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The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Elec-

tron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate

the spin structure of the proton. The experiment measured inclusive double polarization

electron asymmetries using a polarized electron beam, scattered off a solid polarized am-

monia target with target polarization aligned longitudinal and near transverse to the elec-

tron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure

functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The

scattered electrons were detected by a novel, non-magnetic array of detectors observing a

four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extrac-

tion of the spin asymmetries and spin structure functions, with a focus on spin structure

function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a

function of x and W in four Q square bins. A full understanding of the low x region is



necessary to get clean results for SANE and extend our understanding of the kinematic

region at low x.
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4.5 Čerenkov TDC versus ADC values . . . . . . . . . . . . . . . . . . . . . 81

4.6 Diagram of BETA with Physics Angles . . . . . . . . . . . . . . . . . . . 82

4.7 Dilution factor for one of the NH3 target loads as a function of W (GeV) . 87

4.8 Method Used in Estimating the Packing Fraction in SANE . . . . . . . . . 89

4.9 Radiation corrections mechanism . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Ratio of Background Particles to Electron High at Low x . . . . . . . . . . 97

5.2 Charge Symmetric Background with SANE kinematics . . . . . . . . . . . 97

5.3 Tracker Analysis, When Tracker is In/Out . . . . . . . . . . . . . . . . . . 101
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CHAPTER 1

INTRODUCTION

The study of matter can be traced way back to 500 BC [1] when the first speculations

were recorded as to whether matter is continuous, or is composed of discrete particles by

the Greek philosophers such as Anaxagoras (500−428 BC) and Empedocles (484−424

BC) as well as Leucippus (Circa 450 BC) and his pupil Democritus (460−370 BC) who

argued that the universe consists of empty space and of indivisible particles, called atoms.

The Greek word ‘atomos’ meaning indivisible, differing from each other in form, position

and arrangement. The atomic hypothesis, however, was rejected by Aristotle (384−322

BC) who strongly supported the concept of the continuity of matter. The first experimental

evidence that electric charge was not infinitely divisible, but existed in discrete units, was

obtained by M. Faraday, who discovered the laws of electrolysis in 1833 [2]. While the

first direct measurements of this smallest possible charge were initiated by J. J. Thomson

and carried out by his student J. S. Townsend in 1879. In 1895, J. J. Thomas set out the

hypothesis that cathode rays consisted of a stream of particles each of mass, m and charge

−e [3]. Cathode ray is a beam of negatively charged electrons emitted from the cathode

of a high-vacuum tube. All these were in attempt to address the question, ”what is matter

made of?” on the most fundamental level. In 1895, E. Rutherford was awarded a Research
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Fellowship to travel to England for postgraduate study at the Cavendish Laboratory, Uni-

versity of Cambridge to work under the inspiring leadership of J. J. Thomson [4]. By the

early years of the 20th century, the atomic nature of matter had been well established. It

was known that atoms contained electrons and that an electron was much lighter than even

the lightest atom. The question now arises as to how the mass and positive charge are

distributed within the atom. The answer was provided by Rutherford experiment in 1906

whereby Geiger and Marsden under Rutherford’s supervision, scattered off α-particles by

metallic foils of various thickness [7]. Rutherford found that the positive charge, and most

of the mass, was concentrated in a tiny core, or nucleus, at the center of the atom. The

nucleus of the lightest atom (hydrogen) was given the name proton by Rutherford [5, 6].

In 1932, Chadwick discovered the neutron-an electrically neutral twin to the proton [8].

At this point the atom was known to be composed of just protons, neutrons, and electrons.

Later, the supposed tiny protons and neutrons were discovered to possess internal struc-

ture. As the years went by (1930-1960) more elementary particles were discovered such

as Yukawa’s meson, Dirac’s positron, and Pauli’s neutrino. Many models were postulated

to explain the mechanisms involved in the formation of these elementary particles. So far,

the parton model is one of the most successful which has evolved into the quark model,

in which the nucleons are comprised of quarks and gluons governed by the color force

described by quantum chromodynamics [33].

Now, the structure of the nucleons can be probed and information about their con-

stituent particles inferred from scattering of electrons from proton. In this document, one

of such scattering experiments to probe the proton is discussed. The experiment was named

2



SANE−Spin Asymmetry of the Nucleon Experiment with identification number E-07-003

and carried out at The Thomas Jefferson National Accelerator Facility (for short, JLAB).

1.1 Lepton Scattering

In considering scattering of a lepton from a nucleon, the cross section for such an

interaction may be written in terms of a leptonic and a hadronic tensor. The fundamental

interaction is the exchange of a virtual photon between the lepton and the nucleon. The

leptonic tensor is known exactly through Quantum Electrodynamics (QED), but since the

nucleon is not a fundamental particle, the hadronic tensor can be constrained but not known

a priori. The typical approach is to write the hadronic tensor in terms of four structure

functions that are functions of the kinematics of the interaction. The kinematic variables

chosen are typically: ν, and −Q2 such that

ν = E − E �,

Q2 = 4EE � sin2 θ

2
.

(1.1)

Where q2 ≡ −Q2 (with Q2> 0) is the 4−momentum squared of the virtual photon and

ν is the laboratory energy of the exchanged photon, E and E� are the initial and final

energies respectively, θ is the scattering angle of the photon. Two of the structure functions,

F1(ν, Q
2) and F2(ν, Q

2) are known as the unpolarized structure functions and contribute to

the cross section in all scattering events. The other two structure functions, g1(ν, Q2) and

g2(ν, Q
2) are known as the polarized structure functions and only contribute to the cross

section if both the lepton and nucleon are polarized, hence cancel in the spin-averaged

cross sections.
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The unpolarized structure functions were the first to be studied, in the 1970’s and 1980’s

[10], and are now well known over a large kinematics range. The polarized structure func-

tions on the other hand were studied next. They are most easily measured by determining

the cross section asymmetry between two states that differ in either target or beam polariza-

tion direction. In the 1980’s and 1990’s, the polarized structure functions were measured

in the so−called deep inelastic region, where Q2 > 1.0 (GeV/c)2 and W > 2 GeV, where

W is the mass of the hardronic state. In this region, they have been measured fairly accu-

rately. The spin asymmetries A1(ν, Q
2) and A2(ν, Q

2) extend the deep inelastic scattering

description of the nucleon spin structure to the region of the resonances. In this region, the

nucleon spin structure can be described in terms of either the g1(ν, Q
2) and g2(ν, Q

2) spin

structure functions (SSF) or the spin asymmetries, A1 and A2. The latter are constructed

starting from the virtual photon absorption cross section σT
1/2, σT

3/2 and σTL
1/2 for photon

helicities +1, -1, 0, respectively.

A1 =
σT
1/2 − σT

3/2

σT
1/2 + σT

3/2

=
νMG1(ν, Q

2)−Q2G2(ν, Q
2)

W1(ν, Q2)

A2 =
σTL

2σT
=

�
Q2

�
MG1(ν, Q

2) + νG2(ν, Q
2)

W1(ν, Q2)

� (1.2)

Where 2σT= σT
3/2 + σT

1/2, M is the nucleon mass and W1(ν, Q
2) is the transverse unpolar-

ized structure function.

4



In the scaling limit of deep inelastic scattering (DIS), the structure function depends

(up to logarithmic corrections) only on the scaling variable x, where

x =
Q2

2Mν
,

lim
Q2,ν→∞

M2νG1(ν, Q
2) = g1(x),

lim
Q2,ν→∞

Mν2νG2(ν, Q
2) = g2(x),

lim
Q2,ν→∞

MW1(ν, Q
2) = F1(x).

(1.3)

When compared to scattering on longitudinally polarized nucleons, scattering longitu-

dinally polarized electrons on transversely polarized nucleons provide access to g1 and g2

with different weighting. Thus allowing the spin-dependent structure functions to be sepa-

rated experimentally. The measurement of A2 from an experimental stand point is simpler

than that of the absolute cross section difference for scattering of longitudinally polar-

ized electrons on transversely polarized nucleons, which is required to access g2 directly.

Therefore, we aimed to measure the parallel A180◦ and transverse (near perpendicular) A80◦

asymmetries:

A80◦ =
−D�

W1

{[(E + E � cos θ) cos 80◦ + E � sin θ cosφ sin 80◦]MG1

+ (2EE � sin θ cosφ sin 80◦ −Q2 cos 80◦)G2}

A180◦ =
D�

W1

[(E + E � cos θ)MG1 −Q2G2]

(1.4)

which are related to the spin asymmetries A1 and A2 by:

A1 =
C

D
(A� − dA⊥)

A2 =
C

D
(c�A� + d�A⊥)

(1.5)
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Where C, c�, d, d� and D are functions of the kinematic variables only. However, D has

an additional mild dependence on the unpolarized structure function, R(Q2,W ) = σL/σT

such that

D =
1− �

1 + �R
. (1.6)

D contains the virtual photon polarization � = 1/[1 + 2(1 + ν2/Q2) tan2 θ/2.

The spin structure functions are expressed in terms of these asymmetries and the struc-

ture functions as

g1 =
F1

1 + γ2
(A1 + γA2)

g2 =
F2

1 + γ2

�
A2

γ
− A1

� (1.7)

Where γ = 4x2M2/Q2

The Spin Asymmetry of the Nucleon Experiment (SANE) set out to extract A1 and A2

of the proton from measured asymmetries, extract g1 and g2 from A1 and A2, calculate the

twist 3 matrix element d2 of the proton which quantifies the quark-gluon interaction, probe

as x approached 1 at constant Q2, and to test the quark models and pQCD prediction.

It is worth noting that the proton polarized structure function, gp2 , has not been studied

sufficiently. Actually, only six experiments so far have attempted to fully measurement gp2

namely, SLAC (E143, E155, E155x) [24, 23], CERN (NA-47) [25], and HERMES [13]

being the most recent with DIS region covering data scattered over large Q2 range, and

Jefferson Lab (RSS) [20] with resonance region with data at Q2 ∼ 1.3 GeV 2. More so,

over the years there has been dearth of data on A⊥ in the region of the (Q2, x) kinematic

plane for x >∼ 0.6 [36, 37]. This region is entirely dominated by the nucleon resonances

for Q2 ≤ 5 GeV 2. Since the study of the spin structure function began, only parallel
6



Figure 1.1

Plot of SANE Kinematics

asymmetry results for protons and deuteron have become available for most of the region.

The only perpendicular asymmetry measurement on the protons and deuterons was done

by the RSS collaboration in Jefferson Lab’s Hall C [36] and it is limited to the resonances

at < Q2 >∼ 1.3 GeV 2. Figure 1.1 depicts the situation for the two proton and deuteron

targets where the absence of A⊥ data at high x is glaring. The case is somewhat better for

the neutron where g2 DIS measurement have been done in Jefferson’s Lab Hall A.

Furthermore, this document takes a closer look into the pair-symmetric background

coming from neutral particle decays as the beam traverses through the target. A full correc-

tion of the pair-symmetric background is important for a proper and reliable spin structure

function study.

This thesis starts with an introduction in chapter one, followed by the theory section in

chapter two. The detailed experimental setup and methods is presented in chapter three,
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while chapter four explains how the data were analyzed, chapter five explains the pair

symmetric background. The results are presented in chapter six followed by the conclusion

in chapter seven.
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CHAPTER 2

THEORETICAL PERSPECTIVE

2.1 Investigating the Internal Structure of the Proton

The building blocks of atomic nuclei are namely, protons and neutrons whose internal

structure leads us to their fundamental properties. Having a full comprehension as to how

the nucleons are built in terms of underlying quark and gluon degrees of freedom is of

paramount importance to the field of Nuclear Physics.

Electron (as well as muon) scattering is a suitable tool to study the structure of the

nucleon. Electrons can easily be accelerated in well defined monoenergetic beams and

accurately detected using magnetic spectrometers and standard particle detection. Also, the

electromagnetic interaction is a “known” interaction with coupling strength of αem = 1
137

,

hence a good candidate for investigating the “picture” of the nucleon. Thus with such a

well-defined interaction as the electromagnetic interaction, we can with confidence use it

for a probe and a systematic calculation scheme for computing the results of experiments.

Two types of scattering mostly involved in the study of the nucleon are elastic and deep

inelastic scattering. In elastic scattering, the final state of the nucleon is unchanged, but

with a finite recoil. Here, the scattering cross section allows one to map out the charge and

density distribution inside the nucleon. On the other hand, deep inelastic scattering (DIS)

in which a quark in a nucleon gets knocked out by a virtual photon and the nucleon gets
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smashed into many fragments [10]. In this case, one gains access to the quark and gluon

distribution in momentum space.

2.2 Kinematics and Variable

In order to calculate the cross section for elastic and deep inelastic scattering to the low-

est order in weak or electromagnetic interactions, a lepton with momentum, k scatters off

a nucleon of mass M with the exchange of a virtual photon or Z0 or W± with momentum

q as shown in Figure 2.1.

Figure 2.1

Elastic Scattering Showing the Four-momentum q of the Virtual Photon
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We define the invariant quantity thus:

q2 = (k − k�)2 = −Q2, Q2 > 0,

s = (p+ k)2,

W 2 = p2x,

ν =
p · q
M

=
1

2M
(W 2 +Q2 −M2).

(2.1)

2.3 Electromagnetic Interaction

Figure 2.1 shows an electron (or muon) scattering off a nucleon with an electron (or

muon). Looking at the photon exchange, the neutral current cross section involves γ and

Z0 exchange as well as the interference between the two. For Q2 < 103 GeV2 the electro-

magnetic interaction dominates.

2.4 Elastic Scattering (Electron-Nucleon)

Consider the elastic scattering picture in Figure 2.1 with the incident and outgoing elec-

trons having four momenta k = (E,�k) and k� = (E �, �k�) respectively, the initial and final

nucleon four momenta P and P �. With these kinematics variables, the four momentum of

the virtual photon is given by:

q = k − k� = P � − P. (2.2)

The virtual photon has invariant mass:

q2 = −4EE � sin2 θ

2
, (2.3)
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where θ is the scattering angle. Equation (2.3) is always negative i.e., space-like in nature

or by definition implying there is always a frame where by the energy transfer q0 = ν = 0

and q2 = −�q2 ≡ Q2. This frame is known as the Breit frame.

Now looking at the elastic scattering condition of the lab frame, we have:

(P �)2 = (P + q)2 = M2

= M2 + 2P · q + q2

= M2 + 2Mν + q2.

(2.4)

Thus, 2Mν = Q2.

Figure 2.1 shows elastic scattering between a charged lepton and proton through a one

photon exchange interaction. The energy loss is given by ν = E − E� where ν is a delta

function and it’s given by ν = −q2/2M corresponding to the scattered energy:

E � =
E

(1 + 2E
M

sin2 θ
2
)
. (2.5)

Again, θ is the scattering angle. In this interaction the physical observables characterizing

compositeness are form factors, which enter the elastic scattering cross section. For ex-

ample, in condense matter physics, it is also the form factors (or structure factors) that are

probed in X-ray or electron scattering which roughly speaking, are the Fourier transforma-

tion of the charge density.

In Quantum Field Theory (QFT), the cross section for an interaction can be expressed

as the product of the phase space factors, momentum, energy and the invariant matrix

element. The invariant matrix element, M is the only part of the cross section which

is dependent on the physics of the process being examined, thus much attention will be
12



focused on calculating M. Furthermore, in such a calculation, all quantities are averaged

over the appropriate momenta and over the initial and final spin states. It should be noted

that the averaging over spins state is the case for unpolarized scattering.

Now considering the scattering cross section in one photon exchange, we seek con-

nection to the proton compositeness. If the electron photon vertex is −ı̇eγµ, the electron

proton vertex is (ı̇e)�P � |Jµ|P �. The scattering matrix (S-matrix) element then reads:

S =(2π)4δ4(k + P − P � − k�)u(k�)(−ı̇eγµ)u(k)
−ı̇

q2
�P �|(ı̇e)Jµ|P �

=− ı̇(2π)4δ4(k + P − P � − k�)M.

(2.6)

Where M is known as the invariant amplitude. The electromagnetic current is,

Jµ(ξ) =
�

i

ei �ψi(ξ)γ
µψi(ξ) (2.7)

where ψi is the wave function, i sums over all quark flavors: up, down, strange, charm,

bottom, and top. The first three are light compared with the mass of the nucleon. The

heavier quarks are ignored because they are heavy and play minor role. At this point we

write the elastic scattering cross section dσ in terms of the invariant amplitude as

dσ =
1

2k02P 0|ν1 − ν|(2π)
4δ4(k + P − P � − k�)|Mfi |2

�

f

d3Pf

2Ef (2π)3
(2.8)

where ν1 is the electron velocity, ν is the initial nucleon velocity, and 2k02P 0|ν1 − ν| is

invariant when boosted along the z−direction. However, in the laboratory frame, k = E,

P 0 = M , so we get:

dσ =
1

2ME
|M|22πδ((q + P )2 −M2)

d3�k�

2E �(2π)3
. (2.9)
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Integrating over E � = |�k|, that is, when me << E �. We have

dσ =
E �

2EM2

1

1 + 2E
M

sin2 θ
2

|M|2 dΩ

(2π)2

=
E �

2EM2
· frec · |M|2 dΩ

(2π)2
,

(2.10)

where dΩ is thge differential solid angle and 1/(1+ 2E
M

sin2 θ
2
) is known as the recoil factor

and reduces to unity if the particle is infinitely heavy. The invariant amplitude square is

defined as

|M|2 = e4

Q4
�µν < P |Jν |P � >< P �|Jµ|P >, (2.11)

where �µν is the lepton tensor

�µν = u(k�)γµu(k)u(k)γνu(k�) (2.12)

For unpolarized scattering, we average over the initial polarization and sum over the final

polarization state to obtain

�µν = 2(k�µkν + k�νkµ − gµνk� · k) (2.13)

where gµν is the matrix tensor. The hadron tensor is thus given by

W µν = �P |Jν |P ���P �|Jµ|P � (2.14)

which depends on the current matrix element. The matrix element of the current between

the nucleon states defines two form factors,

�P �|Jµ(0)|P � = U(P �)

�
F1(Q

2)γµ + F2(Q
2)
iσµνqν
2M

�
U(P ) (2.15)

where σµν is the cross section matrix tensor and F1(Q
2) is known as the Dirac form factor

and F2(Q
2) is the Pauli form factor. They are parameterizations of the unknown correction
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to the electron vertex. An experiment can thus be carried out to measure the Q2 dependence

of the cross section in order to extract F1 and F2 from the data. Once data on F1 and F2

have been collected, the electron properties can be calculated. Furthermore, the anomalous

part of the magnetic moment for the proton is κp = µp − 1, in nuclear magneton-units,

eh̄/(2Mc), with value κp = 1.7928. M is the nucleon mass and µp is the magnetic moment

of the proton. It follows that in the static limit, Q2 = 0, F1p(0) = 1, F2p(0) = κp. It should

be pointed out that the structure functions, which the SANE data allow access to, are the

inelastic analogs of the form factors and will be discussed later.

Also, the electric and magnetic form factors are related in the so called Sachs electric

and magnetic form factors as:

GE(Q
2) = F1(Q

2)− τF2(Q
2)

GM(Q2) = F1(Q
2) + F2(Q

2).

(2.16)

Where τ = Q2/4M2.

Thus the hadron tensor now takes the form

W µν = 2(P �µP ν + P �νP µ − gµν(PP � −M2))G2
M

− 2F2GM(P + P �)µ(P + P �)ν

+ F 2
2

M2 + P ·P �

2M2
(P + P �)µ(P + P �)ν

= (−qµqν + gµνq2)G2
M + (P + P �)µ(P + P �)ν

G2
E + τG2

M

1 + τ

= gµνq2G2
M + 4P µP νG

2
E + τG2

M

1 + τ
+ . . .

(2.17)

here, the ellipses indicate terms involving factors of qµ which do not contribute to the cross

section because of the current conservation.
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Considering that the lepton and the hadron tensors are symmetric and conserved in the

lab frame i.e., qµ�µν = qµWµν , the elastic scattering cross section becomes:

dσ

dΩ
= σMott

�
G2

E(Q
2) + τG2

M(Q2)

1 + τ
+ 2τG2

M tan2 θ

2

�
, (2.18)

where σMott is the Mott scattering cross section which represent the scattering of the elec-

tron from a point-like scalar proton. In terms of the recoil factor, frec:

σMott =
Z2α2 cos2 θ

2

4E2 sin4 θ
2

frec (2.19)

were Z is the atomic number. If the proton were structureless, then GE = GM = 1 and the

cross section would be:

dσ

dΩ
= σMott

�
1 + 2τG2

M tan2 θ

2

�
. (2.20)

Any observed deviation from this is a clear indication of nucleon substructure.

