Chapter 1

Optimizing the Wilson Dslash Kernel from Lattice QCD

Bálint Joo1, Mikhail Smelyanskiy2, Dhiraj D. Kalamkar3, Karthikeyan Vaidyanathan3

1U.S. Department of Energy Thomas Jefferson National Accelerator Facility (Jefferson Lab), 2Parallel Computing Lab, Intel Corporation, Santa Clara, 3Parallel Computing Lab, Intel Corporation, Bangalore

Keywords: Lattice QCD, Wilson-Dslash, Parallel Computing, Optimization, Blocking, Code-Generators

Quantum Chromodynamics (QCD) is the theory of the strong nuclear force, one of the fundamental forces of nature making up the Standard Model of particle interactions. QCD is responsible for binding quarks together into protons and neutrons, which in turn make up the nuclei of atoms. Lattice Quantum Chromodynamics, (lattice QCD or LQCD) is a version of QCD suitable for use on computers. It is the only model independent approach for carrying out non-perturbative calculations in QCD, and it is used primarily in calculations for theoretical nuclear and high energy physics. Lattice QCD simulations of quarks and gluons were one of the original Grand Challenge problems in High Performance Computing, and lattice QCD codes are typically implemented early on new high performance computing systems. Lattice QCD calculations use significant proportions of supercomputer time in the U.S. and worldwide. As an example, in 2014 lattice QCD calculations were responsible for consuming 13\% of the compute resources at the U.S. Department of Energy National Energy Research Scientific Computing Center (NERSC).

In this chapter, we will explore a key kernel of Lattice QCD calculations, known as the Wilson Dslash kernel. This kernel is essentially a finite difference operator, similar in spirit to stencils. We will outline our optimizations of this
operator for the Intel Xeon Phi coprocessor following the methods described in [JKV+13]. Our approach is to take the reader on a journey, starting from an existing production implementation of this operator which already features thread level parallelism, and yet still does not achieve very high performance when deployed on the Intel Xeon Phi coprocessor. By comparing performances with a simple performance model we will proceed to show how improving cache reuse and memory bandwidth utilization along with vectorization can improve the performance of this code by more than a factor of 8x over the original implementation running on Intel Xeon Phi coprocessor. What is more, when we feed the optimizations back to regular Intel Xeon processors, we observe a 2.6x performance improvement over the best configuration of the original code on that platform too.

Throughout the chapter we will make reference to the supplied code package, which contains both our initial implementation of Wilson Dslash as well as the optimized one, along with some dependency libraries. While we concentrate primarily on these two Dslash implementations and a code generator, the code package features many directories which we set up to allow the code to be built in different configurations, utilizing different optimizations. Throughout the chapter we will always highlight the directory in the code package where one should work in order to follow our discussion. We note up-front, that our work on the Intel Xeon Phi coprocessor architecture was done exclusively in native-mode rather than using heterogeneous, offload techniques. For build instructions in the code package, we urge the reader to follow the supplied README file.

The Wilson-Dslash Kernel

In this section we will describe the Wilson-Dslash kernel, and consider some of its computational properties. Before going into the nitty gritty let us say a few words about the LQCD setup. The idea is that instead of the usual continuum we represent 4-dimensional space-time as a 4-dimensional (hyper)cubic lattice. Each lattice point has coordinates $x = (n_x, n_y, n_z, n_t)$ where the components are just the coordinates in the usual X,Y,Z and T directions. The quark fields are defined on the lattice sites and are known as spinors, denoted as $\psi(x)$. For current purposes $\psi(x)$ can be thought of as a set of complex numbers with two additional indices which are called “color” and “spin”. So a quark field at site x is denoted $\psi^a_\alpha(x)$ with $a = \{0, 1, 2\}$ being the color indices, and $\alpha = \{0, 1, 2, 3\}$ being the spin indices. In general Latin indices will indicate color, and Greek-letter indices will indicate spin. In addition to the quark fields, one also has fields for the gluons known as gauge fields. These are ascribed to directed links between lattice points and for this reason they are often referred to as gluon links or link matrices. Typically they are denoted as $U^{ab}_\mu(x)$ where a and b are color indices again but μ is a direction index. For $\mu = \{0, 1, 2, 3\}$ we understand that $U^{ab}_\mu(x)$ is the gluon field on the link emanating from site x, in the forward direction in X,Y,Z and T directions respectively. As one can guess from the Latin indices, on each link U is a 3×3 complex matrix in
color, with no spin index. Further U is more than just a 3×3 matrix, it is also a member of the group $SU(3)$, which means that it is unitary, so that the Hermitian Conjugate of any given link matrix (the transpose of the matrix with each element complex conjugated) is its inverse: $(U^a,b)^\dagger = (U^{b,a})^* = U^{-1}$ and each matrix has determinant $\det(U^a,b) = 1$.

With these definitions in mind, we can write down the Wilson-Dslash operator D, acting on a quark spinor ψ as:

$$D^{a,b}_{\alpha,\beta}(x,y)\psi^b_{\beta}(y) = \sum_{\mu=0}^{3} U^a_{\alpha,\beta}(x)U^{-\mu}_{\alpha,\beta}(x+\hat{\mu}) + U^{a,b}_{\alpha,\beta}(x-\hat{\mu})U^{\mu}_{\alpha,\beta}(x-\hat{\mu})$$ \hspace{1cm} (1.1)$$

where in the equation above, repeated indices are summed over, and the $P^{\pm\mu}$ are projection matrices acting on spin indices. We can also see that the operation is like a stencil: for each output point x we use the spinors from the neighboring points in the forward and backward μ directions: $\psi(x+\hat{\mu})$ and $\psi(x-\hat{\mu})$; and the sum involves all 4 directions. Each spinor from a neighboring site is multiplied by the link connecting the central site to it. So $\psi(x+\hat{\mu})$ is multiplied by $U^a_{\alpha,\beta}(x)$ and $\psi(x-\hat{\mu})$ is multiplied by $U^{a,b}_{\alpha,\beta}(x-\hat{\mu})$, which – because of the Hermitian conjugation – should be interpreted as the ‘inverse’ of the link pointing from $x-\hat{\mu}$ to x, i.e. the link pointing from x to $x-\hat{\mu}$.

The multiplication by the U links is done only for the color indices, and must be repeated for each of the four spin indices. It may help to think of the spinor as a 4-component vector, where each component is itself a 3-component complex vector (also known as a color-vector, or color 3-vector). Likewise the multiplication by $P^{\pm\mu}$ is done only for spin-indices, and must be repeated for each of the three color indices of ψ. In this case, and when working with spin-indices, it may be helpful to consider the spinor as an object with 3-elements, each of which is a 4-component vector (spin-vector).

One final trick to consider is due to the nature of the projectors: $P^{\pm\mu} = (1 \pm \gamma_{\mu})$. The γ_{μ} are 4×4 complex matrices acting only on spins, and they are sparse. We choose them to be in a particular representation which we show below:

$$
\gamma_0 = \begin{pmatrix}
0 & 0 & 0 & i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0
\end{pmatrix} \hspace{1cm} \gamma_1 = \begin{pmatrix}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}
$$

$$
\gamma_2 = \begin{pmatrix}
0 & 0 & i & 0 \\
0 & 0 & 0 & -i \\
-i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{pmatrix} \hspace{1cm} \gamma_3 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
$$

The projectors possess a particular property which we illustrate below for the case for P^{-0}. Let us consider the spinor ψ^a_0 on a single site, for just one color component, say $a = 0$ for simplicity (and of course this is repeated for all color
reconstruct the lower spin components r and h components. We can write

$$\psi$$

Table 1.1: How to compute h where we defined h
two components from them by the reconstruction step. We can recover the lower
two components to be accumulated in the result. We can recover the lower
component, depending on whether they are the forward or backward neighbors we multiply
h_0 and h_1 either by U or U^\dagger as appropriate to form uh_0 and uh_1. We accumulate
uh_0 and uh_1 into the top two spin components of the result, and the appropriate reconstructions into the lower components of the result.

<table>
<thead>
<tr>
<th>(\pm, μ)</th>
<th>h_0</th>
<th>h_1</th>
<th>r_2</th>
<th>r_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-, 0)$</td>
<td>$\psi_0 - i\psi_3$</td>
<td>$\psi_1 - i\psi_2$</td>
<td>ih_1</td>
<td>ih_0</td>
</tr>
<tr>
<td>$(-, 1)$</td>
<td>$\psi_0 + \psi_3$</td>
<td>$\psi_1 - \psi_2$</td>
<td>$-h_1$</td>
<td>h_0</td>
</tr>
<tr>
<td>$(-, 2)$</td>
<td>$\psi_0 - i\psi_2$</td>
<td>$\psi_1 + i\psi_3$</td>
<td>ih_0</td>
<td>$-ih_1$</td>
</tr>
<tr>
<td>$(-, 3)$</td>
<td>$\psi_0 - \psi_2$</td>
<td>$\psi_1 - \psi_3$</td>
<td>$-h_0$</td>
<td>$-h_1$</td>
</tr>
<tr>
<td>$(+, 0)$</td>
<td>$\psi_0 + \psi_3$</td>
<td>$\psi_1 + i\psi_2$</td>
<td>$-ih_1$</td>
<td>$-ih_0$</td>
</tr>
<tr>
<td>$(+, 1)$</td>
<td>$\psi_0 - \psi_3$</td>
<td>$\psi_1 + \psi_2$</td>
<td>h_1</td>
<td>$-h_0$</td>
</tr>
<tr>
<td>$(+, 2)$</td>
<td>$\psi_0 + i\psi_2$</td>
<td>$\psi_1 - i\psi_3$</td>
<td>$-ih_0$</td>
<td>ih_1</td>
</tr>
<tr>
<td>$(+, 3)$</td>
<td>$\psi_0 + \psi_2$</td>
<td>$\psi_1 + \psi_3$</td>
<td>h_0</td>
<td>h_1</td>
</tr>
</tbody>
</table>

