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ABSTRACT

The Standard Model of particle physics represents our present best
understanding of the elementary particles and three of the four fundamental
forces. One of the most important and challenging tasks of modern particle
physics is to test and to find the evidence for new physics not contained in the
Standard Model. One such test, the Qweak experiment, was conducted at JLab
in Newport News, VA, from 2010 to 2012. The goal of the experiment is to
measure the value of the weak charge of proton, Qweak to a 4% precision, which,
if it confirms the Standard Model prediction, will provide tighter constraints on
new physics; or, if it is in disagreement with that prediction, will provide evidence
for new physics. In this experiment, an 85% polarized electron beam with 150 µA
current is used on a 35 cm thick hydrogen target to make elastic electron-proton
scattering happen at a four-momentum transfer Q2 = 0.03 GeV/c2. To determine
the weak charge, we must also precisely determine the kinematics of the
scattering process, namely, the Q2. In order to reach this goal, the hardware, a
particle tracking system and special analysis software, the Qweak Tracking
Reconstruction software, are both needed. In this dissertation, a full description
of the tracking software and the prelimary analysis of the Q2 and the first subset
of production data will be given. The proton’s weak charge Qp

weak was measured
to be 0.064± 0.012, which is consistent with the prediction of the Standard Model.
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CHAPTER 1

Theory

1.1 Standard Model of Particle Physics

Our present best understanding of the elementary particles and three of the four

fundamental forces of nature is described in the StandardModel of Particle Physics.

The three kinds of elementary particles contained in the Standard Model are lep-

tons, quarks and force mediators, while the three fundamental forces (interac-

tions) are the electromagnetic, weak and strong interactions. The only force we

are familar with that is absent from the current StandardModel is gravitation, which

is described by General Theory of Relativity separately.

All the visible matter in our universe is made up of leptons and quarks while

the mediators are responsible for the non-gravitational interactions between them.

Up to the present date, there are a total number of 61 elementary particles exist-

ing in the Standard Model. They include 12 leptons (e,µ, τ , νe, νµ, ντ and their



2

antiparticles), 36 quarks (u, d , c, s, t, b) with three different color charges and

their antiparticles), 12 mediators (8 gluons, W +, W −, Z bosons and photon) and

one Higgs Boson, which was recently confirmed to exist [1].

In addition to the description of elementary particles, the Standard Model also

provides the main theoretical framework for each force such as quantum elec-

trodynamics (QED) for the electromagnetic force and quantum chromodynamics

(QCD) for the strong force. The weak force, which is outlined in the unified theory

of the electroweak force, will be discussed more in detail in the next section and

is the basis of the Qweak experiment. In each theory, the force occurs due to

the exchange of corresponding mediators: the electromagnetic force is carried by

the photon, the weak interaction is carried by charged and neutral weak vector

bosons and the strong force is carried by gluons. The property of the mediators

largely determines the features of the force, such as its strength and range. The

dimensionless effective coupling constant, which is used to describe the relative

strength of different types of interactions, varies from 1 in the strong interaction to

10−6 in the weak interaction. Similarly, the force range can change from infinity in

the electromagnetic interaction to order of femtometers in the strong interaction.

Another important aspect of the Standard Model lies in the concept of sym-

metry; the Standard Model assumes an SU(3)× SUL(2)× U(1) gauge symmetry.

The Lagrangian density is constructed under various scenarios through this prin-

ciple of symmetry. For example, the successful electroweak theory, which will be

discussed in Sec. 1.2, is based on the unified SUL(2)× U(1) gauge groups.
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Although the Standard Model represents our best understanding of elemen-

tary particles and forces of nature so far, most physicists are convinced that it is

not the final solution to describe the whole picture. As mentioned before, grav-

itation is not included in the Standard Model due to the lack of an acceptable

quantum theory of gravity. Continuous attempts over many years to incorporate

gravity into the Standard Model have not led to a final solution. The Dark Matter,

which accounts for the dominant form of masses in our universe, is another aspect

that the Standard Model does not fully explain. Last but not least, a more inherent

reason that leads physicists to think the Standard Model is not an ultimate optimal

theory is that it contains too many arbitrary parameters: 19 arbitrary parameters

(masses, weak mixing angles and gauge couplings etc.) are included currently.

Numerous evidences of the deficiencies of the Standard Model lead physicists

to believe that in order to better understand this universe, new and presently un-

known physics beyond the Standard Model seems to be inevitable and searching

for it will keep playing an integral role in physicists’ work in the future.

One thing that needs to be noticed is that the deficiencies of the Standard

Model do not necessarily mean that the StandardModel is wrong. On the contrary,

no failure of the Standard Model has been undeniably seen yet for any predictions

so far. Therefore, from here on, unless explicitly stated otherwise, we assume the

validity of the Standard Model in our derivations.
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1.2 The Theory of Electroweak Unification

Although electromagnetism and the weak interaction seem to be quite different

in terms of the magnitude and force range at first glance, they can be described

in a unified theory called the electroweak theory, where each of those two effec-

tive interactions are just different manifestations of the same electroweak force.

An early attempt to unify electromagnetism and the weak interaction was made

by Glashow in 1961 [2]. In addition to the two W +, W − intermediate bosons, he

also predicted the existence of one additional neutral intermediary. Then, in 1967,

Weinberg and Salam improved the theory by modeling it into the gauge field the-

ory where the symmetry between the two interactions is spontaneously broken in

order to interpret the obvious differences in the masses of the photon and inter-

mediate bosons [3, 4]. This theory, which is called the Glashow-Weinberg-Salam

(GWS) theory today, together with QCD, consists of the cornerstone of the Stan-

dard Model.

TheGWS theory asserts that apart from the SUL(2) gauge boson vector fields,

an additional isosinglet vector boson field Bµ is also introduced, to give rise to the

massless field when the symmetry is spontaneously broken. Then the covariant

derivative of the Higgs field φ becomes

Dµφ = (∂µ − igW a
µ τ

a − i
2

g ′Bµ)φ, (1.1)

where g and g ′ are the SUL(2) and U(1) coupling constants and τa is equal to half

of the corresponding Pauli spin matrix σa/2. Note here that when mentioning the
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SUL symmetry, we always put a subscript in order to emphasize that it involves left-

handed states only. If φ acquires a vacuum expectation value v and we replace

that value into Eq. 1.1, the relevant Lagrangian becomes

1

8
g2v 2

[
(W 1

µ )
2 + (W 2

µ )
2
]
+

1

8
v 2(gW 3

µ + g ′Bµ)
2. (1.2)

We see immediately that for the first two terms in Eq. 1.2, two charged weak

bosons W +, W − can be derived through the transformation

W ±
µ =

1√
2
(W 1

µ ∓ iW 2
µ ) (1.3)

with mass

MW =
1

2
gv .

