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Abstract 
Microbunching instability (MBI) has been a 

challenging issue in high-brightness electron beam 
transport for modern accelerators. Our Vlasov analysis of 
MBI is based on single-pass configuration [1-3]. For 
multi-pass recirculation or a long beamline, the intuitive 
argument of quantifying MBI, by successive 
multiplication of MBI gains of sub-beamline sections, 
was found to underestimate the effect [4]. More thorough 
analyses based on concatenation of gain matrices aimed 
to combine both density and energy modulations for a 
general beamline [4]. Yet, quantification still focuses on 
characterizing longitudinal phase space; microbunching 
structures residing in (x,z) or (x’,z) was observed in 
particle tracking simulation. Inclusion of such cross-plane 
microbunching structures in Vlasov analysis shall be a 
crucial step to systematically characterize MBI for a 
beamline complex in terms of concatenating individual 
beamline segments. We derived a semi-analytical 
formulation to include the microbunching structures in 
longitudinal and transverse phase spaces. Using these 
generalized formulas, we studied an example lattice [5] 
and found the microbunching gains calculated from 
multiplication of concatenated gain matrices can be 
considered as upper limit to the start-to-end gains. 

 
INTRODUCTION 

Theoretical formulation of MBI has been developed 
both in single-pass [1-3] and in storage-ring [6, 7] 
systems. Hetfeis et al. [2] derived a linear integral 
equation in terms of the density modulation (or, the 
bunching factor). Huang and Kim [3] obtained the 
integral equation in a more concise way and outlined the 
microbunching due to initial energy modulation. This has 
become the building block for our work. 

To quantify MBI in a beam transport system, we 
estimate the microbunching amplification factor (or, gain) 
along the beamline. For a long transport line of a 
recirculation machine, people tend to treat the 
microbunching problem as a single-pass system. More 
commonly, concatenations of sub-beamline sections were 
studied and the overall microbunching gain is speculated 
as the multiplication of gains from individual subsections 
[2, 8]. Though this concatenation approach seems 
intuitive, we need a more rigorous and detailed 
justification of its validity. Our previous work [4], which 
takes both density (z) and energy (z, δ) modulations in 

longitudinal beam phase-space distribution, had shown 
that a mere product of microbunching gains from 
individual subsections could underestimate the overall 
effect (i.e. smaller than the start-to-end gain). 

In this paper, we take a further step, consider the 
situation where microbunching structures residing in 
transverse-longitudinal dimension (x, z) or (x’, z) can be 
quantified, and derive a set of governing equations for the 
microbunching evolution in terms of density, energy, 
transverse-longitudinal modulations along a general linear 
lattice. Then we study an example of recirculating 
beamline [5]. From the simulation results, we have some 
interesting observations and have found such combined 
analysis can give more information than the previous 
treatment. Although the formulation still appears 
incomplete, the gains calculated from multiplication of 
concatenated gain matrices can be considered as upper 
limit to the start-to-end gains.  Comparison of the results 
with ELEGANT tracking [9] has given qualitative 
agreement. Extension of this study to include more 
aspects of microbunching can be possible future work.  

 
THEORY 

From the (linearized) Vlasov equation, the evolution of 
the phase-space distribution function is governed by [3]  

  
f ( X ;s) = f0( X0 )− dτ

∂ f0( Xτ )
∂δτ

dδ
dτ0

s

∫                                 (1) 

where the energy change due to collective effect can be 
induced by density modulation 
dδ
dτ

= − Nre
γ

dk1
2π

Z(k1;τ )b(k1;τ )e
ik1zτ∫                                     (2) 

Here f is the beam phase-space distribution function, 
X(s) = (x, x’, z, δ; s) the 4-D phase-space variable, N the 
number of particles, γ the Lorentz factor, Z(k) the 
longitudinal impedance per unit length, k the modulation 
wavenumber, and b(k) the density modulation. 

More specifically, let us define the following quantities 
for subsequent analysis. 

  
b(kz ;s) = 1

N
dX  f ( X ;s)e− ikz (s)zs∫                                      

 (3) 

  
p(kz ;s) = 1

N
dX  δ s − hzs( ) f ( X ;s)e− ikz (s)zs∫                        

 (4) 

  
ax (kz ;s) = 1

N
dX  xs( ) f ( X ;s)e− ikz (s)zs∫                             

 (5) 

  
ax ' (kz ;s) = 1

N
dX  xs '( ) f ( X ;s)e− ikz (s)zs∫                             

 (6) 

Figure 1 illustrates the modulations described by Eqs. 
(3-6), shown in (a) to (d), respectively. 
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Figure 1: Illustration of various types of modulations. 
 