The cross section can be written as

dσ

dΩ
=

σMott

1 + τ

�
G2

E(Q
2) +

τ

�
G2

M(Q2)
�
, (2.21)

where �−1 being the virtual proton longitudinal polarization is given by

�−1 = (1 + τ)2 tan
θ

2
. (2.22)

With the need to extract the elastic and magnetic form factors separately from the elastic

scattering, we endeavor to measure two cross sections at fixed Q2 by varying the scattering

angle θ and hence � since they are correlated by equation (2.22). If we plot the quantity

in the square bracket of equation (2.21) versus �−1, the intercept and slope provide sepa-

rately, the electric and magnetic form factors. This method of separation is the so called

Rosenbluth separation method [12].
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2.5 Deep Inelastic Scattering and The Parton Model

Figure 2.2

Deep Inelastic Scattering

Deep inelastic scattering (DIS) is the process used to probe the inside of hadrons (par-

ticularly baryons, such as protons and neutrons) using electrons, muons and neutrinos [46].

An example to consider is the proton in the nucleus of a hydrogen atom. If one strikes it

with some momentum transfer q, by measuring its final momentum �k�, one can figure out

the initial momentum �k. If the energy transfer (momentum transfer) is kept low enough,

that energy would be absorbed as a change in momentum; the final state is strickly de-

termined by the kinematics of the electron, in which case the electron and hadron are

elastically scattered off of one another as described in the preceding section. On the other

hand, if the energy transfer is increased, it is possible to excite nucleon resonances, in-
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duce pion production or a range of other processes. This kind of scattering is referred to

as inelastic as shown in Figure 2.2. To explore the existence of quarks inside the proton,

good knowledge of their distributions in momentum space is highly needed. To do this,

we scatter highly virtual photons off the quarks in the proton and measure the distribu-

tion. Considering electron scattering off a proton producing a final state |X� as shown on

Figure 2.2. Using the one photon exchange approximation, the S-matrix is:

S = (2π)4δ4(k + P − P � − k�)u(k�)(−ieγµ)u(k)× −i

q2
�X|(ie)Jµ|P �, (2.23)

where X is any hadronic final state. The corresponding inclusive cross section is

dσ

dΩdE
=

α4

Q4

E �

E
�µνW

µν , (2.24)

Inclusive in this case means that the final state of the target is not detected, and conse-

quently the measurement “includes” all the different reactions of the electron with the

target, ep −→ e�X (where X is any final state) and the hadronic tensor is given by

Wµν =
1

4π

�

X

�P |Jµ|X��X|Jν |P �(2π)4δ4(P + q − Px). (2.25)

The W tensor depends only on the initial nucleon momentum P and the photon momen-

tum q. Making use of Lorentz symmetry, parity and time reversal invariance and current

conservation, the W tensor can be written in terms of two invariant tensors, W1 and W2 as

shown:

Wµν = W1

�
−gµν +

qµqν

q2

�
+

W2

M2

�
P µ − qµ

P ·q
q2

��
P ν − qν

P ·q
q2

�
(2.26)

Where W1 and W2 are functions of Q2 and ν (Q2 and ν being Lorentz scalars). When W1

and W2 are plotted as a function of x = Q2/2Mν, they are nearly independent of Q2. This
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is known as Bjorken scaling. Whereas, if x is fixed, Q2 tends to ∞ and called the Bjorken

limit.

The Parton model introduced by Feynman was used to explain the fact that the nucleon

is made of non-interacting partons (quarks). More so, in deep inelastic scattering, the pho-

tons scatters off these free partons. Partons can be any particles with no internal structure

and must be interacting in order to prevent the nucleon from falling apart. To calculate the

hadronic tensor, we sum over scattering on partons

W µν =

�
dxF

xF

f(xF )ω
µν , (2.27)

where xFP is the longitudinal momentum carried by a parton, f(xF ) is the parton density

and ωµν is the hadron tensor for a single quark. Taking into consideration the contribution

of the anti quark

W µν = − 1

4π
Im

�
dxTr

�
γµ xp+ q

(xp+ q)2 + i�
γνpf1(x)

�
+ crossing. (2.28)

Upon performing the trace, we arrive at

W µν =
1

2ν

�
f1(xB)− f1(−xB)

�
(2xBp

µpν + pµqν + pνqµ − gµνν). (2.29)

Where −f1(−xB) is the contribution of f̄(xB), the anti parton. Now, comparing this with

the definition of the structure functions

W1 =
1

2

�

i

e2i

�
f i
1(xB) + f̄ i

1(xB)
�
,

W2 =
M

ν
xB

�

i

e2i

�
f i
1(xB) + f̄ i

1(xB)
�
.

(2.30)
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Here, we have restored the summation over quark flavor and included the weight of quark

charges. Thus, we define the scaling functions

F1(xB) = W1 =
1

2

�

i

e2i

�
f i
1(xB) + f̄ i

1(xB)
�
,

F2(xB) =
ν

M
W2 = xB

�

i

e2i

�
f i
1(xB) + f̄ i

1(xB)
�
,

(2.31)

where we see clearly the relation F2(xB) = 2xBF1(xB), the well known Callan-Gross

relation. It should be clear that no assumption are made about the quark interactions before

scattering in the derivation given above.

To conclude on this sub section on probing the nucleon structure through DIS, we have

considered the proton to be comprised of two up valence quarks and one down quark (uud)

with electric charge 2/3 and −1/3 of the proton. There are infinite number of quarks; this

can be seen because, the integration
�
q(x)dx does not seem to converge due to the fact

that there are infinite number of quarks and antiquark pairs in the proton.

It is also worth pointing out that the gluons have been found to play very important

role in the nucleon structure. By constructing the integral
�
xq(x)dx, the fraction of the

nucleon momentum carried by quarks can be calculated. Experimental data indicate that

this is only about 50% thereabout. Thus the missing momentum must be carried by the

gluons. Hence, the charge-neutral gluons is of great importance in the determination of the

nucleon structure.

2.6 Physics of Parton Distribution

In this section, we consider a model of the nucleon to describe the physical meaning

of the structure function, F2(x). This model is call the Quark Parton Model and considers
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the nucleon to be composed of point-like free particles (partons) with momentum parallel

to the proton’s. Looking into the parton distributions, we start by writing out the structure

functions assuming only up and down quarks are present. This is because, quantitatively,

the up and down quarks dominate the structure functions. For simplicity, we define the up

and down momentum fraction distributions as:

u(x) ≡ fu(x)

d(x) ≡ fd(x)

(2.32)

And likewise for the antiquarks. The structure functions can thus be written:

F p
2 (x) = x

�
4

9

�
up(x) + ūp(x)

�
+

1

9

�
dp(x) + d̄p(x)

��
(2.33)

Under isospin flip, u ←→ d and n ←→ p; this implies:

F n
2 (x) = x

�
4

9

�
dp(x) + d̄p(x)

�
+

1

9

�
up(x) + ūp(x)

��
(2.34)

Letting u(x) ≡ up(x) and d(x) ≡ dp(x)

F p
2 = x

�4
9
(u+ ū) +

1

9
(d+ d̄)

�

F n
2 = x

�4
9
(d+ d̄) +

1

9
(u+ ū)

� (2.35)

From these expressions, it can be deduced that the inequality:

1

4
≤ F n

2

F p
2

≤ 4 (2.36)

holds. On the other hand it can be shown that the ratio of the neutron and proton unpolar-

ized structure function F2(x) in the quark model is:

F n
2

F p
2

=
1 + 4dp(x)/up(x)

4 + dp(x)/up(x)
(2.37)
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Figure 2.3

Plot Showing F n
2 /F

p
2 Ratio
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Figure 2.3 [14] shows the plotted data of the ratio of equation (2.37). This ratio approaches

the limit of 1/4 as x −→ 1, which is a clear indication of a negligible down quark contri-

bution to the composition of the proton. On the other hand, if A1(x) approaches 1 at high

x, then the scattering process is dominated by high momentum up quarks with angular mo-

mentum aligned with that of the proton. In the region of low x; x � 1, the ‘sea’ (quarks)

of qq̄ pairs dominates the structure function and one observes:

F n
2

F p
2

−→ 1 (2.38)

At higher x −→ 1, the valence quarks dominate and we find:

F n
2

F p
2

−→ 1

4
(2.39)

u(x) > d(x) in the proton since there are 2 valence up quarks verses only one valence

down quark. The parton model postulates that the nucleon is constituted of point-like

free particles with momentum parallel to the proton’s. In the scaling limit, the structure

functions, F1(Q
2, x) and F2(Q

2, x) can be written as their corresponding asymptotic value

in this limit. Beside direct experimental observation of the quark structure by measuring

F1(Q
2, x) and F2(Q

2, x), it is possible to obtain evidence of the existence of a sea of gluon

in the nucleon. Furthermore, the gluon carry a significant fraction of the momentum of the

nucleon which affects a “momentum” sum rule that indicates the fraction of the momentum

carried by the quarks. For scattering from an isoscalar nucleus such as deuterium, we

define:

FN
2 (x) ≡ 1

2
(F p

2 + F n
2 )

=
5

18
x
�
u(x) + ū(x) + d(x) + d̄(x)

�
.

(2.40)
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Therefore,

18

5

� 1

0

FN
2 (x)dx =

� 1

0

x
�

i

fi(x)dx (2.41)

This shows that one can measure the sum of the momentum fractions of all the quarks

(including antiquarks) via the integral of equation (2.41). If there were no other signifi-

cant constituents then the above integral should be unity. Notwithstanding, experimental

observation shows that

18

5

� 1

0

FN
2 (x)dx = 0.50± 0.05 (2.42)

The picture of Figure 2.4 shows experimental data for the structure function F2(x) for

the proton at various values of x versus the squared momentum transfer Q2. The data are

plotted as a function of Q2 in bins of fixed x [34].

2.7 Quark Spin Structure of the Nucleon

When the spins of the quarks are probed in polarized deep inelastic scattering in which

the lepton and target proton are both polarized along the scattering axis, the polarized

electron exchanges a polarized virtual photon with the target. Due to helicity conservation,

the virtual photon inherits some of the incident lepton helicity, resulting in a virtual photon

with some net helicity. Thanks to helicity conservation a (+) helicity quark can only absorb

a (+) helicity photon, likewise a (−) helicity quark can only absorb a (−) helicity photon.

By studying the difference under reversal of the proton spin (photon helicity) we obtain

the probability that the struck quark has the same helicity as the incident lepton for a fixed

spin orientation of the proton. The cross section difference:

Δσ = σ++ − σ+− (2.43)
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Figure 2.4

Experimental data of the proton structure function F p
2 (x) at various values of x
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is proportional to the combination of polarized momentum fraction distribution (spin struc-

ture function):

Δ ∝ 1

2

�

i

e2[q+i (x)− q−i (x)] ≡ g1(x) (2.44)

Where q
+(−)
i is defined to be the momentum fraction distribution for quark spin parallel

(antiparallel) to the nucleon spin. In the case where the nucleon target is polarized with a

spin vector S, the hadronic tensor, W µν will contain terms depending on S as follows

W [µν] = −i�µναβqα

�
G1(ν, Q

2)Sβ/M
2 +G2(ν, Q

2)(SβνM − PβS·q)/M4
�

(2.45)

We have two scaling functions in the Bjorken limit:

g1(x,Q
2) =

� ν

M

�
G1(ν, Q

2) −→ g1(x),

g2(x,Q
2) =

� ν

M

�2

G1(ν, Q
2) −→ g2(x),

(2.46)

these two functions are non-vanishing. The spin structure function g1 (and g2) is extracted

from the measured asymmetries of the scattering cross section as the beam or target spin is

reversed. It should be noted that g1 (and g2) can also be extracted from differences of po-

larized cross section [27]. These asymmetries are measured with longitudinally polarized

beams and longitudinally (A�) and transversely (A⊥) polarized targets

A� =
σ↓⇑ − σ↑⇑

σ↓⇑ + σ↑⇑ ,

A⊥ =
σ↓⇒ − σ↑⇒

σ↓⇒ + σ↑⇒ ,

(2.47)

where “⇑” represents the target spin polarization and “↑” represents the electron beam

helicity, σ↑⇑ and σ↓⇑ represent the polarized cross sections when the longitudinal spins

of the target and the incoming electron beam are aligned and anti−aligned, respectively.

Similarly, σ↓⇒ and σ↑⇒ represent the cross sections for the two electron helicities states
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on transversely polarized target. Furthermore, A� and A⊥ are combined to get A1 and A2

by using equation (1.5). Lastly, g1 and g2 are obtained from A1, A2 and F1 as in equation

(1.7).

Therefore, by measuring these asymmetries the experimental values for the spin depen-

dent structure functions g1(x) and g2(x) can be determined. Figures ?? and ?? show world

data for gp1 and g2. However, the cross−section differences are very small and measure-

ments of individual cross sections are limited by experimental systematic uncertainties. In

order to avoid the time dependent systematic effects, the polarization of the target/beam

was flipped frequently. While it was hard to flip the target polarization, but the CEBAF

beam polarization is flipped at 60 Hz, so the systematics were limited to the beam charge

asymmetry and the live time correction.

2.8 Moments and Twist

For the nth moment of F1 and F2, the moments or x-weighted integrals of the structure

functions can be defined as:

M
(n)
1 (Q2) =

� 1

0

dxxn−1F1(x,Q
2)

M
(n)
2 (Q2) =

� 1

0

dxxn−2F2(x,Q
2)

(2.48)

These are also known as the Cornwall-Norton moments [65]. We note that for n = 1, F1

is described to have an effective count of quark charges, while for n = 2, F2 depicts the

momentum sum rule.
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Figure 2.5

World data of gp1

Furthermore, the spin structure function moments are defined as:

Γ
(n)
1 (Q2) =

� 1

0

dxxn−1g1(x,Q
2)

Γ
(n)
2 (Q2) =

� 1

0

dxxn−2g2(x,Q
2)

(2.49)

With the difference of the first moments of the proton and neutron longitudinal spin struc-

ture functions, gp1 and gn1 is the fundamental Bjorken sum rule, namely;

Γp
1(Q

2)− Γn
1 (Q

2) =

� 1

0

(gp1(x,Q
2)− gn1 (x,Q

2))dx =
1

6

gA
gV

CN(αs). (2.50)

Where gA/gV correspond to the ratio of the axial vector and vector coupling constants,

which can be determined by measurements of angular correlations in neutron decay. gT ,

the transverse spin structure function given by gT = g1+ g2 comes from the corresponding

twist-3 piece of the spin structure function g2. g2 consists of a twist-2 part gWW
2 and a

mixed twist-2/twist-3 part ḡ2. However, the twist-2 part of g2 can be extracted once g1 is

measured [35]. Figure 2.5 shows world data for gp1 [45].

g2(x,Q
2) = gWW

2 (x,Q2) + ḡ2(x,Q
2). (2.51)
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From the inclusive measurements in DIS, it has been established that the quarks carry only

about 25% of the nucleon spin [38, 39, 40] and that there are small but non-negligible

quark-gluon interactions in the region 0.2 ≤ x ≤ 0.4.

gWW
2 (x,Q2) = −g1(x,Q

2) +

� 1

x

g1(y,Q
2)
dy

y

ḡ2(x,Q
2) = −

� 1

x

∂

∂y

�m
M

hT (y,Q
2)y + ξ(y,Q2)

�dy
y

(2.52)

where m and M are the quark and nucleon masses, and hT (x,Q
2) is the chiral-odd quark

transverse spin distribution. ξ represents a leading twist-3 contribution from processes

involving quark-gluon interactions [37]. In addition to gWW
2 , g2 consists of another twist-2

contribution from the transversity, hT , even though in DIS this contribution is suppressed

by the ratio m/M [41, 42, 43]. Because of the suppression of hT , the third moment of

the mixed twist ḡ2(x,Q2) can be related by the operator product expansion (OPE) to the

reduced twist-3 quark matrix element d2. The OPE is a connection between quark matrix

elements of the nucleon and the moments of the spin structure functions,

� 1

0

x2ḡ2(x,Q
2)dx =

1

3
d2(Q

2) (2.53)

d2 can be calculated in lattice QCD [76]. With hT being a leading twist quantity and hence

comparable in magnitude to g1, this implies that even if the m/M ratio were to be of the

order of ∼ 1%, hT could represent a significant contribution to ḡ2, since the pure twist-3

part, ξ may be considerably smaller than g1.

In addition to the motivations of the SANE as discussed in section 1.1, only a limited

amount of d2 data exist from SLAC and RSS at Jefferson Lab. Hence SANE aimed to

determine ḡ2 with precision in the critical region 0.3 ≤ x ≤ 0.8 at fixed Q2, and compute
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d2 by combining SANE and world data. Figure 2.6 and Figure 2.7 show the expected

results of g1 and g2 respectively [16]. Figure 2.8 shows the expected results of SANE for

d̄2, plotted on the projected pQCD evolution of d2, normalized to SLACs C-N result at 5

GeV 2. RSS result and the lattice QCD calculation are shown.

Figure 2.6

Data of g1 plotted versus x

More relevant to g2 is the fact that it gives access to the polarizabilities of the color

field [44] taking into account the twist-4 matrix element f2. The magnetic and electric

polarizabilities are:

χB =
(4d2 + f2)

3
,

χE =
(2d2 − f2)

2

(2.54)
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Figure 2.7

Data of g2 plotted versus x, with gWW
2

respectively.

Knowledge of these properties of the color fields is an important step in understanding

QCD. The twist−4 f2 matrix element represents, the quark-quark interactions, and reflects

the higher twist corrections to the individual proton and neutron moments of g1 and in

consequence to the Bjorken sum rule [64, 44].

� 1

0

g1(x,Q
2)dx =

1

2
a0 +

M2

9Q2
(a2 + 4d2 + 4f2) +O

�
M4

Q4

�
(2.55)

where a0, a2, d2, f2 correspond to the twist-2, quark mass, twist-3 and twist-4 terms re-

spectively. More so, these matrix elements are related to the higher moments of the spin

structure function and have a strong dependence on the high x contributions.
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Figure 2.8

Expected SANE results for d̄2
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CHAPTER 3

EXPERIMENTAL SETUP

SANE, was conducted from January to March of 2009 at the Thomas Jefferson National

Accelerator Facility under experiment number E03-007. The experiment was aimed to

extract A1 and A2 from measured asymmetries, and extract g1 and g2 from A1 and A2;

with g1 and g2 one can calculate the Twist 3 matrix element d2 given by

d2 =

� 1

0

x2(2g1 + 3g2)dx (3.1)

(which quantifies the quark-gluon interaction). In addition, the experiment probes the ap-

proach of A1 to x = 1 at constant Q2 which tests the quark models and pQCD prediction.

In this chapter, an insight into the description of the experiment is presented starting with

an overview of the experimental methods presented in section 3.1. This is followed by the

polarized electron beam in section 3.2 and description of the various detector components

in section 3.3. Lastly, section 3.4 present the triggers and data acquisition system.

3.1 Experimental Apparatus

The SANE experiment was carried out in Hall C of Jefferson Lab (JLab). Jefferson

Lab was ideal for SANE for the following reasons:

• The high polarization continuous electron beam.
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Figure 3.1

Experimental Layout Showing the Various Components Involved

• The large solid angle of the Hall C Cerenkov, calorimeter, tracking hodoscopes de-
tector system, BETA (”Big Electron Telescope Array”), which makes possible high
statistics measurements at Q2 ∼ 5 GeV 2 in reasonable amount of run time [76].

• The open geometry of the UVa solid polarized target, that allows for flexible relative
orientations of the beam helicity and the target spins, coupled with the high proton
polarizations [16].

Figure 3.1 shows the experimental layout of SANE showing the various components in-

volved.

3.2 The Accelerator

The primary mission of Jefferson Lab is to conduct basic research of the atom’s nucleus

using its unique particle accelerator. The Continuous Beam Accelerator Facility (CEBAF)

beam produced at Jefferson Lab is based on superconducting radiofrequency (SRF) tech-
34



nology. It produces a stream of charged electrons use to probe the nucleus of the atom.

It is the world’s most advanced particle accelerator for investigating the quark structure of

the atom’s nucleus.

The accelerator provides electron beams for experiments and uses a sophisticated com-

puter system to control hundreds of thousands of hardware components which includes a

complex cryogenic, microwave, vacuum and magnet systems that comprise the accelerator.

Jefferson Lab operates two superconducting radiofrequency accelerators: the Continuous

Electron Beam Accelerator Facility (CEBAF) and the Free-Electron Laser (FEL).

