Sect. 1.4.5.4).

1.4.5.3 Scaling Violation

The scaling behavior presented in Section 1.4.5.1 is only true in the limit of infinite Q2 and
ν . At finite values of Q2 and ν , it is only an approximation. In reality, the quarks partic-
ipating in the interaction with the electron may radiate gluons before or after scattering,
shown in Figure 1.7. Such processes result in an infinite cross section, and can only be
treated properly when all other processes of the same order are considered. These gluonic
radiative corrections result in the cross section acquiring a logarithmic Q2 dependence. As
a result, the Q2 dependence manifests itself in the structure functions. Such a dependence
is seen in Figure 1.8, showing the F2 structure function over many orders of magnitude in
both x and Q2.

Figure 1.7: Lowest order gluon radiation in electron-quark scattering. Figure reproduced
from [47].
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As a result of the scaling violation, we re-cast the PDFs and the structure functions
(Eqn. 1.36, 1.37 and 1.39) in terms of both x and Q2. In particular, the definition of the
PDF is now q↑(↓)(x,Q2): this is the probability of finding a quark q with its polarization
parallel (anti-parallel) to its parent nucleon’s polarization with momentum fraction x when

viewed at an energy scale Q =
√

Q2.
The physical interpretation tied to scaling violation is that structure functions at low Q2

are dominated by three valence quarks “dressed” by sea quarks (manifesting as q-q̄ pairs)
and gluons. As Q2 is increased, the resolving power increases, allowing for sensitivity to
the “bare” quarks and gluons which make up the nucleon.CHAPTER 1. INTRODUCTION: DESCRIBING THE NUCLEON 23
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Figure 16.7: The proton structure function F
p
2 measured in electromagnetic scattering of positrons on

protons (collider experiments ZEUS and H1), in the kinematic domain of the HERA data, for x > 0.00006
(cf. Fig. 16.10 for data at smaller x and Q2), and for electrons (SLAC) and muons (BCDMS, E665, NMC)
on a fixed target. Statistical and systematic errors added in quadrature are shown. The data are plotted as a
function of Q2 in bins of fixed x. Some points have been slightly o�set in Q2 for clarity. The ZEUS binning
in x is used in this plot; all other data are rebinned to the x values of the ZEUS data. For the purpose of
plotting, F

p
2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from ix = 1 (x = 0.85)

to ix = 28 (x = 0.000063). References: H1—C. Adlo� et al., Eur. Phys. J. C21, 33 (2001); C. Adlo� et al.,
Eur. Phys. J. C30, 1 (2003); ZEUS—S. Chekanov et al., Eur. Phys. J. C21, 443 (2001); S. Chekanov et al.,
Phys. Rev. D70, 052001 (2004); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given
in [55]) ; E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys.
B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).

Figure 1.8: Scaling violation in the proton structure function F p
2 , reproduced from Nakamura et

al. [11]. In order to provide visual separation between the data sets for di⌥erent bins of fixed x,
the F p

2 value has been multiplied by 2ix , where 1 ⌥ ix ⌥ 28 is the number of the x bin. H1 and
ZEUS data points are from positron-proton collider experiments. The remaining data points are
from lepton scattering on a fixed proton target; SLAC used an electron probe, while BCDMS, E665
and NMC used a muon probe.

F1(x) =
1

2

⌫

i

e2
i q(x) =

1

2

⌫

i

e2
i

⇡
q�i (x) + q i (x)

⇢
(1.40)

and

F2(x) = x
⌫

i

e2
i q(x) = x

⌫

i

e2
i

⇡
q�i (x) + q i (x)

⇢
(1.41)

where ei is the electric charge of the ith quark, which enters into the equations because the quark-
virtual photon coupling is electromagnetic.

To predict the polarized nucleon structure functions in this model, we must introduce the polar-
ized PDF ⇥qi(x):

⇥qi(x) = q�i (x) � q i (x) (1.42)

The sign of ⇥qi(x) is set by letting ↵(�) denote a quark spin (anti)parallel to the nucleon spin [18].

Figure 1.8: Scaling violation in the F2 structure function. In order to visually separate the data,
the F2 data were multiplied by 2ix , with 1≤ ix ≤ 28 being the x bin number. H1 and ZEUS data
are positron-proton collider experiments. All other data are from lepton scattering from fixed
proton targets. The SLAC data used an electron beam, while BCDMS, E665 and NMC used a
muon beam. Figure reproduced from [35].

1.4.5.4 The Operator Product Expansion

The QPM provides a probabilistic interpretation for the deep inelastic structure functions in
the limit of Q2→∞. To understand structure functions (and ultimately cross sections) at fi-
nite Q2 however, another approach is needed. The Operator Product Expansion (OPE) [48]
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allows for this by seperating the perturbative component from the non-perturbative compo-
nent in the formalism, where moments of structure functions may be computed.

The key concept of the OPE is to consider the product of two local quark (or gluon)
operators Oa(x)Ob(0), where we consider the limit of x→ 0:

lim
x→0

Oa(x)Ob(0) = ∑
k

cabk(x)Ok(0),

where the coefficient functions cabk are the Wilson coefficients and contain the perturbative
part; non-perturbative effects become important for distances much larger than x [46]. The
non-perturbative components manifest in Ok(0), which contribute to the cross section on
the order of x−n(Q/M)2−D−n. The exponents D and n are the (mass) dimension and spin
of the operator, respectively. The nucleon mass is given by M and Q =

√
Q2. The twist of

the operator t is defined by:

t ≡ D−n. (1.40)

At large Q2, t = 2 terms dominate in the OPE; at low Q2, higher-twist (t > 2) operators
become important. In particular, the g2 structure function gives us insight into higher-twist
effects.

The work of Wandzura and Wilczek [49] showed that (ignoring quark mass effects) g2

can be separated into a purely twist-2 term and a higher-twist term:

g2(x,Q2) = gWW
2 (x,Q2)+ ḡ2(x,Q2), (1.41)

where gWW
2 (x,Q2) is a pure twist-2 term, which can be expressed entirely in terms of g1:

gWW
2 =−g1(x,Q2)+

∫ 1

x
dy

g1(y,Q2)

y
, (1.42)

and ḡ2(x,Q2) is a twist-3 term that contains quark-gluon correlations [49]. With the knowl-
edge of the twist-2 function g1, the higher-twist component of g2 may be isolated. This
makes g2 a useful measure of higher-twist effects in non-perturbative QCD, as g2 con-
tributes at leading order to the experimental asymmetry A⊥ (Ch. 2).
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1.5 Dissertation Outline

The rest of this dissertation is outlined as follows: in Chapter 2, we discuss a number of
models used to describe and interpret the A1 data. In Chapter 3, we outline the setup used
for the E06-014 experiment, including the hardware components and analysis software. In
Chapter 4, the calibration procedures for a number of the sub-detectors is presented. Chap-
ter 5 gives a detailed description of the data analysis for particle identification, efficiency
studies and simulations for the Left High-Resolution Spectrometer (LHRS) and the BigBite
spectrometer, along with the analysis required to extract unpolarized cross sections from
the LHRS data, and double-spin asymmetries from the BigBite data that ultimately leads to
obtaining An

1, the matrix element an
2, and the flavor-separated ratios (∆u+∆ū)/(u+ ū) and

(∆d+∆d̄)/(d+ d̄). Chapter 6 presents the results for An
1, an

2 and flavor-separated ratios for
the up and down quarks compared to existing world data. We present concluding remarks
in Chapter 7.
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CHAPTER 2

A1: THE VIRTUAL
PHOTON-NUCLEON ASYMMETRY

In this chapter, we will discuss the virtual photon-nucleon asymmetry, A1. In Section 2.1.1,
it is described in terms of virtual photon cross sections. In Section 2.1.2, it is written in
terms of the spin structure functions which gives some insight into the spin structure of the
nucleon. The experimental measurement of A1 is discussed in Section 2.2. Various models
are discussed in Section 2.4, and in Section 2.3 the current world data is presented.

2.1 Defining the A1 and A2 Spin Asymmetries

2.1.1 Virtual Photon Cross Sections

When scattering electrons from nucleons, the interaction is mediated by an exchange of
virtual photons with four-momentum q. Each of these particles carry spin, and plays a role
in affecting the probability (or cross section) of the scattering interaction.

The difference between a virtual photon and a real photon is that real photons have
q2 = 0, whereas for virtual photons, q2 6= 0. Another important difference is that while real
photons have two possible polarization states perpendicular to its momentum, virtual pho-
tons can be polarized longitudinally or transversely relative to its momentum~q, resulting in
three possible polarization states. This plays a role in the computation of the cross section
involving virtual photons and nucleons.

To determine the cross section of the nucleon that absorbs the virtual photon, the virtual
photon flux must be treated correctly. For real photons, the flux is 4Mν , with M being the
nucleon mass. It turns out that the flux factor for virtual photons is arbitrary [39]. The
Hand convention [50] is typically utilized, which yields a flux in the laboratory-frame of
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4M[ν−Q2/(2M)]. Using this, the photoabsorption cross section for a nucleon target may
be written as:

dσ

dE ′dΩ
= Γ(εσL +σT ) , (2.1)

where σL,T corresponds to cross sections where the virtual photon is polarized longitudi-
nally or transversely with respect to its momentum. The virtual photon flux factor Γ is:

Γ =
α
[
ν−Q2/(2M)

]

2π2Q2
E ′

E
1

1− ε
, (2.2)

where E is the electron beam energy, E ′ is the scattered electron energy and ε is the ratio
of the virtual photon’s longitudinal to transverse polarization. It is expressed as:

ε =

[
1+2

(
1+ γ

2) tan2 θ

2

]−1

, (2.3)

and θ is the electron scattering angle and γ2 = (2Mx)2/Q2. The cross sections σL and σT in
Equation 2.1 contain information describing the hadronic vertex, much like the unpolarized
structure functions F1 and F2. Due to this, these cross sections can be expressed in terms of
σT and σL [39]:

σT ≡ 4π2α

ν−Q2/(2M)

1
M

F1
(
ν ,Q2) (2.4)

σL ≡
4π2α

ν−Q2/(2M)

[(
1+

ν2

Q2

)
1
ν

F2
(
ν ,Q2)− 1

M
F1
(
ν ,Q2)

]
. (2.5)

From these equations, a relationship between F1 and F2 can be determined:

F1
(
x,Q2)= F2

(
x,Q2)(1+ γ2)

2x [1+R(x,Q2)]
, (2.6)

with R = σL/σT . In the Bjorken limit, it can be seen that σL→ 0, and Equation 2.6 reduces
to the Callan-Gross relation (cf. Equation 1.34).

Let us consider a scattering interaction where the nucleon is longitudinally polarized,
while the virtual photon is circularly polarized with a helicity of ±1. There then arises
two possible helicity-dependent cross sections for a given nucleon polarization, denoted as
σ3/2 and σ1/2. The subscripts denote the projection of the total spin of the virtual photon-
nucleon system along the direction of the virtual photon momentum [40, 51]. When the
virtual photon spin is parallel (anti-parallel) to the nucleon spin, they add to 3/2 (1/2), see
Figure 2.1. From these two cross sections, the A1 asymmetry is formed as:
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Figure 2.1: The two cases of spin projections for the virtual photon and target nucleon in the
definition of the A1 spin asymmetry.

A1 ≡
σ1/2−σ3/2

σ1/2 +σ3/2
, (2.7)

where the ratio of the difference of cross sections to their sum is called an asymmetry.
Another spin asymmetry that may be formed in terms of these virtual photon cross

sections is the A2 asymmetry, defined as:

A2 ≡
2σLT

σ1/2 +σ3/2
. (2.8)

This asymmetry arises as an interference between the longitudinal and transverse virtual
photon-nucleon scattering amplitudes, which is manifested in the cross section σLT [52],
and is defined as:

σLT ≡
4π2α

M (ν−Q2/(2M))

√
Q2

ν

[
g1
(
x,Q2)+g2

(
x,Q2)] . (2.9)

There exists no physical interpretation of σLT that is comparable to that for the cross sec-
tions σ1/2 and σ3/2. The A2 asymmetry is bounded by a function of A1 and the ratio
R = σL/σT , known as the Soffer Bound [53]:

A2(x,Q2)≤
√

R(x,Q2)

2
[1+A1(x,Q2)]. (2.10)

2.1.2 Spin Structure Functions

The spin asymmetries A1 and A2 may be written in terms of the spin structure functions g1

and g2:
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A1 =
g1(x,Q2)− γ2g2(x,Q2)

F1(x,Q2)
(2.11)

A2 =
γ
[
g1(x,Q2)+g2(x,Q2)

]

F1(x,Q2)
. (2.12)

At large Q2∗, A1 ≈ g1/F1. This can be seen by where γ2→ 0 as Q2→ ∞. A more physical
argument on the quark level that describes this is as follows: if the spin of the virtual photon
is anti-parallel to that of the quark, then the virtual photon can be absorbed and the quark
spin is flipped; however, if the spins are parallel, then the absorption of the virtual photon
is forbidden, since the total projection of the spins along~q is 3/2 and the quark is a spin-1/2
particle. The mathematical form of the approximation can be illustrated using this physical
interpretation in the following: for the case where the spins of the nucleon and virtual
photon are parallel (σ3/2), then the quark that can absorb the virtual photon has its spin
anti-parallel to the nucleon spin. This translates to: σ3/2 ∼ ∑

i
e2

i q↓i (x). A similar argument

may be made for the σ1/2 case where only quarks with spins parallel to the parent nucleon
can absorb virtual photons. Thus, we have: σ1/2 ∼ ∑

i
e2

i q↑i (x). Rewriting A1 in terms of

these approximations, we obtain:

A1 ∼
∑
i

e2
i

[
q↑i (x)−q↓i (x)

]

∑
i

e2
i

[
q↑i (x)+q↓i (x)

] =
∑
i

e2
i ∆qi(x)

∑
i

e2
i qi(x)

=
g1(x)
F1(x)

. (2.13)

As seen above, the A1 asymmetry is a ratio of structure functions, and as a result there is
not necessarily any Q2 dependence. This is because g1 and F1 follow the same Q2 evolution
described by the DGLAP equations [54–56] which tends to cancel in the ratio, leading to
A1 being roughly Q2 independent. This is reflected in experimental data [57] on the proton
and neutron, shown in Figure 2.2.

∗That is, for Q2 large relative to the nucleon mass.
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(a) g1/F1 for the proton (b) g1/F1 for the neutron

Figure 2.2: Q2 evolution for g1/F1 for the proton (a) and neutron (b). Figures reproduced
from [57].

2.2 Measuring A1 and A2

2.2.1 Electron Asymmetries

Due to the difficulty associated with aligning the virtual photon spin along the direction of
the nucleon spin, another approach is utilized to measure A1 and A2; it consists of aligning
the incident electron spin along the direction of the nucleon spin. The extraction of the
electron asymmetries allows for the determination of A1 and A2. The electron asymmetries
are given as:

A‖ ≡
σ↓⇑−σ↑⇑

σ↓⇑+σ↑⇑
=

1− ε

(1− εR)W1

[
M
(
E +E ′ cosθ

)
G1−Q2G2

]
(2.14)

A⊥ ≡ σ↓⇒−σ↑⇒

σ↓⇑+σ↑⇑
=

(1− ε)E ′

(1− εR)W1
[MG1 +2EG2]cosθ , (2.15)

where ↑ (↓) indicates the electron spin parallel (anti-parallel) to its momentum and ⇑ (⇓)
indicates the target spin parallel (anti-parallel) to the electron beam momentum. The ⇐
(⇒) indicates the target spin perpendicular to the beam momentum, pointing to the left

27



(right) of the beam line∗. The benefit of measuring asymmetries is that the systematic
uncertainties of cross sections tends to cancel in the ratio.

Since A‖ and A⊥ are functions of the unpolarized structure functions F1 and F2 and the
polarized structure functions g1 and g2, the comparison of experimental results to theory
becomes somewhat complicated. To simplify things, the relation of F2 to F1 via the ratio R

may be exploited to yield [58]:

g1

F1
=

1
d′

(
A‖+ tan

θ

2
A⊥

)
(2.16)

g2

F1
=

y
2d′

(
−A‖+

E +E ′ cosθ

E ′ sinθ
A⊥

)
(2.17)

where d′ is:

d′ =
(1− ε)(2− y)

y(1+ εR)
. (2.18)

After some algebra, electron asymmetries may be written as [59]:

A‖ = D(A1 +ηA2) (2.19)

A⊥ = d (A2−ηA1) . (2.20)

From Equations 2.19 and 2.20, we obtain for A1 and A2:

A1 =
1

D(1+ηξ )
A‖−

η

d(1+ηξ )
A⊥ (2.21)

A2 =
ξ

D(1+ηξ )
A‖+

1
d(1+ηξ )

A⊥, (2.22)

where D is the virtual photon depolarization factor. The kinematic factors D, η , d and ξ

are defined as:
∗The sign convention that determines these directions will be discussed in Section 5.5.
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D =
E− εE ′

E(1+ εR)
(2.23)

η =
ε
√

Q2

E− εE ′
(2.24)

d = D

√
2ε

1+ ε
(2.25)

ξ = η
1+ ε

2ε
. (2.26)

Equations 2.21 and 2.22 allow us to compute A1 and A2 directly from the measured electron
spin asymmetries.

2.3 World Data

Experimental measurements for A1 have been conducted by a number of collaborations
from SLAC, CERN, DESY and Jefferson Lab covering a large range in x and Q2 using
various targets, including the proton, neutron, deuterium and 3He. These data are plotted
in Figure 2.3. In Table 2.1, we summarize the existing measurements.

Table 2.1: Existing measurements of A1.

Experiment Target Observable x Coverage Q2 Coverage
(
GeV2)

SLAC E142 [60] 3He An
1, A

3He
1 0.03 . x . 0.6 2

SLAC E143 [51] NH3, ND3 An
1, Ap

1 , Ad
1 0.024 . x . 0.75 0.5 ∼ 10

SLAC E154 [61] 3He An
1 0.014 . x . 0.7 1 ∼ 17

SLAC E155 [62, 63] NH3 Ap
1 , Ad

1 0.014 . x . 0.9 1 ∼ 40

HERMES [64–67] H, 2H, 3He An
1, Ap

1 , Ad
1 , A

3He
1 0.023 . x . 0.6 1 ∼ 15

SMC [68] NH3,C4H9OH,C4D9OH Ap
1 , Ad

1 0.003 . x . 0.7 1 ∼ 60

EMC [18, 19] NH3 Ap
1 0.01 . x . 0.7 3.5 ∼ 29.5

COMPASS [69, 70] NH3 Ap
1 , Ad

1 0.004 . x . 0.7 1 ∼ 100

JLab E99-117 [71] 3He An
1, A

3He
1 0.327 < x < 0.601 2.7 ∼ 4.8

JLab E01-012 [72] 3He A
3He
1 0.4 . x . 0.9 1 ∼ 3.6

JLab CLAS EG1b [73] NH3,ND3 Ap
1 , Ad

1 0.175 < x < 0.575 1 ∼ 4
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Figure 2.3: The world data on A1 for the proton, neutron, deuteron and 3He.

2.4 Models

In this section, we discuss the various theoretical models that can be used to describe A1.
In Section 2.4.1, we discuss SU(6) symmetric models, while in Section 2.4.2 we discuss
mechanisms that break SU(6) symmetry. In Section 2.4.3 we discuss perturbative QCD
calculations in two forms, without and with orbital angular momentum included. In Sec-
tion 2.4.4, a statistical quark model is presented. Duality is discussed in Section 2.4.5,
while chiral soliton models are examined in Section 2.4.6. Instanton models are presented
in Section 2.4.7, and bag model calculations are discussed in Section 2.4.8. Finally, Dyson-
Schwinger Equation treatments are presented in Section 2.4.9.

When the various models are compared to data, we focus on An
1. In the figures to follow,

we intentionally leave out the results from SLAC E143 due to their large errors in the large
x (& 0.4) region.

30



2.4.1 SU(6)

2.4.1.1 Constituent Quarks

Constituent quarks have the same conserved charges and quantum numbers as the funda-
mental QCD quarks, but have effective masses that are larger than those used in pQCD
calculations (current quarks). A qualitative description of constituent quarks corresponds
to valence (current) quarks being “dressed” by clouds of q-q̄ pairs and gluons, where the
quark gains an effective mass of ≈ 300 MeV.

Despite the ambiguity concerning the mechanism by which current quarks become
dressed in QCD, it is an accepted model due to its success in describing hadronic physics
data in the low-energy regime; in particular, hadron spectroscopy and structure [74].

2.4.1.2 Non-Relativistic Constituent Quark Model

In the non-relativistic constituent quark model (CQM), the nucleon is described by a sym-
metric SU(6) wave function in both the constituent quark and current quark basis. The six
degrees of freedom correspond to spin and isospin (2), and flavor (3). Spin and isospin are
equal to 1/2, and orbital angular momentum of the quarks is neglected. If we consider a
neutron that is polarized along the +ẑ direction, its wave function is given by [75]:

|n ↑〉 =
1√
2

∣∣∣d ↑ (ud)S=0,Sz=0

〉

+
1√
18

∣∣∣d ↑ (ud)S=1,Sz=0

〉
− 1

3

∣∣∣d ↓ (ud)S=1,Sz=1

〉
(2.27)

− 1
3

∣∣∣u ↑ (dd)S=1,Sz=0

〉
−
√

2
3

∣∣∣u ↓ (dd)S=1,Sz=1

〉
,

where the quarks in the parentheses are in a diquark state, and their total spin is denoted by
S and the ẑ-projection is given by Sz. The equivalent wave function for the proton may be
obtained by interchanging u and d in Equation 2.27. When SU(6) is considered a perfect
symmetry, diquark states for which S = 0 and 1 contribute equally [76]. Additionally,
combining the calculated total probability of finding each quark in a given spin state and
assuming that the virtual photon absorption cross section is equal to the sum of those for
the three constituent quarks, predictions for Ap

1 , An
1, ∆u/u and ∆d/d are given as [75]:

Ap
1 =

5
9
, An

1 = 0,
∆u
u

=
2
3
, and

∆d
d

=−1
3
. (2.28)
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We can examine SU(6) symmetry through the ratio of Fn
2 /F p

2 in the valence quark
region:

Rnp ≡ Fn
2

F p
2
=

u(x)+4d(x)
4u(x)+d(x)

. (2.29)

If SU(6) symmetry were true, then Rnp = 2/3 because the relation u(x) = 2d(x) holds when
comparing valence quark distributions in the proton and neutron. Experimental data from
SLAC [77–79] has shown that Rnp 6= 2/3, see Figure 2.4. This indicates that SU(6) sym-
metry is broken [76, 80]. As a result, more complicated models for A1 must be considered.

Figure 2.4: The world data on Fn
2 /F p

2 from SLAC [77–79]. We note here how the data are in
stark contrast to the SU(6) prediction of 2/3. Plot reproduced from [40].

2.4.2 SU(6) Breaking and Hyperfine Perturbed CQM

With SU(6) symmetry known to be broken, the SU(6) approach can be extended to in-
clude hyperfine (or chromomagnetic) interactions between the quarks in the diquark state,
described by the equation [81]:

H i j
hyp = Ai j

{
8π

3
~Si ·~S jδ

3(~ri j)+
1
r3

i j

[
3
(
~Si · r̂i j

)(
~S j · r̂i j

)
−~Si ·~S j

]}
, (2.30)

where Ai j = 2αs/(3mim j) and mi, j is the mass of the ith and jth quarks, respectively. To
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zeroth order, nucleons are S-wave particles, so the only term that remains is the first term,
the Fermi contact term∗. In the nucleon rest frame, this term raises the energy of S = 1
diquark states and lowers the energy of S = 0 diquark states [81], making the first term
in Equation 2.27, |d↑(ud)S=0,Sz=0〉, more stable and hence is the dominant term in the
momentum distribution as x→ 1.

Allowing for relativistic motion of quarks in a constituent quark framework reduces the
contribution of the quarks’ spin to that of the nucleon, called quenching. This effect can be
described as a probability for a spin-flip (i.e., a spin-up quark flipping to spin-down, and
vice-versa), cA(x):

cA(x) = nx(1− x)n. (2.31)

Equation 2.31 needs to vanish at low and high x, as is evident by inspection. The parameter
n is bounded by 2 < n < 4 to provide the necessary amount of relativistic quenching†. A
parameterization of the ratio d(x)/u(x) is also made:

d(x)
u(x)

= κ(1− x) for x→ 1 and 0.5 < κ < 0.6. (2.32)

In the model, a pair of identical quarks is in an S= 1 state, while u-d pairs are in mixtures of
S = 0 and S = 1 states [81]. Up quarks have a larger energy than down quarks on average‡,
yielding a higher probability of finding an up quark at high x compared to finding a down
quark. An immediate consequence of this is that d/u→ 0 as x→ 1. A result of these
assumptions and parameterizations is that at x = 1, we have:

Ap
1 = 1, An

1 = 1,
∆u
u

= 1, and
∆d
d

=−1
3
. (2.33)

The predictions from this model are presented in Figure 2.5, which plots the world data
on An

1 from SLAC E142 [60] and E154 [82], HERMES [64], and JLab E99-117 [71] com-
pared to the relativistic SU(6) model [81], given by the shaded band. The band indicates
all possible combinations of n and κ (Eqns. 2.31 and 2.32). The model also predicts that:

lim
x→1

Fn
2

F p
2
=

1
4
, (2.34)

which agrees with the data shown in Figure 2.4.

∗This term is responsible for the ∼300 MeV difference between the nucleon and ∆ masses [81].
†This means that the “relativistic SU(6)” spin distributions can satisfy the Bjorken sum rule [81].
‡Note that the PDFs we refer to here are those in the proton.
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Figure 2.5: The world data on An
1 from SLAC E142 [60] and E154 [82], HERMES [64], and

JLab E99-117 [71] compared to the relativistic SU(6) model [81]. The shaded band indicates
all possible combinations of n and κ , see text.

2.4.3 Perturbative QCD

Modeling the nucleon in the valence region can be approached in a perturbative manner,
where incorporating some assumptions concerning the underlying physics leads to predic-
tions about A1 and the polarized-to-unpolarized PDF ratios. In this section, we highlight
two of the main approaches used in the pQCD framework.

2.4.3.1 Hadron Helicity Conservation

The first approach concerns the work of Farrar et al. [83, 84], where they assume that the
orbital angular momentum of quarks is zero. It then follows that there are two possible pro-
cesses when the virtual photon probes the nucleon: the quarks in the diquark state can have
their spins anti-aligned (S = 0) or aligned (S = 1). In the S = 0 state, these quarks exchange
a transversely polarized gluon, and both spins are flipped, to conserve angular momentum;
in the S = 1 state, the quarks exchange a longitudinally polarized gluon, and there is no
spin-flip, due to angular momentum conservation. The ratio of the small momentum of
the quark-pair to the large momentum of the longitudinally polarized gluon suppresses this
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mode relative to the S = 0 state. As a result, as x→ 1, the struck quark must carry the
helicity of the nucleon. This is called hadron helicity conservation (HHC).

Brodsky, Burkardt and Schmidt (BBS) performed a fit to the g1 data available at the
time, which included SLAC E142 and the SMC experiment at CERN, requiring HHC in
the large x region [85]. This yielded parameterizations for the helicity-dependent quark
distributions, from which the unpolarized and polarized PDFs can be constructed. Later, the
group of Leader, Siderov and Stamenov (LSS) expanded upon the BBS parameterization
by implementing Q2-evolution and directly fitting A1 data, and not derived measurements
of g1; this parameterization is known as the LSS (BBS) fit. The fits, as compared to world
data on An

1, are plotted in Figure 2.6 at Q2 = 4 GeV2.
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Figure 2.6: The world data [60, 64, 71, 82] on An
1 compared to the BBS [85] and LSS

(BBS) [86] parameterizations, which require hadron helicity conservation. Both models are
evaluated at Q2 = 4 GeV2.

The predictions under HHC for A1, ∆u/u and ∆d/d in the limit of x→ 1 are given as:

Ap
1 = 1, An

1 = 1,
∆u
u

= 1, and
∆d
d

= 1. (2.35)
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2.4.3.2 Orbital Angular Momentum of Quarks

A more realistic picture of the quarks in the nucleon is to allow for non-zero quark orbital
angular momentum. This intrinsically violates the underlying assumptions of HHC, where
angular momentum is transferred between the helicity of the struck quark and the orbital
angular momentum.

Unfortunately, the available polarized data is limited at large Q2 and W 2, compared to
the wealth of unpolarized data; consequently, the 1/Q2 dependence of the polarized data
cannot be ignored. To circumvent the problem, the LSS group made fits [87] at leading and
next-to-leading order (NLO) in Q2 without the constraints imposed by HHC, and is plotted
in Figure 2.7 against the world data on An

1 for Q2 = 2.5 and 10 GeV2. These are the most
up-to-date predictions of gn

1/Fn
1 for which the target mass and higher-twist corrections (that

are scaled by 1/Q2) are accounted for.
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Figure 2.7: The world data [60, 64, 71, 82] on An
1 compared to the LSS [87] parameterization

at Q2 = 2.5 GeV2 (solid green) and 10 GeV2 (dashed green), which require does not require
HHC. Also plotted is the Avakian et al. [88] model, which explicitly includes orbital angular
momentum, and is evaluated at Q2 = 4 GeV2.

A pQCD calculation that explicitly includes Fock states with non-zero quark orbital
angular momentum was developed by Avakian et al. [88]. These Fock states enhance
helicity-flip amplitudes by logarithmic factors. In particular, at large x, the positive helicity
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state (quark spin aligned with the nucleon spin) scales like (1− x)3, whereas the negative
helicity state scales as (1− x)5 log2(1− x). This has a large effect on the behavior of the
down quark distributions, in particular ∆d/d (Fig. 2.14). The Avakian et al. parameteriza-
tion is also shown in Figure 2.7, plotted for Q2 = 4 GeV2. We see here that the LSS and
Avakian et al. fits do better in describing the data compared to the parameterizations that
require HHC, suggesting the importance of quark orbital angular momentum in the spin
structure of the nucleon.

2.4.4 Statistical Model

A statistical mechanical approach may be used to describe nucleon structure; here, we
describe the formalism developed by Bourrely et al. [89]. The nucleon is seen as a gas of
massless partons in equilibrium at a given temperature in a finite volume, where a parton’s
distribution p(x) at an input energy scale Q2

0 is given by:

p(x) ∝
1

exp
(

x−X0p
x̄

)
±1

, (2.36)

where the plus sign in the denominator is used for Fermi-Dirac distributions, for describing
quarks and anti-quarks; the negative sign is used for Bose-Einstein distributions, to describe
the gluons. The variable X0p is a constant, comparable to a thermodynamical potential for
the parton p, and x̄ is a universal temperature for all partons. The parton distribution
also contains a diffractive term∗, which is not featured in other models of A1. Based on
this parameterization, a global NLO QCD analysis is performed for both unpolarized and
polarized DIS data to obtain the best set of parameters, of which there are only eight.

The chiral nature of QCD yields two properties of the potential in this model: the first
being that the potential of a quark with helicity h is opposite of that for an anti-quark of
helicity -h. The second property is that the potential for gluons is zero. From the DIS
data, it is seen that the u quark dominates compared to the d quark; this affects the relative
strength of the potentials of the up and down quarks, where the up quark potential is greater
than that of the down quark. The consequences of this leads to the predictions of A1, ∆u/u

and ∆d/d in the limit of x→ 1 to be [90]:

Ap
1 = 0.80, An

1 = 0.30,
∆u
u

= 0.77, and
∆d
d

=−0.35. (2.37)

How the model performs compared to the world data on An
1 is illustrated in Figure 2.8,

where the model is evaluated at Q2 = 4 GeV2. Since the model is focused on the global
∗The so-called “diffractive term” adjusts the PDFs so as to obtain better agreement with data towards the

low x region, and is a consequence of pomeron universality [89].
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behavior of partons, it turns out to be a good approximation in the low-x region, where
the sea quarks and gluons dominate. Towards larger values of x & 0.6, the features of
valence quarks become the most prominent. The model shows decent agreement with the
data in this range, and it will be interesting to see how the predictions shown at large x

will compare to results expected from approved experiments in the 12 GeV era of JLab,
where measurements are proposed to measure An

1 in the DIS regime up to x∼ 0.8 with high
precision [91, 92].
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Figure 2.8: The world data [60, 64, 71, 82] on An
1 compared to the statistical quark model [89,

90] evaluated at Q2 = 4 GeV2.

2.4.5 Quark-Hadron Duality

The concept of duality was established by Bloom and Gilman [93, 94], which demonstrated
that data for the unpolarized structure function F2 at low W (corresponding to resonance
data) follows a global scaling curve for high W—that is, for DIS data—on average. This is
written mathematically as:

∫ x2(W2,Q2)

x1(W1,Q2)
dxF res

2 (x,Q2) =
∫ x2(W2,Q2)

x1(W1,Q2)
dxFDIS

2 (x,Q2), (2.38)
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where F res
2 corresponds to measurements of F2 at W . 2 GeV and corresponds to relatively

low Q2, whereas FDIS
2 corresponds to measurements of F2 for W > 2 GeV, at comparatively

high Q2, and are evolved to the Q2 of the resonance data. The integral may be conducted
over the entire resonance region, which describes global duality, as portrayed in Equa-
tion 2.38; on the other hand, the integral can be performed over restricted regions in W ,
which is known as local duality.

High-luminosity data from JLab Hall C in the past ten years has shown 10% agreement
with global duality for unpolarized structure functions down to Q2 ∼ 0.5 GeV2, and that
local duality is upheld for the three most prominent resonances [95]. Elsewhere, experi-
ments at DESY [96] and JLab Hall B [73, 97] have shown that global duality is satisfied
for proton and deuteron polarized structure functions down to Q2 = 1.7 GeV2, but local

duality is violated up to Q2 ∼ 5 GeV2 [97]. Another JLab experiment in Hall A [72] found
that global duality held for g1 on the neutron and 3He down to Q2 = 1.8 GeV2.

Under the assumption that local duality is true, it allows for establishing a connection
between the behavior of DIS structure functions in the limit of x→ 1 with elastic form
factors at large Q2 [98]. With local duality, one can use measured structure functions in the
resonance region at large ξ ∗ to extract elastic form factors [99]; or the reverse may be done,
where elastic electromagnetic form factors at large Q2 can be used to deduce the large x

behavior of DIS structure functions. Such an approach is model independent, since duality
is a phenomenological observation. It turns out that duality is in agreement with the pQCD
prediction that A1→ 1 as x→ 1 [98].

In applying duality to observables, it has been motivated largely by phenomenology and
is not well understood in a strict theoretical sense. Despite this, theorists have implemented
finite-energy sum rules in terms of moments of structure functions, which allows for the
mixing of contributions from all scattering regimes; this leads to duality given that Bjorken-
scaling is not violated strongly [99]. Another approach is to combine quark-hadron duality
with different methods of SU(6) symmetry breaking. For a given mechanism of SU(6)
symmetry breaking used, different resonances (e.g., states for s = 3/2) can be suppressed
in the large x region. For a specific mode, the relative strength for each resonance may be
determined by imposing the condition that the calculations reproduce local duality. With
the formalism in place, predictions for observables may be made; in particular, Figure 2.9
shows An

1 plotted with the world data along with results obtained from three different ap-
proaches: suppressed transitions for helicity of 3/2 (red); suppressed resonances with spin
3/2 (blue); and finally suppressed resonances with symmetric wave functions (magenta).

∗The variable ξ is the elastic analog to x in DIS, incorporating target mass corrections. Section 5.9.3.2
addresses target mass corrections for our measurements.
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Figure 2.9: The world data [60, 64, 71, 82] on An
1 compared to calculations from Mel-

nitchouk [98] for suppression of different quantities: transitions of helicity 3/2 (red); reso-
nances with spin 3/2 (blue); and finally, resonances with symmetric wave functions (magenta).

Future work for testing duality includes an approved experiment at Jefferson Lab in
the 12 GeV era [92], where measurements of A1 and g1 on the neutron are planned in the
resonance and DIS regions covering 0.4≤ x≤ 0.7.

2.4.6 Chiral Soliton Models

The chiral soliton framework is used in the low-energy, non-perturbative regime, where the
assumptions and calculations of pQCD are not valid. Here, we discuss chiral symmetry
breaking, and how the nucleon is modeled as an object known as a chiral soliton.

2.4.6.1 Chiral Symmetry Breaking

The QCD Lagrangian written using N f massless flavors is known to have a global sym-
metry under unitary flavor transformations which mixes states of left- and right-handed
quark fields according to UL(N f )×UR(N f ) rotations, referred to as chiral symmetry [100].
If chiral symmetry was an exact symmetry, then a degeneracy in parity of all states for
otherwise equal quantum numbers would be expected. However, in nature, this does not
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occur; mass differences (splittings) between states of the same quantum numbers but op-

posite parities are large. For example, the mass of the ρ vector meson and axial meson a1

is 1260− 770 ≈ 500 MeV. Additionally, the mass difference between the nucleon and its
parity partner, the N(1535) resonance, is ≈ 600 MeV; this difference in mass is too large
to be explained by the small masses of current-quarks∗. The chiral condensate, or “order
parameter,” gives an indication of how strongly chiral symmetry is broken; it is on the order
of a few hundred MeV [100]. Due to its size compared to the mass of the nucleon, it can
be seen that it has a sizable effect on the dynamical structure of the nucleon.

To treat the nucleon under the formalism of chirality, one can generalize QCD to an
arbitrary large number of colors, NC [101–103]. This allows for a perturbative approach at
low energies, taking 1/NC as the expansion parameter. This leads to a description of the
nucleon in an effective theory of infinitely many weakly-interacting mesons and glueballs,
which bind the valence quarks together in the nucleon. Even though NC = 3 in nature,
the theory (utilizing large NC) has been successful in describing the mass splittings in the
baryon octet and decuplet, in agreement with the data to within 1% [104].

2.4.6.2 Baryons as Chiral Solitons

According to the general parameters laid out above, there are a number of approaches in
formulating the nucleon as a chiral soliton. One particular description utilized by a num-
ber of groups [105–108] follows from the Nambu-Jona-Lasinio (NJL) model [109, 110],
where hadronic currents are described by quark degrees of freedom which are functionals
of solitonic meson fields. The dynamics are governed by a U(1)× SU(2)L× SU(2)R chi-
ral symmetry. In such a model, baryons are viewed as “mesonic lumps,” compared to the
quark-parton model, where baryons are composites of nearly non-interacting, point-like
quarks [105]. In these NJL-type models, the mean-field quark wave functions—immersed
in a background consisting of a chiral soliton—is a representation of a non-trivial coupling
of spin and isospin; this is in stark contrast to bag models, which describe baryons in terms
of direct products of spin and isospin states [105, 106]. Another approach on the mar-
ket [111] is to assume that spontaneous chiral symmetry breaking arises due to instantons,
which are non-perturbative vacuum fluctuations of the gluon fields; this has the effect of
delocalizing quark wave functions. This approach preserves the original chiral symmetry
of SU(N f )L× SU(N f )R, but breaks the axial U(1) symmetry. This instanton-based ap-
proach has been extended to N f = 3, and used to make predictions concerning the nucleon
structure functions [112, 113].

∗The mass of the up, down and strange quarks are mu ∼ 4 MeV, md ∼ 7 MeV, and ms ∼ 150 MeV. These
mass differences explicitly break chiral symmetry, to a large degree.
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Predictions for An
1 from two chiral soliton model approaches are compared to the world

data in Figure 2.10. In the NJL-type calculation from Weigel et al. [105, 106] (red), the
ratio gn

1/Fn
1 is computed at Q2 = 3 GeV2. We note here that this is a pure model calculation,

with no influence from fitting world data. A model from Cloët et al. [114] is shown in
green, where their approach utilizes a modified NJL model and confinement is simulated
by eliminating unphysical thresholds for nucleon decay into quarks. Nucleon states are
obtained by solving the Faddeev equation in the quark-diquark approximation where scalar
and axial-vector diquark states are included. The instanton approach by Wakamatsu et

al. [112, 113] at Q2 = 2.7 GeV2 is also presented and is given by the blue curve.
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Figure 2.10: The world data [60, 64, 71, 82] on An
1 compared to a chiral soliton model from

Weigel et al. [105, 106] (red) an instanton-based model from Wakamatsu et al. [112, 113]
(blue), and a modified NJL model from Cloët et al. [114] (green).

2.4.7 Instanton Model

As briefly introduced in Section 2.4.6, instantons are non-perturbative vacuum fluctuations
of the gluon fields. This random ensemble is seen to bind quarks at zero energy [111].
Delocalization∗ arises due to the quantum-mechanical overlap of the quark wave functions,

∗Delocalization means that an infinite number of helicity flips occur; this generates the dynamical mass
of quarks—that is, delocalization corresponds to dynamical chiral symmetry breaking [111].
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and quarks can move between instantons. Such transitions cause quarks to flip their helicity
or chirality, leading to quark depolarization inside the nucleon. This description has been
introduced to explain the observed violation of the Ellis-Jaffe sum rule, sometimes referred
to as the so-called “spin crisis” [115] (Sect. 1.4.1).

The effects of the quark-quark and quark-gluon interactions induced by instantons have
been estimated in an instanton liquid model by Kochelev [115]. It was found that these
q-q and q-g interactions reduce the quarks’ spin contributions to the nucleon, and carry an
x-dependence. Furthermore, it gives a reasonable violation of the Ellis-Jaffe sum rule on
the proton, describing the decrease of gp

1 in the large x region.
The understanding of the neutron g1 is very sensitive to the intricacies of SU(6) sym-

metry breaking, but is not discussed in [115]; however, if a similar negative effect on the
neutron spin due to the q-q and q-g interactions is a fair estimate, then there is a possibility
of An

1 being near zero and potentially negative in the large x region.

2.4.8 Bag Model

In the bag model formalism, the hadron is treated as a finite region of space in which the
strong fields are confined (MIT bag model) [116]. In this region, (i.e., the bag), massless
quarks can move quasi-freely and relativistically but are confined to the bag via boundary
conditions; in particular, outside the bag, the quarks are infinitely massive.

In the fundamental description, quarks move in their own orbit and do not interact with
the other quarks. This was later extended by Schreiber et al. [117] in a three-dimensional
bag, where other interactions, like one-gluon exchange (i.e., the color hyperfine interaction)
between quarks are included. Predictions were made for 2xg1/F2 for the proton; in the
Bjorken limit, where the Callan-Gross relation is expected to hold, the ratio should reduce
to g1/F1 = A1.

Although one-gluon exchange is an improvement in the model, there are other effects
that should be considered. As seen in Section 2.4.6 and Section 2.4.7, we need to consider
the effects instantons have on the bag. To investigate this, Song and McCarthy [118] in-
troduced generalized spin-dependent effects via an explicit symmetry-breaking parameter.
This allows for predictions of 2xg1/F2 for the proton and neutron.

A problem with the bag model approach is that chiral symmetry is explicitly broken on
the surface of the bag. To circumvent this issue, a meson cloud is coupled to the quarks at
the surface of the bag. This approach is known as the cloudy bag model [119, 120]. The
meson cloud is composed largely of pions; other mesons have larger masses, and therefore
any corrections due to their presence would be comparatively smaller than those due to
pions [121].
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According to the cloudy bag model, the proton spin puzzle is somewhat of a non-
issue [122], in that experiment and theory agree that ≈ 35% of the nucleon spin is carried
by the valence quarks. Theoretically speaking, the valence quarks need to be treated in
a relativistic fashion, which is intrinsically incorporated into the original MIT bag model.
Also, it is predicted that the pion cloud has to have its net spin opposite to that of the bare

nucleon∗. Furthermore, introducing one-gluon exchange further reduces the valence quark
spin.

Investigations of the behavior of gp
1 with and without pion cloud effects have been

presented by Boros and Thomas [123]; also a part of the effort are predictions of An
1 where

hyperfine interactions are considered [124]. The calculations without pion corrections [125]
are presented in Figure 2.11 compared to the world data.

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
sy

m
m

et
ry

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n
1A

SLAC E142

SLAC E154

JLab E99117

HERMES

Boros et al.

Figure 2.11: The world data [60, 64, 71, 82] on An
1 compared to the bag model from Boros et

al. [123].

2.4.9 Dyson-Schwinger Equation Treatments

A recent treatment by Roberts et al. [126] analyses the strong interaction via the Dyson-
Schwinger Equations (DSEs). In particular, the calculation is carried out on the domain of

∗A bare nucleon is one that is not dressed with pions.
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x ' 1 where the nucleon elastic form factors can be connected to predictions of the large-
x behavior PDFs via a Pioncaré covariant Faddeev amplitude. In the construction of the
Faddeev equation, Roberts et al. employ a dressed-quark propagator of two different types
for the calculations: one where the mass term is momentum independent, and the other
where the mass term carries a momentum dependence. This yields two different sets of
results, referred to as contact and realistic, respectively.

These calculations were not extended to x 6= 1, as Roberts et al. argue that on the domain
of x ' 1, the interpretation of PDFs is unambiguous, in that they inform how interactions
between dressed-quarks and -gluons create hadron bound states and how such interactions
arise from QCD [126].

The results of the calculations reveal the importance of non-pointlike diquark corre-
lations within the nucleon. Unlike other models (in particular, CQM) where point-like di-
quark correlations are inserted “by hand,” non-pointlike diquark correlations arise naturally
as a consequence of dynamical chiral symmetry breaking [126]. In the contact framework,
the predictions at x = 1 for A1, ∆u/u and ∆d/d are given as:

Ap
1 = 0.88, An

1 = 0.34,
∆u
u

= 0.88, and
∆d
d

=−0.33, (contact) (2.39)

and in the realistic picture:

Ap
1 = 0.59, An

1 = 0.17,
∆u
u

= 0.65, and
∆d
d

=−0.26 (realistic). (2.40)

2.5 Flavor Decomposition

The partons that make up the nucleon consist of the valence quarks, corresponding to the
up and down quarks, the sea quarks (which includes the strange quarks), anti-quarks, and
finally, there are gluons. A PDF is the probability of finding a given parton with momen-
tum fraction x at a resolution (or energy scale) of Q2. Such an interpretation allows for
understanding the roles of these distributions in the nucleon when comparing the different
quark flavors as a function of x, as shown in Figure 2.12, at Q2 = 4 GeV2. The distributions
are from the fits of the CTEQ-JLab (CJ12) [127] collaboration. We see that the valence up
and down quarks dominate in the large x region, which is known as the valence quark re-

gion; it is a relatively simple region to model theoretically under the formalism of pQCD to
predict structure functions, asymmetries (like A1) and PDFs; however, in the low x region,
the perturbative framework breaks down and does not do well in describing the physics.
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Figure 2.12: Unpolarized valence (solid) and sea (dashed) PDFs for Q2 = 4 GeV2. The distri-
butions are from the CJ12 [127] parameterization. The gluon distribution is scaled down by a
factor of 10.

Utilizing isospin symmetry, one can combine the data from proton and (effective) neu-
tron targets to extract spin-dependent information on the individual quark flavors, Such an
analysis is known as flavor decomposition. In the valence region, we can ignore strange
quarks for the time being. Combining the equations for g1 and F1, we can obtain:

gp
1

F p
1

=
4∆u+∆d +4∆ū+∆d̄

4u+d +4ū+ d̄
(2.41)

gn
1

Fn
1

=
4∆d +∆u+4∆d̄ +∆ū

4d +u+4d̄ + ū
, (2.42)

where the neutron equation is obtained from isospin symmetry; that is, u↔ d in the gp
1/F p

1

ratio yields gn
1/Fn

1 . Under the formalism of the QPM and assuming the strange quark
contribution is small in the valence quark region, x & 0.3, combining these two equations
for gp

1/F p
1 and gn

1/Fn
1 gives expressions for the up and down quarks:

∆u+∆ū
u+ ū

=
4

15
gp

1
F p

1

(
4+

d + d̄
u+ ū

)
− 1

15
gn

1
Fn

1

(
1+4

d + d̄
u+ ū

)
(2.43)

∆d +∆d̄
d + d̄

=
4

15
gn

1
Fn

1

(
4+

u+ ū
d + d̄

)
− 1

15
gp

1
F p

1

(
1+4

u+ ū
d + d̄

)
, (2.44)
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where the ratio of the down-to-up quark distributions is typically defined as Rdu, and arises
from data on Fn

2 /F p
2 from experiments using proton or deuteron targets; however, in the

large x region, the deuteron target data tends to have large uncertainties due to nuclear
corrections [127]. In this valence quark region, Rdu ≈ d/u. The PDF ratios as shown in
Equations 2.43 and 2.44 can be obtained from measurements of gp

1/F p
1 and gn

1/Fn
1 , along

with utilizing a parameterization of the ratio Rdu. The world data for Rdu is given in Fig-
ure 2.13.

Figure 2.13: The world data for Rdu from SLAC for proton and deuteron targets. The open
circles indicate the use of on-shell calculations for the deuteron, while the solid circles use
an off-shell model. The open diamonds indicate measurements taken with a neutrino beam,
which are insensitive to nuclear effects, by the CDHS collaboration [128]. Figure reproduced
from [129]

The PDF ratios in Equations 2.43 and 2.44 are quantities that include contributions
from all quark types; that is, it includes contributions from the valence and sea quarks.
Theoretical predictions are often given in terms of the valence quarks only, so a proper
comparison of experimental results to those of theory entails understanding how much
the experimentally-extracted result that includes sea quarks to those that don’t include sea
quarks. To illustrate how the PDF ratio for valence quarks is extracted from data, we follow
the work of X. Zheng [40]. We denote valence quarks as qV and sea quarks as qS. We note
that qS = q̄; with this in hand, we can see that for unpolarized and polarized PDFs:

q+ q̄ = qV +qS + q̄ = qV +2q̄ (2.45)

∆q+∆q̄ = ∆qV +∆qS +∆q̄ = ∆qV +2∆q̄. (2.46)

Then using Equations 2.45 and 2.46, we have:
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∆qV

qV
=

∆qV +2∆q̄
qV +2q̄

· qV +2q̄
qV

· ∆qV

∆qV +2∆q̄
, (2.47)

rewriting this, we obtain:

∆qV

qV
=

∆qV +2∆q̄
qV +2q̄

(
1+

2q̄
qV

)(
1+

2∆q̄
∆qV

)−1

. (2.48)

Now, the fraction in the last term is multiplied by qV/qV , and both sides of the equation are
multiplied by

(
1+ 2∆q̄

qV
· qV

∆qV

)
, yielding:

∆qV

qV
+

2∆q̄
qV

=
∆qV +2∆q̄

qV +2q̄

(
1+

2q̄
qV

)
. (2.49)

Substituting qV = q− q̄ into the first term on the right-hand side, we arrive at:

∆qV

qV
=

∆q+∆q̄
q+ q̄

(
1+

2q̄
qV

)
− 2∆q̄

qV
. (2.50)

To extract the PDF ratio for valence quarks only, we take our experimentally-extracted
result of (∆q+∆q̄)/(q+ q̄), via g1/F1 measurements, and make corrections for the sea
quark distributions as seen above, where the ratios 2q̄/qV and 2∆q̄/qV are obtained from
fits to world data (i.e., parameterizations of q̄ and qV ). We can estimate the error on the
valence PDF ratio by propagation of errors:

δ

(
∆qV

qV

)2

=

(
δqV

qV

)2[
2q̄

∆q+∆q̄
q+ q̄

−2∆q̄
]2

+

(
δ (2q̄)

qV

)2(
∆q+∆q̄

q+ q̄

)2

+

(
δ (2∆q̄)

qV

)2

.

(2.51)
We can also estimate the error for leaving out the strange contribution by following a

similar procedure for the valence quark ratios (cf. Equation 2.43 and 2.44):

∆u+∆ū
u+ ū

=

(
∆u+∆ū

u+ ū

)

s,s̄=0
+

s+ s̄
u

[
4

15
gp

1
F p

1
− 1

15
gn

1
Fn

1
− 1

5
∆s+∆s̄

s+ s̄

]
(2.52)

∆d +∆d̄
d + d̄

=

(
∆d +∆d̄

d + d̄

)

s,s̄=0
+

s+ s̄
d

[
4

15
gn

1
Fn

1
− 1

15
gp

1
F p

1
− 1

5
∆s+∆s̄

s+ s̄

]
(2.53)

The error could be bounded by considering the positivity constraints of |∆s/s| ≤ 1 and
|∆s̄/s̄| ≤ 1.

The current experimental data for (∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄) are shown
in Figure 2.14, where the red (blue) data represents the up (down) quark ratio. The data
shown are from HERMES [66], a semi-inclusive DIS measurement, and JLab experiments
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E99-117 [71] and CLAS EG1b [73], both of which are inclusive DIS measurements. The
dashed curve is a pQCD calculation from Leader et al. [86], which requires hadron helic-
ity conservation (Sect. 2.4.3); the dashed-dotted curve is another pQCD calculation from
Avakian et al. [88], which explicitly includes orbital angular momentum in their calcula-
tions. The solid curve is a statistical quark model from Bourrely et al. [89, 90], and the
dash triple-dotted curve is a modified NJL model from Cloët et al. [114]. We can see that
both pQCD models predict that ∆q/q→ 1 at large x, which implies that q+ must dominate
as x→ 1. The data for ∆u/u is consistent with this prediction; however, we note that the
current ∆d/d data shows no sign of turning positive as we approach the large x region.
The Avakian et al. calculation fits the down quark data better, but still has a zero-crossing
at x ∼ 0.75. The data in Figure 2.14 imply that in general, the up quark spins tend to be
parallel to that of the nucleon spin, whereas the down quark spins are antiparallel to the
nucleon spin. It is evident from the data and the model from Avakian et al. that quark
orbital angular momentum is playing an important role in the spin of the nucleon.
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Figure 2.14: The world data for the up and down quark polarized-to-unpolarized PDF ratios.
The data shown is from HERMES [66], a semi-inclusive DIS measurement, and JLab E99-
117 [71], and CLAS EG1b [73], both of which are DIS measurements. The models are pQCD
calculations from Leader et al. [86] (dashed) and Avakian et al. [88] (dash-dotted). The solid
curve shows a statistical quark model from Bourrely et al. [89, 90] and the dash triple-dotted
curve shows a modified NJL model calculation from Cloët et al. [114].
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CHAPTER 3

THE EXPERIMENT

In this chapter we will discuss the E06-014 experiment. In particular, in Section 3.1 we give
an overview of the physics and goals of E06-014. Section 3.2 introduces the Jefferson Lab
(JLab) Continuous Electron Beam Accelerator Facility. The electron beam line is discussed
in Section 3.4 and the target is discussed in Section 3.5. The Left High-Resolution spec-
trometer is presented in Section 3.6 and the BigBite spectrometer is shown in Section 3.7.
The trigger set up for each spectrometer is examined in Section 3.8, while Section 3.9 de-
scribes the data acquisition system utilized. Finally, Section 3.10 shows the software used
to process the data.