Below we would consider how these different phase-
space modulations evolve according to Eq. (1). The 
detailed derivation is not shown here and only the 
resultant formulas are summarized. The four integral 
equations governing b(kz), p(kz), ax(kz), and ax’(kz) are, 
respectively 

  
b kz ;s( ) = b0 kz ;s( ) + dτK τ ,s( )b kz ;τ( )

0

s

∫                                (7) 

  
p(kz ;s) = p0(kz ;s)+ dτ M (τ ,s)b(kz ;τ )

0

s

∫                             (8) 

  
ax (kz ;s) = ax0(kz ;s)+ dτ A(τ ,s)b(kz ;τ )

0

s

∫                            (9) 

  
ax ' (kz ;s) = ax '0 (kz ;s)+ dτ B(τ ,s)b(kz ;τ )

0

s

∫                           (10) 

where the kernel functions K(τ,s), M(τ,s), A(τ,s) and B(τ,s) 
describe the interaction (see Ref. [10] for complete 
expressions). 

Of our particular interest, the beam phase-space 
distribution is assumed to be uniform in z and Gaussian 
over the remaining coordinates. The perturbed 
distribution function is assumed the following form 

  
f0( X0 ) =

n0 + Δn0(z0 )
2π( )ε x0 2πσδ

e
−

x0+Δx0 ( z0 )( )2+ βx 0 x0 '+Δx0
' ( z0 )( )+α x 0 x0+Δx0 ( z0 )( )( )2

2ε x 0βx 0
−
δ0−hz0+Δδ ( z0 )( )2

2σδ
2

 (11) 
where the individual perturbations are assumed to be 
small compared with the unperturbed one. 

Note that there are a total of 4×4 =16 combinations for 
the above situations [see Eqs. (3-6) and (7-10)]. At each 
location, the modulations can be recorded as a state 
vector, 

   V(s) ≡ b(kz ;s) p(kz ;s) ax (kz ;s) ax ' (kz ;s)⎡⎣ ⎤⎦
T

                    (12) 

  b(kz ;s) = b( z ) (kz ;s)+ b(δ ,z ) (kz ;s)+ b( x ,z ) (kz ;s)+ b( x ',z ) (kz ;s)  (13) 

  p(kz ;s) = p( z ) (kz ;s)+ p(δ ,z ) (kz ;s)+ p( x ,z ) (kz ;s)+ p( x ',z ) (kz ;s)  (14) 

  ax (kz ;s) = ax
( z ) (kz ;s)+ ax

(δ ,z ) (kz ;s)+ ax
( x ,z ) (kz ;s)+ ax

( x ',z ) (kz ;s)  (15) 

  ax ' (kz ;s) = ax '
( z ) (kz ;s)+ ax '

(δ ,z ) (kz ;s)+ ax '
( x ,z ) (kz ;s)+ ax '

( x ',z ) (kz ;s)  (16) 
In the above expressions, the superscripts denote the 

modulations from either case illustrated in Fig. 1. 

EXAMPLE 
In this section, we would apply the generalized 

formulation to an example of recirculating machine [5]. 
This recirculating beamline consists of two arcs and the 

design is based on that outlined in Ref. [11]. One of the 
arcs is composed of 4 triple-bend-achromatic (TBA) 
units. The arcs are achromatic and quasi-isochronous. Let 
us separate this machine into four pieces: S1, ARC1, S2, 
and ARC2 (see Fig. 2). In this example, the beam is 
assumed 150 MeV in energy, peak bunch current 60 A, 
with normalized emittance 0.4 µm and relative energy 
spread 1.33×10-5. Figure 3 shows Twiss and momentum 
compaction functions along the beamline. 
 

 
Figure 2: Schematic layout of the recirculating beamline 
(not to scale), from Ref. [5]. 
 

 

 

Figure 3: Twiss and momentum compaction functions 
along the beamline. 
 