The CEBAF accelerator is a unique accelerator used to conduct investigations in the

field of nuclear physics. It provides high-current, medium-energy electron beams concur-

rently to three experimental halls for the study of quarks and gluons, protons and neutrons

and the nucleus of the atom. The Jefferson Lab Free-Electron Laser, though powered by a

smaller SRF accelerator, holds power records in the production of infrared, ultraviolet and

terahertz beams. CEBAF consists of two, anti-parallel linear accelerators, each capable of

approximately 600 MeV of acceleration. These accelerators are joined together through a

series connection via nine recirculating arcs, five at the north end and four at the south end,

to form a “race-track” such that after five passes through the linacs it’s possible to provide

a maximum beam energy of approximately 6 GeV. After extraction, the accelerator can

deliver polarized, continuous wave beam at currents up to 200 µA to be divided among the

three experimental halls, A, B, and C (See Figure 3.2).
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Figure 3.2

An Annotated Diagram of the CEBAF Accelerator

3.2.1 The Polarized Beam Source

The source is a polarized electron beam. The polarized electrons were excited by cir-

cular polarization from a semiconductor photocathode and accelerated for the SANE ex-

periment to energies of 4.7 GeV and 5.9 GeV by the superconducting radio-frequency

resonant cavities of the CEBAF accelerator. When the electrons were accelerated, they

were delivered to Hall C experimental hall where they collided with a NH3 target.

3.2.2 The Polarized Electron Production

The starting point of the production and acceleration of the electron beam is at the

electron source where electrons are excited from a strained GaAs (Gallium arsenide) crys-

tal using circularly polarized laser light. The polarization of the electrons take place by
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optical pumping the P3/2 valence-band level and the S1/2 conduction-band level in GaAs.

Moreover, a monolayer of Cs2O (Caesium oxide) on the GaAs causes the surface with

negative electron affinity to shift the vacuum level below the conduction band, resulting in

the release of excited photoelectrons across the semiconductor bandgap into the vacuum.

All this is possible thanks to the fact that GaAs has a direct bandgap. In GaAs, the four

spin substates of P1/2 and P3/2 level are degenerate, so light of the band−gap energy will

induce transitions of both P1/2 and P3/2. With respect to the Clebsch-Gordan angular mo-

mentum coupling coefficient between the initial and excited states, there is 50% theoretical

limit of polarized electrons. Notwithstanding, by lifting the degeneracy of the P3/2, the

polarization can be made higher than this limit.

Higher polarizations are reached by lifting the degeneracy through mechanically stain-

ing the GaAs. One way to implement the strain is by growing the GaAs cathode on a sub-

strate of GaAsP, which has a different lattice constant. With so called “superlattice” doped

on every other layer via phosphorus, Jefferson Lab is able to strain GaAs cathodes to de-

liver 85% polarized electron beam with a QE (Quantum Efficiency) of about 1%.

Three gain switched diode lasers, one for each experimental hall are used to produce

electrons from the cathode. Each laser is pulsed at a frequency of 499 MHz, and the three

lasers are phased shifted relative to each other by 120 ◦. Each laser pulse produces a single

bunch of electrons, and the combined train of electron bunches has a frequency of 1497

MHz, which equals the fundamental resonant frequency of the RF accelerating cavities in

the linacs.

37



3.2.3 Acceleration and Delivery of Beam

A 100KV electron gun accelerates the electrons from the polarized source into the in-

jector. Furthermore, the injector provides as much as 67 MeV of additional acceleration

as it sends the electrons into the north linear accelerator. Each linear accelerator and the

injector consist of 21, 20 and 4 cryomodules respectively; these cryomodules themselves

contain 8 superconducting RF cavities as well a support cryogenics and power. Each cavity

provides a nominal acceleration of about 28 MeV, giving each linac a nominal acceleration

of 570 MeV. At 5 passes through the race track this provides 5.9 GeV. The accelerating

cavities are made from Niobium cooled to 2 K, with liquid helium and each is powered

by an RF klystron at 1497 KHz. Electrons move on the crest of the RF wave in the super-

conducting cavities, gaining energy while their speed remains close to the speed of light.

Because the electrons are already relativistic after leaving the injector, they are tuned to

stay in phase with the RF field in the cavities. They will remain so even after several linac

passes. In this way the cavities carry as many as 5 sets of electron beams from each succes-

sive pass simultaneously. As soon as the beam reaches the end of a linac, a series of dipole

magnets splits the beam according to their energy, routing each to a recirculating arc. These

arcs steer the beam back around to the other linac, with each successive arc using a larger

field integral to carry beam of higher momentum around the turn in the race-track. As the

beam switches yard, it is extracted from the racetrack which uses RF separator magnets at

499 MHz to separately extract the 3 beams after any number of passes to send to each of

the three experimental halls.
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3.2.4 Beam Current Measurement

Beam Current Monitors (BCM1 and BCM2) are used to measured the current of the

beam entering the hall. BCM1 and BCM2 are cylindrical cavities designed to resonate in

the transverse magnetic mode TM010 at the same frequency as the accelerator RF. They

are used to monitor the beam current in real time. The TM010 mode is desirable mainly

because the output power is relatively insensitive to the beam position inside the cavity

when the beam is close to the cavity’s longitudinal axis. Furthermore, this mode is excited

as the beam passes through these cavities and the antennae placed inside the cavities are

used to convert the RF power of the excited resonance, which is proportional to the square

of the beam current. The final BCM1 and BCM2 are sent to a scaler which is read out every

two seconds by the data acquisition running the Experimental Physics Industrial Control

System (EPICS). It should be worth noting that the gain of the BCM cavities is quite

sensitive to temperature due to its shape and size and the fact that the cavity can expand

and contract in response to charges in temperature.

The drifting of the BCM gain over time necessitate periodic recalibration to ensure

accuracy of the real time measurement of the current. The Unser monitor, which can be

described as a parametric current transformer with an extremely stable gain was used as

an absolute standard against which to calibrate the BCM cavities and calculate the correct

gain of the BCM. However, the Unser monitor is not suitable to monitor the current in

real time like the BCM1 and BCM2 due to the fact that the Unser monitor suffer from an

unstable zero offset which can drift significantly over a short time scale.
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To calibrate the BCM using the Unser monitor with no beam current in the cavities,

alternating runs are taken and then likewise with beam on of various currents so as to

establish the zero offset and the gain respectively.

3.2.5 Beam Energy Measurement

To measure the beam energy as it enters Hall C, the arc dipole magnets are used as

a spectrometer. At the entrance, exit and middle of the arc, pairs of superharps precisely

measure the position and direction or angle of the beam before and after the arc. In addi-

tion, a pair of superharps at the midpoint of the arc provides a third measurement of the

trajectory and determines its curvature. With these measurements of the curvature of the

beam over its 34.3 ◦ deflection by the dipoles, the beam energy can be determined using

the precise knowledge of the field integral of the arc dipole as a function of current:

E � P =
e

θ

�
�B · �dl (3.2)

where e = electric charge, θ = arc bend angle, �B = magnetic field integral over the path

of the beam.

Table 3.1 shows the arc energy measurement; the average reading of the beam energy

measurement, average per run for each beam energy and target field.

3.2.6 Beam Position Measurement

The beam position monitor (BPM) is used to measure the beam position at every point

within the beam line. Each BPM is made up of a resonant cavity possessing a fundamental

frequency that matches that of the accelerator and the Hall C beam. As a measure to
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Table 3.1

Beam Energies per Run for the various SANE run periods

Normal E (GeV) Target field angle Avg E(MeV) Standard Deviation
4.7 180◦ 4736.7 0.9
4.7 80◦ 4728.5 0.8
4.7 80◦ 4729.1 0.5
5.9 180◦ 5895.0 1.9
5.9 80◦ 5892.1 4.9

minimize synchrotron radiation damage, the cavity (holding four antennae) is rotated by

45◦ relative to the vertical and horizontal axes.

The BPM also ensures that the beam trajectory makes it way exactly to the center of

the SANE target passing through the 2.5 cm diameter target cup. Furthermore, information

about the beam energy is also made available by the BPM as described in the previous

subsection. Figure 3.3 shows the BPMs (mm) versus all the experimental runs numbers.

3.2.7 Beam Polarization Measurement

The beam polarization was measured using a Møller polarimeter via the double polar-

ized Møller scattering of �e + �e −→ e + e with a well known cross section and precisely

calculable in QED. In order to relate the beam polarization P
�
b to the measured polarized

cross section we make use of the unpolarized cross section namely:

dσ0

dΩ
=

�
α(4− sin2 θ)

2meγ sin
2 θ

�2
(3.3)
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Figure 3.3

Beam position in units of mm for all the run numbers

where θ = scattering angle. Hence, the cross section of the above reaction in the center-of-

mass frame is:

dσ

dΩ
=

dσ0

dΩ

�
1 + P

�
t P

�
b (θ)

�
, (3.4)

where P
�
t is obtained by polarizing an electron target parallel to the beam axis, dσ0/dΩ is

the unpolarized cross section (for the same process), P �
b and P

�
t are the beam and target

polarizations respectively. Azz(θ) known as the analyzing power of the reaction is given

by:

Azz(θ) = − sin2 θ
8− sin2 θ

(4− sin2 θ)2
(3.5)
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In term of the asymmetry of the cross section for the beam and target spins parallel and

anti-parallel, we obtain:

� =
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓ = Azz(θ)P
�
t P

�
b (3.6)

The beam polarization is thus measured making use of the Møller scattering with a source

of polarized target electrons with known polarization. A 4 Tesla field produced by a super-

conducting split coil solenoid is used to polarize a pure iron film target with the analyzing

power maximized for electrons scattered by 90◦ in the center of mass frame. In addition,

the pairs of electrons are detected in coincidence around this angle.

Figure 3.4

SANE’s Beam Polarization per Run number
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The background resulting from other scattering processes such as Mott scattering from

the iron nuclei are removed due to the coincidence. The scattered electrons undergo a

deflection to large angles from a system of two quadrupole magnets. This allows for the

analysis of their energy. A system of movable collimators are used for the selection of a

narrow range of scattering angle around 90◦ (CM).

In all, nine Møller data measurements were done periodically during the SANE exper-

iment [16]. Due to the fact that during an experimental run, the beam polarization is not

necessarily that of the most recent Møller measurement. Dave Gaskell, one of SANE’s

collaborators created a fit to all the good Møller data for the experiment, such that for a

given number of passes the beam polarization can be expressed as a function of the beam

enegy, wien angle, and the quantum efficiency as reported by the accelerator. The beam

polarization measurement of the SANE experiment versus run number is presented in Fig-

ure 3.4.

The jumps in Figure 3.4 are due to the fact that the longitudinal polarized beam was

simultaneously delivered to two experimental halls of the three experimental halls (A, B

and C). There are over 400 discrete energy combinations which provide longitudinal po-

larized beam polarization in any two halls simultaneously [47]. Combinations for beam to

be delivered to two experimental halls (A and B, B and C, A and C) simultaneously, for

5-pass accelerator energies between 2 and 6 GeV are presented in appendix A.
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Using the following physical constants: m = 0.51099906 MeV/c2; and (g − 2)/2 =

0.001159652, we can write the total precession from the injector to each of the three halls

as:

θA = P

�
2n2

A − nA

�
1− 2α− 1

2.4

�
− α

�
1− 1

4.8

��
π ≡ mAπ

θB = P
�
2n2

B − nB (1− 2α)− α
�
π ≡ mBπ

θC = P

�
2n2

C − nC

�
1− 2α +

1

2.4

�
− α

�
1 +

1

4.8

��
π ≡ mCπ

(3.7)

Where P =
�
E1

m

� �
g−2
2

�
, E1 is the energy of a single linac, α = 0.1125 is the ratio of

the injector energy to the linac energy, and nA, nB, and nC are the number of recirculation

passes delivered to the indicated hall. Both linac are assumed to operate at the same energy,

and hence the energy of the beam in any particular hall is given by:

EA,B,C = (2nA,B,C + α)E1 (3.8)

In order to find the beam energy combinations which will provide simultaneous longitu-

dinal polarization in any two halls, we simply require that the difference in the precessions

to the two halls in question be an integral multiple of π. In these cases, a single orientation

of the polarization at the injector can be found which will arrive longitudinally in each of

the two halls. The general form of the precession difference equation is:

�
θσ − θτ

π

�
= Pf(nσ, nτ ) = mσ −mτ (3.9)

For each particular choice of two halls, σ and τ , there are 21 possible values for the func-

tion f , the precession difference function which depends only upon the number of the

recirculation pass delivered to each of the two halls. These 21 values of f for the cases of
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halls A and B, halls C and B, halls A and C are given in appendix A. In general, the values

of f are large. In general there is a large precession different between any two halls − that

permits so many energy combinations to provide simultaneous longitudinal polarizations

to these two halls.

3.2.8 The Raster System

The Raster system consisted of the Fast and the slow Raster. The slow raster is operated

in a 2 cm maximum diameter spiral pattern. Generally, the raster system is used to spread

the beam over the polarized target’s surface area uniformly to avoid rapid depolarization

due to heating and radiation damage [16]. At Jefferson Lab, the standard fast raster spreads

the beam over 2 mm by 2 mm. The 2 × 2 mm Hall C fast raster is superimposed on the

slow raster pattern. The target used in this experiment is a cylinder of frozen ammonia

beads with a diameter of approximately 2.5 cm. The target will be discussed in detail later

in section 3.5. A single loop coil, about a 1/2 inches in diameter, embedded directly in the

target material serves as a pickup for the polarization measurement.

When the beam passes through the target material, it damages it. This damage to the

target material causes depolarization over time. Spreading the beam out with a wider raster

reduces the radiation induced depolarization rate.

Two deflecting magnets serve to steer the beam. These magnets are controlled by three

signal generators to establish a spiral pattern that maintains a constant beam flux over the

area it sweeps out.
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This spiral raster pattern fills a circle of diameter 2 cm. The raster current signal are

sent to an ADC and read out by CODA. The raster signal data allows for the calculation of

the beam position within the raster at any given time. A graph of the target can be produced

by plotting the x versus y position of the raster for events in the main detector. More details

can be found in [18].

3.3 Chicane and Helium Bag

Chicane is the name given to two set of dipole magnets, BE and BZ used to align

the beam on the target. The chicane is used because the standard Hall C beam would be

deflected down by the target magnetic field when its at 80◦ relative to the beam causing the

beam to miss the center of the target and also miss the beam dump in the rear of the Hall

C.

When the target is oriented such that its 5T magnetic field is parallel or anti-parallel to

the beam line, the trajectory of the beam is unaffected (as we can see from �v × �B). On

the other hand, when the target field is oriented near perpendicular (80◦) relative to the

beam, the beam is bent downward. Furthermore, SANE required near perpendicular target

polarization (hence magnetic field alignment) for most of the experiment so the target was

installed and kept for the entire experiment at the same level as the beamline.

The BE dipole magnet was used to bend the incoming beam vertically down toward

the BZ, which in turn bent the beam back up at the target. These magnets were precisely

positioned to allow the beam to hit the center of the target after being bent by the target
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Figure 3.5

SANE Beamline During Perpendicular Target Field Running

magnetic field. The magnetic field setting for the chicane is tabulated in Table 3.2 [32].

Figure 3.5 shows SANE beamline during perpendicular target field running.

Table 3.2

Chicane Setting

Beam Energy (GeV) BE
�
Bdl BZ

�
Bdl Target

�
Bdl

4.7 1.002 Tm 0.513 Tm 1.521 Tm
5.9 1.002 Tm 0.519 Tm 1.521 Tm

The helium bag is used to prevent background and to handle the beam transport to the

beam dump. That is, to prevent hazardous ionization and activation of the air in the hall

as the beam passing through. The beam passing through the hall must be shielded from

the surrounding atmosphere. This was done by using an 80-foot-long helium bag which

consisted of a 0.04 inch of aluminum windows at the entrance on an extension piece and

at the exit to the beam dump for both when the beam is running straight through and when

it is bent. Mississippi State University contributed in the downstream beamline design and

the helium bag.
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3.4 Target

SANE made use of a frozen 14NH3 as a proton target prepared via dynamic nuclear

polarization (DNP) in a 5 Tesla magnetic field around 1K. This was done by the University

of Virginia Solid Polarized Target group. This section aims to describe in detail the target

preparation.

3.4.1 Why Ammonia

Ammonia was ideal for the following reasons: it has good reproducibility of the target,

contains paramagnetic radicals, yields high maximum proton polarization, exhibit short

polarization buildup time and is a more radiation-resistant material than other compounds.

In addition, the radiation damage can be repaired by annealing. The process of annealing

allows the recombination of paramagnetic centers to restore polarization. In other words, to

anneal, the target material is moved out of the beam and the polarizing microwave radiation

and is heated to between 90− 100 K for about 30 minutes.

3.4.2 Dynamic Nuclear Polarization DNP

The polarization mechanism in DNP is used to obtain a high polarization of the nuclear

spins. This is accomplished by the utilization of a microwave field in a high magnetic

field to transfer the polarization of the free electron spin in the medium to the nucleon.

This method was first developed in 1953 for metals [29] and in 1958 for solid insulators

[30, 31]. The various mechanisms that contribute to the DNP process shall be examined in

this subsection.
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3.4.3 Thermal Equilibrium Polarization

In order to polarize a particular material such as a proton, the interaction of the mag-

netic moment of the particles of interest with an external magnetic field is generally a vital

kickoff point. Consider a polarized target to be an ensemble of such particles placed in a

high magnetic field and cooled to low temperature. A magnetic moment �µ in the external

field, �B establishes a set of 2I + 1 energy sublevels due to the Zeeman interaction, where

I is the spin angular momentum. According to Boltzmann distribution, the relationship of

the populations of two states for a spin 1
2

particle is given by:

N1 = N2 · exp
�−ΔE

KBT

�
(3.10)

Where N1,2 are the population numbers of the sublevels, T is the temperature of the system,

and KB is the Boltzmann constant. Given that the Zeeman interaction takes the form

�µ · �B (3.11)

this implies that, for a spin 1
2

particle, the ratio of the number of particles in the aligned

state to anti-aligned state is given as:

N↑
N↓

= exp

�−µB

KBT

�
(3.12)

Where N1 and N2 become N↑ and N↓; the number of particles in the aligned and anti-

aligned states respectfully.

The vector polarization of the material, P , is a measure of the particle’s spin alignment

in the magnetic field and is typically defined as:

P =
N↑ −N↓
N↑ +N↓

(3.13)
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substituting equation (3.13) into equation (3.12), we get:

P =
e

µB
KT − e

−µB
KT

e
µB
KT + e

−µB
KT

= tanh
µB

KT
(3.14)

However, the magnetic moment of the proton, µp is small hence, the nucleon polarization

obtained in this manner is very small.

For a 2.5 T magnetic field, we deduce using equation (3.14) that the electron polar-

ization is approximately 92% at 1 K. Since the magnetic moment of the proton is much

smaller than that of the electron (µe ≈ 660µp), this results in a much lower proton polar-

ization of 0.25% at 2.5 T and 1 K [53]. Clearly, since producing magnetic fields much

greater than 2.5 T and temperatures much below 1 K are difficult to achieve, there is a need

to seek for other methods to achieve high proton polarization.

3.4.4 Solid-State Effect

As concerns the solid-state effect; the polarization of a desired target material with a

high concentration is accomplished via doping with paramagnetic radicals which provide

the unpaired electron spins.

The electron polarization is very high since the magnetic moment of the electron is

much larger than that of the nucleon. Furthermore, contact between both spin species is

provided as a result of hyperfine splitting. Hyperfine splitting is caused by the dipole-dipole

interaction between the nucleon and the electron spins. With a frequency of about 140 GHz

at 5 T, very close to the electron spin resonance frequency, the high electron polarization

can be transferred to the proton. More so, the relaxation time for the nucleon spin is much

longer than for the electron spin. Different values of the frequency are employed to align
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Figure 3.6

Schematic Demonstration of the Solid-State Effect
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the nucleon polarization either parallel or anti-parallel to the applied magnetic field as

shown in Figure 3.6 [53]. It can also be shown quantum mechanically that the Hamiltonian

in solid-state effect contains solely of the Zeeman interactions of the nucleon spins and the

electron spins

H = �µe · �B + �µp · B +Hss, (3.15)

where Hss is the spin-spin interaction term

In this model, one of the forbidden transitions (νe ± νn) is assumed to be excited

provided the electron spin resonance (ESR) spectrum of the paramagnetic radicals is nar-

row compared to νn. Basically, the population numbers of the dynamic equilibrium de-

pend on the following: the line width, Δνe, the relaxation times of the electrons, and the

electron-nucleon coupling. Furthermore, these values determine the range of temperature

and magnetic field in which dynamic polarization is feasible. The maximum polarization

also depends on the microwave intensity. However, processes involving relaxation are dis-

advantaged because of paramagnetic impurities, that is radicals that do not contribute to

the buildup of nucleon polarization.