We can write $\psi_\alpha = (\psi_0, \psi_1, \psi_2, \psi_3)^T$. Then

$$P^{-0}\psi = \begin{pmatrix} 1 & 0 & 0 & -i \\ 0 & 1 & -i & 0 \\ 0 & i & 1 & 0 \\ i & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} = \begin{pmatrix} \psi_0 - i\psi_3 \\ \psi_1 - i\psi_2 \\ i\psi_1 + \psi_2 \\ i\psi_0 + \psi_3 \end{pmatrix} = \begin{pmatrix} h_0 \\ h_1 \\ -ih_1 \\ -ih_0 \end{pmatrix} \tag{1.2}$$

where we defined $h_0 = \psi_0 - i\psi_3$ and $h_1 = \psi_1 - i\psi_2$. In other words, the lower
two spin components of the result (to which we will refer as r_2 and r_3) are the
same as the upper two, but multiplied by $-i$. This property is general, and
applies to all of the projectors, although the details do vary with the projector
in question. The action of finding the right h_0 and h_1 is known as projection
and the placement into the lower components and the multiplies by i etc is
called reconstruction. We show the details of how to perform these operations
for all the projectors, with our particular choice of γ matrices in table 1.1. The
practical use of this property is that when we multiply the projected spinors by
the U link matrices, we do not need to repeat the matrix multiplication for each
of the four spin indices of ψ. Instead, we need to multiply only the two color
vectors h_0 and h_1 resulting from the projection of ψ with $P^{\pm \mu}$. These form the
top two components to be accumulated in the result. We can recover the lower
two components from them by the reconstruction step.

This leads us to the pseudocode for computing the application of the Wilson
Dslash operator to a lattice spinor shown in in Fig. 1.1. We assume that each
array element holds complex numbers. We have a loop over the 4 dimensions
and within each, we loop over the forward and backward directions. In each
direction we compute the projections h_0, h_1 for the neighboring site. Then
depending on whether they are the forward or backward neighbors we multiply
h_0 and h_1 either by U or U^\dagger as appropriate to form uh_0 and uh_1. We accumulate
uh_0 and uh_1 into the top two spin components of the result, and the appropriate reconstructions into the lower components of the result.

4
// Pseudocode for Wilson Dslash Operator
// array elements are assumed to be complex
// Input arrays: psi[x][color][spin]
// U[x][nu][color][color]
// Output array: result[x][color][spin]
// Temporary arrays: h[color][2], and uh[color][2]
// for all sites x {

// Zero result for this site
for(int spin=0; spin < 4; spin++) {
 for(int color=0; color < 3; color++) {
 result[x][color][spin] = 0;
 }
}

for(dim=0; dir < 4; dim++) {
 for(forw_back=0; forw_back < 2; forw_back++) {
 int neighbor;
 if (forw_back == 0) {
 neighbor = forward_neighbor_index(x,dim);
 } else {
 neighbor = back_neighbor_index(x,dim);
 }

 for(int color=0; color<3; color++) {
 h[color][0] = project_h0(dim, forw_back, psi[neighbor][color]);
 h[color][1] = project_h1(dim, forw_back, psi[neighbor][color]);
 }

 if(forw_back == 0) {
 // Forward links: Multiply h by U
 uh[:][:0] = mat_mult(U[dim][x], h[:][0]);
 uh[:][1] = mat_mult(U[dim][x], h[:][1]);
 } else {
 // Back links: Multiply h by U\dagger
 uh[:][0] = mat_adj_mult(U[dim][neighbor], h[:][0]);
 uh[:][1] = mat_adj_mult(U[dim][neighbor], h[:][1]);
 }

 // Reconstruct bottom 2 indices and accumulate
 for(int color=0; color < 3; color++) {
 result[x][color][0] += uh[color][0];
 result[x][color][1] += uh[color][1];
 result[x][color][2] = reconstruct_r2(dim, forw_back, uh[color]);
 result[x][color][3] = reconstruct_r3(dim, forw_back, uh[color]);
 }
 }
}
// loop over dim
// loop over sites

Figure 1.1: Pseudocode for implementing the Wilson-Dslash Operator
Performance Expectations

Let us now consider some basic performance expectations for this operation. First, we will work out the naive arithmetic intensity, in terms of the number of floating point operations (FLOP-s) needed versus the minimum useful amount of data movement. In this discussion, sign flips and multiplies by i which are basically just interchanging real and imaginary complex components and potentially flipping signs, will not be considered as floating point operations. We will also refer generically as additions to both additions and subtractions.

Each projection operation reads in all 4×3 (spin × color) components of a spinor, which corresponds to 12 complex numbers or 24 floating point numbers. Each projection operation of the spinor is 2 complex additions per color component, ie. 6 complex additions or 12 floating point additions.

We can consider the matrix-vector products as 3 complex scalar (dot) product operations. Each dot product is between a row of the matrix, and the vector with which it is multiplied. This has a floating point cost of 3 complex multiplies, and 2 complex additions. A complex multiply is made of 6 floating point operations. Hence the dot product is $3 \times 6 + 4 = 22$ FLOP-s where the 4 comes from the 2 complex additions. The whole matrix vector operation is then $3 \times 22 = 66$ FLOP-s. For each neighbor, one needs to repeat this twice (for h_0 and h_1) which gives: 132 FLOP-s. In terms of memory traffic, one also needs to load the U matrix, which is $3 \times 3 = 9$ complex numbers or 18 real numbers.

While no FLOP-s are needed for the reconstruction, one does need to sum all the results. To sum the 8 neighbors one needs 7 spinor additions. Each of these is $4 \times 3 = 12$ complex additions, or 24 real additions. Finally one needs to write out the result to memory, which involves saving 12 complex numbers or 24 floating point numbers.
In summary, the minimum memory traffic per output lattice site is

\[d = 8 \times 24 + 8 \times 18 + 24 = 360 \text{ floating point numbers} \quad (1.3) \]

where the first term is for the 8 neighbor spinors (read), the second term is for the 8 link-matrices (read), and the last term is for the writing of the result. In single precision this comes to \(d_s = 4d = 1440 \text{ bytes} \), in double it is \(d_d = 8d = 2880 \text{ bytes} \), where the factors for 4 and 8 are the sizes of float and double in bytes, respectively.

The arithmetic involved for the same site is:

\[F = 8 \times 12 + 8 \times 132 + 7 \times 24 = 1320 \text{ FLOP-s} \quad (1.4) \]

where the three terms can be identified with the cost of 8 projections, 8 sets of matrix multiplies and the accumulation of the results as discussed before. This gives us a naive arithmetic intensity of \(I_s = F/d_s = 0.92 \text{ FLOP/Byte in single precision} \) or \(I_d = F/d_d = 0.46 \text{ FLOP/Byte in double precision} \). In practice, the Intel Xeon Phi coprocessor, can sustain about 150 GB/sec of memory bandwidth [JJ13] and the 60 cores can provide approximately 2022 single precision GFLOPS. The practical single precision FLOP/Byte balance point of the Intel Xeon Phi coprocessor model 5110P is thus approximately 13.5 F/B, while in double precision it is around 6.74 FLOP/Byte. \footnote{The peak GDDR bandwidth is quoted as 320 GB/sec, however we have never been able to reach more than around 170 GB/sec in practice, hence quoting the peak value seems excessive. We will stick with a nominal 150 GB/sec in the remainder of the chapter.} Hence this naive performance model predicts that for problems which do not fit into caches, Wilson Dslash will always be memory bound on the Xeon-Phi architecture.

Refinements to the model

Up until now, we have not considered hardware in the above discussions, however by taking into account some hardware features, we can arrive at a more sophisticated model. While the number of useful FLOPS remains unchanged, we can refine the memory traffic part of the calculation. In particular Intel Xeon Phi coprocessors feature 32 Kb of L1 cache and 512Kb of L2 data-cache per core. The L2 caches appear as a unified coherent cache to the programmer through a tag directory mechanism, while Intel Xeon processors have large unified L3 caches. One can then consider a more refined model which we present below:

\[F = \frac{1320}{\frac{BG}{B_r} + \frac{(8-R)S + rS}{B_r} + \frac{S}{B_w}} \quad (1.5) \]

where now \(F \) is the performance in GFLOPS, \(G \) is the size of the gauge matrices in bytes, \(S \) is the size of the spinors in bytes, \(B_r \) and \(B_w \) are the read-bandwidth and write bandwidths in GB/sec between the memory and the lowest level of cache respectively, and \(R \) is the number of neighbors per site which are cached and can be re-used without main memory traffic. The factor \(r \) is in place to
allow us to consider read-for-write when writing. If one can use streaming stores which bypass the cache on write, then we can set \(r = 0 \). If we need to read a piece of memory to cache before writing it we can set \(r = 1 \). This model assumes that the cache is infinitely faster than accessing main memory. While no explicit assumption is made about the size of the cache, one can in principle attempt to capture cache-size effects by tuning the reuse factor \(R \).

We note that we assume no reuse for the gauge fields, since the Dslash typically operates on a checkerboarded lattice as shown in figure 1.2. When processing a point of a given color (e.g. black), one needs the links pointing to it from its backward neighbor sites of the opposite color (red in this example), and the links pointing forward from the site in question. When processing the next point of the original color, we must remember that this is not an immediate neighbor of the first one, since checkerboarding does not allow two sites of the same color to be neighbors, and hence there must be at least one site of the other color between the two under consideration, which is the backward neighbor of the second site. The second site will use the links of this intermediate site instead of those of the first site.

Additional Tricks - Compression

Our naive performance indicates that the problem is memory bandwidth bound, with an arithmetic intensity of around 0.92 FLOP/Byte in single precision. One way to increase the arithmetic intensity is to consider gauge field compression to reduce memory traffic (reduce the size of \(G \)), and using the essentially free FLOP-s provided by the node to perform decompression before use. This idea was explored in depth for GPU architectures in the QUDA library [CBB+10], and we sketch only the bare bones of it here.