Below we would estimate both the density and energy 
modulations at the end of the beamline but begin from 
two different situations; one is start-to-end case [S1-
ARC1-S2-ARC2] and the other is mid-to-end case [S2-
ARC2]. Let us consider the following combinations:  

 
(i) start-to-end case, with initial density modulation, 

V(0) = [1 0 0 0]T; 
(ii) start-to-end case, with initial energy modulation, 

V(0) = [0 1 0 0]T; 
(iii) mid-to-end case, the initial condition to S2 takes 

the value at the exit of ARC1, V(S2) = [b(k) p(k) ax(k) 
ax’(k)]T for case (i) and (ii), based on the present 4-d 
theory; 

(iv) mid-to-end case, the initial condition to S2 takes 
the value at the exit of ARC1, V(S2) = [b(k) p(k) ax(k) 
ax’(k)]T for case (i) and (ii), based on 2-d theory [4]. 

 
The output state vectors are in general complex 

quantities. For example, for the resultant density 
modulation in Eq. (13), each individual contribution can 
have different phases. Taking absolute values for all 
individual contributions, the interference is then ignored 
and the resultant modulation can be considered as the 
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upper limit. This case is denoted as 
  
Gχ

sup = χ (ω )∑ , where 

  ω = (z),(δ , z),(x, z),(x ', z) , and   χ = b, p,ax ,ax ' . For 
comparison, the other case with account of phase 
information is denoted as 

  
Gχ = χ (ω )∑ . 

For simplicity, in what follows, we only include steady-
state CSR [12,13], which only occurs in ARC1 and 
ARC2. For the case of initial density modulation, Fig. 4 
shows the density and energy modulation spectra at the 
end of ARC2. From the figure, we can see differences 
between red and blue curves. The red curves, with output 
by taking absolute values for individual contributions, 
largely give the upper limit. The black curves can be 
considered as start-to-end gains for the beamline. The 
blue curves are found to underestimate the overall 
modulation. Similar results can be observed for the case 
of initial energy modulation, shown in Fig. 5. 
 

  
Figure 4: Density (left) and energy (right) modulation 
spectra with initial density modulation. 

 

  
Figure 5: Density (left) and energy (right) modulation 
spectra with initial energy modulation. 

 
In our previous work [4], we claimed that the 

underestimation of the 2-d [b(k) p(k)]T description 
originates from lack of inclusion of transverse-
longitudinal correlations, e.g. (x,z) and/or (x’,z) 
modulations, at ARC1 exit. Now we can estimate the 
modulation spectra residing in (x,z) and (x’,z), shown in 
Fig. 6. To confirm, we used ELEGANT to track a large 
number (50-million) of particles and indeed observed the 
microbunching structures in (x, z) and (x’, z), shown in 
Fig. 7.  

 

 
Figure 6: x-z (left) and x’-z (right) modulation spectra 
with initial density modulation. 
 

  

  
FIG. 7: Qualitative confirmation of transverse-
longitudinal microbunching for λ = 50 µm (top) and λ = 
125 µm (bottom) with initial density modulation. 
 

To end this section, in the left figure of Fig. 4 we 
compare the microbunching gains calculated from three 
different ways: the start-to-end approach (black), the 4-d 
approach (red and blue curves, from S2 to ARC2) 
developed in this paper, and the 2-d approach (green 
curve and red dots, from S2 to ARC2) [4]. With inclusion 
of transverse-longitudinal microbunching structures, the 
calculated (concatenated) gains from sub-beamline 
section span a range, which largely covers the start-to-end 
gains. Figure 8 below shows the difference between the 
start-to-end results (black) and that obtained from 
intuitively direct multiplication of individual gains (blue). 
 

 

 

Figure 8: Comparison of density modulation spectra via 
start-to-end (black curve) and direct-multiplication (blue) 
consideration. 
 

SUMMARY 
In this paper we have derived a set of governing 

equations for microbunching in different dimensions, 
including density, energy, and transverse-longitudinal 
modulations, and apply to an example of recirculating 
machine. The Vlasov solutions and tracking simulations 
agree qualitatively with each other. Although the Vlasov 
results from concatenated sub-beamline sections do not 
match well with those obtained directly from the start-to-
end results, 

  
Gsup = χ (ω )∑ gives upper limit for both 

density and energy modulations. In addition, the extended 
formulations can give us further insights on how upstream 
beamline sections can accumulate density, energy, and/or 
transverse-longitudinal microbunching, when the full-ring 
lattice is not provided. 
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