3.1 Overview of the Experiment

The E06-014 experiment, also known as dn
2 , ran in Hall A from February 7th to March

17th of 2009. It consisted of scattering a longitudinally polarized electron beam from a
longitudinally and transversely polarized 3He target. The goal of the experiment was to
perform a measurement of the quantity d2 on the neutron. d2 is the x2 moment of a linear
combination of the spin structure functions g1 and g2:

d2
(
Q2)=

∫ 1

0
x2 [2g1

(
x,Q2)+3g2

(
x,Q2)]dx. (3.1)

The spin structure function g2 is known to contain quark-gluon correlations. It follows
from a spin-flip Compton amplitude and may be written as:

g2
(
x,Q2)= gWW

2
(
x,Q2)+ ḡ2

(
x,Q2) , (3.2)

where gWW
2 is the Wandzura-Wilczek term, which may be expressed entirely in terms of

g1 [49]:
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gWW
2
(
x,Q2)=−g1

(
x,Q2)+

∫ 1

x

g1
(
y,Q2)

y
dy. (3.3)

The second term is given as:

ḡ2
(
x,Q2)=−

∫ 1

x

1
y

∂

∂y

[mq

M
hT
(
y,Q2)+ξ

(
y,Q2)]dy, (3.4)

where hT is the transverse polarization density, and ξ is a term arising from quark-gluon
correlations. Here, hT is suppressed by the ratio of the quark mass mq to the target mass
M. Therefore, ḡ2 provides access to quark-gluon interactions inside the nucleon [130].
Utilizing this form of g2, we see that d2 is given by:

d2
(
Q2)=

∫ 1

0
ḡ2
(
x,Q2)dx. (3.5)

Here, we see that a measurement of d2 gives a direct measurement of quark-gluon correla-
tions. The quantity d2 also appears as a matrix element of the twist-3 gluon field-strength
operator G̃µν = (1/2)εµναβ Gαβ in the operator product expansion [131]:

〈P,S | 1
4

gG̃σ(µ
γ

ν)
ψ | P,S〉= 2d2S[σ P(µ]Pν), (3.6)

where the brackets (. . .) and [. . .] indicate the symmetrization and anti-symmetrization of
indices, respectively; P and S are the momentum and spin of the nucleon, respectively, and
g is the QCD coupling constant. The structure of Gµν suggests that it measures a quark
and a gluon amplitude in the initial nucleon wave function.

There are two interpretations of d2 based on the energy scale
(
Q2) at which the system

is probed. The first of which being where Q2 is low enough so that the virtual photon
wavelength is larger than the nucleon size and the virtual photon’s electromagnetic field
appears to be uniform over the nucleon volume. This leads to g2 (and subsequently d2)
being able to be described in terms of spin polarizabilities [132]. Due to the fact that the
strong force and the electromagnetic force conserve parity, an analogy between the strong
force’s color fields and the electromagnetic force’s electromagnetic fields may be drawn:
the color magnetic field ~B can be induced along the direction of the nucleon polarization
and the color electric field ~E is in the plane perpendicular to the polarization. Defining the
color singlet operators ÔB = ψ†g~Bψ and ÔE = ψ†~α×g~Eψ in terms of the quark fields ψ ,
we determine the gluon field polarizabilities χB and χE in the rest frame of the nucleon:

〈PS | ÔB,E | PS〉= χB,E2M2~S. (3.7)

Utilizing these formulae, it can be shown that:
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d2 =
1
4
(2χB +χE) . (3.8)

From Equation 3.8 it can be seen that d2 gives the color electric and magnetic fields’ re-
sponse to the polarization of the nucleon [131].

Recent work has shown [133] that at high Q2, d2 is more appropriately seen as a color
Lorentz force averaged over the volume of the nucleon. To illustrate this, a parallel may be
drawn to electromagnetism, where the ŷ component of the Lorentz force Fy acting on an
electron moving with v∼ c along the ẑ-axis gives:

Fy = e
[
~E +~v×~B

]y
=−e

√
2F+y, (3.9)

where F+y is in light-cone coordinates and contains the same Lorentz components that ap-
pear in the field tensor G in Equation 3.6. This suggests how d2 is connected to a color

Lorentz force on the active quark immediately following its interaction with a virtual pho-
ton, given by:

Fy (0)≡−
√

2
2P+
〈P,S | ψ̄q (0)gG+y (0)γ

+
ψq (0) | P,S〉=−

1
2

M2d2. (3.10)

The quantity d2 may be measured on either the proton
(
dp

2
)

or the neutron
(
dn

2
)
. While

bag and soliton model calculations of d2 for the neutron yield numerical values consis-
tent with those of lattice QCD, current experimental data differs by roughly two standard
deviations (see the highest Q2 data in Figure 3.1). One of the goals of our experiment is
to improve the experimental error on the value of dn

2 by a factor of four. It subsequently
provides a benchmark test of lattice QCD calculations, shown in Figure 3.1.

3.1.1 The Measurement of dn
2

The experiment ran in Hall A for six weeks with 15 µA of polarized electron beam on
a longitudinally and transversely polarized 3He target. Since the lifetime of the neutron
is < 15 minutes [35], a free-neutron target is not practical. Therefore, 3He is used as an
effective polarized neutron target since roughly 86% of the polarization is carried by the
neutron. This is due to the two protons in the nucleus being primarily bound in a spin
singlet state [143, 144].

There were two main data sets, with beam energies of E = 4.74 and 5.89 GeV, covering
the resonance and deep inelastic valence quark regions, characterized by 0.2≤ x≤ 0.7 and
2≤ Q2 ≤ 6 GeV2. The coverage in the x and Q2 plane is shown in Figure 3.2.
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Figure 3.1: dn
2 as a function of Q2. All the data shown with the exception of the SLAC E155x

and JLab E99-117 data are dominated by resonance contributions. E06-014 data observed
mostly the DIS contribution. The projected error on from E06-014 [134] is shown, along with
the lattice QCD result [135]. The dashed green curve shows the pQCD evolution from the
lattice point [136] based on the calculations of [137, 138]. Data from JLab experiments E94-
010 [139] and RSS [140] are included in the plot. For comparison to the resonance contribution,
a MAID model [141] is plotted. Also plotted is the total d2 from SLAC experiment E155x [142]
and JLab E99-117 [71].

We measured the unpolarized total cross section σ0 and the asymmetries A‖ and A⊥.
The cross section was measured by the Left High-Resolution Spectrometer (LHRS) (Sect. 3.6),
while the asymmetries were measured by the BigBite spectrometer (Sect. 3.7). The LHRS
and BigBite were oriented at scattering angles of θ = 45◦ to the left and right of the beam-
line, respectively.

Expressing the structure functions entirely in terms of these experimental quantities, we
have the expression for dn

2 :

dn
2 =

∫ 1

0

MQ2

4α2
x2y2

(1− y)(2− y)
σ0

[(
3

1+(1− y)cosθ

(1− y)sinθ
+

4
y

tan(θ/2)
)

A⊥+
(

4
y
−3
)

A‖

]
dx,

(3.11)
where x = Q2/2Mν , ν = E −E ′ is the energy transfer to the target, E ′ is the scattered
electron energy, and y= ν/E is the fractional energy transfer to the target. The asymmetries
are given by:

A‖ =
N↓⇑−N↑⇑

N↓⇑+N↑⇑
and A⊥ =

N↓⇒−N↑⇒

N↓⇒+N↑⇒
,
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Figure 3.2: The E06-014 kinematic coverage in Q2 and x. The lower band is the 4.74 GeV
data set and the upper band is the 5.89 GeV data set. The black dashed line shows W = 2 GeV.
The data to the left and right of this line corresponds to DIS and resonance data, respectively.

where N is the number of electron counts measured for a given configuration of beam
helicity (single-arrows) and target spin direction (double-arrows).

The experiment was designed to minimize the error on the quantity dn
2 , rather than

the structure function g2. Expressing dn
2 in terms of the experimental observables (cross

sections and asymmetries) simplifies the issue of optimizing the statistical error on dn
2 , as

A⊥ contributes the most to the error. Due to this, the majority of the data taking was for the
transversely polarized target configuration.

3.1.2 Kinematics

In order to obtain results at constant Q2, the original proposal called for two Q2 measure-
ments for each x bin and an interpolation between the two measurements would be made.
This results in the need for two beam energies of 4.74 and 5.89 GeV. Another important
reason for the two beam energies was to have more input data for radiative corrections. A
single magnet setting in the BigBite Spectrometer covers the entire kinematic phase space,
while the LHRS, with its smaller acceptance, required twenty magnet settings (ten at each
beam energy) to accomplish the equivalent coverage.

Unfortunately due to time constraints, not all the data needed was collected∗. The
kinematics describing the data that was collected is shown in Tables 3.1 and 3.2.

∗The originally proposed kinematics can be found in [134].
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Table 3.1: Kinematic bins for the LHRS for a beam energy of 4.74 GeV. The LHRS momentum
setting is labeled as p0.

p0 (GeV) x Q2
(
GeV2)

0.60 0.215 1.66
0.80 0.301 2.22
1.12 0.458 3.10
1.19 0.496 3.30
1.26 0.536 3.49
1.34 0.584 3.71
1.42 0.634 3.93
1.51 0.693 4.18
1.60 0.755 4.43

Table 3.2: Kinematic bins for the LHRS for a beam energy of 5.89 GeV. The LHRS momentum
setting is labeled as p0.

p0 (GeV) x Q2
(
GeV2)

0.60 0.209 2.07
0.70 0.248 2.42
0.90 0.332 3.11
1.13 0.437 3.90
1.20 0.471 4.14
1.27 0.506 4.38
1.34 0.542 4.62
1.42 0.584 4.90
1.51 0.634 5.21
1.60 0.686 5.52
1.70 0.746 5.87

3.2 CEBAF at Jefferson Lab

The high-energy polarized electron beam is provided by the Continuous Electron Beam
Accelerator Facility (CEBAF) at JLab. It delivers a continuous-wave electron beam of
high polarization, reaching up to ∼ 85% which is sent to each of the three experimental
Halls: A, B and C. The beam currents range up to 100 µA for Halls A and C, while Hall
B typically receives . 100 nA. The energy of the beam can go up to ∼ 6 GeV, achieved by
two superconducting radio-frequency (RF) linear accelerators (linacs), connected by two
magnetic recirculating arcs (Fig. 3.3).

3.2.1 The Polarized Electron Source

Since the experimental goals of each hall are necessarily different from one another, their
beam requirements tend to differ as well. To accommodate this situation, three different
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Figure 3.3: CEBAF recirculation arcs for ramping up the electron beam energy. Figure repro-
duced from [40].

lasers (one for each hall) are used. The laser system used by each hall consists of a 1560 nm
seed laser, an ErYb-doped fiber amplifier and a periodically poled lithium niobiate (PPLN)
crystal∗. Each laser is gain-switched so that the pulse rate, and consequently the repetition
rate of the electron bunches, is 499 MHz†, and 120◦ out of phase with each hall. By way of
beam splitters, polarizers and dichoric mirrors, all three lasers are directed along a common
axis to illuminate the same photo-cathode used to obtain polarized electrons [147].

The laser light starts out linearly polarized and goes through a Pockels cell, which con-
verts it to circular polarization. The cell is voltage-controlled, where flipping the voltage
polarity of the Pockels cell changes the polarization of the laser light from left-circular to
right-circular and vice-versa. This effectively changes the helicity of the electrons. To im-
pose restrictions on the helicity-correlated charge asymmetry of the beam, the linearly po-
larized light passes through a Pockels cell placed before a cell that converts it to circularly-
polarized light. The voltage of this first Pockels cell varies according to the helicity flipping
sequence is set to vary the intensity of the laser light, which in turn minimizes the helicity

∗This is used to double the photon frequency [145, 146].
†The third harmonic of the 1497 MHz fundamental frequency of the accelerator.
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correlated asymmetry. This Pockels cell is a part of a feedback loop that also includes the
Hall A beam current monitor and a special data acquisition system, developed by the Hall A
Proton Parity Experiment [148]. In addition to this feedback loop, an insertable half-wave
plate (IHWP) can be placed in the photon beam line. This flips the helicity sign produced
by the Pockels cells for a given voltage [47, 149].

Once the laser light is circularly polarized, it then illuminates the photocathode, made
of strained superlattice gallium arsenide (GaAs). The laser light excites the valence elec-
trons in the sample, moving them into the conduction band. From here, the conduction
band electrons are extracted by applying a voltage of -100 kV to the photo-cathode, and
are extracted to the injector. Inside the 100 keV beamline, a Wien filter [150] is utilized to
rotate the electron spin direction without changing the central beam orbit. The Wien filter,
combined with the known spin precession of the electron in the accelerator and beamline,
allows for the optimization of the polarization direction of the electrons for each experi-
mental hall.

3.2.2 Accelerator

The accelerator consists of the injector, two superconducting linacs, and two acceleration
arcs. The polarized electrons are accelerated through the linacs and are recirculated through
the arcs. After a specified number of recirculations, the beam is extracted to each of the
experimental halls.

The injector is the starting point for the polarized electron beam in the acceleration
procedure. It consists of 18 accelerating cavities, where each provides the initially 100 keV
electrons from the electron source with 2.5 MeV of energy. The electrons emerge from the
injector and are inserted in the North Linac with an energy of ∼ 45 MeV.

Each linac is composed of twenty superconducting cryomodules, where each cryomod-
ule has eight cavities. This amounts to each linac having a total of 160 cavities. These
cavities are made of niobium, a superconducting material at a temperature of 2.08 K. To
cool the cavities, they are immersed in liquid He, produced at the Central Helium Lique-
fier (CHL). The CHL acts as a large refrigerator that keeps the He cooled to ∼ 2.2 K; the
cooled He is sent to the cryomodules at a pressure of ∼ 2.8 atm. The cavities are driven
by 1497 MHz electromagnetic waves in order for the wave crests to align with the elec-
tron bunches, causing them to accelerate. Passing through a single linac, electrons gain
∼ 500–600 MeV.

To bend the electrons from one linac into the other, there are two recirculation arcs (east
and west). They are composed of hundreds of magnets, responsible for bending and focus-
ing the electron beam. The electrons with lower energies are bent the most into the upper
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pipe (Fig. 3.3), while those with larger energies have their trajectories the least affected,
and travel along the beam pipes closest to the floor. This energy-dependent bending results
in electrons traversing the designated pipes based upon how many times it has circled the
accelerator.

At the end of the South Linac, the beam is bent into the North Linac in the same fashion
as described for bending the electrons from the North Linac into the South Linac. Recir-
culation of the beam can be done up to five times∗, with the electron beam reaching a
maximum energy of ∼ 6 GeV.

3.2.3 Delivery of Beam to the Experimental Halls

Following each beam pass, the beam may be extracted to a given experimental hall. This is
realized by an RF separator which is located in the beamline. It extracts every third bunch,
sending a single pulse of beam to each hall.

To control the systematic errors on the electron beam polarization in the experiment, the
helicity of the electrons are flipped at a rate of 30 Hz, done at the Pockels cell. This 30 Hz
time frame is considered a helicity window, and multiple windows are separated by Master
Pulse Signals (MPSes). For each window, there is a definite helicity state, either parallel
(+) or anti-parallel (−), where the electron spin is parallel or anti-parallel to its momentum,
respectively. The helicity windows are organized into quartets, in the form +−−+ or
−++−. Each quartet is composed of two helicity pairs, with complimentary helicity
states. The helicity state of the first window of a quartet is decided by a pseudo-random
number generator, therefore determining the helicity state for the last three windows. At
this point, a signal indicating the helicity direction is sent to the data acquisition systems,
along with a signal indicating the beginning of the quartet.

3.3 Coordinate Systems

There are various coordinate systems employed in the data analysis, and it is useful to give
a brief overview here. The coordinate systems that describe electrons before scattering
from the target is the accelerator coordinate system and the Hall A coordinate system; to
describe the scattered electrons, the target coordinate system and the detector coordinate
systems, one for the LHRS and one for BigBite, are used.

In the accelerator coordinate system, the positive x direction is taken to be on the right
side of the beamline. The z-axis is taken along the beamline, with increasing z pointing in

∗One full circulation is considered to be one pass.

58



the downstream direction (that is, pointing towards the target). The positive y direction is
taken as ŷ =−ẑ× x̂; hence, we see that this is a left-handed coordinate system. This system
is used in the EPICS data management system (Sect. 3.9).

The Hall A coordinate system has the positive x direction defined as pointing towards
the left of the beamline. The z-axis is again along the beamline, with increasing z in the
downstream direction. The y-axis is given as ŷ = ẑ× x̂. The origin of the coordinate system
is at the target center.

The target coordinate system (TCS) is defined such that positive x is vertically down
(with gravity), and the z-axis points down the central ray of the spectrometer (either the
LHRS or BigBite), away from the target, parallel to the floor. The y-axis is defined as
ŷ = ẑ× x̂. The origin of the TCS is at the target center. The TCS is typically used in
the data analysis when projecting events from the detector planes back to the target to
determine scattering vertices and momenta.

The final coordinate systems to consider are the detector coordinate systems for the
LHRS and BigBite, respectively. In the LHRS, the positive x direction is defined as pointing
vertically downward (with gravity) and z is along the central ray of the spectrometer, away
from the target. The y-axis is defined as ŷ = ẑ× x̂. The origin of the coordinate system is
placed at the center of the first vertical drift chamber plane, also known as the focal plane.
In BigBite, the positive x-direction points vertically downward, and the z-axis is along the
central ray of BigBite, away from the target. The y-axis is given by ŷ = ẑ× x̂. The origin
of the coordinate system is placed at the center of the first multi-wire drift chamber plane.

A diagram of the various coordinate systems is given in Figure 3.4.
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Figure 3.10: A schematic of four coordinate systems in common use in Hall A. Here, the beamline
is seen from above, with the downstream direction toward the right of the figure.

3.3.2 Hall A Beamline

Upstream of the target, the Hall A beamline contains a variety of devices used to monitor various
characteristics of the electron beam, several of which are shown in Figure 3.2. The Møller and
Compton polarimeters measure the beam polarization; they will be discussed in Sections 4.2 and 4.3,
respectively. (The Compton polarimeter, which is located in the tunnel leading to the Hall rather
than in Hall A itself, is not shown in the figure.) Below, we describe our measurements of beam
energy (Section 3.3.2.4), current and charge (Section 3.3.2.1), position (Section 3.3.2.2), and raster
(Section 3.3.2.3).

3.3.2.1 Beam Current and Charge

E06-014 ran with beam currents of about 15 µA. Fluctuations around the current setpoint – as well
as occasional beam trips, due to transient di⌦culties in the accelerator or in other halls – make it
essential to monitor the actual beam current in real time.

For this purpose, Hall A’s standard beamline equipment includes two resonant RF cavities,
stainless-steel cylinders with a high (� 3000) Q factor, which are tuned to the fundamental beam
frequency of 1.497 GHz. These Beam Current Monitors (BCMs) are denoted upstream (u) and
downstream (d), based on their relative positions on the beamline. Each produces a voltage signal
proportional to the measured current. This signal is fanned out into three copies, each of which is
amplified by a di⌥erent gain factor (1, 3, or 10) and sent to a VtoF converter. The resulting signals
– three for each BCM, or six altogether – have frequencies proportional to the beam current and
may be read out by scalers in the HRS and BigBite arms for a continuous measurement of both
current and accumulated beam charge [140].

In order to calibrate these readouts, it is necessary to take dedicated calibration runs, system-
atically stepping through several beam-current set points. There are two steps in this calibration
process. First, at the injector, the OL02 resonant cavity is calibrated to the Faraday cup, a water-
cooled copper beam dump that can be inserted into the injector beamline so as to collect all of the
current [145]. No beam can be received downstream of the Faraday cup while it is in place, but the
injector cavity does not disturb the beam, so it is the OL02 injector cavity’s current reading that is

Figure 3.4: A top-view diagram of the four coordinate systems utilized in Hall A during the
E06-014 experiment. The beamline moves from left to right in the figure. Figure reproduced
from [47].

3.4 Hall A Beamline

The Hall A beamline is upstream of the target and consists of a number of devices to
monitor the beam’s characteristics. These include the beam position monitors (Sect. 3.4.1);
the beam charge monitors (Sect. 3.4.2); the Møller and Compton polarimeters, used to
measure the beam polarization (Sect. 3.4.3); and finally, the energy of the beam is measured
via the Tiefenback method (Sect. 3.4.4).

3.4.1 Beam Position

3.4.1.1 Beam Position Monitors

For accurate vertex reconstruction and proper momentum calculation for a given track, the
position of the beam in the plane transverse to the nominal beam direction at the target is
needed. The beam position is affected by the beam’s orbit in the accelerator, the Møller
and Compton magnets and the fast raster.

The measurement of the beam position is accomplished by utilizing beam position mon-
itors (BPMs). They are “slow,” in the sense that they operate on a time scale of tenths of
seconds. The BPMs consists of four antenna arrays placed 7.524 m and 1.286 m upstream
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of the target. The wires are positioned at ±45◦ relative to the horizontal and vertical di-
rections in the hall. The signal induced in the wires by the beam is recorded by ADCs,
and is inversely proportional to the distance from the beam to the wire. The differences of
the signals in pairs of wires in a given plane gives a positional resolution of 100 µm [151].
Combining the measurements from both monitors gives the trajectory of the beam. Extrap-
olating this data gives the position at the target.

The calibration of the ADC signals is accomplished by using wire scanners, or harps.
They are situated next to the BPMs. This is a destructive procedure, where the wires
are scanned across the electron beam, resulting in scattered particles which are measured.
These harps are surveyed, so their positions are known. As a result, the BPMs can be
calibrated to the harps.

3.4.1.2 Raster

In order to avoid damage to the target glass cell, the beam is rastered (scanned) across a
large rectangular cross section at the target. If the beam were not rastered, it could lead to
damaging the cell due to the heat transfer from the beam.

The size of the raster is a few millimeters (≈ 4 × 6 mm2) in the horizontal and trans-
verse directions. This rectangular distribution of the beam is achieved by two dipole mag-
nets (one for the horizontal, one for vertical) located 23 m upstream of the target. The small
transverse magnetic field produced by the dipoles deflects the beam as it traverses the mag-
net, resulting in a small deviation of the beam position at the target, filling out a rectangular
area.

The calibration of the raster requires the determination of transformation coefficients
to convert the raster currents into beam positions. This is accomplished by utilizing the
average beam position from the BPMs and the raster currents recorded in their ADCs.

3.4.2 Beam Current and Charge

To measure the beam current and subsequently the charge accumulated on target from the
beam, beam current monitors (BCMs) are utilized. These (two) monitors are resonant RF
cavities, made of stainless-steel cylinders with a high Q factor of ≈ 3000, tuned to the
fundamental beam frequency of 1.497 GHz [152]. One is positioned upstream and one
downstream (relative to one another). The voltage signal measured in these monitors is
proportional to the beam current.

There are three copies of this signal for each BCM: x1, x3 and x10. The “x” corresponds
to the upstream (u) or downstream (d) BCM. The numbers correspond to the gain applied.
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Each copy of the signal is amplified by its assigned gain and then sent to a voltage-to-
frequency (VtoF) converter. Copies of these signals are read out by scalers in both the
LHRS and the BigBite data streams, so that there is a continuous measurement of the beam
current during data taking.

To calibrate the BCMs, data is taken at predetermined beam current set-points. There
are two distinct steps in the process. First, at the injector, the OL02 resonant cavity is cali-
brated to the Faraday cup∗, which blocks the beam current flow downstream of it. Second,
the OL02 readout is compared to the BCM readout, as the injector cavity does not interfere
with the beam.

Plotting the Faraday cup reading against the OL02 reading determines the beam current.
From here, the scaler rate of one of the signals may be plotted as a function of the beam
current (Fig. 3.5) and fit to a line. The form of the fit is: ωn = offsetn + slopen · I. The fit
does not extend to zero because the BCMs are nonlinear at low currents and the fit is not
valid. The offset term in the fit is obtained from a Gaussian fit to the scaler rates recorded
over the course of five minutes with the beam turned off. Rearranging the fit, the beam
current can be expressed as:CHAPTER 3. THE E06-014 EXPERIMENT 64

(a) (b)

Figure 3.11: Procedure for calibrating beam current measurements. (a): The relationship of the
current reading of the OL02 cavity (at the injector) to the current measurement from the Faraday
cup. (b): The relationship of the beam-current scaler rates (in the BigBite arm) to the beam current
from the calibrated OL02 cavity reading.

compared directly to the Hall A BCM readouts in the second step.
Figure 3.11(a) shows the OL02 current as a function of the absolute measurement taken by the

Faraday Cup. With this information, we can plot the rate measured in each of the six beam-current
scalers as a function of the beam current, derived from the OL02 readings during our calibration run
(Figure 3.11(b)). From a linear fit to the scaler readouts between 5 and 30 µA, we can determine
the slope of the line relating our scaler rates to the beam current: n = o⌥setn + slopen · I. The
fit does not extend to zero because the BCM readouts are known to be nonlinear at low currents;
instead, the o⌥set (the scaler rate for zero current) is determined from a Gaussian fit to the scaler
rates recorded over the course of five minutes with the beam o⌥. Table 3.4 shows the calibration
constants resulting from these fits. Over a given time interval, these values allow us to extract
both the beam current I and the accumulated beam charge Q from the scaler rate n of the nth
beam-current signal, according to Equations 3.10 and 3.11.

I =
n � o⌥setn

slopen

(3.10)

Q = I · t =
t (n � o⌥setn)

slopen

(3.11)

This calibration was performed with the scalers on the BigBite arm; the scalers on the Left HRS
arm record the same signal, and yield consistent results. If we neglect errors in the clock rate, the
error on the fit corresponds to a systematic error of about 0.03% on the beam current calculated
from the u3 scaler rate.

Scaler Slope (Hz/µA) O�set (Hz) Scaler Slope (Hz/µA) O�set (Hz)

u1 2101 ± 1 396 d1 2152 ± 1 154
u3 6480 ± 2 453 d3 6658 ± 3 133
u10 19731 ± 11 771 d10 21008 ± 10 293

Table 3.4: Calibration results for beam-current scalers, three upstream (u) and three downstream(d),
with gain factors of 1, 3, and 10. Errors on the o⌥sets are on the order of 10�2 Hz.

Figure 3.5: On the left, the Faraday cup reading is plotted as a function of OL02 reading, which
determines the beam current. On the right, the scaler rate is plotted against the beam current.
Fitting to a linear function allows for the extraction of the fit parameters used to calculate the
beam charge. Analysis by D. Parno. Reproduced from [47].

I =
ωn−offsetn

slopen
. (3.12)

The charge may be calculated as:

∗A water-cooled copper beam dump, inserted into the injector beamline to collect all of the current [153].
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Q = I · t = (ωn−offsetn) t
slopen

. (3.13)

Measurements on the LHRS and BigBite give consistent results as they have copies of
the same signals. The results for the fit parameters may be seen in Table 3.3. Neglecting
errors on the clock rate, the error on the fit to the data shown in Figure 3.5 gives a systematic
error of≈ 0.03% when considering the beam current calculated from the u3 scaler rate [47].

Table 3.3: Calibration results for the fit parameters used in the determination of the beam
current for all three upstream (u) and all three downstream (d) BCMs. Errors on the offsets are
on the order of 10−2 Hz. Analysis by D. Parno. Table reproduced from [47].

Scaler Slope (Hz/µA) Offset (Hz) Scaler Slope (Hz/µA) Offset (Hz)
u1 2101±1 396 d1 2152±1 154
u3 6480±2 453 d3 6658±3 133
u10 19731±11 771 d10 21008±10 293

3.4.3 Beam Polarization

3.4.3.1 Mott Polarimetry

Before the electron beam leaves the injector, a measurement of the beam polarization may
be done via Mott scattering of 5 MeV electrons from a gold, copper or silver target. Due
to the spin-orbit coupling of the scattered electron with respect to the target nucleus’s
Coulomb potential, an asymmetry can be measured. From this measurement, the elec-
tron’s polarization may be determined. The polarization result from this method tend to
be systematically lower than those obtained by polarimeter measurements in Hall A or
C. The high photon backgrounds in the injector could point to the reason as to why this
occurs [154].

In order to carry out this measurement, data taking must be stopped while the measure-
ment is performed, and takes up to a few hours to complete. Due to the stoppage of data
taking, this method is considered a destructive method.

There were no Mott measurements taken for E06-014 due to the time constraints of the
experiment.

3.4.3.2 Møller Polarimetry

Møller polarimetry consists of exploiting Møller (e−e−→ e−e−) scattering. In particular,
the cross section of the reaction is dependent upon the polarizations of the incident electrons
(Pbeam) and the atomic electrons of the target (Ptarg):
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σ ∝ 1+ ∑
i=X ,Y,Z

(
AiiPbeam

i Ptarg
i

)
, (3.14)

where the sum runs over all polarization directions. Aii is the analyzing power of the mea-
surement. It is dependent upon the scattering angle in the center-of-mass frame. The max-
imum analyzing power is 7/9, corresponding to the longitudinal component of the beam
polarization [152].

The measurement is performed as follows: electrons are scattered from a 10.9 µm thick
iron foil with a polarization of 7.1% due to a 28 mT magnetic field produced by Helmholtz
coils. The scattered electrons pass through three quadrupole magnets and one dipole mag-
net en route to a two-arm lead-glass calorimeter, which measures coincident particles. The
longitudinal asymmetry of electrons is computed from the average measurement of two
opposing target angles∗. From Equation 3.14, the beam polarization is computed.

Like the Mott measurement, the Møller measurement is also destructive. Since it uti-
lizes a solid target, data taking must be halted for a measurement. The thin foil target is
susceptible to depolarization effects due to heating from the beam. Because of this, the
beam current is limited to 1.5 µA, a factor of 10 less than E06-014’s production current.
However, the low statistical and systematic errors make this measurement an important
component of beam polarimetry in Hall A.

There were seven measurements completed during E06-014, and are shown in Ta-
ble 3.4.

Table 3.4: Beam polarization measurements via Møller scattering. These measurements are
corrected for beam energy fluctuations. The errors listed are statistical and systematic, re-
spectively. The sign is based on an arbitrary convention and flips when the half-wave plate is
inserted or removed at the injector.

Date Beam Energy (GeV) Beam Polarization
7 February 5.90 -0.7943±0.0013±0.0159
9 February 1.23 -0.7164±0.0014±0.0143
11 February 5.90 +0.7450±0.0015±0.0149
19 February 5.90 -0.7448±0.0011±0.0149

3 March 5.90 -0.7970±0.0012±0.0159
6 March 4.74 +0.6394±0.0010±0.0128

12 March 4.74 -0.6079±0.0013±0.0122

∗This results in the transverse contribution canceling out.

64



3.4.3.3 Compton Polarimetry

E06-014 was the commissioning experiment for the Compton polarimeter, which exploits
Compton scattering (e−γ→ e−γ) to determine the electron’s polarization, as the cross sec-
tion of the interaction is sensitive to the relative polarizations of the electrons and pho-
tons [155, 156]:

(
d2σ

dxdφ

)

Compton
=

1
2π

(
dσ

dx

)

unpol

{
1+Pγ

[
P`

e A` (ρ)+Pt
e cosφAt (ρ)

]}
, (3.15)

where Pγ is the photon polarization; P`,t
e is the electron polarization for the longitudinal

and transverse components, respectively; A`,t is the longitudinal and transverse analyzing
power, respectively. They correspond to asymmetries that would be measured if the circular
polarization of the photons were perfect in addition to perfect polarization of the electrons.

Due to the large longitudinal momentum of the electrons in the lab frame, the Compton
scattering angles are small enough so that the azimuthal distribution of the scattered parti-
cles is fully contained in the detectors. Therefore, integrating over the azimuthal angle φ

leaves just the sensitivity to the longitudinal components (dropping the ` label on Pe):

(
dσ

dx

)

Compton
=

(
dσ

dx

)

unpol

[
1+PγPeA` (ρ)

]
. (3.16)

There are four possible spin configurations of the longitudinally polarized electrons
and circularly polarized photons, as shown in Figure 3.6. Since Compton scattering is an
electromagnetic process, it conserves parity. This allows for the reduction of the number
of unique configurations to two: ↑↓ and ↑↑, corresponding to antiparallel and parallel spin
configurations, respectively. Taking advantage of this, the measurement of the electron’s
polarization may be realized by an asymmetry:

Aexp =
N↑↑−N↑↓

N↑↑+N↑↓
= PePγ〈A`〉. (3.17)

The measurement is carried out when the electron beam is directed through a magnetic
chicane. At the center of the chamber, Compton scattering occurs, as laser light is directed
along the chicane at the incoming electrons. The scattered electrons and photons are de-
tected at separate dedicated detectors, while the electrons that did not undergo scattering
proceed towards the experimental hall. A diagram of the process is shown in Figure 3.7.
The big advantage of this method is that it is non-destructive, allowing a measurement of
the polarization on the same electrons that are being used in production running.
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Figure 3.6: The various combinations of electron and photon spins. The two configurations in
each column are equivalent. Figure reproduced from [47].

Figure 3.7: A representative drawing of the Compton polarimeter in Hall A. Not to scale. The
electron beam (black line) enters the magnetic chicane from the left. Scattering occurs at the
center of the chicane, and the scattered electrons and photons are detected in separate detectors.
The unscattered electrons continue towards the experimental hall. Figure reproduced from [47].

The beam polarizations measured by the Compton polarimeter are shown in Table 3.5.
They are in good agreement with the Møller measurements presented in Section 3.4.3.2.
The results from both methods were combined and used in our double-spin asymmetry
analysis (Sect. 5.5). For an in-depth discussion of the Compton polarimeter and the corre-
sponding data analysis, see [47].

3.4.4 Beam Energy

In order to have accurate kinematic calculations, one needs to have an accurate measure-
ment of the beam energy. During the running of E06-014, the beam energy was monitored
via the Tiefenback method [157], which combines BPM measurements and the integral of
the magnetic field produced by the Hall A arc magnets in order to compute the beam energy

66



Table 3.5: Beam polarization measurements from the Compton polarimeter compared to those
from the Møller polarimeter. The error bars are the in quadrature sum of the statistical and
systematic errors. The combined beam polarization is the weighted average of the two methods,
with the errors being the weight. No Møller measurement was taken during the second run
period. Table reproduced from [47].

Run Period Beam Energy (GeV) Pe from Compton Pe from Møller Combined Pe

1 5.90 0.726±0.018 0.745±0.015 0.737±0.012
2 4.74 0.210±0.011 — 0.210±0.011
3 5.90 0.787±0.020 0.797±0.016 0.793±0.012
4 4.74 0.623±0.016 0.628±0.012 0.626±0.010

upon its entry into the hall.
The method is calibrated by the use of comparisons to an arc-measurement (Fig. 3.8),

where eight dipoles deflect the beam through a nominal angle of 34.3◦. Deviations from
this angle is measured by the so-called SuperHarps, which are pairs of wires located before
and after the magnet. The bend angle through the arc of magnets is related to the beam
momentum (and therefore its energy) by:

Figure 3.8: A diagram of how the arc-measurement is done for the electron beam energy.
Figure reproduced from [40].

p = k
∫
~B ·d~l
θ

,

where k = 0.29972/c GeV·rad·T−1·m−1 [152]. The integral of the magnetic field is mea-
sured by a ninth dipole, which is a reference magnet located outside of the vacuum and
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is measured directly using a Hall probe. The error on this measurement is δE/E ≈ 2×
10−4 [158].

There were no arc measurements during E06-014, but we utilized the measurements
from the previous experiment, E06-010, see Table 3.6.

Table 3.6: Comparison of the arc measurement to the Tiefenback measurement during the run-
ning of E06-010. The measurement shown is from November 17, 2008. Reproduced from [47].

Arc Result (MeV) Tiefenback Result (MeV)
5889.4±0.5stat±1syst 5891.3±2.5syst

3.5 3He Target

In this section, we discuss the motivation for using a 3He target to study the neutron
(Sect. 3.5.1); how the target is polarized (Sect. 3.5.2) and the methods used to measure the
polarization (Sect. 3.5.4). In Section 3.5.3.1, we show the various targets used in E06-014.
Finally, the analysis required to obtain the target polarization is presented in Section 3.5.5.

3.5.1 Motivation: Why 3He?

As with any electron scattering experiment to study nucleon structure, an appropriate target
must be chosen. Unfortunately, in studying the neutron, there are no free neutron targets.
They are unstable particles, where they decay in a short time (885.7 ± 0.8s [35]) via β

decay into a proton, electron and an electronic anti-neutrino. Because of this, a viable
alternative is needed.

3He, a spin-1/2 nucleus consisting of two protons and a neutron, is one candidate for a
neutron target∗. When 3He is polarized, there are three principle states that characterize the
polarization: ≈ 90% of the polarization is carried by the neutron in the symmetric S state;
≈ 1.5% of the polarization is carried by the S′ state, and ≈ 8% is carried by the D state
(Fig. 3.9). In the S state, the spins of the protons are anti-parallel to one another, resulting
in the neutron carrying the majority of the 3He polarization. As a result, a polarized 3He
target acts as an effective polarized neutron target.

Polarized 3He targets have been used in experiments around the world, including ex-
periments at JLab, SLAC, HERMES at DESY, and at the Mainz Microtron MAMI.

∗Deuterium, a spin-1 nucleus consisting of a proton and a neutron, is another option. Both nucleons
have their spin aligned with the nuclear spin. However, large corrections due to the proton result in large
uncertainties.
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Figure 3.9: The nucleon polarization states in 3He. The large arrow indicates the spin direction
of the nucleus, while the smaller arrows indicate the spin direction of the nucleons. Figure
reproduced from [159].

3.5.2 Method of Polarization

In order to polarize the 3He nuclei, a three-step process is utilized, known as hybrid spin-

exchange optical pumping. First, the rubidium
(85Rb

)
atoms in a gaseous mixture is op-

tically pumped using 795 nm circularly-polarized laser light, inducing the D1 transition:
5S1/2 → 5P1/2. Second, the polarization of the 85Rb atoms is transferred to potassium(39K

)
atoms via spin-exchange binary collisions. In the third and final step, the polariza-

tion of the 85Rb and 39K atomic electrons is transferred to the 3He nuclei via the hyperfine
interaction.

3.5.2.1 Optical Pumping of 85Rb

Neglecting nuclear effects, the energy levels of 85Rb atomic electrons in an external mag-
netic field are governed by angular momentum selection rules with the notation N2S+1LJ ,
where N indicates the electron shell; S indicates the electron spin; L is the orbital angular
momentum, and J = L+ S is the total orbital angular momentum. Right-circularly po-
larized laser light induces the transitions from the 52S1/2 (m = −1/2) ground state to the
52P1/2 (m = +1/2) excited state, in accordance with the selection rule of ∆L = +1, see
Figure 3.10. The excited electrons transition from the P orbital to the S orbital with equal
probabilities for the m =±1/2 sub-states, but the excitation only occurs for the m =−1/2
state, therefore populating the m =+1/2 state.

As the electrons de-excite to the ground state, they emit photons. These photons typi-
cally have different polarization states, and therefore will impose limitations on the pump-
ing process. To minimize this effect, a small amount of N2 is added to the chamber to
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(a) Optical pumping of 85Rb (b) 85Rb-39K-3He spin-exchange

Figure 3.10: (a) Optical pumping on 85Rb with right-circularly polarized photons. (b) The two-
step process of spin-exchange from 85Rb to 39K, and then from 39K to 3He. Figures reproduced
from [161].

absorb these photons into their rotational and vibrational degrees of freedom [160]. This
allows for a non-radiative decay of the excited 85Rb electrons to their ground state.

3.5.2.2 Spin Exchange

The potential of the interaction between two spin-1/2 atoms like 85Rb and 39K is composed
of a spin-dependent part and a spin-independent part, which characterizes the hyperfine in-
teraction. This allows the spin of the atoms to be interchanged some percentage of the time.
This percentage is determined by the relative sizes of the two potentials. The collisional
cross section for the 85Rb–39K mixture is ∼ 2× 10−14 cm2, resulting in a spin-exchange
rate of∼ 100 kHz, and a spin-relaxation rate of∼ 500 Hz for a particle density of 1014 cm3.
Due to the large cross section, the time needed to transfer the spin of one set of atoms to
the other is typically quite short, on the order of hours [162]. This is true even if the spin-
dependent component is dominated by the spin-independent component, since the 85Rb
atoms are continuously re-polarized via optical pumping.

3He may also undergo spin-exchange interactions; however, its valence electrons are
in a spin singlet state, so its nuclear spin takes part in the process, via a Fermi-contact
interaction [163, 164]. The inefficiencies of these interactions arise largely due to spin-
relaxation where the spin of the alkali metal couples to the rotational angular momentum
of the pair of colliding atoms, instead of the nuclear spin of 3He. It turns out that the spin-
relaxation cross-section (for collisions involving 3He) is dominated by the alkali metal’s
spin-orbit interaction. Therefore, the use of a lighter alkali metal (like 39K instead of 85Rb)
can greatly decrease the spin-relaxation cross-section and thus increase the spin-exchange
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efficiency [165]. A diagram of the two-step process of transferring the 85Rb electron spin
to the 3He nuclei is shown in Figure 3.10.

As an example, we consider the spin-exchange transfer rate to 3He from alkali-metal
atoms, ηSE

∗. Measurements at typical spin-exchange optical pumping temperatures give
ηSE ∼ 2% for 85Rb–3He, while ηSE ∼ 25% for 39K–3He [166]. As a result, the time it
takes to polarize a 3He hybrid cell† is only ∼ 3–5 hours, compared to ∼ 15 hours for a cell
that contains only 85Rb for the polarizing process [151]. This faster so-called “spin-up”
time reduces the overhead for spin-rotations and improves the ability of continuous optical
pumping to reduce depolarization effects.

3.5.3 Target Apparatus

The target apparatus is composed of a number of different elements, including the target
cells, target oven, target ladder system, Helmholtz coils for the holding magnetic field, RF
coils and polarizing lasers.

3.5.3.1 Targets

The production target cell is shown in Figure 3.11. It consists of an upper chamber, called
the pumping chamber, containing 3He, 85Rb, 39K and N2. It is in this chamber where the
polarization takes place. There is then a thin transfer tube‡ leading down to the target cham-

ber. This is the chamber where the electron beam passes through for the experiment. The
production cells were made out of aluminoscilicate glass (GE-180) and were hand-blown
by Mike Souza of Princeton University [151]. They were filled with 3He and characterized
at the University of Virgina and the College of William and Mary. Characterization consists
of measuring the polarization, gas density, thickness of the cell and spin-up time. The ratio
of 85Rb to 39K is also optimized.

An empty target cell was also used, which can be filled with various other gases like
H2, N2 and 3He. This allowed for the determination of dilution factors that contribute to
the cross sections and asymmetries. Such dilutions appear due to the presence of materials
other than 3He in the target cell. Other targets utilized include a multi-carbon foil (“optics”)
target, used for the calibration of the optics for the two spectrometers. In addition to these
targets, an “empty” target was used, corresponding to a hole in the target ladder. It was
used for Møller measurements, so that the other targets do not get damaged in the process.

∗The quantity 1/ηSE is the minimum number of photons needed to provide h̄/2 units of spin to fully
polarize an initially unpolarized 3He nucleus [159].

†Cells containing the mixture of 85Rb and 39K for the polarizing process are referred to as hybrid cells.
‡A temperature gradient along the transfer tube confines the alkali-metals to the pumping chamber [167].
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Figure 3.11: A production target cell, consisting of three regions: pumping chamber, transfer
tube and target chamber. The optical pumping process is carried out on the pumping chamber,
while the electron scattering of the experiment is carried out on the target chamber. Also shown
are the resistive temperature devices (RTDs).

3.5.3.2 Target Oven and Ladder System

The pumping chamber needed to be placed in a high temperature environment (230◦C)
in order to achieve a high 39K vapor pressure. To this end, the pumping chamber was
mounted inside an oven system that had a constant flow of compressed hot air. The air
flow was controlled by a PID feedback system so as to keep the temperature constant. A
number of resistive temperature devices (RTDs) were placed on the target to monitor its
temperature. One RTD was placed at the top of the pumping chamber, and another at the
base of it, close to the transfer tube. Five more were placed equidistant from one another
along the length of the target chamber, see Figure 3.11.

The target ladder system consists of a stacked arrangement of the various targets, and
could be controlled remotely from the counting house. This allows for the shift workers
to switch targets appropriate for the physics goals of a given shift. The target that was in
use is aligned properly with respect to the electron beam, with the other targets effectively
out of the way, either above or below the electron beam. The targets in the ladder system
consist of the targets listed in Section 3.5.3.1.

3.5.3.3 Target Enclosure

The target enclosure is a spherical, fiberglass material that surrounds the target cell and
ladder system. Its purpose is to confine the laser light that is incident on the target pumping
chamber, and also serves to protect workers in the other parts of the hall (when there is no
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beam) from the target materials. The enclosure is filled with 4He gas to reduce energy loss
effects for the incident and scattered electrons∗. The upstream and downstream sides of
the beamline interface with the enclosure via beryllium windows, which are 0.254 mm and
0.508 mm thick for upstream and downstream sides, respectively. The windows prevent
glass shards from the target cell contaminating the beamline if the target were to explode.
The window at the target enclosure exit for scattered electrons is covered by 0.076 mm of
aluminum foil (on the enclosure side) to keep air out of the target.

3.5.3.4 Target Magnetic Field Coils

Figure 3.12 shows the orientation of the various coils. The red lines indicate Helmholtz
coils, while blue lines indicate the radiofrequency (RF) coils. The pickup coils are mounted
very close to the target cell are indicated by the orange and light blue colors.

There were three pairs of Helmholtz coils utilized, capable of producing magnetic fields
in three orthogonal directions: longitudinal (along the direction of the beam), transverse in-
plane (perpendicular to the beam) and vertical (perpendicular to the beam, up and down).
The field can reach a magnitude of 25 G, requiring ∼ 7 A of current in each coil. The
RF coils and pickup coils are important for the measurement of the target polarization
(Sect. 3.5.5).CHAPTER 3. THE E06-014 EXPERIMENT 72
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Figure 12.8: Top view of the coils used in the 3He target setup. The combinations of the
3 pairs of Helmholtz coils power the main holding field to either longitudinal, transverse
or vertical directions while 3 lines of lasers are available as well in these three directions
to polarize the target. The two sets of RF coils are needed to flip the target spin for
NMR and EPR measurements with di�erent setups field direction. Four pairs of NMR
pick up coils are used during the flips to read out the polarization strength. Two of the
pairs are located below the beam line to measure the NMR signal from upstream and
downstream part of the target chamber. The other two of the pairs are fixed in the target
oven to measure the NMR signal from the pumping chamber.

Figure 3.18: Top view of Helmholtz and RF coils for 3He target, reproduced from Hall A general
operations manual [141].

traveled through a 75-m optical fiber to reach the hall. Beams from the three fibers were combined
into a single fiber using a 5-to-1 combiner, so that all three lasers could simultaneously deliver light
to the target.

In order to give the beams the circular polarization required for optical pumping2, the beam
from the 5-to-1 combiner output was first passed through a polarizing beamsplitter, which sepa-
rated it into two linearly polarized components. One of these components was passed twice through
a quarter-wave plate, after which both components had the same linear polarization. Finally, passing
each component of the beam through another quarter-wave plate converted their linear polarization
to circular polarization, and the components were recombined, focused and aligned to illuminate
the pumping chamber with a spot about 7.5 cm in diameter (the size of the chamber) [151]. Three
independent optics lines, one each for longitudinal, transverse (horizontal), and vertical target po-
larization, were installed in the months before E06-014 and its sister experiment E06-010.

Holding Field Three pairs of Helmholtz coils, their positions and orientations shown in Fig-
ure 3.18, are capable of producing static magnetic fields in three orthogonal directions: longitudinal
(along the beam line), transverse (horizontal and perpendicular to the beamline), and vertical (also
perpendicular to the beamline). The vertical coil is the largest and completely surrounds the small
and large coils. E06-014 used combinations of these coils to generate holding fields for spins in the
longitudinal and transverse directions; a typical holding field is 25 G, which requires currents on the
order of 7 A in each coil.

In addition to the Helmholtz coils, Figure 3.18 also shows the location of radiofrequency (RF)
and pickup coils, which are necessary for measurements of the target chamber polarization (Sec-
tion 3.3.3.3).

2It is necessary to polarize the beam at the target, rather than at the laser output, because light traveling through
polarization-maintaining optical fiber su�ers higher attenuation than it would traveling through single-mode fiber.
The 75-m single-mode optical fiber used in Hall A has a measured power loss of about 6% [151].

Figure 3.12: Target coils layout in the experimental hall. Figure reproduced from [152].

∗4He has a larger radiation length than air, thus reducing energy loss effects.
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3.5.3.5 Polarizing Lasers

There were three COMET lasers, each with a linewidth of 0.2 nm, power of 25 W and a
wavelength of 795 nm. They were used to optically pump the 85Rb in the pumping cham-
ber. The three lasers are combined into one via a 5-to-1 combiner, so that all three could
simultaneously deliver light to the target chamber. The output of the combiner was sent to
a beamsplitter, yielding two linearly polarized components. One component passed twice
through a quarter-wave plate, after which both had the same linear polarization. Sending
each component through another quarter wave plate converts the linear polarization into
circular polarization. The resulting beams are then combined into one, with a spot size of
7.5 cm in diameter, corresponding to the size of the chamber [168]. There were three optics
lines, corresponding to longitudinal, transverse and vertical polarization directions.

3.5.4 Measurement of Target Polarization

To measure the polarization of the 3He in the target cell, there are two methods utilized:
nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). The NMR
measurement is a relative measurement, in that it needs to be calibrated to a theoretically
calculable quantity (like the polarization of a water sample in a magnetic field). The EPR
measurement is an absolute one. The results from the two methods are compared (and
combined) in the data analysis upon computing the polarization of 3He. Note that the direct
measurements of the polarization were done on the pumping chamber, and the results were
translated to the target chamber in both the EPR and NMR cases∗ (Sect. 3.5.5).

3.5.4.1 Nuclear Magnetic Resonance

The magnetic moments of nuclei will align themselves along the direction of a constant
magnetic field (called the holding field). The magnetic moments will precess about the di-
rection of the holding field when a radiofrequency (RF) field is applied in the perpendicular
direction. If the RF field frequency is swept through the resonance of the 3He nucleus, the
spins of 3He will reverse their direction. This is known as nuclear magnetic resonance. The
motion of the spins changes the field flux through the pick-up coils (Fig. 3.12), inducing
an electromotive force. The signals from the coils are pre-amplified and combined†, and
sent to a lock-in amplifier, where the lock-in identifies the NMR signal which has the same
frequency as the reference RF signal. The magnitude of the lock-in output is proportional
to the 3He polarization.

∗The NMR measurement on the water cell was performed on the target chamber [169].
†The signals from the pickup coils are sent to pre-amplifier inputs A and B. Due to the way the coils are

set up, in the output signal (A-B), the noise cancels, while the real signal is enhanced [159, 168].
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(a) RF field sweep (b) Holding field sweep

Figure 3.13: Typical NMR signals. (a): NMR signal obtained when sweeping the RF field
through the resonance; (b): NMR signal obtained when sweeping the holding field through the
resonance. This was done for NMR measurements needed in the water calibration. The RF
field was held at a frequency of 91 kHz and the holding field was swept from 25 G to 32 G at a
rate of 2.1 G/s, where the resonance was at 28 G [169]. Figures reproduced from [169].

When conducting a measurement, it is important to do it in such a way that the effect
on the polarization is as small as possible. To accomplish this, sweeps of the RF frequency
are done according to the adiabatic fast passage (AFP) technique, where the speed the at
which the sweep through the resonant frequency is done is faster than the spin relaxation
time, but also it is slow enough so that the nuclear spins can follow the sweep of the RF
field.

In principle, the spins may be rotated by either sweeping the holding field through a
range of values or sweeping the RF field through a range of frequencies. As long as the
requirements given by AFP are met, then the 3He spins will flip their direction as one of the
fields is swept through the resonance. The AFP conditions were met during the experiment
by performing the NMR measurement in the following way: the frequency of the RF field
was swept from 77 kHz to 87 kHz at a rate of 5 kHz/sec and back, where the resonant
frequency is ω0 = 81 kHz.

An NMR measurement is a relative measurement, so it needs to be compared against a
known measurement that is calculable in theory. A measurement of NMR done on water
is typically used, and can be calculated exactly from statistical mechanics [170]. This
experiment used a water calibration, and electron paramagnetic resonance measurements
(Sect. 3.5.4.2). The NMR measurement was done every four hours. Typical signals of
NMR measurements are displayed in Figure 3.13.
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3.5.4.2 Electron Paramagnetic Resonance

Electron paramagnetic resonance (EPR) is an absolute polarization measurement. It uti-
lizes Zeeman splitting of energy levels for electrons when placed in an external magnetic
field. This phenomenon occurs for the 85Rb and 39K atoms, which are present in the pump-
ing chamber. In particular for 85Rb, the F = 3 ground state splits into seven sublevels
corresponding to mF =−3, −2,. . . , 2, 3, where F is the total angular momentum quantum
number. The splitting corresponds to a frequency that is proportional to the holding field:
ν0 = γB0, with γ = 0.466 MHz/G for a 85Rb atom. The shift in this frequency is due to the
small effective magnetic field created by the spin-exchange mechanism of 85Rb–39K and
39K–3He, in addition to the polarization of the 3He nuclei. This shift in frequency is known
as the EPR frequency shift, ∆νEPR.

For the measurement of the 3He polarization, the component due to the spins of the
3He nuclei must be isolated. This can be accomplished by sweeping the RF field at AFP
conditions with a constant holding field. The frequency shift due to 3He is a few tens of
kHz in this experiment. The frequency shift may be broken down into its components as:

∆ν+ = ∆νHe +∆νSE +∆νB (3.18)

∆ν− = −∆νHe +∆νSE +∆νB (3.19)

⇒ ∆ν+−∆ν− = 2∆νHe. (3.20)

The terms in Equations 3.18 and 3.19 corresponding to ∆νSE and ∆νB are the spin-exchange
and holding field contributions, respectively. Equation 3.20 shows how the contribution due
to 3He, ∆νHe, may be isolated from the two opposite frequency-shifted states. The change
in frequency is related to the polarization of 3He by:

∆νEPR =
8π

3
dνEPR

dB
κ0µ3Heη3HeP, (3.21)

where κ0 = κooTref+κoT (T −Tref), a dimensionless quantity that depends on the geometry
and temperature of the cell [151]; dνEPR/dB is the change in the frequency with respect to
the magnetic field, and can be calculated from the Breit-Rabi equation; η3He is the density
of 3He; µ3He is the magnetic moment of 3He, equal to 6.706984× 10−14 MeV/T; P is the
polarization of 3He in the target cell. The value of κoT is known at T ∼ 170◦ C and is
extrapolated to the operating temperature of 255◦C. This results in a large uncertainty in
κoT .