3.4.5 Equal Spin Temperature Theory

In current polarization target materials, in which the radicals are introduced by irradia-

tion, the process of dynamic polarization is somewhat different from the solid-state effect

and is described by the theory of Equal Spin Temperature (EST) [53]

In the situation where the concentration of the electrons is high, the dipolar interactions

of the electron spins can no longer be neglected. These interactions with non discrete
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Figure 3.7

Population Densities of the Electron Levels

energy levels are weaker than to the Zeeman interaction of the electron spins. With no

energy levels for equal spin quantum numbers, it becomes exceedingly difficult to describe

the time evolution of the system under the influence of a microwave field or spin lattice

relaxation acting as a perturbation.

With such an energy band, the population of the states inside and that of different bands

are described by Boltzmann distribution with the temperatures, TSS and TZe being the

temperatures of the electron spin-spin interaction reservoir (SSI-reservoir) and the electron

Zeeman reservoir, respectively. As depicted in Figure 3.7 (a), TSS and TZe are identical

to the lattice temperature TL only at thermodynamic equilibrium. The energy of the SSI-

reservoir is characterized such that it can also have negative values (Figure 3.7 (b), (c))

[16].

This implies that the upper energy population levels inside a band is higher than the

population of the lower ones. In the case of a different TSS at constant TZe , this implies
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that on average the number of spins in the magnetic field direction is constant but the spatial

distribution is not. DNP in the spin temperature mechanism can be described in two steps:

1. Cooling of the electron SSI-reservoir: In the first step, a quantum with the energy
h(νe − Δ) is absorbed from the microwave field. The energy is divided into two
parts, one part hνe that is used to change the electron Zeeman energy while the other
part, hΔ is absorbed by the electron SSI-reservoir. On the one hand, if Δ > 0, the
SSI-reservoir emits this energy and cools down; on the other hand if Δ < 0, the
SSI-reservoir is heated and TSS may become negative as shown in Figure 3.7.

2. The second step is the proper thermal mixing process whereby there is heat contact
between the electron SSI-reservoir and the Zeeman reservoir of the nucleon. In this
case, a forbidden relaxation process is considered that consists of a flip-flop of two
electron spins together with a flip of nucleon spin. However, the electron-Zeeman-
reservoir energy is unaffected, whereas that of the nucleon-Zeeman-reservoir changes
by hνn and this energy is exchanged between both reservoirs. Thus TSS and TZn are
equalized.

This process has been seen in frozen ammonia where nitrogen polarization occurs
during the exchange of transitions to polarize the hydrogen nuclei. It can be shown
that for any body with a magnetic moment giµi in the material, the polarization for a
spin 1

2
particle is given by:

P = tanh
giµiB

2KBTSS

(3.16)

where TSS is the temperature of SSI-reservoir. Therefore, in ammonia, if the pro-
ton’s polarization is determined, the spin spin temperature can be computed and the
nitrogen nucleus polarization obtained.

The EST theory has been experimentally confirmed in 14NH3 (Figure ??) where 14N −H

system shows equal spin temperatures during the DNP pumping process [16].

3.4.6 Target Cryogenic

The target used was a polarized ammonia target. The magnetic field for polarizing the

target is a superconducting magnet built in the Helmholtz configuration with a cyrostat that

serves as a liquid helium supply for the target refrigeration system. The 4He evaporation
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refrigerator was used to cool the target, operating at around 1 K with a cooling power of

about 1.5 W in a 5 T field.

This cooling power is important to remove heat from the beam and microwaves used

for DNP. For the best polarization performance, it is necessary to operate the refrigerator

with a high magnetic field [53]. DNP works best when the magnetic field is B
TL

≈ 5-10 T

where TL is the lattice temperature of the material. Figure 3.8 shows a picture of the UVa

target that was used during the SANE experiment.

The target material is enclosed in an insert (see Figure 3.9) which extends into the

nose of the refrigerator, where cooling is provided by liquid helium at 1 K. The supply of

helium is from the magnet helium reservoir through an insulated jumper and flows through

baffles which cool the liquid. Liquid helium flows through the separator plate into a heat

exchanger and into the target holder via a needle valve. The pool of liquid in the target

holder is pumped on by large capacity roots pumps to reduce the temperature to less than

1 K. As the cold vapor is pumped away, it exchanges heat with and cools the incoming

warm liquid. Services like the microwaves, the data acquisition electronics, and the NMR

(Nuclear Magnetic Resonance) are also brought into the target cavity to provide an online

of the target polarization and recorded operating condition.

The target material was inserted such that it suspended in the magnet’s uniform field

region in the refrigerator’s nose by the target insert. The target ladder is around 1.5 m long

and provides storage for two target material samples in 2.5 cm diameter target cups at the

bottom. The target ladder consisted of, two target cavities, carbon disk and tungsten wire

cross-hairs. In addition, it carries semi-rigid cable down to the NMR coils inside the target
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Figure 3.8

Target and magnet used for SANE
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cavities, and microwave guides and extend down to horns on each of the target material

cup.

Since anneals (allowing the recombination of paramagnetic centers to restore polariza-

tion) of the material require precise temperature data, the ladder is equipped with, thermo-

couples, platinum resistors and carbon-glass resistors. Heater wire runs to the bottom of

the ladder to provide the heat needed to perform anneals, and the entire ladder was raised

and lowered by a mechanized lift to position the correct target cup in question in the beam.

3.4.7 Microwaves

The microwaves needed to drive the polarization enhancement in DNP were supplied

by an Extend Interaction Oscillator (EIO) [16]. The EIO was located above the target

during the experiment, coupled to either target material cups by a switching junction and

over-sized CuNi wave-guides broadcast microwaves evenly over the cups. The EIO tube

has a frequency of about 28 GHz/T, i.e., 140 GHz at 5 T and can be tuned using a mechan-

ical bellows by ±2 GHz in order to drive the positive or negative polarization transition.

The microwave frequency and power were monitored during the running of the experiment

by a target operator. The frequency at which optimal polarization is achieved shifts while

the polarization is building up and while the beam is being applied to the target. The local

field around the nuclei and free radicals is affected by the free radical density. The den-

sity changes as the beam damages the target material. The changing local field causes a

shift in optimal microwave frequency for polarization. It is necessary to monitor the po-

larization and continually adjust the microwave frequency in order to maintain maximum
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Figure 3.9

Target Ladder
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polarization. An adjustment of a few megahertz every half hour was sufficient to prevent

unnecessary decay in polarization.

3.4.8 Nuclear Magnetic Resonance and Polarization

A spin-I system placed in a magnetic field �B shows a Zeeman energy splitting into

2I + 1 levels. These levels are separated in energy by

h̄ωL =
�
µ �B

I
= gµnB, (3.17)

where g is the g-factor of the particle with spin I and µn is the nuclear magneton. When

the spin system is irradiated by an rf field at the Larmor frequency, the spin system either

absorbs some energy or the rf induces the spins to emit energy. The response of a spin

system to rf irradiation is described. by its magnetic susceptibility

χ(ω) = χ�(ω)− iχ��(ω), (3.18)

where χ�(ω) is the dispersive and χ��(ω) the absorptive part of the susceptibility. The

absolute polarization of the material is proportional to the integral of the absorptive part of

the susceptibility [53].

P = K

� ∞

0

χ��(ω)dω, (3.19)

where K is a constant containing the properties of the NMR system concerned.

The polarization is measured by means of the nuclear magnetic resonance (NMR)

method, using a series Q-meter as shown in Figure 3.10. The Q-meter is connected to

an NMR-coil with inductance Lc and resistance rc, that is embedded in the target material
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Figure 3.10

Schematic Drawing of the Q-meter (NMR) Circuit

via coaxial transmission cable, capacitor C, and damping resistance R that forms a series

LRC circuit.

Due to inductive coupling between the spins and the coil, the impedance of the coil

becomes

Zc = rc + iωLc (1 + 4πηχ(ω)) , (3.20)

where η is the filling factor of the coil. As shown in Figure 3.10, the circuit is driven by

a frequency synthesizer, V0, which sweeps the rf frequency ω through the Larmor reso-

nance. This causes a change of the inductance of the coil as the target material absorbs

or emits energy. With the current kept to a constant, the inductance change in turn causes

an inductance change in the circuit, which is proportional to the complex output voltage
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V (ω,χ). At the last stage, a phase sensitive detector (PSD) allows the selection of the real

part of the voltage by using the input rf signal as a reference. The voltage is a superpo-

sition of both the signal, proportional to χ, and the Q-curve. The Q-curve can thus be

separated out by measuring the circuit response with the Larmor frequency shifted outside

the range of the modulation by lowering the magnetic field. With the measurement of the

Q-curve, it can be subtracted out and the result integrated as in equation (3.19) with K the

calibration constant that depends on the state of the NMR circuit. This calibration constant

can be measured by doing a polarization measurement while the material is at a known

polarization.

The NMR system is used to measure the material about every thirty seconds during the

production runs. The frequency modulated signal of the coils in the material have a central

frequency of 213 MHz (Where 213 MHz is the Larmor frequency of a proton in a 5 T field)

and a linear sweep range of 400 MHz on either side. The NMR output signal is the sum of

the Q-curve and the frequency dependent response of the circuit due to the polarized target

material. Figure 3.11 shows the Q-curve; the raw NMR signal from which the Q-curve is

subtracted, and the polynomial fit to the signal ends [17]. During the run the signal can

gain a dc-offset which may alter the Q-curve slightly due to temperature changes in circuit,

thus the need for a polynomial signal.

In order to process the average signal from a 30 s sweep, the baseline is subtracted, a fit

is performed to the ends of the signal, and the resulting curve is subtracted from the signal

to remove any DC offset or slight changes to the Q−curve. Polarization measurements

are taken on intervals of about 30 s to 60 s depending on the noise in the signal. For the
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Figure 3.11

NMR signal decomposition

purpose of the analysis, a beam charge weighted average of the polarization is taken for

each run. Data was taken from [66] to come up with the plot. The run is then assigned

a target polarization value equal to that average. When including data in the average, a

cut on the beam current was placed at 60 nA. Figure 3.12 show the charge average target

polarization for each run. The average for the entire run period is 68%.

3.4.9 Radiation Damage and Lifespan of a Target Load

Radiation damage occurs as a result of additional radicals in the target materials created

through spallation and ionization during irradiation by the beam. This damage inhibits

DNP process and lowers the polarization. These additional radicals do not contribute to the

DNP process. With the increase in radical density, the nucleon relaxation time is shortened
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Figure 3.12

Charge averaged target polarization per run for SANE

and the polarization reduced. However, this reduction can be recovered by heating or

annealing the target material. During an anneal, the temperature of the material is raised

to slightly above liquid nitrogen temperature. Heating the material for about 30 minutes

at 90-100 K decreases the inhibiting radical density and reduces the relaxation rate of the

protons in the material, hence raising the possible maximum polarization back to its initial

value. This results in a slightly increased depolarization rate per charge. Thus, the material

has to be replaced as soon as the depolarization rate is high enough to cause the time cost

of more frequent anneals to be greater than the time cost of uninstalling the insert from

the fridge, swapping in new materials and reinstalling the insert. More details on radiation

damage and annealing can be found in [16] and [53].

The target polarization decreased continually while the electron beam is on thus caus-

ing interference with the polarization process as a result of the beam heating. During
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beam trips, the target temperature caused the polarization to change. The microwaves

were tweaked by hand as the optimal polarization frequency changed with the radiation

dose on the target. There were also instances of gradual rise or unexpected decrease of

the target polarization during run period, this could be attributed to sub-optimal tweaking

of the microwaves. In addition, loss of helium in the target caused the polarization of the

material to drop off suddenly. Therefore, the polarization is immediately destroyed during

the beam and microwave heating in the absence of a refrigerant.

Furthermore, there were a series of target magnet failures which delayed the running

of the experiment. On the whole, these shortcomings were sufficiently contained thanks to

the Hall C management and the UVa target group. Details of the UVa target magnet failure,

repairs, cause of damage, behavior after repair can be found in [16].

3.5 Electron Detector Package

The electron detector package otherwise known as “BETA”, short for for Big Electron

Telescope Array is comprised of four components namely: BigCal Pb glass calorimeter,

lucite hodoscope, Cerenkov, and a forward tracker. BETA was well suited for the job, since

it was non-magnetic with large acceptance, high pixelization, high background rejection

and low deadtime with adequate energy resolution to detect DIS electrons. Figure 3.13

shows a photograph of BETA in the experimental Hall C. Figure 3.14 shows an annotated

picture of BETA with DIS electron simulation [56].
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Figure 3.13

Charge averaged target polarization per run for SANE

Figure 3.14

Annotated Picture of BETA with DIS Electron Simulation
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3.5.1 The BigCal Electromagnetic Calorimeter

The electromagnetic calorimeter consisted of 32 × 32 blocks of one dimension of 4 ×

4 cm2 of lead glass and 24 × 56 blocks of a different size. Each phototube signal was fed

into a first level summing module which accepted 8 inputs. Each first level trigger sums

8 phototubes and each row is divided into 4 first level summing modules. These sections

of rows are labels A, B, C and D in Figure 3.15. There are 224 first level summing mod-

ules. In the module, the 8 individual inputs are amplified 5 times and output individually

in the back of the unit. These amplified individual signals go to an ADC. Furthermore,

the module sums the 8 inputs and produces 6 summed output signals. One output signal

went to a discriminator and then a TDC. Another output channel went to the input of the

second level summing module to be summed with the output of 7 other first level summing

modules. The second level summing module does not amplify the individual input signals

and produces 6 summed output signals. The output of the second level summing module

is the sum of 64 photo-tubes. The picture on the right of Figure 3.15 shows an example of

the trigger logic where the second level summing module sums the signal from sections A

and B (columns 1-16) for rows 4 through 7. This continues for the right half of BigCal and

the same is done for the left half. There is no overlap between the halves of BigCal, which

leads to a slight loss in trigger efficiency. A total of 39 second-level summing modules

were used to cover BigCal. Each individual output signals was sent to a discriminator and

the “OR” of the 39 signals was BigCal trigger. Furthermore, the BigCal detector was at

335.4 cm from the target. Details about the electromagnetic calorimeter can be found in

the following references [16, 17, 32].
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Figure 3.15

Rear View of Lead-Glass in BigCal (Left), Trigger Logic (Right)

3.5.2 Čerenkov Detector

The Čerenkov counter built by Temple University provided high efficiency (greater

than 90%) for electron detection while maintaining a pion rejection factor of at least

1000:1. With a low areal density, the Čerenkov detector minimizes the probability of

δ-rays from π and e scattering. It consisted of two stacks of four mirrors each that reflect

light produced in nitrogen at atmospheric pressure and focuses it onto eight 3 inch diameter

photomultipliers.

Čerenkov radiation is emitted when the speed of a speed of a particle, v exceeds the

speed of light in the medium it is traveling in with index of refraction n: v > c/n.
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The emission of Čerenkov radiation occurs at an angle given by:

θ = cos−1(cn/v) (3.21)

for a particle traveling at speed v. The electron detected will all be traveling close enough

to the speed of light that the argument of cos−1 is 1/n, and so the Čerenkov radiation is

emitted almost parallel to the flight of the particle at about θ = 1.4◦.

Eight Mirrors were designed such that each mirror will reflect every ray traced from

the target to the mirror’s surface to a PMT dedicated to that mirror. The Čerenkov detector

was made up of 8 PMTs. Half of the mirrors were toroidal and half of the mirrors were

spherical.

Careful selection of the material based on its index of refraction allows identification of

charged particles with speed above a given threshold. While electrons and pions of similar

momentum or energy may be collected in the calorimeter, the more massive pions will not

exceed the threshold speed, allowing rejection of the unwanted background.

Nitrogen (N2) gas was used as the choice of radiator gas in the design of the Čerenkov.

At 20◦ C, the index of refraction, n of N2 is approximately 1.000279, yielding a β threshold

for Čerenkov light emission by pions of

βthreshold =
1

n
= 0.999721 (3.22)

Also, the number of Čerenkov photons emitted per wavelength per unit of length travel

for N2 gas at 20◦ assuming a constant index of refraction is given by:

dN

dλ
=

2πz2α

λ2

�
1− 1

β2n2

�
(3.23)
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For n = 1.00279 a conservative cutoff wavelength of λ = 200 nm and a radiation thickness

of 125 cm, we can expect the order of 20 photoelectrons after considering the photocathode

sensitivity.

3.5.3 Hodoscopes

BETA had two tracking hodoscopes; namely, the lucite and forward tracker hodoscopes.

These were contributed by North Carolina A&T State University and Norfolk State Uni-

versity respectively.

3.5.3.1 Lucite Hodoscope

The Lucite Hodoscope was located between the Čerenkov and the BigCal calorimeter,

at 253.6 cm from the target. While the distance between the Lucite and BigCal was 81.8

cm. The purpose of the lucite hodoscope was: (a) to detect charged particles above the

threshold (primarily electrons and pions) with high efficiency, (b) to assist in providing

a high level of π± rejection (1000:1) for the case of electron trigger, (c) to provide useful

position resolution at a reasonable cost, and (d) to be insensitive to the background particles

coming from outside of the target chamber.

The index of refraction of the lucite is n = 1.49 with a threshold velocity of Čerenkov

radiation of βthreshold = 0.67 inside. The bars of the lucite were wrapped in black paper

without a reflecting layer ensuring that the propagation of light down the length of the

bar to a photomultiplier tube (PMT) would be through total internal reflection (TIR) only.

Since the critical angle inside the Lucite is θTIR = 42.2◦, this means only photons with

an angle of incidence larger than θTIR = 42.2◦ would be detected. The PMT on both
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ends were shielded from the target magnetic field. The signals from the tubes were sent to

discriminators then TDCs1 for recording.

3.5.3.2 Forward (Front) Tracker

The front tracker was the first element of the BETA detector package placed 55 cm

away from the target cell. It constituted of three planes of 3 × 3 mm2 Bicron-408 plas-

tic scintillator bars positioned very close to the target. The main purpose was to provide

tracking data on particles while they are still under the influence of the target’s magnetic

field. Combining this position data with the final positions caught in BigCal, the curve

trajectory of the particle in the magnetic field should be perceptible, allowing the differ-

entiation of positively and negatively charged particles. This would provide rejection of

the positron background which diluted the yield of DIS electrons in BigCal. The tracker

detector provided improved target position resolution in addition to its ability to reject

non-target related backgrounds. An additional goal for the tracker is the partial ability

to determine the sign of low momentum charged particles to discriminate positrons from

electrons. This will allow the ability to measure positron asymmetry. Furthermore, this

will enable the partial reduction of positron contamination of the electron sample and also

reject low momentum π+ events. Figure 3.16 shows a picture of the front tracker [17].

1TDCs = Time-to-digital-converter
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Figure 3.16

Picture of the front tracker
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CHAPTER 4

DATA ANALYSIS

This chapter talks about how the asymmetries and spin structure functions previously

mentioned in chapter two are extracted and analyzed from the data collected during SANE.

The asymmetries measured from data collected from the BETA detector package are

the following:

A =
1

fPBPT

N+
C −N−

C

N+
C +N−

C

, (4.1)

where N±
C = N+(−)/C+(−)/L+(−); N+(−) is the number of counts with beam helicity

positive (negative), C+(−) is the incoming charge accumulated for each helicity and L+(−)

is the livetime per helicity. The livetime will be discussed in section 4.3.2. Thus N±
C can be

read as the corrected event counts for events generated by the indicated beam helicity. PB

and PT correspond to the beam and target polarization respectively and are independent of

the kinematic variables. They have fixed values assigned to them on a run by run basis. f

is known as the dilution factor and is different for each target load and is a function of the

kinematics.

4.1 Calibration

In order to have the data in meaningful form, the various detectors in BETA needed to

be calibrated.
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4.1.1 BigCal Calorimeter

The calorimeter was calibrated using a neural network (NN) (the NN will be discussed

later). Calibration started at the level of the hardware. When energy is deposited by an

incident particle into a lead-glass block of the calorimeter, a signal is generated by the

photomultiplier tube and is digitized by an ADC1. This ADC signal is calibrated such that

each ADC channel corresponds to roughly 1 MeV. The ADC signals with known energy are

then analyzed. The absolute energy calibration of the BigCal is based on the reconstruction

of the π0 mass from events with two clusters of hits in the calorimeter produced by two

photons.

Events for the calibration are based on: (a) minimum energy Eγ > 0.5 GeV, (b) distance

between the clusters in the range dγγ ∈ [20, 90] cm, and (c) no signals in the Cerenkov for

both clusters.

