EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON RADIATION INDUCED EMITTANCE GROWTH

Yves Roblin, Computational Accelerator Physics Group, CASA

David Douglas, Fay Hannon, Alicia Hofler, Geoff Krafft, Chris Tennant
Bunched Beam Electron Cooler

Baseline cooling requirements
- Emittance 0.5 to 1 mm-mrad -> reduce IBS effect
- Magnetized beam, up to 55 MeV energy, 200 mA current
- Linac for acceleration
- Must utilize energy-recovery-linac (beam power is 11 MW)

Solution: cooling by a bunched electron beam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>MeV</td>
</tr>
<tr>
<td></td>
<td>up to</td>
</tr>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Current and bunch charge</td>
<td>A / nC</td>
</tr>
<tr>
<td></td>
<td>0.2 /</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>Bunch repetition</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>476</td>
</tr>
<tr>
<td>Cooling section length</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>RMS Bunch length</td>
<td>cm</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electron energy spread</td>
<td>10^{-4}</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cooling section solenoid field</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Beam radius in solenoid/cathode</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>~1 / 3</td>
</tr>
<tr>
<td>Solenoid field at cathode</td>
<td>KG</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Goal of this LDRD

• Carry out studies to prepare a proposal for an actual experiment at CEBAF.

• Scope:
 – Design optics to enhance/suppress CSR in east ARC (ARC1 or ARC3)
 – Study transport from injector to ARC, optimize for high charge.
 – Determinate optimal injector setup
Experiment Layout
CSR Induced Emittance Growth

500 MeV/c (0.1 ps x 100 keV)

courtesy C. Tennant

Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant
Preliminary Injector simulations

(courtesy A. Hofler)
Proposed location for new injector

Minimal modifications. Remove differential pump and diagnostic girder, add new injector.
Option 1: Use FEL Booster cavity

\[\sigma_z = 2.5 - 3pS \]

\[\epsilon_x = 0.2 \, \text{mm. mrad} \]
Option 2: Capture via 0L03

\[\epsilon_x = 0.7 \text{ mm.mrad} \]

\[\sigma_z = 0.25 \text{ mm} = 0.8 \text{ pS} \]
Longitudinal match

Entrance 0L04

Exit 0L04

Exit chicane

Exit North Linac

Entrance ARC3

Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant
CSR suppression lattice

• Recipe:
 – 2nd order achromat with achromatic and isochronous super periods to suppress CSR induced emittance growth in transverse emittance
 – Low M56 variations within the lattice to also reduce the microbunching gain.

CEBAF lattices can meet that requirement.
CSR ARC3 suppressed lattice (cont)

Small R56 variation, 2nd order achromat, 4 superperiods.
CSR Enhancing Lattice

Twiss parameters—input: csrbadv2optimized.ele lattice: csrbadv2optimized.lte
CSR Enhancing Lattice

\[\varepsilon_{x,n} \text{ (m)} \]

\[s \text{ (m)} \]

5pC
10pC
20pC
40pC

sigma matrix -- input: csrbdv2optimized.ele lattice: csrbdv2optimized.ltc
Emittance Growth in ARC3

Bunchlength fs, transverse emittance 0.2 mm.mrad

Sigma matrix—input: csrbadv2Soptimized.ele lattice: csrbadv2Soptimized.lte
Tomography at the FEL

- With similar phase coverage (157°) we were able to reconstruct horizontal phase space in the FEL Upgrade Driver (TN-09-021)

![Actual beam spots](image)

![Simulated beam spots](image)

MENT output

courtesy C. Tennant

Reconstructed (x,x’)

Simulated (x,x’)

Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant
Conclusions

- Proof of principle CSR suppression experiment seems feasible at CEBAF
- Writing a proposal to the Program Advisory Committee
- Transporting high brilliance beam at CEBAF will also be needed for injection into MEIC
Insertable dump design

Located past 3R04 girder

17 kW dump
Insertable dump design (cont)

<table>
<thead>
<tr>
<th>Beam parameters at dump</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch repetition rate</td>
<td>31 MHz</td>
</tr>
<tr>
<td>Transverse emittance</td>
<td>< 1mm.mrad</td>
</tr>
<tr>
<td>Macro pulse</td>
<td>200 μs , 60 Hz</td>
</tr>
<tr>
<td>Charge</td>
<td>40 pC (15 μA average)</td>
</tr>
<tr>
<td>Bunch Length rms</td>
<td>< 0.1 pS</td>
</tr>
<tr>
<td>Energy spreader rms</td>
<td>< 10 KeV</td>
</tr>
<tr>
<td>Energy</td>
<td>500-600 Mev</td>
</tr>
<tr>
<td>Power deposited</td>
<td>7.5 kW (at 500 MeV)</td>
</tr>
</tbody>
</table>
Power density in dump

7.5 kW beam
7.1 kW deposited
0.4 escape as neutrons and gammas