In order to measure the frequency shift ∆νEPR, the RF field that corresponds to the en-
ergy difference between the mF =−3 and mF =−2 ground state sub-levels is first applied
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to the target. This increases the number of electrons in the mF = −2 sub-level. These
electrons absorb laser light and are excited to the P1/2 state. Upon decaying back to the
S1/2 state, the number of emitted photons increases, corresponding to the D1 transition at
a wavelength of 795 nm. This is detected by a photodiode∗. The 3He spins are flipped by
sweeping the RF field through the resonance and measuring the change in the frequency.
Figure 3.14 shows a typical EPR AFP sweep spectrum, which is a result of three frequency
sweeps under AFP conditions†. EPR measurements were done every few days at the same
time that NMR measurements were conducted.
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Figure 3.14: A typical EPR AFP sweep for three of the four sweeps. The frequency shift
for when the spins of 3He are parallel (B0 + δB3He) and anti-parallel (B0− δB3He) are shown.
Figure reproduced from [169].

3.5.5 Calculation of Target Polarization

To compute the target polarization, the signals from the NMR and EPR measurements
must be fit to an appropriate function and then utilized in the proper equation to extract the
polarization. The NMR measurement is a relative measurement, and needs to be calibrated
by an absolute measurement. For E06-014, the NMR ended up being calibrated to the EPR
measurement, and also to a water NMR measurement. This leads to the relations:

∗Further details of the detection of the signal are discussed in [159, 168, 169].
†AFP sweeps were usually done four times per EPR measurement.
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PEPR
3He = CEPR ·Cdiff ·Sprod

EPR (3.22)

PNMR
3He = CEPR,H2O ·CNMR ·Sprod

NMR, (3.23)

where the coefficients are particular to which method is used. Note that there are two
different approaches for the NMR polarization, which is due to it being a relative measure-
ment. The coefficient CEPR =PEPR/SEPR, where PEPR is the polarization measured via EPR
(Eqn. 3.22) and SEPR is the height of the 3He NMR signal measured. Cdiff is a diffusion
constant needed to propagate the EPR polarization from the pumping chamber to the target
chamber, and CNMR serves a similar role for the NMR measurements. The constant CH2O

is a coefficient to account for the differences between the 3He and water targets.
All of the target analysis—except for the magnetic flux calculations—was conducted

by M. Posik, and a more detailed discussion may be found in [169]. In the following,
we will discuss the details of the magnetic flux calculations and how it contributes to the
coefficient CH2O.

3.5.5.1 Magnetic Flux: Connection to the Coefficient CH2O

The 3He and water target cells have similar geometries, but the differences need to be taken
into consideration. This is accomplished by the constant CH2O which takes the form:

CH2O =

(
PH2O

SH2O

)(
GH2O

G3He

)(
µp

µ3He

)(
npΦH2O

npc
3HeΦ

pc
3He +ntc

3HeΦtc
3He

)
, (3.24)

where PH2O and SH2O correspond to the polarization and NMR signal height for water;
µp,3He is the magnetic moment for a proton or 3He; GH2O,3He is the pre-amplifier gain
for the water and 3He signals; ΦH2O,3He are the magnetic fluxes measured in the pick-up
coils for the water and 3He cells; pc and tc refer to pumping chamber and target chamber,
respectively. CNMR is a coefficient to account for the NMR measurement for water and 3He
being performed at different physical locations.

The magnetic flux through the pickup coils depends upon the geometry of the coils, and
is calculated according to:

∮
~A ·d~̀=

∫

V
d3~r

ẑ×~r
|~r|3 (3.25)

for the pumping chamber, transfer tube and target chamber, yielding values for each flux
term seen in Equation 3.24. The basic geometry of the pickup coils is shown in Figure 3.15.
The geometry of the pickup coils, including their distances relative to the cell were obtained
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from pictures of the target cells∗. The pictures included a ruler in the frame, so that a con-
version from pixels to centimeters could be made. This was accomplished by importing the
photograph into the GNU Image Manipulation Program [172], and determining the lengths
of the various components in terms of pixels. With the ruler included in the photograph, a
simple conversion factor was used to obtain the quantities in centimeters. These geomet-
rical inputs went into Equation 3.25. The results of the flux calculations are tabulated in
Table 3.7. The systematic uncertainty assigned was 4%, estimated from the uncertainty in
the extraction of the various geometrical parameters.

Figure 3.15: Diagram of the geometry of the pickup coils and the target cell. Figure reproduced
from [173].

Table 3.7: The computed flux through the water cell, 3He pumping chamber and target cham-
bers. The error listed is the systematic error of 4%. All errors are absolute.

Flux Parameter Upstream (cm2) Downstream (cm2)

ΦH2O 4.983E+1 ± 1.990E+0 5.279E+1 ± 2.110E+0

Φ
pc
3He 5.000E-2 ± 2.000E-3 5.000E-3 ± 2.000E-4

Φtc
3He 5.076E+1 ± 2.030E+0 4.989E+1 ± 1.990E+0

3.5.5.2 Target Polarization Results

The final target polarization measurements as a function of BigBite run number are shown
in Figure 3.17 for the pumping chamber (upper panel) and the target chamber (lower panel).
As expected from the polarization diffusion analysis, it is seen that the polarization in the
target chamber is lower than that seen in the pumping chamber [169].

∗The pictures were obtained from Y. Zheng [171].
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Figure 3.16: A photo of our water cell. A ruler is included so that a conversion of pixels to
centimeters may be done. Photo obtained from [171].

Figure 3.17: The computed 3He target polarization for the pumping chamber (upper panel)
and target chamber (lower panel). Figure reproduced from [169].
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3.6 Left High-Resolution Spectrometer

3.6.1 Design and Characteristics

The LHRS is a small-acceptance spectrometer, detecting particles in a small momentum
range of δ p/p≈± 4.5% with a solid angle of ≈ 6 msr. In this experiment, it was used to
detect electrons.

Upon entering the LHRS, there are two superconducting quadrupoles for focusing the
charged particles. Then there is a dipole magnet that bends the charged particles upwards
through a nominal 45◦ bending angle. After this, the particles are again focused through
another quadrupole before the first VDC plane. This sequence of magnets is referred to as a
QQDQ configuration. The layout of the spectrometer is shown in Figure 3.18 and Table 3.8
shows important design characteristics.

(o). For Dy ¼ 760 mrad; o ¼ 40 cm; and
D=M ¼ "5; the above expression gives a ¼
41#; close to the chosen value of 45#: The
expression assumes a parallel beam in a uni-
form-field dipole. The radial focussing provided
by the indexed dipole necessitates a slightly
larger bend angle.

* The pole-face rotation angles have been fixed at
"30# as a practical limit. The field of Q1 and
the dipole field index provide the remaining
radial focussing. In the absence of the field
index an excessively large rotation angle (B43#)
would have been needed.

* The overall optical length was constrained to fit
with 24 m:

2.3. Spectrometer Mechanical Support System

A schematic view of one of the Hall A High
Resolution Spectrometers (HRS) is shown in Fig.
5. The structural system of each spectrometer arm
must rigidly support the spectrometer magnet and
detector elements in their 45# vertical bending
configuration, while providing almost full azi-
muthal positioning of the spectrometer about the
central pivot. All three quadrupoles and the drift
chamber detector elements are hung from or
mounted on a box beam, which is rigidly mounted
on the top of the dipole. Once these elements are
surveyed in place, their relative positions remain

constant regardless of the spectrometer azimuthal
position. The box beam itself is an B80 Mg
welded steel structure. The back of the box beam
extends into the shield house. The detector
package and the box beam holding it are
surrounded by the shield house, but free to move
within it (see Fig. 2).

The 450 Mg concrete shield hut required for the
detectors is independently supported and posi-
tioned from a structural steel gantry. The bulk of
its mass is transmitted from the structural leg to a
20:7 m radius steel floor track through a series of
bogie-mounted conical wheels (see Section 2.8).
The rest of its weight is supported on the back end
of the transporter cradle. The total mass of each
spectrometer including the shielding hut is over
1000 Mg:

2.4. Cryogenics and magnet cooling system

The two spectrometers contain a total of eight
superconducting magnets, two dipoles and 6
quadrupoles. These magnets each have indepen-
dent cryogenic controls and reservoirs. The
cryogenic system that maintains these magnet
systems is common to all eight magnets and the
cryo-target. The cryogenic system is fed from an
1800 W helium refrigerator, the End Station
Refrigerator (ESR), dedicated to the cooling of
the magnets and targets in all JLab end stations.
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Figure 3.18: The design layout of the LHRS. Figure reproduced from [152].

3.6.2 Detector Packages

The LHRS is composed a number of sub-packages, located in the shield hut at the end
of the magnet configuration. The detector sub-packages include the Vertical Drift Cham-
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Table 3.8: LHRS characteristics. For more details, see [152].

Configuration QQDQ
Optical Length 23.4 m
Bending Angle 45◦

Momentum Range 0.3–4 GeV/c
Momentum Acceptance ± 4.5%

Momentum Resolution (δ p/p) 1 × 10−4

Angular Range 12.5◦–150◦

Horizontal Angular Acceptance ± 30 mrad
Vertical Angular Acceptance ± 60 mrad

Horizontal Angular Resolution 0.5 mrad
Vertical Angular Resolution 1.0 mrad

(Solid Angle) δ p
p =0,y0=0 6 msr

bers, which provide tracking information for scattered particles (Sect. 3.6.3); the S1 and
S2m scintillating planes, which serve as the main trigger (Sect. 3.6.4); and finally, the
gas Čerenkov (Sect. 3.6.5) and the pion rejector (Sect. 3.6.6) provide particle identifica-
tion (PID) capabilities. There are also two other PID detectors, an aerogel gas Čerenkov
and a Ring-Imaging Čerenkov detector, but they were not utilized in our experiment. For
more information on these detectors, see [168]. The layout of these packages is shown in
Figure 3.19.

Figure 3.19: The LHRS detector package. Figure reproduced from [174].

3.6.3 Vertical Drift Chambers

The LHRS utilizes vertical drift chambers (VDCs) in order to achieve precise reconstruc-
tion of particle trajectories. The chambers have a standard U-V configuration, where the
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U and V planes each contain 368 sense wires and each plane is oriented orthogonally with
respect to one another; the two planes lie in the horizontal plane of the laboratory. They are
oriented at 45◦ with respect to the (scattered) particle trajectory. See Figure 3.20.

Figure 3.20: Geometrical configuration of the U and V planes of the VDC. Figure reproduced
from [152].

Gold-plated Mylar high voltage planes are placed above and below each wire plane at
an operating voltage of −4 kV, thus imposing and electric field between the HV planes.
This in turn sets up a “sense region” for each wire plane. The chambers are filled with 62%
Argon and 38% ethane by weight [175].

Primary ionization occurs when incoming particles (typically electrons and pions) col-
lide with the molecules of the gas, ionizing them. The ionization electrons then drift along
the field lines to the sense wires. The electric field is constant in regions relatively far
from the wires, whereas in regions close to the wires, the electric field becomes quasi-
radial [175], see Figure 3.21. This accelerates the ionization electrons, producing an
avalanche. The resulting positive ions induce a negative signal on the wire, while neigh-
boring wires acquire a positive charge. This results in no ambiguity as to which wire got a
hit for a particular (ionizing) event [176].

A nominal track has a laboratory angle of ∼ 45◦, which corresponds to an angle of ∼
55◦ in the coordinate system of the VDC. This results in five sense wires firing on average
in a particular plane. On the other hand, an extreme track has an angle of ∼ 52◦ in the lab
frame, corresponding to an angle of ∼ 62◦ in the VDC coordinate system; therefore, only
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three wires will fire. For the average track, the positional resolution is ∼ 100 µm, with an
angular resolution of ∼ 0.5 mrad.

Figure 3.21: Electric field lines between the high-voltage cathode planes in the LHRS VDCs.
Figure reproduced from [174].

3.6.4 Scintillators

There are two planes of plastic scintillating material, labeled S1 and S2m. S1 is composed
of six scintillating paddles with 29.5 × 35.5 cm2 active area. Each paddle is viewed by a
2” diameter Burle 8575 photomultiplier tube (PMT) on each end. The paddles have a small
angle with respect to the S1 plane, so that the paddles overlap by 10 mm. A diagram of the
S1 plane is shown in Figure 3.22. The S2m plane has a similar configuration, but here there
are sixteen paddles with the dimensions: 17” × 5.5” × 2”. These paddles do not overlap.
The timing resolution of each plane is ≈ 0.30 ns.

When a paddle absorbs ionizing radiation, it emits light which travels down the length
of the paddle and is collected by the PMTs attached at each end. The timing information
encoded in the PMTs’ Time-to-Digital Converters (TDCs)∗ is utilized in the formation of
the LHRS main trigger, to be discussed in Section 3.8.

∗ TDCs record timing information of particles or “hits.” In particular, the scattered electrons leave a well-
defined peak in the TDC, which corresponds to the events of interest. “Accidental” events, such as pions, are
typically uncorrelated in time and thus their distribution is scattered randomly throughout the spectrum. The
TDCs in the LHRS are single-hit. This will be elaborated on further in Section 5.3.2.4.1.
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Figure 3.22: A depiction of the S1 scintillating plane. S2m has a similar configuration, but
without the overlapping paddles. Figure reproduced from [174].

3.6.5 Gas Čerenkov

The gas Čerenkov detector is used as a particle identifier (PID) to distinguish electrons
from pions via Čerenkov radiation, which occurs when a particle travels faster than the
speed of light in a given medium, with v = c/n. Therefore, the requirement for Čerenkov
radiation is for the speed of the particle to be:

β ≥ 1
n

(3.26)

Here, β is the speed of the particle in units of c and n is the index of refraction of the
medium. Hence, Čerenkov radiation is seen to be a threshold effect. When this occurs,
the particle emits electromagnetic radiation in a conical shape. This is similar to that of an
aircraft moving faster than the speed of sound, emitting sonic shock-waves [176]. This is
shown in Figure 3.23.

Čerenkov radiation occurs because the traversing particle polarizes the atoms along
its path for a small amount of time, yielding electric dipoles. As the particle leaves the
immediate vicinity of the polarized atoms, these atoms release Čerenkov radiation as the
polarized state disappears. Now, if the velocity v of the charged particle is smaller than that
of light in the medium, then this polarization is symmetric about the path of the particle.
Therefore, there is zero net dipole moment and no Čerenkov radiation. However, when
v > c/n, then the polarization is asymmetric, leading to a non-zero dipole moment. As a
result, Čerenkov light is emitted.
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Figure 3.23: Čerenkov radiation.

From Figure 3.23, we can determine the angular distribution of the radiation. Consider-
ing that the particle travels a distance of xp = βct in a time t, while the radiation is restricted
to travel the distance of xrad = ct/n, we obtain:

cosθC =
ct/n
βct

=
1

nβ

Since this is a threshold effect, it is important to know what momentum an electron
or a pion would need in order to trigger the Čerenkov counter. To see this, we consider
the expression for the energy. Utilizing Equation 3.26, we write the expression for the
momentum of the particle in terms of its mass m and the index of refraction n:

E = γmc2 =
√

m2c4 + p2c2

γ =
1√

1−β 2c2

p =
mc√
n2−1

. (3.27)

From this expression, we can obtain the threshold momentum for an electron or pion to
trigger the Čerenkov detector, which is filled with CO2 gas at STP and n = 1.00043 [177]:
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pπ−
min = 4.77 GeV

pe−
min = 17.4 MeV.

The designed momentum acceptance of the LHRS is 0.3–4.0 GeV, so pions should not
fire the gas Čerenkov. The kinematic range of our experiment is 0.60 ≤ p ≤ 1.70 GeV.
Therefore, it is seen that the Čerenkov detector is an excellent tool for PID.

The gas Čerenkov chamber in the LHRS is configured as shown in Figure 3.24. It
houses ten spherical mirrors of focal length f = 80 cm. Each mirror is viewed by a photo-
multiplier tube (PMT), placed 45 cm from the mirror.

Figure 3.24: The gas Čerenkov in the LHRS. Figure adapted from [178].

The Čerenkov radiation is collected by the PMT and sent to its attached Analog-to-
Digital Converter (ADC). The summation of all ten ADC signals gives the total amount of
light produced by the particle.

Despite the fact that pions cannot fire the gas Čerenkov, they may still have an influence
on the ADC spectrum of the gas Čerenkov. This occurs because pions can ionize the atoms
of the gaseous medium, producing electrons with enough energy to trigger the detector.
Such electrons are called δ -rays, or knock-on electrons. The distribution of these electrons
has a peak at the one p.e. peak with a long tail that falls underneath the multiple (main) p.e.
peak; however, the knock-on events that have a signal corresponding to the main peak tend
to leave less energy on average in the pion rejector and are effectively removed from the
analysis with a cut on the energy deposited in the calorimeter divided by the reconstructed
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momentum (Sect. 5.2.2.2). Scattered electrons produce an ADC signal corresponding to
the main p.e. peak. The number of photo-electrons produced in each PMT describes the
PID quality of the detector. The calibration of this ADC signal is discussed in Section 4.1.4.
The PID quality of the gas Čerenkov is discussed in Section 5.2.2.4.

3.6.6 Pion Rejector

The electromagnetic calorimeter installed in the LHRS is composed of two layers of lead-
glass blocks, collectively called the pion rejector. It provides PID capabilities, in addition
to the gas Čerenkov. Combining these two PID detectors results in a very clean electron
sample (i.e., very little pion contamination) for the data analysis.

The pion rejector in the LHRS is configured as shown in Figure 3.25. It is composed of
two layers of thirty-four 14.5×14.5×30 cm3 and 14.5×14.5×35 cm3 lead glass blocks,
stacked in the orientation shown in Figure 3.25, where the long dimension of the blocks
are transverse with respect to the direction of the scattered particle from the target. The
gaps between the blocks in the first layer are compensated for by the second layer blocks
being slightly offset so as to cover them. This is done to minimize the loss of a signal from
particles traversing this region, see Figure 3.26.

The blocks are composed of the material SF-5, of which the main components are PbO2

and SiO2. The radiation length of SF-5 is X0 = 2.55 cm [179], so scattered particles normal
to the surface of the pion rejector will traverse 5.7X0 for each layer.

Each block is viewed by a PMT, which gathers the signal generated by the particles
traversing the lead glass and sends it to its corresponding ADC. This ADC signal is linearly
proportional to the particle’s energy deposit. Therefore, the ADC spectrum of each PMT
is a measure of the energy deposited in each block. The calibration of the pion rejector is
discussed in Section 4.1.5 and the PID study is shown in Section 5.2.2.5.

Particles incident upon the lead-glass blocks interact with the material via bremsstrahlung
and pair-production. The electrons, positrons and photons produced here then undergo
these same processes, generating an electromagnetic cascade. The result is that the major-
ity of the initial particle’s energy is deposited in the calorimeter.

Electrons and heavier particles like hadrons have different energy deposition distribu-
tions in electromagnetic calorimeters. Electrons tend to leave most (if not all) of their
energy in the calorimeter, while hadrons only deposit a small amount of their energy. This
is primarily due to pions acting like minimum ionizing particles (MIPs), where they lose a
small amount of energy with each ionizing reaction with the material. The energy loss of a
MIP can be approximated by 1.5 MeV per g/cm2 traversed [180]. Considering the density
of SF-5 to be ≈ 4 g/cm3 [177], then pions would deposit ≈ 175 MeV in the calorimeter

88



(both layers taken together), whereas electrons will deposit nearly all of their energy. The
result of this is that there are two distinct peaks in the energy distribution with good sepa-
ration in the calorimeter: one due to pions and the other due to electrons. Taking advantage
of this, one can choose electrons while rejecting pions in the analysis.

Figure 3.25: The pion rejector in the LHRS. Figure adapted from [178].

the anode. To prevent a non-linear PMT response
even in the case of few photoelectrons requires a
progressive HV divider [22]. The length of the
particle path in the gas radiator is 130 cm for the
gas Cherenkov in the HRS-R, leading to an
average of about twelve photoelectrons. In the
HRS-L, the gas Cherenkov detector in its standard
configuration has a pathlength of 80 cm; yielding
seven photoelectrons on average. The total
amount of material in the particle path is about
1.4% X0:

Two layers of shower detectors [23] are installed
in each HRS. The structure of the shower

detectors in each arm is shown in Fig. 12. The
blocks in both layers in HRS-L and in the first
layer in HRS-R are oriented perpendicular to the
particle tracks. In the second layer of HRS-R,
the blocks are parallel to the tracks. The front
layer in HRS-R is composed of 48 lead glass
blocks, 10 cm! 10 cm! 35 cm: The second layer
is composed of 80 lead glass blocks, 15 cm!
15 cm! 35 cm each. The front layer in HRS-L is
composed of 34 lead glass blocks, of dimensions
15 cm! 15 cm! 30ð35Þ cm: The second layer is
composed of 34 similar blocks. Because of its
reduced thickness, the resolution in HRS-L is
not as good as that of the shower detector in HRS-
R. A particle identification parameter Rsh is
defined as

Rsh ¼
Etot

p
!

lnðEpreshÞ
lnðEaveÞ

ð4Þ

where Etot is the total energy deposited in the
shower detector, p the particle’s momentum, Epresh

the energy deposited in the front layer and Eave the
average energy deposited by an electron with
momentum p: The quality of the particle identifi-
cation in the HRS-R shower detector is demon-
strated in Fig. 13. The combination of the gas
Cherenkov and shower detectors provides a pion
suppression above 2 GeV=c of a factor of 2! 105;
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Fig. 11. Velocity distribution (left) in units of b ¼ v=c for
protons and the coincidence time spectrum (right) between the
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small peaks in the right figure show the time structure of the
primary electron beam.

SF-5

XP2050Al 25 mm

14.5 x 14.5 x 30 (35) cm50 mm

XP2050 14.5 x 14.5 x 35 cm

R 3036

Al 19 mm

Al 13 mm

SF-5

10 x 10 x 35 cm
TF-1

HRS-L

HRS-R

Fig. 12. Schematic lay-out of part of the shower detectors in HRS-L (top) and HRS-R (bottom). Particles enter from the bottom of the
figure.
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Figure 3.26: Side view of the pion rejector in the LHRS, showing the slight offset of the second
layer (top) of the pion rejector relative to first (bottom). The circles in each square (block)
indicates the PMT attached to that block (also shown in the right figure). Figure reproduced
from [152].

3.7 BigBite Spectrometer

3.7.1 Design and Characteristics

The BigBite spectrometer is a large acceptance spectrometer, able to detect particles with
a wide range in scattering angle and momentum. It was used to detect electrons.

BigBite consists of one large bending magnet, producing a maximum magnetic field
of ≈ 1.2 T. The magnet face was located 1.5 m from the target center, resulting in an
angular acceptance of 64 msr. The momentum range covered by the spectrometer was
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0.6–2.5 GeV. There are a number of sub-detectors, including multi-wire drift chambers
(MWDC) (Sect. 3.7.3), a gas Čerenkov (Sect. 3.7.4), a scintillating plane (Sect. 3.7.5) and
a electromagnetic calorimeter (Sect. 3.7.6). The schematic layout of the detector is shown
in Figure 3.27.

Figure 4.24: The engineering drawing of the BigBite spectrometer.

was essential for the kaon PID and the pion contamination study, but not essential

for the pion PID. Therefore, it was not used in the data analysis for the pion channel.

4.10.2 BigBite Spectrometer (BigBite)

In experiment E06-010, the BigBite spectrometer was used to detect the scattered

electrons. The momentum coverage was 0.6-2.5 GeV. The acceptance was about 64

msr for 1.0 GeV electrons. The large acceptance and the large coverage of the out-

of-plane angle were essential in separating the different azimuthal asymmetries from
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Figure 3.27: The design layout of BigBite. Scattered particles from the target enter from the
left of the diagram. Figure reproduced from [181].

3.7.2 BigBite Magnet

The magnet was supplied with a current of 710 A, yielding a magnetic field of 1.2 T in-
side the magnet. The field is parallel (horizontal) to the floor and perpendicular to the
scattered particle path from the target. The dispersion of the field is in the vertical di-
rection. The magnetic field mapping measurements were performed before the E06-010
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experiment [181]. The largest component of the magnetic field, By, is plotted for two dif-
ferent current settings of 600 A and 710 A as a function of the ẑ-direction in the detector
coordinate system in Figure 3.28.

Figure 4.25: The schematic view of the BigBite spectrometer together with the
target.
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Figure 4.26: The field mapping of the BigBite magnet for two currents: 710 A and
600 A.
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Figure 3.28: The y-component of the BigBite magnetic field as a function of the scattered
particle’s nominal velocity direction. Figure reproduced from [181].

3.7.3 Multi-Wire Drift Chambers

The Multi-Wire Drift Chambers (MWDC) are utilized for particle tracking, and work in
much the same way as described for the VDC planes in the LHRS (Sect. 3.6.3). There are
three chambers, each filled with a 50–50 mixture of argon and ethane gas. Each chamber
has three pairs of wire planes, giving a total of eighteen planes in all.

Each of the eighteen planes is perpendicular to the detector’s central ray, and is bounded
by cathode planes 6 mm apart from one another (Fig. 3.29). At a distance of 3 mm from
the cathodes is a plane of wires, composed of alternating field and sense wires. The sense
wires have a spacing of 1 cm. The field wires and the cathode planes are held at the same
constant high-voltage, producing a nearly symmetric potential in the region close to the
sense wires.

There are three pairs of wire planes, each pair having a slightly different orientation.
This is done to optimize track reconstruction in three dimensions. The two so-called X-
planes (X,X’) run horizontally (in detector coordinates), while the U and V planes are
oriented at +30◦ and -30◦ with respect to the X-planes, respectively, see Figure 3.30. The
wires in each plane are separated by 1 cm, and the primed planes (X’, U’, V’) are offset
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from their unprimed counterpart by 0.5 cm. This allows the tracking algorithm to determine
if the track passed to the left or right of a given wire in the X plane based upon which wire
got a hit in the X’ plane, for example. This alignment results in a positional resolution of
less than 0.3 mm.
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Figure 3.26: Schematic of a BigBite MWDC
wire plane (side view).

Figure 3.17: Drift chamber equipotential lines around a sense wire generated with GARFIELD.

the chambers. Chamber 1 used a newer set of cards, which were more senstive [63]. Furthermore,
these voltages may not reflect the e�ective voltage inside the chamber due to current drain e�ects.
E⇥ciencies were measured from tracking results by determining how frequently a wire was not used
in a reconstruction in the case a track passed through the cell containing the wire.

BigBite Scintillator

A set of 13 scintillator paddles resides between the preshower and shower providing timing infor-
mation. Each paddle is connected to two photomultiplier tubes, one on each end. The signal from
each photomultiplier tube is sent to a an amplifier and copy of the signal is sent to an ADC, which
integrates the amplitude of the signal over time, and a discriminator which sends a logical pulse to a
TDC to provide timing information. This timing, with a resolution of about 300 ps, when associated
with a track can then be used to reconstruct the time of the electron at a drift chamber plane. Since
the scintillator plane resides about 1.0 m from the first plane, timing corrections (assuming a particle
traveling at the speed of light) to the drift times can be up to a few nanoseconds, which can be seen
in tracking.

Furthermore, this timing is used in reference to the neutron arm. By calculating the di�erence
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Figure 3.27: Equipotential lines around a
sense wire in an MWDC wire plane, gener-
ated with GARFIELD for a previous experi-
ment. Reproduced from Riordan [144].

gas, bubbled through ethyl alcohol for purification at 0⇧ C [160], and contains three pairs of wire
planes for a total of eighteen wire planes across all three chambers.

Each of these eighteen wire planes is perpendicular to the detector’s nominal central ray (z) and is
bounded by two cathode planes, one upstream and one downstream, six millimeters apart. Halfway
between the cathode planes is a series of wires in which field wires and sense wires alternate; the sense
wires have a one-centimeter spacing (Figure 3.26). The field wires and cathode planes are held at
the same constant high voltage, producing a potential around the sense wires that is approximately
symmetric (Figure 3.27).

When a charged particle passes through the MWDC, it tends to ionize the argon-ethane gas. Due
to the di⌥erence in electrostatic potential between wires, charges freed in the ionization of the gas
molecules tend to drift toward the closest wire, ionizing additional molecules in turn. The resulting
ionization cascade produces an electrical signal in the sense wire. The signal is amplified and sent to
a discriminator; if it passes the pre-set threshold, a hit is recorded in the Time-to-Digital Converter
(TDC). Generally, a particle coming from the BigBite magnet will register only one hit in each plane.
Later, in o⌥-line analysis, these hits are combined in order to reconstruct the path that the particle
took through the MWDCs.

Each wire chamber contains three pairs of wire planes, and each pair has a di⌥erent orientation
(Figure 3.28), an arrangement chosen to simplify the problem of reconstructing tracks in three
dimensions. The wires in the two X planes run horizontally. U-plane wires are oriented at +30⇧

from horizontal, while V-plane wires are at an angle of �30⇧ to the horizontal. In each plane, there
is a one-centimeter separation between wires; in each plane pair (X and X’, U and U’, and V and V’)
the wire patterns are o⌥set from each other by 0.5 cm. The hit position in plane X’, for example,
thus allows the tracking algorithm to determine whether the particle passed to the left or to the
right of the wire that registered a hit in plane X. The position resolution of the resulting tracks is
at the level of 0.3 mm or less.

In reconstructing a charged-particle trajectory, the straight-line tracking that the MWDCs make
possible also allows us to reconstruct the particle’s curved trajectory through the BigBite magnet,
which in turn allows us to compute both the position of the initial scattering vertex and the mo-

Figure 3.29: Cathode planes in the BigBite MWDC. Figure reproduced from [47].

Multi-Wire Drift Chambers

Three drift chambers were used to accurately reconstruct the particles track going into

the BigBite spectrometer. There are three types of wire planes, U, V, and X and their

orientation is shown in Figure 3.14. The X plane is parallel to the ydet axis in the detector

coordinate system and V and U planes are oriented ±30◦ with respect to this axis. Each

chamber has two sets of these planes (total 6 wire planes). In each plane, the sense wires

are spaced 1 cm apart, with a field wire in between a pair of sense wires. A cathode plane is

inserted 3 mm above and below each wire plane. The chamber is filled with a gas composed

of a mixture of 50% argon + 50% ethane, which is first bubbled through alcohol at 0◦C. The

signal generated by the charged particle passing through the chamber is amplified before it

is fed into a TDC for recording the time. The drift time, the amount of time it takes for

free ions to drift from track position to the sense wire, is then converted to a drift distance.

This information gives the hit position of the track in each plane, which is then used to fit

a straight line to reconstruct the original track.
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X
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Figure 3.14: Orientation on U, V, and X wire planes in BigBite wire chambers.

BigBite Scintillators

The BigBite scintillator plane consists of 13 bars. The dimensions of each bar is 17×64×4

cm3. Each bar is connected to two PMTs, one on each side. The entire scintillator plane

is mounted between the preshower and shower detectors (see Figure 3.15). The signal from

each PMT is amplified 10 times and then sent to a discriminator which makes a logic pulse.

This pulse is recorded in a TDC for timing information. The BigBite scintillators provided

an accurate timing information of the particles entering the detector, which is used together
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Figure 3.30: Orientation of the X, U and V planes in the BigBite MWDCs. Figure reproduced
from [151].

3.7.4 Gas Čerenkov

The gas Čerenkov in the BigBite spectrometer works based on the same principles as al-
ready discussed for the LHRS gas Čerenkov (Sect. 3.6.5) in detecting electrons. This exper-
iment served as the commissioning experiment for the Čerenkov detector, built to remove
pions and protons from the main trigger.

The gas utilized is C4F8O, which has an index of refraction of n= 1.00135 at a pressure
of 1 atm [169]. This results in the thresholds for generating a signal due to various particles
in the Čerenkov to be:
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pe±
min = 9.83 MeV

pπ±
min = 2.69 GeV (3.28)

pp
min = 18.05 GeV.

The tank is has dimensions of 60×80×200 cm3 and houses twenty spherical focusing
mirrors in two columns of ten. The mirrors are 31 cm wide and 21 cm tall, with a radius of
116 cm and a focal length of 58 cm. Čerenkov light incident upon these mirrors is reflected
onto a corresponding secondary mirror, 24 cm wide and 21 cm tall. These mirrors then
direct the Čerenkov light onto the face of a corresponding PMT. To boost the amount of
light collected, each PMT was fitted with a Winston cone [182]. This extends the effective
diameter of each PMT from five inches to eight inches. A diagram of the Čerenkov tank is
shown in Figure 3.31.

The gas Čerenkov also played a role in the main trigger for BigBite (Sect. 3.8) in con-
junction with the shower calorimeter (Sect. 3.7.6).CHAPTER 3. THE E06-014 EXPERIMENT 85

Figure 2: Exploded diagram of the Cerenkov detector showingmirrors , PMTs, and simple

Winston cones. The primary spherical mirrors are 31 cm wide by 21 cm tall with a radius

of 116 cm (focal length: 58 cm). The flat secondary mirrors are 24 cm wide by 20 cm tall.

6

Figure 3.30: Exploded CAD diagram of the BigBite gas Čerenkov, showing mirrors in gray, Winston
cones in pink, and PMTs inside green mu-metal shielding. Reproduced from Sawatzky [172].

and then to a TDC to record timing information [160]. This system is essential for coincidence
experiments, which require precise comparisons of particle timing in each arm, but is not critical for
single-arm experiments like E06-014.

3.3.4.4 Preshower and Shower

Further particle identification is provided by the preshower and shower calorimeters, which also con-
tribute to the BigBite trigger (Section 3.3.6); the scintillator is sandwiched between these detectors.
Both the preshower and shower detectors are arrays of lead-glass blocks measuring 8.5 ⇤ 8.5 ⇤ 34
cm3; the preshower uses TF-5 lead glass while the shower uses TF-2. Preshower blocks are oriented
so that the long (34 cm) side is perpendicular to the trajectory of a particle passing through the
center of the detector, while shower blocks are placed so that the long side is along that trajectory.
Preshower and shower each have an active area of 230 ⇤ 74 cm2, with the blocks arranged in 27
rows; due to the di⌥erent block orientations, the shower has seven columns to the preshower’s two.
Figure 3.31 shows the layout of the preshower, scintillator and shower arrays.

A high-energy electron, positron or photon passing through a lead-glass block will undergo pair-
production and bremsstrahlung processes, generating additional electrons, positrons and photons
with lower energies. These secondary shower particles undergo the same types of processes, resulting
in an electromagnetic cascade in which much of the initial electron energy is deposited in the material.
The cascade dissipates only when the particles resulting from the shower drop below an energy at
which they can produce more shower particles, instead interacting with the medium via excitation
and ionization.

In a material with radiation length X0, the distance tmax = xmax/X0 at which the maximum
energy is deposited and the cascade begins to dissipate can be approximated as

Figure 3.31: Exploded CAD diagram of the BigBite gas Čerenkov detector. The Winson
cones are shown in red, and the PMTs are housed inside the green µ-metal shielding. Figure
reproduced from [183].
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3.7.5 Scintillating Plane

The scintillating plane in the detector package consists of 13 paddles of plastic scintillator,
each of which has a PMT at each end with a timing resolution of 300 ps. Each paddle
has the dimensions: 17 × 64 × 4 cm3. The long dimension is transverse with respect to
the scattered particles, while the short dimension is along the scattered particle path. This
results in an active area of 221 × 64 cm2. The layout of the scintillating paddles is shown
in Figure 3.32.

This plane provided an additional source of pion rejection to compliment the gas Čerenkov
and the shower calorimeter, as the charged pions would leave a large signal in the low-end
of the ADC spectrum (Sect. 5.3.4).

Figure 3.32: The orientation of the scintillating paddles along with the preshower and shower
calorimeter blocks on the left and right, respectively. The detector coordinate system is also
shown at the top-right of the diagram. Scattered particles from the target are incident normal to
the page. Figure reproduced from [168].

3.7.6 Electromagnetic Calorimeter

The electromagnetic calorimeter works based on the same principles discussed in Sec-
tion 3.6.6. It is used for rejecting pions and selecting electrons in the data analysis.

The calorimeter is composed of two layers of lead-glass blocks∗. The first layer is
the preshower, located 85 cm from the first drift chamber plane. It contains 54 blocks of

∗The preshower blocks are made of TF-5 and the shower blocks are made of TF-2.
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dimensions 8.5× 8.5× 35 cm3. They are organized in two columns of 27 rows. The long
dimension is oriented transverse with respect to scattered particles coming from the target.
The shower layer, located 1 m from the first drift chamber, has 189 blocks of the same
dimensions, but organized in seven columns and 27 rows. The long dimension of the block
is oriented along the scattered particle path, giving more material for the particle to traverse,
to ensure the capture of the full electromagnetic shower of the particle. The orientation of
the two layers is shown in Figure 3.32.

Similar to the situation seen in the LHRS (Sect. 3.6.6), MIPs tend to deposit a small
amount of their energy in the preshower and shower calorimeters; in particular, consid-
ering the density of TF-5 to be ≈ 4.77 g/cm3 [169], a pion would deposit ≈ 60 MeV in
the preshower, and ≈ 300 MeV in the shower calorimeter (made of TF-2, with a density
of ≈ 4.09 g/cm3). However, due to the various materials in between the MWDCs, gas
Čerenkov, preshower and shower calorimeters, MIPs deposited≈ 81 MeV in the preshower
and < 350 MeV in the shower [169].

The shower calorimeter also plays a role in the main trigger for BigBite, in addition to
having its own trigger (Sect. 3.8).

3.8 Trigger Logic

With the large amount of data generating signals in the detectors, it is impossible to record
all of it in a continuous fashion. To make the task of taking data more feasible, short
windows of time are chosen during which the detectors are receptive to generated signals.

Triggers and their logic systems provide a way of determining “good events.” In our
case, this consists of the scattered electrons. There are eight triggers utilized by the Hall A
data acquisition, some of which are used for troubleshooting purposes only. For instance,
there is the trigger labeled T8 which is a pulser based on a 1024 Hz clock which has no
physics attached to it. It is injected into the data stream to ensure that the electronics are
working correctly. All of the triggers are listed in Table 3.9.

3.8.1 LHRS Triggers

The way in which the main LHRS trigger (T3) is generated is as follows: first, the PMTs
of each paddle of S1 (S2m) are ANDed together, generating a signal for each paddle that
has a hit. Then, the signals across the six (sixteen) paddles are ORed together to generate
one signal for S1 (S2m). Finally, the signals for S1 and S2m are ANDed together to give
the T3 trigger, whose timing is defined by the leading edge of the TDC∗ signal in the PMT

∗LeCroy 1875 TDCs with a time resolution of 50 ps.
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Trigger Spectrometer(s) Description
T1 BigBite Low shower threshold
T2 BigBite Overlap between T6 and T7
T3 LHRS Overlap between S1 and S2m
T4 LHRS Overlap between either S1 or S2m and Čerenkov
T5 LHRS, BigBite Overlap of T1 and T3
T6 BigBite High shower threshold
T7 BigBite Gas Čerenkov
T8 LHRS, BigBite 1024 Hz Clock

Table 3.9: Triggers used during E06-014.

attached to the right side of the scintillator paddle [151]. From here, the T3 trigger is sent
to the trigger supervisor (TS).

The way in which a T4 is generated follows closely to that which is seen for the gener-
ation of a T3 trigger. The only difference is that a T4 is generated when there is a logical
AND between either S1 or S2m with the gas Čerenkov detector, but were vetoed by the T3
trigger. This trigger is used for studying the efficiency of the T3 trigger, as these events are
potentially good events since they have a signal in the gas Čerenkov. It was found that the
efficiency of the T3 trigger was 99.95% over the course of the experiment (Sect. 5.2.3).

A diagram of the trigger logic for a given spectrometer in Hall A is shown in Fig-
ure 3.33.

3.8.2 BigBite Triggers

There are four triggers associated with the BigBite spectrometer. The T1 trigger corre-
sponds to the shower calorimeter; the T2 corresponds to an overlap of the shower and the
gas Čerenkov, which serves as the main trigger in production running; T6 is another shower
trigger; T7 is a gas Čerenkov trigger.

The T1 and T6 triggers work in a similar fashion. They are formed by taking the
hardware (voltage) sum of the cluster∗ with the largest signal. This was done separately
for the preshower and shower calorimeters. Their sum was then formed and sent to a
discriminator. If this signal was greater than the threshold then the trigger is formed. The
difference between T1 and T6 is that their thresholds may be set to different values†. The
circuit logic of T1 and T6 is shown in Figure 3.34.

∗A cluster is two rows of calorimeter blocks. There are 26 clusters for the preshower and shower
calorimeters, respectively.

† The T6 threshold was set to ≈ 500–600 MeV. The threshold for the T1 trigger was set to ≈ 300–
400 MeV [169].
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Figure 3.33: The logic diagram for single-trigger operation mode in an HRS in Hall A. In
the diagram, T1 corresponds to E06-014’s T3, and “2/3 trigger” corresponds to T4. Figure
reproduced from [184].

The Čerenkov trigger works in a similar fashion to T1 and T6, but instead of clusters
of lead-glass blocks, it considers clusters of mirrors∗, see Figure 3.35. If any one of the
mirror cluster signals is greater than the set threshold, then the T7 trigger is formed. The
T7 trigger had a threshold of ≈ 1–1.5 p.e., but had a large prescale† factor assigned to it,
resulting in no T7 events being written to disk.

The main trigger (T2) requires a geometric overlap of the shower and Čerenkov trig-
gers. This geometric overlap is shown in Figure 3.36. We label the Čerenkov mirror clusters
C1–C9 and the twenty-seven rows of preshower and shower blocks A–Z. Figure 3.36 shows
which Čerenkov clusters overlap with which shower cluster. For instance, those events that
fire the Čerenkov C1 cluster and fire any one of the A–E clusters in the calorimeter which
overlaps with C1, then a T2 trigger is generated.

The triggers start the gates for the ADCs and provide the common stop for TDCs.

∗There are 9 clusters of mirrors.
†A prescale factor restricts the number of events accepted for a given trigger. For example, a prescale of

100 means that one event per every 100 will be accepted. It is used to either remove certain types of events
entirely, or to restrict events due to high rates.
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Figure 3.34: The T1 and T6 triggers corresponding to the BigBite shower. Figure adapted
from [185].

Because of this, the timing of the various triggers needs to be consistent. To this end, the
timing was chosen to be defined by the T6 trigger. This is shown in Figure 3.37.

3.8.3 Coincidence Trigger

The coincidence trigger (T5) is formed by an overlap in time of the T1 trigger from Big-
Bite and the T3 trigger from the LHRS. T5 is characterized by the time-of-flight (TOF) and
trigger formation times of the spectrometers. The TOF is determined by considering the
detector’s geometry and the kinematics of the particle to be detected. The trigger forma-
tion time depends upon the electronics schematics, in that one has to consider the time to
propagate a pulser signal though the circuitry. Since these two things are generally not the
same for each detector, such differences must be considered when determining the cabling
and other electronics.

The LHRS T3 signal had a width of 140 ns which defined the coincidence window. The
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Figure 3.35: The T7 trigger corresponding to the BigBite gas Čerenkov. Figure adapted
from [185].

BigBite T1 signal had a width of 40 ns, set to arrive 60 ns after T3. Therefore, T1 defined
the timing of T5, see Figure 3.38.

The coincidence trigger is used for detecting events that occur simultaneously (or very
nearly so) in the LHRS and BigBite. This is the case typically in semi-inclusive pion
electro-production experiments where an electron is detected in one spectrometer in coin-
cidence with a pion on another detector, for instance. Another case where this occurs is
elastic scattering, where the electron is detected in coincidence with the recoiling target
particle.

For E06-014, elastic scattering data on hydrogen and 3He was taken for an electron
beam of E = 1.23 GeV. These data were used as a check of the calibrations of our detec-
tors. For the majority of these runs, the LHRS was set to positive polarity mode to detect
protons, while BigBite was set to negative polarity mode to detect electrons. The ability
to successfully produce the invariant mass spectrum for elastic scattering from a hydrogen
target shows that our hardware and software are operating as expected (Sect. 4.2.2).

In production running, both the LHRS and BigBite were set to single-arm mode in
negative polarity to detect electrons. The T5 trigger was disconnected from both detectors.

99



N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

C3 overlaps with G+H+I+J

C2 overlaps with D+E+F+G

C1 overlaps with A+B+C+D

C4 overlaps with J+K+L+M

C9 overlaps with Y+Z

C8 overlaps with V+W+X+Y

C5 overlaps with M+N+O+P

C6 overlaps with P+Q+R+S

C7 overlaps with S+T+U+V

51

11

−

1

9

−

53

5

−

3

21

−

50

24

52

−

6

17

−

S6−1NAU

23

−

2

14

−

20

N4−22L

N2−23L

N3−23L

N7−32L

N5−32L

N1−23L

N6−33L

N6−31L

N5−36L

N7−33L

N6−32L

N6−35L

N5−31L

N2−24L

N3−21L

N6−36L

N3−22L

N4−21L

N4−23L

N1−21L

N1−22L

N3−24L

N2−21L

N2−22L

N1−24L

N4−24L

C1

C2

C3

C9

C8

C7

C6

C5

C4

23

26

25

24

22

20

1

2

3

4

5

6

7

10

12

15

16

17

19

21

18

14

13

11

9

8

Sh/PSh Sum# Short patch cable Long patch cable

Figure 3.36: The main (T2) trigger in BigBite. The dashed lines show typical particle tracks
through the detector. The matching colors show the which cluster of Čerenkov mirrors corre-
spond to which shower blocks that would yield a T2 trigger. Figure reproduced from [185].
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Figure 3.37: The retiming of the BigBite trigger. Figure reproduced from [186].

Figure 3.38: Coincidence trigger timing. Fiugre reproduced from [169].
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3.9 Data Acquisition

A typical particle physics experiment generates a very large amount of data that needs to
be managed in an organized and efficient way. This process is carried out and overseen
by the data acquisition (DAQ) system. The voltages and signals of hundreds of PMTs
corresponding to scattered electron detection and monitoring, along with spectrometer set-
tings corresponding to the current through its magnet(s), momentum setting and more are
monitored and recorded by the DAQ.

3.9.1 CODA

The CEBAF Online Data Acquisition system (CODA) interfaces with the Readout Con-
trollers (ROCs), passing directions concerning how to process and handle the signals from
modules such as Time-to-Digital Converters (TDCs) and Analog-to-Digital Converters
(ADCs). These directions are C-based, encoded in control (.crl) files that are uploaded
to the ROCs at the start of a run, which is a data-taking period for some given amount
of time. Instead of taking data as one huge set, the experiment breaks the data into runs
for distinguishability between different types of data sets and to minimize the probability
of recording poor data if a problem should arise. Run sets also make the offline analysis
procedure more streamlined and easier to identify potential issues.

Upon the receipt of the level-one accept (L1A, see Section 3.9.4), the front-end elec-
tronics are gated and timed, and the data is passed to the CODA event builder and written
to disk.

The run control system effectively oversees CODA, providing control over runs. Shift
workers may manipulate it via a graphical user interface (GUI) to start and stop runs. The
various DAQ configurations may also be set from a specific GUI. Control files to be up-
loaded to the ROCs are stored here as well.

3.9.2 Scalers

So-called “scaler” events are responsible for counting raw signals generated from PMTs
without dead time. From scaler events, raw counts and rates are obtained, and used for nor-
malization purposes along with real-time monitoring of a number of parameters, including
beam current, target temperatures, voltages, and so on. The LHRS and BigBite have sepa-
rate scalers, as they may not necessarily have the same hardware, requiring unique setups.
This configuration was inherited from the previous experiment, E06-010 [151].
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The scalers are designed to be gated using the target spin and beam helicity states,
yielding spin-spin dependent scalers. In this sense, there are four scaler combinations of
the form ordered by the target spin (targ.) and beam helicity (hel.) given by (targ.,hel.):
(+,+) or (pp), (+,-) or (pm), (-,+) or (mp) and finally (-,-) or (mm). A fifth configuration
was spin independent.

Using the run gate obtained from the trigger supervisor (Sect. 3.9.4), the scalers are
gated. The scaler gating scheme is shown in Figure 3.39; where the scaler event is formed
from the logical AND between the run gate, target spin and beam helicity signals. These
signals are sent to the control bit on S1S3800 for counting purposes [151].

Figure 3.39: Scaler gating scheme for E06-010. In our experiment, the target spin state logic
was always set to +1, see text. Figure reproduced from [151].

The main difference between the E06-010 setup and ours is that their target spin was
flipped every 20 minutes, whereas we flipped the target spin every few days. Because of
this, we did not need to gate the scalers by the target spin. As a result, the target spin-
gated scaler was always set to +1. This resulted in two redundant scalers in the pp and mp
settings.

3.9.3 EPICS

The Experimental Physics and Industrial Control System (EPICS), developed by a number
of collaborations at universities and laboratories [187], is used for device control and slow
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readout of parameters. It is designed to interface remotely with detectors and devices. In
particular, the operating commands and instructions are altered via a GUI.

The parameters that are stored consist of scalers like high voltages, a spectrometer’s
central angle, mispointing, magnet currents and momentum settings, to name a few. A
logger script prompts the various detectors for a given set of parameters and writes an
“EPICS event” to data, which occurs every thirty seconds. Additionally, start-of-run and
end-of-run summaries are posted to the electronic logbook (HALOG).

System monitoring is accomplished by processing alarms based on the parameter values
from the detectors. These alarms manifest themselves as GUI-based notifications, accom-
panied by sounds.

3.9.4 Trigger Supervisor

The trigger supervisor (TS) effectively connects the ROCs to the triggering system, via
a 9U multi-functional VME board and several ECL inputs [168]. There are eight input
channels used for the eight triggers, labeled T1–T8.

The gating and timing of the front-end electronics is governed by the level-one accept
(L1A). The process is as follows: the TS accepts multiple triggers from the various detec-
tors and applies the prescale condition. If a trigger passes the prescale condition, the trigger
bit pattern is set∗ and generates the L1A and the DAQ starts [188].

The trigger supervisor also monitors the ROCs such that there are no triggers accepted
during the processing of the current trigger, allowing for the synchronization of the trigger
system and the DAQ. This non-extendable dead time [176] prevents a “pile-up effect” that
would occur if the trigger supervisor was allowed to accept triggers during the processing
of events, known as extendable dead time.

3.10 Analysis Software

In order to analyze the data, it needs to be converted from a collection of TDC and ADC
signals into meaningful data that describes the physics in terms of the kinematics and char-
acteristics of the particles involved.

This conversion of raw data is realized by the C++-based software package ROOT [189],
which is free under the GNU General Public License. ROOT is developed by CERN to
simplify the processing of large data sets at the event level. There are also libraries avail-
able that allow for the visualization of data by plotting one-, two- and three-dimensional
histograms of data.

∗A multi-hit 1877 TDC with twelve channels, one for each trigger type.
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The Hall A Analyzer [190], based on ROOT, handles the processing of our raw data.
There are specific C++ classes written to interpret the data recorded by the various detec-
tors and their sub-detectors. For instance, there are classes that convert the ADC signals
registered in a calorimeter block into the corresponding amount of energy deposited. There
are also classes that handle the rather complex computation of a particle’s path (or track)
through the LHRS up to its focal plane and its reconstructed position back at the target.
This process occurs in a set of ROOT macros called “replay scripts,” which parses the data
and outputs so-called “ROOT files.” These files store a variety of variables like ADC and
TDC signals of detectors and kinematic variables like Bjorken-x and Q2. Looking at his-
tograms of these variables shows their event distributions. These ROOT files are useful for
on-the-fly online analysis during the experiment to monitor the quality of the data and the
performance of the detectors. Also, the framework of the Hall A Analyzer allows for a
more in-depth offline analysis once the experiment is complete.

Offline analysis for the computation of physics observables like cross sections and
asymmetries is accomplished by the user writing a number of ROOT macros that interface
with these ROOT files and extracting the relevant quantities needed and then computing
the observable of interest.

3.11 Run Summary

Our experiment started running after the E06-010 (Transversity) experiment. For their
experiment, the LHRS was at 15◦ to the left of the beamline and BigBite was placed at
30◦ to the right of the beamline. Due to the very similar hardware setup to our experiment,
it allowed for the sharing of knowledge and expertise on detectors and software, and an
overlap of calibration data sets. In particular, the optics calibration data for Transversity
was utilized in our data set for the LHRS.

The commissioning of E06-014 saw a move of the LHRS and BigBite to 45◦ to the left
and right of the beamline, respectively. The target saw an installation of new target cells,
while the DAQ was reconfigured for our setup; in particular, single-arm mode, where the
LHRS and BigBite can run independently of one another. Coincidence running was still an
option for calibration purposes. There was also the use of new detectors: a gas Čerenkov
in BigBite and a Compton photon polarimeter was installed along the beamline. There was
also the installation of a Compton electron polarimeter, but its commissioning proved to be
unsuccessful.

A number of runs were done in coincidence mode taking elastic data on 3He and H2

targets. The LHRS was set to positive polarity to detect positively charged particles like
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protons, while BigBite was set to negative polarity to detect negatively charged particles
like electrons.

E06-014 saw high event rates, setting a Hall A record at 12 MB/s. The design limit
of Hall A is 10 MB/s. These high event rates typically lead to high dead times in our
detectors. To circumvent this issue, the beam current was lowered to 14 and sometimes
13 µA in coordination with setting the prescales of various triggers to appropriate values to
achieve a reasonable rate.

The experimental program saw the collection of data for beam energies of 4.74 and
5.89 GeV. Due to the fact that there are two other experimental halls running simultaneously
with our experiment, coordination with their runs is needed, since a beam energy change
in one hall will affect the beam quality in another hall. To this end, our production data
taking was staggered in the following way: one and a half weeks of highly polarized beam
at 5.89 GeV; three days of minimally polarized beam at 4.74 GeV; one week of highly
polarized beam at 5.89 GeV and finally one and a half weeks of moderately polarized beam
at 4.74 GeV.

There were a number of issues encountered during the experiment. Early on in the run-
ning, it was noticed in histograms of the energy deposited in the BigBite shower calorimeter
that there was a sizable gap in the acceptance. This turned out to be due to issues in the
trigger electronics. A NIM bin was providing an insufficient amount of power to a par-
ticular set of summing modules for the shower signal. This lead to an absence of data in
the event distribution at the face of the calorimeter. This was soon fixed, and the so-called
“trigger-hole” is not present in the 4.74 GeV data set.

