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We present for the first time a determination of the energy dependence of the isoscalar ππ
elastic scattering phase-shift within a first-principles numerical lattice approach to QCD. Hadronic
correlation functions are computed including all required quark propagation diagrams, and from these
the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From
the volume dependence of the spectrum we obtain the S-wave phase-shift up to the KK threshold.
Calculations are performed at two values of the u, d quark mass corresponding to mπ = 236, 391 MeV
and the resulting amplitudes are described in terms of a σ meson which evolves from a bound-state
below ππ threshold at the heavier quark mass, to a broad resonance at the lighter quark mass.

Introduction: Meson-meson scattering has long served
as a tool to investigate the fundamental theory of strong
interactions, quantum chromodynamics (QCD). The
isoscalar channel, where all flavor quantum numbers are
equal to zero, is dominated at low energies by ππ scatter-
ing, but despite experimental data on elastic ππ scattering
being in place for many decades [1], the existence of the
lowest lying resonance with spin zero, the f0(500)/σ, has
only recently been demonstrated with certainty [2, 3].
This is astonishing given the crucial role played by such a
state in our understanding of, for example, spontaneous
chiral symmetry breaking [4], and long-range contribu-
tions to the nuclear force [5]. The difficulty comes from
the especially short lifetime of the σ which causes it to
lack the simple narrow “bump” signature associated with
longer-lived resonances. It is the use of dispersive analysis
techniques [6], which build in constraints from the causal-
ity and crossing symmetry of scattering amplitudes, when
applied to the experimental data, which have led to an
unambiguous signal for a σ resonance. These techniques
have ensured that the location of the corresponding pole
singularity, located far into the complex energy plane, can
now be stated with a high level of precision [7, 8].

In principle it should be possible within QCD to cal-
culate the scalar, isoscalar ππ scattering amplitude and
the contribution of the σ resonance to it, but the non-
perturbative nature of the theory at low energies leaves
us with limited calculational tools. The most powerful
current approach is lattice QCD, in which the quark and
gluon fields are discretized on a space-time grid of finite
size, allowing numerical computation by averaging over
large numbers of possible field configurations generated
by Monte-Carlo. In particular, from the time-dependence
of correlation functions calculated in this way, we can ex-
tract a discrete spectrum of states whose dependence on
the volume of the lattice can be related to meson-meson
scattering amplitudes [9, 10].

Calculations of the scalar, isoscalar channel have long
been considered to be among the most challenging appli-
cations of lattice QCD. In order to be successful here it
is necessary to evaluate all quark propagation diagrams
contributing to the correlation functions, to reliably ex-
tract a large number of states in the spectrum, and to
determine and interpret the energy dependence of the
scattering amplitude in the elastic region. To date no
calculation has overcome all these challenges [11].

In this Letter we show that by combining a number of
novel techniques whose application we have pioneered over
the past few years, we can meet all these challenges and
provide the first determinations of the scalar, isoscalar
scattering amplitude within QCD. By utilizing distilla-
tion [12], we are able to evaluate with good statistical
precision all required quark propagation diagrams, includ-
ing those which feature quark-antiquark annihilation. By
diagonalizing matrices of correlation functions [13] using
a large basis of composite QCD operators with relevant
quantum numbers [14–20] we are able to make robust
determinations of spectra, and by considering multiple
lattice volumes and moving frames, we are able to map
out the energy dependence of the ππ scattering amplitude
over the entire elastic region.

We perform our calculations with two different values
of the degenerate u, d quark mass, corresponding to pions
of mass 236 MeV and 391 MeV. We find that for the
lighter mass, the scattering amplitude is compatible with
featuring a σ appearing as a broad resonance, which
closely resembles the experimental situation. As the quark
mass is increased we find that the σ evolves into a stable
bound-state lying below ππ threshold.
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Correlation functions and the finite-volume spectrum:
The discrete spectrum of hadronic eigenstates of QCD

in a finite volume is extracted from two-point correlation
functions, Cab(t, t

′; ~P ) = 〈0|Oa(t, ~P )O†b(t′,−~P )|0〉, with

spatial momentum ~P = 2π
L

[
nx, ny, nz

]
, where ni ∈ Z

in an L × L × L box. We use a large basis of inter-
polating fields, Oa, from two classes. The first are
“single-meson”-like operators [14, 15, 18] which resem-
ble a qq̄ construction of definite momentum, (ψ̄Γψ)~P ,
where Γ are operators acting in spin, color and position
space [12]. Both uū+ dd̄ and ss̄ flavor constructions are
included [17, 21]. The second class of operators resem-
bles a pair of pions, “ππ”, with definite relative and total
momentum,

∑
p̂1,p̂2

w~p1,~p2;~P (ψ̄Γ1ψ)~p1(ψ̄Γ2ψ)~p2 [19], pro-
jected into isospin=0. Each isovector pion-like operator
is constructed as the particular linear superposition, in
a large basis of single-meson operators, that maximally
overlaps with the pseudoscalar ground state [18, 19].