The definition of a cluster was set as a 5 × 5 array of blocks around the maximum

energy block. The raw energy and coordinates of the clusters, calculated from the sum

of the block energies and the energy weighted x and y cluster centroids, were corrected

using the output of an artificial neural network (see section 4.1.2). The final physics angles

were arrived at using the functions: Θ = f(X, Y,E) and Φ = g(X, Y,E) obtained from

a GEANT Monte Carlo simulation by fitting the detected coordinates and energy of the

particle to the corresponding angles of the generated event.

Meanwhile, the invariant square mass of the two decay photons is determined by:

M2
γγ = 2E1E2(1− cos θγ1γ2). (4.2)

1ADC = Analogue-to-digital-converter
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M2
γγ is clearly directly proportional to the energies E1 and E2 of the photons. In this

process, the essential assumption in the corrections to the raw energy is that the difference

between the physical mass of the neutral pion (mπ0) and the mass reconstructed from the

photon pair mass comes from just one of the cluster energies, thus:

M2
γγ(recon) = 2E1E2(recon)(1− cos θγ1γ2) (4.3)

or

M2
γγ = 2E1(recon)E2(1− cos θγ1γ2). (4.4)

Since it is assumed that the difference in mass comes from just one of the cluster energies.

We set the correction factors Cn where:

Cn =
M2

γγ(recon)

mπ0

. (4.5)

These correction factors are applied to blocks containing at least 20% of the cluster energy.

Upon the implementation of neural network position reconstruction, the angle θγ1γ2

sustained between the two photons changes slightly after calibration. This is corrected by

performing the calibration procedure over five hundred times in order to reach full con-

vergence. The pion mass resolution obtained by this procedure is illustrated in Figure 4.1

[36]. Furthermore, this resolution is directly proportional to the energy resolution of the

clusters.

4.2 Artificial Neural Network

Artificial neural networks are systems of interconnected neurons which can compute

values from inputs. A neuron is a complicated function with inputs chosen based on what
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Figure 4.1

Reconstructed π0 Mass. P2 = Gaussian Fit and P3 = σ

the desired output is expected to depend on. The neural network was trained with output

based on a GEANT simulation of the experiment that includes the polarized target mag-

netic field, the beam’s slow raster (≤ 1.2 cm radius) and BETA. The input neurons to the

NN came from the energies of 25 blocks surrounding the maximum energy block and the

X and Y coordinates of the maximum energy block. The NN consists of one hidden layer

with ten neurons. Output neurons are the cluster energy and coordinate corrections. Fig-

ure 4.2 shows a schematic diagram of the artificial neural network and this was based on the

ROOT standard package (Multilayer Perceptron) [36]. The neuron training function was

chosen to be Gaussian and the learning method to be KBFGS (TMultiLayerPerceptron)

[67].
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Figure 4.2

Neural Network schematics

More than twenty million events of electrons and photons were generated and used

to train the NN with over 1000 epochs involved in the training procedure. An epoch is

a measure of the number of times all of the training functions are used once to update

the weights. The time taken to complete such a training procedure is about a month on a

computer equipped with dual 2.7 GHz quad-core Xeon CPU.

The generated photons were important for the different cluster energy distributions of

the photon showers, which start one radiation length deeper in the glass than the electron

showers. In addition, the NN was used to obtain the angles at the target by training the NN

to fit the reconstructed polar and azimuthal GEANT-simulated angles to the corresponding

generated quantities. The resulting fits are then applied to the data’s reconstruction. σΘ =

0.4◦ and σΦ = 0.8◦ were obtained as the resulting angular resolutions at the target.
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In Figure 4.3 the difference using NN and the conventional method is shown. The

difference between the GEANT generated and reconstructed positions and energy using

the conventional moments method (solid blue line) and with NN (dashed red line). As can

be seen in panels a) and b) there is a dramatic position reconstruction improvement in both

the X and the Y directions amounting to a resolutions improvement from 4 cm to 1 cm. A

detailed discussion of the NN can be found [67].

Figure 4.3

Difference between generated and reconstructed Y , X , and E

4.2.1 Čerenkov

In the analysis of the Čerenkov, recorded TDC2 and ADC3 values of the electron event

were required. The TDC value for an event, which was triggered by a threshold on a

photomultiplier analog signal was sufficient to tag an event as charged or not. The ADC
2TDCs = Time-to-digital-converter
3ADCs = Analogue-to-digital-converter
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spectra show two peaks, for single and double tracks, the double track peak (Figure 4.4)

was used to cut pairs from the tracker background as explained in section 5.2.1. A time-

walk correction was also applied in the calibration of the Čerenkov. A time-walk is a

shift in the trigger time based on the peak height of an ADC signal where a discriminator

triggers on a threshold of the ADC signal from a photomultiplier tube. The distribution of

the Čerenkov TDC versus ADC was plotted to correct for this shift (see Figure 4.5).

4.3 Event Reconstruction and Selection

An important element of the analysis is the event reconstruction phase. Once the vari-

ous detectors are calibrated, we obtain a set of events, each of which consists of ADC and

TDC values from the different detectors. These detector signals need to be reconstructed

into the path of an electron of energy and trajectory which must be determined via the three

quantities of interest for each event namely: the final electron energy E� and the electron

scattering angles φ and θ.

Knowing the x and y coordinate position of a cluster in BigCal by way of the neural

network, it becomes straightforward to arrive at the scattering angles φB and θB in BigCal

coordinates which are related to the physical scattering angles φ and θ in the following

manner:

cos θ =cos(θBETA − θB) cosφB

tanφ =
tanφB

sin(θBETA − θB)

(4.6)

where θBETA = 40◦ = the BigCal central angle from the beam. Figure 4.6 depicts BETA

and the physics angles [16].
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Figure 4.4

Čerenkov ADC Showing Two Peaks
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Figure 4.5

Čerenkov TDC versus ADC values
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Figure 4.6

Diagram of BETA with Physics Angles

4.3.1 Event Criteria

It is important to select only the electron events of interest during the scattering process.

In order to accomplish this, we set several criteria to the events which will be included in

the helicity count N+ and N−. These criteria are listed as follows:

1. Trigger Type: Only trigger for events with a hit in both the calorimeter and the
Čerenkov are considered.

2. Single Cluster: Only events with a single cluster on BigCal were included.

3. Čerenkov Hash: This cut takes care of events that occur in the calorimeter. This cut
is greater than zero in the case of a good Čerenkov hit at the perfect time frame, and
this hit matched a geometrical cut with the calorimeter.

4. Energy Cluster: The energy cluster cut was set at 500 MeV, this excluded charged
hadron events which are unlikely to be found about 500 MeV.

5. Cluster Position: This cut helps to avoid events arriving on the edges of the calorime-
ter which are difficult to calibrate.
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6. Beam Current: This cut makes sure only events occurring when the beam current is
over 60 nA are considered.

With the event criteria, and selection in place, the data of the experiment were taken

such that any run which is suspected to be undesirable is rejected. Undesirable runs were

runs with either end-of-run errors, unacceptable low livetimes, i.e., the deadtime (lost time)

of the data acquisition system (see section 4.3.2), asymmetries which were statistical out

of bound or those labeled by the operators as bad. Each experimental run lasted for about

one hour. Of all the experimental runs, about 315 NH3 good run were selected, and com-

piled. A table of the selected NH3 runs with the energy and angle orientation is shown in

Table 4.1.

Table 4.1

Good Runs with the Energy and Target Field Angle

Energy Angle Orientation Run Range Number of Good Runs in Range
5.9 80◦ 72417 - 72799 222
4.7 80◦ 72824 - 72892 33
5.9 180◦ 72915 - 72959 27
4.7 180◦ 72984 - 73037 30

4.4 Asymmetries and Structure Functions Analysis

Equation (4.1) shows how the asymmetries are measured from the data collected during

the experiment. It can be rewritten in the form:

Aphysics =
1

fPBPT

Ameasured (4.7)
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Where Ameasured is:

Ameasured =
N+ −N−
N+ +N−

(4.8)

N+ and N− are positive and negative electron yields produced for each kinematic bin.

However, in order to have clean physics asymmetry result, the measured electron must

go through several corrections such as: charger normalization, livetime correction, dilution

factor, nitrogen, radiation and pair-symmetric background corrections. All the above men-

tioned corrections will be discussed briefly in this section except for the pair symmetric

background that will be discussed in greater detail in chapter 5.

4.4.1 Charge Normalization

Charge normalization helps to prevent false asymmetry and is done by taking into ac-

count the incoming charge accumulated during the positive and negative helicity events.

Hence Ameasured becomes

Acharge normalization =

N+

C+
− N−

C−
N+

C+
+ N−

C−

(4.9)

where C+ and C− are the charge accumulated for positive and negative helicities. C+ and

C− were taken from scaler data archive for SANE runs.

4.4.2 Livetime Correction

The livetime correction to the asymmetry takes into accounts the deadtime (lost time) of

the data acquisition (DAQ). The livetime is the DAQ recorded positive or negative helicity

triggers divided by input triggers of that helicity recorded in scalers. Unfortunately, the
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positive helicity input trigger scaler information was lost. So the livetime (LT) for each run

is determine using the negative helicity trigger as:

LT =
RT

RI

(4.10)

where RT is the rate of negative helicity triggers and RI is the input trigger rate.

The total positive helicity triggers was estimated by assuming the correlation of the

recorded positive helicity triggers to the total positive helicity triggers is the same as that

of the negative helicity triggers to their total. By fitting the linear correlation of the negative

helicity total scalers and recorded scalers that we have, we can calculate the total positive

triggers using the recorded positive triggers.

4.4.3 Dilution Factor and Packing Fractions

The dilution factor is the ratio of yields from the polarized protons to yields from all

the materials in the target sample. The dilution factor f(Q2,W ) is used to calculate the

measured asymmetries which are defined in terms of scattering on the protons. For 14NH3,

the dilution factor has the form:

f =
N1σ1

N14σ14 +N1σ1 +
�

NAσA

(4.11)

where NA are the number of scattering nuclei of mass number A per unit area in the target,

and σA are the radiated, polarized e−nucleus A cross sections and are functions of invariant

mass W . A dilution factor is necessary for each and every target load used during the

running of SANE.

The origin of the dilution factor can be understood by looking closely at the definition

of the measured asymmetry being the ratio of the difference over the sum of helicity de-
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pendent counts observed in the detector. Consider the formula used for calculating the raw

asymmetry, Araw given by

Araw =
N+ −N−

N+ +N− (4.12)

Araw can be rewritten as:

Araw =
N+ −N−

Sumall

. (4.13)

From equation (4.13), it can be seen that the numerator is composed solely of polarized

counts (that is N+
proton−N−

proton), this is due mainly because the counts for the unpolarized

materials cancel in the difference in the numerator. In the denominator, there is no such

cancellation, rather it contains both the polarized and unpolarized counts.

For the case of the asymmetry of the proton only,

Aproton =
N+

proton −N−
proton

Sumproton

(4.14)

therefore Araw can be expressed as:

Araw =
N+

proton −N−
proton

Sumproton

∗ Sumproton

Sumall

= Aproton ∗ f. (4.15)

Therefore

Aproton =
1

f
· Araw. (4.16)

Figure 4.7 shows the dilution factor for one of the NH3 target load as a function of W [83].

However, the dilution factors depend on the packing fraction, which is mainly the frac-

tional volume of the target cup filled with ammonia. It is a percentage and is independent
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Figure 4.7

Dilution factor for one of the NH3 target loads as a function of W (GeV)
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of kinematics. HMS data taken on 14NH3 and on carbon disk targets of known thickness

were used to calculate the packing fractions. The need to calculate the packing fraction can

not be over emphasized, as we endeavor to fill the target cup completely, differences in the

load amount, and the size and shape of the target beads change the packing fraction from

load to load. By comparing the yields from each target load to those using a carbon disc

target of known thickness, the packing fraction was estimated using the linear relation:

Y ield = m× Pf + b (4.17)

where the slope m and the intercept b depend on the beam current, acceptance, partial

densities and cross sections. With the linear form, the packing fraction of a given load

can now be calculated by interpolating between two reference points on the line. These

two points can come from a Monte Carlo simulation which accurately represented the

acceptance of the detectors and the cross sections of the target materials involved. An

important consideration is the production of a scaling factor to bring the Monte Carlo

yields into agreement with the carbon data. The packing fraction is then a simple linear

interpolation between the Monte Carlo yields with a target of packing fraction Pf1 and

another of packing fraction Pf2. The NH3 data was simulated with two input packing

fractions (50% and 60%) to obtain two reference points, from which the slope m and the

intercept b of the line were determined

m =
Y ieldPf=0.5 − Y ieldPf=0.6

0.5− 0.6
,

b = Y ield−m× Pf .

(4.18)
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Figure 4.8 shows the interpolation between simulated yields of packing fraction 0.5 and

0.6 to obtain packing fraction from the experimental yield [16].

Figure 4.8

Method Used in Estimating the Packing Fraction in SANE

The packing fractions determined averaged ∼59.60%, ranging ∼3.30% (absolute) about

this mean [74]. The error on the Pf was about 8% relative. This error propagates to the

dilution factor but is suppressed by a factor of about two.

With the ammonia’s calculated packing fraction the dilution factor f(Q2,W ) is com-

puted as:

f(Q2,W ) =
N1(Pf )σ1(Q

2,W )�
A=1,2,... NA(Pf )σA(Q2,W )

(4.19)

Where NA(Pf ) are the numbers of scattering nuclei of mass number A, density ρA,

and atomic or molecular weight MA that occupy a length zA = 3 cm × pf in the target
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cup assuming constant area along the horizontal cylindrical cell. Also NA are computed in

terms of Avogadro’s number and is given by:

NA(Pf ) =
N0ρAzA
MA

. (4.20)

Equation (4.20) has units of cm−2.

4.4.4 Radiative Corrections

Radiative corrections carried out in SANE involve both internal and external radiative

corrections and depended upon the thickness of material encountered by the incoming and

scattered electron [68].

Figure 4.9

Radiation corrections mechanism
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Since SANE was an inclusive electron scattering on a polarized proton target, the ob-

served asymmetries needed to be corrected for losses as a result of external and internal

radiative processes. See Figure 4.9 [16, 69].

External corrections are essential to address the processes of bremsstrahlung and ion-

ization in all material traversed by the electron beam before and after the scattering process

of interest occurred. These materials which contribute to the radiation length include; alu-

minum beam windows, nose, helium, ammonia, etc or an electron may even radiate a

photon before and after the scattering of interest at a probability related to the radiation

length. On the other hand, internal corrections involve vacuum polarization, vertex correc-

tions and internal bremsstrahlung. Due to external radiative processes, the incident beam

energy Es and reconstructed final electron energy Ep are changed to the E �
s and E �

p to the

energies of the e − p interaction. Thus the radiative effects act on the data in such a way

as to shift the true kinematics at which the interaction takes place away from the measured

kinematics (see Figure 4.9). Table 4.2 also shows a list of the radiation lengths.

Contribution to the radiative correction is broken down into two aspects: contribution

from the elastic radiative corrections and contribution from inelastic radiative corrections

(the inelastic contribution is small though). Most of the work done on the elastic radiative

corrections was done by one of SANE collaborators, J. Maxwell [69]. A detailed recipe of

the radiative corrections is covered in the following references [72].
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Table 4.2

Material thickness that contributed to radiative processes

Material Thickness (mg/cm2) Rad. Length (%)
Target Ammonia 14NH3 1561 3.82
Target Helium LHe 174 0.18
NMR Coil Cu 13 0.10
Target Cell Lid Al 10 0.04
Refrigerator Window Al 27 0.12
4K Radiation Shield Al 7 0.03
Nitrogen Radiation Shield Al 10 0.04
Vacuum Chamber Entrance Be 94 0.14
Vacuum Chamber Exit Al 139 0.58

4.5 Structure Function from Measurable Asymmetries and Cross-Section

In this subsection we discuss how to get from the measured asymmetries A80◦ , and

A180◦ to the structure functions g1, and g2 and the spin asymmetries A1, and A2.

For the process of inclusive electron scattering off a nucleon target, the difference of

cross-section is given by

Δσ� =
−4α2E �

Q2E
[(E + E �)MG1 −Q2G2] (4.21)

Δσ⊥ =
−4α2E �2

Q2E
sin θ cosφ(MG1 + 2EG2) (4.22)

It should be noted that Δσ� and Δσ⊥ are the proper parallel and perpendicular cross-

section. However in SANE where the coordinate system is such that the z-axis points

along the beamline towards the beam dump, the x-axis is horizontal pointing towards the

BigCal side of the beamline, and the y-axis points up, we need the asymmetries for the spin

associated with target polarization anti parallel to the beam and for the target polarization

aligned 10◦ off from the x-axis in the x− z plane.
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This was accounted for by making use of the fact that by doing a general cross-section

difference without specifying the angle of the target spin vector, but assuming it is in the

x− z plane one obtains:

Δσ = Δσ� cosα +Δσ⊥ sinα (4.23)

Furthermore, with respect to the unpolarized cross-section (σunp) and the unpolarized

structure functions, W1(Mν, Q2) and W2(Mν, Q2) we have:

d2σunp

dΩdE � =
4α2E �2

q4

�
2W1 sin

2 θ

2
+W2 cos

2 θ

2

�
(4.24)

Moreover, W1 and W2 can be expressed with another structure function R (where R is the

ratio of the longitudinal to the transverse Compton cross-section) such that:

W2

W1

=
1 +R

1 + ν2

Q2

(4.25)

Hence:

d2σunp

dΩdE � =
2α2E �

Q2E
W1

�
1 +

1 +R

2(1 + ν2

Q2 tan
2 θ
2
)

�
(4.26)

We can get a more compact expression by using the following substitutions:

� =
1

1 + 2(1 + ν2

Q2 ) tan
2 θ
2

D� =
1− �

1 + �R

(4.27)

resulting to

σunp =
d2σunp

dΩdE � =
2α2E �

Q2E

W1

D� (4.28)

Therefore the asymmetries can be written as:

A =
Δσ

2σunp
(4.29)
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4.6 Extraction of Asymmetries and Structure Functions

The spin asymmetries A1 and A2 are extracted via asymmetries measurements with

longitudinal and transverse polarizations. However, in SANE we measured anti-parallel

(180◦) and near-perpendicular (80◦) asymmetries, hence careful determination of axis an-

gle are necessary.

In the case of SANE, the asymmetry associated with the near-perpendicular configura-

tion is:

A80◦ =
−D�

W1

��
(E + E � cos θ) cos 80◦ + E � sin θ cosφ sin 80◦

�
MG1

+ (2EE � sin θ cosφ sin 80◦ −Q2 cos 80◦)G2

�
,

(4.30)

while the asymmetry associated with the anti-parallel configuration is:

A180◦ =
D�

W1

�
(E + E � cos θ)MG1 −Q2G2

�
. (4.31)

Since A180◦ and A80◦ form a basis, we can find linear combinations of them that produce

the structure functions. By solving for G1 and G2, the solutions are:

MG1

W1

= −A180
◦(Q2 cos 80◦ − 2EE � sin θ cosφ sin 80◦) +Q2A80

◦

D�E � sin θ cosφ sin 80◦[2E(E + E � cos θ) +Q2]

G2

W1

= − [(E + E � cos θ) cos 80◦ + E � sin θ cosφ sin 80◦]A180◦ + (E + E � cos θ)A80
◦

D�E � sin θ cosφ sin 80◦[2E(E + E � cos θ) +Q2]

(4.32)

From Eq.(1.1) of Chapter 1, we know that the spin asymmetries are given by:

A1 = ν
MG1

W1

−Q2 G2

W1

A2 =
�

Q2

�
MG1

W1

+ ν
G2

W1

� (4.33)
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Substituting MG1/W1 and G2/W1 of equation (4.32) into equation (4.33) and with further

simplification gives (see [71]):

A1 =
1

D�

�
E − E � cos θ

E + E � +
E � sin θ cos 80◦

(E + E �) cosφ sin 80◦

�
A180◦

+
1

D�
E � sin θ

(E + E �) cosφ sin 80◦
A80◦

A2 =
1

D�

�
Q2

2E

�
A180◦ −

(E − E � cos θ) cos 80◦

E � sin θ cosφ sin 80◦
A180◦ −

E − E � cos θ

E � sin θ cosφ sin 80◦
A80◦

�

(4.34)

Rearranging the factors by common kinematic terms we arrive at:

A1 =
1

D�

�
E − E � cos θ

E + E � A180◦ +
E � sin θ

(E + E �) cosφ
A180◦

cos 80◦ + A80◦

sin 80◦

�

A2 =
1

D�

�
Q2

2E

�
A180◦ −

(E − E � cos θ)

E � sin θ cosφ
A180◦

cos 80◦ + A80
◦

sin 80◦

� (4.35)

Where D� and � are defined as in equation (4.27)

A1 and A2 from equation (4.35) are the spin asymmetries calculated from the measured

asymmetries.