There were power fluctuations during a storm, which lead to damage to the central
helium liquefier (which cools equipment cryogenically), LHRS high voltage systems and
beamline equipment.

One of the biggest problems encountered was that there was an air leak into a cryomod-
ule in the north linear accelerator (linac). This lead to moisture contamination which then
spread to its neighboring cryomodules. The JLab Machine Control Center (MCC) decided
to bring the affected modules to room temperature and remove them from the accelerator
circuit. This resulted in the need for the beam to go through five passes in the accelerator
ring to deliver a beam energy of 4.7 GeV, ultimately improving the quality of the beam
relative to what was seen when the problem occurred.

As a result of the complications which delayed the experimental program, a week-
long extension of the experimental run was requested and approved, allowing us to collect
∼ 80% of the desired statistics.

106



CHAPTER 4

DETECTOR CALIBRATIONS

In this chapter, we discuss the detector calibration procedures employed for the various
sub-detectors of the LHRS and the BigBite spectrometer.

4.1 LHRS

In this section we discuss the way in which the calibrations of the various sub-detectors of
the LHRS were carried out. In particular, we discuss the VDC in Section 4.1.1; the optics
in Section 4.1.2; the gas Čerenkov in Section 4.1.4; in Section 4.1.5 we discuss the pion
rejector, and in Section 4.1.6 we discuss the scintillator calibration.

4.1.1 Vertical Drift Chambers

The principle of how the VDC operates is discussed in Section 3.6.3. A typical drift time
spectrum of a given wire plane is shown in Figure 4.1, where the drift times of all wires in
a plane are plotted in terms of a Time-to-Digital Converter∗ (TDC) spectrum. The TDCs in
the VDC were operated in a common-stop mode, such that large TDC values correspond
to short drift times. The various regions of this spectrum may be understood as follows
(Fig. 4.1): for low TDC channels, and long TDC times (region A), particles have large-
angle trajectories, and are therefore further away from the drift cell around the sense wires;
in the middle range of the spectrum (region B), the electric field lines are parallel, and
the drift velocity of the electrons are constant which corresponds to a relatively flat TDC
response; towards large TDC channels and shorter times (region C), the electric field lines
become quasi-radial near the sense wires; as a result, the probability of detecting a particle
increases. In the region of the largest TDC channels and the shortest drift times (region D),

∗A Time-to-Digital Converter is a device that converts a signal of pulses over a time interval into a
digitized representation.
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which corresponds to a region very close to the sense wires, drift velocities of electrons
increases drastically. Here, the probability of detecting a particle is at the maximum.

Figure 4.1: A typical drift time spectrum for a VDC plane. Reproduced from [168].

To utilize all the drift time spectra for each wire in a given plane, a reference time
t0 must be defined for each wire. This time offset t0 accounts for and eliminates various
timing offsets like differing cable lengths and signal processing times for a given wire.
The calibration procedure, as performed by Chiranjib Dutta for the preceding E06-010
experiment [168], involves the determination of t0 for each wire in each VDC plane and
matching them to a common reference point. To determine the time offset for each wire, the
derivative of the region of short drift times (large TDC channels, ∼ 1800) was computed
via a numerical procedure. The maximum slope was identified and extrapolated to the
x-axis (channel axis) of the TDC spectrum (see the region labeled with t0 in Figure 4.1).
This procedure was done for each of the four planes in the two VDCs. A calibrated TDC
spectrum is shown in Figure 4.2, where the time offset t0 sits at 0 ns.

4.1.2 Optics

The main purpose of the optics matrix is to determine the coordinates of particles in the
target coordinate system (TCS) from their corresponding coordinates in the focal plane
coordinate system (FCS). In order to check how well our optics matrix performs this task,
we need to check and understand certain characteristic plots and variables. Since we did
not take data using the sieve collimator during the experiment due to time constraints, we
can only examine the reconstructed z-vertex and will have to rely on another experiment’s
optics matrix, JLab E06-010 [159, 191].
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Figure 4.2: Calibrated time spectra for the VDC planes. Reproduced from [168].

4.1.2.1 The Optics Matrix

The mathematical relation between the TCS and the FCS is given by the matrix equation
to first order, utilizing mid-plane symmetry of the LHRS:




δ

θ

y
φ




tg

=




〈δ |x〉 〈δ |θ〉 0 0
〈θ |x〉 〈θ |θ〉 0 0

0 0 〈y|y〉 〈y|φ〉
0 0 〈φ |y〉 〈φ |φ〉


 ·




x
θ

y
φ




f p

.

The optimization is typically done to 4th order, where the matrix is given by:
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where the target (tg) variables are: δ is the fractional momentum reconstructed at the
target, given as (p− p0)/p0, and p0 is the momentum setting of the spectrometer; θtg is the
scattering angle in the dispersive direction, in radians; φtg is the horizontal scattering angle,
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in radians; y is the horizontal position, in meters. The variables corresponding to the focal
plane (fp) coordinate system are: xfp, the vertical position in meters, and corresponds to δ

in the TCS; θfp is the scattering angle in the dispersive direction in radians, and corresponds
to θtg in the TCS; φfp is the horizontal scattering angle, and corresponds to φtg in the TCS;
yfp is the horizontal position in the focal plane in meters, and corresponds to ytg in the TCS.
Explicit calculations of each variable yield:

δ = ∑
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D jklθ
j

fpyk
f pφ

l
fp (4.1)
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where the tensors D jkl , Tjkl , Yjkl and Pjkl are polynomials in the focal plane track-x variable
x f p:
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4.1.2.2 Matrix Optimization

We have made use of the optics matrix that was optimized for the E06-010 analysis, which
had a very similar detector setup compared to our experiment. Jin Huang has written ex-
tensive code and documentation to carry out the procedure of optimization [192], which
follows the procedure outlined in [193]. The optimization consists of three main compo-
nents: z-target vertex calibration, the angular calibration and momentum calibration. Here,
we briefly describe the procedures associated with each.

The z-target vertex reconstruction is optimized by considering runs with a multi-foil
carbon target. The known positions of the foils are used to align the reconstructed peaks
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seen in the z-target event distribution. The average resolution achieved for z-target was
≈ 6 mm [181].

For the angular calibration, which corresponds to optimizing the out-of-plane angle θtg

and in-plane angle φtg, carbon foil targets are used with a sieve-slit inserted in front of the
spectrometer. Good events that are detected correspond to scattering from a specific carbon
foil and passing through a certain hole in the sieve-slit. Comparing these detected events
to the locations of the individual carbon foils and the holes in the sieve-slit via survey
reports [194]∗, which allows one to see how well the optics matrix does in reproducing
the proper positions of the target and sieve-slit. Optimization in this case refers to the
minimization of the deviation of the data from these surveyed positions of the target and
sieve-slit.

The momentum calibration calls for using a similar run set. The full range of momen-
tum is covered via a so-called “δ -scan” where the carbon elastic peak is moved across the
focal plane in discrete momentum steps of a few percent. This is done for each momentum
setting needed for the experiment, where a given ground state or excited state of carbon is
examined. The final momentum resolution obtained was < 5×10−4 [181].

4.1.2.3 Reconstruction of the Reaction Vertex

In order to see if the optics matrix is properly transforming the focal plane variables into
the target variables, we examine the plot of the reaction vertex variable zreact for a run for
which a multi-carbon foil target was used. A plot of this quantity shows the position of
each foil, which we may compare to their respective nominal positions as determined from
the survey data.

Figure 4.3 shows zreact using the optics matrix that was used during the running of the
experiment. The peaks seen here are the positions of the carbon foils, while the red vertical
lines are the surveyed positions of the foils. We observe that the positions are not correctly
reconstructed, which indicates that our optics matrix needs to be optimized.

Upon utilizing E06-010’s optics matrix, we obtain the plot shown in Figure 4.4. We see
that the positions of the Carbon foils are in much better agreement with their corresponding
positions from survey data. The effect of the new matrix may be seen in Table 4.1.

4.1.3 Event Selection

Before we investigate the calibration of our detectors, we need to make sure that we are
choosing good events for our study. Below is a list of the cuts used to define good events

∗Survey reports document the physical locations of various components of the targets and detectors in
the hall.
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Figure 4.3: Reconstructed z-vertex using the optics matrix utilized during the running of the
experiment. We see that the positions of the peaks are slightly off to the left for some peaks,
while for others they are slightly off to the right. It is also seen that the leftmost peak’s recon-
struction is quite far from its surveyed position.
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Figure 4.4: Reconstructed z-vertex using the optics matrix optimized and utilized for the
Transversity data analysis. We see that the positions of the reconstructed peaks are in much
better agreement with their corresponding surveyed positions.

112



Old Optics Matrix Results
Peak Number Position (mm) Width (mm)

1 −62.65±0.04 4.42±0.05
2 3.08±0.04 4.83±0.05
3 67.64±0.04 4.45±0.05

New Optics Matrix Results
1 −63.47±0.04 4.63±0.06
2 2.62±0.04 5.05±0.05
3 68.75±0.04 4.49±0.05

Table 4.1: Main peak positions and their respective widths before and after the utilization of
the Transversity optics matrix. The peaks are labeled 1,2,3 when going from left to right in
Figs. 4.3 and 4.4. Errors shown are calculated as the uncertainties of the Gaussian fits used to
extract the peak positions.

in our detectors:

• trigger cuts:
(DL.edtpl==0)&&((DL.evtypebits&(1<<3))==(1<<3))

• VDC cuts:
L.tr.n==1
(L.vdc.u1.nclust==1)&&(L.vdc.v1.nclust==1)
(L.vdc.u2.nclust==1)&&(L.vdc.v2.nclust==1)

• cuts on acceptance:
(abs(L.tr.tg y)<0.04)
(abs(L.tr.tg dp)<0.035)
(abs(L.tr.tg th)<0.05)&&(abs(L.tr.tg ph)<0.03)

The first cut requires that the electronic deadtime pulse is excluded in the analysis. The
second cut ensures that we have events that have produced a (main) trigger. This corre-
sponds to a trigger word, a byte of information that encodes the value of each trigger (1 if
fired, 0 if not fired) as a single bit; requiring the trigger bit corresponding to the T3 trigger
being set to 1 selects T3 events; all other trigger types are rejected.

For the VDC cuts, in addition to requiring one-track reconstruction of one particle from
the target, we also apply cuts to the VDC planes. This cut means that we make sure that
only one cluster fired in each of the VDC planes as the particle passed through them [195].
This, together with requiring one-track reconstruction, assures that we are examining a
good track corresponding to one particle.

The cuts on y-target, δ p/p, θ , and φ are utilized to remove bad events that originate
in the target’s glass endcaps. These variables are defined in the target coordinate system.
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(a) φtg vs. ytg (b) θtg vs. δ p

Figure 4.5: (a) shows φtg vs. ytg. The red box indicates the cut. Events inside the box pass the
cut. Similarly, (b) shows θtg vs. δ p with the chosen cut.

The variable y-target is the target’s y-coordinate; the θ variable refers to the tangent of the
θ angle, which is out of the scattering plane; the φ variable refers to the tangent of the φ

angle, which is in the scattering plane. The quantity δ p/p ensures that the particle has a
good momentum value, within ±3.5% of the momentum setting of the LHRS. Figure 4.5
shows how these cuts are determined for each variable. It should be noted here that these
cuts are not the final cuts for the acceptance. Those will be determined in Section 5.2.5.

All of the cuts mentioned here will be applied to all analyses to follow in this section
unless otherwise mentioned.

4.1.4 Gas Čerenkov

4.1.4.1 ADC Calibration

The calibrations needed for the gas Čerenkov detector correspond to making sure that each
PMT has the same response for a given signal. This amounts to aligning the single photo-
electron peak at an arbitrary channel in its ADC distribution. The single p.e. peak describes
the response of the tube to a single photon, and was calibrated to 200 channels in the ADC
for each PMT so that they each have the same response. This was done for each data set. A
set of gain-matching coefficients were produced and added to the analysis database. They
were calculated by: anew = aold [cnew/cold], where aold is the old database gain-matching
coefficient; anew is the new coefficient; the quantities cnew and cold are the peak locations
in units of ADC channel numbers. The results are shown in Figure 4.6.

In our cross section and asymmetry analysis, we will utilize the gas Čerenkov ADC
sum variable, which is a software sum of the ten ADC signals shown in Figure 4.6. A
typical ADC sum is shown in Figure 4.7.
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Figure 4.6: The ADC spectra for each PMT after calibration. A fit to the one photo-electron
peak shows the peak position in the upper right window of each plot. This data is presented in
more detail in Table 4.2.

Figure 4.7: A typical gas Čerenkov ADC software sum after calibration. This is the histogram
that is cut on to choose electrons in our analysis. Cuts on the pion rejector E/p distribution
reveal the background (blue) and electrons (red). Section 4.1.5 discusses the E/p distribution.
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4.1.4.2 PMT Performance

To investigate the performance of each PMT, we examine the position of the main peak
in each ADC spectrum. This main peak is the average photo-electron yield for its corre-
sponding PMT. To examine the main peak explicitly, we first look at the tracking variables
in the plane of the Čerenkov detector. Figure 4.8 shows the tracking variables in the plane
subject to cuts on the individual TDC spectra for each PMT, an example of which is shown
in Figure 4.9. Such a TDC cut reveals the locations of each particular mirror which views
the PMTs. In particular, a tight cut on one of the mirrors yields what is shown in Fig-
ure 4.10. Taking the peak value shown in the green histogram and dividing this by our
(calibrated) one photo-electron peak yields the average number of photo-electrons for that
particular PMT. This procedure was carried out for each of the ten PMTs. Table 4.2 shows
the results.

The stability of the gas Čerenkov throughout the experiment is discussed in Section 5.2.1.1.

Figure 4.8: A plot of the tracking variable x against tracking variable y in the Čerenkov detector
plane. The detector coordinates call for the x variable to be along the vertical axis. The colored
regions show the locations of all ten Čerenkov mirrors in the detector plane. We can see that
the bottom two mirrors have very low statistics, indicating that they are on the edge of the
acceptance.

4.1.5 Pion Rejector

Electrons impinging upon the blocks of a calorimeter induce an electromagnetic shower
that is typically spread across multiple blocks. Therefore, to accurately determine how
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Figure 4.9: A typical gas Čerenkov TDC spectrum. The main peak corresponds to electron
events, while the uncorrelated (in time) background events are scattered across the whole range.
It is seen that the background in the TDC spectrum is quite small in the LHRS. The cut window
used in the analysis is shown as the two blue vertical lines. Events that fall within the window
are accepted.

Figure 4.10: The plot on the left shows the tracking variables in the Čerenkov detector plane
subject to a TDC cut for a particular PMT. Choosing the tight selection in this plot picks out
the main peak in the corresponding ADC spectrum, shown on the right.

much energy is deposited by an electron, a sum over these groups of blocks, or clusters,
must be done. In particular, a cluster is identified by a central block which sees the largest
energy deposit. For the pion rejector, this sum is taken over the four blocks surrounding the
block that had the largest energy deposit, for a total of five blocks. Only the largest cluster
is considered in the algorithm used in the LHRS software. The energy E of the cluster is
then given as the sum of all energies in the blocks of the cluster:
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Table 4.2: The one photo-electron peak alignment and average photo-electron yield for each
mirror (PMT) of the gas Čerenkov. The error bars are statistical.

Mirror 1 p.e. np.e. # p.e.
1 191.0 ± 6.6 1084.0 ± 27.9 5.7 ± 0.0
2 200.2 ± 6.9 925.3 ± 15.9 4.6 ± 0.1
3 200.5 ± 2.1 1292.0 ± 7.3 6.4 ± 0.0
4 203.8 ± 2.0 1430.0 ± 5.1 7.0 ± 0.0
5 196.6 ± 1.0 1125.0 ± 3.8 5.7 ± 0.0
6 201.8 ± 1.4 1189.0 ± 4.8 5.9 ± 0.0
7 199.9 ± 3.3 1086.0 ± 4.8 5.4 ± 0.1
8 199.6 ± 1.3 1300.0 ± 4.0 6.5 ± 0.0
9 198.1 ± 3.0 1081.0 ± 6.7 5.5 ± 0.0

10 205.3 ± 4.0 1012.0 ± 7.5 4.9 ± 0.0

E =
N

∑
i=1

Ei, (4.9)

and the x-y position of the particle in the plane of the pion rejector is determined from an
energy-weighting method:

X =
N

∑
i=1

Ei

E
Xi (4.10)

Y =
N

∑
i=1

Ei

E
Yi. (4.11)

The pion rejector is designed to separate electrons from pions based upon their differing
energy depositions. Exploiting this difference, we can choose electrons and reject pions for
our analysis.

To calibrate the pion rejector, we gain-matched the ADC spectra of each block to the
same channel number for a particular peak. This is similar to what was done for the gas
Čerenkov. Here, we align the pion peak to 100 ADC channels. Pions were isolated in the
pion rejector by choosing a cut on the gas Čerenkov ADC sum spectrum to be less than 2.5
photoelectrons. Pions were utilized in this study as they deposit approximately the same
amount of energy in each of the two layers of the pion rejector [35]. The result of the
calibration of the block ADCs is shown in Figure 4.11.

As a consequence of the calibration, the ratio of the total energy deposited in the pion
rejector layers E divided by the reconstructed momentum of the track p (the E/p distribu-
tion) for pions falls at values such that E ∼ 180 MeV. For electrons, the distribution peaks
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at E/p ∼ 0.8. This gives a good separation for removing the unwanted pion events from
the data. The results are shown in Figure 4.12.

In order to understand the resolution of the pion rejector, the electron distribution in
E/p is fit to a Gaussian. Its standard deviation (σ) is then obtained. Figure 4.13 shows
σ/p as a function of p for all kinematics. This distribution is fit to: f (x) = a0 + a1/

√
x.

The a1 parameter gives the resolution of the pion rejector. From our fit, it is seen that it is
∼ 18%. Since this is not a full shower, the resolution is not expected to be as good as the
expected value of 5% for a full shower [35].

The stability of the E/p distribution over the whole experiment is discussed in Sec-
tion 5.2.1.2.

Figure 4.11: Examples of calibrated block ADC spectra in the pion rejector. Shown here are the
calibrated pion peaks to 100 channels. Pions are chosen by a cut of less than 2.5 photoelectrons
in the gas Čerenkov.

4.1.6 Scintillators

Since the scintillators provide the main trigger of the LHRS (Sect. 3.8), it is important that
the timing information encoded in the TDCs is correct. To this end, each of the right-hand
side TDCs of the S2m paddles were aligned to an arbitrary value, since it is these TDCs of
this plane that define the timing∗. Then, the left-hand side TDCs were aligned to the right
ones. As long as the timing across the whole plane is consistent, then the value of the time
chosen as the point of alignment does not matter. After this is done, the same procedure of
aligning the peaks was done for the S1 TDC times. The results of this study are shown in
Figure 4.14.

∗The TDC times seen in the S1 plane are defined relative to the S2m plane.

119



Figure 4.12: A calibrated E/p spectrum. Shown are the pion (blue) and electron (red) distribu-
tions. The pion curve is scaled down so it can be viewed on the same scale as the electron curve.
Pions (electrons) are chosen by a gas Čerenkov cut less (greater) than 2.5 photoelectrons.
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Figure 4.13: The resolution of the pion rejector as a function of p. The width of the electron
peak divided by p is fit to the function shown. The parameter that multiplies 1/

√
p gives the

resolution.

It can be seen in Figure 4.14 that the β distribution as a function of tracking variable x

is not perfectly flat, with a small blip towards the positive values of track-x. This is due to
“jitter” in the S1 TDC times as a function of track-x, despite the alignment of the S1 TDC
peaks [196]. What occurs is that for events that have hits in S1 paddle i corresponding to
hits in S2m paddles j or j±1, the time differences ∆ti, j and ∆ti, j±1 are not the same, despite
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Figure 4.14: The results of the calibration of the S1 and S2m TDC times. The top left panel
shows the β distribution. The top right shows β as a function of track-x; The bottom left and
right panels show the S1 and S2m TDC time averages as a function of track-x.

the calibrations of both the S1 and S2m TDC times. This time difference contributes to the
variable β . A cut on the β variable is used in the cross section analysis; however, the cut is
a loose one (Sect. 5.2.2.7), so it was not needed to apply a correction to fix the jitter in the
S1 timing.

The events corresponding to β = 0 in Figure 4.14 are in fact good electron events. The
artifact of the pile-up at β = 0 is due to TDC times in paddles that did not set the timing of
the event∗. Since β ∝ 1/(t2− t1), where t1,2 are the TDC times in S1 and S2m respectively,
β is effectively zero when certain paddles do not fire.

∗At the beginning of each event, all times are set to an arbitrary large number.
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4.2 BigBite

In this section, we give a brief overview of the calibrations needed for the BigBite spec-
trometer. In particular, we examine the multi-wire drift chambers in Section 4.2.1, the
optics in Section 4.2.2, and the gas Čerenkov in Section 4.2.3. The scintillator calibrations
are presented in Section 4.2.4, while the calibrations necessary for the shower calorimeter
are explained in Section 4.2.5. These calibrations, with the exception of the optics, were
done by M. Posik. A more detailed discussion can be found in [169].

4.2.1 Multi-Wire Drift Chambers

The calibration of the MWDCs follows a similar procedure done for the LHRS, outlined in
Section 4.1.1. The calibration was performed by M. Posik [169], using code developed by
X. Qian [181]. The software consists of an iterative procedure formulated into three loops:
first, a global calibration of the time offset t0 is done for each readout card; second, a global
calibration of the vertical positioning of the wire chamber planes is done; and finally, a
fine-tuning of the calibrations for each wire in each of the planes is conducted. Due to
the similarities of the E06-010 experiment and our experiment, we utilized the E06-010
calibration as a starting point for our calibration. This eliminated the need for the first two
stages of the iterative procedure outlined above, leading to a quick convergence of the final
step.

Calibrations were done for each target polarization configuration and electron beam
energy. Tables 4.3, 4.4 and 4.5 show the results, which lists the average track residual∗

σ for each plane in the three wire chambers; the first row gives results for the elastic e-
p scattering from an unpolarized hydrogen target at E = 1.23 GeV. The second and third
rows show results for 15 µA production runs on a polarized 3He target. A resolution of
< 300 µm was achieved for all wire chamber planes.

Table 4.3: Calibration results for each plane in the first MWDC. Each entry lists the average
track residual for a given beam energy and target. Table reproduced from [169].

E (GeV) Target U (µm) U’ (µm) V (µm) V’ (µm) X (µm) X’ (µm)

1.23 2H 215 216 209 209 206 208

4.74 3He 270 271 263 261 247 250

5.89 3He 286 287 273 272 258 261

∗The track residual is defined as the distance between the track projections onto the hit-wire plane and
the hit-wire position [181].
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Table 4.4: Calibration results for each plane in the second MWDC. Each entry lists the average
track residual for a given beam energy and target. Table reproduced from [169].

E (GeV) Target U (µm) U’ (µm) V (µm) V’ (µm) X (µm) X’ (µm)

1.23 2H 213 211 216 216 203 198

4.74 3He 267 265 262 262 245 240

5.89 3He 283 279 275 273 255 250

Table 4.5: Calibration results for each plane in the third MWDC. Each entry lists the average
track residual for a given beam energy and target. Table reproduced from [169].

E (GeV) Target U (µm) U’ (µm) V (µm) V’ (µm) X (µm) X’ (µm)

1.23 2H 164 161 161 159 145 141

4.74 3He 248 245 246 245 202 199

5.89 3He 250 247 244 242 203 199

4.2.2 Optics

The BigBite spectrometer’s optics are quite different from the LHRS, where in BigBite
there is one dipole magnet compared to a QQDQ magnet configuration in the LHRS. In
this section, we give a brief overview of the necessary steps for the optics calibration.

The trajectory of a charged particle passing through a known magnetic field can be
determined from the particle’s charge and momentum. With the momentum reconstructed
from the MWDC and a good knowledge of the magnetic field, the particle’s path can be
computed with a high level of precision. The calibration procedure needed to accomplish
this task was developed by X. Qian [181], which was an iterative algorithm. The inputs
needed include specialized “calibration runs” with various targets so that the kinematics of
the interactions may be calculated accurately; these included no-field runs (~B = 0), carbon
runs, and elastic hydrogen runs. The carbon and hydrogen runs were conducted with and
without a sieve plane inserted in front of the spectrometer∗. The sieve plane is a large
rectangular lead plate that has slits cut out of it, the geometry of which is well documented;
it allows for accurate calibration of the particle’s scattering angles.

4.2.2.1 No-Field Calibration

The no-field calibration is the first step of the calibration procedure, which was completed
by X. Qian [181]. The locations of the target, magnet, and sieve plate are determined from
survey reports [169]. The MWDC positions are determined by taking measurements with
the magnetic field turned off, and the MWDCs reconstruct tracks that are subsequently not

∗These so-called “optics runs” were also used for the LHRS (Sect. 4.1.2).
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bent by the magnetic field; that is, the kinematics of the scattered particles are unchanged.
The result of the no-field calibration are shown in Figure 4.15. The left panel shows the
z-vertex, the middle panel shows what the sieve plane looks like, and the right panel is a
plot of track-y vs. track-x showing where the sieve slits are (red) and where the data fall
(black).

Figure 4.15: Results of the no-field calibration. The left panel shows the reconstructed z-vertex
at the target; the middle panel shows the sieve plane, and the right panel shows where the data
(black) fall on the sieve plane, compared to the sieve slit openings (red). Figure reproduced
from [169].

4.2.2.2 First-Order Optics Model

To first order, the magnet is treated as a perfect dipole; that is, a uniform magnetic field
is assumed to fill the volume. Charged particles are bent through a radius R, and the bend
radius is measured relative to a virtual bend plane which passes through the center of the
magnet, indicated by a heavy black-dashed line in Figure 4.16. A representation of the true
path of the particle is given by the solid black curve. The approximated path of the particle
is given by the red-dashed line segments AC and CD, and the bend angle of the trajectory
is given by θbend =∠ABD. Using the path length l and the bend angle, the bend radius R is
given as [47]:

R =
l

2tan(θbend/2)
. (4.12)

Using the equation for R along with the charge of the particle q and the magnetic field
magnitude B, the total momentum may be computed as:
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Figure 4.16: Diagram of the first-order optics model for the BigBite magnet, used in E06-010
and E06-014. Figure reproduced from [47].

p =
|q|lB

2sinφ tan(θbend/2)
, (4.13)

where φ is the angle between the momentum and the magnetic field, given by cosφ =

~B ·~p/
(
|~B||~p|

)
.

The first-order optics calculations are used to reconstruct the target vertex and scattering
angles. The back-track, reconstructed by the MWDCs, is extrapolated to find the point C,
where the track intersects the virtual bend plane; because BigBite is modeled as a perfect
dipole, the front-track should also intersect the bend-plane at the same point, with the same
angle φ with the magnetic field as the back-track does. Such requirements restrict the
potential trajectories for the front-track to a cone with an apex at point C and an opening
angle of φ . The front-track that is reconstructed is the one that intersects with the beamline;
this is the first-order vertex position. The first-order scattering angles are then defined by
the vector connecting the first order vertex point and midpoint of the bend-plane (point
C) [47, 181].

4.2.2.3 Fine-Tuning of First-Order Corrections

The BigBite magnet is not a perfect dipole, so higher-order corrections are needed. These
were done during the E06-010 experiment, for E = 1.23 and 2.39 GeV. Unfortunately,
there was not enough optics data during our experiment to determine such corrections;
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(a) Elastic, E = 1.23 GeV (b) E = 5.89 GeV

Figure 4.17: The results of the z-vertex calibration on a carbon target. The red lines indicate the
surveyed foil positions. (a): elastic data at E = 1.23 GeV; (b): inelastic data at E = 5.89 GeV.
Figures reproduced from [169].

therefore, we utilized the corrections obtained for E06-010 or neglected them where appro-
priate [169].

Due to the inhomogeneous magnetic field, the particle trajectory depends on what re-
gion of the field the particle is traversing; this dependence can be seen in the data when
looking at correlations between the target vertex, reconstructed momentum and several
other tracking variables∗. Utilizing these correlations, correction factors are applied so that
the reconstructed target vertex from data agrees well with the surveyed positions of Carbon
foils. The corrections were performed by X. Qian for the E06-010 experiment and imple-
mented into our experiment by M. Posik and D. Parno. A more detailed discussion may be
found in [169, 181]. The results of the scattering vertex calibration are presented in Fig-
ure 4.17, which shows the vertex reconstruction for elastic carbon runs at E = 1.23 GeV.
The resolution obtained was 1 cm. A check was performed during our production runs
using E = 5.89 GeV, where the resolution was found to be at the centimeter level [169].

For the calibration of the scattering angles θ and φ , we used carbon and hydrogen
targets, taking runs with and without the sieve slit. The initial angles were determined
by projecting the final interaction vertex position to the middle point of the bend plane
(point C in Figure 4.16). Similar to the vertex reconstruction corrections, offset and higher-
order corrections were done by X. Qian [181]. The results of the calibration are shown in
Figure 4.18, which shows a multi-foil carbon target run at E = 1.23 GeV. The red points
indicate the location of the sieve slits, and the data is given by the black points. The angular
resolution was found to be 10 mrad [169].

∗There are six tracking variables used to describe how and where a charged particle passes through the
magnetic field [169].
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Figure 4.18: Results of the angular calibration. The data (black) are plotted in the sieve plane,
compared to the positions of the sieve slits (red). Figure reproduced from [169].

With an accurate positional and angular reconstruction in hand, the momentum was
then calibrated. In the elastic scattering of electrons from a hydrogen (proton) target, the
scattered momentum is known exactly:

pel =
pi

1+ 2pi
M sin2 (θ/2)

, (4.14)

where pi is the initial momentum, M is the target mass (proton mass); ignoring the small
electron mass, the initial electron momentum is given by the beam energy; the scattering
angle is known from the previous calibrations, so the calculated momentum pel can be
compared to the measured scattered momentum and the discrepancy is then corrected.

In the E06-010 experiment, correction factors were applied to the reconstructed mo-
mentum so that the ∆ resonance fell at W = 1.232 GeV. In our experiment, we followed a
similar prescription, with some slight modifications. By simulating the BigBite spectrom-
eter, it was found that the ∆ resonance is affected by variations in Q2 and the acceptance
of the spectrometer, and sits at W = 1.215±0.005 GeV. Due to this, the correction factors
were adjusted so that this was achieved in the data [47]. The effects of the calibrated mo-
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(a) W spectrum for bend-up particles. (b) Momentum resolution for bend-up
particles.

Figure 4.19: The results of the momentum calibration for bend-up particles. (a): W spectrum
for bend-up particles. The red lines indicate the proton mass and the ∆ mass; (b): momentum
resolution for bend-up particles. Figures reproduced from [169].

mentum are displayed in Figure 4.19, which shows a representative W spectrum for elastic
e-p scattering in the left panel. We see here that the elastic peak is aligned at the proton
mass, while the ∆ resonance is aligned at 1.212 GeV. The achieved momentum resolution
was δ p/p = (p− pel)/p≈ 1%, as is shown in the right panel of Figure 4.19.

4.2.2.4 Positive Optics

The optics calibrations only used particles that bend upwards into the detector. However,
we also need a calibration for those particles that bend downwards, as the large acceptance
of BigBite allows for the detection of such particles. To accomplish this, the polarity of
the magnet was reversed so that those (positively charged) particles now bend up; elec-
trons bending down are now selected and the procedure outlined in this section is repeated.
The calibrations for the positive polarity optics were done by X. Qian [181]; however, the
low momentum and higher-order corrections were removed, and other adjustments were
made [169]. The results of the vertex, angular and momentum reconstruction are similar to
what is seen for the negative polarity data.
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4.2.3 Gas Čerenkov

4.2.3.1 ADC Calibration

To calibrate the ADC signals for each of the PMTs in the gas Čerenkov detector, a two-step
calibration was used. This consisted of doing a rough calibration during the running of
the experiment, where the high voltage (HV) was adjusted so that the one p.e. peak would
fall at roughly the same ADC channel for each PMT. This was done using LED flashers,
which were installed in the Čerenkov tank as the source to produce the one p.e. peak. This
was accomplished via specialized “LED runs” ∗. In the second step of the calibration, each
PMT was gain-matched via software, in a similar fashion as was done for the LHRS gas
Čerenkov PMTs (Sect. 4.1.4). The fit function used in the fitting of the ADC spectra was a
Gaussian-Poisson convolution, used to obtain the one p.e. peak position. An example ADC
spectrum fitted by the Gaussian-Poisson convolution is shown in Figure 4.20. The one p.e.
peaks were aligned to ADC channel 30.

Figure 4.20: The ADC response of a PMT in the BigBite gas Čerenkov. The red curve indicates
the fit result for the spectrum. This spectrum is not pedestal subtracted, where the first peak is
the pedestal. The second peak is the one photoelectron peak. Figure reproduced from [169].

Unfortunately, not all LED runs were saved for the calibration process. To account for
this, the LED-calibrated runs were used as a basis for calibrating PMTs for runs early in the

∗Such runs were not taken during production mode.
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production data taking, where LED runs were not available. In the calibration process, the
pedestal of the ADC signal is subtracted off first; it was found that the pedestals for PMTs
closest to the beam (small-angle side) when the beam was off were in large disagreement
with the pedestal for LED runs when the electron beam was on. Pedestals with the beam on
were selected using the T8 trigger (1024 Hz pulser), which selects uncorrelated background
events. The beam-on pedestals were found to be shifted lower in the ADC spectrum relative
to the beam-off pedestals. To fix this, a correction offset was applied in software by a time-
stamped database which applied the pedestal correction for a given beam current. After
this, gain-matching coefficients were applied to align the one p.e. peak at 30 channels in
the ADC spectrum.

4.2.3.2 TDC Calibration

In order to make applying cuts to the TDC spectra of each PMT easier in the analysis, the
main peak of each TDC spectrum was aligned to TDC channel 0, where a Gaussian fit was
used to find the peak position and a correction via software was applied to the data. The
cut used on each TDC spectrum was then 0±50 channels (0±25 ns).

4.2.4 Scintillating Plane

The calibration of the PMTs that view the scintillating paddles were calibrated by Jin
Huang [159] during the E06-010 experiment [191], which consisted of gain-matching the
ADC responses of the PMTs. The TDCs were also aligned to a common channel. These
were checked by M. Posik and found to be valid for our experiment [169]. Unfortunately,
the timing resolution of TDCs (300 ps) was not good enough to discriminate between elec-
trons and pions; consequently, the timing information obtained from the scintillating plane
was not used in the analysis.

4.2.5 Shower Calorimeter

4.2.5.1 Energy Calibration

The BigBite shower calibration was conducted in a two-step process. First, cosmic rays
were used to gain-match detector responses. Second, the reconstructed momentum ob-
tained from the tracking algorithms employed by the MWDCs were used to refine the
calorimeter energy obtained in the first step.

Ideally, all the calorimeter blocks should have the same response for a given deposited
energy. To calibrate the calorimeter to have such a property, high-energy cosmic rays
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(mainly muons) were used. These particles pass vertically through the preshower and
shower calorimeters and act as minimum ionizing particles (MIPs), which leave a well-
defined energy loss peak in each block’s ADC spectrum. The ADC peaks were gain-
matched via software using a method similar to what was done for the pion rejector layer
calibrations in the LHRS (Sect. 4.1.5). Cosmic events were identified by using plastic
scintillators, mounted at the top and bottom of the detector. Each scintillator had a PMT
attached on either end of it, with a logical AND between the four PMTs yielding a trig-
ger to identify cosmic muons. The ADC peaks of the blocks of the preshower calorimeter
were aligned to ADC channel 240, while the shower blocks had their ADC peaks aligned
to channel 120. This analysis was done by K. Allada [151].

In cluster reconstruction, the energy and position of the particle that generated the elec-
tromagnetic shower is determined. A complication of this is that if more than one cluster
is found for a given event, it leads to issues in trying to determine which cluster is associ-
ated with a given reconstructed track. The algorithm that was employed follows a similar
method that was used in the LHRS (Sect. 4.1.5); however, in this case, eight blocks sur-
rounding the main block of the cluster were summed, as opposed to five. To improve upon
the cosmic ray calibration, 243 gain-matching coefficients (54 for the preshower and 189
for the shower) were generated by minimizing the χ2 value corresponding to the squared-
difference between a known energy (the momentum) and the reconstructed energy. A linear
minimization was used to determine the block coefficients, which transform the ADC am-
plitudes into an energy, similar to what was seen for the LHRS (Sect. 4.1.5). The full details
of the calibration, which was carried out by M. Posik, may be found in [169].

Ideally, the energy calibration would use elastic electrons in e-p scattering, since the
electron energy is known exactly for a given beam energy Eb and scattering angle θ . How-
ever, we only had time in the experiment to take elastic data for Eb = 1.23 GeV, which
covered only a small part of the acceptance of the BigBite spectrometer. Because of this,
the calibration was done on the production data at Eb = 4.74 and 5.89 GeV on a 3He tar-
get where electron events were selected using PID cuts. Figure 4.21 shows the calibration
results, where a resolution of 8–9% was obtained across the whole data set∗. The bottom
right panel shows a plot of E vs. p reveals a one-to-one ratio for electron events, as would
be expected, given that the mass of electrons is much smaller than their momentum in these
kinematics; pion events fall at lower E/p values. Because the calorimeter was in the trig-
ger, each time the trigger hardware changed, the calibration needed to be repeated. In total,
there were five hardware changes, and thus five calibrations [169].

∗This was obtained by examining a plot of (E− p)/p.
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Figure 4.21: Results of the shower calibration for Eb = 5.89 GeV. The calibration for Eb =
4.74 GeV gives similar results. The diagonal red line in the lower right panel gives a guide for
the eye in the E vs p plot. Figure reproduced from [169].

4.2.5.2 Track Reconstruction

In addition to the energy calibration, a valid track from the MWDC must be associated
with the reconstructed energy. To ensure this, the difference between the reconstructed
track projected onto the calorimeter planes and calorimeter cluster position needs to be
minimized for the detector x and y coordinates:

∆x = xcal−
(
xtrk +dx′trk

)
(4.15)

∆y = ycal−
(
ytrk +dy′trk

)
, (4.16)

where xcal is the (vertical) calorimeter cluster position, xtrk and x′trk are the position and
slope of the reconstructed track at the first MWDC plane, and d is the distance along the
z-axis in the detector coordinate system; the same idea applies for the horizontal position
y. The poor energy resolution of the calorimeter prevents the precise determination of the
location of the track in the calorimeter plane; however, with good tracking resolution, one
can vary the distance d so as to obtain the best minimization of ∆x and ∆y. On the other
hand, an incorrect value of d can lead to a large misalignment of the tracks, as shown
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Figure 4.22: The difference between reconstructed tracks projected onto the shower plane and
the preshower cluster position plotted against the slope of the track at the first MWDC plane.
On the left, the inaccurate value of d = 77 cm is used; on the right, the better value of d = 97 cm
is used. Figure reproduced from [169].

in Figure 4.22, where the left panel shows the use of an inaccurate d = 77 cm, while an
accurate d = 97 cm is shown on the right.

4.2.5.3 Preshower Sum TDCs

In a similar fashion as seen for the gas Čerenkov, the preshower sum TDC peaks∗ were
aligned to a common TDC channel of 0. This makes applying TDC cuts easier in the data
analysis [169].

∗The BigBite triggers used the shower calorimeter as a common stop, resulting in the shower timing
being self-timed [169].
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CHAPTER 5

DATA ANALYSIS

In this chapter, we examine the various components of the data analysis. In particular,
analysis of the LHRS data is presented in detail in Section 5.2. The analysis particular to the
BigBite detector is examined in Section 5.3. The unpolarized cross section analysis is given
in Section 5.4, and the double-spin asymmetry analysis is presented in Section 5.5. The
analysis to extract A1 and g1/F1 on both 3He and the neutron is discussed in Section 5.6,
and the analysis for the flavor-separated ratios (∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄)

is given in Section 5.7. The extraction of the twist-2 matrix element a2 on 3He and the
neutron starts in Section 5.8 with the analysis to obtain g

3He
1 , leading to Section 5.9.

5.1 Analysis Procedure

The analysis procedure is outlined in Figure 5.1, where we start with replaying the raw data
followed by the calibration and data quality checks. Data calibrations corresponds to gain-
matching ADCs of PMTs of the gas Čerenkov and shower calorimeters to have the same
responses, respectively. Calibrations also consisted of optimizing the software packages
that describes the optics of the two spectrometers. Multi-foil Carbon targets, a sieve slit
collimator and elastic 1H(e,e′)p data at an incident energy of E = 1.23 GeV was used to
calibrate the optics software package for the BigBite spectrometer. The same setup was
also used for the LHRS [191]. All of the calibration analysis was discussed in Chapter 4.
Data quality checks correspond to removing beam trips from the data and faulty runs from
the analysis.

Following calibrations and data quality checks, the electron sample is determined by
carefully choosing various cuts that choose events that have generated a good trigger and
have a proper track reconstruction. Cuts are also chosen that efficiently remove background
signals due to charged pions, as well as remove the target windows from the data. In
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the BigBite data set, events rescattering from the BigBite magnet pole pieces were found
to contaminate the data; geometrical cuts to remove such events were applied. The raw
physics observables, consisting of cross sections and asymmetries, are then extracted. Cor-
rections are applied to remove the background signals due to the presence of nitrogen in the
target and pair-produced electrons, both of which cannot be removed by cuts placed on the
raw data. After these corrections are applied, we obtain the physics asymmetries and the ex-
perimental cross sections. Applying radiative corrections yields the Born quantities. From
here, the spin structure function g1 on 3He is constructed∗. The twist-2 matrix element a2

on 3He is obtained from the g
3He
1 data. The asymmetries g

3He
1 /F

3He
1 and A

3He
1 are extracted

using the measured asymmetries according to Equations 2.16 and 2.21, respectively. Nu-
clear corrections are then applied to the 3He results to obtain the neutron quantities for
A1, g1/F1 and a2. Using our extracted gn

1/Fn
1 data, we can then obtain (∆u+∆ū)/(u+ ū)

(∆d +∆d̄)/(d + d̄).

∗One can also obtain g
3He
2 from combining the cross sections and asymmetries; the structure function

analysis was done by M. Posik [169], and will be only briefly summarized for g
3He
1 in this chapter.

135



  

Replay

Experimental Cross Section

Born Asymmetries

Raw Asymmetries

Physics Asymmetries

g1 on 3He

Calibrations

Raw Data

Data Quality

Event Selection Raw Cross Section

N2, e+ Corrections

Radiative Corrections

Born Cross Section

a2 on 3He

Radiative Corrections

A1, g1/F1 on 3He

N2, e+ Corrections

Acceptance

Beam and Target
Polarization Corrections

Nuclear Corrections A1n, g1n/F1n
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Figure 5.1: Analysis flow chart. After the acquisition of raw data, it is replayed and calibrated.
Data quality checks are performed as well. At the event selection stage, electron analysis cuts
are chosen and studied. The left and right portions show the steps taken to calculate Born-
level asymmetries and cross sections, respectively. The steps required to obtain An

1, gn
1/Fn

1 , an
2,

(∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄) are also shown.

5.2 LHRS

5.2.1 Data Quality

So that we may trust our cuts when we do the full-scale analysis on all of the data, we need
to carry out a number of data quality checks to make sure that our calibrations are reliable
(i.e., stable) for the entire dataset. In particular, such studies were carried out for the gas
Čerenkov, pion rejector and the VDC detectors. A study was also conducted to remove
events associated with beam trips.
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5.2.1.1 Gas Čerenkov

The cut applied to the gas Čerenkov data is on the ADC sum. We examined the ADC sum
as a function of run number. We found that these data were stable across the whole dataset,
in that the cut that will eventually be applied will be for events to have a Čerenkov signal
greater than 400 channels in the ADC (Sect. 5.2.2.4). Since the one photo-electron peak is
consistently near 200 ADC channels, no further corrections were needed for the Čerenkov
ADC spectra. Figure 5.2 shows the results of the stability check.
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Figure 5.2: Data quality study for the gas Čerenkov and pion rejector. Plotted on the x-axis
is the production run number. The one- and main-photoelectron peak are in units of ADC
channels. The number of photoelectrons is the ratio of the main- to one-photoelectron peak.

5.2.1.2 Pion Rejector

To ensure the stability of the pion rejector, we examined the electron E/p spectrum as a
function of run number. In this study, the deposited energy for a given momentum bin

was desired to be stable, and it was not necessarily expected that E/p = 1 since this is
not a full shower. Additionally, the PID analysis yielded that the cut to select electrons
using this spectrum was E/p > 0.54, and since the main electron peak is consistently near
E/p ∼ 0.8, there was no concern with losing good electron events, nor accepting pion
events (Sect. 5.2.2.5). As a result, it was found that the data for the pion rejector was
reliable for all kinematic bins as shown in Figure 5.2.
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5.2.1.3 VDC

For the VDC, we examined the VDC drift time spectrum (for electrons) as a function of
run number in the same fashion as explained in Section 5.2.1.1. This drift time spectrum
is a combination of two TDC propagation times: the time for the signal to travel from the
hit wire to its corresponding TDC and the time for the trigger signal to propagate from the
trigger detector to the TDC (common stop) (Sect. 4.1.1).

We examine this spectrum since any inconsistencies in this data will surely manifest
itself in the tracking cut used to select one-track events. The VDC data was found to be
reliable for the entire run set, where we plot the main peak of the VDC spectrum. Any shift
observed in this peak would indicate a shift of the calibrated t0. In Figure 5.3, it is seen that
such spectra are stable for all runs.
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Figure 5.3: Data quality study for the VDC. Plotted on the x-axis is the production run number.
Plotted on the y-axis is the main peak of the VDC drift time spectrum.

5.2.1.4 Beam Trip Removal

During a run, there are time periods where beam delivery was interrupted. This results in
a sudden drop of the beam current. The beam recovers in a slow ramping up back to the
set-point value; these periods of time are called beam trips, and are undesirable for data
analysis. This is because the beam position and charge asymmetry are unstable, resulting
in a non-linear BCM [47].
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Beam trips are identified by using the u3 BCM readouts, which are scaler events written
into the data stream approximately once every 100 triggered events. Using the scaler rate,
the beam current can be measured in considering the difference between two consecutive
scaler readings. In particular, the beam current sample is fit to a Gaussian distribution, and
beam currents within ±1.5σ of the mean were labeled as good beam regions; otherwise
they are rejected. Upon finding a sample that transitions from good beam to poor beam
or vice-versa, a timestamp is recorded based on the 103.7 kHz clock time∗ and stored to a
database. We then insert these timestamps into the ROOT files via a “beam trip flag.” This
has the effect such that when it is turned off, the beam trips are removed from the run, as
shown in Figure 5.4.

Figure 5.4: Data quality study for the beam current. Plotted on the x-axis is the time of the run.
Plotted on the y-axis is the beam current. Each subsequent panel shows the effect of removing
either the good or bad portions of the beam using the flag built into the ROOT file.

∗This acts as a proxy for the run time.
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5.2.2 Cut Efficiencies

To understand how well the detectors perform in discerning electrons from pions, we eval-
uate their respective abilities to detect electrons and reject pions. For a particular detector,
the study is carried out with the help of the other. For instance, if we are investigating the
gas Čerenkov, we would use the pion rejector as a reference point, and vice-versa.

5.2.2.1 Electron Detection Efficiency

The electron detection efficiency, ε , is the ability to separate electrons from pions. It is
defined as:

ε =
Nd

Ns
, (5.1)

where Ns is the number of sample electrons selected using a detector other than the one
under investigation. Nd is the number of electrons detected in the detector of interest. For
example, if we want to study the electron detection efficiency of the gas Čerenkov, we
would chose an electron sample in the pion rejector (Ns) and see how many of those events
fire the gas Čerenkov (Nd). Detection efficiencies for both the gas Čerenkov and pion
rejector were at the level of ∼ 99% for all data sets.

5.2.2.2 Electron Cut Efficiency

The cut efficiency was also studied. Both electrons and pions (via knock-on electrons)
can be selected by the gas Čerenkov and the pion rejector. A clean sample is needed for
calculating a cross section. Thus, cuts are more stringent than those used to obtain Nd

above. Calculating the cut efficiency requires that in addition to firing the detector, the
sample events must satisfy a given threshold cut, where Ns is the same as in Equation 5.1
and now Nd is the number of events that pass a certain cut value.

5.2.2.3 Pion Rejection Factor

Another important study that may be carried out for our PID detectors is determining the
pion rejection factor, frej, as a function of cut position. The method is the same as discussed
in Section 5.2.2.2, but this time we select pions, and calculate:

frej ≡
Particles identified as pions

Particles mis-identified as electrons
=

Ns

Nd
, (5.2)
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For the pion rejector, particles are chosen in the gas Čerenkov by selecting events that
do not fire the Čerenkov (Ns) and see how many pass a certain E/p value in the pion rejector
(Nd).

For each data set, it was determined that the rejection factor was ≈ 660 for the gas
Čerenkov and the pion rejector, yielding a combined rejection factor of > 105.

5.2.2.4 Gas Čerenkov

To understand how well the gas Čerenkov performs, we evaluate its ability to detect elec-
trons and reject pions. This is accomplished with the use of the Pion Rejector.

5.2.2.4.1 Electron Cut Efficiency Study

Figure 5.5 shows a typical set of plots used for selecting good electrons for the cut efficiency
study. On the left is a plot of the energy deposited in the first layer of the pion rejector
versus the energy deposited in the second layer of the pion rejector. The events shown in
blue correspond to pions, while the events shown in red correspond to electrons. The black
line indicates the cut region used to choose electrons for the study. On the right is their
corresponding gas Čerenkov ADC (sum) spectrum. The ratio of the events seen in the gas
Čerenkov above some cut value to those counted in inside the cut shown on the left is the
electron cut efficiency.

Figure 5.5: The figure on the left shows the cut used (semi-trapezoidal black line) to select
the electron sample in the two-dimensional energy plot in the Pion Rejector. On the right is its
resulting gas Čerenkov ADC (sum) spectrum.

One should take note that the electron cut is chosen judiciously such that the chosen
electron sample is as clean as possible. Any impurity introduced to the sample will in-
variably lead to an incorrect result. On the other hand, the impurity of the chosen electron
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sample reveals a contamination present in the detector, and must be analyzed and corrected
for.

5.2.2.4.2 Background Correction

Due to the large amount of background across the whole kinematic range of the experiment
(Ebeam = 4.74, 5.89 GeV; 0.60≤ p≤ 1.70 GeV), it was found that the initial electron sam-
ple chosen in the pion rejector was not as clean as initially thought. Ideally speaking, the
chosen electron sample in the pion rejector would consist only of electrons; subsequently,
examining how many of those events fire the gas Čerenkov gives a true measure of the
electron detection efficiency.

In order to correct the background, we need to examine our electron sample in the pion
rejector and determine which events are electrons and which events are pions. To this end,
we choose a particle sample in the two-dimensional energy plot in the pion rejector. Then,
we plot this sample’s E/p distribution, subject to an anti-Čerenkov cut and a cut that shows
how many events fired the gas Čerenkov. This is shown in Fig. 5.6. We then fit the pion
curve (shown in blue), and subtract it from the original sample:

Ncor = Ni−Nπ . (5.3)

Therefore, it is seen that the corrected electron detection efficiency is determined as:

ε
cor
cer =

Ncer

Ncor
. (5.4)

Before these corrections were applied, the detection efficiency as determined for data taken
at p = 0.60 GeV was on the order of 80%. After the correction is applied, we obtain
εcer & 96%.

5.2.2.4.3 Pion Rejection Factor

The plot on the left in Figure 5.7 shows the selected a pion sample in the pion rejector,
while the plot on the right shows the resulting gas Čerenkov distribution. The ratio of the
events selected in the pion rejector to those that pass a given cut in the gas Čerenkov is the
pion rejection factor.

5.2.2.4.4 Results
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Figure 5.6: This plot shows an example of how the background subtraction is carried out. We
plot the E/p distribution corresponding to the selected electron sample as seen in Figure 5.5,
and now differentiate between electrons and pions via a cut on the gas Čerenkov either firing
or not firing. The fit used is a simple Gaussian.

Figure 5.7: The plot on the left shows the how pions are chosen in the pion rejector (black
box) for the study of the gas Čerenkov’s ability to reject pions. On the right is its resulting gas
Čerenkov ADC (sum) spectrum.

The results of the gas Čerenkov cut efficiency study are shown in Figure 5.8 for the p =

0.60 GeV, E = 4.74 GeV data set. From this plot, we decide that the best position for the
gas Čerenkov cut is at 400 ADC channels (2 photoelectrons). This allows us to maintain a
high electron cut efficiency of ∼ 96% while keeping a high pion rejection factor of ≈ 660.
These results are typical across the all data sets, see Appendix A.
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Figure 5.8: Gas Čerenkov cut efficiency study results. From this plot, we deduce that it will
be best to place our cut in the gas Čerenkov at 400 channels (2 photoelectrons) in our final
analysis. The error bars shown are purely statistical.

5.2.2.5 Pion Rejector

To understand how well the pion rejector performs, we evaluate its ability to detect elec-
trons and reject pions. This is accomplished in a similar manner with respect to Sec-
tion 5.2.2.4 with the use of the gas Čerenkov. Due to the fact that the pion rejector is not a
full shower, its performance will not be as good as that seen from a full shower, because of
its poorer energy resolution [35].

5.2.2.5.1 Electron Cut Efficiency Study

To select an electron sample defined by the gas Čerenkov, we examine the ADC (sum)
spectrum of the gas Čerenkov, subject to the cuts mentioned in Section 4.1.3. We then
apply a cut to the main peak of the gas Čerenkov ADC (sum) spectrum. From here, we
see how many of these events fire both layers of the pion rejector. See Figure 5.9. We
choose this requirement as electrons in general will fire both layers of the pion rejector,
while pions may fire only one of the layers as the particle traverses the detector. It is better
to remove some good electrons that fire one layer in addition to removing particles that are
not electrons, as opposed to counting any event that fires at least one layer, which allows
for counting these pions as good events.
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Figure 5.9: This figure demonstrates how to determine a clean electron sample (left) and what
the resulting pion rejector energy distribution is (right). The ratio of the number of events
determined by the cut shown in the gas Čerenkov to those found in the pion rejector gives the
electron cut efficiency for a given E/p cut value.

When conducting the study of the electron cut efficiency, Nd refers to the number of
events that fire both layers of the pion rejector and pass the combined cut of ‘(prl E P >

Xi)&&(L.prl1.e > X j)’, where Xi, j are some threshold values. This is shown in Figure 5.10.
The first cut investigates explicitly the E/p distribution in the pion rejector. This is the main
cut that is varied for this study, as the E/p distribution shows a distinct separation between
the pion and electron curves. This subsequently provides a powerful and crucial cut to be
used in the final analysis. The cut on the first layer of the pion rejector is implemented so
as to reject events that are most likely pions and δ -rays, whose properties were mentioned
in Section 5.2.2.4.2.