Due to the SU(3) nature of the gauge fields they have only 8 real degrees of freedom: the coefficients of the 8 SU(3) generators. In principle this means that instead of 9 complex numbers we can store the gauge fields as 8 real numbers. However, re-constructing all 9 complex numbers this way involves the use of some trigonometric functions.

A simpler approach is to consider two-row storage of the SU(3) matrices. This idea has long been used to save space when writing gauge fields out to files, but was adapted as an on-the-fly bandwidth saving (de)compression technique in [CBB+10]. The basic idea is to consider the rows of the matrix as row vectors:

\[
\begin{pmatrix}
a_0 & a_1 & a_2 \\
b_0 & b_1 & b_2 \\
c_0 & c_1 & c_2
\end{pmatrix}
\]

Then, if one has the first two rows: \(\mathbf{a} \) and \(\mathbf{b} \), both having been normalized to be of unit length, one can compute \(\mathbf{c} = (\mathbf{a} \times \mathbf{b})^* \), i.e. by taking the vector (cross) product of \(\mathbf{a} \) and \(\mathbf{b} \) and complex conjugating the elements of the result. This trick is quite simple, and reduces the size of the gauge links to 6 complex numbers, or 12 real numbers.

8
Table 1.2: The expected effects of neighbor spinor reuse, compression and streaming stores on the arithmetic intensity of Wilson Dslash in single precision, with the simplifying assumption that $B_w = B_r$.

<table>
<thead>
<tr>
<th>R</th>
<th>Compress</th>
<th>Streaming Store</th>
<th>A/I (FLOP/Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no</td>
<td>no</td>
<td>0.86</td>
</tr>
<tr>
<td>0</td>
<td>no</td>
<td>yes</td>
<td>0.92</td>
</tr>
<tr>
<td>7</td>
<td>no</td>
<td>no</td>
<td>1.53</td>
</tr>
<tr>
<td>7</td>
<td>no</td>
<td>yes</td>
<td>1.72</td>
</tr>
<tr>
<td>7</td>
<td>yes</td>
<td>no</td>
<td>1.96</td>
</tr>
<tr>
<td>7</td>
<td>yes</td>
<td>yes</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Considering now the formula in 1.5 we can compute the expected effects of neighbor spinor reuse, 2-row compression and streaming stores. We make the simplifying assumption that $B_w = B_r$, and then can divide out the bandwidth, to get the arithmetic intensity. We show some results in Table 1.2. First we note that even the naive arithmetic intensity of 0.92 FLOP/Byte we computed initially relies on not having read-for-write traffic when writing the output spinors, i.e. it needs streaming stores, without which the intensity drops to 0.86 F/B. Second, we see that by being able to reuse 7 of our 8 neighbor spinors we can significantly improve in performance over the initial bound, to get an intensity between 1.53 FLOP/Byte and 1.72 FLOP/Byte, depending on whether or not we use streaming stores. Finally we see that we can benefit even further from gauge compression, to reach our highest predicted intensity of 2.29 FLOP/Byte when cache reuse, streaming stores and compression are all present. We note when considering compression, we ignored the extra FLOP-s needed to perform the decompression, and counted only the useful FLOP-s.

First Implementation and performance

Before looking at the optimized implementation, let us take a look at a real-world implementation of Dslash which has been in production use for some years in the Chroma [Edw05] code. The package is called cpp_wilson_dslash and can be obtained from GitHub at [Proa]. It is an offshoot of the work from [McC01]. It is also in the included code bundle in the Code/Original/cpp_wilson_dslash directory. The package contains versions of the code for both single, and multi-node versions of the dslash operator, and we will focus our attention here on the single node, multi-threaded version.

The code uses an “Array of structures” (AoS) approach for the fields, keeping the internal indices of the spinors and gauge fields as local arrays as defined in include/cpp_dslash_types.h. We show the single precision versions of these types in Fig. 1.3.

The structure of the GaugeMatrix (3×3 complex matrix) and of the FourSpinor (4×3 complex matrix) should be recognizable. The HalfSpinor type is the result of the projection, and because the code was targeted originally for SSE, we
namespace Dslash32BitTypes {
 typedef float FourSpinor[4][3][2];
 typedef float HalfSpinor[3][2][2];
 typedef float GaugeMatrix[3][3][2];
}

Figure 1.3: Single Precision Data Types for the Naive-Dslash operator

have swapped the color and spin indices compared to the FourSpinor so that coupled with the 2 complex components they make up a group of 4 floats for SSE.

The code already features threading. Looking at figure 1.4 from the file lib/cpp_dslash_scalar_32bit.cc we see that the first major step of the user called operator() method is a dispatch of a function to the available threads.

// The operator is coded as a function-object
// res and psi are really FourSpinor* objects cast to float*
// u is a pointer to the gauge fields of which there are 4 per site
void Dslash<float>::operator() (float* res,
 float* psi,
 float*u, /* Gauge field suitably packed */
 int isign, /* apply D or D\dagger */
 int cb) /* target checkerboard */{

 if (isign == 1) {

 // Dispatch our DPsiPlus kernel to the threads
 CPlusPlusWilsonDslash::dispatchToThreads((void (*)(size_t, size_t, int, const void *))&DPsiPlus,
 (void*)psi,
 (void*)res,
 (void*)u,
 (void*)s,
 1-cb,
 s->totalVolCB());
 }

 // below would follow the D\dagger case, very similar to the D
 // case, so we omit it for space

Figure 1.4: Dispatching the site loop for Dslash over available threads

The OpenMP version of the dispatchToThreads function is found in the file lib/dispatch_scalar_openmp.cc, and is also shown in Fig. 1.5. An important point to note here is that the dispatcher tries to split the total work (n_sites) into chunks. Each chunk is specified by a beginning (low) site and a last (high) site. As we will see when looking at the function DPsiPlus each thread then traverses its own chunk in lexicographic order. We illustrate this schematically in Fig. 1.6, with boxes around groups of sites representing the chunk belonging to a single thread, and arrows between the sites representing the order of traversal.

The main compute kernels are the routines DPsiPlus for Wilson Dslash and DPsiMinus for its Hermitian conjugate. We show a snippet of DPsiPlus in
void dispatchToThreads(void (*func)(size_t, size_t, int, const void *),
void* source,
void* result,
void *u,
void *s,
int cb,
int n_sites)
{
 ThreadWorkerArgs a;
 int threads_num,myId,low,high;
 a.psi = source; a.res = result; a.u = u; a.cb = cb; a.s = s;
 #pragma omp parallel shared(func, n_sites, a) \
 private(threads_num, myId, low, high) default(none)
 {
 threads_num = omp_get_num_threads();
 myId = omp_get_thread_num();
 low = n_sites * myId/threads_num;
 high = n_sites * (myId+1)/threads_num;
 (*func)(low, high, myId, &a);
 }
}

Figure 1.5: The OpenMP Thread Dispatch in the Naive code

Figure 1.6: A schematic illustration of splitting lattice between 3 threads in the Naive code. Within the chunks belonging to the individual threads the traversal is lexicographic
Fig. 1.7. We deleted some of the details, to fit it into the figure, but as usual the full source is available in the code package in the `cpp_dslash_scalar_32bit.cc` file in the `lib/` subdirectory. The structure should be straightforward though. After unwrapping the arguments from the input `ptr` pointer, we enter a site loop from the `low` to the `high` index. We work out our ‘site’ (`thissite`) from the current index in the lattice, and find first our forward and backward neighbors from the `ShiftTable` object `s` using the `forwardNeighbor` and `backwardNeighbor` methods, in direction 0. We set the the input spinor pointer `sp1` to the forward neighbor, the gauge pointer `up1` to the gauge field, and we invoke `dslash_plus_dir0_forward` which performs the projection, multiplies, and reconstructs and accumulates into half spinors `r12_1` and `r34_1`. We then go through all the directions until we get to the last one, where we call `dslash_plus_dir3_backward_add_store` and store the result at pointer `*sn1`. The various utility functions, such as `dslash_plus_dir3_backward_add_store` can be found in the `include` directory in the `cpp_dslash_scalar_32bit_c.h` source file as functions to be inlined. There is also a version which has the functionality coded with SSE intrinsics in `cpp_dslash_scalar_32bit_sse.h`.

```c
void DPsiPlus(size_t lo, size_t hi, int id, const void *ptr)
{
    const ThreadWorkerArgs *a
        = (const ThreadWorkerArgs*)ptr; /* Cast the (void *) to an (ThreadWorkerArgs*) */
    // Unwrapping of params deleted for space
    // please see source code . . .
    ...

    for (int ix1 = lo; ix1 < high; ix1++) {
        int thissite = s->siteTable(ix1);
        int fsite = s->forwardNeighbor(ix1,0);
        int bsite = s->backwardNeighbor(ix1,0);

        /****************************************************************************
        // ........................ direction +0 .................................
        /\  ...(1-isign=\gamma_{00}(0)) psi(x + \hat{0}) */
        sp1 = &psi[fsite];
        up1 = &gauge_field[ix1][0];
        dslash_plus_dir0_forward(*sp1, *up1, r12_1, r34_1);
        sm1 = &psi[bsite];
        um1 = &gauge_field[bsite][0];
        dslash_plus_dir0_backward_add(*sm1, *um1, r12_1, r34_1);

        ... // Deleted branches in other directions for space

        // Last direction...
        sm1 = &psi[bsite];
        um1 = &gauge_field[bsite][3];
        sn1 = &res[ix1]; /*we always walk across the result lexicographically */
        dslash_plus_dir3_backward_add_store(*sm1, *um1, r12_1, r34_1, *sn1);
    } // for loop
} // function
```

Figure 1.7: The site loop in the `DPsiPlus` function, as executed by each thread
Finally there are testing and timing routines in the tests/ subdirectory. A test routine in the testDslashFull.cc function will test the dslash operator against a slower variant coded in the QDP++ framework. This test is run from the code t_dslash.cc, whereas a straightforward timing harness, which executes dslash in a loop and times the execution is in the timeDslash.cc file, which is called by the time_dslash.cc main-program. For both of these tests, one can choose the lattice volume and the number of timing iterations in the file testvol.h. For a many-core device like Intel Xeon Phi coprocessor, a reasonable lattice size if $32 \times 32 \times 32 \times 64$ sites, which we will use throughout. In terms of timing benchmarks, we typically set the iterations so that the test will run for a couple of seconds which can typically be achieved with about 400-500 iterations. However, for purposes of performance measurement in VTune, we often use a smaller number of iterations, for example 10 or 50.