The last quadratic term in Eq. 1.2 contains the mixture of two neutral vector

bosons W 3
µ and Bµ. By solving the mass matrix, two eigenstates are generated in

terms of those two vector fields as follows:

Zµ =
1√

g2 + g ′2
(gW 3

µ + g ′Bµ), (1.4)

Aµ =
1√

g2 + g ′2
(−g ′W 3

µ + gBµ). (1.5)

By substituting Eqs. 1.4-5 into Eq. 1.2, the last term becomes

1

8
v 2(g2 + g ′2)ZµZµ,

so it is quite obvious that the newly derived vector fields have the masses

MZ =
1

2
v
√

g2 + g ′2,

MA = 0.
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The field Aµ is just the photon field of QED which characterizes the electromag-

netic interaction and the field Zµ is identified as the neutral weak boson Z 0. To

further simplify Eqs. 1.4-5, a free parameter, the weak mixing angle θW , is intro-

duced through ⎛

⎜⎜⎝
Zµ

Aµ

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝
cos θW sin θW

− sin θW cos θW

⎞

⎟⎟⎠

⎛

⎜⎜⎝
W 3

µ

Bµ

⎞

⎟⎟⎠ , (1.6)

where

cos θW =
g√

g2 + (g ′)2
, sin θW =

g ′
√

g2 + (g ′)2
.

Notice that the g and g ′ are not the physical coupling constants of the weak and

electromagnetic interactions; in order to get the physical coupling constants, we

can use Eqs. 1.3-5 in the gauge equations and derive the following relationship

between the coupling constants, by directly comparing with the electric current for

the leptons [5]:

gW =
ge

sinθW
,

gZ =
ge

sinθWcosθW
.

This also relates the tree-level masses of the charged and neutral weak bosons

through

MZ =
MW

cos θW
. (1.7)

The neutral current was first observed in theGargamelle bubble chamber at CERN

in 1973 through the νp → νX process [6]. In 1978, another cornerstone exper-

iment E122 was carried out at SLAC by Charles Prescott and collaborators [7].
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This experiment made the first observation of the parity-violating asymmetry ef-

fect in a weak neutral interaction and therefore established the validity of the weak

neutral current in the Standard Model. In 1983, the W ± and Z 0 bosons were dis-

covered by the UA1 and UA2 experiments at CERN [8, 9], which further validated

the electroweak theory.

1.3 Electromagnetic Interaction

The lowest-order scattering amplitude for an electromagnetic process in which an

electron is scattered from a proton is calculated in terms of the electric current as

Mγ = −4πα

q2
J µeJ p

µ , (1.8)

where α is fine structure constant, q2 is the four-momentum transfer and J µe is

the electron current, which is defined as

J µe = ū(l ′)γµu(l), (1.9)

whereas the proton current, which contains the form factor representing how the

photon couples to the composite structure of the proton, is expressed as

J p
µ = ū(p′)(F p

1 (q2)γµ + F p
2 (q2)

iσµνqν
2Mp

)u(p), (1.10)

where Mp is the mass of the proton and F p
1 (q2) and F p

2 (q2) are called Dirac and

Pauli form factors, respectively, which are normalized to unity and to the anoma-

lous magnetic moment of the proton, respectively, when q2 is taken in the limit to

0. Notice here that we write the kinematic of each particle, which consists of the
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four parameters p ≡ (E/c ,p), in a more compact form as l , l ′, p, p′, shown in the

above equations. Linear combinations of those two form factors give rise to the

Sachs form factors [10]:

Gp
E = F p

1 − Q2

4M2
p

F p
2 (1.11)

Gp
M = F p

1 + F p
2 (1.12)

where Q2 = −q2 > 0, whereas Qp
E and Qp

M are named as the electric form factor

and magnetic form factor, which describe the spatial distribution of electric charge

and current inside the proton, and only depend on the Q2.

For those form factors, each individual quark flavour contributes in terms of

their relevant electric charge to the proton’s form factors, like

Gp
E ,M ≃ 2

3
Gp,u

E ,M − 1

3
(Gp,d

E ,M + Gp,s
E ,M).

Two things need to be noticed here: first, for the proton, only u and d quarks are

present both as sea and valence quarks, while the s quark is only present in the

quark sea; second, we only consider three light quarks: u, d , s here because the

masses of the heavier quarks are much larger than Λ, where Λ is a constant to

parameterize the strength of strong coupling constant in terms of q2 and which

appears to be ≃250 MeV. In the regime of q2 ≫ Λ, the strong coupling constant

decreases and the interaction between quarks becomes relatively weak, which

makes the contribution from heavy quarks negligible.
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1.4 Neutral Current Weak Interaction

Now, it is time to take a look at the more complicated scattering amplitude in which

the neutral weak boson Z 0 is involved. Similar to the Eq. 1.8, we can write the

scattering amplitude as

MZ = −
√
2GFJ µeZJ pZ

µ , (1.13)

where GF is the Fermi constant. The J µeZ describes how the Z 0 is coupled to the

electron

JµeZ = ū(l ′)γµ(cV − cAγ
5)u(l), (1.14)

where cV and cA are the coefficients of vector and axial components in this cou-

pling. In the Standard Model, their values are equal to

cV = −1

2
+ 2 sin2 θW and cA = −1

2
;

putting those values into Eq. 1.14, we get the current

JµeZ = −1

2
ū(l ′)γµ(1− 4 sin2 θW − γ5)u(l). (1.15)

Not to mention the proton’s internal structure, the coupling between the Z 0 and

the proton is more complicated because of the emergence of the axial vector

component. However, similar to Eq. 1.10, we can write down the corresponding

current as

J p
µ = ū(p′)(F pZ

1 (q2)γµ + F pZ
2 (q2)

iσµνqν
2Mp

+ γµγ5GZ
A (q2))u(p), (1.16)

where the additional axial vector form factor GZ
A (q2) is added here. Following Eqs.