The equation for this study is the same as Equation 5.1, with the appropriate interpre-
tation for Npr as mentioned above.

5.2.2.5.2 Background Correction

Similar to the investigation of the gas Čerenkov electron cut efficiency, it was determined
that the initially selected electron sample in the gas Čerenkov was not as clean as possible.
This background was determined to be due to δ -rays events mentioned previously. This is
shown in Figure 5.11

The procedure for correcting this background follows closely to what was mentioned
in Section 5.2.2.4.2. First, we plot the gas Čerenkov ADC (sum) spectrum subject to the
cuts mentioned in Section 4.1.3. Then, we plot the same ADC spectrum now subject to
the cut shown in Figure 5.12, choosing the pion region. Here, we examine explicitly how
the δ -rays contaminate the cut window chosen in the gas Čerenkov (sum) ADC spectrum
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Figure 5.10: This figure shows how the electron cut efficiency in the pion rejector is deter-
mined. We place a cut on both E/p and the first layer of the pion rejector (PRL1). The
PRL1 cut serves to remove any δ -rays that may have fired the gas Čerenkov. The number of
events that pass this combined cut are then compared to our electron sample chosen in the gas
Čerenkov (Fig. 5.9). Only the E/p cut is varied for this study.

Figure 5.11: This figure gives an example plot showing the background contamination of the
electron sample chosen (between the vertical dashed lines) in the gas Čerenkov. The blue curve
is due to pion collisions with low-energy electrons. Due to the high pion rates, this effect is seen
across the whole kinematic range of the experiment. The blue curve is fit to an exponential,
and subtracted from the original electron sample.
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(Fig. 5.11). This background is fit to an appropriate function and its contribution to the
electron sample is subtracted:

Ncor = Ni−Nδ , (5.5)

where Ni is the inital sample and Nδ is the contamination seen in the blue curve in the
figure. The electron cut efficiency is now corrected to be:

ε
cor
pr =

Npr

Ncor
. (5.6)

Figure 5.12: This figure gives an example drawing of how the background was determined in
the gas Čerenkov. Good electrons (in red) populate the region above the green dashed line. If
we choose the näive ‘inverse,’ (i.e., having the E/p and PRL1 values less than some value(s))
we will not sample the full contamination (the magenta region). The full contamination seen in
the gas Čerenkov is obtained when we plot the events shown in the magenta dashed line plus
the region shown with the light blue slashes. This corresponds to the cut written in quotes in
the lower right of the drawing.

The correction is on the order of∼ 5% at the low momenta, while decreasing to∼ 2% as
one increases the spectrometer momentum. Due to the large pion rates across the kinematic
range, the background correction is not negligible even at the highest momentum setting in
the LHRS.

5.2.2.5.3 Pion Rejection Factor

The determination of the pion rejection factor fpr is slightly more difficult than it is for
the gas Čerenkov. This is due to the fact that the determination of the pion sample is not
straight forward in the gas Čerenkov, as pions do not fire the gas Čerenkov. They may,
however, be inferred by examining the δ -ray distribution.
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The process is as follows: we first plot the E/p distribution subject to the cuts outlined
in Section 4.1.3. Second, we plot the same E/p distribution subject to the aforementioned
“good event” cuts and also a tight cut in the gas Čerenkov. We choose a tight cut in the gas
Čerenkov as it chooses good electrons, with a minimal amount of δ -rays. Then, the pion

rejection factor is formed as (Fig. 5.13):

fpr ≡
Ni

N f
, (5.7)

To get a better understanding of what these terms mean, let us consider their explicit mean-
ings and how they are calculated [197]:

• Ni = πi + ei

πi = initial π− excluded by E/p

ei = ε ·πi initial e− excluded by E/p

• N f = π f + e f

π f = remaining π− excluded by E/p

e f = δ ·π f = final e− excluded by E/p

Now, ei = e f , since the gas Čerenkov cut does not affect the electrons. This implies:

ε ·πi = δ ·π f
ε

δ
=

π f

πi
≤ 1.

Therefore, we may define the pion rejection factor as:

fpr ≡
Ni

N f
=

πi

π f
· 1+ ε

1+δ
. (5.8)

Now, the true pion rejection factor is given as ftrue = πi/π f . Therefore, our calculated
value in Equation 5.8 is clearly less than the true value. Considering the fact that ε and δ

are small corrections, our equation as shown above is a reasonable approximation, adequate
for high pion rates. As shown by our study of the background contamination, encouraged
by our kinematic range, this approximation is a very good one.

5.2.2.5.4 Results

Figure 5.14 shows the results of the E/p cut efficiency study for the p = 0.60 GeV, E =

4.74 GeV data set. From this plot, we decide that the best position for the E/p cut is at

148



Figure 5.13: This figure shows how pions are rejected in the pion rejector. We place a cut on
E/p and the gas Čerenkov (cut result shown in red). The ratio of the blue curve to the red curve
below the E/p value in question gives the pion rejection factor. Only the E/p cut is varied for
this study.

E/p = 0.54. Here, we maintain an electron cut efficiency better than 99% while keeping a
high pion rejection, at≈ 660. These results are typical across all data sets, see Appendix A.
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Figure 5.14: Pion rejector E/p cut efficiency study results. From this plot, we deduce that it
will be best to place our cut at E/p = 0.54 in our final analysis. The error bars shown are purely
statistical.
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5.2.2.6 One-Track Efficiency for Good Electrons

5.2.2.6.1 Determination of Good Events

In order to choose good events for our study, we consider only those events which
induced the main trigger, and pass our ‘good electron’ cuts:

• Trigger Cuts:
(DL.edtpl==0)&&((DL.evtypebits&(1<<3))==(1<<3))

• PID Cuts:
(L.cer.asum c> 300)&&(Graphical Cut on 2D Pion Rejector Energy Plot)
&&(TDC Cuts on the Gas Čerenkov)

The PID cuts listed refer to choosing good electrons in both the gas Čerenkov and the pion
rejector. It is important to note that we cannot use the E/p variable in our PID cuts since it
relies on tracking to reconstruct the momentum p, which is then used in the determination
of the quantity E/p. Therefore, as a substitute, we determine graphical cuts on a 2D plot
of the energy deposited in layer 1 of the Pion Rejector versus the energy deposited in layer
2 of the pion rejector shown in Figure 5.15.

Figure 5.15: Graphical cut on the 2D energy plot of the Pion Rejector. We utilize this cut as it
is independent of the tracking variables.
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5.2.2.6.2 VDC Tracking Efficiency

While the hardware efficiency of the VDCs is known to be on the order of 100% [152],
it is nonetheless important to investigate the efficiency and subsequently the inefficiency
of the detector. To understand such quantities, we examine the track multiplicity measure-
ments in addition to the zero- and one-track efficiencies.

5.2.2.6.3 Results

The inefficiency of the VDCs arises due to the VDC software algorithm incorrectly re-
constructing tracks as a result of multi-track events or no-track events. The former is due
largely to many particles crossing the VDC planes simultaneously. In such a case, there are
a large number of possible trajectories that may be determined by the software. Therefore,
we retain only one-track events in our analysis of the various physics quantities of interest;
however, we need to be aware that such a requirement may discard good events that may
show up as multi-track events. To understand the effect of the one-track event require-
ment, we examine the zero-,multi-, and one-track efficiencies, taking zero- and multi-track
efficiencies as the inefficiency of the VDC tracking algorithm [178].

We define the one-track efficiency as follows: we count the number of one-track events
and compare this sum to the sum of all zero-, one-, and multi-track events. Mathematically,
we have:

ε1 =
N1
4
∑

i=0
Ni

, (5.9)

where N1 is the number of one-track events, and Ni is the number of i-track events
(i = 0, . . . ,4). It is important to note that the software reconstructs a maximum of up to
four tracks per event [152, 175]. Similarly, we may determine the other j-track efficiencies
( j 6= 1) as:

ε j =
N j
4
∑

i=0
Ni

. (5.10)

Table 5.1 shows the results of the study for the p= 0.60 GeV, E = 4.74 GeV kinematic.
We see that the one-track efficiency is on the order of ∼ 99%. We see that the largest
contribution to the inefficiency is due to two-track events, at ∼ 0.67%.
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Table 5.1: The VDC Tracking Efficiency for the p = 0.60 GeV, E = 4.74 GeV data. The one-
track efficiency is ∼ 99%, while the two-track events dominate the inefficiency at ∼ 0.67%.
The errors shown are purely statistical.

VDC Tracking Efficiency
# of Tracks # of Events ε (%)

0 20 0.036±0.008
1 56004 99.282±0.592
2 377 0.668±0.035
3 8 0.014±0.005
4 0 0.000±0.000

The results for the one-track efficiency turns out to be ∼ 99% across all data sets, with the
leading inefficiency being due to the two-track events at . 1%. See Appendix A for the
results for each momentum bin.

5.2.2.7 Beta Cut Efficiency

In choosing good events in the LHRS, we apply PID cuts from the gas Čerenkov and the
pion rejector to isolate electrons. We also apply a cut on the particle’s β distribution to
explicitly exclude cosmic events (β < 0). The cut applied is β > −0.15, as shown in
Figure 5.16. The cut is not placed at zero because it was determined [198] that the events
at β = 0 are in fact good electron events (Sect. 4.1.6).

Considering that this is another cut that determines good events for our cross section
analysis, it has an efficiency tied to it. We evaluate the efficiency as the ratio of the number
of good events that pass the β cut to the number of events selected by using all PID and
target cuts mentioned in the previous sections. The efficiency of this cut comes out to be
∼ 99% for all data sets, as shown in Appendix A.

5.2.3 Trigger Efficiency

5.2.3.1 Determination of Good Events

In order to choose good events for our study, we consider only those events that induce
either a T3 or a T4 trigger, and pass our “good electron” cuts (Sect. 4.1.3). We also include
PID cuts on the gas Čerenkov and pion rejector.

• (L.cer.asum c> 300)&&(prl E P> 0.54)
&&(TDC Cuts on the Gas Čerenkov)
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Figure 5.16: This plot shows a typical β distribution. The events that have a β value greater
than the red line are kept in the cross section analysis.

5.2.3.2 Method

In order to determine the T3 trigger efficiency, we consider the equation:

εT 3 =
NT 3

NT 3 +NT 4
, (5.11)

where NT 3 is the number of T3-type events adjusted for prescaling. The same definition
follows for T4-type events. Therefore, to prevent an inaccurate determination of the T3
trigger efficiency, we have the following definition for Ni (i = T 3,T 4):

Ni = t ps
i ×biti, (5.12)

where t ps
i is the prescale value for the ith trigger and biti is the number of times the bit

pattern was set—that is, the number of events that passed the prescale condition. The
reason for using this definition for Ni is to avoid a possible situation where, for instance,
some T4 triggers do not pass the prescale condition. This would automatically imply (based
on Equation 5.11) that the T3 trigger efficiency is a lot better than it really is, where it may
in fact not be as good.

5.2.3.3 Results

The plot in Figure 5.17 shows the T3 trigger efficiency as a function of run number. Av-
eraging over all runs used in the analysis, the average T3 trigger efficiency turns out to be
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99.95%. Appendix A shows the T3 trigger efficiency binned by the momentum setting in
the LHRS.

The runs for which the efficiency is exactly 100% is due to a statistical issue. Perform-
ing a check of all the cuts used, it has been noted that with each successive PID cut applied,
the number of events drops significantly (especially for the T4-type events). The fact that
the PID cuts remove most, if not all, of the T4-type events indicates that such events were
not in fact good electrons – as these events (knock-on electrons from collisions with pions)
must have shown up under the one photoelectron peak in the gas Čerenkov ADC sum spec-
trum (the cut was placed so that only events for which more than 1.5 photoelectrons are
generated are kept). Furthermore, due to the cut in E/p in the pion rejector, the pion peak
is explicitly excluded from the analysis – another point at which knock-on electrons would
show up, and are therefore excluded. Keeping this in mind, the results for the T3 trigger
efficiency are satisfactory.

The results of the T3 trigger study reveal that such a cut on the T3 trigger will not affect
the analysis as the losses in the data are less than 0.05%.
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Figure 5.17: The T3 trigger efficiency as a function of (production) run number. Due to a lack
of statistics, there are runs for which the efficiency is exactly 100%, which has been confirmed
by observing εT 3 as each PID cut was applied and varied. See text.

5.2.4 Live Time

Once the main triggers of the LHRS (Sect. 5.2.3) have reached the trigger supervisor (TS),
they are synchronized and sent to the DAQ system. Ideally, all of the events that generated
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a trigger and subsequently reached the DAQ would be recorded. However, it is possible
that the trigger rate is too high and some events are not recorded. Such a situation is known
as dead time (tDT ) for the detector. This phenomenon has to be accounted for in the final
cross sections, and is done so by implementing a correction called the live time correction

factor, tLT = 1− tDT .

5.2.4.1 Method

We determine the live time for a given run according to:

tLT =
evtypebits3

t3c
, (5.13)

where evtypebits3 is the number of T3 triggers accepted by the TS and t3c is the total
number of triggers generated for a given run. Ideally this number would be 100%; however,
due to the limitations of the hardware combined with the rates of the experiment, this
quantity typically turns out to be somewhat lower.

To calculate the live time, we count the number of good triggers recorded for a given
run and compare it to the total number of triggers generated for the run, which is read out in
the scaler data. We then form the ratio of these two numbers to obtain the live time. Before
that, we first correct the data for the possibility of beam trips (Sect. 5.2.1.4).

In order to carry out this procedure, we examine the data event-by-event for a given
run and check whether or not it occurred during a beam trip. If it is a good event (i.e.,
not during a beam trip), we check to see if it passes the requirement that it generated a T3
trigger that was accepted by the TS. This is carried out for each good section of beam during
the run. This determines our numerator in Equation 5.13. To determine the denominator,
we record the scaler count t3c at the start and end of each good beam segment for the run.
The difference of these counts for the segment tells us how many triggers were generated
for that segment. The sum of all these scaler counts for all good beam segments for the run
gives the denominator above.

5.2.4.2 Results

The results of the study are shown in Figure 5.18. The live times are ≥ 90% for most runs.

5.2.5 Acceptance

The acceptance describes the solid angle that can be seen by the opening of the spectrom-
eter. Mathematically, it is the product of r∆E ′∆Ω∆Z, where r is a weight factor determined
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Figure 5.18: Live time study. Plotted on the x-axis is the production run number. Plotted on
the y-axis is the live time. The black points are the estimated values during the experiment,
while the red points represent the offline calculation taking into account the removal of beam
trips.

from a Monte Carlo simulation (Sect. 5.2.5.1); the energy width viewed by the spectrome-
ter is ∆E ′; the angular distribution ∆Ω is defined by ∆θ in the vertical (dispersive) direction
and ∆φ in the horizontal (transverse) direction; ∆Z is the length of the target.

5.2.5.1 Single-Arm Monte Carlo

Determining the effective angular acceptance utilized the Single-Arm Monte Carlo (SAMC)
simulation. To determine how the geometrical acceptance of the LHRS deviates from the
ideal rectangular acceptance, SAMC begins by generating events uniformly distributed in
the kinematical phase space. Particles are transported to the focal plane using [199], an
optical model of the HRS. As the particle encounters each magnet aperture in the HRS, a
check is performed to see if it successfully passed through the aperture. If the event suc-
cessfully makes it to the focal plane, it is then reconstructed at the target using the optics
matrix utilized during the experiment.

The ratio of the number of reconstructed events to the number of thrown events gives
the acceptance weight r that is used to determine the effective acceptance, written as:

∆E ′∆Ω∆Z = r∆E ′MC∆ΩMC∆ZMC, (5.14)

where the subscript MC refers to the illuminated widths in SAMC, which are larger than
the acceptance of the LHRS, so as to avoid edge effects. The computed acceptance using
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SAMC is shown in Figure 5.19.
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Figure 5.19: The effective acceptance for each momentum bin measured in the LHRS. The
red data points indicate the E = 4.74 GeV data, while the blue data points represent the E =
5.89 GeV data.

Figure 5.20 shows a comparison of SAMC to data (black). The green curve shows the
simulated distributions without cross section weighting; the red curve shows the simulated
data weighted by the Mott cross section; and finally, the blue curve shows the simulation
weighted by a cross section model by P. Bosted [200]. Multiple scattering and energy loss
processes are applied to all simulated distributions.

To compute the numerical value of the angular acceptance, the angular variables, θ and
φ , are thrown larger than the nominal values of the LHRS (± 60 mrad and ± 28 mrad
respectively, for a solid angle of ≈ 6.7 msr [152]). The number of generated events which
reach the focal plane satisfying the analysis cuts is determined. The ratio of the number
of these events to the number thrown gives the weight r. The effective angular acceptance
is then determined from Equation 5.14 by solving it for ∆Ω, and inserting the cuts used in
the data analysis to define ∆E ′ and ∆Z. This yields an effective angular acceptance (∆Ωeff)

that is roughly constant at ≈ 3.2 msr as a function of momentum bin. The effective angular
acceptance is smaller than the nominal value because the full acceptance is not used in our
analysis. Events that scatter from the target windows and edge effects from scattering from
the magnets are removed. In the calculations of the acceptance, energy loss effects are
turned off. These effects are taken care of in the radiative corrections (Sect. 5.4.3).
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Figure 5.20: SAMC compared to data for the target variables. The black curves show the data,
while the various colors show the simulation.

5.2.6 Analysis Cuts

We list below the final cuts that were determined as a result of the preceding studies. These
cuts are used in the cross section analysis (Sect. 5.4):

• Trigger cuts:
(DL.edtpl==0)&&((DL.evtypebits&(1<<3))==(1<<3))

• PID cuts:
(L.cer.asum c> 400)&&(TDC cuts on the gas Čerenkov)
(prl E P> 0.54)&&(L.prl1.e> 200)
(L.tr.beta>−0.15)

• VDC cuts:
L.tr.n==1
(L.vdc.u1.nclust==1)&&(L.vdc.v1.nclust==1)
(L.vdc.u2.nclust==1)&&(L.vdc.v2.nclust==1)

• Acceptance cuts:
(abs(L.tr.tg y)<0.045)
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(abs(L.tr.tg dp)<0.035)
(abs(L.tr.tg th)<0.04)&&(abs(L.tr.tg ph)<0.02)

• Data quality cuts:
skim.beam trip==0
(abs(ExTgtCor L.p)>0)&&(abs(ExTgtCor L.p)<10)

The TDC cuts for the gas Čerenkov are determined on a run-by-run basis, where a Gaus-
sian fit is performed on each TDC spectrum and the mean is extracted. A cut window of
±25 TDC channels (50 ns) is applied to each TDC spectrum. These TDC cuts are ORed
together, so that if an event generates a signal that passes any one of the TDC cuts, the event
is counted. The cut on the variable “ExTgtCor L.p” is on the extended target-corrected re-
constructed momentum, and is used to restrict reconstructed momenta to have reasonable
values∗. It was found that this cut had little effect on the results, and the difference between
this variable and the regular momentum reconstructed from tracking, “L.tr.tg p”, was neg-
ligible for good electrons. The beam trip cut indicated removes beam trips from the data
set.

5.3 BigBite

In this section, we outline the data analysis required for the BigBite data set. This includes
data quality studies (Sect. 5.3.1), particle identification (Sect. 5.3.2), acceptance studies
(Sect. 5.3.3) and detector performance studies (Sect. 5.3.4). The majority of these analyses
were conducted by M. Posik, and a more detailed account may be found in [169].

5.3.1 Data Quality

Similar to what is seen in the LHRS, data quality cuts are needed to remove unwanted
events for the data recorded on BigBite. These cuts include beam trip cuts (Sect. 5.3.1.1),
events scattering from outside the target region (Sect. 5.3.1.2), events passing through
poorly understood regions of the magnet (Sect. 5.3.1.3), and checks concerning the position
of reconstructed tracks in the wire chambers compared to the calorimeter (Sect. 5.3.1.4),
and finally, the quality of the reconstructed tracks (Sect. 5.3.1.5).

∗At the beginning of an event in the Analyzer, all values are set to an arbitrarily large number; if tracking
fails, the momentum retains such an unphysical number.
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5.3.1.1 Beam Stability

The definition of beam trip cuts should be identical to that seen for the LHRS (Sect. 5.2.1.4);
however, the LHRS had a lower scaler readout rate. As a result, the LHRS beam current
reading as a function of time appears to be more stable, due to the effective averaging over
the noise that would occur with faster readout rates. This leads to an average beam current
within ±1 µA of the current set-point value. Because of the faster readout rates, a slightly
modified approach compared to the LHRS had to be utilized in removing beam trips from
the BigBite data.

The analysis was conducted by D. Parno [47], and follows closely to what was ex-
plained in Section 5.2.1.4. The difference between the two approaches is that 50 consecu-
tive scaler readings were averaged together to form a beam current sample, as opposed to
the LHRS where no averaging was done. Despite scaler readouts needing to be averaged
together for the analysis, the resulting beam current still had a timing resolution of≈ 1.25 s
per readout group [47].

5.3.1.2 Vertex Cut

In the data analysis, we want our sample of events to contain electrons scattering from 3He
in the 40 cm cell. A number of things were done to ensure that such electrons were detected:
first, 10 cm-thick tungsten-powder collimators were inserted between each of the target
windows and the BigBite spectrometer [169]. This lowers the background produced from
electrons scattering from the target windows. Second, cuts on the reconstructed scattering
vertex are applied via tracking and optics software. The cut used was 0± 17 cm, where
z = 0 is the nominal target center. This cut was applied for the E = 4.74 and 5.89 GeV data
sets.

5.3.1.3 Magnet Cuts

As discussed in Section 4.2.2, the BigBite optics package assumes a uniform magnetic field
throughout the magnet volume. However, there are non-uniformities which directly affect
a particle’s path and momentum. There are two approaches to fix this problem. The first
is to correct the particle’s path-dependent momentum as it passes through the magnet. The
second option is to remove regions of the magnet where the field variations are seen to
be large. Due to the limited elastic calibration data taken during the experiment and the
limited production statistics, the latter method was employed.

To restrict events to regions of the magnet that are well understood, geometric cuts were
applied according to where the front and back tracks of an event intersected with the magnet
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bend-plane (Sect. 4.2.2). A second cut employed was determined from looking at elastic
scattering data, removing events where a sharp change in the reconstructed momentum
occurred [169].

Another effect that had to be considered were events that would rescatter from an iron
pole or coil housing of the magnet; such rescattering could result in an electromagnetic
shower or the event could have a reconstructed track in the MWDC, and thus affect the
reconstructed momentum. Events of this type were removed from the electron sample by
looking at events with E < 1 GeV and p > 1.5 GeV, which were found to be dispropor-
tionately likely to intersect the magnet bend-plane at its horizontal edges. The correlation
between the tracks’ horizontal positions on the bend-plane and their horizontal slopes at the
wire chamber was examined, and it was determined that rescattering occurred at ≈ 23 cm
upstream of the bend-plane. Such events were removed from the analysis. This analysis
was done by D. Parno [47].

An additional cut on the reconstructed momentum was used. This was needed be-
cause tracking and optics reconstruction algorithms sometimes fail, resulting in unreal-
istic values being assigned to the reconstructed momentum. Such failed tracks are re-
moved from the data analysis by requiring that the reconstructed momentum p falls within
0 < p < 10 GeV [169].

5.3.1.4 Track-Matching With the Calorimeter

In constructing the ratio of E/p for an open-geometry detector like BigBite, we need to be
certain that both E and p are obtained from the same event. To this end, the central cluster
position in each calorimeter was compared to the reconstructed track from the MWDC pro-
jected onto the calorimeter layer in question. In considering a histogram of the difference
of these two quantities, events showing a difference that was within 3σ were retained and
all others were rejected.

5.3.1.5 Track Quality Cut

The track quality was determined by comparing how well a computed track position in
each wire plane agrees with the reconstructed track hit position in the planes. This can be
expressed as the χ2 for each track, summing over the difference between the reconstructed
track and the computed track position; the weight of the sum was the inverse of the reso-
lution of the wire planes. However, the calculated quantity peaks well below 1, which was
due to an overestimate of the wire plane resolutions; despite this, it is still useful in deter-
mining the tracking quality. It was redefined as k2/Ndof to avoid the confusion of χ2/Ndof;
we keep events for k2/Ndof < 5 [169].
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5.3.2 Particle Identification

For all valid tracks, electrons are selected using particle identification cuts in the analy-
sis. Pions or positrons can be selected when studying background contaminations of the
asymmetries (Sect. 5.5).

5.3.2.1 Charge Cut

Negatively charged particles bend upwards into the BigBite detector stack when the magnet
is set to negative polarity mode, while positively charged particles bend downwards. When
the magnet polarity is reversed, this trend is reversed.

Due to the large acceptance of BigBite, both negatively- and positively charged particles
can be detected for a given run. Each type of charged particle is tagged with a “charge
flag,” -1 for upward-bending particles, and +1 for downward-bending particles. This is
demonstrated in Figure 5.21, which plots the vertical track position x vs. the vertical slope
of the track x′; both positions are located at the first MWDC. A negative vertical slope
means that the particles bent upwards, based on the BigBite detector coordinate system.
At the center of the plot are tracks that did not get assigned a charge flag; these events
have large momentum and their bend trajectory cannot be determined. As a result, they are
removed from the analysis [169].

Figure 5.21: The plot of the event distribution in the vertical track position x vs. the vertical
slope of the track x′. Negatively charged events are highlighted in blue, while positively charged
particles are highlighted in red. Figure reproduced from [169].
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5.3.2.2 Trigger Cut

The main trigger used for production mode was the T2 trigger, corresponding to the ge-
ometrical overlap of the gas Čerenkov and shower signals. Pions were removed from the
online trigger by imposing a hardware threshold on the shower signal, where the particle
needs to deposit a given amount of energy∗ to generate a signal.

In the offline analysis after the experiment run was completed, the electron sample
was improved by requiring events that generate a T2 trigger, the so-called “T2 trigger cut”
(Sect. 4.1.3).

5.3.2.3 Scintillator Cuts

Due to the nature of our experiment being effectively two single-arm experiments with one
on the LHRS, the other on BigBite, the timing information provided by the scintillating
plane was not important. However, the PMTs of the scintillating paddles do record ADC
signals corresponding to the energy deposited by impinging particles. This turned out to
be a useful PID tool to reject charged hadrons like π±, as these particles tend to deposit
less energy than electrons in the scintillating paddles. Therefore, cuts applied to the ADC
signals can assist in rejecting pions while selecting electrons. In particular, the cut used in
the analysis was such that particles depositing less than 500 MeV in the scintillators were
rejected in the analysis, as these represented pion-like events [169].

5.3.2.4 Gas Čerenkov Cuts

The gas Čerenkov was included in the T2 trigger, which resulted in the removal of pions
already, as mentioned in Section 5.3.2.2. Additional cuts were applied in the data analysis
to further clean up the electron sample through TDC cuts and PMT acceptance (mirror)
cuts.

5.3.2.4.1 TDC cuts

The timing information recorded by each PMT was stored in multi-hit TDCs†, where each
TDC can record and store information for up to 16 hits (signals); however, it was found
that only the first hit carried any relevant timing information. All other hits had times that
were far from the electron timing peak [169].

To distinguish between the hits that form the trigger and accidentals, the Čerenkov TDC
spectrum can be analyzed as shown in Figure 5.22. The black spectrum shows events that

∗This threshold corresponded to ≈ 500 MeV [169].
† This differed from the LHRS, where the TDCs were single-hit.
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have at least one track associated with them, and the blue histogram corresponds to events
that satisfy the requirements of data quality cuts. We note the sharp peak at TDC channel
0, which is the electron timing peak, along with a rectangle-shaped shoulder. It is seen that
applying data quality cuts reveals that the shoulder in the black histogram corresponds to
accidental events∗.

Figure 5.22: A representative TDC for a PMT in the gas Čerenkov. The black histogram has no
cuts. The blue histogram shows the TDC distribution after data quality cuts have been applied.
The vertical red lines indicate the cut window. Figure reproduced from [169].

The cut utilized in the analysis is displayed in Figure 5.22, where the red-dashed lines
indicate the cut, at 100 TDC channels (50 ns) wide. Because the timing peak varies for each
PMT, an offset was applied to each spectrum to align them at TDC channel 0. Even with
these Čerenkov timing cuts, there is still a significant amount of hits that are accidentals.

5.3.2.4.2 PMT Acceptance Cuts

In order to remove more accidental events, one can exploit the acceptance of the PMTs.
This is accomplished by associating the particle track in the MWDCs with a given hit in
the Čerenkov, thus determining upon which PMT the given track should impinge upon.
Additionally, the location of a particular PMT’s acceptance can be determined by requiring
a PMT’s TDC to have a hit within its timing cut, along with having an ADC signal greater

∗The shoulder seen in the black histogram correspond to events that generate a T6 trigger; due to the way
the electronics was set up, it is seen then that accidental events that fall in the T6 gate can falsely generate a
T2-type event [169].
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than three photoelectrons. After identifying the PMT acceptance in the vertical and hori-
zontal direction in the Čerenkov plane, geometrical cuts are determined. Combining both
vertical and horizontal cuts yields significant improvement in cleaning up a given PMT’s
TDC spectrum, as shown in Figure 5.23. The black histogram shows the TDC distribution
for a given PMT before the cuts, and the red histogram shows the spectrum after the cuts.
The vertical red dashed lines mark the TDC timing window cut used (Sect. 5.3.2.4.1).

Figure 5.23: The effect of using the vertical and horizontal PMT acceptance cuts on an arbi-
trary TDC distribution. The black histogram shows the TDC distribution without PMT accep-
tance cuts; the red histogram has TDC cuts applied. Figure reproduced from [169].

5.3.2.4.3 Full Electron Cut

The electron sample, as defined by the gas Čerenkov, is determined by combining all the
cuts just explained. To summarize, we require for a given PMT to record a hit in its TDC,
and that hit has to fall within the timing window cut, and finally the projected track has to
fall within the PMT acceptance. These cuts are applied individually for each PMT and are
ORed together in the analysis. We also note here that no ADC cut was used in the analysis,
as such a cut reduced the statistics uniformly across the acceptance, and did not improve
the quality of the electron sample.

The full effect of the gas Čerenkov cut can be seen in Figure 5.24, which displays the
ADC signal of an arbitrary PMT. The black histogram is the raw signal; the green histogram
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has a TDC cut applied; the blue histogram utilizes a PMT acceptance cut∗; and finally, the
red histogram requires both a TDC cut and a PMT acceptance cut. We can see that most of
the contamination of the signal has been removed. The vertical dashed line indicates the 5
photoelectron position.

Figure 5.24: The effect of using all of the gas Čerenkov TDC and PMT acceptance cuts and
how it affects that PMT’s ADC spectrum. The various colors indicate the application of a
different cut, see text. Figure reproduced from [169].

5.3.2.5 Calorimeter Cuts

5.3.2.5.1 Preshower Cuts

Due to the thickness of the preshower being only 8.5 cm, non-showering particles like pions
deposit . 100 MeV in the calorimeter, whereas showering particles like electrons deposit
& 200 MeV. Therefore, to remove the unwanted pion events, a cut of Eps > 200 MeV was
used†. The same cut was used for both the E = 4.74 and 5.89 GeV data sets. In addition to
an ADC signal for each PMT in the preshower, there were TDC signals that could be used
for PID purposes. The cut used was similar to the ones used for the gas Čerenkov TDCs.

∗Such a cut is also referred to as a “mirror cut,” as it reflects the geometry of the mirror that the PMT
views in the Čerkenov.

†This is comparable to the cut used in the LHRS analysis for the first layer of the pion rejector
(Sect. 5.2.6).
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5.3.2.5.2 Shower cuts

With electrons traversing more material in the shower blocks, they deposit nearly all of their
energy in the shower. In the kinematics of our experiment, E ∼ p implies that E/p ∼ 1.
On the other hand, pions deposit much less energy, and so E/p < 1. This difference can
be exploited to further reduce pion backgrounds. The cut used for the shower calorimeter
was:

|E/p−〈E/p〉|< 2σ , (5.15)

where E/p is the measured value and 〈E/p〉 is the mean of a Gaussian fit to the data, with σ

being the width. Due to changing triggers, hardware issues and detector threshold changes,
a cut was needed for each run period corresponding to the E = 5.89 GeV data set. More
details may be found in [169].

5.3.3 Acceptance

Physical gaps in the acceptance of the shower calorimeter were discovered during the ex-
periment. This was due to the overloading of the summing module associated with the
calorimeter towards the beginning of E06-014. As a result, events did not pass energy
thresholds set on the shower energy, leading to an absence of generated T1, T2 and T6
triggers. The effect of this can be seen in by examining the reconstructed tracks from the
MWDCs projected onto the shower plane.

After the summing module was fixed, there were still observed gaps in the acceptance,
see Figure 5.25. This was traced back to faulty calorimeter blocks. If a block has a problem,
then its ADC signal will be lower than other ADC signals.

Fortunately, the acceptance gaps did not affect the (offline) asymmetry analysis. To
compensate the blocks with low ADC signals, larger calibration gain-matching constants
were applied (Sect. 4.2.5). Additionally, gaps in the acceptance should not have too much
of an effect, since the acceptance cancels in the calculation of the asymmetry (Sect. 5.5).

5.3.4 Detector Performance

In this subsection, we summarize the performance of BigBite via PID cuts. In particular,
we examine results for the gas Čerenkov, which includes photoelectron yields, electron
detection and cut efficiencies and pion rejection factors. We also present similar studies for
the preshower and shower calorimeters.
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Figure 5.25: Event distribution in the BigBite shower plane, before and after the shower
calorimeter summing module repair. Figure reproduced from [169].

5.3.4.1 Gas Čerenkov

The E06-014 experiment served as the commissioning experiment for the gas Čerenkov
detector in BigBite. Thus a study of the performance of the detector is crucial for not only
the current data analysis, but also future experiments that utilize the detector.

The small-angle side (beamline side) of the detector saw larger rates, at≈ 400–500 MHz,
while the large-angle side observed rates of < 100 kHz [169]. These higher rates on the
beamline side resulted in a reduction of performance relative to the large-angle side.

Applying data quality and PID cuts to the ADC distributions and examining the photo-
electron yield for each PMT, we can get a good understanding of how well the detector per-
formed. On average, the photoelectron yield was 5–7 photoelectrons for each PMT [169].

The determination of the electron detection efficiency follows closely to what was done
for the LHRS (Sect. 5.2.2.4). However, instead of using E/p and the first pion rejector
layer, the cuts used for BigBite were as follows: PMT acceptance cuts were made tighter
so as to better exclude edge effects; the target vertex cut was also tightened; a momentum
cut of 0.8 < p < 1.5 GeV was used; and finally, a cut on the preshower distribution of
Eps > 400 MeV was employed. Choosing the electron sample with these cuts, the number
of events that fire the gas Čerenkov was then determined. The ratio of the number that fired
the gas Čerenkov to the number in the sample chosen by the shower cuts gives the detection
efficiency.

The electron cut efficiency was also evaluated for the gas Čerenkov, and follows the
same principles outlined for the LHRS analysis (Sect. 5.2.2.4.1). This study was done for
the T2- and T6-type events∗. The results obtained for T6 events are shown in Figure 5.26,

∗This study cannot be done for T1-type events as the statistics were too low, due to the large prescale
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and results for the T2 trigger are shown in Figure 5.27. The efficiencies were found to be
90–95% at a Čerenkov cut of 0 p.e. for the T2 trigger; for the T6 trigger, it was found to be
95–100%†. The Čerenkov cut efficiency for a cut of 3 p.e. was found to be ≈ 80% for both
the T2 and T6 triggers [169].

Figure 5.26: Gas Čerenkov electron cut efficiencies for T6 events. Figure reproduced
from [169].

Figure 5.27: Gas Čerenkov electron cut efficiencies for T2 events. Figure reproduced
from [169].

To evaluate the pion rejection factor, pions were selected by choosing events with
preshower energies in the range 50 < Eps < 80 MeV, and a scintillator energy of Escint <

450 MeV. Also, the E/p distribution was limited to 0.6 < E/p < 0.9. In defining the
denominator of the pion rejection factor (Sect. 5.2.2.3), requirements for the Čereknov in-
cluded a hit in the TDC timing window, and various ADC cuts (to map out the rejection

setting used during the experiment.
†Due to the hardware threshold of 1.5 photoelectrons on the gas Čerenkov, the efficiencies for the T6

trigger had to be evaluated using a modified approach, where the baseline electron sample included a gas
Čerenkov cut to effectively remove such a threshold effect [169].
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factor as a function of ADC cut). The study was done for low-background runs of I = 1 µA
(using T1 events), and production currents of 15 µA using T6 events. The results are pre-
sented in Figure 5.28, where the study was broken down between the beamline side (blue),
large-angle side (red), and the full acceptance (black). The left panel shows the 1 µA data,
and the right panel shows the 15 µA data. The final rejection factor found for production
data was 21.09±0.02 [169].

Figure 5.28: Gas Čerenkov pion rejection factors for T1 events for a beam current of 1 µA
(left) and T6 events at a beam current of 15 µA (right). The blue (red) curve indicates results
for the beamline (large-angle) side. The black curve is for results over the full acceptance.
Figure reproduced from [169].

5.3.4.2 Calorimeter

In this subsection, we discuss the results of the pion rejection factor studies for the preshower
and shower calorimeters. The electron cut efficiencies were not evaluated for these detec-
tors [169].

5.3.4.2.1 Preshower

In evaluating the pion rejection factor for the preshower, pions are selected by placing cuts
on the gas Čerenkov and scintillating plane. The cut for the Čerenkov requires the particle
to pass through one of the PMT acceptances, and to not have a hit in the PMT’s TDC timing
window. The cut used for the scintillator was for Escint < 450 MeV.

The pion rejection factor was determined as a function of preshower energy cut for an
E/p distribution corresponding to 0.2 < E/p < 0.8. The top left of Figure 5.29 shows the
results for T1 events at 1 µA.
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Figure 5.29: Pion rejection factors for the preshower (top left), scintillating plane (top right),
and the shower E/p (bottom left). Each result is plotted as a function of their respective cuts.
Figure reproduced from [169].

5.3.4.2.2 Shower E/p

In determining the pion rejection factor for the shower E/p distribution, the same pion
sample was used as explained in the preshower analysis. The width of the E/p cut was
varied for this study, which was done over the preshower energy range of 20 < Eps <

160 MeV. The results are shown in the bottom left of Figure 5.29 for T1 events at 1 µA.

5.3.4.3 Scintillator

The scintillator was found to be helpful in rejecting pions in our data analysis. Here, we
discuss the pion rejection factor obtained for the scintillating plane.

Pions are selected using the gas Čerenkov and preshower. The Čerenkov cut used is the
same as was seen for the calorimeter analysis. The cut used on the preshower corresponds
to Eps < 120 MeV, and the E/p cut employed was 0.2 < E/p < 0.8. The pion rejection
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factor was mapped out for various cuts in the scintillator energy, shown for T1-type events
at a current of 1 µA in the top right of Figure 5.29.

5.3.4.4 Pion Rejection Results

The full results for the pion rejection factors for T6 events at various cut positions used
during the electron analysis are summarized in Table 5.2. The total rejection obtained
when combining the rejection power of each detector was on the order of 104. The re-
sulting pion contamination in the double-spin asymmetries was found to be be negligible
(Sect. 5.5.3.2.1).

Table 5.2: Pion rejection factor results for the gas Čerenkov, scintillator and the calorimeter
for T6 events at a beam current of 15 µA. The product of all pion rejection factors from each
detector yields the last row labeled “Total.” Table reproduced from [169].

Detector Cut Pion Rejection
Preshower Energy > 200 MeV 176.19±0.41
Scintillator Energy > 500 MeV 7.21±0.00

E/p 2σ 2.59±0.00
Čerenkov TDC + PMT Acceptance 21.09±0.02

Total — (6.94±0.41)×104

5.3.5 Analysis Cuts

In this subsection, we summarize all of the analysis cuts which are used in the double-
spin asymmetry analysis (Sect. 5.5). For more information concerning these cuts and the
corresponding analysis to determine them, see [169].

• Data quality cuts:

– Beam trip removal: skim.beam trip==0

– At least one reconstructed track: BB.tr.n > 0

– Momentum cut: skim.p[]>0 && skim.p[]<10

– MWDC and shower track-matching (x): TMath::Abs(BB.ts.sh.x-1.01134e-2-
BB.tr.x[]-1.28*BB.tr.th[])<0.1

– MWDC and shower track-matching (y): TMath::Abs(BB.ts.sh.y+6.4908e-3-
BB.tr.y[]-1.28*BB.tr.ph[])<0.1

– MWDC and preshower track-matching (x): TMath::Abs(BB.tr.x[]+0.97*BB.tr.th[]-
BB.ts.ps.x+7.8303e-3)<0.2
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– MWDC and preshower track-matching (y): TMath::Abs(BB.tr.y[]+0.97*BB.tr.ph[]-
BB.ts.ps.y-0.01)<0.19

– Tracking quality: BB.tr.chi2[]/BB.tr.ndof[]<5

• Trigger cuts:

– (DBB.evtypebits&(1<<2))==(1<<2) (for the T2 trigger)

• PID cuts

– Charge cut: BB.optics.charge[]==(1,-1)

– Preshower cut: 0.5*BB.ts.ps.e > 200

– E/p cut: (0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[]) > 0.833 && (0.5*BB.ts.ps.e
+ BB.ts.sh.e)/(1000*skim.p[]) < 1.158

– GC TDC cuts: Ndata.DBB.BBcerT%02d>0 &&
(TMath::Abs(DBB.BBcerT%02d[Ndata.DBB.BBcerT%.2d - Ndata.DBB.BBcerT%.2d]
- offset)<width)

• Acceptance cuts

– z-vertex cut: TMath::Abs(BB.tr.vz[])<0.17

– Geometrical optics cuts: (BB.optics.vzflag[]==1)&&(BB.tr.tg th[]<0.2)

– Rescattering cuts: (BB.optics.bendx + 0.23*BB.tr.ph)>-0.097 && (BB.optics.bendx
+ 0.23*BB.tr.ph)<0.13

5.4 Unpolarized Cross Sections

With our analysis cuts in hand (Sect. 5.2.6), we now turn to calculating the unpolarized
cross section. In this section, we will discuss how the raw cross section, σraw, was de-
termined (Sect. 5.4.1). In Section 5.4.2, we will show how the experimental (or radiated)
cross section, σrad, was extracted from the raw result. Section 5.4.3 shows how the radiative
corrections to σrad were performed to obtain the Born cross section, σBorn. The systematic
errors due to various components like our analysis cuts and radiative corrections are given
in Section 5.4.5.
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5.4.1 Calculation From Raw Data

The cross section is calculated from the data for a given run as follows:

d2σraw

dΩdE ′
=

tpsNcut

(Q/e)ρtLT ε

1
∆E ′∆Ω∆Z

, (5.16)

where each quantity is as follows: tps is the prescale value for the T3 trigger; Ncut is the
number of electrons that pass all cuts (Sect. 5.2.6); Q/e is the number of beam electrons; ρ

is the target density in amagats; tLT is the live time which corrects for the high trigger rates
during the experiment, resulting in the detectors not recording every event. ε is the product
of all detector (cut) efficiencies; ∆E ′∗ is the energy width in MeV for the given momentum
bin being studied; ∆Z† is the effective target length seen by the spectrometer in meters and
∆Ω is the angular acceptance. The second fraction, characterized by 1/(∆E ′∆Ω∆Z), is
determined from SAMC (Sect. 5.2.5).

Once we have the results for each run calculated, we then calculate a weighted-average
to obtain the cross section for a given momentum bin. The weighted-average cross section
〈σ〉 over n runs is calculated as:

〈σ〉=

n
∑

i=0
σi

1
δσ2

i

n
∑

i=0

1
δσ2

i

, (5.17)

where δσi is the statistical error on the ith cross section. The explicit form of the statistical
error is:

δσ = σ

√√√√
m

∑
j=1

(
δa j

a j

)2

, (5.18)

where a j is each component in Equation 5.16 that has a statistical error attached to it.
These terms include Ncut, Q/e, tLT and ε . Now, ε is a product sum of the cut efficiencies.
Therefore, its derivative is written as:

dε =
p

∑
k=1

dεk

[
p

∏
6̀=k

εk

]
. (5.19)

Adding each component in quadrature for the total error from cut efficiencies gives:

∗∆E ′ = 2δ p/p · p0, where δ p/p is the half-width of the δ p/p cut in percent and p0 is the LHRS mo-
mentum setting.

†∆Z = 2ytg/sinθ , where ytg is the half-width of the cut on the target-y variable and θ is the scattering
angle of the LHRS. See Appendix B for more details.
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δε

ε
=

√√√√
p

∑
k=1

(
δεk

εk

)2

. (5.20)

5.4.2 From σraw to σrad

5.4.2.1 Extracting the Experimental Cross Section

The raw 3He cross section measured in the LHRS, σraw, contains contributions from elec-
trons that do not scatter from 3He, but rather from electron-positron (pair) production pro-
cesses and scattering from nitrogen nuclei. Pair-produced electrons arise from π0 produc-
tion in the target. Before escaping the target cell, a π0 particle decays to two photons, which
convert to e+e− pairs; to a much smaller degree, pions decay to γe+e−∗. Contamination
due to nitrogen scattering arise because nitrogen gas is present in the pumping chamber to
optimize 3He polarization (Sect. 3.5).

To remove the pair production contributions from σraw, several runs were taken with
the LHRS in positive polarity mode where positrons were detected. These runs were used
to measure a positron cross section, σe+ . To obtain the nitrogen scattering contribution,
a ‘reference’ target cell was used. The reference cell was similar in geometry to the 3He
cell, but was filled with nitrogen gas. Measuring electrons scattering from this target gives
a nitrogen electron cross section, σ e−

N2
. Pair production is also present when scattering

from nitrogen nuclei, so a nitrogen positron cross section, σ e+
N2

, was also measured with the
LHRS in positive polarity mode. σ e+

N2
was subtracted from σ e−

N2
to avoid double counting

the pair-produced events that were already accounted for in the measurement of σe+ . These
measurements were then combined to obtain the experimental (or radiated) 3He cross sec-
tion, σrad:

σrad = σraw−σe+−σ
dil
N2

(5.21)

σ
dil
N2

=
nN2

nN2 +n3He

(
σ

e−
N2
−σ

e+
N2

)
, (5.22)

where nN2 is the number density of nitrogen in the production cell and n3He is the number
density of 3He in the production cell. The nitrogen cross sections are scaled down so as to
account for the small density of nitrogen in the production target cell†. Figure 5.30 shows

∗The branching ratio for π0→ 2γ is 98.79%, and for π0→ γe+e− it is 1.19% [35].
†The amount of nitrogen present in the production cell is on the order of ∼ 1% of the total gas mixture

of 3He and nitrogen in the cell.
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Figure 5.30: Raw 3He, positron, and diluted N2 cross sections. The subtraction of all back-
ground signals from σraw yields σrad, shown in red. The fits to each background signal are
shown with thier respective error bands. These fits were used to obtain σrad. (a): Es = 4.74 GeV
data; (b): Es = 5.89 GeV data. Tables of σrad may be found in Appendix E.1.

each of these signals, where σrad is indicated by the red markers. These data are tabulated
in Appendix E.1.

5.4.2.2 Fits to Background Signals

Due to time constraints and problems encountered during the experiment, we were not able
to take as much data as desired to map out the background contributions to the raw cross
section for all kinematic bins. To circumvent this issue, a fit was made to the nitrogen and
positron data, which was then subtracted from the raw signal, as shown in Equation 5.21.
The fit for the background contributions was:

f (Ep) =
1

E2
p

e(a0+a1Ep), (5.23)

where the variable Ep is the scattered electron energy. After fitting the data using ROOT [189],
the error bands were determined by varying each parameter within the its errors and ob-
serving the change in the fit. How these errors contribute to the cross section errors will be
discussed in Section 5.4.5. The parameters of the fits are summarized in Appendix D.1.

5.4.2.3 Positron to Electron Ratio

With the measurements of the raw electron cross section and the positron cross section in
hand, we can extract the e+/e− ratio, and is given in Figure 5.38, compared to data from
JLab Hall B (CLAS) data. The errors on our data are statistical only. These ratios will play
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an important role in determining the positron contamination of the electron double-spin
asymmetries (Sect. 5.5.3). Our data are tabulated in Appendix E.1.
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Figure 5.31: The measured e+/e− ratio at E = 4.74 GeV (red) and 5.89 GeV (blue) compared
to JLab Hall B (CLAS) data. The errors on our data are statistical only.

5.4.3 Radiative Corrections

Electrons lose energy due to interactions with material. This includes the material before
and after the target, and the target material itself. These interactions will alter the electron’s
true incident energy and also its true scattered energy. This ultimately results in a different
cross section than the true value. These effects are characterized by ionization (or Landau
straggling) and bremsstrahlung. There are also higher-order processes at the interaction
vertex that must also be considered. Collectively, the removal of these effects is called
radiative corrections.

A first correction that must be done before carrying out the radiative corrections is to
subtract the elastic radiative tail, since it is long and affects all states of higher invariant
mass W [201]. For these kinematics, the elastic tail is small and affects the lowest bins in
scattered electron energy Ep at the . 1% level. The elastic tail was computed following
the exact formalism given by Mo & Tsai [201]. We utilized elastic 3He form factors from
Amroun [202].

The 3He quasi-elastic tail, however, is much larger, at ∼ 25–30% in the lowest Ep bin.
The quasi-elastic radiative tail was computed by utilizing an appropriate model of the 3He
quasi-elastic cross section [203] and applying radiative effects [204]. The tail was then
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(a) Es = 4.74 GeV (b) Es = 5.89 GeV

Figure 5.32: Our data before (blue) and after (cyan) elastic and quasi-elastic tail subtraction.
The magenta curve shows the elastic tail, while the red curve is the quasi-elastic tail. The green
arrow indicates the position of the quasi-elastic peak. . (a): Es = 4.74 GeV data; (b): Es = 5.89
GeV data.

subtracted from the data. The model was checked against existing quasi-elastic 3He data
covering a broad range of kinematics.

Figure 5.32 shows our data before and after elastic and quasi-elastic tail subtraction as
a function of Ep. The magenta curve shows the elastic tail, while the red curve shows the
quasi-elastic tail. The blue (cyan) data show our data before (after) the tail subtractions.
The error bars on the data points are statistical only. The green arrows indicate the position
of the quasi-elastic peak for each respective data set.

In considering the effects due to ionization and bremsstrahlung mentioned above, the
measured cross section is realized in terms of a triple-integral:

σrad (Es,Ep) =
∫ T

0

dt
T

∫ Es

Emin
s

dE ′s

∫ Emax
p

Ep

dE ′pI
(
Es,E ′s, t

)
σr
(
E ′s,E

′
p
)

I
(
Ep,E ′p,T − t

)
, (5.24)

where σrad is the measured (radiated) cross section, σr is the internally-radiated cross sec-
tion. The incident electron energy is labeled as Es and Ep is the scattered electron energy.
The function I (E0,E, t) is the probability of finding an electron with incident energy E0

that has undergone bremsstrahlung with energy E at a depth t inside a material [201, 204].
In order to unfold the Born cross section, an iterative procedure is carried out in RAD-
COR [205]. It amounts to an “energy peaking” approximation∗, resulting in the lineariza-

∗This approximation is valid as the integrands of the integrals in Equation 5.24 are peaked along the
incident and scattered electron energies, where the neglected contributions are less than a few percent. Addi-
tionally, the equivalent radiator method is used for the internal radiation, where such contributions manifest
as effective thicknesses in the electron path before and after scattering. For more details, see [201, 206].
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tion of Equation 5.24 where the Born cross section is obtained via an iterative procedure.
In particular, the Born cross section for the ith iteration is written as:

σ
i
b =

1
C

[
σrad−

∫
(. . .)dE ′s−

∫
(. . .)dE ′p

]
, (5.25)

where C and the two integrals are defined in [204]. The term σ i
b is the Born cross section

obtained for the ith iteration of the code and σrad is the radiated cross section to be corrected.
The cross section σ i

b is then re-inserted into equation for the next iteration. In E06-014, we
took data for only two Es values of 4.74 GeV and 5.89 GeV. However, we need enough
data to properly calculate the integrals above. Therefore, we used the F1F209 [200] cross
section parameterization∗ to fill in the rest of the phase space for each data set. It was found
that the calculation converges within the first 3–4 iterations. The radiative corrections were
as large as ≈ 50% in the lowest measured Ep bin, and fell off to a few percent at the large
Ep bins.

5.4.4 Born Cross Section

Figure 5.33 shows the Born cross sections as a function of Ep. The error bars indicate the
statistical errors, while the gray band represents the systematic error, which includes con-
tributions from the electron cuts, background subtraction, 3He density, nitrogen dilution,
beam charge calibration and radiative corrections. The systematic errors are discussed in
detail in Section 5.4.5.

It was found that our cross section agrees with the F1F209 [200] model to roughly±8%
on average across our measured kinematic range.

5.4.5 Systematic Errors

There are a number of contributions to the systematic errors on the experimental and Born
cross sections. There are errors coming from the analysis cuts we have chosen, which in-
cludes the gas Čerenkov, pion rejector, β , and acceptance cuts. There are also contributions
from the determination of the beam charge [207], the target density [208], background sub-
traction and radiative corrections. The total systematic error on the Born cross section is
computed as:

δσ
2
born = δσ

2
rad +

(
σBorn−σrad

σBorn

)2

δσ
2
RC, (5.26)

∗See Appendix C.2 for more details.
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(b) Es = 5.89 GeV

Figure 5.33: Unfolded Born cross sections. The error bars shown on the Born cross section are
statistical. The systematic errors are given by the gray band (Sect. 5.4.5). (a): Es = 4.74 GeV
data; (b): Es = 5.89 GeV data. Tables of all data may be found in Appendix E.1.

where δσrad contains the systematic errors on the radiated (experimental) cross section.
δRC is the error due to the radiative corrections.

To determine the error that arises due to each of the cuts, we would compute the raw
cross section after varying a single cut to a reasonable level, and compare that to the result
obtained using our final cuts. The variation of the cut to a reasonable level means that
we can still say with confidence that we are choosing good electrons for our studies. For
instance, with the PID cuts on the gas Čerenkov and pion rejector, these cuts would be
varied by ∼± 20–30 ADC channels and ±0.1 in E/p, respectively. These ranges were in-
formed by our cut efficiency studies (see Sections 5.2.2.4 and 5.2.2.5). A similar approach
was taken with the β cut. The ranges in which to vary the cuts on the target variables
was determined by a comparison to how well our simulation (SAMC) could reproduce the
data reliably, as well as being able to remove edge-effects due to scattering from the target
endcap and cell walls [209].