Running the Naive Code on Intel Xeon Phi coprocessor

We ran the correctness and timing tests with the above lattice size on 59 cores (to stay off the last core with O/S functions) of a Xeon Phi 5110P processor on which we have enabled the icache_snoop_off option in the kernel to gain additional memory bandwidth. We went “all in”, asking for 4 threads per core, or 236 threads. To ensure that only the first 59 cores were used we set compact affinity using the KMP_AFFINITY environment variable. After verifying correctness we achieved the output from the timing test shown in Fig 1.8 showing a performance of 34.8 GFLOPS in single precision, and around 25.2 GFLOPS in double precision.

This figure seems somewhat low. How does it compare to running on a Intel Xeon processor? As a comparison, we ran on a dual socket Sandy Bridge system (E5-2560, 2.0GHz), with 2×8 cores, and hyperthreading enabled, giving us 32 threads. Further, since we know that the memory allocation in this code is not NUMA aware we used the numactl utility to interleave memory allocation between the sockets using the numactl --interleave=0,1 command to launch the code. Without enabling the SSE optimization code-branches the result we obtained on the Xeon was 34.7GFlops in single precision and 19.3 GFlops in double. So a single Xeon Phi system performed roughly as fast (slightly faster) than a dual socket Xeon system using the same code.

While this is not an unreasonable first performance ratio between Intel Xeon processor and Intel Xeon Phi coprocessor, the result is nonetheless somewhat disappointing in terms of absolute performance. Our models tell us that the code should be memory bandwidth bound, so one immediate question is how much memory bandwidth are we utilizing? To answer this we profiled the code using VTune, using its bandwidth collection experiments which reported the code sustaining a memory bandwidth of 42.3 GB/sec in the single precision Wilson-Dslash on the Intel Xeon Phi coprocessor.
QDP uses OpenMP threading. We have 236 threads
Lattice initialized:
 problem size = 32 32 32 64
 layout size = 32 32 32 64
 logical machine size = 1 1 1 1
 subgrid size = 32 32 32 64
 total number of nodes = 1
 total volume = 2097152
 subgrid volume = 2097152
Finished init of RNG
Finished lattice layout
Running Test: timeDslash
Timing with 50 counts
 50 iterations in 1.988364 seconds
 39767.28 u sec/iteration
 Performance is: 34805.5064364473 Mflops (sp) in Total
 Performance is: 34805.5064364473 per MPI Process
Timing with 50 counts
 50 iterations in 2.748181 seconds
 54963.62 u sec/iteration
 Performance is: 25182.4810665673 Mflops (dp) in Total
 Performance is: 25182.4810665673 per MPI Process
OK
Summary: 1 Tests Tried
 1 Tests Succeeded
 0 Tests Failed on some nodes
 of which 0 Tests Failed in Unexpected Ways on some nodes

Figure 1.8: Timings of the Naive Dslash on an Intel Xeon Phi coprocessor 5110P using 59 cores, or 236 threads. We see a single precision performance of 34.8GFlops in single precision and 25.2 GFlops in double precision
Evaluation of the Naive Code

At this point we should pause and reflect. VTune reported that our single precision memory bandwidth on Intel Xeon Phi coprocessor was 42.3 GB/sec. Taking the most naive arithmetic intensity of 0.86 F/B (no caching, no compression, no streaming stores) the model predicts a performance of 36.4 GFLOPS as our maximum. We are sustaining 34.8 GFLOPS of this, which is around 96% of the model prediction. However, the 42.3 GB/sec is quite a low bandwidth for the Intel Xeon Phi coprocessor.

Second, right now we are not really using the vector units on the Intel Xeon Phi coprocessor, at least not deliberately. If the compiler were to generate code to carry out our scalar arithmetic using just one lane of the vector units, then the peak performance we can expect is 2 flops per cycle (a multiply and add), which at 1.053 GHz from 60 cores is 126.36 GFLOPS. If we could exhaust our bandwidth of 150 GB/sec our most naive arithmetic intensity of 0.86 F/B predicts a performance of 129 GFLOPS. This is a little higher than but still in the same ballpark as the peak performance of unvectorized arithmetic. However, our most optimistic intensity of 2.29 F/B (cache reuse, compression, streaming stores) would predict 343.5 GFLOPS, which is substantially more than can be achieved with unvectorized arithmetic. Therefore, we need to ensure we make more effective use of the vector units than is done in the current version of the code.

Finally, our measured performance (34.8 GFLOPS) is commensurate with not getting any cache reuse at all ($R = 0$), stopping us from attaining our more optimistic model estimates. Therefore, it is necessary to improve our cache reuse.

Optimized Code: QPhiX and QPhiX-Codegen

In this section, we will illustrate how to solve the problems of the original code regarding cache reuse, vectorization and better memory handling (prefetching). We will use the QPhiX code which is available on GitHub from [Proc], and is also included in the code-package for this Chapter. QPhiX is essentially an evolution of cpp_wilson_dslash and has two main parts: First it deals with looping on the lattice to implement the technique of 3.5D blocking [JKV+13, NSC+10] and it also implements a heuristic based load balancing scheme to schedule the blocks to the cores. Secondly it contains kernels to evaluate Dslash, on a tile of sites in parallel, in order to efficiently utilize the vector units of the Intel Xeon Phi coprocessor. These kernels are generated by a code-generator in a package called qphix-codegen and can then be copied into the qphix source package. The current qphix package on GitHub contains the best known performing kernels already pre-generated. In the code package we provide several variants of qphix with different selections of kernels to illustrate our points regarding optimization. Before launching into the optimizations, let us consider the important features of QPhiX and the code-generator.
Data Layout for Vectorization

In our first attempt to optimize Dslash, we wanted to vectorize wholly over the X dimension, however this proved rather restrictive. Since we split our lattice into even and odd subsets by dividing the global X-dimension, for a lattice of dimensions $L_x \times L_y \times L_z \times L_t$, we have checkerboarded subsets of size $L_x/2 \times L_y \times L_z \times L_t$. For full vector utilization in single precision (16 floats), we’d have had to have L_x be multiples of 32. While this is fine for our working example of $L_x = 32$, it places a strong constraint on our choice of problem sizes. To ameliorate this problem we have decided to vectorize over X-Y tiles. We could fill the length 16 vector registers using either 16 sites along X, a tile of size 8×2 in the X-Y plane, or a tile of size 4×4 in the X-Y plane. By using the gather engine on Intel Xeon Phi coprocessor, we could have been even more flexible, but we found that using load-unpack and pack-store instructions was more efficient, and it allowed us these combinations. As a result instead of the Array of Structures layout we had in our Original code, we have opted to use a Array of Structures of Arrays (AoSoA) layout which we define in the file geometry.h in the include/qphix directory of the qphix package.

We have two key parameters which we supply as templates to almost every component of QPhiX. The length of the Vector unit which we call VECLEN or V and the length of the inner arrays of the AoSoA structures, which we call the SOA length SOALEN or S in the code. We show the basic data types for Spinors and Gauge fields in QPhiX in figure 1.10. We see that the FourSpinorBlock has an innermost array dimension of S, and we will have to gather $ngy = V/S$ such blocks into a vector register. These blocks will come from ngy consecutive values of the y coordinate as shown in fig. 1.9.

The TwoSpinorBlock type is used only internally in our multi-node implementation to store the results of projections on the faces of the lattice. By this time the gathers have taken place prior to the projection so it is fine to leave the inner length as V for this type.

We have several comments about the type SU3MatrixBlock which represents the gauge fields. First, we have made the choice to double copy the gauge field, which means we store not just the 4 forward links from each site, but also the 4 backward links. This was done so that the fields could be accessed in unit stride access essentially, hence the leftmost array dimension is 8, for the 8 directions. Second, since the gauge fields are read only, never written, and so we could absorb the gather operation of the spinor blocks into a layout re-definition, essentially pre-gathering the gauge field. Hence it has V as its innermost length. Finally, we implemented the 2-row compression technique. It has turned out that for regular Intel Xeon processors the hardware prefetcher would still read the 3rd row of the gauge fields, even when we did not reference its elements directly in the code, and thus we didn’t realize the benefits of compression on Intel Xeon processors initially (although we did on Intel Xeon Phi coprocessors). One way to circumvent this was to reduce the number of rows in the data structure explicitly from 3 to 2, when compression is enabled. However this is a compile time decision, hence we have an extra template parameter: compressP
Figure 1.9: Schematic view of the data layout. We show blocking in the Y-direction with block length B_y, and vectorization in the X-Y plane, where blocks of length SOA in X are gathered from ngy consecutive values of the Y-coordinate. Additionally the padding can be introduced between X-Y slices of the lattice (Pad_xy in the figure) and also between XYZ volumes (Pad_xyz – not shown) and the number of rows is decided based on this template at compile time. Finally, we added the option of padding our fields both following each X-Y plane of the lattice and after every X-Y-Z sub-volume.

```cpp
template<
  typename T,
  int V,
  int S,
  const bool compressP
>
class Geometry {

public:
  // Later change this to depend on compressP
  typedef T FourSpinorBlock[3][4][2][S];
  typedef T TwoSpinorBlock[3][2][2][V];
  typedef T SU3MatrixBlock[8][ ( compressP ? 2 : 3 ) ][3][2][V];
...
```

