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Abstract 

For the analysis of the coherent synchrotron radiation 

(CSR) induced microbunching gain in the low energy 

regime, such as when a high-brightness electron beam is 

transported through a low-energy merger in an energy-

recovery linac (ERL) design, it is necessary to extend the 

existing CSR impedance expression in the ultrarelativistic 

limit to the non-ultrarelativistic regime. This paper 

presents our analysis of CSR impedance for general beam 

energies.  

INTRODUCTION 

    Modern accelerator designs often demand the 

generation and transport of high brightness electron 

beams. For these designs it is important to have accurate 

estimation of the coherent synchrotron radiation (CSR) 

effects on the degradation of the beam phase space 

quality. The analytical expressions of CSR wakefield are 

often utilized in time-domain particle tracking. For 

example, in ELEGANT, CSR effects are modelled for 

ultrarelativistic beams using CSR wakefield obtained for 

the steady-state interaction [1] or for the transient-state 

interaction [2]. On the other hand, the analytical 

expression of CSR impedance is necessary for the 

frequency-domain analysis, such as for the Vlasov 

anslysis of the microbunching gain [3,4]. For 

ultrarelativistic bunch in free space, the CSR impedance 

is given by [3,4]  

                

1/3 2/3( )Z k iA k R 

                              

(1) 

For 

     2 [ '(0) / 3 '(0)] 0.94 1.63A Bi iAi i               (2) 

where Ai and Bi are Airy functions. 

    The designs of low-energy mergers in ERLs requires 

the knowledge of CSR interaction at low energy and also 

LSC interaction on a curved orbit. For time-domain 

particle tracking with codes such as GPT [5] or TStep [6], 

the study of CSR wakefields are extended from 

ultrarelativistic regime [1,2] to the low energy regime 

[7,8]. Similarly, to apply the Vlasov analysis of 

microbunching gain [3,4] in the frequency domain for the 

low energy regime, we need to extend the CSR 

impedance in Eq. (1) to the low energy regime. In the 

following we present our analysis of the steady-state CSR 

impedance for general beam energies. The impedance 

expression reduces to Eq. (1) under ultrarelativistic 

approximation. In addition, it is shown that the real part 

of the CSR impedance is consistent with the synchrotron-

radiation power loss spectrum given by Schwinger [9]. 

Note that an existing expression of CSR impedance in 

free space for general beam energies was presented earlier 

[10], which takes different form from our expression.  

Relation between the two will be established in our 

coming-up studies. 

ANALYSIS OF CSR IMPEDANCE FOR 

GENERAL BEAM ENERGIES 

    Consider a rigid line bunch, with the longitudinal 

density distribution  z , moving at velocity 𝑣 on a 

circular orbit with radius 𝑅. We will start with the 

longitudinal wakefield on the bunch as a result of steady-

state CSR interaction in free space, and obtain the 

impedance from the Fourier transform of the CSR 

wakefield. 

    First, the electric field on a particle at , due to the 

CSR interaction from all other particles in the bunch, is 

expressed in terms of the retarded potentials 

 

Here the retarded time is 

 

( ) ( ) /t t r s r s c   

 and the longitudinal charge density distribution is 

( , ) ( )    for   .s t e z z s ct    

 
The energy loss rate for the particle per unit path length is  
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For the rigid line bunch on the circular orbit, we have 
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  The longitudinal wakefield on the particle is subsequently 
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in which 
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for  ( ) ( ) ( ) .z z s s r s r s      

 
Using Fourier expansion, 

( ) ( ) ,    ( )  ( ) ( ) ,ikz ikzz dk k e E z e dk Z k k e  
 

 

   
 

 (3) 

we obtain the CSR impedance  

(s,t)

 ___________________________________________  
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where  
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    Next, with the change of the variables 

 

,
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the impedance becomes 
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                   (4) 

Here the first exponential term represents contribution of 

the tail-head (s’<s) interaction, while the second one 

accounts for the head-tail (s<s’) interaction. Remark that 

the impedance in Eq. (4) contains contributions from both 

the CSR wakefield and the longitudinal space charge 

wakefield. The net power loss of the particles corresponds 

to the real part of the CSR impedance, while the 

longitudinal space charge interaction is reactive and only 

shows up in the imaginary part of the impedance.   

   For s < R, we get from Eq. (4) the expression for the 

real part of CSR impedance 
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This is compared with the incoherent synchrotron 

radiation power given by Eq. (II.5) of Ref. [9] for 

k  , 
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Note that Eqs. (5) and (6) are related by 

 

 21
( ) 2Re ( ) .

2
P e Z k


   

              

     (7) 

with the factor (2)
-1

 in Eq. (7) caused by the difference 

in the definition of Fourier transform between that used in 

Ref. [9] and our formula in Eq. (3). We then have 
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 . 