The error bands on the background cross sections in Figure 5.30 were determined by
varying each parameter of the fit to the data within the its errors and observing the change
in the fit. This was done by varying the fit parameters at random for ≈ 50–60 trials for
each background signal. The bands represent the maximum variation of the fit due to such
a study. It was found that subtracting these background signals contributes at a level of
≈ 9% at the lowest bin in Ep for Es = 5.89 GeV. As Ep increases, this error drops quickly
to sub-percent levels. A similar trend is seen for the Es = 4.74 GeV data set.

The systematic errors corresponding to the radiative corrections include the elastic and
quasi-elastic tail subtraction, material thicknesses in the electron’s path, and dependence
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on the input model used for the radiative correction calculations. The systematic error of
subtracting the elastic tail from the data is � 1%, determined by considering a different
model [210] for the elastic 3He form factors. In a similar fashion as the elastic tail, the
systematic effect of the subtraction of the quasi-elastic tail was determined by considering
different quasi-elastic cross section models to compute the tail [200]∗. We found that the
error is ≈ 5–6% for the lowest bin in Ep, and falling to ≈ 1% for all other bins for which
we have data. To determine the error related to the material thicknesses in the electron’s
path, we varied the thicknesses in our calculations by up to 10%, and saw a change in our
resulting Born cross section of . 1.5%. The error corresponding to the input model used
in the radiative correction procedure was determined by using different models [89]. The
resulting Born cross section changed by at most≈ 5% for the lowest bin in Ep and dropped
to . 1% for all other bins.

All of the error contributions are plotted as a function of Ep for both the Es = 4.74
and 5.89 GeV data sets in Figure 5.34. The black data corresponds to the statistical errors;
the red data corresponds to errors due to the cuts that choose electrons; the blue data cor-
responds to the errors due to background subtraction discussed above; the magenta data
labeled “misc.” corresponds to errors from the density of N2 and 3He in the production cell
and the error in the charge calibration†.

The individual contributions to the systematic uncertainties seen in Figure 5.34 are
tabulated in Appendix E.1.

∗Aside from using the F1F209 model in our systematic studies, we also computed the quasi-elastic tail
using the approximation of 3He being two protons plus a neutron with no smearing; this meant using the
dipole model and the Galster [211] model for the proton and neutron form factors, respectively.

†This enters into the cross section when computing the incident number of electrons Ninc = Q/e.
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(b) Es = 5.89 GeV

Figure 5.34: The various contributions to the errors on the cross section data. The black points
are statistical errors; the blue points are background subtraction errors; the green points are
errors due to radiative corrections, and the magenta points are due to the errors correlated to
the N2 density in the 3He production target and the error in the charge calibration. See text for
more details. (a): Es = 4.74 GeV data; (b): Es = 5.89 GeV data.
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5.5 Double-Spin Asymmetries

In this section, we discuss the highlights of the double-spin asymmetry analysis. The major-
ity of this work, with the exception of the pion asymmetries on the LHRS and the radiative
corrections, was carried out by M. Posik, and more details may be found in [169].

5.5.1 Calculation From Raw Data

The extraction of the raw counting asymmetries from data follows the computation of:

A =
Ns,S−N−s,S

Ns,S +N−s,S , (5.27)

where s is the spin direction of the electron beam, either parallel (↑) or antiparallel (↓) to its
momentum. There were three target spin configurations: parallel to the electron momentum
(S = 0◦), and two transverse polarizations to the electron momentum; one pointing at the
LHRS (S = 90◦), and the other pointing at BigBite (S = 270◦).

5.5.1.1 Sign Convention

To determine the sign convention for the asymmetry, one needs to know the physical direc-
tion of the electron beam helicity. To this end, measurements of the 3He longitudinal quasi-
elastic asymmetry were conducted for E = 1.23 GeV and θ = 45◦, where the electrons with
helicity −1 were assigned a positive sign, and those with helicity +1 were assigned a neg-
ative sign. We found AQE

raw = 0.012± 0.003 [169], compared to the theoretical estimate of
0.02 [212]. The measured result is within a factor of two of the calculated estimate, but is
clearly positive. Given the agreement of the measurement with the calculation, a positive
sign is applied to events with negative helicity electrons, and a negative sign is applied to
events having positive helicity electrons.

In polarizing the target, the polarizing optics were set up in an antiparallel pumping
configuration such that the target spin was always oriented opposite to the magnetic hold-
ing field; utilizing the magnetic field information recorded throughout the experiment, the
target spin orientation is known [169].

With the sign convention understood, the extraction of the electron double-spin asym-
metries from raw data for a longitudinally or transversely polarized target are accomplished
according to:
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Araw
‖ =

N↓⇑−N↑⇑

N↓⇑+N↑⇑
(5.28)

Araw
⊥ =

1
〈cosφ〉

N↓⇒−N↑⇒

N↓⇒+N↑⇒
, (5.29)

where A‖ (A⊥) is the longitudinal (transverse) asymmetry; the ↑ (↓) indicates the incident
electron spin parallel (antiparallel) to its momentum; the ⇑ (⇓) indicates the target spin
aligned parallel (antiparallel) to the electron beam momentum, and⇒ indicates the target
polarized transversely with respect to the electron beam momentum, in the electron scat-
tering plane. For the transverse asymmetry, we divide out by 〈cosφ〉∗ so as to remove any
azimuthal angular dependence in the data.

5.5.1.2 Data Organization and Processing

Each run set corresponding to their target spin configuration is processed separately, where
each run is averaged together, weighted by their statistical uncertainty and the insertable
half-wave plate (IHWP) is accounted for. The IWHP status was recorded during the exper-
iment in the electronic logbook and in the EPICS data stream. The IHWP change occurred
only in between runs, so a definite status can be assigned to each run.

The asymmetries were binned into twenty equally spaced bins in x over the range 0 ≤
x ≤ 1†, with a bin width of 0.05. For each x bin, the asymmetries for each run of a given
target spin configuration S were averaged together according to:

〈
AS

raw

〉
=

∑
i

AS
i

1
(δAS

i )
2

∑
i

1
(δAS

i )
2

(5.30)

δAS
raw =

√√√√
1

∑
i

1
(δAS

i )
2

, (5.31)

where the statistical error on the ith asymmetry with target spin configuration S is:

δAS
i =

√√√√√
4N↓Si N↑Si(

N↓Si +N↑Si

)3 . (5.32)

∗Plotting 〈cosφ〉 for each x bin revealed that it was > 0.99 for every bin [169].
†In the data analysis, we kept bins corresponding to 0.23 < x < 0.98. Details on how we arrived at the

final binning will be given in the following sections.
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Since there were two transverse target spin configurations, there was a need for a con-
sistent way to combine the results for both configurations, as the results for the 90◦ and
270◦ will have opposite signs relative to the other. To determine which target configura-
tion should carry which sign, we follow the convention used in the JLab E99-117 exper-
iment [71] where the positive sense of the target spin is taken as the direction that points
towards the side of the beamline where the scattered electron is detected. In this experi-
ment, the asymmetry measurement was done on BigBite; therefore, when the target spin
is pointing towards BigBite (270◦), it carries a positive sign; if the target spin is pointing
towards the LHRS (90◦), it carries a negative sign. Using this sign convention, the S = 90◦

and S = 270◦ asymmetries were combined via a statistically-weighted average after all
contamination had been taken into account (Sect. 5.5.3).

The raw counting asymmetries are shown in Figure 5.35. The left panel shows the
parallel asymmetries for S = 0◦, while the middle and right panels show the perpendicular
asymmetries for S = 90◦ and S = 270◦, respectively. The red (blue) markers indicate the
E = 4.74 GeV (5.89 GeV) data.
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Figure 8.39: Raw asymmetries measured at E = 4.74 GeV (red tri-
angles) and E = 5.89 GeV (blue circles) for each of the three target
spin configurations as defined by Equation 8.18. Only statistical

uncertainties are shown.
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Figure 5.35: The raw electron asymmetries A‖ and A⊥ for each target spin configuration are
shown. The red (blue) markers indicate the E = 4.74 GeV (5.89 GeV) data. Figure reproduced
from [169].
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5.5.2 False Asymmetries

When measuring an asymmetry, care must be taken to ensure that the asymmetry is due to
electron spin-dependent scattering and not helicity correlated changes in the electron beam,
known as false asymmetries. One such issue arises from a difference in the electron beam
intensity for the parallel and antiparallel helicity states, which results in a charge asymme-
try. During the experiment, the beam charge asymmetry was limited to≈100 ppm; this was
accomplished through the use of a feedback loop controlled by a specialized DAQ [213]
and was verified by measuring the charge asymmetry using the Compton polarimeter [47].
Compared to the size of the electron asymmetry measurements, the charge asymmetry is
negligible. Another source of concern is a the possibility of the detector’s livetime hav-
ing a helicity dependence. The helicity-dependent livetime asymmetry was extracted from
the data and was found to be < 100 ppm for the entire data set, and was considered to be
negligible [169].

In addition to charge- and DAQ-induced false asymmetries, software can also introduce
a false asymmetry. For example, if the data rates are high enough, it may be more difficult
to reconstruct good tracks related to the higher rate helicity state as compared to the lower
one, resulting in an asymmetry [214]. However, E06-014 had a very low track multiplicity
(∼ 4%), and thus the rates were not high enough for such an asymmetry to have a sig-
nificant impact on the measured electron asymmetries. Other potential false asymmetries
can be limited through the 30 Hz helicity flipping rate of the electron beam; also, any false
asymmetry that does not change sign with respect to the IHWP state, such as those due to
electronic cross-talk [215], which would be canceled when combining the IHWP states.

5.5.3 From Raw to Physics Asymmetries

The raw asymmetry calculation shown in Equations 5.28 and 5.29 do not account for back-
ground effects due to the presence of nitrogen in the target or the beam and target polariza-
tions. Therefore, the raw asymmetries are corrected for by these factors:

Aphys
‖,⊥ =

1
DN2PbPt

Araw
‖,⊥, (5.33)

where Pb and Pt are the beam and target polarizations, respectively; DN2 is the nitrogen
dilution factor. This correction is applied to the longitudinal (‖) and transverse (⊥) raw
asymmetries, yielding the physics asymmetries. Physics asymmetries for each run corre-
sponding to a given target spin configuration were combined in the same fashion as shown
for the raw asymmetries in Equation 5.30.
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5.5.3.1 Nitrogen Dilution

The nitrogen dilution factor is extracted by comparing the N2 target counting rates to the
3He production cell counting rates. It is given as:

DN2 = 1− ΣN2(N2)

Σtotal(3He)
tps(N2)

tps(3He)
Q(3He)
Q(N2)

tLT (
3He)

tLT (N2)

nN2(
3He)

nN2(N2)
, (5.34)

where ΣN2 and Σtotal are the total number of counts that pass data quality and PID cuts
detected during the N2 and 3He production target runs; nN2(N2) and nN2(

3He) are the ni-
trogen number densities present in the two targets. Due to the nitrogen and 3He production
runs having different characteristics (e.g., scattering rates, running time, etc.) the measured
electrons must be normalized by taking into account the total charge, given by Q(N2) and
Q(3He) deposited on the two targets; the prescale factors for the nitrogen and 3He runs are
given as tps(N2) and tps(

3He); the live times for the nitrogen and 3He runs are given as
tLT (N2) and tLT (

3He).
When the nitrogen reference cell was in the beam, the number density for the cell was

extracted using the measured temperature and pressure of the cell. A systematic uncertainty
of 2.2% was estimated by computing the number densities while varying the temperature
and pressure up to 2◦ C and 2 psig [169]. In the 3He production cell, the number density
of nitrogen was taken to be 0.113 amg. This value was recorded as the target was initially
filled, and is accurate to 3% from pressure curve analysis [216].

The nitrogen dilution factor was extracted on a run-by-run basis and averaged together,
weighted by its statistical error for a given target spin orientation. The resulting dilution
factor was applied bin-by-bin in x, and was found to be roughly constant at DN2 ≈ 0.920±
0.003 [169].

5.5.3.2 Contamination Studies

The main sources of background contamination come from charged pions and electrons via
electron-positron pairs. Such electron-positron pairs arise from π0 production in the target;
due to their short lifetime, the π0 particles decay before leaving the target, via π0 → 2γ;
to a much smaller degree, π0→ γe+e− also occurs. Despite applying PID cuts, electrons
originating from these two processes were still misidentified in the electron sample as elec-
trons.

5.5.3.2.1 Pion Contamination
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To quantify the charged pion contamination in the electron sample, the shower calorime-
ter was used because pions leave a minimum ionization peak towards the lower end of the
ADC spectrum; electrons have a peak at larger values, depending upon their momentum.
The pion peak was fitted by a Gaussian function convoluted with a Landau function, and
the electron peak was fitted by a Gaussian function. The ratio of the pion to electron curves
was then evaluated for ADC values larger than 200 channels, as this was the threshold used
in choosing electrons in the analysis [169]. This ratio was evaluated for π− (π−/e−) and
π+ (π+/e+) particles. A similar study followed for the π+ contamination, where the polar-
ity of the BigBite magnet was reversed so that positively charged particles bent up into the
detector stack∗. The π−/e− ratio was largest in the lowest x bin of 0.277, at ≈ 2.7%, but
dropped quickly below 1% by x = 0.425. The π+/e+ ratio was larger and more constant,
at ≈ 5% across the whole x range.

The asymmetry due to pions may dilute the measured electron asymmetries. Because
of this, π± asymmetries were evaluated, where pions instead of electrons were chosen in
the analysis. Corrections for the nitrogen dilution and the beam and target polarizations
were applied to obtain π± physics asymmetries. The pion asymmetries were also mea-
sured on the LHRS†, providing a good cross-check of the asymmetries measured on the
BigBite spectrometer. Figure 5.36 and 5.37 show the comparison of the π− and π+ raw
asymmetries measured on the LHRS (red markers) and BigBite (blue markers). Due to
time constraints, for the π+ data there was only LHRS data for the target spin orienta-
tion corresponding to S = 90◦. It is seen that there is good agreement between the two
spectrometers.

To determine how large of an effect these asymmetries have on the electron asymme-
tries, they are scaled by the extracted π/e ratios. It was found that the π− (π+) asymmetry
contribution was less than 5% (3%) of the statistical uncertainty of the electron (positron)
longitudinal and transverse asymmetries.

This pion contamination study was done for the E = 5.89 GeV data set only, because
the E = 4.74 GeV data set was taken towards the end of the experiment when the main
electron trigger on BigBite was optimized to remove a significant portion of the minimum
ionization peak and trigger primarily on electrons. Because of this, the results found for
E = 5.89 GeV were used for E = 4.74 GeV data. Due to the small contamination found in

∗Our analysis revealed that particles bending downwards in BigBite had a different acceptance relative
to those that bent upwards; therefore, particles with similar trajectories should be compared [169].

†To extract pion asymmetries using the LHRS, the same cuts as presented in Section 5.2.6 were used,
but with the PID cuts on the gas Čerenkov and pion rejector “reversed” so as to choose pions; that is, the gas
Čerenkov was required to not fire, and E/p < 0.54 and the energy deposited in the first pion rejection layer
was required to be less than 200 MeV.
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Figure 8.51: Raw longitudinal (left panel) and transverse (right
panel) ⇡� asymmetries measured in the BigBite spectrometer (blue
markers) and LHRS (red markers) as a function of x at an incident

electron energy of 5.89 GeV.

total electron longitudinal and transverse asymmetry uncertainties (±�Aphys
k and ±�Aphys

? ),

while the ⇡+ asymmetry contamination was less than 3% of the total positron asymmetry

uncertainty. For both charged hadrons, the ⇡� asymmetry had negligible effects on the

electron asymmetry and the ⇡+ asymmetry had negligible effects on the positron asymmetry.

Therefore no ⇡� or ⇡+ asymmetry correction needed to be applied to the measured electron

asymmetries.

341

Figure 5.36: The raw π− asymmetry as measured on the BigBite spectrometer compared to a
measurement on the LHRS.

the 5.89 GeV data, the contamination at 4.74 GeV can be seen to be even smaller. Applying
the 5.89 GeV results to the lower energy data is a conservative estimate.

5.5.3.2.2 Positron Contamination

To quantify the contamination due to pair-produced electrons, the ratio of positrons to
electrons, e+/e− was evaluated. This was done for each bin in x, where positron counts
were done with BigBite in positive polarity mode. Due to time constraints and hardware
difficulties with the electron beam, this study was only able to be conducted for the E =

4.74 GeV data set. To determine e+/e− for the E = 5.89 GeV data set, an indirect approach
was used. This entailed considering our measurement on BigBite at E = 4.74 GeV and the
LHRS at E = 4.74 and 5.89 GeV, along with data from JLab CLAS EG1b [217], which
had E = 5.7 GeV and θ = 41.1◦. The aforementioned data was plotted as (1/E2)(e+/e−)

versus the transverse momentum pT = psinθ , where E is the electron beam energy, p is
the electron momentum and θ is the electron scattering angle. The data was then fit to
the function f (pT ) = exp(a+b · pT ), with a and b as free parameters. Using this fit, the
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Figure 5.37: The raw π+ asymmetry as measured on the BigBite spectrometer compared to a
measurement on the LHRS.

e+/e− ratio for E = 5.89 GeV was found to be in excess of 1 at x = 0.230, as shown in
Figure 5.38. This resulted in the decision to exclude this x bin, which was the lowest bin
measured during the experiment. The e+/e− ratio was more reasonable towards larger
values of x, where it was less than 50% at x = 0.277, our lowest x bin, and falling to less
than 10% by x = 0.473. Beyond x = 0.5, the ratio dropped to below 3%.

Similar to the pion contamination study, the asymmetry due to electron-positron pairs
could also contaminate the electron asymmetry. Ideally, the positron asymmetry would
be measured by changing the BigBite magnet to positive polarity so that positrons bend
up into the same acceptance as seen by electrons; however, due to the aforementioned
time constraints, this was only done for one target spin configuration (270◦) at one beam
energy (E = 4.74 GeV). Because of this, an alternative approach was used where positron
asymmetries were measured on the particles that were bent downwards through the BigBite
magnet∗. However, the bend-down particles had lower rates, as it contained only ≈ 40%
of any given run’s events before particle selection cuts were applied. Because of this, a
constant (one-parameter) fit to the extracted asymmetries as a function of x was performed
to remove any large fluctuations due to poor statistical precision. The fitted value of the

∗It was found that the asymmetries measured on particles bending up or bending down through the Big-
Bite magnet were in good agreement with one another [169], so using the bend-down positron asymmetries
is a valid substitute.
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Figure 5.38: World e+/e− data, including measurements on BigBite for E = 4.74 GeV and
measurements on the LHRS at E = 4.74 GeV and 5.89 GeV. The derived ratio for BigBite at
5.89 GeV is also shown (black markers). Figure reproduced from [169].

positron asymmetries for E = 4.74 and 5.89 GeV were found to be≈ 2% for E = 4.74 GeV
and ≈ 1% for E = 5.89 GeV [169]. These constant values were applied as a correction to
the electron asymmetries, scaled by the e+/e− ratio.

5.5.3.2.3 Monte Carlo Simulation

The contamination studies concerning the pions and pair-produced electrons were checked
using a Geant4 [218] Monte Carlo simulation of the BigBite detector∗, which focused on
studying the energy deposition in the BigBite calorimeter. The event generator was defined
so that different particle types (e−, π−) were thrown at random weighted by their cross
section as a function of scattering angle and momentum, modeled by F1F209 [200] and
Wiser [219] fits, respectively. The simulation was found to be in good agreement with
the real data, where various cuts used on the real data set were mimicked in analyzing the
simulated data, so as to obtain an accurate comparison [169].

5.5.3.3 Correcting for Contamination

The contamination due to the asymmetries of charged pions and the pair-produced elec-
trons may be removed from the measured electron asymmetry Ae−

m to obtain the corrected

∗developed by V. Mamyan
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electron asymmetry Ae− by computing:

Ae− =
Ae−

m − f1Aπ−− f3Ae+
m + f2 f3Aπ+

1− f1− f3 + f2 f3
, (5.35)

where f1 = π−/e−; f2 = π+/e+; f3 = e+/e−; Aπ± are the π± asymmetries, and Ae+
m is

the measured positron asymmetry. Considering the fact that the corrections for the pion
asymmetries are very small, Equation 5.35 can be simplified to be:

Ae− ≈ Ae−
m − f3Ae+

m
1− f1− f3 + f2 f3

≡ Acor. (5.36)

At this point, the bins for which x > 0.90 were removed from the analysis, so as to
avoid the quasi-elastic and resonance contributions, which start at x≈ 0.90.

The physics asymmetries, corrected for contamination due to pions and pair-produced
electrons, are shown in Figure 5.39 and are tabulated in Appendix E.2. The red (blue)
markers indicate the E = 4.74 GeV (5.89 GeV) data. The left panel shows A‖ and the right
panel shows A⊥. The error bars indicate the statistical errors only.

The statistical error for A‖ is computed as:

δA =

√
(δA)2 +

(
∂A

∂DN2

)2

(δDN2)
2, (5.37)

where δA is the statistical error on the asymmetry∗; δDN2 is the statistical error on the
dilution factor DN2 . The statistical error for A⊥ (S = 90◦ or 270◦), is:

δA j =

√
(δA j)2 +

(
∂A j

∂DN2

)2

(δDN2)
2 +

(
∂A j

∂ 〈cosφ〉

)2

(δ 〈cosφ〉)2, (5.38)

where j = 90 or 270. The errors on the effective beam and target polarizations, Pb and
Pt , enter in the systematic errors. Additionally, systematic errors due to the contamination
corrections are also considered (Sect. 5.5.6).

5.5.4 Radiative Corrections

To compute the radiative corrections for asymmetries, we utilized a similar approach as
shown in Section 5.4.3. The main difference is that we carried out the corrections on
polarized cross section differences, ∆σ , related to asymmetries by:

∗this includes the statistical errors on the measured pion and positron asymmetries
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correcting the 4.74 GeV incident energy data. In both cases the effects of pion corrections

were very small. The electron asymmetries corrected for background contributions can be

seen in Figure 8.60 with values listed in Tables 8.31 and 8.32 for incident electron energies

of 4.74 GeV and 5.89 GeV. The systematic uncertainty associated with the asymmetries in

Tables 8.31 and 8.32 are discussed in Section 8.7. At this stage in the highest x bin was

removed from the analysis due to low statistics, which rendered its measurement insignificant

and being on the edge of the BigBite electron acceptance. The main contributor to the

difference between the background corrected asymmetries and the asymmetries listed in

Tables 8.25 and 8.26 is due to the pair produced electrons.

355

Figure 5.39: The background-corrected physics asymmetries for E = 4.74 GeV (red) and
5.89 GeV (blue). The left panel shows the parallel asymmetries and the right panel shows
the perpendicular asymmetries. The error bars indicate the statistical errors only. Figure repro-
duced from [169].

∆σ
r
‖,⊥ = 2σ

r
0Ar
‖,⊥, (5.39)

where A‖,⊥ indicates a radiated asymmetry where the target is polarized either longitudinal
(‖) or transverse (⊥) with respect to the incident electron beam momentum. The unpo-
larized cross section is σ r

0 , where the r indicates that radiative effects have been applied.
We used the F1F209 [200] model for the unpolarized cross section. The model used to fill
out the integration phase space needed in the calculations was composed of components
that describe three different kinematic regions: the DIS, the quasi-elastic region, and the
resonance region. The model used for the DIS region was the DSSV [220] global analysis
PDF model; for the quasi-elastic region, we utilized P. Bosted’s nucleon form factors [221],
smeared by a quasi-elastic scaling function [222] to simulate the nuclear effects of 3He. To
model the resonance region, we used the MAID [141] model.

Putting the DIS, quasi-elastic and resonance contributions together ∗, we built up ∆σ . In
the radiative correction procedure, the quasi-elastic tail was not subtracted first, but rather
was included in the integration. The elastic tail was found to be negligible and was not
subtracted.

∗The details of how all three regions were constructed is documented in Appendix C.3.
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To minimize statistical fluctuations in the radiative corrections, the corrections were
performed on a model of our data set. After obtaining the Born ∆σ , the corresponding
asymmetry was obtained by inverting Equation 5.39 (but using the Born σ0) to find A.
Then, the size of the radiative correction at the asymmetry level was determined as:

∆A = Ab−Ar, (5.40)

where Ab is the Born asymmetry and Ar is the radiated asymmetry. This ∆A was applied to
our data for both the parallel and perpendicular cases as an additive correction. The size of
the radiative correction was found to be at most on the order of 10−3 in the lowest x bin.

The radiative corrections in the DIS region were checked against results obtained from
following the formalism of Akushevich et al. [223]. The results from our method agreed
with those found using their method to the 10−4 level in the asymmetry. This check was
performed in DIS kinematics only, since the calculations of [223] do not treat the resonance
region, and approximates the quasi-elastic peak as a delta function.

5.5.5 Born Asymmetries

The Born asymmetries with their systematic errors are shown in Figure 5.40 and are tabu-
lated in Appendix E.2. The systematic errors are discussed in Section 5.5.6.

5.5.6 Systematic Errors

The systematic errors were obtained by varying all of the inputs to the asymmetry extrac-
tion to reasonable levels and observing the change in the Born asymmetry. The quantities
varied consisted of the electron cuts, nitrogen dilution factor, beam and target polarizations,
pion and pair-production contamination factors, and radiative corrections. The systematic
uncertainties due to all contributions were smaller than the statistical errors for all bins for
E = 4.74 and 5.89 GeV data, at the level of . 7×10−3 for most bins, where the errors due
to the cuts tends to dominate. These studies, except for the radiative correction errors, were
done by M. Posik and a more detailed discussion may be found in [169]. Appendix E.2.2
gives tables of the various contributions to the systematic errors on the asymmetries. The
total systematic uncertainty is computed as an in quadrature sum of all contributing terms.

For the systematic errors due to the radiative corrections, the input models were varied
at random by up to ±10% for 30 runs, and the size of the radiative correction was deter-
mined for each run set. It was found that the size of the radiative correction changed by less
than 5%. Additionally, the radiation thicknesses seen by the incident and scattered elec-
trons were varied by up to 10%; it was found that the resulting Born asymmetry changed by
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Figure 5.40: The Born asymmetries for E = 4.74 GeV and 5.89 GeV, shown on the left and
right columns, respectively. The top row shows A‖ while the bottom row shows A⊥. The error
bars indicate the statistical errors, while the bands represent the systematic errors.

less than 1.5%. These two errors added in quadrature gives the error on the Born asymme-
try due to radiative corrections, at < 10−3 (∼ 5.2%). The error on the size of the radiative
correction is given in Figure 5.41.
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Figure 6: The size of the radiative correction on the asymmetries, defined as ΔA= Ab−Ar. The red band indicates the
systematic error associated with the correction, see Section 1.3.7. The ΔA shown in these plots are applied to the data
as an additive correction to obtain the Born asymmetry. (a): E = 4.74 GeV data; (b): E = 5.89 GeV data.

8

Figure 5.41: The size of the radiative corrections for the parallel (left column) and the per-
pendicular (right column) asymmetries. The top row shows the E = 4.74 GeV result, while the
bottom column shows the 5.89 GeV result. The red band indicates the error on the correction
size, due to the varying the input models and radiation thicknesses.
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5.6 A1 and g1/F1

In this section, we describe the procedure used to compute g
3He
1 /F

3He
1 and A

3He
1 from the

born asymmetries A‖ and A⊥ (Sect. 5.6.1); the discussion continues with the nuclear cor-
rections leading to gn

1/Fn
1 and An

1 (Sect. 5.6.2); in Section 5.6.3, the systematic errors asso-
ciated with the 3He and neutron results are discussed.

5.6.1 Extraction From Data

To extract g
3He
1 /F

3He
1 and A

3He
1 from the Born asymmetries, we follow Equations 2.16

and 2.21. For these asymmetries, the kinematic factors given in those equations were
binned as a function of x. The mean of a given kinematic factor was used as the cen-
tral value, while its root mean square (RMS) was used as its statistical uncertainty. The
low-level kinematic variables are shown in Figures 5.42–5.45, and the high-level kinematic
variables, which show up in Equations 2.16 and 2.21, are shown in Figures 5.46 and 5.47.
The parameterization of R ≡ σL/σT from [224] is shown in Figure 5.48. The kinematic
variable d′ needed in the g1/F1 extraction is shown in Figure 5.49. The systematic errors
for these variables and how they contribute to the errors on the measured g1/F1 and A1 will
be discussed in Section 5.6.3.

The measured g
3He
1 /F

3He
1 and A

3He
1 will be presented in Section 6.1. The results and

systematic errors for A1 are tabulated in Appendix E.3, while Appendix E.5 gives tables of
the results and the systematic errors for g1/F1. The quantities g

3He
2 /F

3He
1 and A

3He
2 were

also extracted according to Equations 2.17 and 2.22, and are tabulated in Appendix E.6
and E.4, respectively.
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Figure 5.42: Low-level kinematic variables for E = 4.74 GeV. These variables go into the
calculation of d, D, η and ξ , needed for the A1 extraction. The errors indicated are statistical
only. Plots reproduced from [169].
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Figure 5.43: Low-level angular kinematic variables for E = 4.74 GeV. These variables go into
the calculation of d, D, η , ξ and d′, needed for the A1 and g1/F1 extraction. The errors indicated
are statistical only. Plots reproduced from [169].
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Figure 5.44: Low-level kinematic variables for E = 5.89 GeV. These variables go into the
calculation of d, D, η and ξ , needed for the A1 extraction. The errors indicated are statistical
only. Plots reproduced from [169].
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Figure 5.45: Low-level angular kinematic variables for E = 5.89 GeV. These variables go into
the calculation of d, D, η , ξ and d′, needed for the A1 and g1/F1 extraction. The errors indicated
are statistical only. Plots reproduced from [169].
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Figure 5.46: Kinematic variables that directly contribute to the A1 extraction for E = 4.74 GeV.
The errors indicated are statistical only.
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Figure 5.47: Kinematic variables that directly contribute to the A1 extraction for E = 5.89 GeV.
The errors indicated are statistical only.
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5.6.2 Nuclear Corrections

Nucleons bound in nuclei behave differently than those in free space, primarily due to
nuclear effects such as spin depolarization, Fermi motion, nuclear binding, and nuclear
shadowing and anti-shadowing effects. Additionally, the presence of non-nucleonic de-
grees of freedom and the off-shellness of nucleons can alter the characteristics of bound
nucleons. Such effects need to be removed in order to obtain the nucleon quantities from
measurements on nuclear targets; in our case, this corresponds to obtaining neutron data
from 3He measurements. In particular, we want to obtain gn

1/Fn
1 and An

1 from g
3He
1 /F

3He
1

and A
3He
1 , respectively.

5.6.2.1 DIS Data

The complete description of the g1 spin structure function on 3He in terms of its nuclear
components over the range 10−4 ≤ x ≤ 0.8 was originally given by Bissey et al. [225],
where g

3He
1 can be represented as the convolution of the off-shell neutron g̃n

1 and off-shell
proton g̃p

1 spin structure functions with the spin-dependent light-cone momentum distribu-
tions ∆ fN/3He(y), where y is the ratio of the struck nucleon’s light-cone-plus component of
the momentum to that of the nucleus:

g
3He
1
(
x,Q2) =

∫ 3

x

dy
y

∆ fn/3He(y)g̃
n
1
(
x/y,Q2)+

∫ 3

x

dy
y

∆ fp/3He(y)g̃
p
1
(
x/y,Q2)

− 0.014
[
gp

1
(
x,Q2)−4gn

1
(
x,Q2)]

+ a(x)gn
1
(
x,Q2)+b(x)gp

1
(
x,Q2) . (5.41)

The motion of the nucleons inside the nucleus (i.e., Fermi motion) and their binding is pa-
rameterized by ∆ fN/3He(y), which can be calculated by using ground state wave functions
of 3He. The function ∆ fN/3He(y) is sharply peaked at y≈ 1 due to the small separation en-
ergy per nucleon. Combining this with the assumption that the off-shell nucleon structure
functions g̃N

1 can be replaced with their on-shell counterparts gN
1 , leads to the approxima-

tion:

g
3He
1 (x)≈ Pngn

1(x)+Ppgp
1(x)−0.014

[
gp

1(x)−4gn
1(x)

]
+a(x)gn

1(x)+b(x)gp
1(x), (5.42)

where we have suppressed the Q2-dependence in the equation for simplicity. The quantities
Pp,n are the effective polarizations of the proton and neutron in 3He [226], respectively.
The third term in Equations 5.41 and 5.42 arises due to the ∆(1232) component in the 3He
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wave function [225]. The functions a(x) and b(x) describe nuclear shadowing and anti-
shadowing effects. Nuclear shadowing occurs in the x range of 0.0035 < x < 0.03∼ 0.07,
where the ratio of 2FA

2 /(AFd
2 ) < 1; nuclear anti-shadowing occurs in the range of 0.03 ∼

0.07 ≤ x ≤ 0.2, where the F2 ratio is greater than 1 [227, 228]. In this experiment, the x

coverage does not extend below x ∼ 0.2. Therefore, due to our kinematic coverage in this
experiment, these terms were left out of the analysis and Equation 5.42 becomes:

g
3He
1 (x)≈ Pngn

1(x)+2Ppgp
1(x)−0.014

[
gp

1(x)−4gn
1(x)

]
. (5.43)

To obtain the nuclear corrections to extract gn
1/Fn

1 , we first divide Equation 5.43 by
F

3He
1 and rewrite F

3He
1 in terms of F

3He
2 . Solving for gn

1/Fn
1 yields [40]:

gn
1

Fn
1
=

1
P̃n

F
3He
2
Fn

2

(
g

3He
1

F3He
1

− P̃p
F p

2

F3He
2

gp
1

F p
1

)
, (5.44)

where R ≡ σL/σT , the ratio of longitudinal to transverse virtual photon cross sections,
is considered equal for the proton and 3He. The quantity P̃p = 2Pp − 0.014 and P̃n =

Pn + 0.056. The effective polarization of the proton used was Pp = −0.028+0.009
−0.004, and

the neutron value used was Pn = 0.86+0.036
−0.020 [71]. Using Eq. 5.44, we can extract gn

1/Fn
1

from our 3He data. For the unpolarized F
3He
2 structure function, we utilized the F1F209

model [200], which incorporates Fermi motion and EMC effects. For F p
2 and Fn

2 , the unpo-
larized PDF model CJ12 [127] was used. A fit to world gp

1/F p
1 data [18, 19, 51, 64, 73, 229]

was performed and used in the analysis∗. The fit was a second-order polynomial in x with
three free parameters and assumed Q2-independence. This is a reasonable assumption as
the Q2 dependence mostly cancels in the ratio of g1/F1 to leading order and next-to-leading
order [43].

Using the expression of A1 in terms of the structure functions g1, g2 and F1, we obtain
(cf. Eq. 5.44):

An
1 =

1
P̃n

F
3He
2
Fn

2

(
A

3He
1 − P̃p

F p
2

F3He
2

Ap
1

)
. (5.45)

The same models for F2 on 3He, the proton and the neutron used in the g1/F1 analysis were
used in the A1 analysis. A Q2-independent, second-order polynomial in x fit to world Ap

1

data [18, 19, 51, 67, 68, 73, 229] was performed and used in the analysis†. The analysis
for the E = 4.74 GeV (5.89 GeV) data was carried out at the average Q2 value of the data
set, at 2.59 GeV2 (3.67 GeV2). Figures 5.50 and 5.51 show all the contributions that go

∗A detailed discussion of the fitting procedure for gp
1/F p

1 is presented in Appendix D.
†A detailed discussion of the fitting procedure for Ap

1 is given in Appendix D.
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into the An
1 extraction for E = 4.74 GeV and 5.89 GeV data, respectively. The top left panel

shows A
3He
1 and the resulting An

1 data for both the DIS and resonance regions∗. The error
bars shown are statistical only. The top right panel shows the contributions due to Ap

1 . The
bottom left panel shows Fn

2 , F p
2 and F

3He
2 . The bottom right panel shows the F2 ratio for

3He to the neutron, divided by the effective neutron polarization P̃n. The F2 functions are
evaluated at the appropriate Q2 value for the E = 4.74 GeV or 5.89 GeV data. Similar plots
follow for the gn

1/Fn
1 analysis.

The results obtained for both gn
1/Fn

1 and An
1 will be presented in Section 6.2.
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Figure 5.50: Contributions to the An
1 extraction for E = 4.74 GeV data. The top left panel shows

3He data and the resulting neutron data in both the DIS and resonance regions. The contribution
from Ap

1 is shown in the top right, where we use our fit to the world proton data. The bottom
left panel shows F2 on the neutron, proton and 3He, where the nucleon F2 is evaluated using the
CJ12 model [127] and the 3He model is evaluated using the F1F209 model [200]. The bottom
right panel shows the 3He to neutron ratio for F2 divided by the effective neutron polarization
P̃n.

∗See Section 5.6.2.2 for more detail about the resonance data.
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Figure 5.51: Contributions to the An
1 extraction for E = 5.89 GeV data. The description of the

panels is the same as that for Figure 5.50.

5.6.2.2 Resonance Data

With the intention of pushing to larger x to potentially start to discern between the various
models and predictions for An

1, we can examine our resonance data on A1 under the assump-
tion of duality [72, 73, 93, 94, 97]. We have rebinned the A

3He
1 and g

3He
1 /F

3He
1 results for E

= 4.74 GeV and 5.89 GeV in the resonance region into three equally spaced x bins of 0.548,
0.648, and 0.748 for the E = 4.74 GeV data and x = 0.648 and 0.749 for E = 5.89 GeV,
respectively. Our rebinning was restricted to a maximum central value of x∼ 0.75 so as to
avoid the delta resonance which has its peak at x ≈ 0.90∗. The rebinning of the A1 data is
shown in Figures 5.52(a) and 5.52(b). The black data points were obtained from a statistical
error-weighted average of the red data points that contribute to a given new bin, indicated
by the vertical black bars. The systematic error for a new bin was obtained by an average
of the errors contributing to that bin with a weight of 1. The same procedure was done for
the g1/F1 data.

Applying nuclear corrections to our rebinned resonance data yields the results shown
in Section 6.2, and are tabulated in Appendix E.3. The analysis for the E = 4.74 GeV

∗Also, the upper bound of the last bin is x = 0.8, as the nuclear corrections are valid up to that x value.
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Figure 5.52: Rebinning of the A
3He
1 data. The rebinned data points were obtained from a

statistical-error-weighted average, while the systematic error (gray band) was obtained from an
average with a weight of 1 for the errors contributing to the new bin. (a): Es = 4.74 GeV data;
(b): Es = 5.89 GeV data.
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(5.89 GeV) data was carried out at the average Q2 value of the data set, at 3.89 GeV2
(
5.58 GeV2). The same approach was also employed for g1/F1; those results are presented

in Section 6.2 and are tabulated in Appendix E.5.
There has been active work in computing nuclear corrections for resonance data in

recent time [230]. The differences between such calculations and the prescription above
are sizable only in kinematics where the ∆ resonance is prominent. Additionally, accurate
calculations according to [230] require particularly precise data. To estimate the strength
of the ∆ in our kinematics, we have computed A

3He
1 using the MAID model [141] for g

3He
1

and the F1F209 model [200] for F
3He
1 , as shown in Figure 5.53. We can see the large ∆

peak for Q2 = 3 GeV2 curve, shown in blue. The red curve indicates Q2 = 3.89 GeV2,
the
〈
Q2〉 of our E = 4.74 GeV resonance data; since the MAID model is only valid up

to 5 GeV2, we show Q2 = 4.9 GeV2 (green curve). In considering
〈
Q2〉 = 5.58 GeV2 for

our E = 5.89 GeV data, one can see how such resonance behavior will be even smaller
than what is indicated by the Q2 = 4.9 GeV2 calculation. In Figure 5.53 we also indicate
the position of the upper edge of the highest x bin of our (rebinned) resonance data. It is
clear that the resonance structure in these kinematics is not very pronounced given the Q2

range. Due to this and the large statistical errors on our resonance data relative to our DIS
measurements, we take the duality approach outlined above for nuclear corrections on our
resonance data.
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Figure 5.53: A
3He
1 using the MAID [141] and F1F209 [200] models to illustrate the resonance

behavior in our kinematics. The blue curve indicates Q2 = 3 GeV2, the red curve is for Q2 =
3.89 GeV2 and the green curve shows Q2 = 4.9 GeV2. The vertical black line indicates the
upper edge of the highest x bin of our (rebinned) resonance data.
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5.6.3 Systematic Errors

The main factors that contribute to the errors on the 3He data are the physics asymmetries
A‖ and A⊥, and the kinematic factors D, η , ξ and d. Each asymmetry was varied within its
error, and the change in A

3He
1 was observed. For the kinematics, the low-level variables of

the electron momentum p and scattering angle θ were changed within their relative errors
of 1% and 1.4% [169] respectively, and the kinematic factors were re-evaluated∗, and the
change in the A1 asymmetry was observed.

For the systematic error on An
1, the inputs that were varied consisted of Fn

2 and F p
2 ,

F
3He
2 , Ap

1 and our A
3He
1 data. For the neutron and proton F2, various models [89, 127, 231,

232] were compared, and the largest difference in An
1 was taken as the error. The same

procedure was used for F
3He
2 , where the parameterizations considered were F1F209 [200]

and NMC95 [233]. The remaining quantities, A
3He
1 , our fit to Ap

1 data and the effective
polarizations Pn and Pp were varied within their errors for 1000 trials, and the average
deviation from the extracted value was taken as the error. The in quadrature sum of each
component is given as the total error. The errors are given in Tables E.37 and E.38 for the
DIS results, and the errors for the resonance data are presented in Tables E.39 and E.40.

The same procedures are followed for the g1/F1 data, and the errors are tabulated in
Appendix E.5.

∗The ratio R≡ σL/σT , which enters into the calculation of D, was also varied within its given systematic
error in this study.
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5.7 Flavor Decomposition

5.7.1 Extraction From g1/F1 Data

Using the gn
1/Fn

1 data, we can extract the polarized-to-unpolarized quark ratios (∆u +

∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) according to Equations 2.43 and 2.44, where we
need a parameterization of (d + d̄)/(u+ ū) and gp

1/F p
1 . For the former, we used the CJ12

model [127], as shown in Figure 5.54 for Q2 = 2.59 GeV2. For gp
1/F p

1 , we used our fit to the
world data∗, as discussed in Section 5.6.2. The analysis for the E = 4.74 GeV (5.89 GeV)
data was carried out at the average Q2 value of the data set, at 2.59 GeV2 (3.67 GeV2).
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Figure 5.54: The quantity Rdu = (d + d̄)/(u+ ū) computed from the CJ12 model [127] for
Q2 = 2.59 GeV2. A similar curve is used for

〈
Q2
〉
= 3.67 GeV2 data.

The results are tabulated in Appendix E.7, and will be presented in Section 6.3.

5.7.2 Systematic Errors

The systematic errors for the up and down quark ratios were determined by varying the
inputs individually and observing the change in the result. The inputs considered were our
gn

1/Fn
1 data, our gp

1/F p
1 fit, and the (d + d̄)/(u+ ū) ratio. Each quantity was varied within

their respective errors for 1000 runs, and the average deviation was taken as the error.
In this leading-order analysis, the strange contribution is typically left out of the cal-

culation and taken as an error†. We followed the same procedure, where we evaluate the
∗See Appendix D for details about the gp

1/F p
1 fit.

†This is a reasonable approach for x & 0.3 where the strange quarks do not contribute much.
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strange contribution as follows: we compute (∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄)

with the strange component included:

∆u+∆ū
u+ ū

=

(
∆u+∆ū

u+ ū

)

s,s̄=0
+

s+ s̄
u

[
4

15
gp

1
F p

1
− 1

15
gn

1
Fn

1
− 1

5
∆s+∆s̄

s+ s̄

]
(5.46)

∆d +∆d̄
d + d̄

=

(
∆u+∆ū

u+ ū

)

s,s̄=0
+

s+ s̄
d

[
4

15
gn

1
Fn

1
− 1

15
gn

1
Fn

1
− 1

5
∆s+∆s̄

s+ s̄

]
, (5.47)

where the terms (. . .)s,s̄=0 are defined in Equations 2.43 and 2.44 and have no strange
contributions. The second term in Equations 5.46 and 5.47 is the strange contribution
for the up and down quark ratios, respectively. We compute these terms using various
models [87, 89, 127, 220, 231, 234, 235], and took the largest difference between all model
combinations as the error for omitting the strange contribution for the up and down quark
ratios. The in quadrature sum of all contributions gives the full systematic errors, which
are summarized in Appendix E.7.2.

5.8 g1

In this section, we give an overview of the analysis to obtain g
3He
1 from the measured

unpolarized cross sections and double-spin asymmetries. A more detailed discussion of the
g

3He
1 analysis may be found in [169].

5.8.1 Extraction From Data

The spin structure function g1 may be obtained from the measured unpolarized cross sec-
tion σ0 and the double-spin asymmetries A‖ and A⊥ through:

g1 =
MQ2

4α2
2y

(1− y)(2− y)
σ0
[
A‖+ tan(θ/2)A⊥

]
. (5.48)

The measured cross section from the LHRS data did not have the same binning as the
asymmetry data measured on BigBite; to obtain a cross section value for each BigBite bin,
the cross section data (Sect. 5.4.4) were interpolated and extrapolated according to the fit
function:

f (x) = exp
(
a+bx+ cx2) , (5.49)
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Figure 5.55: The fit function used to interpolate and extrapolate the measured cross sections
(Sect. 5.4.4). The error bars shown are the in-quadrature sum of the statistical and systematic
errors. Figure reproduced from [169].

where a, b and c were free parameters determined by the fitting of the data; x is the Bjorken-
x variable. This analysis was done by M. Posik [169]. The fit results are shown in Fig-
ure 5.55.

Utilizing the fit for the unpolarized cross section data, the g1 structure function for 3He
may be formed according to Equation 5.48, and is presented in Figure 5.56. The error
bars represent our statistical errors, while the error bands represent the systematic errors∗.
The world data plotted are DIS data from SLAC E142 [60] and JLab E99-117 [71], and
the JLab E01-012 data [72] are resonance data. The gray band represents global analyses
from [87, 89, 220, 234, 235].

∗The systematic errors include contributions from the double-spin asymmetries, kinematics, and the un-
polarized cross section fit. See [169] for more details.
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Figure 5.56: The g
3He
1 results for E = 4.74 GeV (5.89 GeV) are given in the top (bottom) panel.

The error bars indicate the statistical errors, while the red band indicates the systematic error.
The world data are from SLAC E142 [60] and JLab E99-117 [71], both of which are DIS
data; resonance data from JLab E01-012 [72] are also plotted. The gray band represents global
analyses from [87, 89, 220, 234, 235]. Figure reproduced from [169].
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5.9 a2

The analysis necessary to extract a2, the second moment of g1, is discussed in this section.
We first introduce the Cornwall-Norton Moments in Section 5.9.1, and then we present the
analyses needed to complete the entire integral in Sections 5.9.2– 5.9.4.

5.9.1 The Cornwall-Norton Moments

Using the OPE, an infinite set of sum rules may be derived under a twist expansion of the
spin structure functions g1 and g2 [43]. Such expansions of g1 and g2 are known as the
Cornwall-Norton (CN) moments [58]:

∫ 1

0
xn−1g1

(
x,Q2)dx =

1
2

an−1, n = 1,3,5, . . . (5.50)
∫ 1

0
xn−1g2

(
x,Q2)dx =

n−1
2n

(dn−1−an−1) , n = 3,5,7, . . . , (5.51)

where only twist-2 and twist-3 contributions are considered. The quantities an−1 and dn−1

represent the twist-2 and twist-3 matrix elements, respectively∗ The expansions are only
over odd integers, which is a result of the symmetry of the structure functions under charge
conjugation [197].

Using our results for g
3He
1 (Fig. 5.56), we can evaluate the n= 3 CN moment (Eqn. 5.50),

known as a2:

a2
(
Q2)=

∫ 1

0
x2g1

(
x,Q2)dx. (5.52)

Since our measured x-range consists of 0.25 < x < 0.90, we also have to consider the
unmeasured regions of x < 0.25 (referred to as the low-x region), and x > 0.90 (referred to
as the high-x region). In the following, we discuss the analysis associated with each region
leading to the extraction of an

2.

5.9.2 Low-x Region

For the low-x portion of the integral to evaluate an
2, we consider the world data on gn

1 from
SLAC E142 [60], E143 [51] E154 [82], and JLab E97-103 [236]. Plotting x2gn

1 as a function
of x, we fit a third-order polynomial in x, assuming no Q2-dependence, see Figure 5.57. The

∗The convention used by [58] is such that the matrix elements are labeled according to n as opposed to
n−1, as defined in this work.
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gray band indicates the fitting error obtained by an estimate in the spread of the data (cf.
Section 5.6.2). The obtained fit parameters are:

p0 = 1.692E-04±1.829E-04

p1 = −1.584E-02±8.093E-03 (5.53)

p2 = 2.561E-02±8.886E-02

p3 = 1.423E-02±2.755E-01

Integrating over this fit yields an
2 in the low-x region given in Equation 5.54.

an
2 =−3.056E-04 for 0.02≤ x≤ 0.25 (5.54)

We note here that the fit was done down to x = 0.02; this has a minimal effect on the a2 cal-
culation due to the x2-weighting of the integral. This value for the low-x region (Eqn. 5.54)
was taken as a constant for each Q2 bin that we have data for,

〈
Q2〉 = 3.21 GeV2 and

4.32 GeV2, corresponding to the E = 4.74 GeV and 5.89 GeV data sets, respectively. The
data used in the low-x region cover 0.5 < Q2 < 10 GeV2, and it can be seen in Figure 5.57
that the Q2-dependence is minimal.
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Figure 5.57: The world data [51, 60, 82, 236] on gn
1 in the range 0 < x < 0.25. The data cover

0.5 < Q2 < 10 GeV2. It can be seen in the plot that the Q2-dependence is minimal. Our fit is
given by the green curve, and its error is given by the gray band.
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Table 5.3: The extracted a
3He
2 in the measured region of 0.25 < x < 0.90. The errors listed are

statistical and systematic, respectively. All errors are absolute.

〈
Q2〉 (GeV2) a

3He
2 (measured)

3.21 -2.085E-04 ± 1.613E-04 ± 3.539E-05
4.32 -1.351E-04 ± 2.079E-04 ± 3.348E-05

5.9.3 Measured Region

5.9.3.1 3He Integration

For the measured region of x, we compute the integral using our g
3He
1 data:

a
3He
2
(
Q2)=

∫ 0.90

0.25
x2g

3He
1
(
x,Q2)dx. (5.55)

This is done for the E = 4.74 GeV and 5.89 GeV data sets, where the average Q2 is
3.21 GeV2 and 4.32 GeV2, respectively. The result of that integration is given in Table E.72.
The systematic error given in the table is due to the varying our g

3He
1 data within their

systematic errors, along with the errors coming from x and observing the change on the
resulting a

3He
2 value.

5.9.3.2 Target Mass Corrections

The CN moments have been argued to only be valid when the terms corresponding to the
finite mass of the nucleon can be neglected; such factors are called target mass correction
(TMC) terms [237–242]. These corrections are related to twist-2 operators and are of order
O
(
M2/Q2). The Nachtmann moments M1 and M2

∗ incorporate target mass corrections into
the integrals of interest, compared to the CN moments which do not incorporate TMCs.

The M1 moments are are connected to the twist-2 matrix element a2 [58, 140, 243]:

Mn
1
(
Q2) ≡ 1

2
an−1

=
∫ 1

0
dx

ξ n+1

x2

[
g1
(
x,Q2)

(
x
ξ
− n2

(n+2)2
M2x2

Q2
ξ

x

)
(5.56)

−g2
(
x,Q2)

(
M2x2

Q2
4n

n+2

)]
,

∗The M2 moments correspond to the twist-3 matrix element d2 and will not be discussed here.
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Table 5.4: The extracted a
3He
2 in the measured region of 0.25 < x < 0.90 using the CN moment

and Nachtmann moment approaches. The second-to-last column is the absolute difference
between the two calculations. We see that the difference between the two is smaller than the
statistical errors.

〈
Q2〉 (GeV2) CN Moment Nachtmann Moment ∆a

3He
2 Stat. Error (CN)

3.21 -2.09E-04 -9.09E-05 1.18E-04 1.61E-04
4.32 -1.35E-04 -1.14E-04 2.16E-05 2.08E-04

where ξ = 2x/
(

1+
√

1+4M2x2/Q2
)

and n= 3,5 . . .. In the limit of large Q2, one can see
how these moments reduce to the CN moments. In evaluating the Nachtmann moments,
we need to evaluate the n = 3 moment in order to compare to the CN moment (cf. Equa-
tion 5.50). Therefore, we evaluate M3

1 to obtain a2 in the Nachtmann formalism. We note
here the dependence on g2; because of this, we utilize the g

3He
2 data measured in this exper-

iment∗. Comparing the integrals in the two forms, we find that the difference between the
two results is smaller than the size of our statistical errors, as shown in Table 5.4. Because
of this, we decided to not include TMCs in our calculations.

5.9.3.3 Nuclear Corrections

With the a
3He
2 quantity extracted in the measured region for our two average Q2 bins, we

need to apply nuclear corrections. This is done in a similar fashion as shown in Sec-
tion 5.6.2, where an

2 is given as:

an
2 =

1
P̃n

(
a

3He
2 − P̃pap

2

)
, (5.57)

where P̃n and P̃p are the effective polarizations of the neutron and proton in 3He, respec-
tively. They include effects due to the presence of ∆ components in the 3He wave function
and are defined in Section 5.6.2. The proton a2 is evaluated by considering various mod-
els [87, 89, 220, 234, 235, 244] and taking the average as the central value for ap

2 and the
maximum difference between the models as the error. The values used for ap

2 are given
in Table 5.5. Using these values for ap

2 , we can extract an
2 from our 3He data; the neutron

results are given in Table 5.6.

∗The structure function analysis for both g
3He
1 and g

3He
2 was carried out by M. Posik. We use the results

from his work. For more details, see [169].
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Table 5.5: ap
2 estimated by considering various global analyses [87, 89, 220, 234, 235, 244].

The average of all values is the central value given, while the maximum difference between the
models is taken as the error.

〈
Q2〉 (GeV2) ap

2
3.21 9.623E-03 ± 9.414E-04
4.32 9.126E-03 ± 8.464E-04

Table 5.6: The extracted an
2 in the measured region of 0.25 < x < 0.90. The error given here is

statistical only.