1.11-12, the electric and magnetic form factors can be made by the same linear
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combinations of F pZ
1 and F pZ

2 here. Instead of the electric charge, quark flavor

contributes to the vector form factors in the proton and Z 0 coupling according to

the neutral weak vector charges, as

Gp,Z
E ,M = (1− 8

3
sin2 θW )Gp,u

E ,M + (−1 +
4

3
sin2 θW )(Gp,d

E ,M + Gp,s
E ,M). (1.17)

Again, we only include the light quarks here for the same reasoning when we

express Gp
E ,M in Sec. 1.3. Similarly, the axial vector form factor can be identified

as

Gp,Z
A = Gp,u

A − (Gp,d
A + Gp,s

A ). (1.18)

At Q2 = 0 (GeV/c)2, since there is no net strangeness appearing in the pro-

ton, one expects that the contribution from strange quarks in Eq. 1.17 should be

G s
E (q2) = 0 and G s

M(q2) = µs , where µs is the strangeness magnetic moment of

the proton. However, from the analysis of the previous experimental data taken

at Q2 ≈ 0.1 (GeV/c)2 by using different targets [11], G s
E ,M have different values,

which are functions of transferred four-momentum Q2, due to their existence in

the “quark-gluon sea”. Therefore, we need to precisely determine the contribu-

tion from strange quark in our range of Q2 ≈ 0.026 (GeV/c)2. We can obtain this

goal by separating the strange quarks effect from the other two valence quarks u

and d and then incorporating it into the so-called hadronic form factor B(Q2). As

we will see in Sec. 1.6, we rely on the existing experiments’ results to extrapolate

the value of B(Q2) to the Q2 of our interest, which contains the correct value of

G s
E ,M . In short, we do not measure G s

E ,M specifically but instead calculate them as

a component in B(Q2).
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1.5 The Parity-Violating Asymmetry in the Qweak

Experiment

From Eq. 1.17, by ignoring the contribution of strange quarks, one could easily

write down the weak charge of proton in the Standard Model as

Qp
W ≈ 2(1− 8

3
sin2 θW ) + (−1 +

4

3
sin2 θW ) = 1− 4 sin2 θW . (1.19)

This quantity happens to be suppressed to be rather small (≈ 0.07), therefore

providing a chance for a sensitive probe of the weak mixing angle sin2 θW , if there

is any observed deviation from the theoretical value predicted by the Standard

Model. In this section, we will describe how the quantity is measured in the Qweak

experiment.

The Qweak experiment employs a 1.165 GeV longitudinally-polarized elec-

tron beam, scattering off of an unpolarized proton in a fixed target of liquid hydro-

gen and then the scattered electron flux is detected. The helicity of the electron

beam is rapidly reversed and the scattered electron flux in each helicity is inte-

grated in order to effectively count the number of scattered electrons in each state.

The asymmetry A, which is the difference in the cross section for each beam he-

licity state, is defined as

Ap
LR =

σR − σL
σR + σL

, (1.20)

where σR and σL are the cross sections for the right-handed and left-handed elec-

trons, respectively. In the lowest-level Feynman diagram, the elastic scattering
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FIG. 1.1: The lowest-order Feynman diagrams to the electron-proton scattering,
where either the photon or neutral weak boson Z0 are exchanged.

of an electron from a proton is a mixture of two interactions: the electromagnetic

interaction in which photon is exchanged and the weak interaction in which the

neutral weak boson Z 0 serves as the mediator, as in Figure 1.1 . Therefore, the

scattering amplitude M can be expressed as

M = Mγ +MZ . (1.21)

Rewriting Eq. 1.20 in terms of the scattering amplitude and substituting Eq. 1.21

into the rewritten form, we get

Ap
LR =

[ |Mγ +MZ ,R |− |Mγ +MZ ,L|
|Mγ +MZ ,R |+ |Mγ +MZ ,L|

]2. (1.22)

Eq. 1.22 can be further simplified based on the following assumptions: first,

Mγ ≫ MZ . This is because in the low Q2 region where the value of Q2 for Qweak

is roughly equal to 0.026 (GeV/c)2, the mass term appearing in the denominator

of the propagator will make the magnitude of Mγ ≃ 107 times bigger than MZ .

Therefore, the terms like M2
Z are ignored and we are able to get

Ap
LR = −2

Re(M∗
γMZ )

|Mγ|2
. (1.23)

The numerator part does not cancel out during the subtraction because the cou-
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pling of quarks and leptons to the Z 0 has the V − A form like

−igZ
2

γµ(c f
V − c f

Aγ
5), (1.24)

whereas the combination of vector γµ and axial vector γµγ5 term violates the con-

servation of the parity. So the only work left to do is to calculate the scattering

amplitude of the electromagnetic and neutral weak interaction during the elastic

electron-proton scattering respectively.

So based on the results from Sec. 1.3 and Sec. 1.4, we can write Eq 1.22

as [12]

Ap
LR = −(

GF Q2

4πα
√
2
)
ϵ(θ)Gγ

E GZ
E + τGγ

MGZ
M − (1− 4 sin2 θW )ϵ′Gγ

MGZ
A

ϵ(θ)(Gγ
E )

2 + τ(Gγ
M)2

, (1.25)

where we define the kinematic factors as

τ =
Q2

4M2
p

,

ϵ(θ) = [1 + 2(1 + τ) tan2
θ

2
]−1,

ϵ′(θ) =
√
τ(1 + τ)(1− ϵ2(θ)),

where θ is the lab scattering angle and Mp is the proton’s mass. It is obvious

from Eq. 1.25 that the parity-violating asymmetry contains three terms, each of

which manifests the interference between electromagnetic and neutral weak in-

teractions. It is also noted that the asymmetry depends on θ.

For Qweak, the scattered electrons are only measured at a very small forward

angle, so we can regard θ → 0◦. Consequently, one has ϵ(θ) ≈ 1 and ϵ′ ≃ 0, so
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the term with axial form factor GZ
A becomes negligible, leading to

Ap
LR ≃ −(

GF Q2

4πα
√
2
)
ϵ(θ)Gγ

E GZ
E + τGγ

MGZ
M

ϵ(θ)(Gγ
E )

2 + τ(Gγ
M)2

. (1.26)

At very low momentum transfer Q2 ≈ 0.03 (GeV/c)2, one also has τ ≈ 0 so we

can even further simplify Eq. 1.25 by expanding the denominator in terms ofO(τ),

Ap
LR = −(

GF Q2

4πα
√
2
)(

GZ
E

Gγ
E
+ τ

Gγ
M(GZ

MGγ
E − GZ

E Gγ
M)

ϵ(Gγ
E )

3
+O(τ 2) +O(τ 3) + · · · ). (1.27)

Remembering that at Q2 → 0, Gγ
E is normalized to unity and GZ

E = 1− 4 sin2 θW is

normalized to the weak charge of the proton at tree level, this leads to

Ap
LR = −(

GF

4πα
√
2
)(Q2Qp

W + Q4B(Q2)). (1.28)

Here, B(Q2) depends on the nucleon electromagnetic and strange quark form fac-

tors, which will be detailed in the next section. Eq. 1.28 also explains how we ex-

tract the weak charge of the proton from the measured parity-violating asymmetry

in the Qweak experiment. Of course we need to carefully design the experiment

so that the Q2 chosen is within a range where it is small enough so that the uncer-

tainty of B(Q2) is comfortably constrained while big enough so that the asymmetry

is measurable to the desired statistical precision.