Figure 1.10: The basic data types in QPhiX

3.5D blocking

The basic strategy in QPhiX was to implement a technique known as 3.5D blocking. In the form we discussed for Westmere processors in [SVC+11] we considered vectorizing over the X-dimension of the lattice, and blocking over the Y and Z dimensions, while streaming up through the T dimension. With the tiled layout for vectorization, the idea still holds, except the Y-Z blocks now must contain an integer number of tiles. The idea here can be followed looking at Fig. 1.2. As one scans along a Y-Z block, at T coordinate t one needs in principle to bring in only the neighbor with coordinate $t + 1$. The co-planar X-Y-Z neighbors should have been brought into cache when working
on the previous T-slice. The Y-Z plane of the lattice can then be divided into blocks, resulting in YZT bricks, which can be assigned to the individual cores as shown in Fig 1.11. The width of these blocks can be denoted B_y and B_z, and need to be chosen so that at least 3 T-slices of spinors fit into cache. Data that is on the Y-Z boundaries of a $B_y \times B_z$ block is needed both by the block, and its neighbor, however if the computations are appropriately orchestrated and the cores working on the neighboring blocks are synchronized this may result in both cores being able to use the data in each other’s L2 cache, rather than going to main memory.

Load Balancing

It may be the case, depending on the lattice size and B_y and B_z, that there are comparatively few blocks given the number of cores. For example in our test case of $32^3 \times 64$ sites, with $B_y = B_z = 4$ on Intel Xeon Phi coprocessor, one has only 64 blocks. This could result in two rounds of block processing, one in which up to 60 cores are fully engaged, and a second round where only 4 blocks are working and the remaining 56 are idle. To ameliorate this situation, we developed a heuristic load balancing scheme, which we describe below and show in Fig. 1.11.

![Figure 1.11: We show our load balancing scheme, with 6 blocks scheduled over 4 cores. In the first round, each core is assigned a full block. In the second round the two remaining blocks are split in the time direction, to yield 4 blocks, each with shorter T-extent. These are then scheduled to the 4 cores, keeping all 4 cores occupied.](image)

We perform the traversal of blocks in phases. In any given phase if there are more blocks than cores, we simply assign one block per core, and all the cores are fully occupied. We keep repeating this until we have either finished processing all the blocks or we arrive at a phase where we have fewer blocks than cores. Once we have fewer blocks then cores, we consider splitting them in the time direction, which will increase the number of remaining blocks. If the
number of blocks is now more than or equal to the number of cores we carry on
as before, and so on. Ultimately the time-lengths of the blocks may be so short,
that it will not be worth splitting them further. At this point, we take the load
imbalance and finish the work in the final phase.

In terms of implementation, we keep a list of blocks and the number of splits
in the time dimension; C_t; for each phase. We can compute the block assign-
ments for each phase up front on constructing the Dslash. In the QPhiX code
the basic phase info is set up in the geometry.h file in the include/qphix
directory, as shown in listing 1.12. In the code rem stores the number of re-
mainig blocks. This is initialized to $ly \cdot lz$ where ly and lz are the number of
blocks in Y and Z respectively. In each iteration a value of $p.Ct$ is computed.
Depending on $p.Ct$ the number of cores over which the Y-Z blocks can be allo-
cated is found: $p.Cyz$. The first block for this phase is noted in $p.startBlock$
after which $p.Cyz$ blocks are removed from the block-list and the next phase is
processed. In addition one can set a minimum value of C_t (known as minCt)
which can be useful for example in a multi-socket situation where minCt can be
set to the number of sockets. When allocating memory, the phases are traversed
and the right core can touch the appropriate area of memory in a cc-NUMA
aware implementation. Our heuristic termination criterion for the splitting is
to not split the T dimension into more than $4 \cdot \text{minCt}$ blocks.

\begin{verbatim}
int ly = Ny_ / By;
int lz = Nz_ / Bz;
int rem = ly * lz;
int stblk = 0;
n_phases = 0;
int n_cores_per_minct = num_cores / minCt;
while(rem > 0) {
 int ctd = n_cores_per_minct / rem;
 int ctu = (n_cores_per_minct + rem - 1) / rem;
 CorePhase& p = getCorePhase(n_phases);
 p.Ct = (ctu <= 4 ? ctu : ctd)*minCt;
 p.Cyz = num_cores / p.Ct;
 if(p.Cyz > rem) p.Cyz = rem;
 p.startBlock = stblk;
 stblk += p.Cyz;
 rem -= p.Cyz;
 n_phases++;
}
\end{verbatim}

Figure 1.12: Load Balancing Phase Set-up in geometry.h

This concludes the setup of the assignment of cores to phases, however, it is
also useful to be able to look up information about how the blocks are assigned
to phases. This is done in the constructor for Dslash in the file dslash
body.h in include/qphix which we show in listing 1.13. Here, for each thread we set
up which block it should process in each phase. For each phase the thread ID
is split into a core-ID and SMT-thread ID. The core-ID (cid) is split into a
T-coordinate and YZ-coordinate (binfo.cid.t and binfo.cid.yz respectively)
and the coordinates of the block origin, binfo.by, binfo.bz and binfo.bt
are computed along with the temporal extent for the blocks binfo.nt.
```c
#pragma omp parallel shared(num_phases)
{
    int tid = omp_get_thread_num();
    int cid = tid / n_threads_per_core;
    int antid = tid - n_threads_per_core * cid;
    int ly = Ny/By;

    for(int ph =0; ph < num_phases; ph++){
        const CorePhase& phase = s->getCorePhase(ph);
        BlockPhase& binfo = block_info[num_phases*tid+ph];

        int nActiveCores = phase.Cyz * phase.Ct;
        if( cid > nActiveCores ) continue;
        binfo.cid_t = cid / phase.Cyz;
        binfo.cid_yz = cid - binfo.cid_t * phase.Cyz;
        int syz = phase.startBlock + binfo.cid_yz;
        binfo.bz = syz / ly;
        binfo.by = syz - binfo.bz * ly;
        binfo.bt = (Nt*binfo.cid_t) / phase.Ct;
        binfo.nt = (Nt*(binfo.cid_t+1)) / phase.Ct - binfo.bt;
        binfo.by *= By;
        binfo.bz *= Bz;
        int ngroup = phase.Cyz*Sy*Sz;
        binfo.group_tid = tid % ngroup;
    }
} // OMP parallel
```

Figure 1.13: Load Balancing Block Phase Set-up in `dslash_body.h`

SMT Threading

With 4 SMT threads available on each core of Intel Xeon Phi coprocessor, we have a variety of ways we can imagine traversing a Y-Z block. We show three possible ways in figure 1.14. In the end, we have opted to let the user specify the "shape" of the SMT threads, by specifying a S_y and S_z as the dimensions of a Y-Z grid. The lattice sites in a Y-Z block are then interleaved between the SMT threads. It is simplest to describe this in the case of the Y interleaved case ($S_y = 4, S_z = 1$). In this instance thread 0 will work with a site that has Y co-ordinate y, thread 1 will work with the site with Y co-ordinate $y+1$, thread 2 will work with Y-coordinate $y+2$ and thread 3 will work with $y+3$. Then thread 0, will work with $y+4$, thread 1 will work with $y+5$ and so forth traversing the block essentially lexicographically. Another alternative would be to assign sub-blocks to each SMT thread. So for example in a block with $(B_y, B_z) = (4, 4)$ we could have each thread work with a 2×2 sub-block. However we restricted ourselves to the interleaved traversals in the hope that interleaving the SMT threads among the sites would improve sharing in the L1 cache.

Lattice Traversal

Armed now with knowledge about the phases from load balancing, the SMT thread layout and the specifics of the vectorization we can look at a simplified form of the traversal of the lattice. We show some code from the file `dslash_body.h` from the function `DyzPlus` in figure 1.16, where we have re-
moved a lot of the minor details and computation of prefetch pointers for clarity. The full code is available in the source package. The crucial points to make are the following: each thread loops over the phases first identifying its block in that phase, or whether it is idle. Once the block is found, looping is over T, Z and Y as we expect. The loop over Z is done in increments of \(Sz \) and the loop over Y is done in increments of \(ngy \cdot Sy \) (actually misspelled \(ngy \) in the code) where \(Sy \) and \(Sz \) are the SMT thread grid dimensions. The X loop is over SOAs (\(nvecs \) is the number of SOA lengths in the checkerboarded X-dimensions).

Accessing the neighbors of the current X-Y tile in the Z and T dimensions is straightforward, and their tiles can be identified as soon as the Z and T coordinates are known. They are pointed to by pointers \(tfBase \) (T forward), \(tbBase \) (T backward), \(zfBase \) and \(zbBase \).

However, because of vectorization in X and Y, accessing the neighbors in these dimensions is tricky as it may need data from neighboring tiles. We show...
a simple case in Fig. 1.15. Depending on the Y-coordinate, the first site of a given color (e.g. red) may be truly the first site for that Y-coordinate in the lattice (xodd=0 in the figure). In that case its forward neighbors come from the first tile of the other checkerboard in a straightforward way. However, it can be that actually the first site of the given checkerboard is actually the second site in the lattice (xodd=1). In this case the forward neighbor sites actually come from two different tiles of the other color and must be blended together. Further, due to periodic boundary conditions one has to separate the cases for when the output tile under consideration is at the beginning or end of the X-dimension (with wraparound to the tiles at the opposite end) or not. The necessary offsets are pre-computed in the constructor into arrays $xbOffs_{x0\;xodd}$ (back neighbors at start of X dimension), $xfOffs_{xn\;xodd}$ (forward neighbors at end of X) dimension, and $xbOffs_{xodd}$ (back X neighbor offsets) and $xfOffs_{xodd}$ (forward X neighbor offsets) for the other cases. Likewise similar offset arrays exist to identify neighbors in Y.