〈
Q2〉 (GeV2) an

2 (measured)
3.21 5.078E-04 ± 1.761E-04
4.32 5.499E-04 ± 2.270E-04

5.9.4 High-x Region

To evaluate an
2 on the range 0.90 < x < 1, we consider the elastic contribution (x = 1).

Considering the size of our g
3He
1 data, we consider the region leading up to the elastic

(0.90 < x < 0.99̄) to be negligible. The elastic component may be evaluated as:

an,el
2 =

∫ 1

0
dxx2gn,el

1
(
x,Q2) (5.58)

=
∫ 1

0
dxx2 Gn

M
(
Q2)

2
Gn

E
(
Q2)+ τGn

M
(
Q2)

1+ τ
δ (x−1) (5.59)

=
Gn

M
(
Q2)

2
Gn

E
(
Q2)+ τGn

M
(
Q2)

1+ τ
, (5.60)

where τ ≡ Q2/(4M2), and M is the nucleon mass; the elastic electric form factor for the
neutron is Gn

E , while the elastic magnetic form factor is Gn
M. We evaluate the elastic an

2

using the Riordan [245] parameterization for Gn
E and the Kelly [246] parameterization for

Gn
M. The elastic a2 on the neutron is shown as a function of Q2 in Figure 5.58.

5.9.5 Full Neutron Extraction

To extract the full an
2, we add the contributions from all three x regions:

an
2 = an

2(low-x)+an
2(measured)+an

2(high-x). (5.61)

The results will be presented in Section 6.4 and are tabulated in Appendix E.8.

219



)2 (GeV2Q
-310 -210 -110 1 10

-2

-1.5

-1

-0.5

0

Form Factors

)2 (GeV2Q
-310 -210 -110 1 10

-2

-1.5

-1

-0.5

0

 (Riordan)n
EG

 (Kelly)n
MG

)2 (GeV2Q
-310 -210 -110 1 10

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

el
2a

)2 (GeV2Q
-310 -210 -110 1 10

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

)n

M
), Kelly (Gn

E
Riordan (G

Figure 5.58: The left panel shows the Gn
E (red) and Gn

M (blue) elastic form factors, using
the Riordan [245] and Kelly [246] parameterizations, respectively. The right panel shows the
elastic contribution to an

2.

5.9.6 Systematic Errors

To obtain the systematic error on our an
2 result, we vary the inputs for a given region, and

compute the resulting a2 while keeping the other inputs constant; for instance, when com-
puting the systematic error due to the low-x region, we vary our fit within its error and
compute the low-x integral. From there, we extract an

2 using the already-extracted mea-
sured and high-x an

2 values. This is done for 1000 trials for each x region, and the average
deviation from our extracted result is taken as the error. In the measured region, our a

3He
2

is varied within its systematic error, as are the effective neutron and proton polarizations;
the ap

2 value is also varied within its error. For the elastic component, we also utilize the
Galster [211] and dipole parameterizations for Gn

E and Gn
M; the difference between the

resulting an
2 and the one obtained when using the Riordan [245] and Kelly [246] parame-

terizations for Gn
E and Gn

M is taken as the error. The in quadrature sum of all errors gives
the total error. The error analysis results are tabulated in Appendix E.8.
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CHAPTER 6

RESULTS

In this chapter, we present the results extracted for A
3He
1 and g

3He
1 /F

3He
1 in Section 6.1, and

in Section 6.2 we present the results for An
1 and gn

1/Fn
1 . In Section 6.3, we show the results

for the flavor decomposition analysis to obtain (∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄).
The results for an

2 are presented in Section 6.4. Tables of all results are given in Appendix E.

6.1 A
3He
1 and g

3He
1 /F

3He
1

The 3He results for A1 are presented in Figure 6.1(a), where our results for E = 4.74 GeV
(5.89 GeV) are given by the red (blue) points. The error bars on our data indicate the
statistical error and the red (blue) band represents the systematic error for E = 4.74 GeV
(5.89 GeV). Also plotted is the world DIS data from SLAC E142 [60], HERMES [66] and
JLab E99-117 [71]. Also plotted is resonance data from JLab E01-012 [72] at their two
highest

〈
Q2〉 bins of 2.6 GeV2 and 3.6 GeV2. The data are compared to selected mod-

els, including the statistical quark model from Bourrely et al. [89] given by the orange
curve, the pQCD with orbital angular momentum parameterization from Avakian al. [88]
(magenta) and the global analysis from Leader et al. [86] given by the cyan curve. Our
results are in good agreement with the current world data, and are consistent with the trend
displayed by the statistical quark model. The E06-014 experiment was a dedicated mea-
surement of the quantity dn

2 , not An
1, so the statistical precision of the A1 results are not as

competitive with those of JLab E99-117, an A1-dedicated measurement. Despite this, we
do have more complete kinematic coverage in that our measurement covers the DIS and
resonance regions, where the resonance data starts at x > 0.519 (0.623) for E = 4.74 GeV
(5.89 GeV).

The results for g
3He
1 /F

3He
1 are shown in Figure 6.1(b), where our data are given by the

red and blue points for E = 4.74 GeV and 5.89 GeV data, respectively. The world DIS data
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presented in the plot is from JLab E99-117, while the g
3He
1 /F

3He
1 models displayed corre-

spond to the same groups used in the A
3He
1 plot. Similar to the A

3He
1 results, our statistical

errors are not quite as competitive with those of JLab E99-117, but we do provide a more
complete kinematic coverage, with results for the DIS and resonance regions. Our results
are also in good agreement with the statistical quark model of Bourrely et al.
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Figure 6.1: A
3He
1 and g

3He
1 /F

3He
1 results for E = 4.74 GeV (5.89 GeV) shown in red (blue).

The statistical errors are indicated by the error bars, while the colored bands show the sys-
tematic errors. The models displayed are from Bourrely et al. (orange) [89], Avakian et al.
(magenta) [88], and Leader et al. (cyan) [86]. (a): A

3He
1 data, compared to world DIS data

from SLAC E142 [60], JLab E99-117 [71], and resonance data from JLab E01-012 [72]. (b):
g

3He
1 /F

3He
1 data, compared to world DIS data from JLab E99-117.
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6.2 An
1 and gn

1/Fn
1

6.2.1 DIS Results

Results for An
1 are given in Figure 6.2, where our data are indicated by the red (blue) points

for E = 4.74 GeV (5.89 GeV), and the colored bands indicate their systematic errors. World
DIS data presented are SLAC E142 [60] and E154 [61], JLab E99-117 [71] and HER-
MES [64]. The models shown are the relativistic CQM model from Isgur [81] (gray band),
a statistical quark model [89, 90] (orange), and pQCD models from Leader et. al [86]
(cyan), and Avakian et al. [88] (magenta), where the latter model explicitly includes orbital
angular momentum Fock states into their calculations. A modified NJL model from Cloët
et al. [114] (green) is also plotted. The predictions from Roberts et al. [126] are plotted at
x = 1, which follow from Dyson-Schwinger Equation treatments, where non-pointlike di-
quark correlations arise naturally as a consequence of dynamical chiral symmetry breaking.
Our results are consistent with the world data, in particular the results from JLab E99-117,
which shows a zero-crossing at x≈ 0.5. Our results tend to exclude the pQCD calculation
from Leader et al., which is formulated under the notion of hadron helicity conservation,
where orbital angular momentum of quarks is assumed to be zero; this points perhaps to an
importance of orbital angular momentum of quarks in the nucleon.

Our extracted results for gn
1/Fn

1 are shown in Figure 6.3, where our data are indicated
by the red (blue) points for E = 4.74 GeV (5.89 GeV), and the colored bands indicate their
systematic errors. The world DIS data presented here corresponds to SLAC E143 [51] and
E155 [229] and JLab E99-117 [71]. The models shown are the same as shown in Figure 6.2,
without the the modified NJL model. Our data are consistent with the data from JLab E99-
117 and the plotted models. Our results also provide much better precision relative to the
SLAC measurements.

6.2.2 Resonance Results

By invoking duality [72, 73, 93, 94, 97], we have extracted An
1 in the resonance region,

as shown in Section 5.6.2.2. Our results are presented in Figure 6.4(a), which shows our
DIS results along with the resonance points (solid squares). Also displayed are resonance
data from JLab E01-012 [72] (yellow and purple crosses), where we have applied the nu-
clear corrections according to the procedure outlined in Section 5.6.2.2. To get a clearer
picture, we have combined our results from E = 4.74 GeV and 5.89 GeV, due to the lack
of Q2-dependence, shown in Figure 6.4(b). Despite the large statistical errors of our data,
it appears that the trend of the An

1 data becomes somewhat constant beyond x = 0.6 and
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Figure 6.2: An
1 results compared to world data and models. Our data for E = 4.74 GeV

(5.89 GeV) are given by the red (blue) data points; the error bars indicate the statistical er-
rors, while the bands give the systematic errors. Also plotted are the world data from SLAC
E142 [60] and E154 [61], JLab E99-117 [71] and HERMES [64]. The models shown are from
Isgur [81] (gray band), Bourrely et al. [89, 90] (orange), Leader et. al [86] (cyan), Avakian et
al. [88] (magenta), and Cloët et al. (green) [114].

appears to be in reasonable agreement with the predictions of the statistical quark model of
Bourrely et al.; our resonance data provide a first glimpse into the large x region that will
be probed in the upcoming 12 GeV era at JLab [91, 92].

Similar to what was done for the A1 data, we obtained gn
1/Fn

1 in the resonance region,
indicated by the solid squares in Figure 6.5(a), where the same world data and models as
Figure 6.3 are plotted. Averaging our results over E = 4.74 GeV and 5.89 GeV together,
we obtain the data shown in Figure 6.5(b). Overall, it is seen that our experiment agrees
well with the models, and provides higher precision data compared to what is currently
available. Our resonance results provide a good benchmark for future experiments in the
upcoming 12 GeV era at JLab.
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Figure 6.3: gn
1/Fn

1 results compared to world data and models. Our data for E = 4.74 GeV
(5.89 GeV) are given by the red (blue) data points; the error bars indicate the statistical er-
rors, while the bands give the systematic errors. Also plotted are the world data from SLAC
E143 [51] and E155 [229] and JLab E99-117 [71]. The models shown are those from Bourrely
et al. [89] (solid), Avakian et al. [88] (magenta), and Leader et al. [86] (cyan).
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(b) An
1 DIS and resonance results, averaged over E = 4.74 GeV and 5.89 GeV.

Figure 6.4: An
1 results for the DIS and resonance regions, compared to world data and models.

(a): Our data for E = 4.74 GeV (5.89 GeV) are given by the red (blue) data points; the error
bars indicate the statistical errors, while the bands give the systematic errors. The same world
data and models are plotted as seen in Figure 6.2, but now includes resonance data from JLab
E01-012 [72], where we have applied the nuclear corrections, see text. (b): Same plot as the
top panel, but now our data are averaged over the two beam energies of E = 4.74 GeV and
5.89 GeV.
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Figure 6.5: gn
1/Fn

1 results for the DIS and resonance regions, compared to world data and
models. (a): Our data for E = 4.74 GeV (5.89 GeV) are given by the red (blue) data points; the
error bars indicate the statistical errors, while the bands give the systematic errors. The same
world data and models are plotted as seen in Figure 6.3. (b): Same plot as the top panel, but
now our data are averaged over the two beam energies of E = 4.74 GeV and 5.89 GeV.
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6.3 Flavor Decomposition

Using our results for gn
1/Fn

1 , we have extracted the polarized-to-unpolarized quark ratios
(∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄). Our results are displayed in Figure 6.6(a),
where the red (blue) points represent the E = 4.74 GeV (5.89 GeV) data. The error bars
indicate the statistical and systematic errors added in quadrature. The gray band indicates
the uncertainty from leaving out the strange quark contribution, which is also included in
our error bars. The world data plotted includes DIS results from JLab E99-117 [71] and
CLAS EG1b [73]. The HERMES data [66] are from a semi-inclusive DIS measurement.
The models plotted are two types of pQCD calculations: Leader et al. [86] (cyan), which
requires hadron helicity conservation, under the assumption of zero quark orbital angular
momentum; the other is from Avakian et al. [88], which includes orbital angular momentum
explicitly into their calculations (magneta). The statistical quark model from Bourrely et

al. [89, 90] is also plotted (orange curve) along with a modified NJL model from Cloët et

al. [114] (green). The points plotted at x = 1 are Dyson-Schwinger Equation treatments
from Roberts et al. [126]. We have also computed a statistical error-weighted average over
our results at E = 4.74 GeV and 5.89, given in Figure 6.6(b). For the up quark, our results
hint towards a flattening of the trend of the ratio in the large-x region, pointing towards the
DSE calculations of Roberts et al. [126]. Higher-precision gp

1/F p
1 data are required to be

able to discern between the various models; at the current precision, we do not have this
capability. On the down quark, our results confirm the negative trend of the existing data,
with no indication of a change in the trend towards positive values, as would be expected
from the pQCD calculations. However, our results rule out the pQCD parameterization that
requires hadron helicity conservation [86]. This again indicates the potential importance of
orbital angular momentum in the spin structure of the nucleon.
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(a) Flavor decomposition results.
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(b) Flavor decomposition results, averaged over E = 4.74 GeV and 5.89 GeV.

Figure 6.6: Flavor decomposition DIS results compared to world data and models. (a): Our
data for E = 4.74 GeV (5.89 GeV) are given by the red (blue) data points; the error bars indi-
cate the statistical errors, while the bands give the systematic errors. The world data plotted
are from inclusive DIS experiments JLab E99-117 [71], JLab CLAS EG1b [73] and a semi-
inclusive DIS experiment at HERMES [66]. The models plotted correspond to a statistical
quark model [89, 90] (orange), a pQCD calculation requiring HHC [86] (cyan), and a pQCD
calculation that allows quark orbital angular momentum to be non-zero [88] (magenta). A
modified NJL model [114] (green) is also plotted. The predictions at x = 1 are from DSE treat-
ments [126]. (b): Same plot as the top panel, but now our data are averaged over the two beam
energies of E = 4.74 GeV and 5.89 GeV.
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6.4 an
2

The extracted an
2 is presented as the red points in Figure 6.7; the inner error bar for our data

is statistical only, while the outer error bar shows the in quadrature sum of the statistical
and systematic errors. The top panel shows the result without the elastic contribution and
is compared to data from SLAC E143 [51] and a Lattice QCD calculation from Göckeler
et al. [135]. It is important to note here that the Lattice calculation has the elastic included

already and that the error bar includes a 15% systematic error estimate from extrapolating
their calculation to the chiral limit [135]. The bottom panel of the plot shows the a2 data
including the elastic contribution, which is given as the dashed curve and is computed by
using the Riordan [245] and Kelly [246] parameterizations for Gn

E and Gn
M, respectively.

We see that our results have excellent errors relative to what is currently available from the
world data and model calculations, albeit their Q2 = 5 GeV2 for both SLAC E143 and the
Lattice calculation.
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Figure 6.7: Our extracted an
2 measurement compared to SLAC E143 [51] and a Lattice QCD

calculation [135], both of which are at Q2 = 5 GeV2. The top panel shows the data without
the elastic contribution, while the bottom panel shows the data with the elastic contribution.
The Lattice calculation includes the elastic contribution in both panels. The elastic contribution
is computed by using the Riordan [245] and Kelly [246] parameterizations for Gn

E and Gn
M,

respectively.
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CHAPTER 7

CONCLUSION

We have presented the analysis of the E06-014 experiment, where we have extracted the
unpolarized cross section σ0, that was used in the analysis to obtain an

2. Also, we have
presented the work necessary to extract double-spin asymmetries A‖ and A⊥ leading to the
calculation of the virtual photon-nucleon asymmetry A

3He
1 . From there, we obtained An

1 by
applying nuclear corrections. We have also evaluated the structure function ratio g1/F1 on
both 3He and the neutron. Using our gn

1/Fn
1 data, we obtained the polarized-to-unpolarized

quark ratios (∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄). Utilizing our measured g
3He
1 data,

we extracted the twist-2 matrix element a
3He
2 ; applying nuclear corrections, we obtained an

2.
Our results for A

3He
1 are in good agreement with the existing world data, providing a

more complete kinematic coverage relative to the other experiments which yielded either
DIS or resonance measurements. Our results are consistent with the trend displayed by the
statistical quark model [89]. Similar results follow for g

3He
1 /F

3He
1 .

The measurements of An
1 in the DIS region are in good agreement with current data, and

explicitly rules out the pQCD calculation requiring hadron helicity conservation by Leader
et al. [86] towards x∼ 0.57. The relativistic constituent quark model [81], statistical quark
model [89, 90] and the pQCD calculation with orbital angular momentum included [88]
remain as good descriptions of the physics given the precision of the current data including
our results. Our resonance extraction under the assumption of duality [72, 93, 94], com-
bined with our analysis on the JLab E01-012 [72] data, reveals interesting behavior of An

1

at larger x (x > 0.6), where the data suggests that the asymmetry starts to become constant,
and perhaps in line with the DSE predictions at x = 1 of 0.34 (0.17) in a contact (realistic)
framework from Roberts et al. [126]. These resonance results will provide a benchmark
for the upcoming experiments at JLab in the 12 GeV era [91, 92].

Our results on gn
1/Fn

1 show improved precision relative to the existing SLAC data [51,
229], and are in agreement with the JLab E99-117 [71] data. Our data are also consistent
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with the trend indicated by the statistical quark model [89] and the pQCD calculation with
orbital angular momentum included [88].

The extracted polarized-to-unpolarized quark ratio for the down quark reveals a nega-
tive trend of the ratio, confirming what has been seen previously in inclusive DIS measure-
ments at JLab [71, 73] and semi-inclusive DIS measurements at HERMES [66]. The lack
of evidence of the down quark ratio turning positive towards larger x ∼ 0.6 indicates that
the pQCD with HHC calculation [86] does not describe the physics adequately, and that
orbital angular momentum may be playing a more prominent role; however, the slope of
our data does not necessarily agree with the trend of the Avakian et al. calculation [88], and
it appears that the statistical quark model [89, 90] agrees best with our data set. The results
on the up quark are driven by our fit to existing world gp

1/F p
1 data, and hence at the current

precision, we cannot discern between the various models; though it does appear that the
ratio tends to flatten out towards the highest x bins we have data for, and appears to trend
towards the DSE calculations of Roberts et al. [126].

The twist-2 matrix element an
2 shows increased precision relative to the available data

from SLAC E143 [51] and the Lattice QCD calculation from Göckeler et al. [135].
Our measurements of An

1 in the DIS regime confirm the trend seen in previous measure-
ments, and also points to the importance of orbital angular momentum in spin structure of
the nucleon. The resonance results give a point of reference to check against in the next-
generation experiments planned at JLab. The ratio (∆d + ∆d̄)/(d + d̄) provides further
evidence that the quark orbital angular momentum plays an important role in nucleon spin
structure.
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APPENDIX A

ELECTRON EFFICIENCIES

Presented in Table A.1 are the electron cut efficiencies binned by the LHRS momentum
setting and beam energy for the gas Čerenkov, pion rejector, one-track and β cuts. Addi-
tionally, the trigger efficiencies are given.

p (GeV) E (GeV) εcer (%) εpr (%) ε1 (%) εβ (%) εtrig (%)

0.60 4.74 96.33 ± 1.37 98.70 ± 0.79 99.28 ± 0.59 99.96 ± 0.46 99.96
0.60 5.89 95.57 ± 1.42 98.49 ± 0.56 99.34 ± 0.43 99.96 ± 0.32 99.96
0.70 5.89 96.20 ± 0.84 99.24 ± 0.61 99.28 ± 0.56 99.96 ± 0.47 99.95
0.80 4.74 97.14 ± 3.07 99.57 ± 1.09 99.21 ± 0.84 99.94 ± 0.71 99.94
0.90 5.89 96.32 ± 1.55 99.52 ± 1.07 99.29 ± 0.79 99.95 ± 0.68 99.95
1.12 4.74 97.08 ± 1.52 99.54 ± 1.11 99.16 ± 0.82 99.95 ± 0.86 99.95
1.13 5.89 96.08 ± 2.01 99.48 ± 1.37 99.23 ± 1.04 99.92 ± 0.83 99.93
1.19 4.74 97.67 ± 1.50 99.74 ± 1.06 99.04 ± 0.79 99.97 ± 0.82 99.94
1.20 5.89 97.48 ± 2.04 99.18 ± 1.77 99.21 ± 1.31 99.91 ± 1.27 99.97
1.26 4.74 97.92 ± 1.25 99.64 ± 1.16 99.08 ± 0.92 99.93 ± 0.90 99.98
1.27 5.89 97.93 ± 1.82 99.64 ± 1.39 99.17 ± 0.97 99.93 ± 0.89 99.94
1.34 4.74 97.53 ± 1.69 99.56 ± 1.53 99.02 ± 0.99 99.96 ± 1.05 99.96
1.34 5.89 97.54 ± 2.06 99.11 ± 1.99 98.98 ± 1.19 99.96 ± 1.27 99.96
1.42 4.74 97.53 ± 1.63 99.32 ± 1.91 99.19 ± 1.24 99.95 ± 0.99 99.95
1.42 5.89 97.75 ± 1.69 99.35 ± 1.60 98.81 ± 1.18 99.95 ± 1.03 99.94
1.51 4.74 98.36 ± 1.61 99.47 ± 1.71 99.10 ± 1.15 99.95 ± 1.04 99.95
1.51 5.89 98.07 ± 1.85 99.33 ± 1.85 99.17 ± 1.33 99.85 ± 1.14 99.94
1.60 4.74 98.16 ± 2.07 99.40 ± 2.06 98.95 ± 1.42 99.89 ± 1.29 99.96
1.60 5.89 97.59 ± 2.98 99.33 ± 2.20 98.83 ± 1.41 99.88 ± 1.31 99.95
1.70 5.89 98.12 ± 3.28 99.11 ± 3.21 98.62 ± 1.92 99.85 ± 1.75 99.94

Table A.1: The electron efficiencies at each kinematic setting of the LHRS for the gas
Čerenkov, pion rejector, one-track, β cut efficiencies and trigger efficiencies. The large (statis-
tical) error bars are seen on some of the kinematic settings as there were significantly reduced
statistics at these momentum bins. There are no statistical errors indicated on the trigger effi-
ciencies since their errors were negligible.
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APPENDIX B

THE EFFECTIVE TARGET LENGTH

The effective target length seen by the spectrometer, ∆Z, is illustrated in Figure B.1. The
spectrometer views the target, depicted by the dark black rectangle, at an angle θ ; therefore,
the effective length that the spectrometer sees is longer than what the actual length is. From
the diagram, it can be seen that the effective length ∆Z is related to the y-coordinate (in the
target coordinate system):

cosα = sinθ (B.1)

sinθ =
L

2∆y
(B.2)

⇒ ∆Z = 2∆y =
L

sinθ
. (B.3)
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Figure B.1: A diagram illustrating how ∆Z is computed from the y-coordinate seen by the
spectrometer. The electron beam enters from the bottom of the diagram.
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APPENDIX C

RADIATIVE CORRECTIONS

This chapter contains extra details concerning the radiative correction analysis. In par-
ticular, the radiation lengths are presented in Section C.1 and the cross section model is
discussed in detail in Section C.2. The models used in the radiative corrections for the
asymmetries are presented in Section C.3.

C.1 Radiation Lengths

The material thicknesses in the path of the incoming electron for the LHRS and BigBite are
listed in Table C.1. Electrons measured on the LHRS and BigBite share the same incident
path along the beamline, and hence have the same radiation length before the interaction
occurs at the target. The materials include the beryllium endcap of the beam pipe, followed
by 4He in the target enclosure up to the glass endcap of the target cell, followed by half of
the 3He target material.

For the scattered electron measured by the LHRS, the material thicknesses are given by
Table C.2. The materials in the path of the scattered electron are 3He, the target cell wall,
4He, air and kapton. The thicknesses of 3He and the target cell wall are calculated as the
amount of material seen at an angle of 45◦ with respect to the beamline, see Figure C.1.
The BigBite spectrometer path is not drawn here, as it is the same as the LHRS, placed
symmetrically on the other side of the beamline, at 45◦ to the right.

The radiation lengths seen by the scattered electrons measured by the BigBite spectrom-
eter are listed in Table C.3, which are similar to what is seen by the LHRS. The thickness
of 3He, glass and 4He seen by the two spectrometers are the same because they are both
positioned at 45◦ with respect to the beamline. The main difference with BigBite is that
there is a larger region of air before entering the spectrometer and there is no kapton.
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Radiation Lengths: Before Scattering
Material ρ (g/cm3) X0 (g/cm2) L (cm) T (#X0)

Be 1.85 65.19 0.025 7.20E-04
4He 1.66E-03 876.66 22.86 4.33E-05

Glass (GE-180) 2.77 19.42 0.012 1.73E-03
3He 1.25E-03 54.28 19.05 4.39E-04

Total – – – 2.93E-03

Table C.1: The radiation lengths of the materials in the path of the incoming electron.

LHRS Radiation Lengths: After Scattering
Material ρ (g/cm3) X0 (g/cm2) L (cm) T (#X0)

3He 1.25E-03 54.28 1.34 3.08E-05
Glass (GE-180) 2.77 19.42 0.24 3.35E-02

4He 1.66E-03 876.66 79.05 1.49E-04
Air 1.20E-03 36.81 51.23 1.67E-03

Kapton 1.42 40.61 0.025 8.88E-04
Total – – – 3.62E-02

Table C.2: The radiation lengths of the materials in the path of the scattered electron in the
LHRS.

BigBite Radiation Lengths: After Scattering
Material ρ (g/cm3) X0 (g/cm2) L (cm) T (#X0)

3He 1.25E-03 54.28 1.34 3.08E-05
Glass (GE-180) 2.77 19.42 0.23 3.35E-02

4He 1.66E-03 876.66 79.05 1.49E-04
Air 1.20E-03 36.81 101.95 3.32E-03

Total – – – 3.70E-02

Table C.3: The radiation lengths of the materials in the path of the scattered electron for the
BigBite spectrometer.
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Figure C.1: A top-view of Hall A showing the electron’s path before entering the LHRS. Un-
fortunately, the plastic target enclosure thickness was not known. Various material types of
the enclosure’s thickness were tested and found to be negligible relative to the other materi-
als [247]. The electron path to the BigBite spectrometer is similar, but is not shown; it would
be on the right side of the beamline, at an angle of 45◦.
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C.2 Cross Sections

C.2.1 F1F209 Model

In order to carry out the radiative corrections on the data of interest, one needs data at

the same scattering angle to fill out the phase space that is indicated by the limits of the
integrals in Equation 5.24. It turns out that we did not take enough data, as the experiment
only covered two beam energies of 4.74 and 5.89 GeV. However, we can use a model to
generate the needed input spectra to carry out our radiative corrections.

The model we used was F1F209, by P. Bosted and V. Mamyan [200]. It is a phe-
nomenological model fit to various Born cross section data for various targets and is valid
for A > 2. The kinematic coverage is 0 <W < 3.2 GeV and 0.2 < Q2 < 5 GeV2. F1F209
is fortran code that calculates the unpolarized structure functions F1 and F2, each of which
is a sum of a quasi-elastic and an inelastic term. These may be in turn used to calculate the
Born cross section according to:

d2σ

dΩdEp
=

α2 cos2(θ/2)
[
2Es sin2(θ/2)

]2
[

1
ν

F2
(
W 2,Q2)+2tan2 (θ/2)

1
M

F1
(
W 2,Q2)

]
, (C.1)

where α = 1/137 is the fine structure constant; ν = Es−Ep is the energy transferred to the
target; M is the nucleon mass; W is the invariant mass of the virtual photon-nucleon system
and Q2 is the momentum transferred to the target squared.

C.2.2 Scaling and Testing the Model

To ensure the accuracy of the spectra predicted by the model in our particular range of W

and Q2, we tested the model against various world data. In particular, we tested it against
data from JLab experiments E94-010 and E01-012, since despite these two experiments
being at different scattering angles (15 and 25, 32◦ respectively), they do fall in our phase
space, see Figure C.2. Therefore, these data provide a good calibration for the model.

The model needed some moderate tweaking to be in good agreement with the afore-
mentioned experimental data. To bring F1F209 into agreement with the data, we noticed a
weak Es dependence in the inelastic region of the data. Therefore, we fit the ratio of data
to model as a function of Es to a line. The “scaling functon” is:

f (Es) = 0.906−0.00699Es. (C.2)
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Figure C.2: Phase space coverage for Es = 4.74 and 5.89 GeV. The vertical blue lines indicate
a cross section spectrum for a given Es from the E94-010 experiment, while the green lines
indicate spectra for E01-012.

This function was applied to the inelastic component of the structure functions F1,2. The
resulting fit as compared to the data is shown in Figures C.3 and C.4. To be sure that
the angular dependence was in good shape, we also compared the new scaled F1F209
fit to quasi-elastic data at larger scattering angles, shown in Figure C.5. We can see the
agreement is reasonable.

C.2.3 Utilizing the Model

This optimized fit was used to generate spectra at Es values ranging from 1.5 to 5.8 GeV in
steps of 100 MeV in order to cover the full range of the phase space required at both Es =

4.74 and 5.89 GeV. The real data at 4.74 GeV was used in the unfolding of the 5.89 GeV
data set.

The elastic tail and quasi-elastic tail were subtracted from our data prior to carrying
out the radiative corrections as discussed in Section 5.4.3. As a result, the phase space
considered in the integration starts at the pion production threshold, indicated by the upper
curved boundary in Figure C.2. The elastic boundary would be at larger Ep values, and
thus higher on the plot.
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Figure C.3: F1F209 fits compared to E94-010 data.

254



W (GeV)
1 1.2 1.4 1.6 1.8

 (
n

b
/G

eV
/s

r)
σ

60

80

100

120

140

160

)° = 25.0θ = 3.03 GeV, 
s

He Cross Section (E3

W (GeV)
1 1.2 1.4 1.6 1.8

 (
n

b
/G

eV
/s

r)
σ

60

80

100

120

140

160
F1F209 (Born)

E01012 (Born)

(a) Es = 3.02 GeV, θ = 25◦
W (GeV)

0.8 1 1.2 1.4 1.6 1.8 2

 (
n

b
/G

eV
/s

r)
σ

10

20

30

40

50

60

70

)° = 25.0θ = 4.02 GeV, 
s

He Cross Section (E3

W (GeV)
0.8 1 1.2 1.4 1.6 1.8 2

 (
n

b
/G

eV
/s

r)
σ

10

20

30

40

50

60

70

F1F209 (Born)

E01012 (Born)

(b) Es = 4.02 GeV, θ = 25◦

W (GeV)
0.8 1 1.2 1.4 1.6 1.8 2

 (
n

b
/G

eV
/s

r)
σ

5

10

15

20

25

)° = 25.0θ = 5.01 GeV, 
s

He Cross Section (E3

W (GeV)
0.8 1 1.2 1.4 1.6 1.8 2

 (
n

b
/G

eV
/s

r)
σ

5

10

15

20

25
F1F209 (Born)

E01012 (Born)

(c) Es = 5.01 GeV, θ = 25◦
W (GeV)

1 1.2 1.4 1.6 1.8 2

 (
n

b
/G

eV
/s

r)
σ

0

1

2

3

4

5

6

7

)° = 32.0θ = 5.01 GeV, 
s

He Cross Section (E3

W (GeV)
1 1.2 1.4 1.6 1.8 2

 (
n

b
/G

eV
/s

r)
σ

0

1

2

3

4

5

6

7
F1F209 (Born)

E01012 (Born)

(d) Es = 5.01 GeV, θ = 32◦

Figure C.4: F1F209 fits compared to E01-012 data.
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Figure C.5: F1F209 fits compared to Marchand et. al. data.

256



C.3 Double-Spin Asymmetries

To carry out the radiative corrections for the asymmetries, we determined the correction
first on polarized cross section differences, and then converted the Born ∆σ back to an
asymmetry. From here, the correction on the asymmetry level was determined as ∆A =

Ab−Ar. Since we only had data for two beam energies, a polarized cross section difference
model was needed to fill out the rest of the integration phase space, which was characterized
by three distinct regions of physics: the DIS, quasi-elastic, and resonance regions. Here,
we discuss each component in detail.

C.3.1 Integration Phase Space

The integration phase space for the asymmetries was different from that seen in the cross
sections (Fig. C.2) because the integration was carried out from the elastic threshold minus
5 MeV (to avoid the elastic peak and the three-body breakup threshold). This was done
because we treated the quasi-elastic, resonance and DIS regions together as one. The in-
tegration phase space is now given in Figure C.6. We also show the overlap with JLab
E94-010, which was used as a reference for our input model, discussed in Section C.3.2.

Figure C.6: Integration phase space needed for the radiative corrections for the asymmetries.
Also shown are the kinematics of JLab E94-010, which served as a reference for our polarized
cross section difference model, needed to fill out the integration phase space. Our kinematic
coverage at E = 4.74 GeV is shown by the green line.
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C.3.2 Polarized Cross Section Difference Model

C.3.2.1 DIS Region

The DIS region was modeled using the DSSV [220] model for the spin structure functions
g1 and g2. The polarized cross section differences in the parallel and perpendicular cases
were computed according to Equations 1.32 and 1.33.

C.3.2.2 Quasi-Elastic Region

To construct the quasi-elastic ∆σ for 3He, we combine the nucleon form factors of P. Bosted [221]
and the smearing function [222] in the following way: we use the nucleon form factors GE

and GM from [221] and the smearing function from [222]:

GE =

√
CF fps

[
ZG2

E,p +(A−Z)G2
E,n

]
(C.3)

GM =

√
CF fps

[
ZG2

M,p +(A−Z)G2
M,n

]
, (C.4)

where fps is the Pauli Suppression factor, given as:

fps(~q) =





3
4

(
|~q|
kF

)[
1− 1

12

(
~q
kF

)2
]
|~q|< 2kF

1 |~q| ≥ 2kF ,
(C.5)

where kF is the Fermi momentum. The function C =C(x,Q2) and is written as:

C
(
x,Q2)= xα exp

(
p0 + p1Q2 + p2Q4 + p3Q6

)
. (C.6)

It was needed to get the normalization of the unpolarized σ0 correct when comparing
against the F1F209 model, as shown in Figure C.7. This comparison was done because the
F1F209 model does well in describing the world data for the quasi-elastic region (Fig. C.5).
The function F is the scaling function, written as [222]:

F(ψ ′) =
1.5576

kF [1+1.77202(ψ ′+0.3014)2]
(
1+ e−2.4291ψ ′

) . (C.7)

The dimensionless scaling variable is ψ:

ψ ≡ 1√
ξF

λ − τ√
(1+λ )τ +κ

√
τ(1+ τ)

, (C.8)
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Figure C.7: A comparison of our quasi-elastic cross section model (P. Bosted nucleon form fac-
tors smeared by a quasi-elastic scaling function) to the quasi-elastic component of the F1F209
model. The scattering angle used in these plots is θ = 45◦.

where the variables ξF , λ , κ and τ are defined as:

ξF =
√

1+η2
F −1 (C.9)

ηF = kF/M (C.10)

λ =
ν

2M
(C.11)

κ =
|~q|
2M

(C.12)

τ = κ
2−λ

2. (C.13)

To obtain the dimensionless variable ψ ′, λ → λ ′ = λ −λshift, where an energy shift Eshift

is introduced, such that λshift = Eshift/(2M) and τ → τ ′ = κ2− λ ′2. One can see how
ψ ′ = ψ ′

(
x,Q2); with this in mind, we have evaluated ψ ′ at

(
x+ x0,Q2), which centered

the quasi-elastic peak properly in our calculations. This was done because when checking
the model against world data, our calculated quasi-elastic peak needed to be shifted to agree
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with the data. The parameters α , x0 and pi were determined to be:

α = 1.7

x0 = 0.05

p0 = 0.4461

p1 = −0.7607

p2 = 0.1207

p3 = −0.0075,

and the Fermi momentum used was kF = 115 MeV and Eshift = 1 MeV. Utilizing Equa-
tions 1.32 and 1.33, we construct the polarized cross section differences ∆σ‖ and ∆σ⊥,
with the quasi-elastic spin structure functions g1 and g2 given in terms of our quasi-elastic
form factors GQE

E and GQE
M :

gQE
1
(
x,Q2) =

GQE
M
(
x,Q2)

2
GQE

E
(
x,Q2)+ τGQE

M
(
x,Q2)

1+ τ
(C.14)

gQE
2
(
x,Q2) =

τGQE
M
(
x,Q2)

2
GQE

E
(
x,Q2)−GQE

M
(
x,Q2)

1+ τ
. (C.15)

C.3.2.3 Resonance Region

For the resonance region, we used the MAID model [141]. In particular, for a given electron
helicity h and target polarization P, the polarized cross section is formed as:

σ
h,P = P̃p

{
σ

h,P [p
(
e,e′p

)
π

0]+σ
h,P [p

(
e,e′n

)
π
+
]}

(C.16)

+ P̃n

{
σ

h,P [n
(
e,e′n

)
π

0]+σ
h,P [n

(
e,e′p

)
π
−]} (C.17)

where each pion electroproduction channel is included. The effective polarization of the
neutron is P̃n = Pn +0.056, with Pn = 0.86+0.036

−0.020; the effective polarization of the proton is
P̃p = Pp− 0.014, with Pp = −0.028+0.009

−0.004 [40]. The P̃n,p terms indicate that contributions
from the ∆(1232) component of the 3He wave function are included [144]. Each reaction
channel is constructed from the virtual photon cross sections in pion electroproduction:
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d2σ

dΩdE ′
= Γσν = Γ

[
σT + εσL +Py

√
2ε(1+ ε)σLT (C.18)

+ hPx
√

2ε(1− ε)σLT ′+hPz

√
1− ε2σT T ′

]
(C.19)

Γ =
α

2π2
E ′

E
K
Q2

1
1− ε

(C.20)

where the virtual photon flux is Γ, and K = ν −
[
Q2/(2M)

]
in the Hand convention [50];

the target polarization along the ith axis is Pi in pion scattering plane coordinates. The
polarized cross section difference ∆σ for the parallel and perpendicular cases is formed by
computing the differences of helicity-dependent cross sections:

∆σ‖ = σ
↓⇑−σ

↑⇑ (C.21)

∆σ⊥ = σ
↓⇒−σ

↑⇒. (C.22)

C.3.2.4 Testing the Model

Our polarized cross section difference model was compared to the JLab E94-010 data set,
as its kinematics coincided with our integration phase space. Figures C.8 and C.9 show
E94-010 data compared to our model (dashed curves). The left panel shows the compari-
son to polarized cross section differences, while the right panel shows a comparison to the
unpolarized quasi-elastic peak. To get the normalization correct at low x for the polarized
cross section differences, the MAID model was scaled down by a factor of 3. While the
model may not do as well describing the width of the resonance peak, it does better in
describing the quasi-elastic peak in both the polarized and unpolarized cases. In the sys-
tematic error studies, the model was varied up to ±10% at random bin-by-bin and it was
found that the resulting radiative correction changed by less than 5% (Sect. 5.5.4). Because
of this, we believe that this model performs adequately in describing the physics in the
integration phase space.
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Figure C.8: The left panel shows our polarized cross section difference model (dashed) com-
pared to JLab E94-010 data for Es = 3.38 GeV. The right panel shows the our quasi-elastic
unpolarized cross section model compared to JLab E94-010 data.
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Figure C.9: The left panel shows our polarized cross section difference model (dashed) com-
pared to JLab E94-010 data for Es = 4.24 GeV. The right panel shows the our quasi-elastic
unpolarized cross section model compared to JLab E94-010 data.
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APPENDIX D

FITS TO DATA

D.1 Cross Section Fits

As discussed in Section 5.4.2, due to time constraints not all kinematics were accounted
for in terms of measuring the positron and nitrogen cross sections. To alleviate the issue,
we fit the measured data to a function of the form:

f (Ep) =
1

E2
p

e(a0+a1Ep), (D.1)

where the scattered electron energy Ep is in GeV. This was done for each measured back-
ground signal. The fit parameters and their errors are listed in Tables D.1 and D.2.

Table D.1: Fit parameters for the nitrogen cross section (negative and positive polarity) and the
positron cross section for E = 4.74 GeV. All errors are absolute.

Parameter Nitrogen (Neg. Pol.) Nitrogen (Pos. Pol.) Positron
a0 1.465E+01 ± 4.919E-02 1.559E+01 ± 1.604E-01 1.887E+01 ± 7.998E-02
a1 -1.825E-03 ± 4.770E-05 -4.699E-03 ± 2.255E-04 -5.620E-03 ± 1.194E-04

Table D.2: Fit parameters for the nitrogen cross section (negative and positive polarity) and the
positron cross section for E = 5.89 GeV. All errors are absolute.

Parameter Nitrogen (Neg. Pol.) Nitrogen (Pos. Pol.) Positron
a0 1.480E+01 ± 5.647E-02 1.614E+01 ± 2.120E-01 1.896E+01 ± 6.89949E-02
a1 -2.123E-03 ± 5.607E-05 -5.232E-03 ± 3.126E-04 -5.421E-03 ± 9.28580E-05
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D.2 Ap
1 Fit

To carry out the analysis to obtain An
1 from our A

3He
1 data, we need a fit to parameterize

the Ap
1 data. We fit the world data to a three-parameter, Q2-independent fit∗. This as-

sumption is a reasonable one, in that the Q2 dependence is not very strong, given that the
world data, which are at differing Q2, are showing roughly the same behavior; further-
more, since A1 ∼ g1/F1, the Q2 evolution in g1 and F1 cancel in the ratio to leading order
and next-to-leading order in Q2 [43]. The data used in the fit includes measurements from
SMC [68], HERMES [67], EMC [18, 19], SLAC E143 [51] and E155 [229], along with
CLAS EG1b [73]. Before plotting the data, each experiment’s results were rebinned, where
new bins were formed based on a statistical error-weighted average; the systematic error
for a given bin was the average of the errors contributing to that bin with a weight of 1. The
fit is shown in Figure D.1, where we obtained a χ2/ndf = 1.00. The fit takes the form:
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Figure D.1: Our fit to world Ap
1 data. The error bars on the data are the in-quadrature sum of

their statistical and systematic errors. The yellow band indicates the error on the fit.

f (x) = p0 + p1x+ p2x2. (D.2)

∗The fit was done using the ROOT [189] software package.
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The yellow band indicates the error on the fit, and is computed by fitting the upper and
lower error bars of the data, which gives a conservative estimate on the error of the fit and
reflects the spread of the Ap

1 data. The fit parameters were found to be:

p0 = 0.041±0.008

p1 = 1.442±0.081 (D.3)

p2 = −0.599±0.163

D.3 gp
1/F p

1 Fit

A similar analysis was carried out for extracting gn
1/Fn

1 from g
3He
1 /F

3He
1 , where we need a

parameterization of the world gp
1/F p

1 data. The world data considered was HERMES [64],
SLAC E143 [51] and E155 [229], along with CLAS EG1b [73]. The fit result is shown in
Figure D.2, with χ2/ndf = 0.87. The fit function was similar to the Ap

1 fit, in that it is a
second-order polynomial in x with no Q2dependence (Eq. D.2). The fit parameters were
found to be:
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Figure D.2: Our fit to world gp
1/F p

1 data. The error bars on the data are the in-quadrature sum
of their statistical and systematic errors. The yellow band indicates the error on the fit.
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p0 = 0.032±0.009

p1 = 1.525±0.099 (D.4)

p2 = −0.958±0.194.

The yellow band in Figure D.2 gives the fit error, computed in the same fashion as was
done for the Ap

1 fit.
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APPENDIX E

TABULATED RESULTS

This appendix contains tables of all results for unpolarized cross sections, double-spin
asymmetries, and the virtual photon asymmetry A1 on 3He and the neutron. Also included
are tables of results for the structure function ratio g1/F1 on 3He and the neutron, along
with the polarized-to-unpolarized quark ratios for the up and down quarks, respectively.
The results and systematic errors for a2 are presented in the last section.

E.1 Cross Sections

E.1.1 Raw Cross Sections

The measured raw cross sections for E = 4.74 and 5.89 GeV are tabulated in Tables E.1
and E.2. The positron cross sections are tabulated in Tables E.3 and E.4. The nitrogen
cross sections, including their diluted forms due to the small amount of nitrogen in the
3He production cell, are tabulated in Tables E.5 and E.6 for the negative polarity runs. For
positive polarity, they are given in Tables E.7 and E.8. Note that not all bins were accounted
for when measuring the backgrounds. To correct for this, fits to the data were done, see
Section 5.4.2 and Appendix D.1. The positron to electron ratios are tabulated in Tables E.9
and E.10. All errors listed are statistical only.
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Table E.1: The raw electron cross section data for Es = 4.74 GeV. The errors listed are statistical
only. All errors are absolute.

〈Ep〉 (GeV) d2σraw
dΩdEp

( nb
sr·GeV

)

0.599 26.345 ± 0.233
0.798 10.064 ± 0.138
1.118 3.134 ± 0.040
1.188 2.534 ± 0.033
1.257 1.949 ± 0.026
1.336 1.442 ± 0.024
1.416 1.048 ± 0.018
1.504 0.703 ± 0.011
1.593 0.441 ± 0.008

Table E.2: The raw electron cross section data for Es = 5.89 GeV. The errors listed are statistical
only. All errors are absolute.

〈Ep〉 (GeV) d2σraw
dΩdEp

( nb
sr·GeV

)

0.599 26.039 ± 0.133
0.699 14.416 ± 0.107
0.898 5.158 ± 0.056
1.128 2.176 ± 0.028
1.198 1.639 ± 0.029
1.268 1.304 ± 0.017
1.338 0.997 ± 0.016
1.416 0.748 ± 0.011
1.504 0.506 ± 0.010
1.594 0.339 ± 0.007
1.693 0.209 ± 0.006

Table E.3: The positron cross section data for Es = 4.74 GeV. The errors listed are statistical
only. All errors are absolute.

〈Ep〉 (GeV)
d2σpos
dΩdEp

( nb
sr·GeV

)

0.599 14.093 ± 0.273
0.798 3.113 ± 0.111
1.118 0.223 ± 0.023
1.336 0.016 ± 0.007

Table E.4: The positron cross section data for Es = 5.89 GeV. The errors listed are statistical
only. All errors are absolute.

〈Ep〉 (GeV)
d2σpos
dΩdEp

( nb
sr·GeV

)

0.599 17.552 ± 0.410
0.898 1.787 ± 0.079
1.128 0.319 ± 0.023
1.268 0.075 ± 0.009
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Table E.5: The negative polarity nitrogen cross section data for Es = 4.74 GeV. The second
column gives the diluted nitrogen cross section, due to the nitrogen content of the production
cell being≈ 1% of the 3He volume. The errors listed are statistical only. All errors are absolute.

〈Ep〉 (GeV) d2σN
dΩdEp

( nb
sr·GeV

) d2σN,dil
dΩdEp

( nb
sr·GeV

)

0.599 192.290 ± 5.026 2.009 ± 0.052
1.118 24.344 ± 1.106 0.254 ± 0.011
1.188 18.710 ± 0.816 0.196 ± 0.009
1.336 10.379 ± 0.783 0.108 ± 0.008
1.416 8.012 ± 0.424 0.084 ± 0.004
1.504 4.855 ± 0.362 0.050 ± 0.004
1.593 2.631 ± 0.800 0.027 ± 0.008

Table E.6: The negative polarity nitrogen cross section data for Es = 5.89 GeV. The second
column gives the diluted nitrogen cross section, due to the nitrogen content of the production
cell being≈ 1% of the 3He volume. The errors listed are statistical only. All errors are absolute.

〈Ep〉 (GeV) d2σN
dΩdEp

( nb
sr·GeV

) d2σN,dil
dΩdEp

( nb
sr·GeV

)

0.599 194.900 ± 7.520 2.042 ± 0.079
0.699 112.240 ± 4.262 1.168 ± 0.044
0.898 43.723 ± 1.669 0.459 ± 0.018
1.128 18.191 ± 0.962 0.190 ± 0.010
1.198 13.077 ± 0.519 0.137 ± 0.005
1.268 12.238 ± 0.639 0.128 ± 0.007
1.416 7.735 ± 0.498 0.081 ± 0.005
1.594 2.223 ± 0.244 0.023 ± 0.002

Table E.7: The positive polarity nitrogen cross section data for Es = 4.74 GeV. The second
column gives the diluted nitrogen cross section, due to the nitrogen content of the production
cell being≈ 1% of the 3He volume. The errors listed are statistical only. All errors are absolute.

〈Ep〉 (GeV)
d2σN,pos
dΩdEp

( nb
sr·GeV

) d2σN,dil
dΩdEp

( nb
sr·GeV

)

0.599 87.945 ± 4.145 0.916 ± 0.043
0.798 21.696 ± 1.485 0.226 ± 0.015
1.118 2.254 ± 0.358 0.023 ± 0.004
1.336 0.331 ± 0.166 0.004 ± 0.002

Table E.8: The positive polarity nitrogen cross section data for Es = 5.89 GeV. The second
column gives the diluted nitrogen cross section, due to the nitrogen content of the production
cell being≈ 1% of the 3He volume. The errors listed are statistical only. All errors are absolute.

〈Ep〉 (GeV)
d2σN,pos
dΩdEp

( nb
sr·GeV

) d2σN,dil
dΩdEp

( nb
sr·GeV

)

0.599 112.960 ± 5.490 1.180 ± 0.057
0.898 10.853 ± 1.197 0.113 ± 0.012
1.128 1.830 ± 0.461 0.019 ± 0.005
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Table E.9: The positron to electron ratio data for Es = 4.74 GeV. The errors listed are statistical
only. All errors are absolute.

〈Ep〉 (GeV) Ne+/Ne−

0.599 0.535 ± 0.011
0.798 0.309 ± 0.012
1.118 0.071 ± 0.008
1.336 0.011 ± 0.005

Table E.10: The positron to electron ratio data for Es = 5.89 GeV. The errors listed are statistical
only. All errors are absolute.

〈Ep〉 (GeV) Ne+/Ne−

0.599 0.674 ± 0.016
0.898 0.346 ± 0.016
1.128 0.147 ± 0.011
1.268 0.058 ± 0.007
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E.1.2 Experimental and Born Cross Sections

Presented in Tables E.11 and E.12 are the experimental cross sections for Es = 4.74 and
5.89 GeV as a function of Ep, x and Q2. These bin values are the average values measured
during the experiment. Tables E.13 and E.14 show the Born cross sections.

Table E.11: The experimental (radiated) cross section data for Es = 4.74 GeV. The errors listed
are statistical and systematic, respectively. All errors are absolute.

〈Ep〉 (GeV) 〈x〉
〈
Q2
〉 (

GeV2) d2σrad
dΩdEp

( nb
sr·GeV

)

0.599 0.214 1.659 11.470 ± 0.365 ± 0.894
0.798 0.299 2.209 6.961 ± 0.178 ± 0.362
1.118 0.456 3.094 2.722 ± 0.048 ± 0.129
1.188 0.494 3.285 2.250 ± 0.034 ± 0.104
1.257 0.533 3.472 1.747 ± 0.026 ± 0.084
1.336 0.579 3.694 1.301 ± 0.027 ± 0.062
1.416 0.629 3.909 0.948 ± 0.018 ± 0.046
1.504 0.686 4.149 0.633 ± 0.012 ± 0.030
1.593 0.745 4.387 0.390 ± 0.012 ± 0.019

Table E.12: The experimental (radiated) cross section data for Es = 5.89 GeV. The errors listed
are statistical and systematic, respectively. All errors are absolute.

〈Ep〉 (GeV) 〈x〉
〈
Q2
〉 (

GeV2) d2σrad
dΩdEp

( nb
sr·GeV

)

0.599 0.208 2.064 8.221 ± 0.440 ± 0.844
0.699 0.247 2.409 6.486 ± 0.116 ± 0.460
0.898 0.330 3.095 3.318 ± 0.099 ± 0.171
1.128 0.434 3.882 1.749 ± 0.038 ± 0.086
1.198 0.468 4.124 1.352 ± 0.030 ± 0.068
1.268 0.503 4.360 1.107 ± 0.020 ± 0.054
1.338 0.539 4.603 0.860 ± 0.016 ± 0.043
1.416 0.580 4.873 0.655 ± 0.012 ± 0.032
1.504 0.629 5.173 0.444 ± 0.010 ± 0.021
1.594 0.679 5.478 0.297 ± 0.007 ± 0.014
1.693 0.738 5.811 0.180 ± 0.006 ± 0.009
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Table E.13: The Born cross section data for Es = 4.74 GeV. The errors listed are statistical and
systematic, respectively. All errors are absolute.

〈Ep〉 (GeV) 〈x〉
〈
Q2
〉 (

GeV2) d2σBorn
dΩdEp

( nb
sr·GeV

)

0.599 0.214 1.659 6.191 ± 0.365 ± 0.561
0.798 0.299 2.209 5.374 ± 0.178 ± 0.281
1.118 0.456 3.094 2.544 ± 0.048 ± 0.121
1.188 0.494 3.285 2.223 ± 0.034 ± 0.103
1.257 0.533 3.472 1.762 ± 0.026 ± 0.084
1.336 0.579 3.694 1.353 ± 0.027 ± 0.065
1.416 0.629 3.909 1.021 ± 0.018 ± 0.050
1.504 0.686 4.149 0.718 ± 0.012 ± 0.035
1.593 0.745 4.387 0.536 ± 0.012 ± 0.028

Table E.14: The Born cross section data for Es = 5.89 GeV. The errors listed are statistical and
systematic, respectively. All errors are absolute.

〈Ep〉 (GeV) 〈x〉
〈
Q2
〉 (

GeV2) d2σBorn
dΩdEp

( nb
sr·GeV

)

0.599 0.208 2.064 4.069 ± 0.440 ± 0.492
0.699 0.247 2.409 4.322 ± 0.116 ± 0.310
0.898 0.330 3.095 2.488 ± 0.099 ± 0.130
1.128 0.434 3.882 1.596 ± 0.038 ± 0.079
1.198 0.468 4.124 1.234 ± 0.030 ± 0.063
1.268 0.503 4.360 1.067 ± 0.020 ± 0.052
1.338 0.539 4.603 0.846 ± 0.016 ± 0.042
1.416 0.580 4.873 0.679 ± 0.012 ± 0.033
1.504 0.629 5.173 0.472 ± 0.010 ± 0.022
1.594 0.679 5.478 0.331 ± 0.007 ± 0.016
1.693 0.738 5.811 0.250 ± 0.006 ± 0.013
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E.1.3 Systematic Errors

The breakdown of the systematic errors on the unpolarized cross sections are listed in Ta-
bles E.15 and E.16. The column “Cuts” indicates errors due to electron cuts, which includes
the gas Čerenkov, E/p, and target cuts to remove the target windows; “Background” cor-
responds to errors related to the positron and nitrogen background subtractions; “Misc.”
refers to the errors incurred from the beam charge calibration, nitrogen dilution in the tar-
get and 3He density; “RC” is the error due to the radiative corrections. “Total” is the
in-quadrature sum of each column.