The extraction of the spin structure functions g1 and g2 follows from the asymmetries

such that:

g1 =
F1

1 + γ2
(A1 + γA2)

g2 =
F1

1 + γ2
(
A2

γ
− A1)

(4.36)

Where γ =
�

4x2M2/Q2
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CHAPTER 5

PION ASYMMETRY

5.1 Introduction

As mentioned in section 4 of the previous chapter, it is very important to understand

and perform several corrections in order to have clean physics asymmetry and meet with

the goals of the experiment. One of such corrections is that of the positron−electron

(e+e−) pair symmetric background primarily from π0 decay which constitutes the main

source of background in SANE. In creating positron−electron pairs, these processes pro-

vide additional electrons that can enter the BETA detector setup and are indistinguishable

from an outgoing DIS electron. The background contribution is high at low energy [61].

A full understanding of this phenomena is necessary to get clean results for SANE as

well as extend SANE’s understanding of the kinematic region at low x. Figure 5.1 show

charge−symmetric processes from π0 decay simulated by using a SLAC e+e− parameter-

ization [60]. From the plot it can be seen that there is a need to reduce the positron rates

by increasing the energy threshold to E� > 1.3 GeV (see section 5.6.3 for details).

Figure 5.2 shows the background ratio for the various energy configurations.

There are three main sources of processes that generate target background. Even though

other particles than π0 decay into e+e− or e− but they have small probabilities and so were

neglected in the analysis. These processes are listed below:
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Figure 5.1

Ratio of Background Particles to Electron High at Low x

Figure 5.2

Charge Symmetric Background with SANE kinematics

97



1. Bethe-Heitler (bremsstrahlung) into e+e−, however this process has a very small
angle with respect to the beam, thus it is not a concern for SANE.

2. π0 decays: π0 −→ γe+e− and π0 −→ γγ. This is the main concern for SANE.

3. Charged π misidentified as electron.

5.2 Pair-Sysmetric Background

Pair symmetric processes create a background to inclusive electron scattering. In

SANE, positron−electron (e+e−) pairs, which come primarily from neutral pion decay,

constitute the main source of background. A neutral pion (π0) is created as the electron

beam interacts with the target and quickly decays. The dominant decay of the π0 is to two

photons (π0 −→ γγ) with a branching ratio of 98.8% while most of the remaining 1.2%

follows the Dalitz decay mode, (π0 −→ γe+e−). In creating e+e− pairs, these processes

provide additional electrons that can enter our detector setup (BETA) and are indistinguish-

able from an outgoing DIS electron.

To extract the physics asymmetries and meet the experimental goals, the background

contributions to the measured asymmetry must be well understood. Lepton pair production

from bremsstrahlung photons are negligible for SANE. Furthermore, π− and Kaons are

not a significant background because they are removed by BigCal as they deposit less

energy than electrons. Also, the photons can interact in the tracker to produce e+e− pair.

However, this is totally eliminated by a cut on the Čerenkov to remove double track events,

as discussed in section 4.1.2.
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5.2.1 Double Track Background from the Tracker

The tracker that was placed between the target and the Čerenkov was found to increase

the background. This was due basically to double tracks background coming from gamma

conversions in the tracker. A simulation was done using GEANT to better understand the

effect of the tracker on the background contamination. Furthermore, the Čerenkov ADC

signal was used to cut these double tracks background from gamma conversions in the

tracker.

In the stimulation π0 events were generated when the tracker was ‘In’ (place between

the target and the Čerenkov) and then when it was taken ‘Out’. The EPC code [77] with

the Wiser parameterization [78] of inclusive pion bremsstrahlung cross section were used

for the generation and simulation of the pion events. The events were selected as follows:

1. Two photon events: Two cluster events with energies above 0.6 GeV with no Čerenkov
hit (or signal) for both clusters.

2. One Cluster event: One cluster event with energy above 0.6 GeV with no Cerenkov
hit for cluster.

3. e−e+: Two cluster events with energies above 0.6 GeV with Čerenkov hit for both
clusters.

4. One e− or e+: One cluster event with energy above 0.6 GeV, that is Čerenkov hit for
cluster.

See section 5.4 for the definition of these cuts. Figure 5.3 depicts these scenarios. We

focused on the single lepton and pair events. For each case we found that: for the e− or e+

events, the ratio (Nout/Nin) was calculated to be about 68% ± 1% whereas for the e−e+

events, (Nout/Nin) ratio was calculated to be about 64% ± 2%. Where Nout is the count

when the tracker is out and Nin is the count when the tracker is in. Thus it can be seen that
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the tracker contributed about 30% of the background since BETA is charge insensitive, it

does do not distinguish between e− or e+.

Figure 5.4 shows the Čerenkov ADC signal as a function of the number of tracks where

the Čerenkov ADC window cut is defined by the events between the two vertical lines.

This picture shows the necessity of the Čerenkov cut, the purpose of which is to remove

the background of pairs produced by photons outside of the central region of the target

magnetic field. The black curve shows the sum of all the events. The blue curve shows the

relative yield for events that originated with a scattered electron. The red curve shows the

background events.

5.3 Trajectory of a e+e− pair in SANE

In this section an example is presented to give a practical picture of the trajectory of a

e+e− pair in SANE as shown in Figure 5.5 and Figure ??.

The example in Figure 5.5 and Figure 5.6 show how each particle positron (blue),

electron (red) each with momentum 700 MeV. The pair starts out in a direction of 40◦

along the BETA axis. There is vertical deflection of 11.93◦ which translates to 71 cm in

BigCal. The cluster energy 700 MeV corresponds to x = 0.2 for DIS electrons at 40◦.

5.4 Calculating the Pair-Symmetric Background Asymmetry

In order to calculate the π0 asymmetry the π0 events are identified by reconstructing

the π0 mass from energy deposited in BigCal from events with two clusters produced by

neutral particles. The identification of π0 is done by placing a cut on π0 mass and using the
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Figure 5.3

Tracker Analysis, When Tracker is In/Out
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Figure 5.4

Simulated Čerenkov Response with Double Track ADC Spectrum
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Figure 5.5

Red-electron, blue-positron) starting direction of 40◦ along the BETA axis

Figure 5.6

Vertical Deflection and Translation in the BigCal
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reconstructed energy cut: E > 0.6 GeV. At high energy, π0 have low contribution, whereas

below 0.5 GeV the neural network does not work well [75].

Figure 5.7

Reconstructed π0 Mass from Two Neutral Cluster Particles

The raw π0 asymmetry is calculated as follows:

Araw =

N+

C+
− N−

C−
N+

C+
+ N−

C−

, (5.1)

where N+(−) is the number of counts with helicity positive (negative), C+(−) is the incom-

ing charge accumulated during the event with positive (negative) helicity.
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Figure 5.8

E(1) of Run 73001
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Figure 5.9

E(2) of Run 73001
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Figure 5.10

Comparing the MC (red plot) with Data
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The physics asymmetry is obtained by considering the beam and target, Pb and Pt

respectively:

Aphysics =
1

PbPt

Araw. (5.2)

Moreover, since the pion asymmetry can only come from scattering on polarized nucleon,

the physics asymmetry needs to include a dilution factor 1/f with f ∼ 0.14 (see section

5.6.1 on how f is obtained). Hence equation (5.2) becomes:

Aphysics =
1

fPbPt

Araw. (5.3)

As shown on Figure 5.7, Figure 5.8 and Figure 5.9, we start with the reconstruction

of the π0 mass from events with two clusters produced by neutral particles and then we

identify π0 by putting a cut on the π0 mass. The π0 mass plot is shown in Figure 5.7.

The following cuts were used:

1. The cut: e r > 0.6 is used to present the energy in GeV of the indexed clusters in
the event is > 0.6 GeV. The stability of the cut was checked by plotting the average
asymmetry versus run numbers for the various cuts as shown in figure ??. Figure ??
further shows the stability of the average total π0 asymmetry for various energy cuts.

2. The cut: nclust = 2 is used to denote the number of clusters in an event is equal to
two.

3. The cut: cer h = 0 is used for events with no hit in the Čerenkov (that is no Čerenkov
signal).

4. The cut: i helicity > 0 (or < 0) to denote the beam helicity as indicated by the
trigger supervisor.

5. The distance (cm) cut was such that 20 cm < distance between clusters < 80 cm.

Figure 5.11 shows the stability of the asymmetry to energy cuts. Furthermore, on

the same picture is plotted the product of the beam and target polarization, Pb, Pt (red
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crosses) where Pb ∗ Pt has been multiplied by a factor of 2 to fit on the plot. In addition,

the π0 asymmetries are combined by groups of runs with the same sign of the product

Pb ∗ Pt. Figure 5.12 shows the total average asymmetry for all cuts versus the energy cuts.

Table 5.1 shows total average asymmetry for the various energy cuts. Table 5.2 shows

the π0 Asymmetries Combined by Groups of Runs with the Same Sign of the Product of

Pb ∗ Pt.

Figure 5.11

Average Asymmetry Versus Run Numbers for the Energy Cuts

The plot in Figure 5.13 shows the average physics π0 asymmetry with the line f = 0.14

being the dilution factor. The blue points indicate the average physics asymmetry while

the red points indicate the product of the beam and target polarization (PbPt), which were
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Figure 5.12

Total Average Asymmetry for All Cuts Versus Energy Cuts

Table 5.1

Total Average Asymmetry for the Various Energy Cuts

Energy Cut (GeV) Total Asymmetry Total Asymmetry Error
0.5 0.0085 0.0116
0.6 0.0078 0.0157
0.7 -0.0075 0.0188
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averagely 73% and 69% respectively. In Figure 5.13 the product PbPt has been scaled by

a factor of two so as to fit in the same plot.

Figure 5.13

Average π0 Physics Background Asymmetry (Blue Circles)

Figure 5.13 shows that the total π0 asymmetry is consistent with zero. Table 5.3 shows

π0 asymmetries combined by groups of runs with the same sign of the product Pb ∗ Pt.

The run numbers shown correspond to the first run of each group. The data shows some

agreement with the SLAC E155 results. This will be used in section 5.6 to calculate the
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Table 5.2

Pion Asymmetries for the Various Energy and Angle Orientations

Energy (GeV) Orientation Physics asymmetry
5.9 80◦ 0.0206 ± 0.0193
4.7 80◦ -0.0137 ± 0.0393
5.9 180◦ -0.0207 ± 0.0481
4.7 180◦ -0.0180 ± 0.0568

< Aπ0 > 0.0078 ± 0.0157

background dilution. Table 5.2 shows the pion asymmetries for the various energy and

angle orientations

A(180◦) for SANE = −0.020± 0.04

AALL(180
◦) for SLAC = −0.022± 0.002

(5.4)

Therefore we can conclude that the total combined asymmetry of the neutral pion mea-

sured in SANE is consistent with zero and the π0 contribution is more of a background

dilution rather than an asymmetry.

5.5 Systematic Error in Background Correction

Even though the neutral pion data show an asymmetry consistent with zero with errors,

the errors of this result will propagate to the systematic uncertainties of the background

corrected asymmetries of about 10%.
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Table 5.3

π0 Asymmetries Combined by Groups of Runs with the Same Sign of the Product of
Pb ∗ Pt

Run Number Runs per group Average asymmetry Error
72429 12 -0.1280435 0.094315
72492 27 0.1104841 0.057759
72520 23 -0.0815739 0.057612
72548 6 0.0885419 0.105221
72554 8 -0.0884082 0.105020
72568 20 0.1004343 0.064884
72606 4 -0.0931135 0.126911
72609 2 0.1169479 0.205036
72615 4 -0.1018342 0.121171
72621 5 0.1110645 0.120611
72636 12 -0.1175212 0.090736
72665 23 0.1074975 0.054486
72690 12 -0.1025327 0.081327
72744 27 0.1269283 0.055797
72755 18 -0.1034831 0.063189
72792 12 0.1316201 0.085218
72827 6 -0.0616518 0.076158
72852 9 0.0867471 0.071472
72863 21 -0.0679715 0.050460
72933 9 0.0915698 0.078221
72948 12 -0.0831270 0.076641
72991 8 0.1223320 0.109845
73003 4 -0.0986898 0.150569
73010 1 0.1440228 0.341566
73017 9 -0.0918755 0.101957
73029 2 0.1284352 0.241060
73037 4 -0.0932524 0.147693
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To obtain the contribution of the error due to the uncertainty in the background and

background asymmetry we proceed as follow: Taking the background into consideration,

the measured asymmetry Am is:

Am =
N+ −N− +N+

b −N−
b

N+ +N− +N+
b +N−

b

. (5.5)

Setting Nm = N+ + N− + N+
b + N−

b = N + Nb where Nm is the measured count, and

Nb the background count. With N = N+ +N− and Nb = N+
b +N−

b

Am becomes:

Am =

N+−N−
N++N− (N

+ +N−) +
N+

b −N−
b

N+
b +N−

b

(N+
b +N−

b )

Nm

=
A(N+ +N−) + Ab(N

+
b +N−

b )

Nm

=
(Nm −Nb)A+NbAb

Nm

,

(5.6)

where A and Ab are the physics asymmetry and background asymmetry respectively given

by:

A =
N+ −N−

N+ +N− ; Ab =
N+

b −N−
b

N+
b +N−

b

, (5.7)

with N+ + N− = N = Nm − Nb and N+
b + N−

b = Nb, we can thus rewrite the physics

asymmetry A as:

A =
Am − fbAb

1− fb
, (5.8)

where fb = Nb

Nm
is the background dilution which is the ratio of the background count to

the measured counts. The error propagation is computed using the formula:

δA2 =

�
∂A

∂Am

δAm

�2

+

�
∂A

∂Ab

δAb

�2

+

�
∂A

∂fb
δfb

�2

. (5.9)
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Further

∂A

∂Am

=
1

1− fb
;

∂A

∂Ab

=
fb

1− fb
;

∂A

∂fb
=

Am − Ab

(1− fb)2
. (5.10)

Therefore, substituting equation (5.10) into equation (5.9), we obtain:

δA2 =
1

(1− fb)2

�
(δAm)

2 + (fbδAb)
2 +

�
Am − Ab

1− fb

�2

(δfb)
2

�
. (5.11)

Now Ae+/e− = Ab ∼ 0

δA2 =
A2f 2

b

(1− fb)2

�
∂Am

Afb

�2

+
A2f 2

b

(1− fb)2

��
δAb

A

�2

+

�
δfb
fb

�2
�
. (5.12)

The first term is statistical, hence it is dropped, while, the second term is treated as a

systematic error. Thus the relative systematic error of the corrected asymmetries due to

δAb is:

δA

A
=

fb
(1− fb)

��
δAb

A

�2

+

�
δfb
fb

�2
� 1

2

. (5.13)

Where δAb

A
is the uncertainty of the background asymmetry, δfb

fb
is the error of the back-

ground dilution and δA
A

is the systematic error.

5.6 Calculating Ab and fb

In the analysis of the background asymmetry Ab and background dilution fb we have

made used of the SLAC A� and A⊥ data but suitably modified for the SANE kinematics.

For example, SANE (A180) shows agreement with SLAC (A�) though with larger error

bars. Furthermore, SANE (A80) is not zero while SLAC (A⊥) though consistent with zero

but has some error.

It should be noted that SLAC (A�) is a statistical weighted average of π+ and π−

asymmetries whereas, SANE (A180) is a direct π0 asymmetry. The SLAC experiment
115



made use of magnetic spectrometers to measure the actual background rates with high e+

rejection efficiency. In SANE, BETA was charge insensitive with an open configuration

and detected both charges such that for each e+ detected there is a corresponding e−. It

therefore made sense to use the more precise SLAC background results in our analysis.

Data from the SLAC experiments E155 and E155x were used in the analysis presented

in this section. The SLAC E155 took dedicated data on longitudinal pion asymmetry while

E155x took transverse asymmetry data. The kinematics were at high transverse momentum

(PT ) where

PT = Pπ sin θ (5.14)

where θ is the angle the detector makes with the beam line and Pπ is the pion momentum.

Therefore, by knowing just the detector’s measured variables, momentum and angle rela-

tive to the beam, the PT of any detected particle can be calculated no matter how it was

produced.

The asymmetry data of π+ and π− collected from E155 [84] and E155x [87] were com-

bined and fitted as functions of the pion transverse momentum. This is possible because

the SANE and SLAC experiments were at very comparable PT . In addition, at high PT the

inclusive cross sections scale depend almost exclusively on PT [86]. This therefore gives

us a concrete basis to parametrize the SLAC asymmetries in terms of PT to compare with

the SANE data. Table ?? illustrates the fact that SANE and SLAC were at very comparable

PT , where the large angle used by SANE compensates for lower detected pion momentum

than SLAC.

compT

116



Table 5.4

SANE and SLAC experiments were at comparable PT

Experiment Ppion (GeV/c) θ(◦) PT (GeV/c)
SANE 1.5 30 0.75
SANE 1.167 40 0.75
SANE 0.98 50 0.75
SLAC 15.6 2.75 0.75

5.6.1 Ab for SANE’s A180◦ Configuration

The data from table 2 of reference [84] for identified pions were used to make the plots

in this subsection. In this table the photon endpoint energy is 48.35 GeV and the errors are

statistical only.

Figure 5.14 and Figure 5.15 show the asymmetries for π+ and π− plotted versus PT for

the various angles that were used in the E155 experiment, 2.75◦ and 5.5◦. Data from table

2 of [84] was used to make this plot.

The plots (Figure 5.14, Figure 5.15 and Figure 5.16)show that:

1. The asymmetries for π+ and π− have similar shapes.

2. At lower angle, 2.75◦ and PT , the π+ and π− asymmetries are slightly equal though
the π+ asymmetries have larger error bars.

3. At 5.5◦, and as PT increases the π+ and π− asymmetries are not equal as was the
case at 2.75◦. They tend to diverge as the PT is increased.

4. The data seem to depend only on PT as expected.

5. There are more e− asymmetry data points at high PT .

6. According to the E155 published paper [84], the identified pion results have large
statistical errors. This might be due to the large uncertainty in the dilution (f �).
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Figure 5.14

Plots of π+ (Blue) and π− (Red) Asymmetries Versus PT

Figure 5.15

Plots of π+ (Blue) and π− (Red) Asymmetries Versus PT
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Figure 5.16

Plots of π+ (Blue) and π− (Red) Asymmetries Versus PT

In order to obtain the π0 asymmetry from the π+ and π− asymmetries, points in the same

PT bins were averaged for all charges and spectrometer angles. In fitting the data, a simple

constant fit of the form a1 was preferred. Where a1 is a constant to be determined from the

fitting process.

The fit chosen is of the form

A� = a1. (5.15)

The constant a1 from the fitting process was found to be a1 = 0.0256± 0.0032 such that

A� = 0.0256± 0.0032. (5.16)

The data show good agreement with the fit especially at low PT . Also, the following

modifications were needed to be done namely:
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Figure 5.17

Parallel π0 Asymmetry Versus PT with a Constant Fit (Blue Line).

1. A� = A0◦ for SLAC, while for SANE A� = A180◦ . In order to appropriate and apply
SLAC numbers suitable for SANE’s usage a negative sign is added to A0◦ since
SANE measured A180◦ . Therefore, A180◦ (SANE)= −A0◦ (SLAC).

2. The fit values need to be adjusted to account for the dilution of 14N for SANE and
15N for SLAC. The SANE experiment used 14NH3 target while SLAC used 15NH3.
The dilution factor for SLAC, f � = 0.13±0.03. In order to calculate the background
dilution for SANE, fSANE , careful but yet accurate estimation was done by consider-
ing the fact that: f � = 0.13 = 3/(3+15+x), where there are 3 protons, 15 nucleons
in nitrogen, and x is a constant to be determined such as: x = [He*(1 − pf )+Al
windows, etc]/pf , with pf being an unknown packing fraction. Solving for x and
using it to compute the corresponding value for fSANE we arrived at fSANE to be
0.14± 0.032.

Since there is little or no dependence of the SLAC A� pion on PT , it would also be

the case for SANE pion asymmetries as well. Furthermore, the fit values are adjusted
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by 0.13/0.14 to account for the dilution of 14N (SANE) versus 15N (SLAC). Hence from

equation (5.16), A0◦ = 0.024± 0.003.

Therefore, A180◦ (SANE) = −0.024 ± 0.003. This value shows agreement with the

SANE data (−0.020± 0.037) although SANE value has larger errors.

5.6.2 Ab for SANE’s A80◦ Configuration

In the case for the perpendicular asymmetry, we proceed as in the previous subsection,

however using the E155x SLAC data extracted from reference [87] (digitized from figures

24 and 25 [85]). The perpendicular π0 asymmetry was obtained from a weighted average

of the π+ and π− asymmetries as shown in Figure 5.18.