1.6 Hadronic Form Factor B(Q2)

Although it is suppressed by the very small momentum transfer Q2, the hadronic

form factor B(Q2) still plays an important role in extracting the weak charge of pro-

ton to a high precision. It is thus worthwhile to devote some effort to get the correct
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B(Q2). From Eqs. 1.26-7, one can see that the hadronic form factor depends on

both Gγ
E ,M and GZ

E ,M . Since all the form factors are functions of momentum transfer

Q2, the hadronic form factor B(Q2) is also a function of Q2.

One can see that Eq. 1.28 can be rewritten as

Ap
LR ≃ A0(Q2Qp

W + Q4B(Q2)), (1.29)

where the overall normalization is decided by A0 = −GF/(4πα
√
2). A number of

parity-violating electron-proton (PVES) experiments have been carried out over a

wide range of momentum transfers Q2 and so one can fit the correlation between

the normalized data Ap
LR ≡ Ap

LR/(A0Q2) from Eq. 1.29 and Q2. Note that the

intercept at Q2 = 0 would directly give the value of Qp
W . Furthermore, the value of

B(Q2) at the Q2 of our interest can be deduced by extrapolating from the results

of the fit.

Figure 1.2 depicts how we determine the B(Q2) using the results of these

earlier experiments.

1.7 Radiative Corrections and Higher order effects

At tree level, the weak charge of the proton is given by

Qp
W = 1− 4 sin2 θW . (1.30)

With electroweak radiative corrections included, the term can be expressed

up to one loop as [15]

Qp
W = [ρNC +∆e][1− 4 sin2 θ̂W (0) +∆e ′] +!WW +!ZZ +!γZ , (1.31)
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FIG. 1.2: The correlation between the normalized, parity-violating asymmetry and
the momentum transfer using an analysis of all previous world data from parity-
violating electron-proton experiments [13]. The extrapolation to Q2 = 0 yields the
weak charge of the protonQp

W , which will be used as themainmethod to determine
the weak charge of proton after Qweak. The orange triangle point indicates the
prior knowledge of Qp

W before adding the relatively new results from SAMPLE at
MIT-Bates, PVA4 at Mainz and the HAPPEX and G0 Collaborations at Jefferson
Lab. The star point is the predicted value from the Standard Model. The solid
blue line and the shaded blue band are the best fit and 1-σ bound of the current
world data, respectively. The dotted line is the best fit if theoretical estimates of
the anapole form factor are incorporated [14].

where higher-order contributions from vertex corrections, vacuum polarization and

box diagrams are considered. It is possible to predict ρNC , ∆e and ∆e ′ quite pre-

cisely, all of which arise from the standard electroweak radiative corrections. Ad-

ditionally, two-boson exchange brings about box diagram corrections as the last

three terms in Eq 1.30 indicate. The WW and ZZ diagrams, where two mas-

sive bosons are involved, are rather small and well predicted here at the region

of low Q2 of our interest [15]. Consequently, those box diagrams involving at

least one photon (γγ, γZ) as the last term in Eq. 1.30 describes are the main
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concern, because they are larger corrections. For the γZ box diagram, exten-

sive work has been carried out to calculate this value during the past few years

[16, 17, 18, 19, 20, 21]. Result from Gorchtein and Horowitz showed that the rel-

ative correction of the γZ box diagram to Qp
W is (7.6± 2.8%) [20]. The work from

Sibirtsev et al. [18], however, suggested a smaller uncertainty∼ 1.5% related with

the γZ correction compared with the 2.8% uncertainty showed before. Carlson

and Rislow’s work [19] agreed with the Sibirtsev et al. result within the uncertainty

limits and also claimed a smaller uncertainty than Gorchtein and Horowitz’s result.

The latest result, from Hall et al. shows the correction [21], at the kinematics of

the Qweak experiment, is 7.8± 0.5%.

For γγ corrections, their effect on the asymmetry can be denoted as Z (γγ)

and γ(γγ), which represent the interference between single Z0 and photon ex-

change and the γγ exchange amplitude. A calculation by Tjon et al. [22] showed

that Z (γγ) and γ(γγ) will particularly cancel in their effect on ALR and the work

also indicated that at the Q2 region of our interest and in the forward angle limit,

the correcton to Qp
W is negligible.

1.8 Running of the Weak Mixing Angle sin2θW

The Qweak experiment will measure the weak charge of the proton Qp
W = 1 −

4 sin2 θW to 4% precision within the context of the Standard Model; this will also
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FIG. 1.3: Two types of higher order corrections of the Feynman diagrams to the
electron-proton scattering: the left is the γZ box diagram while the right represents
the γγ diagram.

consitute a precision measurement of the weak mixing angle sin2 θW , providing a

direct probe of the running of sin2 θW as predicted by the Standard Model at low

Q2.

Similar to the well-known phenomenon of the running of α(Q2) in QED, the

value of the weak mixing angle sin2 θW , which is defined as the mixing ratio be-

tween the third component of the isotriplet vector boson W and the isosinglet B

in GWS theory, also depends on momentum transfer Q2 and thus the effect is

referred as the “running of sin2 θW ”.

The variation of sin2 θW stems largely from the large logarithm term, resulting

from the one-loop level radiative correction. Czarnecki and Marciano [23] found

that it is possible to replace the tree-level weak charge of the proton by

1− 4κ(Q2) sin2 θ̂W (MZ ) ≡ 1− 4 sin2 θW (Q2). (1.32)

where the caret sign indicates the quantities under the minimum subtraction (MS)

renormalization scheme and κ(Q2) represents the Q2-dependent shift in the ef-

fective sin2 θW (Q2) due to loop effects. In Eq. 1.31 sin2 θ̂W (MZ ) is the value of

the weak mixing angle at the Z0-pole, where Q2 = MZ under the MS scheme and
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sin2 θW (Q2) is the running parameter depending on Q2.

Figure 1.4 displays the predicted running of sin2 θW (Q2) as well as the results

of several precision electroweak experiments which were carried out at different

Q2 and which will be discussed more in detail in Sec. 1.10.