Table E.15: Systematic error breakdown for the unpolarized 3He cross section at E = 4.74 GeV.
All errors are in nb/GeV/sr. The Ep bin indicated is the central momentum setting of the
spectrometer.

〈
Ep
〉

(GeV) Cuts Background Misc. RC Total
0.599 0.17000 0.37960 0.24460 0.28690 0.56140
0.798 0.13940 0.11690 0.21240 0.02383 0.28070
1.118 0.06456 0.01689 0.10050 0.00478 0.12080
1.188 0.05302 0.01169 0.08784 0.00085 0.10330
1.257 0.04675 0.00827 0.06963 0.00058 0.08427
1.336 0.03596 0.00573 0.05347 0.00248 0.06474
1.416 0.02809 0.00417 0.04035 0.00409 0.04951
1.504 0.01972 0.00324 0.02835 0.00520 0.03507
1.593 0.01518 0.00289 0.02119 0.00898 0.02772

Table E.16: Systematic error breakdown for the unpolarized 3He cross section at E = 5.89 GeV.
All errors are in nb/GeV/sr. The Ep bin indicated is the central momentum setting of the
spectrometer.

〈
Ep
〉

(GeV) Cuts Background Misc. RC Total
0.599 0.10600 0.37100 0.16080 0.26040 0.49240
0.699 0.11220 0.22810 0.17080 0.04725 0.30990
0.898 0.05578 0.06123 0.09832 0.01720 0.12970
1.128 0.04424 0.01685 0.06307 0.00413 0.07897
1.198 0.03754 0.01113 0.04876 0.00383 0.06265
1.268 0.02944 0.00796 0.04216 0.00141 0.05206
1.338 0.02569 0.00565 0.03341 0.00058 0.04253
1.416 0.01819 0.00401 0.02684 0.00110 0.03268
1.504 0.01114 0.00279 0.01867 0.00152 0.02197
1.594 0.00884 0.00209 0.01306 0.00199 0.01603
1.693 0.00697 0.00181 0.00987 0.00414 0.01290
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E.2 Double-Spin Asymmetries

E.2.1 Physics and Born Asymmetries

The physics asymmetries (that is, without radiative corrections) A‖ and A⊥ on 3He are listed
in Tables E.17 and E.18. Presented in Tables E.19 and E.20 are the Born asymmetries. The
errors given are the statistical and systematic errors, respectively. All errors are absolute.

Table E.17: Physics asymmetries for A‖ and A⊥ on 3He at E = 4.74 GeV. The errors are
statistical and systematic, respectively. All errors are absolute.

< x > A
3He
‖ A

3He
⊥

0.277 -0.002 ± 0.016 ± 0.007 -0.002 ± 0.008 ± 0.002
0.325 -0.005 ± 0.009 ± 0.002 -0.003 ± 0.004 ± 0.002
0.374 0.009 ± 0.007 ± 0.002 -0.013 ± 0.004 ± 0.002
0.424 -0.022 ± 0.007 ± 0.005 -0.004 ± 0.004 ± 0.002
0.473 -0.020 ± 0.008 ± 0.003 -0.006 ± 0.004 ± 0.001
0.523 0.003 ± 0.009 ± 0.002 -0.007 ± 0.004 ± 0.001
0.574 0.006 ± 0.011 ± 0.004 -0.010 ± 0.006 ± 0.002
0.623 0.028 ± 0.013 ± 0.003 0.004 ± 0.006 ± 0.002
0.673 0.024 ± 0.016 ± 0.004 -0.005 ± 0.008 ± 0.003
0.723 0.030 ± 0.019 ± 0.006 -0.015 ± 0.010 ± 0.002
0.773 -0.013 ± 0.024 ± 0.013 -0.026 ± 0.012 ± 0.004
0.823 -0.034 ± 0.030 ± 0.012 0.004 ± 0.016 ± 0.006
0.874 -0.014 ± 0.039 ± 0.017 -0.050 ± 0.020 ± 0.006
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Table E.18: Physics asymmetries for A‖ and A⊥ on 3He at E = 5.89 GeV. The errors are
statistical and systematic, respectively. All errors are absolute.

< x > A
3He
‖ A

3He
⊥

0.277 0.026 ± 0.026 ± 0.010 0.010 ± 0.008 ± 0.003
0.325 -0.012 ± 0.012 ± 0.003 0.002 ± 0.004 ± 0.001
0.374 -0.002 ± 0.009 ± 0.002 -0.003 ± 0.003 ± 0.000
0.424 -0.018 ± 0.009 ± 0.003 -0.006 ± 0.003 ± 0.001
0.474 -0.019 ± 0.010 ± 0.006 -0.002 ± 0.003 ± 0.001
0.524 0.002 ± 0.012 ± 0.002 -0.001 ± 0.004 ± 0.001
0.573 0.004 ± 0.014 ± 0.003 0.002 ± 0.004 ± 0.001
0.624 0.005 ± 0.018 ± 0.005 -0.004 ± 0.005 ± 0.001
0.674 -0.004 ± 0.022 ± 0.005 -0.002 ± 0.007 ± 0.002
0.723 0.002 ± 0.027 ± 0.005 -0.005 ± 0.008 ± 0.003
0.773 0.005 ± 0.035 ± 0.008 0.004 ± 0.010 ± 0.002
0.823 0.027 ± 0.047 ± 0.014 -0.044 ± 0.014 ± 0.004
0.873 0.015 ± 0.062 ± 0.017 -0.009 ± 0.018 ± 0.007

Table E.19: Born asymmetry results for A
3He
‖ and A

3He
⊥ for E = 4.74 GeV. The two uncertainties

represent the statistical and systematic uncertainties, respectively.

< x > A
3He
‖ A

3He
⊥

0.277 -0.008 ± 0.015 ± 0.007 -0.002 ± 0.008 ± 0.003
0.325 -0.009 ± 0.009 ± 0.003 -0.001 ± 0.005 ± 0.002
0.374 0.005 ± 0.007 ± 0.002 -0.011 ± 0.004 ± 0.002
0.424 -0.025 ± 0.007 ± 0.005 -0.003 ± 0.004 ± 0.002
0.473 -0.021 ± 0.008 ± 0.003 -0.005 ± 0.004 ± 0.001
0.523 0.002 ± 0.009 ± 0.002 -0.006 ± 0.005 ± 0.001
0.574 0.005 ± 0.010 ± 0.004 -0.008 ± 0.005 ± 0.002
0.623 0.029 ± 0.013 ± 0.003 0.005 ± 0.007 ± 0.002
0.673 0.025 ± 0.015 ± 0.005 -0.004 ± 0.009 ± 0.003
0.723 0.031 ± 0.019 ± 0.007 -0.014 ± 0.009 ± 0.002
0.773 -0.012 ± 0.024 ± 0.013 -0.025 ± 0.012 ± 0.005
0.823 -0.033 ± 0.030 ± 0.012 0.005 ± 0.016 ± 0.006
0.874 -0.014 ± 0.039 ± 0.017 -0.049 ± 0.020 ± 0.006
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Table E.20: Born asymmetry results for A
3He
‖ and A

3He
⊥ for E = 5.89 GeV. The two uncertainties

represent the statistical and systematic uncertainties, respectively.

< x > A
3He
‖ A

3He
⊥

0.277 0.019 ± 0.027 ± 0.010 0.010 ± 0.008 ± 0.003
0.325 -0.017 ± 0.012 ± 0.003 0.004 ± 0.004 ± 0.001
0.374 -0.006 ± 0.009 ± 0.002 -0.001 ± 0.003 ± 0.001
0.424 -0.020 ± 0.009 ± 0.003 -0.004 ± 0.003 ± 0.001
0.474 -0.021 ± 0.010 ± 0.006 0.000 ± 0.003 ± 0.001
0.524 0.002 ± 0.012 ± 0.002 0.000 ± 0.004 ± 0.001
0.573 0.003 ± 0.015 ± 0.003 0.003 ± 0.004 ± 0.001
0.624 0.005 ± 0.018 ± 0.005 -0.004 ± 0.005 ± 0.001
0.674 -0.003 ± 0.022 ± 0.005 -0.002 ± 0.007 ± 0.002
0.723 0.003 ± 0.027 ± 0.005 -0.004 ± 0.008 ± 0.003
0.773 0.006 ± 0.035 ± 0.008 0.005 ± 0.010 ± 0.002
0.823 0.028 ± 0.047 ± 0.014 -0.044 ± 0.014 ± 0.004
0.873 0.015 ± 0.062 ± 0.017 -0.008 ± 0.019 ± 0.007
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E.2.2 Systematic Errors

This section lists the systematic uncertainties assigned to the double-spin asymmetries A‖
and A⊥ on 3He. The systematic error depends upon the electron beam polarization Pb, the
target polarization Pb, the nitrogen dilution factor DN2 , and contaminations in the BigBite
analysis due to π− ( f1), π+ ( f2), and e+ ( f3). Also given are errors due to the electron selec-
tion cuts (Cuts) and the radiative corrections (RC). Each quantity was varied to within their
uncertainties and the observed change in the asymmetry was taken as the error reported
here. The final column (Total) is the in-quadrature sum of each column. All errors listed
are absolute. A more detailed discussion of the systematic errors may be found in [169].

Table E.21: Systematic uncertainties assigned to A
3He
‖ at an incident beam energy of 4.74 GeV.

< x > Pb Pt DN2 f1 f2 f3 Cuts RC Total
0.277 0.00100 0.00170 0.00010 0.00000 0.000000 0.00110 0.00671 0.00025 0.00708
0.325 0.00060 0.00100 0.00010 0.00000 0.000000 0.00050 0.00231 0.00022 0.00265
0.374 0.00010 0.00020 0.00000 0.00000 0.000000 0.00040 0.00175 0.00013 0.00181
0.424 0.00100 0.00170 0.00010 0.00000 0.000000 0.00000 0.00444 0.00037 0.00487
0.473 0.00080 0.00140 0.00010 0.00000 0.000000 0.00000 0.00292 0.00031 0.00335
0.523 0.00010 0.00010 0.00000 0.00000 0.000000 0.00010 0.00201 0.00005 0.00202
0.574 0.00020 0.00030 0.00000 0.00000 0.000000 0.00010 0.00438 0.00009 0.00440
0.623 0.00110 0.00180 0.00010 0.00000 0.000000 0.00010 0.00233 0.00043 0.00318
0.673 0.00090 0.00160 0.00010 0.00000 0.000000 0.00000 0.00423 0.00038 0.00463
0.723 0.00120 0.00190 0.00010 0.00000 0.000000 0.00000 0.00617 0.00047 0.00658
0.773 0.00050 0.00090 0.00000 0.00000 0.000000 0.00000 0.01298 0.00019 0.01302
0.823 0.00130 0.00220 0.00010 0.00000 0.000000 0.00000 0.01128 0.00050 0.01158
0.874 0.00050 0.00080 0.00000 0.00000 0.000000 0.00000 0.01702 0.00022 0.01704
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Table E.22: Systematic uncertainties assigned to A
3He
⊥ at an incident beam energy of 4.74 GeV.

< x > Pb Pt DN2 f1 f2 f3 Cuts RC Total
0.277 0.00030 0.00050 0.00010 0.00000 0.000000 0.00020 0.00252 0.00010 0.00259
0.325 0.00020 0.00040 0.00000 0.00000 0.000000 0.00010 0.00161 0.00011 0.00167
0.374 0.00060 0.00100 0.00010 0.00000 0.000000 0.00010 0.00197 0.00018 0.00230
0.424 0.00020 0.00040 0.00000 0.00000 0.000000 0.00000 0.00150 0.00007 0.00157
0.473 0.00030 0.00050 0.00000 0.00000 0.000000 0.00000 0.00072 0.00009 0.00093
0.523 0.00030 0.00050 0.00000 0.00000 0.000000 0.00000 0.00108 0.00010 0.00123
0.574 0.00040 0.00060 0.00000 0.00000 0.000000 0.00000 0.00220 0.00013 0.00231
0.623 0.00020 0.00030 0.00000 0.00000 0.000000 0.00000 0.00233 0.00008 0.00236
0.673 0.00020 0.00030 0.00000 0.00000 0.000000 0.00000 0.00304 0.00007 0.00307
0.723 0.00060 0.00100 0.00010 0.00000 0.000000 0.00000 0.00208 0.00021 0.00240
0.773 0.00100 0.00180 0.00010 0.00000 0.000000 0.00000 0.00415 0.00038 0.00466
0.823 0.00020 0.00030 0.00000 0.00000 0.000000 0.00000 0.00581 0.00008 0.00583
0.874 0.00200 0.00350 0.00020 0.00000 0.000000 0.00000 0.00398 0.00074 0.00572

Table E.23: Systematic uncertainties assigned to A
3He
‖ at an incident beam energy of 5.89 GeV.

< x > Pb Pt DN2 f1 f2 f3 Cuts RC Total
0.277 0.00020 0.00060 0.00010 0.00000 0.000100 0.00350 0.00943 0.00036 0.01009
0.325 0.00050 0.00120 0.00010 0.00000 0.000000 0.00010 0.00316 0.00028 0.00343
0.374 0.00020 0.00040 0.00000 0.00000 0.000000 0.00010 0.00225 0.00012 0.00229
0.424 0.00060 0.00130 0.00010 0.00000 0.000000 0.00010 0.00224 0.00031 0.00268
0.474 0.00060 0.00130 0.00010 0.00000 0.000000 0.00000 0.00600 0.00031 0.00618
0.524 0.00010 0.00020 0.00000 0.00000 0.000000 0.00000 0.00225 0.00004 0.00226
0.573 0.00010 0.00030 0.00000 0.00000 0.000000 0.00000 0.00327 0.00007 0.00329
0.624 0.00010 0.00030 0.00000 0.00000 0.000000 0.00000 0.00540 0.00010 0.00541
0.674 0.00010 0.00020 0.00000 0.00000 0.000000 0.00000 0.00488 0.00009 0.00489
0.723 0.00010 0.00030 0.00000 0.00000 0.000000 0.00000 0.00472 0.00008 0.00473
0.773 0.00020 0.00010 0.00000 0.00000 0.000000 0.00000 0.00793 0.00011 0.00793
0.823 0.00080 0.00200 0.00010 0.00000 0.000000 0.00000 0.01382 0.00042 0.01400
0.873 0.00040 0.00140 0.00000 0.00000 0.000000 0.00000 0.01662 0.00022 0.01668
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Table E.24: Systematic uncertainties assigned to A
3He
⊥ at an incident beam energy of 5.89 GeV.

< x > Pb Pt DN2 f1 f2 f3 Cuts RC Total
0.277 0.00030 0.00070 0.00000 0.00000 0.000000 0.00200 0.00226 0.00018 0.00313
0.325 0.00010 0.00030 0.00000 0.00000 0.000000 0.00040 0.00117 0.00011 0.00127
0.374 0.00020 0.00040 0.00000 0.00000 0.000000 0.00010 0.00026 0.00008 0.00054
0.424 0.00020 0.00050 0.00000 0.00000 0.000000 0.00000 0.00130 0.00009 0.00140
0.474 0.00010 0.00020 0.00000 0.00000 0.000000 0.00000 0.00096 0.00004 0.00098
0.524 0.00000 0.00010 0.00000 0.00000 0.000000 0.00000 0.00117 0.00004 0.00117
0.573 0.00000 0.00010 0.00000 0.00000 0.000000 0.00000 0.00131 0.00005 0.00132
0.624 0.00010 0.00030 0.00000 0.00000 0.000000 0.00000 0.00077 0.00006 0.00083
0.674 0.00010 0.00020 0.00000 0.00000 0.000000 0.00000 0.00200 0.00003 0.00202
0.723 0.00010 0.00030 0.00000 0.00000 0.000000 0.00000 0.00290 0.00007 0.00292
0.773 0.00010 0.00030 0.00000 0.00000 0.000000 0.00000 0.00242 0.00007 0.00244
0.823 0.00120 0.00300 0.00020 0.00000 0.000000 0.00000 0.00293 0.00065 0.00441
0.873 0.00020 0.00060 0.00000 0.00000 0.000000 0.00000 0.00683 0.00012 0.00686
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E.3 A1

E.3.1 3He and the Neutron

The results for A
3He
1 for E = 4.74 GeV and 5.89 GeV are given in Tables E.25 and E.26,

respectively. The rebinned resonance results for each beam energy are given in Tables E.27
and E.28. The errors listed are statistical and systematic, respectively. All errors are abso-
lute.

The neutron results in the DIS region are given in Tables E.29 and E.30 for the E =

4.74 GeV and 5.89 GeV data, respectively. The average Q2 for the E = 4.74 GeV and
5.89 GeV DIS data are

〈
Q2〉= 2.59 GeV2 and 3.67 GeV2, respectively. The averaged DIS

results are given in Table E.31, where
〈
Q2〉= 3.08 GeV2. The neutron results in the reso-

nance region are given in Tables E.32 and E.33 for E = 4.74 GeV with
〈
Q2〉= 3.89 GeV2

and E = 5.89 GeV and
〈
Q2〉 = 5.58 GeV2, respectively. The averaged resonance results

are given in Table E.34, where
〈
Q2〉 = 4.76 GeV2. The errors listed are statistical and

systematic, respectively. All errors are absolute.

Table E.25: Results for A
3He
1 E = 4.74 GeV. The two uncertainties represent the statistical and

systematic uncertainties, respectively.

< x > A
3He
1

0.277 -0.008 ± 0.017 ± 0.004
0.325 -0.010 ± 0.010 ± 0.001
0.374 0.008 ± 0.008 ± 0.001
0.424 -0.027 ± 0.008 ± 0.003
0.473 -0.022 ± 0.009 ± 0.002
0.523 0.004 ± 0.010 ± 0.001
0.574 0.008 ± 0.012 ± 0.002
0.623 0.031 ± 0.015 ± 0.002
0.673 0.030 ± 0.018 ± 0.003
0.723 0.041 ± 0.022 ± 0.004
0.773 -0.005 ± 0.028 ± 0.008
0.823 -0.041 ± 0.037 ± 0.007
0.874 0.004 ± 0.048 ± 0.010

281



Table E.26: Results for A
3He
1 for E = 5.89 GeV. The two uncertainties represent the statistical

and systematic uncertainties, respectively.

< x > A
3He
1

0.277 0.020 ± 0.029 ± 0.006
0.325 -0.019 ± 0.013 ± 0.002
0.374 -0.006 ± 0.010 ± 0.001
0.424 -0.021 ± 0.010 ± 0.002
0.474 -0.022 ± 0.011 ± 0.003
0.524 0.002 ± 0.013 ± 0.001
0.573 0.003 ± 0.016 ± 0.002
0.624 0.006 ± 0.020 ± 0.003
0.674 -0.003 ± 0.024 ± 0.003
0.723 0.004 ± 0.031 ± 0.003
0.773 0.005 ± 0.039 ± 0.004
0.823 0.045 ± 0.053 ± 0.008
0.873 0.020 ± 0.072 ± 0.009

Table E.27: Rebinned resonance results for A
3He
1 at E = 4.74 GeV. The two uncertainties rep-

resent the statistical and systematic uncertainties, respectively.

< x > A
3He
1

0.548 0.006 ± 0.008 ± 0.002
0.648 0.031 ± 0.011 ± 0.002
0.748 0.024 ± 0.018 ± 0.006

Table E.28: Rebinned resonance results for A
3He
1 at E = 5.89 GeV. The two uncertainties rep-

resent the statistical and systematic uncertainties, respectively.

< x > A
3He
1

0.648 0.003 ± 0.015 ± 0.003
0.749 0.005 ± 0.024 ± 0.004

Table E.29: DIS results for An
1 at E = 4.74 GeV. The two uncertainties represent the statistical

and systematic uncertainties, respectively.

< x > An
1

0.277 0.012 ± 0.071 ± 0.008
0.325 0.010 ± 0.043 ± 0.009
0.374 0.102 ± 0.037 ± 0.013
0.424 -0.065 ± 0.040 ± 0.014
0.473 -0.045 ± 0.051 ± 0.015
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Table E.30: DIS results for An
1 at E = 5.89 GeV. The two uncertainties represent the statistical

and systematic uncertainties, respectively.

< x > An
1

0.277 0.126 ± 0.116 ± 0.035
0.325 -0.031 ± 0.058 ± 0.009
0.374 0.035 ± 0.049 ± 0.010
0.424 -0.040 ± 0.053 ± 0.012
0.474 -0.045 ± 0.066 ± 0.016
0.524 0.108 ± 0.088 ± 0.018
0.573 0.134 ± 0.126 ± 0.023

Table E.31: DIS results for An
1 averaged over the two beam energies, where

〈
Q2
〉
= 3.08 GeV2.

The two uncertainties represent the statistical and systematic uncertainties, respectively.

< x > An
1

0.277 0.043 ± 0.060 ± 0.021
0.325 -0.004 ± 0.035 ± 0.009
0.374 0.078 ± 0.029 ± 0.012
0.424 -0.056 ± 0.032 ± 0.013
0.474 -0.045 ± 0.040 ± 0.016
0.548 0.116 ± 0.072 ± 0.021

Table E.32: Resonance results for An
1 at E = 4.74 GeV. The two uncertainties represent the

statistical and systematic uncertainties, respectively.

< x > An
1

0.548 0.146 ± 0.056 ± 0.021
0.648 0.470 ± 0.126 ± 0.034
0.748 0.615 ± 0.348 ± 0.112

Table E.33: Resonance results for An
1 at E = 5.89 GeV. The two uncertainties represent the

statistical and systematic uncertainties, respectively.

< x > An
1

0.648 0.156 ± 0.152 ± 0.027
0.749 0.230 ± 0.416 ± 0.066

Table E.34: Resonance results for An
1 averaged over the two beam energies, where

〈
Q2
〉
=

4.76 GeV2. The two uncertainties represent the statistical and systematic uncertainties, respec-
tively.

< x > An
1

0.548 0.146 ± 0.057 ± 0.020
0.648 0.342 ± 0.094 ± 0.029
0.748 0.466 ± 0.264 ± 0.095
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E.3.2 Systematic Errors

The systematic errors, broken down into their components, for the 3He results are given
in Tables E.35 and E.36. for the E = 4.74 GeV and 5.89 GeV data, respectively. The
column labeled A‖ (A⊥) gives the errors due to the parallel (perpendicular) asymmetry, and
the column labeled “Kin.” gives the errors due to the kinematic variables, including the
uncertainty on the function R. The final column labeled “Total” gives the in-quadrature
sum of these errors.

The neutron systematic errors in the DIS region are given in Tables E.37 and E.38; the
errors for the resonance data are given in Tables E.39 and E.40 for the E = 4.74 GeV and
5.89 GeV data, respectively. The column labeled Fn,p

2 gives the errors due to the Fn
2 and F p

2

structure function, and the column labeled F
3He
2 gives the errors due to the F

3He
2 structure

function. The column labeled Pp (Pn) gives the error due to the effective polarization of the
proton (neutron). The columns labeled Ap

1 and A
3He
1 give the errors due to our fit to the Ap

1

data, and our measured A
3He
1 data, respectively. The in-quadrature sum of all components

gives the last column, labeled “Total.”

Table E.35: Systematic errors for A
3He
1 data at E = 4.74 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00385 0.00019 0.00012 0.00386
0.325 0.00148 0.00014 0.00007 0.00148
0.374 0.00099 0.00021 0.00054 0.00115
0.424 0.00265 0.00017 0.00012 0.00266
0.473 0.00184 0.00011 0.00019 0.00185
0.523 0.00110 0.00016 0.00019 0.00113
0.574 0.00243 0.00033 0.00020 0.00246
0.623 0.00184 0.00036 0.00014 0.00188
0.673 0.00262 0.00050 0.00013 0.00267
0.723 0.00377 0.00044 0.00020 0.00380
0.773 0.00751 0.00089 0.00039 0.00757
0.823 0.00700 0.00118 0.00032 0.00710
0.874 0.01019 0.00125 0.00196 0.01045
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Table E.36: Systematic errors for A
3He
1 data at E = 5.89 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00552 0.00018 0.00059 0.00555
0.325 0.00185 0.00009 0.00024 0.00187
0.374 0.00123 0.00004 0.00004 0.00123
0.424 0.00151 0.00011 0.00022 0.00153
0.474 0.00327 0.00009 0.00004 0.00327
0.524 0.00120 0.00012 0.00001 0.00121
0.573 0.00180 0.00014 0.00013 0.00181
0.624 0.00312 0.00010 0.00016 0.00313
0.674 0.00277 0.00027 0.00007 0.00278
0.723 0.00274 0.00039 0.00013 0.00277
0.773 0.00443 0.00035 0.00011 0.00445
0.823 0.00787 0.00071 0.00066 0.00793
0.873 0.00927 0.00117 0.00014 0.00934

Table E.37: Systematic errors for DIS results for An
1 at E = 4.74 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn Ap

1 A
3He
1 Total

0.277 0.00273 0.00070 0.00516 0.00015 0.00423 0.00268 0.00773
0.325 0.00269 0.00101 0.00616 0.00012 0.00506 0.00185 0.00867
0.374 0.00690 0.00065 0.00720 0.00169 0.00606 0.00637 0.01342
0.424 0.00598 0.00181 0.00831 0.00119 0.00689 0.00639 0.01407
0.473 0.00574 0.00171 0.00957 0.00085 0.00800 0.00528 0.01483

Table E.38: Systematic errors for DIS An
1 results at E = 5.89 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn Ap

1 A
3He
1 Total

0.277 0.00450 0.00040 0.00514 0.00207 0.00464 0.03370 0.03476
0.325 0.00244 0.00131 0.00614 0.00059 0.00495 0.00306 0.00892
0.374 0.00265 0.00064 0.00719 0.00052 0.00598 0.00147 0.00986
0.424 0.00290 0.00212 0.00830 0.00074 0.00675 0.00374 0.01192
0.474 0.00394 0.00135 0.00956 0.00084 0.00766 0.00975 0.01622
0.524 0.00995 0.00000 0.01096 0.00172 0.00978 0.00505 0.01853
0.573 0.01300 0.00015 0.01247 0.00214 0.01223 0.00800 0.02330

Table E.39: Systematic errors for resonance An
1 results at E = 4.74 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn Ap

1 A
3He
1 Total

0.548 0.01230 0.00005 0.01234 0.00253 0.01052 0.00642 0.02149
0.648 0.02150 0.00010 0.01546 0.00812 0.01539 0.01245 0.03405
0.748 0.09145 0.00270 0.01792 0.01062 0.02117 0.05642 0.11152
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Table E.40: Systematic errors for resonance An
1 results at E = 5.89 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn Ap

1 A
3He
1 Total

0.648 0.00550 0.00035 0.01469 0.00260 0.01637 0.01469 0.02714
0.749 0.05210 0.00075 0.01695 0.00379 0.02141 0.03044 0.06634
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E.4 A2

E.4.1 3He

The results for A
3He
2 for E = 4.74 GeV and 5.89 GeV are given in Tables E.41 and E.42,

respectively. The errors listed are statistical and systematic, respectively. All errors are
absolute.

Table E.41: Results for A
3He
2 E = 4.74 GeV. The two uncertainties represent the statistical and

systematic uncertainties, respectively.

< x > A
3He
2

0.277 -0.005 ± 0.014 ± 0.002
0.325 -0.004 ± 0.008 ± 0.001
0.374 -0.016 ± 0.006 ± 0.005
0.424 -0.011 ± 0.006 ± 0.002
0.473 -0.014 ± 0.007 ± 0.001
0.523 -0.008 ± 0.008 ± 0.002
0.574 -0.010 ± 0.009 ± 0.002
0.623 0.019 ± 0.011 ± 0.002
0.673 0.004 ± 0.013 ± 0.002
0.723 -0.007 ± 0.016 ± 0.002
0.773 -0.042 ± 0.021 ± 0.005
0.823 -0.009 ± 0.027 ± 0.005
0.874 -0.079 ± 0.036 ± 0.010
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Table E.42: Results for A
3He
2 for E = 5.89 GeV. The two uncertainties represent the statistical

and systematic uncertainties, respectively.

< x > A
3He
2

0.277 0.022 ± 0.016 ± 0.010
0.325 0.004 ± 0.007 ± 0.003
0.374 -0.002 ± 0.005 ± 0.001
0.424 -0.011 ± 0.005 ± 0.002
0.474 -0.006 ± 0.006 ± 0.001
0.524 0.001 ± 0.007 ± 0.001
0.573 0.005 ± 0.008 ± 0.002
0.624 -0.004 ± 0.010 ± 0.001
0.674 -0.004 ± 0.012 ± 0.002
0.723 -0.005 ± 0.016 ± 0.002
0.773 0.009 ± 0.020 ± 0.002
0.823 -0.053 ± 0.028 ± 0.005
0.873 -0.006 ± 0.038 ± 0.006
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E.4.2 Systematic Errors

The systematic errors, broken down into their components, for the 3He results are given
in Tables E.43 and E.44. for the E = 4.74 GeV and 5.89 GeV data, respectively. The
column labeled A‖ (A⊥) gives the errors due to the parallel (perpendicular) asymmetry, and
the column labeled “Kin.” gives the errors due to the kinematic variables, including the
uncertainty on the function R. The final column labeled “Total” gives the in-quadrature
sum of these errors.

Table E.43: Systematic errors for A
3He
2 data at E = 4.74 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00077 0.00221 0.00133 0.00269
0.325 0.00032 0.00132 0.00068 0.00152
0.374 0.00024 0.00178 0.00449 0.00483
0.424 0.00071 0.00124 0.00086 0.00167
0.473 0.00052 0.00070 0.00124 0.00152
0.523 0.00035 0.00091 0.00104 0.00142
0.574 0.00081 0.00179 0.00099 0.00220
0.623 0.00063 0.00172 0.00040 0.00188
0.673 0.00097 0.00223 0.00010 0.00244
0.723 0.00143 0.00174 0.00037 0.00228
0.773 0.00304 0.00337 0.00165 0.00483
0.823 0.00282 0.00428 0.00058 0.00517
0.874 0.00452 0.00412 0.00698 0.00928

Table E.44: Systematic errors for A
3He
2 data at E = 5.89 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00094 0.00266 0.00893 0.00937
0.325 0.00035 0.00109 0.00317 0.00337
0.374 0.00026 0.00045 0.00049 0.00072
0.424 0.00033 0.00118 0.00208 0.00242
0.474 0.00084 0.00077 0.00021 0.00116
0.524 0.00032 0.00086 0.00008 0.00092
0.573 0.00048 0.00099 0.00086 0.00140
0.624 0.00085 0.00062 0.00093 0.00141
0.674 0.00085 0.00150 0.00037 0.00176
0.723 0.00085 0.00220 0.00067 0.00245
0.773 0.00151 0.00173 0.00053 0.00236
0.823 0.00280 0.00327 0.00275 0.00511
0.873 0.00360 0.00515 0.00013 0.00629
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E.5 g1/F1

E.5.1 3He and the Neutron

The results for A
3He
1 for E = 4.74 GeV and 5.89 GeV are given in Tables E.45 and E.46, re-

spectively. The rebinned resonance data for the two beam energies are given in Tables E.47
and E.48. The errors listed are statistical and systematic, respectively. All errors are abso-
lute.

The neutron results in the DIS region are given in Tables E.49 and E.50 for E =

4.74 GeV with
〈
Q2〉= 2.59 GeV2 and 5.89 GeV with

〈
Q2〉= 3.67 GeV2, respectively; the

averaged results over these two data sets is given in Table E.51, where
〈
Q2〉= 3.08 GeV2.

The neutron results in the resonance region are given in Tables E.52 and E.53 for E =

4.74 GeV with
〈
Q2〉 = 3.89 GeV2 and 5.89 GeV with

〈
Q2〉 = 5.58 GeV2, respectively.

The averaged resonance results are given in Table E.54, where
〈
Q2〉 = 4.76 GeV2. The

errors listed are statistical and systematic, respectively. All errors are absolute.

Table E.45: Results for g
3He
1 /F

3He
1 for E = 4.74 GeV. The two uncertainties represent the sta-

tistical and systematic uncertainties, respectively.

< x > g
3He
1 /F

3He
1

0.277 -0.009 ± 0.016 ± 0.004
0.325 -0.010 ± 0.009 ± 0.001
0.374 0.001 ± 0.007 ± 0.001
0.424 -0.026 ± 0.007 ± 0.002
0.473 -0.023 ± 0.008 ± 0.002
0.523 0.000 ± 0.009 ± 0.001
0.574 0.002 ± 0.011 ± 0.002
0.623 0.031 ± 0.013 ± 0.002
0.673 0.023 ± 0.016 ± 0.002
0.723 0.026 ± 0.020 ± 0.003
0.773 -0.023 ± 0.025 ± 0.007
0.823 -0.032 ± 0.032 ± 0.006
0.874 -0.035 ± 0.041 ± 0.009
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Table E.46: Results for g
3He
1 /F

3He
1 for E = 5.89 GeV. The two uncertainties represent the sta-

tistical and systematic uncertainties, respectively.

< x > g
3He
1 /F

3He
1

0.277 0.024 ± 0.028 ± 0.006
0.325 -0.016 ± 0.012 ± 0.002
0.374 -0.006 ± 0.009 ± 0.001
0.424 -0.022 ± 0.009 ± 0.002
0.474 -0.021 ± 0.010 ± 0.003
0.524 0.002 ± 0.012 ± 0.001
0.573 0.004 ± 0.015 ± 0.002
0.624 0.003 ± 0.018 ± 0.003
0.674 -0.004 ± 0.022 ± 0.002
0.723 0.001 ± 0.028 ± 0.003
0.773 0.008 ± 0.035 ± 0.004
0.823 0.009 ± 0.047 ± 0.013
0.873 0.011 ± 0.064 ± 0.009

Table E.47: Rebinned resonance results for g
3He
1 /F

3He
1 at E = 4.74 GeV. The two uncertainties

represent the statistical and systematic uncertainties, respectively.

< x > g
3He
1 /F

3He
1

0.548 0.001 ± 0.007 ± 0.002
0.648 0.028 ± 0.010 ± 0.002
0.748 0.007 ± 0.015 ± 0.005

Table E.48: Rebinned resonance results for g
3He
1 /F

3He
1 at E = 5.89 GeV. The two uncertainties

represent the statistical and systematic uncertainties, respectively.

< x > g
3He
1 /F

3He
1

0.648 0.000 ± 0.014 ± 0.003
0.749 0.004 ± 0.022 ± 0.003

Table E.49: DIS results for gn
1/Fn

1 at E = 4.74 GeV. The two uncertainties represent the statis-
tical and systematic uncertainties, respectively.

< x > gn
1/Fn

1
0.277 0.007 ± 0.068 ± 0.010
0.325 0.008 ± 0.041 ± 0.008
0.374 0.065 ± 0.034 ± 0.011
0.424 -0.066 ± 0.038 ± 0.013
0.473 -0.058 ± 0.047 ± 0.014
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Table E.50: DIS results for gn
1/Fn

1 at E = 5.89 GeV. The two uncertainties represent the statis-
tical and systematic uncertainties, respectively.

< x > gn
1/Fn

1
0.277 0.143 ± 0.112 ± 0.014
0.325 -0.019 ± 0.056 ± 0.009
0.374 0.031 ± 0.046 ± 0.009
0.424 -0.049 ± 0.050 ± 0.012
0.474 -0.044 ± 0.062 ± 0.015
0.524 0.098 ± 0.082 ± 0.017
0.573 0.132 ± 0.116 ± 0.021

Table E.51: DIS results for gn
1/Fn

1 averaged over the two beam energies, where
〈
Q2
〉
=

3.08 GeV2. The two uncertainties represent the statistical and systematic uncertainties, re-
spectively.

< x > gn
1/Fn

1
0.277 0.044 ± 0.058 ± 0.012
0.325 -0.002 ± 0.033 ± 0.009
0.374 0.053 ± 0.028 ± 0.010
0.424 -0.060 ± 0.030 ± 0.012
0.474 -0.053 ± 0.037 ± 0.015
0.548 0.110 ± 0.067 ± 0.019

Table E.52: Resonance results for gn
1/Fn

1 at E = 4.74 GeV. The two uncertainties represent the
statistical and systematic uncertainties, respectively.

< x > gn
1/Fn

1
0.548 0.098 ± 0.051 ± 0.017
0.648 0.422 ± 0.113 ± 0.030
0.748 0.256 ± 0.304 ± 0.071

Table E.53: Resonance results for gn
1/Fn

1 at E = 5.89 GeV. The two uncertainties represent the
statistical and systematic uncertainties, respectively.

< x > gn
1/Fn

1
0.648 0.116 ± 0.138 ± 0.024
0.749 0.183 ± 0.374 ± 0.056

Table E.54: Resonance results for gn
1/Fn

1 averaged over the two beam energies, where〈
Q2
〉
= 4.76 GeV2. The two uncertainties represent the statistical and systematic uncertain-

ties, respectively.

< x > gn
1/Fn

1
0.548 0.098 ± 0.052 ± 0.017
0.648 0.300 ± 0.084 ± 0.026
0.748 0.228 ± 0.234 ± 0.063
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E.5.2 Systematic Errors

The breakdown of the systematic errors for g1/F1 on 3He are given in Tables E.55 and E.56.
The errors on the DIS neutron results are given in Tables E.57 and E.58. The resonance
neutron errors are given in Tables E.59 and E.60. The description of the various columns
is the same as in Appendix E.3.2.

Table E.55: Systematic errors for g
3He
1 /F

3He
1 data at E = 4.74 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00368 0.00053 0.00004 0.00372
0.325 0.00134 0.00035 0.00004 0.00138
0.374 0.00092 0.00049 0.00004 0.00104
0.424 0.00256 0.00033 0.00013 0.00258
0.473 0.00171 0.00020 0.00011 0.00172
0.523 0.00103 0.00026 0.00002 0.00106
0.574 0.00220 0.00047 0.00003 0.00226
0.623 0.00161 0.00050 0.00017 0.00169
0.673 0.00243 0.00067 0.00014 0.00253
0.723 0.00335 0.00051 0.00020 0.00339
0.773 0.00641 0.00097 0.00016 0.00649
0.823 0.00576 0.00126 0.00028 0.00590
0.874 0.00859 0.00123 0.00032 0.00868

Table E.56: Systematic errors for g
3He
1 /F

3He
1 data at E = 5.89 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00532 0.00257 0.00005 0.00591
0.325 0.00172 0.00107 0.00004 0.00203
0.374 0.00117 0.00019 0.00001 0.00119
0.424 0.00135 0.00095 0.00004 0.00165
0.474 0.00316 0.00011 0.00005 0.00316
0.524 0.00120 0.00011 0.00000 0.00120
0.573 0.00164 0.00068 0.00001 0.00178
0.624 0.00272 0.00091 0.00002 0.00287
0.674 0.00242 0.00044 0.00001 0.00246
0.723 0.00237 0.00107 0.00002 0.00260
0.773 0.00390 0.00112 0.00004 0.00406
0.823 0.00709 0.01068 0.00018 0.01282
0.873 0.00848 0.00203 0.00010 0.00872
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Table E.57: Systematic errors for DIS results for gn
1/Fn

1 at E = 4.74 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn gp

1/F p
1 g

3He
1 /F

3He
1 Total

0.277 0.00253 0.00071 0.00532 0.00012 0.00327 0.00763 0.01021
0.325 0.00248 0.00098 0.00627 0.00013 0.00397 0.00306 0.00846
0.374 0.00564 0.00029 0.00723 0.00108 0.00492 0.00247 0.01075
0.424 0.00577 0.00173 0.00819 0.00110 0.00608 0.00636 0.01349
0.473 0.00602 0.00170 0.00924 0.00097 0.00737 0.00505 0.01433

Table E.58: Systematic errors for DIS results for gn
1/Fn

1 at E = 5.89 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn gp

1/F p
1 g

3He
1 /F

3He
1 Total

0.277 0.00450 0.00045 0.00510 0.00245 0.00330 0.01193 0.01434
0.325 0.00218 0.00116 0.00603 0.00033 0.00408 0.00451 0.00892
0.374 0.00242 0.00062 0.00695 0.00053 0.00504 0.00292 0.00942
0.424 0.00311 0.00211 0.00789 0.00084 0.00608 0.00441 0.01156
0.474 0.00377 0.00126 0.00890 0.00076 0.00706 0.00917 0.01515
0.524 0.00915 0.00000 0.00998 0.00168 0.00893 0.00394 0.01678
0.573 0.01240 0.00015 0.01111 0.00228 0.01065 0.00714 0.02114

Table E.59: Systematic errors for resonance results for gn
1/Fn

1 at E = 4.74 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn gp

1/F p
1 g

3He
1 /F

3He
1 Total

0.548 0.00879 0.00001 0.00954 0.00323 0.00953 0.00603 0.01749
0.648 0.01915 0.00010 0.01144 0.00676 0.01420 0.01161 0.02966
0.748 0.04305 0.00075 0.01255 0.00513 0.01881 0.05135 0.07091

Table E.60: Systematic errors for resonance results for gn
1/Fn

1 at E = 5.89 GeV.

< x > Fn,p
2 F

3He
2 Pp Pn gp

1/F p
1 g

3He
1 /F

3He
1 Total

0.648 0.00430 0.00010 0.01210 0.00437 0.01415 0.01339 0.02374
0.749 0.04170 0.00060 0.01327 0.00487 0.01999 0.02899 0.05638
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E.6 g2/F1

E.6.1 3He

The results for g
3He
2 /F

3He
1 for E = 4.74 GeV and 5.89 GeV are given in Tables E.61 and E.62,

respectively. The errors listed are statistical and systematic, respectively. All errors are ab-
solute.

Table E.61: Results for g
3He
2 /F

3He
1 for E = 4.74 GeV. The two uncertainties represent the sta-

tistical and systematic uncertainties, respectively.

< x > g
3He
2 /F

3He
1

0.277 -0.006 ± 0.034 ± 0.006
0.325 -0.001 ± 0.017 ± 0.003
0.374 -0.037 ± 0.012 ± 0.004
0.424 0.002 ± 0.011 ± 0.002
0.473 -0.005 ± 0.011 ± 0.001
0.523 -0.015 ± 0.012 ± 0.002
0.574 -0.020 ± 0.013 ± 0.003
0.623 0.000 ± 0.014 ± 0.002
0.673 -0.017 ± 0.016 ± 0.003
0.723 -0.036 ± 0.019 ± 0.002
0.773 -0.039 ± 0.022 ± 0.004
0.823 0.018 ± 0.027 ± 0.005
0.874 -0.071 ± 0.033 ± 0.005
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Table E.62: Results for g
3He
2 /F

3He
1 for E = 5.89 GeV. The two uncertainties represent the sta-

tistical and systematic uncertainties, respectively.

< x > g
3He
2 /F

3He
1

0.277 0.044 ± 0.044 ± 0.008
0.325 0.026 ± 0.017 ± 0.003
0.374 -0.001 ± 0.012 ± 0.001
0.424 -0.005 ± 0.011 ± 0.002
0.474 0.007 ± 0.011 ± 0.002
0.524 0.000 ± 0.012 ± 0.002
0.573 0.006 ± 0.013 ± 0.002
0.624 -0.011 ± 0.015 ± 0.001
0.674 -0.003 ± 0.017 ± 0.002
0.723 -0.010 ± 0.021 ± 0.003
0.773 0.007 ± 0.025 ± 0.003
0.823 -0.095 ± 0.032 ± 0.005
0.873 -0.020 ± 0.041 ± 0.007
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E.6.2 Systematic Errors

The breakdown of the systematic errors for g2/F1 on 3He are given in Tables E.63 and E.64.
The description of the various columns is the same as in Appendix E.3.2.

Table E.63: Systematic errors for g
3He
2 /F

3He
1 data at E = 4.74 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00154 0.00541 0.00008 0.00563
0.325 0.00056 0.00305 0.00004 0.00311
0.374 0.00038 0.00384 0.00039 0.00388
0.424 0.00093 0.00228 0.00005 0.00247
0.473 0.00064 0.00122 0.00011 0.00139
0.523 0.00037 0.00151 0.00017 0.00156
0.574 0.00082 0.00261 0.00024 0.00275
0.623 0.00055 0.00237 0.00008 0.00243
0.673 0.00083 0.00290 0.00017 0.00302
0.723 0.00111 0.00213 0.00041 0.00244
0.773 0.00220 0.00392 0.00058 0.00453
0.823 0.00189 0.00486 0.00022 0.00522
0.874 0.00268 0.00429 0.00110 0.00517

Table E.64: Systematic errors for g
3He
2 /F

3He
1 data at E = 5.89 GeV.

< x > A‖ A⊥ Kin. Total
0.277 0.00225 0.00782 0.00044 0.00815
0.325 0.00075 0.00287 0.00017 0.00297
0.374 0.00049 0.00106 0.00002 0.00116
0.424 0.00054 0.00251 0.00010 0.00257
0.474 0.00123 0.00159 0.00001 0.00201
0.524 0.00044 0.00174 0.00000 0.00179
0.573 0.00064 0.00178 0.00007 0.00189
0.624 0.00105 0.00104 0.00010 0.00148
0.674 0.00090 0.00228 0.00004 0.00245
0.723 0.00086 0.00317 0.00011 0.00329
0.773 0.00142 0.00247 0.00010 0.00285
0.823 0.00255 0.00424 0.00112 0.00507
0.873 0.00290 0.00643 0.00023 0.00705
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E.7 Flavor Separation

E.7.1 Polarized-to-Unpolarized Quark Ratios for u and d

The results for the polarized-to-unpolarized quark ratios (∆u + ∆ū)/(u + ū) and (∆d +

∆d̄)/(d + d̄) are given in Table E.65 for the E = 4.74 GeV data, while the results for
E = 5.89 GeV are given in Table E.66. The average Q2 of the two data sets was 2.59 GeV2

and 3.67 GeV2, respectively. The results averaged over the two data sets is given in Ta-
ble E.67, where

〈
Q2〉= 3.08 GeV2.

Table E.65: Results for (∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄) at E = 4.74 GeV. The two
uncertainties represent the statistical and systematic uncertainties, respectively.

< x > (∆u+∆ū)/(u+ ū) (∆d +∆d̄)/(d + d̄)
0.277 0.454 ± 0.013 ± 0.035 -0.225 ± 0.110 ± 0.029
0.325 0.504 ± 0.008 ± 0.041 -0.275 ± 0.069 ± 0.033
0.374 0.539 ± 0.006 ± 0.045 -0.230 ± 0.060 ± 0.039
0.424 0.601 ± 0.006 ± 0.052 -0.523 ± 0.068 ± 0.052
0.473 0.631 ± 0.007 ± 0.058 -0.585 ± 0.088 ± 0.066

Table E.66: Results for (∆u+∆ū)/(u+ ū) and (∆d +∆d̄)/(d + d̄) at E = 5.89 GeV. The two
uncertainties represent the statistical and systematic uncertainties, respectively.

< x > (∆u+∆ū)/(u+ ū) (∆d +∆d̄)/(d + d̄)
0.277 0.428 ± 0.022 ± 0.036 -0.006 ± 0.182 ± 0.028
0.325 0.508 ± 0.010 ± 0.040 -0.323 ± 0.094 ± 0.034
0.374 0.544 ± 0.008 ± 0.046 -0.293 ± 0.081 ± 0.040
0.424 0.597 ± 0.008 ± 0.051 -0.497 ± 0.090 ± 0.051
0.474 0.629 ± 0.009 ± 0.058 -0.567 ± 0.116 ± 0.068
0.524 0.635 ± 0.012 ± 0.064 -0.378 ± 0.165 ± 0.080
0.573 0.652 ± 0.015 ± 0.075 -0.398 ± 0.250 ± 0.104
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Table E.67: Results for (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) averaged over the two
beam energies, where

〈
Q2
〉
= 3.08 GeV2. The two uncertainties represent the statistical and

systematic uncertainties, respectively.

< x > (∆u+∆ū)/(u+ ū) (∆d +∆d̄)/(d + d̄)
0.277 0.447 ± 0.011 ± 0.035 -0.166 ± 0.094 ± 0.029
0.325 0.505 ± 0.006 ± 0.040 -0.292 ± 0.055 ± 0.033
0.374 0.541 ± 0.005 ± 0.046 -0.252 ± 0.048 ± 0.040
0.424 0.600 ± 0.005 ± 0.052 -0.514 ± 0.054 ± 0.051
0.474 0.631 ± 0.006 ± 0.058 -0.579 ± 0.070 ± 0.067
0.548 0.642 ± 0.009 ± 0.070 -0.384 ± 0.138 ± 0.092

299



E.7.2 Systematic Errors

Tables E.68 and E.69 give a breakdown of the systematic errors at E = 4.74 GeV for the up
and down quark ratios, respectively. Tables E.70 and E.71 list the errors for E = 5.89 GeV.
Each column of the table represents the contribution due to our gn

1/Fn
1 data, our fit to world

gp
1/F p

1 data, the (d+ d̄)/(u+ ū) parameterization, and the strange uncertainty, respectively.
The in-quadrature sum of each quantity is displayed in the last column, labeled “Total.”

Table E.68: Error table for (∆u+∆ū)/(u+ ū) at E = 4.74 GeV.

< x > gn
1/Fn

1 gp
1/F p

1 (d + d̄)/(u+ ū) s Total
0.277 0.00098 0.03363 0.00326 0.00870 0.03490
0.325 0.00077 0.03999 0.00359 0.00645 0.04067
0.374 0.00094 0.04499 0.00361 0.00458 0.04538
0.424 0.00112 0.05190 0.00462 0.00328 0.05222
0.473 0.00108 0.05747 0.00507 0.00235 0.05775

Table E.69: Error table for (∆d +∆d̄)/(d + d̄) at E = 4.74 GeV.

< x > gn
1/Fn

1 gp
1/F p

1 (d + d̄)/(u+ ū) s Total
0.277 0.00816 0.01749 0.01455 0.01673 0.02940
0.325 0.00702 0.02280 0.01886 0.01363 0.03332
0.374 0.00943 0.02807 0.02280 0.01071 0.03888
0.424 0.01225 0.03551 0.03467 0.00814 0.05176
0.473 0.01320 0.04391 0.04754 0.00594 0.06631

Table E.70: Error table for (∆u+∆ū)/(u+ ū) at E = 5.89 GeV.

< x > gn
1/Fn

1 gp
1/F p

1 (d + d̄)/(u+ ū) s Total
0.277 0.00136 0.03483 0.00198 0.00830 0.03589
0.325 0.00081 0.03889 0.00375 0.00619 0.03957
0.374 0.00081 0.04556 0.00380 0.00439 0.04594
0.424 0.00096 0.05109 0.00446 0.00311 0.05139
0.474 0.00119 0.05796 0.00481 0.00222 0.05821
0.524 0.00117 0.06423 0.00413 0.00160 0.06439
0.573 0.00139 0.07488 0.00386 0.00124 0.07500
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Table E.71: Error table for (∆d +∆d̄)/(d + d̄) at E = 5.89 GeV.

< x > gn
1/Fn

1 gp
1/F p

1 (d + d̄)/(u+ ū) s Total
0.277 0.01141 0.01829 0.00864 0.01631 0.02838
0.325 0.00747 0.02239 0.01973 0.01339 0.03355
0.374 0.00821 0.02872 0.02503 0.01036 0.04032
0.424 0.01066 0.03539 0.03438 0.00781 0.05108
0.474 0.01480 0.04497 0.04929 0.00566 0.06858
0.524 0.01655 0.05692 0.05298 0.00358 0.07958
0.573 0.02279 0.07646 0.06641 0.00213 0.10383
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E.8 a2

E.8.1 3He and the Neutron

Table E.72 gives the a
3He
2 result in the measured region of 0.25 < x < 0.90. The neutron

result, decomposed into its low-x, measured, and high-x components, is given in Table E.73.
Table E.74 displays the an

2 result obtained over the full integration range with its statistical
and systematic errors.

Table E.72: The extracted a
3He
2 in the measured region of 0.25 < x < 0.90. The errors listed

are statistical and systematic, respectively. All errors are absolute.

〈
Q2〉 (GeV2) a

3He
2 (measured)

3.21 -2.085E-04 ± 1.613E-04 ± 3.539E-05
4.32 -1.351E-04 ± 2.079E-04 ± 3.348E-05

Table E.73: The extracted an
2 over the full x range, decomposed into the low-x, measured and

high-x components. The column labeled “full” is the sum of all three regions. No errors are
listed here, see Section E.8.2.

〈
Q2〉 (GeV2) low-x measured high-x full

3.21 -3.056E-04 5.078E-04 6.530E-04 8.552E-04
4.32 -3.056E-04 5.499E-04 2.601E-04 5.044E-04

Table E.74: The extracted an
2 over the full x range. The errors listed are statistical and system-

atic, respectively. All errors are absolute.

〈
Q2〉 (GeV2) an

2
3.21 8.552E-04 ± 1.761E-04 ± 6.125E-04
4.32 5.044E-04 ± 2.270E-04 ± 6.042E-04
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E.8.2 Systematic Errors

The systematic errors for the measured a
3He
2 are given in Table E.75, where the column

labeled g
3He
1 corresponds to the error due to our g

3He
1 data, and the column labeled x is the

error due to x in the integration. The in-quadrature sum of the two contributions is given
as the column labeled “Total.” The systematic errors for the an

2 extraction for the full x

range are presented in Table E.76. The columns labeled low-x (high-x) correspond to the
errors due to the low-x (high-x) regions. The errors due to the effective proton (neutron)
polarization is given by the column labeled P̃p (P̃n). The errors due to ap

2 and our measured
a

3He
2 are also given. The in-quadrature sum of each contribution is labeled as “Total” in the

last column.

Table E.75: The systematic errors contributing to the a
3He
2 result in the measured x range. The

last column is the in-quadrature sum of all contributions.

〈
Q2〉 (GeV2) g

3He
1 x Total

3.21 3.428E-05 8.803E-06 3.539E-05
4.32 3.281E-05 6.681E-06 3.348E-05

Table E.76: The systematic errors contributing to the an
2 result over the full x range. The last

column is the in-quadrature sum of all contributions.

〈
Q2
〉 (

GeV2) low-x high-x P̃p P̃n ap
2 a

3He
2 Total

3.21 1.374E-04 1.373E-04 2.439E-04 3.012E-04 3.068E-04 3.052E-04 6.125E-04
4.32 8.878E-05 8.880E-05 2.518E-04 3.054E-04 3.118E-04 3.089E-04 6.042E-04
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