With the equalities for modified Bessel functions [9] and 

for the Airy functions [11]  
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and  
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the real part of the CSR impedance is reduced to (for

 
2/32 kR   )
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      (8) 

At ultrarelativistic limit   , Eq. (8) is reduced to the 

previous results in Eqs. (1) and (2): 

                 
1/3

2 3
Re[ ( ) ( 2 )Ai 0v c k

Z k
R

                       (9) 

    Similarly, the imaginary part of CSR impedance can be 

obtained from Eq. (4) 
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      (10) 

Note that unlike the real part of impedance, for which the 

integrand in Eq. (5) does not have singularity, here the 

imaginary impedance contains terms with singular 

integrand. It is understood that the singularity reflects 

local space-charge interaction. However, since on a 

curved orbit pairwise particle interaction involves 

retardation, so the longitudinal space charge force will 

behave differently from that on a straight section. Just as 

the analysis of LSC on a straight path, the physical 

meaningful results for LSC force on a curved orbit 

requires us to take into account the 3D bunch distribution, 

which is beyond the scope of this paper. In this paper, our 

focus is on the CSR impedance and thus we only take into 

account the non-singular part of the imaginary 

impedance:  
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Let 2 1/32 ( / )s t R k  ,  
2/32 kR   , and use the 

equality in Ref. [11], one gets 
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      (12) 

At ultrarelativistic limit, 0,   we have 

               
1/3

2 3

2
Im[ ( )] i 0 ,

3

v c

CSR

k
Z k B

R

    

which agrees with the existing results in Eqs. (1) and (2). 

Note that for obtaining the curvature effect on the LSC 

impedance, one can subtract [2] the straight-path LSC 

impedance from that of Eq. (10). 
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NUMERICAL ILLUSTRATION  

    In this section, we first illustrate the dependence of the 

non-ultrarelativistic CSR impedance in Eqs. (8) and (12) 

on beam energy for a given frequency, and compare the 

results with that of the ultrarelativistic case [Eq. (1)]. 

Then, we plot the impedance spectrum at given low 

energy. Finally we calculate the wakefield for a 1D 

Gaussian bunch using the impedance for non-

ultrarelativistic beam, and demonstrate that our results 

agree well with the existing results [8], obtained directly 

from time-domain analysis. 

    In Fig. 1 we show the energy dependence of CSR 

impedances for non-ultrarelativistic beams. It can be 

clearly seen that at low beam energy, e.g. 10 MeV (γ ≈ 

20), both the real and imaginary parts of the CSR 

impedance deviate considerably from those of 

ultrarelativistic case. In the specific case with λ ≈ 200 μm, 

it can be observed that the ultra-relativistic expression is 

valid only when γ > 200 (or, equivalently, 3/ 1kR  ). 

Furthermore, the shorter the modulation wavelength (or, 

the larger the wave number) is, the higher the beam 

energy is required for keeping the validity of Eq. (1) in 

ultra-relativistic regime. 

 
Figure 1: Energy dependence of the CSR impedance 

[Eqs.(8) and (12)]. Here we assume k ≈ 314 cm
-1

 (or, λ ≈ 

200 μm). 

 

    For the example with E = 10 MeV and R = 1.5 m, Fig. 

2 illustrates the real and imaginary parts of the CSR 

impedances. It is shown that the general impedance 

results agree with the ultrarelativistic ones only when 

/ 1ck k  . 

    In Fig. 3 we show the wakefield calculated by Eq. (3) 

for a Gaussian bunch distribution and the CSR impedance 

given by Eqs. (8) and (12).  It can be seen that for a low 

energy beam, for example E = 10 MeV, the CSR wake 

could deviate considerably from that of the 

ultrarelativistic case, with the latter being an 

overestimation of the former one. Here the behaviours of 

wakefields for various beam energies agree well with that 

presented in Fig. 4(d) of Ref. [8]. 

SUMMARY 

In this paper, we have extended the existing analytical 

formula for the free-space steady-state CSR impedance, 

given by Eqs. (1) and (2) for ultrarelativistic regime,  to 

the low beam energy regime as summarized by Eqs. (8) 

and (12). This is particular useful for the microbunching 

studies in a low energy merger in ERL designs, for which 

the CSR impedance at low energy is required in the 

Vlasov solver. Our result is consistent with the radiation 

 

 
Figure 2: Real and imaginary parts of CSR impedance 

[Eqs. (8) and (12)]. Here E = 10 MeV and R = 1.5 m. 

 

 
Figure 3: CSR wakefields with Gaussian bunch 

distribution for several different beam energies. 

 

power spectrum derived by Schwinger [9], and agrees 

with the analytical expression of CSR impedance in the 

ultrarelativistic regime. We also numerically illustrate the 

energy and frequency dependences of the CSR 

impedance, and further reproduce the steady-state 

wakefields at different energies for a Gaussian bunch. 
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