FIG. 1.4: The calculated running of the weak mixing angle sin2 θW in the Standard
Model (blue solid line), as defined in the MS renormalization scheme [23, 24],
whereas the thickness of the blue curve describes the uncertainty of the predic-
tion. The existing data are displayed as black points with error bars on the graph.
They are from atomic parity violation [25], SLACMoller scattering experiment [26],
NuTeV deep inelastic neutrino scattering experiment [27], Tevatron [28], LEP and
SLC Z0-pole experiments [29]. The anticipated result from the Qweak experiment,
which is outlined as a pink point and placed at an arbitrary position, could either
confirm the expected value of sin2 θW from the Standard Model or indicate new
physics.
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1.9 Beyond the Standard Model

A precision measurement of the weak charge of the proton along with any devi-

ation from the theoretical prediction in the Standard Model can be used to test

for possible new physics up to high energy scales. To calculate the quantitative

implication of the proposed 4% precision measurement of Qp
W , it is useful to con-

sider a model-independent Lagrangian in terms of an effective contact interaction

of the form A(e)× V (q) [15]:

LeH = LPV
SM + LPV

NEW , (1.33)

where

LeH
SM = −GF√

2
ēγµγ5e

∑

q
C1qq̄γµq (1.34)

LeH
NEW =

g2

4Λ2
ēγµγ5e

∑

f
hq

V q̄γµq (1.35)

and where g , Λ and hq
V are the coupling constant, mass scale and effective coeffi-

cients related with parity-violating new physics, respectively. The effective coeffi-

cients are of order of unity and are set by hu
V = cos θh and hd

V = sin θh, where θh is

called the flavor mixing angle [13]. Any discrepancy between the measured value

and the theoretical value of Qp
W , which represents the new physics component,

can be expressed as

(Qp
W )NEW = (Qp

W )Exp − (Qp
W )SM . (1.36)



21

The uncertainty of the above equation is

∆(Qp
W )NEW ≃ ∆(Qp

W )Exp, (1.37)

where the uncertainty of (Qp
W )SM is ignored because it is relatively small. Using the

Lagrangians from Eqs. 1.32-4, the ratio between the deviation from the theoretical

value and its own uncertainty associated with new physics becomes

S =
(Qp

W )NEW
∆(Qp

W )NEW
=

(Qp
W )NEW

∆(Qp
W )Exp

= (
g2

4Λ2
(Qp

W )NEW )/(
GF√
2
(∆Qp

W )Exp). (1.38)

Consequently, the energy scale to which our measurement can probe can be

written in the following form, by rearranging the above equation

Λ2

g2
= − 1

2
√
2

(Qp
W )NEW

SGF (∆Qp
W )Exp

, (1.39)

where (Qp
W )NEW = −2(2hu

V + hd
V ). If we take the further assumption of a signif-

icance of S = 2, which corresponds to 95% confidence level (2σ), then a 4%

measurement of Qp
W will yield the energy scale up to

Λ

g =
1√
2
√
2

1√
2GF (∆Qp

W )Exp
= 2.3 TeV. (1.40)

Figure 1.5 displays bounds of new physics that could be set by a proposed 4%

precision measurement of Qp
W along with other previous measurements.

Although up to now our analysis is model-independent, it is easy to extend

to a model-dependent analysis by specifying a different coupling constant g . For

instance, the sensitivity to a non-pertubative theory with g ∼ 2π would enhance

the mass scale up to 14 TeV. Another way of interpreting a precision measurement
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FIG. 1.5: The correlation between various constraints of the mass scale for new
parity-violating physics beyond the Standard Model and the flavor mixing angle
θh [13] (see Sec. 1.9). The dashed red line describes the old limit reported in
the PDG [30]. The solid blue line is the limit if relatively new results from parity-
violating electron scattering experiments are incorporated. Finally, the short-
dashed green line would be the new constraint when the result from Qweak is
revealed, assuming a value in agreement with the Standard Model.

of Qp
W lies in the fact that the Qp

W can be decomposed as the linear combination

of C1u and C1d ,

Qp
W = −2(2C1u + C1d), (1.41)

which are defined in Eq. 1.34 and therefore has the capability of testing the the-

oretical value of those two variables predicted by the Standard Model. Existing

world data, as summarized by the PDG [30], provides information on various lin-

ear combinations of C1u and C1d , therefore constraining the correlation between
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C1u + C1d and C1u − C1d as Figure 1.6 illustrates.

FIG. 1.6: Constraints on the value of C1u and C1d [13] from current world data. The
dotted contour depicts the constraints (95% CL) reported in 2006 PDG [30]. The
black star is the position predicted by the Standard Model. The filled green ellipse
represents the 68% CL constraints of results from relatively new PVES measure-
ments on hydrogen, deuterium and helium targets. The blue solid contour is the
95% CL constraint if the proposed precision of 4% Qp

W is included, assuming its
agreement with the Standard Model.

1.10 Other Related Experiments

Over the past decade, precision measurements played an important role in laying

out the structure of the electroweak interaction. In this section, several important

experiments, with their results of testing the weak mixing angle being shown in

Fig 1.4, including a Moller scattering experiment, neutrino-nucleon scattering ex-

periment and an atomic parity-violation experiment will be briefly overviewed, and
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the implications for precision tests of the Standard Model will be discussed, as

well as those of certain high-energy experiments.

1.10.1 Measurement of sin2 θW at LEP and SLC

A number of experiments, which enabled the precision measurement of the value

of sin2 θW , were carried out at the LEP and SLC e+e− colliders during 1989 to

1998 at the center-of-mass energy of approximately 91 GeV, which is close to the

mass of the Z0 boson. All of the experiments utilized the process e+e− → Z0 → f̄f

where f represents all known fermions, except the top quark, which is too heavy

to be produced in Z0 decay.

With the unpolarized beam at LEP, the forward-backward asymmetries for

different identified fermion final states can be defined as

Af
FB =

σf
F − σf

B
σf

F + σf
B
=

3

4
AeAf , (1.42)

where Ae and Af can be expressed as

Ae =
2veae

v 2
e + a2

e
and Af =

2vf af
v 2

f + a2
f
, (1.43)

where vf and af are vector and axial vector couplings of the Z0 to the fermion and ve

and ae stand for specifically the vector and axial vector couplings of the electron

to the Z0. Note here the concept of “forward” is defined as that the produced

fermion (anti-fermion) is in the hemisphere determined by the incident direction

of the electron (positron) beam, where the scattering angle θ < π/2. Similarly,

“backward” means the scattering angle θ > π/2. Since all those couplings depend
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on sin2 θW , the value of sin2 θW can be thus extracted through Af
FB. Rather than

integrating the cross section over the whole range of scattering angle θ, Af
FB is

actually obtained from maximum-likelihood fits to the measured differential cross-

section with respect to the angle θ:

dσ
d cos θ

∝ 1 + cos2 θ +
8

3
AFB cos θ. (1.44)

The result from LEP shown in Figure 1.4 was calculated based on the event se-

lection where the final state involved b quarks, Z0 → bb̄.