The last steps in the X-loop in fig. 1.16 are to identify whether one has the case of xodd=0, or xodd=1, and to select from the precomputed offsets appropriately depending on the x-coordinate into $xfOffs$, $xbOffs$ (backward and forward X offsets, respectively) and similarly into $ybOffs$ and $yfOffs$ for the Y-direction. The pointer $oBase$ is the pointer to the base of the Y-Z tile of the output spinor, $gBase$ is the pointer to the appropriate portion of the gauge field. Other quantities computed (in the source but not printed here) are mostly pre-fetch pointers for the next iteration of work for this thread.

Once everything is worked out the code finally calls the $dslash_plus_vec$ function which carries out the work of the dslash for the pointers identified in this loop. This is code that is generated by the code-generator, which we now turn to consider.

Code Generation with QPhiX-Codegen

We now consider how we write the kernels for the key functions $dslash_plus_vec$ and its variants. To do this we decided to write a code generator, which can be found in the code distribution under the subdirectory $qphix_codegen$ but can also be obtained from GitHub from [Prob].

Our initial motivations for writing the code-generator were the following: first we wanted to eventually insert pre-fetches into the code to improve memory traffic. This was awkward to do when we had the code split into lots of little inline functions. It made sense to have a little code generator which could produce the fully inlined body of the dslash kernel for an entire vector (and later X-Y tile). Using the code generator also allowed us to use compiler intrinsics and access streaming stores, gathers, load-pack and other instructions directly. A second good feature of the code-generator was that once we had written the code for Xeon-Phi intrinsics, it was straightforward also to replicate the features for AVX intrinsics to target Intel Xeon processors. Currently we feature a 'scalar' target (no vectorization) and there are even targets for BlueGene/Q
int num_phases = s->getNumPhases();
for(int ph=0; ph < num_phases; ph++) {
 CorePhase& phase = s->getCorePhase(ph);
 const BlockPhase& binfo = block_info[tid*num_phases + ph];
 ...
 // Loop over timeslices
 int Nct = binfo.nct;
 for(int ct = 0; ct < Nct; ct++) {
 int t = ct + binfo.bt; // add origin to local loop variable
 ...
 // Loop over z. Start at smtid_z and work up to Ncz
 // in steps of Sz
 for(int cz = smtid_z; cz < Bz; cz += Sz) {
 int z = cz + binfo.bz; // Add on origin of block
 ...
 // Base address for XY tile for neighbors.
 FourSpinorBlock *xyBase = &psi[t*Pxyz+z*Pxy];
 // Base address for neighbor tiles in Z & T
 FourSpinorBlock *zbBase = &psi[t*Pxyz] + ...;
 FourSpinorBlock *zfBase = &psi[t*Pxyz] + ...;
 FourSpinorBlock *tbBase = &psi[z*Pxy] + ...;
 FourSpinorBlock *tfBase = &psi[z*Pxy] + ...;
 // Base address for output
 FourSpinorBlock *oBase = &res[t*Pxyz+z*Pxy];
 ...
 // Loop over 'y' in ngy * Sy steps (should be ngy :()
 for(int cy = ngy*smtid.y; cy < By; cy += ngy*Sy) {
 int yi = cy + binfo.by; // Offset local y-coordinate with block origin
 // work out if first x-coordinate is on boundary...
 const int xodd = (yi + z + t + cb) & 1;
 // cx loops over the soalen partial vectors
 for(int cx = 0; cx < nvecs; cx++) {
 ...
 // Offsets for gathering neighbors from back and forward x
 // may be in different tiles
 x0offs = (cx == 0 ? x0offs_x0_xodd[xodd] : x0offs_xodd[xodd]);
 ...
 // Offsets for gathering neighbors from back and forward Y
 // may be in different tiles
 y0offs = (yi == 0 ? y0offs_y0 : y0offs_yo);
 ...
 // Call kernel with appropriate pointers
 dslash_plus_vec<FT,veclen,soalen,compress12>(...)
 }
 // End for over scalines y
 }
 }
 }
} // End for over phases

Figure 1.16: The basic loop structure in QPhiX, with a lot of auxiliary computations removed for clarity such as the indices of the next site, prefetch computations etc. The full code is available in include/dslash_body.h e.g. in the function DyzPlus.

23
vectorization with QPX intrinsics, and Intel AVX2 which is expected in future generations of Intel Xeon processor and Intel Xeon Phi coprocessor, although these latter targets are still experimental.

We should note that the use of small domain specific code generators is not a new idea in itself. In QCD there have been several frameworks including BAGEL [Boy09] and QA0 [Poc]. The QUDA library for GPUs [CBB+10] has also at one point used an internal Python code generator. The BAGEL generator for example also performs some simulation of architectural pipelines, and generates assembly code rather than intrinsics. In our case, the simple generator we wrote was more for convenience and saving typing when trying to re-space prefetches.

QPhiX-codegen code structure

The code generator is called qphix-codegen and can be found as the subdirectory of the same name within the code-package. In qphix-codegen we consider three primary objects: instructions and addresses and vector registers. These are defined in the instructions.h and address_types.h files. In particular the vector registers are referred to as FVec, and instructions and addresses are derivations of the base Instruction and Address classes. In particular we distinguish between regular Instructions and those that access memory (MemRefInstruction-s).

The FVec objects contain a “name” which will be the name of the identifier associated with the FVec in the generated code. All instructions and addresses have a method called serialize() which return the code for that instruction as a std::string. Since we are generating code, we need a couple of auxiliary higher level “instructions” for example to add conditional blocks, scope delimiters, or to generate declarations.

Ultimately, the code-generator generates lists of Instruction-s which are held in a standard vector from the C++ standard library. We alias the type of such a vector of instructions to type InstVector (for Instruction Vector). In turn the instructions reference FVec and Address objects.

The remaining attributes for addresses and instructions were mostly added so we can perform analysis on the generated code. For example, one could look for MemRefInstructions, and extract their referenced Address-es for automatic pre-fetch generation, or to count the balance of arithmetic versus memory referencing instructions.

Finally, at the end of the file instructions.h we define some utility functions such as mulFVec which take an instruction vector, two FVec-s from which they generate a MulFVec object and insert it into the instruction vector. The majority of the code for the Dslash is written with these utility functions.

Implementing the Instructions

The actual implementations of the Instructions are in a variety of files with names like inst_sp_vec16.cc – which in particular refers to generating single precision code working with length 16 vectors, i.e. for Intel Xeon Phi co-
processor. First and foremost we declare the actual types of FVec-s as _m512.
After this we basically declare the serialize() methods of the various instructions which is where we generate the actual intrinsics. We show the example for LoadFVec and an FMA (fused multiply-add) in listing 1.17 but of course the entire source is available in the code package. We note that we have implemented the use of 16-bit precision in this work and the LoadFVec shows how an vector of unsigned short-s can be loaded using up-conversion in the _mm512_mask_extload_ps intrinsic.

```cpp
string LoadFVec::serialize() const
{
    std::ostringstream buf;
    string upConv = "\_MM_UPCONV_PS\_NONE";
    string lmask = mask;
    if(mask.empty()) {
        lmask = fullMask;
    }
    if(a->isHalfType()) {
        upConv = "\_MM_UPCONV_PS\_FLOAT16";
    }
    buf << v.getName() << "=\_mm512_mask_extload_ps(";
    buf << v.getName() << "," << lmask << "," << a->serialize() << "," << upConv << ",\_MM_BROADCAST32\_NONE,\_MM_HINT\_NONE);" << endl;
    return buf.str();
}
string FMAdd::serialize() const
{
    if(mask.empty()) {
        return ret.getName()+"=_mm512_fmask_mov_ps("+mask+",_mm512_fmadd_ps("+a.getName()+","+b.getName()+"+c.getName()+"));" ;
    } else {
        return ret.getName()+"=_mm512_fmask_mov_ps("+ret.getName()+","+mask+",_mm512_fmadd_ps("+a.getName()+","+b.getName()+"+c.getName()+"));" ;
    }
}
```

Figure 1.17: The Serialize methods for LoadFVec and FMadd instructions from qphix-codegen. They can be found in the file inst_sp_vec16.cc