We compute matrices of correlation functions
Cab(t, t

′; ~P ) using multiple single-meson operators
along with several relative momentum constructions,
~p1 + ~p2 = ~P , of the ππ-like operators1. This kind of oper-
ator basis has been used successfully in the determination
of scattering amplitudes in the ππ I = 1 channel [20, 22]
and the coupled-channel (πK, ηK) [23] and (πη,KK) [24]
cases.

After integration over the quark fields appearing in the
path-integral representation of Cab(t, t

′; ~P ), we find that
a variety of topologies of quark propagation diagrams
appear, shown schematically in Fig. 1. Correlators with
ππ-like operators at t and t′, for instance, require both
connected pieces (a), (b) and partially (c) and completely
(d) disconnected pieces which feature quark propagation
from a time t to the same time t. Computation of these
propagation objects has historically been a major chal-
lenge for lattice QCD. Within the distillation approach we
utilize, determining these objects becomes manageable,
and by obtaining them for all timeslices, t, good signals
can be garnered by averaging correlation functions for
fixed time separations over the whole temporal extent of
the lattice. The factorization of operator construction,
inherent in distillation, allows for the reuse of these prop-
agation objects and those used here have been previously
computed and used in other projects that featured quark
annihilation [20–26].

In Fig. 2 we show the contributions of the various
diagrams to an example correlation function having an
operator π[000]π[110] at both t′ = 0 and t, where we ob-
serve that all diagrams are evaluated with good statistical
precision. In general delicate cancellations between dif-
ferent contributing diagrams can be present in isoscalar

1 We also include several “KK”-like operators, of analogous con-
struction to the “ππ” operators, although they are not vital in
the determination of the spectrum below KK-threshold.

FIG. 1. Schematic quark propagation diagrams which con-
tribute to the isoscalar correlation functions required in this
Letter.
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FIG. 2. Contributions of various diagrams (falling into the
categories (a)–(d) presented in Figure 1 – two different variants
of each of (a) and (c) appear) to the correlation function
having an operator π[000]π[110] at both t′ = 0 and t. The

time dependence is weighted by eE0t with E0 the energy of
the lightest state with ~P = [110]. The complete correlation
function, which corresponds to the sum of the pieces shown,
is shown by the black squares. Computation on a 323 × 256
lattice with mπ = 236 MeV.

correlation functions, and our approach is seen to be
capable of accurately capturing these.

We computed correlation matrices for total momentum
~P = [000], [100], [110], [111] and [200], extracting multiple
states in the spectrum of each using variational analysis
of the type described in Ref. [15]. Details of the lattices,
which include degenerate light u, d quarks and a heavier s
quark, and which have spatial lattice spacing as ∼ 0.12 fm,
can be found in Refs. [22, 27]. For the 391 MeV pion case
we computed with three lattice volumes, 163, 203 and
243, while for the 236 MeV pion case we used a single
larger 323 volume. The extracted spectra are shown in
Figure 3. In this first study we will restrict our attention
to energies below the KK threshold from which we can
determine the ππ elastic scattering phase-shift.
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FIG. 3. Center-of-momentum frame energies (black and gray
points) extracted from variational analysis of correlation ma-

trices at five values of ~P plotted versus L. Upper panel shows
spectra for mπ = 391 MeV and the lower panel for mπ = 236
MeV. The vacuum contribution to [000] correlation functions

and thermal contributions for other ~P are removed using the
technique described in Ref. [19]. Red curves indicate non-
interacting ππ energy levels. Small dashed red and green
horizontal lines show the ππ and KK thresholds. Orange
curves show the finite-volume spectrum obtained from the
K-matrix “pole plus constant” parameterization mentioned
in the text.

Scattering amplitudes and the σ-pole: Under the well-
justified approximation of neglecting kinematically sup-
pressed higher partial waves, the L×L×L finite-volume
spectrum is related to the S-wave ππ elastic scattering
phase-shift by

cot δ0(Ecm) + cotφ(P,L) = 0 (1)

where φ(P,L) is a known function which differs according

to ~P [9]. This provides a one-to-one mapping between the
discrete finite-volume energies determined in lattice QCD
and the infinite-volume scattering phase-shift evaluated
at those energies.

In Figure 4 we present the phase-shifts determined from
the spectra shown in Figure 3. A simple-minded approach
to parameterizing the energy dependence of these scatter-
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FIG. 4. Upper panel: S-wave ππ elastic scattering
phase-shift, δ0, plotted against the scattering momentum,
p2 = (Ecm/2)2 −m2

π. Lower panel: Same data presented as
p cot δ0 (some points with large uncertainty have not been plot-
ted). The colored curves are the result of a K-matrix “pole
plus constant” with Chew-Mandelstam phase-space parame-
terization. The gray points show experimental data [1] and
the gray curve shows the constrained dispersive description of
these data presented in Ref. [3].

ing amplitudes neglects the explicit contribution of any
left-hand cut2, leaving significant freedom in choice of
functional form. We find that we can obtain good descrip-
tions of the lattice spectra for many unitarity-preserving
choices of parameterization – Figure 4 shows one illus-
trative example, which uses a single-channel K-matrix
featuring a pole plus a constant, and a Chew-Mandelstam
phase-space (see Ref. [23] and references therein), the
corresponding description of the finite volume spectrum
being shown in Figure 3. In previous studies [20, 22–24]
of amplitudes featuring narrow resonances, we observed
very little variation in the pole position of the resonance
with parameterization choice variation.