With the availability of a highly polarized beam at SLC, the SLD collabora-

tion [31] was able to perform a the measurement of the left-right asymmetry in the

e+e− → Z0 → f̄f process

ALR =
σL − σR
σL + σR

= PeAe, (1.45)

where Pe is the electron polarization. The value of ALR is only in terms of the

coupling of the electron to the Z0, irrespective of the final state couplings, and

thus great statistics can be reached. Since Ae is quite sensitive to sin2 θW , the

precision measurement of ALR yielded a stringent test of the theoretical value from

the Standard Model. Finally, the combined results from LEP and SLC showed an

average value of the weak mixing angle at [32]

sin2 θW = 0.23153± 0.00016. (1.46)

However, a discrepancy of 2.1σ between the SLD and LEP sin2 θW still remains

(see Fig 1.4), which is hoped to be resolved based on data from future precision

experiments, such as the proposed MOLLER experiment at Jefferson Lab [33].
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1.10.2 NuTeV Experiment

NuTeV was a deep-inelastic neutrino scattering experiment and one of its primary

goals was to measure the electroweak parameter sin2 θW through the quantity R−

expressed in Eq. 1.47. In order to calculate that quantity, ratios of neutral current

to charged current crosss sections for ν and ν̄ scattering from isoscalar targets of u

and d quarks were bothmeasured at amomentum-transferQ2 ≈ 20 (GeV/c)2. The

experiment was carried out during the 1996-1997 run at the Fermilab Tevatron.

The NuTeV experiment employed high-purity ν and ν̄ beams generated from

the decay of pions and kaons resulting from applying 800 GeV protons on a BeO

target. A magnet was used to select the specific charged particles by bending

others away from the detector system. The neutrino interactions were measured

in the NuTeV detector, which was placed 1450 m downstream of the target and

consisted of a steel-scintillator target followed by an iron-toroid spectrometer.

The value of sin2 θW was extracted through the observable suggested by

Paschos and Wolfenstein [34]

R− ≡ σ(νµN → νµX )− σ(ν̄µN → ν̄µX )

σ(νµN → µ−X )− σ(ν̄µN → µ+X )
(1.47)

in order to suppress the contribution from charm quarks, which are the same for

neutrino and anti-neutrino interactions. Ignoring quark mass differences and as-

suming that the u− and d− distributions from a isoscalar target are identical [35],

the quantity R− depends upon sin2 θW through

R− =
1

2
− sin2 θW . (1.48)
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Initially, the analysis of data from the NuTeV collaboration indicated an approxi-

mately 3σ deviation from the theoretical value predicted in the StandardModel [27],

which was an obvious indication of new physics. Since then, many attempts have

been suggested to either understand this deviation in light of extensions of the

Standard Model or correct this anomaly within the Standard Model. The primary

corrections considered so far are focused on three aspects: 1) charge symme-

try violation (CSV) arising from, for example, the difference in mass of u and d

quarks, 2) the steel target used in NuTeV experiment which was not iso-scalar

(more neutrons than protons), leading to a possible isovector EMC effect, which

could modify the parton distribution function of all the nucleons, and 3) despite the

equal number of strange and anti-strange quarks ss̄ in the nucleon, to conserve

the strangeness quantum number, the symmetry in the strange quark sea distri-

bution, i.e. s(x) = s̄(x) could be violated, which could shift the extracted value

of sin2 θW because neutrinos and antineutrinos interact differently with s and s̄.

One recent study shows, after incorporating all those independent corrections,

that the result extracted from NuTeV experiment’s data matches the theoretical

value well [36], however, those attempts of solving the anomaly are quite model-

dependent and therefore need more precise data which is anticipated in future

experiment to verify those effects.
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1.10.3 Moller Scattering Experiment

The Moller scattering experiment (E-158), which was performed at SLAC, was a

precision experiment which aimed at measuring the electron’s weak charge by

scattering a longitudinally-polarized electron beam off a liquid hydrogen target

at low Q2 ≈ 0.026 (GeV/c)2 [26]. Unlike the Qweak experiment, in which only

electrons scattered from a proton target through an elastic process are detected by

the main detector system, the calorimeters of the Moller experiment was divided

into four regions, of which the innermost was responsible for detecting the Moller

scattering events. After measuring the parity-violating asymmetry APV , the weak

charge of the electron Qe
W is extracted through [23]

APV =
GF Q2

√
2πα

1− y
1 + y 4 + (1− y)4Qe

W , (1.49)

where

y ≡ 1− cos θCM
2

.

The θCM term in above expression refers to the center-of-momentum scattering

angle.

The data for the Moller scattering experiment was collected through distinct

periods spanning from 2001 to 2003. The E-158 collaboration reported a final

value of the weak mixing angle at Q2 = 0.026 (GeV/c)2 [37]:

sin2 θW (Q2) = 0.2397± 0.0010(stat.)± 0.008(syst.), (1.50)

which is consistent with the value predicted by the Standard Model.
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1.10.4 Atomic Parity Violation

In an atomic system, unlike the usual Coulomb interaction which describes the

potential between electrons and nucleus for a pure electromagnetic process, the

potential with Z0 involved, Vpv , is parity-violating and is proportional to the weak

charge of the nucleus, defined as

QW = (2Z + N)Qu
W + (Z + 2N)Qd

W . (1.51)

Notice that the weak charges of the quarks rely on sin2 θW in the Standard Model

and therefore, Eq 1.44 can be also expressed as

QW (SM) = −N − Z (4 sin2 θW − 1). (1.52)

It was initially noticed that the range of Vpv was much smaller than the atomic

scale, which makes the observation of parity-violating effect in atoms extremely

difficult. However, after the Z 3 enhancement law was discovered by Bouchiat [38],

the experiment of measuring the parity non-conservation (PNC) in atoms became

plausible. This Z 3 law states that the electroweak effects in atoms should grow a

little faster than the cube of the atomic number Z . This also makes 133Cs, which

has a large Z and simple atomic structure, with only one valence electron, an

ideal candidate for such an experiment. In the same work, Bouchiat recognized

that the parity-forbidden 6S1/2 → 7S1/2 transition for Cesium was a good candidate

for observing PNC. The 6S1/2 → 7S1/2 transition is forbidden because both states

have the same parity, however, the involvement of the Z 0 breaks the parity by
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slightly mixing the S and P states in the atom. Finally, in 1982, PNC was first

measured in Cesium by the Paris group [39] and an improved version was carried

out by the Boulder group in 1997 [40]. In both experiments, the so-called Stark-

interference technique was employed. In this technique, an external electrical field

was applied when the beam of Cesium atoms went through to induce the parity-

allowed transition. By reversing the handedness of the applied field, the transition

rate related with PNC changed while the induced parity-allowed transition was

kept the same. Consequently, by measuring the difference in the transition rate

of those two different settings divided by their sums, APV was determined.