Generating Dslash
Generating dslash is coded in the dslash.cc and dslash_common.cc files. The basic dslash body is reproduced in code listing 1.18, although we have removed some of the branches relating to having to emulate masking, for clarity. Modulo some code for dealing with additional scale factors to multiply into the results on accumulation (beta_vec) and adding conditionals and masks for accumulating (to do with boundary processing in a multi-node implementation) the structure should be very similar to the pseudocode in listing 1.1.
Figure 1.18: The basic code to generate the body of the dsplash (excluding additional code to deal with software emulated masking on non Intel Xeon Phi coprocessor platforms.
To round out this story, we show a brief snippet of the code to multiply $SU(3)$ matrices with 3-vectors in Fig. 1.19, from the file `dslash_common.cc`. First we declare a global set of FVec-s, for each spin, color and complex component that we will use. In our case b refers to the result of the projection and ub refers to the result of the multiplication. It is convenient to collect these FVec-s into arrays with indices mirroring our desired index structure, as shown in the code for the half-spinor b_{spinor}. Finally we generate the matrix multiply in the function `matMultVec` using convenience functions defined earlier for complex arithmetic. Note that there is a loop in the function. When the function is executed, that loop will essentially create all the operations in the matrix multiply into a single contiguous instruction stream.

```cpp
FVec b_S0_C0_RE("b_S0_C0_RE");
FVec b_S0_C0_IM("b_S0_C0_IM");
...
FVec b_{\text{spinor}}[2][3][2] = {
    { b_S0_C0_RE, b_S0_C0_IM },
    { b_S1_C0_RE, b_S1_C0_IM } ,
};
...

// r is an array of length 2, as are s1 and s2 — for complex numbers
void mulCVec(InstVector& ivector, FVec *r, FVec *s1, FVec *s2, string &mask)
{
    mulFVec(ivector, r[RE], s1[RE], s2[RE], mask);
    fnmaddFVec(ivector, r[RE], s1[IM], s2[IM], r[RE], mask);
    mulFVec(ivector, r[IM], s1[RE], s2[IM], mask);
    fnmaddFVec(ivector, r[IM], s1[IM], s2[RE], r[IM], mask);
}
...

// deal with spin component 's'
void matMultVec(InstVector& ivector, bool adjMul, int s)
{
    string mask;
    for(int c1 = 0; c1 < 3; c1++) {
        if(!adjMul) {
            mulCVec(ivector, ub_{\text{spinor}}[s][c1], u_{\text{gauge}}[0][c1], b_{\text{spinor}}[s ][0], mask);
            fnmaddCVec(ivector, ub_{\text{spinor}}[s][c1], u_{\text{gauge}}[1][c1], b_{\text{spinor}}[s ][1], ub_{\text{spinor}}[s][c1], mask);
            fnmaddCVec(ivector, ub_{\text{spinor}}[s][c1], u_{\text{gauge}}[2][c1], b_{\text{spinor}}[s ][2], ub_{\text{spinor}}[s][c1], mask);
        } else {
            mulConjCVec(ivector, ub_{\text{spinor}}[s][c1], u_{\text{gauge}}[c1][0], b_{\text{spinor}}[s ][0], mask);
            fnmaddConjCVec(ivector, ub_{\text{spinor}}[s][c1], u_{\text{gauge}}[c1][1], b_{\text{spinor}}[s ][1], ub_{\text{spinor}}[s][c1], mask);
            fnmaddConjCVec(ivector, ub_{\text{spinor}}[s][c1], u_{\text{gauge}}[c1][2], b_{\text{spinor}}[s ][2], ub_{\text{spinor}}[s][c1], mask);
        }
    }
}
```

Figure 1.19: Code to generate SU(3) matrix-vector multiply, from the `dslash_common.cc` file.
Prefetching

We implement pre-fetching in the code generator in two different ways, for L1
and L2 prefetching respectively. We define custom L1 prefetch functions in the
file `data_types.h` which we call explicitly just before starting to work with the
data. We show the idea for example in the projection operation in listing 1.20.

```c
// File: dslash_common.cc
void project(InstVector& ivector, string base, string offset, proj_ops& ops,
    bool isFace, string mask, int dir)
{
    string tmask("*");
    PrefetchL1FullSpinorDirIn(ivector, base, offset, dir);

    for(int s = 0; s < 2; s++) {
        for(int c = 0; c < 3; c++) {
            LoadSpinorElement(ivector, psi[0][RE], base, offset, ops.s[s][0],
                c, RE, isFace, mask, dir);
            LoadSpinorElement(ivector, psi[0][IM], base, offset, ops.s[s][0],
                c, IM, isFace, mask, dir);
            LoadSpinorElement(ivector, psi[1][RE], base, offset, ops.s[s][1],
                c, RE, isFace, mask, dir);
            LoadSpinorElement(ivector, psi[1][IM], base, offset, ops.s[s][1],
                c, IM, isFace, mask, dir);

            ops.CVecFunc[s](ivector, b_spinor[s][c], psi[0], psi[1],
                /∗mask∗/ tmask); // Not using mask here
        }
    }
}
```

Figure 1.20: Generating L1 prefetches for the projection operation. We explic-
tively prefetch the whole spinor into L1, before element wise loading.

Our L2 prefetching is slightly different. We need to fetch further ahead than
for L1, and our approach has been for every thread to prefetch the forward T
neighbor of the next output block on which it will work. While blocks that
are co-planar in Y and Z should already be in L2, they may reside in the
caches of other cores than the one which needs them. Therefore, we allow the
possibility of prefetching up to 4 neighboring spinors. For each of these we
supply a pointer and an offset. The base pointers are `xyBase` (current tile) and
`pfBase2`, `pfBase3`, and `pfBase4`. The prefetch offsets to these pointers are
`siprefdist1`, `siprefdist2` and so on up to `siprefdist4`. We also prefetch
gauge fields with offset `gprefdist` from the current `gBase` and can prefetch
the next output spinor with base `outBase`. Some of these are commented out
or not used in the implementation, but that is the basic idea.

The base pointers and `siprefdist` offsets are calculated during the lattice
traversal loop in functions like `DyzPlus` in the QPhiX library. In listing 1.16 we
have hidden these computations for clarity, but they can certainly be found in
the attached code bundle.

When the code generation is run, the L2 prefetches are generated into a `sep-
are instruction vector` from the mainline code, and are merged with the main
dslash code just before serializing to try and space them evenly through the gen-

28
erated code. This merging is done by the function `mergeIvectorWithL2Prefetches` in the source file `dslash.cc`.

Generating the Code

Now that we’ve covered the mechanics, let us generate the code. To do this we need to look at 2 makefiles. One is the main `Makefile`. Here our main work is to choose the architecture by editing the variable `mode` in the first line. Right now it is set to `mic` which is fine for Intel Xeon Phi coprocessors. We can also set it to e.g. `avx` for AVX code, or `scalar` for non-vectorized code.

Second, for each supported `mode` there is a file called `customMake.xxx` where `xxx` is the mode. We can look for example at `customMake.mic`. In this file we can set a variety of options for code generation, for example whether to use streaming stores, or whether we should use L1, L2 prefetching etc. We show a snippet of `customMake.mic` in figure 1.21 where we enabled all the prefetching options and asked to use `load unpack` and `pack-store` operators for gather-scatter like operations. As a result we do not want to generate `gather prefetches` and we have disabled those.

```make
# Prefetching options
# FOR MIC SET THESE ALL TO 1
#
PREF_L1_SPINOR_IN = 1
PREF_L2_SPINOR_IN = 1
PREF_L1_SPINOR_OUT = 1
PREF_L2_SPINOR_OUT = 1
PREF_L1_GAUGE = 1
PREF_L2_GAUGE = 1
PREF_L1_CLOVER = 1
PREF_L2_CLOVER = 1
#
# Gather / Scatter options
USE_LDUUNP = 1  # Use loadunpack instead of gather
USE_PKST = 1    # Use packstore instead of scatter
USE_SHUFFLES = 0 # Use loads & Shuffles to transpose spinor when SOALEN>4
NO_GPREF_L1 = 1 # Generate bunch of normal prefetches instead of one gather prefetch for L1
NO_GPREF_L2 = 1 # Generate bunch of normal prefetches instead of one gather prefetch for L2
#
# Enable nontemporal streaming stores
ENABLE_STREAMINGSTORES ?= 1
USE_PACKED_GAUGES ?= 1 # Use 2D xy packing for Gauges
```

Figure 1.21: Code Generation options for Intel Xeon Phi coprocessor, from `customMake.mic`. We set every prefetching option, as well as asking for the use of `load-unpack`, `pack-store` and the use of streaming stores.

Once all these options are set, one can execute the makefile by running `make xxx` where, again, `xxx` is the value used for mode. The code generator should then build and run, with the resulting code being placed in the `xxx` subdirectory as a bunch of files. We note that these files are just the bodies of functions (not
even containing function prototypes etc). In the QPhiX packages, these files get placed in the directory `include/qphix/xxx/generated` where as usual `xxx` is the value of the `mode`. There are files in `include/qphix/xxx` that define the function headers and include these files appropriately using a mixture of templates, and C-preprocessor macros. In the case of the `mic` target, these files are in `include/qphix/mic` and are called `dslash_mic_complete_specializations_form.h` which defines either the base templates for functions like `dslash_plus_vec`, or if certain preprocessor macros are defined, it defines a specialization, which includes the appropriate generated file.

This inclusion, is driven by the second file: `dslash_mic_complete_specialization.h` which cycles through the various possibilities of the macros, defines them, includes the `_form.h` file and then undefines the macros. This approach is rather messy and we wish a better one was available.

Performance Results for QPhiX

After chewing our way through the structure of QPhiX and the code-generator, it is finally time to see how well all this hard work has paid off. We will look at the following cases of generated code:

- **scalar** - this uses code generated for the `scalar` mode of the code-generator. It uses all of the 3.5D looping, but no prefetch or vectorization. A version of QPhiX with this set of generated files is available in the Code package in directory `Scalar`.

- **vector** - this uses code generated for the `mic` target but apart from generating vector code, all prefetching options have been turned off. The code for this in the package is in `Vector`. We use explicitly a vector length of 16, and an SOA length of 16.

- **vector + L2** - is the vector code with L2 prefetches. Code is in `VectorPrefL2`

- **vector + L1** - is the vector code with L1 prefetches but not L2. Code is in `VectorPrefL1`

- **vector + L1 + L2** - is the vector code with both L1 and L2 prefetching, code is in `VectorPrefL1L2`

- **vector + L1 + L2 + Barrier** - this is the previous code, but every now and again we resynchronize the cores using a lightweight barrier – similar in style to the Plesiochronous Phasing Barriers in [JJ14]. The code for this is in `VectorPrefL1L2Barrier`.

- **vector + L1 + L2 + Barrier, SOALEN=8** - is the previous code, but using an SOALEN=8, instead of 16. In other words this test will work with an 8×2 tile. The code for this is in `VectorPrefL1L2BarreirS8`.
We ran all these tests on an Intel Xeon Phi coprocessor model 5110P, booted with the icache_snoop_off feature enabled to gain some extra memory bandwidth. We used 59 out of the 60 cores, and an affinity setting of KMP_AFFINITY=compact,granularity=thread. We added one unit of padding to our data structures in the XY plane, to be free of associativity misses. We present the results in table 1.3. A couple of things to notice: just moving to the QPhiX lattice traversals, but keeping the code unvectorized, did have some benefit, but not very much. The performance only jumped from 35 GFLOPS (Original) to 51 GFLOPS. However, vectorization even without pre-fetching had a large impact. The performance reached 184 GFLOPS when using compression.