In the 391 MeV pion case, we find that all parameteriza-

2 which is present due to crossing symmetry, but which is distant
from the physical scattering region for heavy pions.
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FIG. 5. Upper panel: t-matrix pole positions for a variety of
parameterizations (K-matrix “pole plus polynomial” forms
with and without Chew-Mandelstam phase-space and/or Adler
zero, relativistic Breit-Wigner and effective range expansion).
Green points: bound-state pole (physical sheet) at mπ =
391 MeV. Red points: resonant pole (unphysical sheet) at
mπ = 236 MeV. Black point: Resonant pole from dispersive
analysis of experimental data (conservative average presented
in Ref. [7]). Lower panel: Coupling gσππ from t-matrix residue
at the pole.

tions which successfully describe the finite volume spectra
have a pole on the real energy axis below ππ threshold
on the physical Riemann sheet, which we interpret as the
σ appearing as a bound state of mass 758(4) MeV. Con-
sidering the amplitude determined with 236 MeV pions,
we observe in Figure 4 a qualitative change of behavior in
the phase-shift curve to a form which does not resemble
either that expected for a bound-state or that of a narrow
elastic resonance. We find that all successful descriptions
of the spectrum have a pole on the second Riemann sheet
with a large imaginary part, which we interpret as the σ
appearing as a broad resonance. Because the amplitude,
determined from the finite-volume spectrum, is only con-
strained on the real energy axis, which is far from the
pole position, there is a significant variation in the precise
determination of the location of the pole under reason-
able variations of the parameterization form3. This is the
same phenomenon that is observed when experimental ππ
phase-shift data are used to fix parameters in amplitude
models that do not build in dispersive constraints [7].

Figure 5 shows the complex energy plane illustrating
the extracted pole position, s0 = (Eσ− i

2Γσ)2, for a range

3 see Refs. [23, 24] for the kinds of variation we consider.

of parameterization choices. We also show the coupling,
|gσππ|, extracted from the residue of the t-matrix at the
pole, g2σππ = lims→s0(s0 − s) t(s).

Summary and outlook: In this Letter we have, for the
first time, determined the low-lying spectra of the scalar-
isoscalar channel of QCD in a box, including all required
quark propagation diagrams. From the finite-volume spec-
tra we have extracted the ππ elastic scattering amplitude
which shows qualitatively different behavior at the two
pion masses considered, 236 MeV and 391 MeV, with
the heavier mass featuring a σ appearing as a stable
bound-state.

The amplitude parameterizations we explored to de-
scribe the finite-volume spectrum determined with 236
MeV pions all feature a σ appearing as a broad resonance,
but the pole position is not precisely determined, showing
variation with parameterization choice. We believe that
this comes about because our parameterizations, while
maintaining elastic unitarity, do not necessarily respect
the analytical constraints placed on them by causality
and crossing symmetry. In the future we plan to adapt
dispersive approaches so that they are applicable to de-
scribing the lattice data, and we expect this will allow us
to pin down the σ pole position with precision directly
from QCD.

With constrained amplitude forms in hand, it will be-
come appropriate to perform calculations with lighter u, d
quarks, such that we move closer to the physical pion
mass, in order to make direct comparison with the exper-
imental situation. It will also be useful to examine pion
masses between the 236 MeV and 391 MeV considered
here to determine how the transition we have observed
from bound-state to resonance is manifested – a sugges-
tion from unitarized chiral perturbation theory [28] has
the coupling gσππ, which one might conclude from Fig-
ure 5 is approximately independent of quark mass, having
a divergent behavior somewhere near mπ ∼ 300 MeV.

Our calculational techniques allow us to determine
finite-volume spectra above the KK threshold, and by
considering such energies within a coupled-channel anal-
ysis, we expect to be able to study any f0(980)-like res-
onance that may appear. Such a state is anticipated as
an isospin partner of the a0 resonance which we observed
near the KK threshold in a recent 391 MeV pion mass
calculation [24]. A comprehensive study of the light scalar
meson nonet (σ, κ, a0, f0) within first-principles QCD will
then be possible. The finite-volume approach can also be
extended to study the coupling of these states to external
currents [25, 26, 29–34] – by examining the current vir-
tuality dependence of the form-factors evaluated at the
resonance pole, we expect to be able to infer details of
the constituent structure of the scalar mesons.
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