In order to translate the measured APV into an electroweak observable, like

the weak mixing angle sin2 θW , a computation of APV is required, in which sin2 θW

is treated as an input parameter. However, the computation itself might seem

to be intractable because the electronic many-body problem is involved: for Cs,

one needs to solve the correlated motion of 55 electrons. The computation is

simplified by being treated within many-body pertubation theory [41], where most

of the higher-rank excitations are suppressed. Based on those assumptions, the

most accurate to-date measurement, with claimed 0.35% and 0.4% experimen-

tal and systematic uncertainty, respectively, from the Boulder group [39] initially

reported a 2.6σ deviation from the theoretical value predicted by the Standard

Model in sin2 θW . However, later theoretical work, which takes adavantange of

more modern computing resources to enable to account for the effects of higher-

rank excitations, has readjusted the result to be in an agreement with the Standard
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Model [42].

1.11 Models of Possible New Physics

As we see in Figure 1.5, several PVES experiments provided or will provide com-

plementary probes of different possible scenarios of new physics. Before end-

ing the first chapter, we briefly discuss how the elastic ep asymmetry, which the

Qweak experiment is based on, is sensitive to different prospective models in new

physics. Note that only a few such models are mentioned here.

1) Additional neutral gauge bosons

Additional neutral gauge bosons arise from the spontaneous symmetry breaking

in E6 theories, which are grand unified theories based on the E6 gauge group and

which have been widely analyzed [43]. They may also arise in left-right symmetric

models [44]. Here, we only discuss one of those acceptable low energy models,

in which E6 breaks down to SO(10)×U(1)ψ and then to SU(5)×U(1)χ×U(1)ψ. A

general representation of such a new boson, Z ′, can be written as [45]

Z ′ = cosφZψ + sinφZχ, (1.53)

where φ is a parameter to represent different symmetry breaking scenarios, similar

to the role of the flavor mixing angle θh in Sec. 1.9. Since Zψ is not present in

the parity-violating asymmetry at tree-level level, the only possible contribution to

our measured asymmetry at low-energy level would be from Zχ with a rather low
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mass. The previous PVES data provided a constraint on the mass of such a Zχ

≥ 1 TeV [45].

2) Leptoquark and R-parity violating Supersymmetry (SUSY)

Leptoquarks (LQ), which carry both the lepton- and baryon- numbers, are pre-

dicted in certain Grand Unification Theories (GUT), in technicolor theories, as well

as in R-parity violating SUSY models [46]. The low-energy PV observable pro-

vides a probe of LQ interactions, and recent data analysis from ZEUS experiment

at HERA indicated that the lower limit mass range of LQ ranged from 290 to 699

GeV [47]. Similar to LQ, their analogs in the SUSY can be present as R-parity vi-

olating (RPV) or R-parity conserving (RPC) effects. The Qweak experiment could

probe the loop effect in RPC effects as well as tree-level contribution in RPV via

the precise measurement of the weak charge. The loop corrections in RPC can

be as large as∼4% (Qp
W ), while the effect of RPV could be up to∼15% ofQp

W [48].

The value of δQp
W /Qp

W , combined with the value of δQp
e /Qp

e from the SLAC E158

measurement (see Sec.1.10.3) , could determine if SUSY is preferred over other

new physics scenarios as well as if the R-parity is conserved or not.

3) Fermion compositeness

In the Standard Model, both fermions and bosons are assumed to be pointlike.

However, the possibility that they have some substructure would make their con-

stitutes interact in a process, like dilepton production, where pointlike quark and
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antiquark pairs annihilate to produce lepton pairs. Therefore, any significant devi-

ation from the Standard Model predicted value in that process could indicate the

possible presence of substructure. An analysis of data by the CDF collaboration

showed the Λ, the mass scale of such new physics, is in the range of 3.5-6.0 TeV

and the upper limit of R is 5.6 × 10−17cm, where R2 is the mean-square radius

of the quark and lepton [49]. A more precise low-energy parity-violating variable,

such as the one in the Qweak experiment, is expected to yield a stronger bounds

on those variables [45].
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CHAPTER 2

Qweak Experiment Equipment

2.1 Experimental Overview

The Qweak experiment aims at measuring the value of the weak charge of the

proton to a high precision, ∼4%. In this experiment, an 85% polarized electron

beam with beam energy of 1.165 GeV at as high as 180 µA current from the

Thomas Jefferson National Accelerator Facility (JLab) is used on a 35 cm thick

hydrogen target to make elastic electron-proton (ep) scattering happen at a four-

momentum transfer Q2 ≃ 0.03 (GeV/c)2.

Themajor components of the experiment include: the polarized beam source,

the beammonitors, the beam polarimetry, the QTORmagnet, the detector system

and a liquid hydrodgen (LH2) target system [50]. The experimental actually ran

under two different bmodes: event-mode and current-mode. In event-mode, low

beam current was used and tracking detectors were put within the elastic beam
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envelope to collect information on elastic electrons which travel through, to de-

termine the kinematics. In order to ensure that only the information from elastic

electrons are measured, the QTORmagnet was used to bendmost of the inelastic

electrons away from the detector acceptance. This mode was primarily devoted to

measuring the Q2 and was carried out once every few months. In current-mode,

high current beam was used to hit the target to produce the elastic ep scattering

events and then the QTOR magnet focused this elastic peak onto the eight sym-

metrical main detector bars. Most of the experiment’s running time was under the

current-mode.

The main idea of extracting the weak charge of the proton is simple and can

be outlined in Eq. 1.28. However, to complete the proposed 4% precise mea-

surement on Qp
W presents many experimental challenges, which mainly come

from the requirement of precise measurements of the following three quantities:

1) the parity-violating asymmetry Ap
LR 2), the beam polarization Pe and 3) the Q2.

Here, I briefly discuss some of the most important challenges and also show how

we designed or made basic choices of experimental apparatus based upon those

challenges. Some other challenges will be mentioned separately in subsystem

sections later.