Figure 5.18

Perpendicular π0 Asymmetry Versus PT
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A suitable fit to the data was found to be a constant fit such that only the data with

PT > 0.8 GeV/c which corresponds to about the range of pairs with PT > 0.4 GeV/c for

SANE [85].

Figure 5.18 shows a constant fit that was chosen to fit the data.

Figure 5.19

Fit to Perpendicular π0 Asymmetry Data

The fit is of the form A⊥ = a1 where a1 = −0.00122±0.0016. As before the fit values

have to be adjusted by the dilution ratio of 0.13/0.14.

A⊥ = A92.4◦ = −0.00113± 0.0015. (5.17)
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Because SLAC’s data were collected at 92.4◦, thus A90 = [A92.4−A0 cos (92.4)]/ sin (92.4) =

−0.00013± 0.0016. Data in SANE were taken at 80◦, therefore we used a linear combina-

tion of A90 and A180

A80 = A90 sin (80
◦) + A0 cos (80

◦). (5.18)

Even though A90 = 0 for SANE, however, the error on A90 for SLAC (±0.002) will be

added to SANE’s systematic errors. Therefore A80 becomes:

A80 =A90 sin(80
◦) + A0 cos (80

◦)

=(0± 0.002) ∗ sin(80◦) + (0.024± 0.003) ∗ cos(80◦)

=0.004± 0.002.

(5.19)

The perpendicular pion asymmetry A90◦ for SLAC is consistent with zero but with a non

zero error. However, the A80◦ for SANE is non zero with a non zero error.

5.6.3 Calculating fb

The background dilution fb was calculated by simulating the ratio of background par-

ticles (positrons) to electrons. A fit to the simulated data resulted in a good estimation of

fb. A suitable form of such fit is given by:

f(E �) = a1 ∗ e−a2∗E�
(5.20)

where E � is the energy of the scattered particles, a1 and a2 are constants to be determined

via the fitting process such that a1 = 0.938127 ± 0.05938 and a2 = 1.97656 ± 0.06201.

Therefore

f(E �) = (0.938127± 0.05938) ∗ e−(1.97656±0.06201)∗E�
(5.21)
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Figure 5.20

Ratio of Background Particles to Electrons at SANE Kinematics

Figure 5.20 shows the ratio of background particles to electrons plotted versus E�. The

red points represent when the beam energy is 5.9 GeV while the blue points represent

when the beam energy is 4.7 GeV. The green curve represent the fitting function. In the

simulation BETA was set at a central angle of 40◦.

Table 5.5 shows the connection between fb and E �. At lower energies the background

contribution is high therefore, in order to reduce pair-symmetric background it made sense

to put a cut on the data if fb exceeded 10% which correspond to around E� ∼ 1.3 GeV as

can be seen on Table 5.5.

Calculated values of the background corrections are presented in Table 5.6. It should

be noted that equation (5.8) have been used to compute the numbers in the correction row
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Table 5.5

Ratio of Background Particles to Electrons

E � fb
0.8 0.19

0.93 0.156
1.06 0.126
1.19 0.101
1.32 0.079
1.45 0.061
1.58 0.046
1.71 0.034
1.84 0.025
1.97 0.018
2.1 0.012

2.23 0.008
2.36 0.006
2.49 0.004

while equation (5.13) have been used to compute the systematic error row. The last row

is a numerical example for fb = 0.1, Am(180
◦) = 0.36 and Am(80

◦) = 0.019. Also, the

number in the table are only for E � such that fb(E �) = 0.1, so E � ∼ 1.3. As E � increases,

fb and the errors decrease, so that the table is a worst case.

Table 5.6 shows that both the correction and the systematic error on the final asymmetry

A (equation (5.8)) and its error (equation (5.13)) depend on the measured asymmetry Am

and the background dilution fb, for example when fb = 0.1, and Am(180
◦) = 0.36, the

A180◦ corrected asymmetry and systematic error are written as:

A180 = 1.1 ∗ Am + 0.003 = 0.406

δA

A
= 0.11 ∗

��
0.003

1.1 ∗ Am + 0.003

�2

+ 0.01 = 1.1%

(5.22)
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Table 5.6

Error Results and the A Numerical Example of the Corrected Asymmetry A

A180◦ A80◦

Ab ± δAb -0.024 ± 0.003 0.004 ± 0.002
δfb/fb 0.1 0.1

Correction 1.1 ∗ Am + 0.003 1.1 ∗ Am − 0.0004

Systematic ( δA
A
) 0.11 ∗

��
0.003

1.1∗Am+0.003

�2

+ 0.01 0.11 ∗
��

0.002
1.1∗Am−0.0004

�2

+ 0.01

Example A 0.406 0.021
Example δA

A
1.1% 1.5%

while for Am = 0.019, the A80◦ asymmetry correction and systematic error are written as:

A80 = 1.1 ∗ Am − 0.0004 = 0.021

δA

A
= 0.11 ∗

��
0.002

1.1 ∗ Am − 0.0004

�2

+ 0.01 = 1.5%.

(5.23)

Table 5.7 illustrates numerical cases for A180◦ and A80◦ with Am(180
◦) = 0.36,

Am(80
◦) = 0.019 and different values of fb.

It should be noted that the 10% relative dilution factor error was assumed as a reason-

able estimate from the pair background simulations and comparison with data. Further-

more, the values for Am(180
◦) and Am(80

◦) are the preliminary results thus far.
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Table 5.7

Numerical Example to Illustrate the Corrected Asymmetries A180◦ and A80◦

fb A180◦
δA
A

A80◦
δA
A

0.1 0.406± 1.1% 0.021± 1.5%
0.05 0.383± 0.3% 0.020± 0.6%

0.004 0.365± 0.004% 0.019± 0.042%
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CHAPTER 6

RESULTS

In this chapter the results of the SANE analysis are presented. The selected events

included in the analysis were divided into two category settings: anti−parallel target field

(180◦) and near perpendicular field setting (80◦). These were further divided into two

energy configurations, 4.7 GeV and 5.9 GeV that were in the kinematic region of Q2 from

1.5 to 6.5 GeV with x ranging above 0.25. Table 6.1 shows the SANE configuration.

Table 6.1

SANE Configuration

Energy Orientation
5.9 GeV 80◦

4.7 GeV 80◦

5.9 GeV 180◦

4.7 GeV 180◦

The results of the experimental physics asymmetries, A180 and A80 are presented in bins

of Q2 with respect to x in section (6.1) followed by the results of the spin asymmetries A1

and A2 versus W and x in section (6.2). Furthermore, the results of the spin structure
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functions g1 and g2 are presented in section (6.3). Lastly, the background correction is

presented in section (6.4).

6.1 Results of A180 and A80

Having applied all corrections, the experimental physics asymmetries are presented in

Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4, binned in Q2 and x, and average by

runs for the two target field configurations: anti−parallel (180◦) and near perpendicular

(80◦) [56]. These are presented for the two energies used by SANE, 4.7 GeV and 5.9 GeV.

The anti−parallel asymmetries are much larger than the near perpendicular values. The

colored bands at the bottom of the plots represent the systematic error for the various Q2

bins. From here we now proceeded in extracting the spin asymmetries and spin structure

functions.

6.2 Results of the Spin Asymmetries

A1 and A2 were extracted from A180 and A80 as described in section (4.5). Plots of

these results are shown in Figure 6.5, Figure 6.6 and Figure 6.7 [56]. SANE shows good

agreement with world data at large W . Ap
1 looks smooth versus W . Ap

2 is slightly zero at

low and high W .

6.3 Results of the Spin Structure Functions

Shown in Figure 6.10 and Figure 6.9 are the results of g1 and g2 [56]. They where

extracted as described in section (4.5).
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Figure 6.1

Plots of A180 Versus x at 4.7 GeV
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Figure 6.2

Plots of A80 Versus x at 4.7 GeV
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Figure 6.3

Plots of A180 Versus x at 5.9 GeV
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Figure 6.4

Plots of A80 Versus x at 5.9 GeV
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Figure 6.5

Plots of A1
p Versus W

Figure 6.6

Plots of A2
p Versus W
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Figure 6.7

Plot of A1
p Versus x
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As opposed to other experiments, SANE was a model independent experiment. Fur-

thermore, SANE has more g1 data than other experiments.

Figure 6.8 and Figure 6.9 show that g1 has more data points with smaller statically error

bars than g2. Furthermore, at low x we notice jumping points which are more pronounced

in g2, this is probably due to the effect of the background.

6.4 Background Corrections

SANE was an inclusive double spin asymmetry measurement by scattering longitudi-

nally polarized electrons on a longitudinally and transversely polarized NH3 target. The

measurements were done at momentum transfer of 1.5 ≤ Q2 ≤ 6.5 GeV 2 and Bjorken

x of 0.25 ≤ x ≤ 0.8. A significant background diluted our asymmetries particularly at

low E � (low x). Photons from neutral pion decay convert to positron−electron pairs be-

fore reaching the Čerenkov. If these events pass the energy threshold, both electron and

positron could be accepted in the calorimeter as good electron (DIS) events from primary

scattering. A correction to this effect takes the form (as discussed in chapter 5)

A =
Am − fbAb

1− fb
(6.1)

where fb is the background dilution, the ratio of the background count to all the polarized

counts. Please refer to section 5.6 for a detail analysis and result.
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Figure 6.8

Results of x2g1
p Versus x
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Figure 6.9

Results of x2gp2 Versus x
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Figure 6.10

Results of g1p Versus x
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Figure 6.11

Results of x2g2
p Versus x
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CHAPTER 7

CONCLUSIONS

7.1 Conclusion

Using the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory, the

Spin Asymmetries of the Nucleon Experiment in a model independent approach has pro-

duced valuable double polarization measurements of the proton’s spin structure in the

kinematic range of x from 0.3 to 0.8 and Q2 from 1.5 to 6.5 GeV2. We have presented

spin asymmetries A1 and A2 and the spin structure functions g1 and g2 in this region, as

calculated from the data collected. With the inclusion of both anti−parallel and near per-

pendicular target orientation asymmetries, these calculations avoid the model dependence

required by purely parallel datasets.

Being an inclusive electron scattering experiment, pair-symmetric backgrounds from

neutral pion decays contributed significantly to measurements of the cross sections and

asymmetries. Given that it was not possible to carry out measurements of the positively

charged background using magnetic spectrometers as in other experiments, SANE made

use of kinematic cuts to exclude data for which the ratio of background to signal would

exceed 10%, within a ∼ 20% relative uncertainty [62, 63]. The results of the data analysis

showed agreement with estimations from GEANT simulations.
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The importance of doing a pair symmetric background analysis can not be over em-

phasized. In order to get fully corrected measured asymmetries is the subtraction of the

background pair symmetric and pion asymmetries. We have used SLAC data but suitably

modified for the SANE to calculate the background asymmetries and background dilu-

tions. In order to reduce these pair-symmetric background the data was cut if background

dilution exceeded 10% which correspond to around E� > 1.3 GeV.

These data offers a look at spin structure function g2 with high accuracy. By both

expanding the kinematic scope of existing measurements and contributing vastly to their

statistical significance, SANE represents an important contribution to the understanding of

nucleon spin structure an exciting expansion of nuclear physics.
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APPENDIX A

BEAM ENERGY COMBINATIONS FOR EXPERIMENTAL HALLS AND π0

ASYMMETRY DATA FOR ALL RUNS
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A.1 Beam Energy Combinations for Experimental Halls

Here, we give the 21 values of the precession difference function, f for the cases of

halls A and B, and for halls C and B, as well as for halls A and C. Each three line entry

in the tables gives, in addition to the value of the function f(nσ, nτ ), the range of values

of mσ −mτ which can be obtained by operation of the accelerator with five pass energies

between 2 and 6 GeV, and the total number of such values over this energy range.

For each particular choice of two halls, σ and τ , the general form of the precession

difference equation is:

θσ − θτ
π

= Pf(nσ, nτ ) = mσ −mτ (A.1)

To illustrate the use of these tables to find the beam energy combination which provide

simultaneous longitudinal polarization in two particular halls, consider the case of provid-

ing 3 pass beam to hall A and 5 pass beam to hall C, with a five pass energy close to 4 GeV.

From the table for halls A and C, we obtain the value of f(nA = 3, nC = 5) = -27.069792.

Allowing values for (mA −mC) to range between -13 amd -36. Since we want an energy

close to the midrange of the allowed values, e.g., -24 or -25, will provide the best choice.

Working through the numbers for these two cases, we find that mA − mC = -24 corre-

sponds to a linac energy of 390.6778 MeV, and mA −mC = -25 corresponds to 406.9560

MeV. These values for the linac energy give five pass energies of 3.9507 GeV and 4.1153

GeV, respectively. For the case with the linac energy of 390.6778 MeV, we compute a total

precession of 14.926694 π to hall A. Thus, to obtain the longitudinal polarization in hall
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A, we need to add 0.073306 π = 13.195◦ to the polarization direction at the injector, in the

horizontal plane.

Figure A.1

Precession Difference Functions for Halls A and B
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Figure A.2

Precession Difference Functions for Halls B and C

Figure A.3

Precession Difference Functions for Halls A and C
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A.2 π0 Asymmetry Data for All Runs

Table A.1 shows the data used to calculate the π0 asymmetries. The following are

defined: run# is the run number, Araw is the raw asymmetry, PbPt is the product of the

beam polarization and target polarization, q+(−) is the charge for the positive (negative)

helicity, L+(−) is the livetime for positive (negative) helicity and Aphy is the corrected π0

physics asymmetry.
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Table A.1