Looking at the difference between the vector+L1 case and the vector + L2 case, it is clear that L1 pre-fetching without L2 prefetching is not very beneficial, since probably most L1 prefetches will not hit in L2. In contrast L2 prefetching was very effective. Combining L1 and L2 prefetching we reached 239 GFLOPS with compression.

Finally we note that occasional synchronization with lightweight barriers is beneficial. Let us consider this for a moment, since it is often said that we should avoid synchronizations if we can, since typically they are quite costly. In this situation, we use lightweight barriers contributed by Intel corporation, and the barriers are not global. In any given phase of the lattice traversal barriers are called only amongst a group of cores which work on blocks of the same time-length chunk. This information is set up when we set up the block-phase information. (see fig. 1.13) – a group_tid is computed for each thread in each block. At construction each group_tid is assigned its own barrier. As the threads step through the time-coordinates of a given block, when it comes time to synchronize, threads with the same group_tid call a wait on their barrier as can be seen at the end of Fig 1.16. Even within this chunk, we can tune the frequency of the barriers. In our case we found that we got the highest performance when we execute them once every 16 t-slices. The barriers help, because slight drifts in synchronization may mean that cores which are supposed to be working on the same T-slice may end up working on different slices. In this situation it could be that a core which could otherwise access a piece of data from the cache of another core, instead has to go to memory. The cost of this can outweigh the cost of the occasional lightweight barrier. This is similar in spirit to the use of plesiochronous phasing barriers described in [JJ14].

We finish off this discussion by noting that we got the best performance by switching to using a layout with SOALEN=8, rather than 16. This seems to hold up generally. We find it surprising, since loading two chunks of 8 instead of a single chunk of 16 seem like it ought to need higher bookkeeping overhead, and possibly more instructions.

We have come a long way from the performances seen in the original code. When we examine the memory bandwidth utilization of the best performing configuration with VTune, the memory bandwidth utilized is now reported as 130 GB/sec. For this bandwidth our model predicts a performance of 298 GFLOPS. Our 286 GFLOPS is 96% of this prediction.
Table 1.3: Performance tests run on a lattice with $32^3 \times 64$ sites, using 59 cores (236 threads) on an Intel Xeon Phi coprocessor model 5110P with icache_snoop_off feature enabled.

Other Benefits

We may recall that our original code performed at the level of around 34.7 GFLOPS on a particular dual socket Intel Xeon processor. One of the benefits of all our hard work with blocking and the code generator is the improved performance of the new code on Intel Xeon processors. In the Code package, we have a setup to build QPhiX with AVX vectorization in the FinalAVX directory. This build does not perform barriers, and because of the excellent hardware prefetching on Intel Xeon processor, we have disabled software prefetching too. Finally, since this is a dual socket cc-NUMA system, we run the code setting the minimum number of time-splits C_t to be 2, which is the number of sockets. With the KMP_AFFINITY set to compact and because array initialization proceeds in lattice traversal order, the code has become NUMA-aware. Thanks to the large shared L3 cache of the Intel Xeon processor we can choose slightly larger blocks. A choice of $(B_y, B_z) = (8, 8)$ allows for 16 blocks in the Y-Z plane, which after the further split by the minimum value of C_t becomes 32, with 16 blocks assigned to each 8-core socket. This workload can then be processed in 2 phases without imbalance. We keep the same padding parameters, but set the SMT thread geometry to 1×2 in the Y-Z plane, since we have only 2 hyperthreads. On our system, the Wilson-Dslash timing test ran at 127 GFLOPS, a speed-up of about 3.6x over the original code without SSE optimizations.

To be completely fair to the original code, we have also built it with SSE optimizations enabled, and, as before ran it with the numactl -interleave=0,1 command to ameliorate its non-NUMA nature. We find that the best performance on our test case in single precision is 48-49 GFLOPS. So QPhiX also gains over this configuration by a factor of 2.6x, which is a very significant gain. Further, we should note that it is possible that the processor may have entered its turbo-boost mode during our tests, we have not investigated this aspect in significant detail.
We show in figure 1.22 the performance of on a variety of systems including a comparison to a Wilson Dslash code running on NVIDIA K20, and K20X GPUs. The GPU performances were measured using the QUDA library running with comparable options (single precision, two-row compression) and the same volume. We show also performance on the Intel Xeon Phi coprocessor model 7120P, and consider varying the SOA-length. In this plot the final result for Intel Xeon Phi coprocessor model 5110P with SOA-length 8 is 283.8 GFLOPs, which is 2-3 GFLOPS less than the numbers we have measured earlier. This we take to be simply a fluctuation which at this rate is at about the 1% level. Finally we note, that in the same way that Intel Xeon Phi coprocessor performed best with an SOA-length of 8 (half its vector length), in a similar way, the Xeon results are best with an SOA-length of 4 (half of its vector length).

We do make the disclaimer that to get this level of performance on the Intel Xeon Phi coprocessor requires the icache_snoop_off feature to be enabled at boot time. Without this feature performances on the Xeon Phi can be lowered compared to our numbers. As an example on a 61 core Xeon Phi in the Intel Endeavor cluster (icache_snoop_off enabled) we sustained 320 GFLOPS for a particular benchmark. The same problem size running on Stampede (similar 61 core Xeon Phi part) without the icache_snoop_off feature ran at 271 GFLOPS.

![Figure 1.22: Performance of Single Node, Single Precision Wilson-Dslash with 2-row compression on a variety of systems. The GPU performance numbers were generated using the QUDA library[CBB+10].](image)
The end of the road?

Of course not! However, we are approaching the end of the chapter. We have gone through a lot of work to optimize the single node performance of Wilson Dslash and the effort has been very fruitful. However there are many avenues left, which we have not had the space to explore in this chapter.

One very important aspect is scaling Wilson-Dslash onto multiple nodes, either of Intel Xeon Phi coprocessors or Intel Xeon processors. The code to do this is present in $Q\Phi iX$ as well as the original code (although that uses a slightly different algorithm). In its current setting as a PCIe card, several challenges have been encountered with multi-node scaling which could merit their own chapter. The interested reader can find more by reading $[JV+13, VPK+14]$.

Another important consideration is that the Wilson-Dslash operator is typically the computationally most expensive piece of larger composite operators. Typically one needs to solve linear equations with the larger composite operator. Recently there have been advances in how to solve these systems, not just by the usual Krylov subspace methods such Conjugate Gradients $[HS52]$ or Stabilized Bi-Conjugate Gradients $[vdV92]$ but also by newer algorithms such as Generalized Conjugate Residuals or Flexible GMRES, which allow the use of Domain Decomposed preconditioners and deflation $[Lus07, BCJ+11, FNZ12]$, and also by Algebraic Multi-Grid approaches $[BBB+10, FKK+14]$. In particular the domain decomposed preconditioners have very nice properties: small domains can be blocked into L2 cache on the Xeon Phi, essentially moving the bandwidth bottleneck from main memory bandwidth to cache bandwidth. A thorough exposition of optimizing a solver with a domain decomposed preconditioned for Intel Xeon Phi coprocessor can be found in $[HJK+14]$.

When one needs to solve for several systems, one can also consider vectorizing over the systems, which can lead to simpler vectorization than considered in $Q\Phi iX$. This was done for the a different way of formulating QCD than presented here in $[KSS+14]$, and work on Wilson-Dslash is in progress with promising preliminary results.

What would we like to emphasize as the take home messages from this chapter? Perhaps the following:

- To exploit the system for maximum efficiency, it helps to have some model of the performance. Is it memory bound? Is it compute bound? Can expected performance be related to system parameters? In our case we made several refinements to our model e.g. to take account of streaming stores, cache reuse, or compression.

- In our case, several optimization steps had to be employed. Just threading for parallelism was not sufficient to get the best performance. Vectorization, pre-fetching, blocking and some synchronization were also needed.

- Be prepared for surprises. In our case these came from the improvement from barriers, and from the finding that an SOA-length that is half of
the vector length somehow was more performant than working with an
SOA-length equal to the vector length.

• Domain specific code generators can be helpful. They need not be super
sophisticated, and can lower the pain of exploring certain optimizations
(e.g. strategies to load, prefetch etc). In some cases, like ours, they can
also help with performance on other architectures.

For More Information

[BBB+10] R. Babich, J. Brannick, R.C. Brower, M.A. Clark, T.A. Manteuffel,
et al. Adaptive multigrid algorithm for the lattice Wilson-Dirac

tlieb. Scaling lattice qcd beyond 100 gpus. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, pages 70:1–70:11, New York, NY,
USA, 2011. ACM.

ing Lattice QCD systems of equations using mixed precision solvers

[Edw05] Edwards, Robert G. and Joó, Bálint. The Chroma software system

[FKK+14] Andreas Frommer, Karsten Kahl, Stefan Krieg, Bjørn Leder, and
Matthias Rottmann. Adaptive Aggregation Based Domain Decom-
position Multigrid for the Lattice Wilson Dirac Operator. SIAM

[FNZ12] A. Frommer, A. Nobile, and P. Zingler. Deflation and Flexible SAP-
Preconditioning of GMRES in Lattice QCD Simulation. ArXiv e-
prints, April 2012.

[HJK+14] Simon Heybrock, Bálint Joó, Dhiraj D. Kalamkar, Mikhail
Smelyanskiy, Karthikeyan Vaidyanathan, Tilo Wettig, and Pradeep
Dubey. Lattice qcd with domain decomposition on intel® xeon
phi®:trade: co-processors. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and