π0 Asymmetries for All Runs

Run# Araw PbPt q+ q− L+ L− Aphy

72417 -0.0255 -0.4855 64.36 64.57 0.8561 0.855 -0.1111
72421 -0.0257 -0.4478 111.66 112.05 0.847 0.8458 -0.1202
72422 -0.021 -0.4662 112.5 112.88 0.8451 0.8437 -0.1134
72423 -0.0117 -0.4574 110.53 110.91 0.8521 0.8509 -0.1167
72424 -0.0378 -0.4276 108.87 109.2 0.8516 0.8505 -0.1242
72428 -0.0085 -0.4456 116.03 116.42 0.8473 0.8463 -0.1214
72429 -0.0105 -0.4081 112.84 113.22 0.8419 0.8408 -0.1329
72430 -0.0234 -0.2962 22.28 22.36 0.8487 0.8477 -0.1819
72431 -0.046 -0.4001 95.47 95.78 0.8383 0.8371 -0.1327
72432 -0.0313 -0.3844 107.04 107.4 0.8501 0.849 -0.1399
72433 -0.0099 -0.3719 106.26 106.64 0.8493 0.8483 -0.1484
72434 -0.0092 -0.3611 106.03 106.37 0.8482 0.8469 -0.1459
72447 -0.0042 0.3186 94.77 95.05 0.7959 0.7962 0.1829
72448 0.0032 0.3875 86.67 86.94 0.8338 0.834 0.1508
72449 -0.0094 0.3967 95.62 95.9 0.8371 0.8374 0.1468
72450 -0.0224 0.3996 96.22 96.52 0.8403 0.8403 0.1446
72477 -0.0585 0.4972 85.3 85.43 0.8019 0.8016 0.103
72479 -0.0106 0.5128 704.81 705.72 0.8131 0.8132 0.1007
72480 -0.0193 0.5045 549.49 550.18 0.808 0.8085 0.1057
72481 -0.0062 0.4467 724.91 725.97 0.808 0.8083 0.1188
72482 0.0178 0.4594 470.25 470.86 0.8073 0.8073 0.1111
72483 -0.0011 0.4638 760.6 761.74 0.8099 0.8101 0.1139
72484 0.0091 0.461 748.62 749.62 0.8037 0.804 0.1139
72485 -0.0146 0.4654 739.1 739.92 0.8081 0.8082 0.11
72488 -0.0431 0.4674 5347.96 5348.72 0.7942 0.7943 0.1015
72489 -0.0053 0.4539 5450.17 5450.57 0.802 0.8018 0.1017
72491 -0.0187 0.4368 5819.27 5820.33 0.8087 0.8088 0.1094
72492 -0.0236 0.4284 2339.5 2339.68 0.8015 0.8017 0.1113
72493 0.0093 0.4957 6040.08 6040.88 0.8179 0.8179 0.0951
72494 -0.0037 0.4762 5840.51 5841.16 0.8143 0.8142 0.0969
72495 -0.0182 0.4672 5848.99 5849.85 0.8137 0.8139 0.1025
72496 -0.0028 0.4671 6029.87 6030.31 0.816 0.8161 0.1009
72497 -0.0389 0.4723 5972.93 5973.81 0.8143 0.8145 0.1013
72498 -0.0358 0.3386 1162.45 1162.59 0.8322 0.8323 0.1395
72499 -0.009 0.4792 6066.59 6067.69 0.8195 0.8198 0.1014
72500 -0.0295 0.4803 6062.35 6063.49 0.8209 0.8213 0.1017
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72501 -0.0167 0.4683 6070.99 6071.69 0.8199 0.82 0.1018
72502 -0.0247 0.4606 6049.13 6049.49 0.8198 0.8201 0.1041
72503 -0.0006 0.4551 5839.9 5840.63 0.813 0.813 0.1037
72511 0.0118 -0.5698 5631.77 5632.03 0.8102 0.8085 -0.0686
72512 -0.0058 -0.5742 5663.29 5663.87 0.8054 0.8038 -0.0693
72513 -0.0079 -0.5534 5610.63 5611.41 0.8052 0.8037 -0.0724
72514 -0.0093 -0.5313 3067.56 3067.95 0.801 0.7995 -0.0762
72515 0.0061 -0.5287 5815.19 5816.27 0.8126 0.8108 -0.0747
72516 -0.0417 -0.5185 5796.46 5797.35 0.8117 0.8103 -0.0793
72517 -0.0089 -0.4859 5854.43 5855.08 0.8112 0.8099 -0.085
72518 0.0073 -0.4884 5779.25 5779.68 0.813 0.8114 -0.0818
72519 -0.0107 -0.4882 5680.26 5681.07 0.809 0.8077 -0.084
72520 0.0013 -0.4639 5853.54 5854.27 0.8119 0.8106 -0.0886
72521 0.0099 -0.4518 2857.04 2857.36 0.8124 0.8113 -0.0938
72522 -0.0053 -0.5403 6267.81 6268.42 0.8323 0.8311 -0.0767
72523 0.0031 -0.5288 6352.91 6353.26 0.8306 0.8292 -0.0774
72524 0.0002 -0.5028 6283.38 6284.26 0.8333 0.832 -0.0819
72525 -0.0243 -0.4834 6224.59 6225.21 0.83 0.8286 -0.084
72526 -0.0217 -0.4767 6108.47 6108.81 0.8263 0.8248 -0.0849
72527 -0.0456 -0.4768 6121.08 6121.23 0.8266 0.8252 -0.0848
72528 0.002 -0.467 6186.57 6187.19 0.8284 0.8272 -0.0888
72529 0.000064 -0.2353 3015.83 3016.21 0.8359 0.8348 -0.1791
72530 0.0093 -0.5131 5697.69 5697.99 0.8149 0.813 -0.0742
72531 -0.008 -0.4675 5727.43 5728.2 0.8153 0.8138 -0.086
72532 -0.01 -0.4321 5501.56 5502.17 0.8106 0.8088 -0.0906
72533 -0.0071 -0.428 5434.68 5435.73 0.807 0.8055 -0.0947
72545 -0.0543 0.6227 1301.1 1301.42 0.8275 0.8273 0.0746
72546 0.0306 0.5293 4358.43 4359.01 0.85 0.8503 0.0909
72547 -0.0324 0.5197 7163.12 7164.04 0.8537 0.8537 0.091
72548 -0.0247 0.487 7038.66 7039.77 0.8482 0.8481 0.0955
72549 -0.0217 0.4724 7090.83 7091.25 0.8483 0.8484 0.0996
72550 -0.0252 0.5185 3289.28 3290.15 0.851 0.8506 0.0884
72551 0.0183 -0.4715 7210.97 7212.27 0.8456 0.8442 -0.0874
72552 -0.003 -0.4002 6842.56 6843.11 0.8505 0.8493 -0.1041
72553 -0.0125 -0.5035 6447.57 6448.56 0.8445 0.843 -0.0812
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72554 0.0029 -0.5065 7096.27 7096.99 0.8452 0.8438 -0.0812
72555 -0.0045 -0.4763 4946.04 4946.8 0.848 0.8467 -0.0874
72556 -0.0114 -0.296 2761.59 2761.88 0.8547 0.8536 -0.1433
72557 0.0051 -0.4658 5559.58 5561.51 0.8056 0.8038 -0.0848
72559 -0.0177 -0.4997 4841.87 4842.76 0.8029 0.8012 -0.0787
72560 -0.0149 0.4095 6784.92 6785.63 0.8449 0.845 0.1163
72561 0.0027 0.4561 6732.8 6733.97 0.8481 0.8481 0.1033
72564 -0.0202 0.5651 6419.98 6421.17 0.8516 0.8516 0.0838
72565 0.0123 0.5191 7183.46 7184.46 0.8482 0.8481 0.0896
72566 -0.0201 0.4764 7184.68 7185.6 0.8505 0.8505 0.0982
72567 -0.0281 0.4591 7203.15 7204.29 0.8494 0.8494 0.1024
72568 0.0165 0.4514 7240.26 7241.42 0.8508 0.8507 0.1035
72569 -0.0021 0.4466 4192.32 4192.81 0.8519 0.8517 0.1032
72570 -0.016 0.4246 4078.18 4078.56 0.8228 0.8227 0.1095
72571 -0.0068 0.4993 7254.29 7255.21 0.8526 0.8527 0.0949
72572 -0.0102 0.4852 7374.71 7375.71 0.8541 0.8541 0.0964
72573 -0.0331 0.4715 7431.67 7432.36 0.8544 0.8547 0.1019
72574 -0.0229 0.4555 7504.86 7505.78 0.8548 0.8551 0.1057
72575 -0.0238 0.4547 5994.77 5995.96 0.8571 0.8573 0.1055
72576 -0.0453 0.4546 5569.42 5569.55 0.8558 0.8557 0.1016
72577 -0.024 0.473 4304.55 4305.34 0.8554 0.8554 0.0999
72578 -0.0188 0.4769 4465.09 4465.54 0.8557 0.8556 0.0977
72579 0.0086 0.4651 3077.3 3077.55 0.8417 0.8418 0.1019
72580 -0.0209 0.4338 2961.52 2962 0.8504 0.8507 0.1111
72581 -0.0021 0.4637 4361.84 4362.37 0.8557 0.8558 0.1019
72604 -0.0472 -0.5593 32.23 32.32 0.5435 0.542 -0.0811
72605 -0.0544 -0.5381 33.14 33.26 0.5886 0.5868 -0.0888
72606 -0.0027 -0.5277 33.52 33.65 0.5928 0.5915 -0.0995
72608 -0.0015 -0.515 94.07 94.31 0.8331 0.8329 -0.1053
72609 -0.0609 0.4962 66.35 66.48 0.8207 0.8212 0.1123
72612 -0.0271 0.4391 97.46 97.69 0.8331 0.8329 0.1229
72614 -0.0023 -0.5743 95.6 95.93 0.8312 0.8299 -0.0922
72615 -0.0653 -0.5532 46.59 46.77 0.8279 0.8264 -0.0969
72616 -0.0303 -0.546 17.83 17.93 0.8971 0.8958 -0.1119
72617 -0.0599 -0.5685 25.02 25.15 0.8949 0.8939 -0.107
72618 -0.0074 0.5381 48.86 48.95 0.829 0.8292 0.1002
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72619 -0.0009 0.5094 48.35 48.45 0.8301 0.8305 0.1097
72620 -0.0453 0.5071 47.63 47.73 0.8287 0.8293 0.1116
72621 -0.0099 0.486 47.63 47.75 0.8293 0.8296 0.1164
72622 -0.0166 0.476 47.93 48.05 0.8297 0.8302 0.1202
72631 -0.0155 -0.4357 67.44 67.62 0.8138 0.8125 -0.1152
72632 0.0123 -0.4418 130.13 130.53 0.818 0.8167 -0.1177
72633 0.002 -0.4313 132.12 132.5 0.8167 0.8156 -0.1216
72634 0.0043 -0.4293 125.22 125.6 0.8141 0.8126 -0.1183
72635 -0.028 -0.4313 134.95 135.35 0.8129 0.8118 -0.1205
72636 -0.0252 -0.4745 135.46 135.87 0.8172 0.8152 -0.1028
72637 0.0033 -0.4556 134.71 135.12 0.8152 0.8136 -0.1106
72638 -0.0465 -0.4409 131.17 131.56 0.8162 0.8147 -0.1136
72639 -0.0114 -0.4218 135.99 136.39 0.8154 0.8141 -0.1213
72640 -0.0206 -0.413 134.81 135.22 0.8164 0.8151 -0.1252
72641 -0.005 -0.4082 113.12 113.46 0.8142 0.8129 -0.1255
72642 0.0135 -0.3979 64.94 65.12 0.7808 0.7793 -0.125
72645 -0.0123 0.5533 79.37 79.63 0.8558 0.8564 0.1097
72646 -0.0078 0.5123 157.37 157.93 0.865 0.8652 0.1173
72647 -0.0032 0.4678 150.82 151.3 0.8596 0.86 0.127
72649 -0.018 0.5129 146.87 147.29 0.8198 0.8201 0.1134
72650 -0.019 0.5235 148.13 148.54 0.8155 0.8156 0.1085
72657 -0.0096 0.5508 127.2 127.43 0.8241 0.8247 0.1008
72659 0.0119 0.5328 79.81 79.91 0.8168 0.8175 0.1016
72660 0.0052 0.5712 139.51 139.79 0.8193 0.8197 0.097
72661 -0.0109 0.5654 140.76 141.05 0.8156 0.816 0.0979
72662 -0.0027 0.5661 138.95 139.17 0.8109 0.8112 0.0951
72663 -0.0128 0.538 140.74 141 0.8098 0.8102 0.1017
72664 -0.0141 0.5305 143.75 144.01 0.8138 0.8139 0.1011
72665 -0.0302 0.5115 141.27 141.55 0.814 0.8144 0.1081
72666 -0.0077 0.5046 83.92 84.1 0.8175 0.8177 0.1094
72667 0.0069 0.4995 146.77 147.09 0.8222 0.8224 0.1103
72668 -0.0191 0.495 146.44 146.7 0.8244 0.8247 0.1093
72669 -0.0214 0.5328 143.35 143.64 0.8181 0.8186 0.1051
72670 0.0089 0.519 74.94 75.13 0.8527 0.8532 0.1113
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72671 -0.0119 0.4949 141.33 141.6 0.8188 0.8195 0.1139
72672 -0.018 0.4909 142.3 142.57 0.8142 0.8147 0.1125
72673 0.0092 0.5002 140.84 141.06 0.8058 0.8062 0.1079
72674 -0.0117 0.4906 134.11 134.35 0.8065 0.8069 0.1113
72675 -0.0378 0.4769 139.48 139.76 0.8122 0.8127 0.1178
72681 -0.0481 -0.4982 32.27 32.34 0.8415 0.8397 -0.0937
72682 -0.0279 -0.6001 61.93 62.05 0.8321 0.8311 -0.0811
72683 -0.039 -0.5095 12.83 12.86 0.8301 0.8294 -0.102
72684 -0.0191 -0.4961 131.5 131.76 0.8354 0.8342 -0.0985
72685 -0.0255 -0.4773 152.46 152.8 0.8319 0.8305 -0.1021
72686 -0.0335 -0.4554 142.14 142.47 0.8345 0.8333 -0.1097
72687 -0.0432 -0.446 77.76 77.96 0.8309 0.8296 -0.1129
72689 -0.0172 -0.49 153.24 153.57 0.8303 0.8289 -0.0982
72690 -0.0054 -0.4724 156.05 156.44 0.8329 0.8319 -0.1078
72692 -0.0006 -0.4412 156.69 157.1 0.8442 0.8429 -0.1146
72693 -0.0301 -0.4425 157.57 158.01 0.8586 0.8573 -0.1159
72694 0.0053 -0.4345 154.72 155.14 0.8305 0.8292 -0.1157
72701 -0.0282 0.3999 25.02 25.11 0.8558 0.856 0.1521
72702 0.0085 0.5725 157.92 158.46 0.8404 0.8406 0.1039
72703 -0.0203 0.5434 155.52 156.08 0.8382 0.8386 0.1122
72708 -0.0184 0.5102 160.11 160.5 0.84 0.8407 0.1136
72709 -0.0185 0.4989 157.89 158.33 0.8369 0.8373 0.1172
72710 -0.0162 0.4836 155.55 156.06 0.8384 0.8387 0.1238
72711 0.0095 0.482 156.19 156.7 0.8353 0.8357 0.1245
72712 -0.0156 0.4732 154.42 154.93 0.8348 0.835 0.1252
72713 -0.0416 0.3934 99.26 99.59 0.8407 0.8405 0.1467
72714 -0.0027 0.4769 155.1 155.48 0.8281 0.8284 0.1189
72715 -0.0165 0.404 154.25 154.71 0.8327 0.8328 0.1427
72716 -0.0308 0.3108 62.85 63.02 0.8378 0.8379 0.181
72735 -0.0004 0.4976 154.71 155.34 0.8378 0.838 0.1238
72736 -0.0215 0.4897 154.07 154.65 0.8351 0.8352 0.1237
72737 -0.0128 0.4746 90.45 90.81 0.8379 0.8382 0.1308
72741 -0.0174 0.495 153.91 154.7 0.8169 0.817 0.1318
72742 -0.0189 0.4807 152.33 153.08 0.8125 0.813 0.1381
72743 0.0043 0.4801 155.3 155.97 0.8352 0.8356 0.1319
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72744 -0.0208 0.4721 153.6 154.17 0.8368 0.8369 0.1269
72745 -0.039 0.383 18.35 18.4 0.8396 0.8398 0.1498
72746 -0.0209 0.4547 154.6 155.14 0.8306 0.8311 0.1348
72747 -0.0111 0.4434 152.35 152.81 0.7981 0.7985 0.1333
72748 -0.0292 0.4429 150.29 150.75 0.7967 0.7968 0.131
72749 -0.0205 0.5219 154.28 154.72 0.8229 0.8233 0.1116
72750 -0.0156 0.5179 153.21 153.71 0.8285 0.8288 0.1151
72751 -0.0533 0.3675 87.43 87.68 0.8321 0.8324 0.1577
72752 -0.0338 0.4899 135.28 135.64 0.8268 0.8274 0.1198
72755 0.012 -0.5782 28.68 28.8 0.8355 0.8338 -0.0951
72756 -0.0211 -0.5676 157.43 157.98 0.8381 0.8366 -0.0924
72759 -0.0175 -0.4906 157.18 157.65 0.8151 0.8139 -0.1054
72761 0.0051 -0.5292 61.85 62.03 0.8126 0.8113 -0.0968
72763 -0.0026 -0.5348 56.88 57.07 0.8181 0.8169 -0.0994
72764 -0.0335 -0.5011 155.31 155.82 0.8167 0.8155 -0.1063
72765 -0.0257 -0.5075 29.52 29.62 0.821 0.8194 -0.1026
72769 -0.0101 -0.5212 148.64 149.15 0.7864 0.7845 -0.0957
72770 0.0171 -0.5329 150.39 150.94 0.8141 0.8124 -0.0972
72771 -0.0314 -0.5265 151.44 152.13 0.8188 0.8171 -0.1049
72772 -0.0245 -0.5129 151.07 151.65 0.8192 0.8175 -0.1032
72773 -0.0108 -0.4974 150.92 151.46 0.8194 0.8179 -0.1059
72774 -0.0036 -0.4844 148.55 149.04 0.8236 0.8223 -0.1088
72775 -0.0444 -0.4719 110.31 110.68 0.711 0.7092 -0.1052
72776 -0.0146 -0.4623 32.93 33.04 0.7758 0.7744 -0.1127
72777 -0.0549 -0.4718 30.23 30.33 0.8338 0.8326 -0.1121
72778 -0.1696 -0.4548 11.97 12.01 0.8328 0.8317 -0.1175
72779 -0.0497 -0.455 39.47 39.61 0.8475 0.8461 -0.1181
72784 -0.0158 0.4455 150.68 151.31 0.8235 0.8233 0.1351
72786 -0.0185 0.4588 152.42 153.08 0.8415 0.8415 0.1347
72787 -0.0003 0.4548 149.02 149.62 0.8116 0.8115 0.1325
72790 -0.0145 0.4506 151.45 152 0.8092 0.809 0.13
72792 -0.0228 0.4231 151.51 152.07 0.8082 0.8081 0.1394
72793 -0.0541 0.4626 41.89 42.07 0.8527 0.8525 0.1315
72794 -0.0365 0.4761 36.27 36.42 0.8465 0.8465 0.1275
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72795 -0.005 0.5001 151.88 152.5 0.8375 0.8374 0.1218
72796 -0.0254 0.4768 153.19 153.83 0.8386 0.8384 0.1276
72797 0.0036 0.4663 152.15 152.9 0.8394 0.8393 0.1358
72798 -0.0053 0.4564 152 152.76 0.8402 0.8398 0.1369
72799 -0.0113 0.447 150.51 151.02 0.8179 0.8178 0.1302
72824 -0.0118 -0.7764 161.58 161.75 0.8501 0.8488 -0.0581
72825 -0.0078 -0.7684 158.06 158.22 0.836 0.8345 -0.0572
72826 -0.0228 -0.7549 159.32 159.46 0.8378 0.8364 -0.0584
72827 0.0074 -0.717 160.81 160.94 0.8491 0.8479 -0.0619
72828 -0.019 -0.6917 159.52 159.69 0.8475 0.8464 -0.0659
72829 -0.0067 -0.6534 158.8 158.97 0.8504 0.8496 -0.0722
72845 -0.012 0.7161 100.15 100.16 0.8036 0.8057 0.0786
72846 0.0278 0.6612 119.16 119.17 0.8103 0.812 0.0821
72847 -0.0133 0.6418 39.62 39.62 0.8084 0.8096 0.0814
72848 0.0113 0.6132 129.15 129.17 0.8184 0.8196 0.0858
72851 -0.0256 0.6569 138.6 138.61 0.696 0.6987 0.0927
72852 -0.0349 0.6214 68.97 68.96 0.6853 0.6872 0.0908
72857 0.0101 0.5908 128.86 128.82 0.7709 0.7725 0.09
72858 -0.0467 0.5929 103.95 103.98 0.7882 0.7897 0.0916
72859 -0.0102 0.5977 149.71 149.72 0.7416 0.7433 0.0918
72863 -0.0454 -0.7125 166.23 166.05 0.7254 0.7238 -0.0486
72872 -0.0339 -0.6836 31.64 31.58 0.5843 0.5821 -0.0387
72873 -0.0134 -0.6875 152.44 152.2 0.7495 0.7481 -0.0498
72874 -0.0537 -0.6413 164.52 164.27 0.7642 0.7631 -0.0558
72875 0.003 -0.6457 124.65 124.49 0.7534 0.7515 -0.0506
72876 -0.0257 -0.6484 164.75 164.58 0.744 0.7424 -0.0542
72877 -0.1418 -0.6386 18.37 18.35 0.779 0.778 -0.0598
72878 -0.0353 -0.6286 169.73 169.51 0.7719 0.7705 -0.0562
72879 -0.0117 -0.6191 118.06 117.87 0.783 0.7819 -0.0578
72890 -0.0097 -0.6627 143.51 143.57 0.744 0.7425 -0.0609
72891 -0.0081 -0.6397 154.77 154.83 0.7853 0.7833 -0.0611
72892 -0.0232 -0.6496 161.2 161.27 0.8397 0.8384 -0.0652
72915 -0.0538 -0.5753 139.11 139.4 0.9117 0.91 -0.0823
72916 -0.0155 -0.5356 177.51 177.88 0.9109 0.9095 -0.0904
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72917 -0.0358 -0.5098 144.47 144.78 0.912 0.911 -0.0982
72918 -0.0403 -0.4921 152.75 153.05 0.9113 0.9102 -0.1003
72919 -0.0606 -0.4781 87.07 87.23 0.9124 0.9115 -0.1036
72921 -0.0356 -0.4479 189.91 190.28 0.9125 0.9116 -0.1118
72922 -0.019 -0.4335 89.04 89.21 0.912 0.9111 -0.1139
72923 0.0003 -0.428 12.46 12.48 0.8778 0.8765 -0.1097
72925 -0.0253 -0.4196 205.95 206.32 0.9279 0.9271 -0.1192
72926 -0.0162 0.4081 213.63 213.89 0.9266 0.927 0.1285
72928 -0.0218 0.4016 68.26 68.29 0.9116 0.9125 0.1294
72929 0.0162 0.6644 143.9 143.94 0.9196 0.9212 0.0811
72931 -0.0117 0.6466 159.66 159.72 0.9155 0.9169 0.0826
72932 -0.0105 0.6137 233.76 233.89 0.9143 0.9157 0.088
72933 0.0247 0.6108 178.34 178.49 0.9141 0.9154 0.0895
72934 -0.0165 0.609 156.88 157.01 0.9159 0.9172 0.0895
72935 -0.0128 0.5984 138.97 139.08 0.9183 0.9193 0.0882
72936 -0.0078 0.5922 128.67 128.79 0.9154 0.9166 0.0922
72941 -0.0507 -0.5543 64.47 64.52 0.9205 0.919 -0.0783
72942 0.0028 -0.5647 77.45 77.47 0.9166 0.9153 -0.0753
72943 -0.0541 -0.5693 87.65 87.67 0.9183 0.9169 -0.0742
72944 0.0239 -0.5243 231.7 231.85 0.9182 0.9169 -0.0835
72945 -0.0215 -0.4924 223.53 223.66 0.9182 0.917 -0.0887
72946 0.0279 -0.479 93.71 93.73 0.9147 0.9134 -0.0879
72947 0.0003 -0.4604 182.6 182.65 0.9095 0.9081 -0.0917
72948 -0.02 -0.5052 302.13 302.35 0.914 0.9125 -0.0859
72950 -0.022 -0.4814 157.74 157.82 0.9139 0.9123 -0.0875
72959 -0.0235 -0.6872 128.07 128.26 0.917 0.9155 -0.0668
72984 -0.0227 -0.3768 175.71 175.8 0.9048 0.9033 -0.1116
72985 -0.0267 -0.3633 192.33 192.49 0.8864 0.8847 -0.1165
72986 -0.0543 0.4553 277.25 277.4 0.9003 0.9021 0.1219
72987 -0.1614 0.4718 21.19 21.19 0.9023 0.9041 0.1165
72989 0.0031 0.4431 170.05 170.4 0.9061 0.9073 0.1326
72990 -0.0679 0.4365 109.79 109.89 0.9087 0.91 0.1263
72991 -0.0221 0.434 167.27 167.32 0.9085 0.9099 0.1225
72992 -0.0047 0.4115 281.16 281.16 0.9046 0.9059 0.1255
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Table A.1

(continued)

Run# Araw PbPt q+ q− L+ L− Aphy

72999 -0.0395 0.4538 160.33 160.24 0.9416 0.943 0.1088
73001 -0.0486 0.3865 160.64 160.57 0.9331 0.9343 0.1278
73002 -0.0418 -0.4951 208.35 208.46 0.942 0.9405 -0.0865
73003 -0.0274 -0.4604 192.69 192.89 0.9417 0.9403 -0.0975
73004 0.0182 -0.4253 255.18 255.39 0.9409 0.9396 -0.1055
73005 -0.002 -0.4198 297.37 297.75 0.9339 0.9326 -0.1099
73010 -0.018 0.3977 50.25 50.32 0.9382 0.9397 0.144
73012 -0.0284 -0.4181 385.37 384.97 0.9392 0.938 -0.0918
73013 -0.0253 -0.5783 253.85 253.82 0.9465 0.9453 -0.0719
73014 -0.0361 -0.4818 163.19 163.19 0.9419 0.9406 -0.0862
73015 -0.0187 -0.4682 195.25 195.18 0.9495 0.9487 -0.09
73017 -0.0292 -0.4159 140.89 140.83 0.9426 0.9414 -0.0976
73018 -0.0499 -0.4053 83.03 83.04 0.9342 0.9331 -0.1046
73019 -0.04 -0.4348 256.51 256.41 0.944 0.9428 -0.0934
73020 0.001 -0.3921 246.79 246.72 0.9443 0.9433 -0.1058
73021 -0.0905 -0.3675 65.17 65.17 0.9333 0.9319 -0.1135
73028 -0.0039 0.4201 173.62 173.61 0.9421 0.9431 0.1197
73029 0.0369 0.3757 41.87 41.88 0.9295 0.9308 0.1394
73031 0.011 -0.5139 162.97 163 0.9431 0.9417 -0.0815
73035 0.0078 -0.4568 198.3 198.33 0.9459 0.9448 -0.0935
73036 -0.0344 -0.4383 149.01 149.07 0.9415 0.9403 -0.0993
73037 -0.031 -0.4259 155.31 155.37 0.9416 0.9406 -0.1036
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