The very first basic challenge comes from how we calculate the Qp
W precisely

from our measurement. From Eq. 1.28, one can see that even if we can measure

the physics asymmetry and Q2 to the proposed precision, we still need to cal-

culate the value with the uncertainty from the hadronic form factor B(Q2), which
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is discussed in detail in Sec. 1.6. In order to suppress its effect, we decided to

run the experiment at forward scattering angle and low Q2. At forward angle, the

contribution of the axial form factor component to B(Q2) becomes negligible and

in the region of low Q2, the contribution of terms with B(Q2) is suppressed due to

a higher-order of Q4 as one can see in Eq 1.28. However, the adverse impact of

the small scattering angle is that if it is too small, it will make the parity-violating

asymmetry too small to be measured with the proposed precision in the given

running time. Therefore, 5.8◦ →11.2◦ is chosen to be the final scattering angle

acceptance.

Another challenge in the experiment is the requirement of high statistics, due

to the fact that, because of the dominance of the much stronger electromagnetic

effect in the process of ep scattering, the parity-violating asymmetry, which is the

result of the interference between electromagnetic and neutral weak interactions,

is very small and is measured in terms of hundreds of ppb (parts-per-billion) in

this experiment. The final statistical error, σ, depends upon the uncertainty in a

single measurement as well as the total number of measurements, like

σ =
σsingle√

N
. (2.1)

In order to meet the proposed 2.1% statistical uncertainty on Qp
W , we proposed

the running time of the experiment to be 2200 hours under the current-mode. To

keep the experiment running continuously at 180 µA beam current for such a long

time, several decisions have been also made upon the design of subsystems. For

instance, quartz is chosen to be used as thematerial of themain detector, because
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of its radiation hardness property, which makes it be able to operate normally

under high current in the current-mode. In doing so, we chose to integrate the

main detector’s signals over the helicity window, instead of counting the individual

events to collect signals as much as possible per unit time so as to enhance the

statistics. Besides increasing the experiment’s running time, one can conclude

from Eq. 2.1 that another way to yield the small statistical error is to minimize

σsingle, the uncertainty in a single measurement. In our experiment, σsingle can be

outlined as

σ2
single = σ2

counting + σ2
electronic + σ2

target + σ2
BCM + σ2

detector. (2.2)

Here σcounting is the Poisson counting statistics, σtarget is the target boiling noise

and the rest of the σ is the resolution in each subsystem. The 35 cm long liquid

hydrogen target was used so as to both increase the scattering rate and minimize

the boiling in the target, thereby reducing the σtarget (see Sec. 2.4). Other uncer-

tainties, like σBCM, the resolution in the BCMs, were also monitored and measured

in our experiment.

The magnet used in the experiment must satisfy the following three require-

ments: 1) its field will bend the incident electrons in the dispersive direction and

the extent of the bending is based upon the electron’s kinematics, 2) its field must

be self-contained, which, in other words, means the field must not affect the work-

ing mechanism of other apparatus, 3) the cost is affordable and the operation is

reliable. Those three considerations made a resistive toroidal magnet the final

choice. The first two requirements rule out the possibility of a dipole magnet be-
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cause its field has the potential to affect the target, which could then make the

proton polarized. The third point shows the advantage of a resistive magnet over

a superconducting magnet. In addition to the listed three requirements, we also

needed to ensure that the magnet was iron-free for two reasons: the first is to

prevent any false asymmetry related with any spin-dependent interactions; the

second is to allow an easier way to calculate and manipulate the magnetic field,

which is much more complicated when hysteresis occurs in ferromagnetic mate-

rials.

The challenge of measuring the Q2 and Pe will be addressed by using the

tracking system and two polarimeters, respectively. The reason to choose two

polarimeters is because while one technique (Møller polarimetry) can measure

the beam polarization to a high precision, it is invasive, while the other (Compton

polarimetry) can perform noninvasive measurements of Pe but it takes longer to

achieve high statistical accuracy.

In addition to the statistical uncertainty related with the measured parity-

violating asymmetry, one of the biggest challenges in the Qweak experiment

is how to reduce the systematic errors on the asymmetry, which mainly come

from backgrounds and helicity-correlated false asymmetries. For instance, the

pedestals, which is the output signal of the electronics (ADCs, BCMs, etc) when

beam is absent, can change over time and therefore its magnitude can be helicity-

correlated. This requires us to monitor the change andmake necessary correction

to get the real signal. Furthermore, we also need to carefully study and calibrate
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TABLE 2.1: Overview of the Qweak data set

Data set Time
Commissioning Run Fall 2010
25% measurement Jan 2011 to Feb 2011
Run I Feb 2011 to May

2011
Run II Nov 2011 to May

2012

each of the electronic devices used in the experiment to ensure that we thoroughly

understand their noise level (σelectronic).

2.2 Experimental Timeline

The data for the Qweak experiment were collected over four distinct periods. Ta-

ble 2.1 presents the basic information of each of the running periods. The last

three data sets belong to the production data; for each data set, there were some

changes, including to both the hardware and software. For instance, in the “25%

measurement” and Run I, we mainly relied on BCM 1 and BCM 2 (see Sec. 2.8.1)

to monitor the activity of the beam current while in Run II, we also used BCM 5 and

BCM 6. Note here that for each distinct data set, the blinding factor (see Chapter

5) is also different so as to allow the data sets to be analyzed independently.

This dissertation covers only the 25%measurement, which is the first section

of the production data. This data set was named this way as the anticipated

statistical precision was such that it should allow a measurement of Qp
W ≃ 25%

precision. The analysis of the Run I and Run II is still underway.



40

2.3 CEBAF Accelerator

The CEBAF (Continous Electron Beam Accelerator Facility) accelerator at JLab

is a five-pass racetrack accelerator which is able to deliver spin-polarized electron

beamwith energy up to a maximum of 6 GeV at the time of the Qweak experiment.

Its main components include the polarized electron source, injector, and two linear

superconducting radiofrequency accelerators connected by two arc sections of

steering magnets.

Initially, the electrons are generated from a photocathode hit by laser light

before going into the injector where they are accelerated up to 67 MeV. Then

the electrons are directed into the North Linac where they gain energy up to 667

MeV. After traversing the North Linac, the electrons meet the arc section where

the bending magnets are and they are reoriented by 180◦ through an orbit and

are brought back to the linear section of the South Linac for further acceleration.

The beam gains another 600 MeV in the South Linac before going into the second

magnetic arc section located at the end of South Linac. The electrons will traverse

the orbit and are brought back to the axis of the North Linac again. Each electron

can repeat this process as many as five times and eventually is able to obtain up to

an energy of 6 GeV. The accelerated electron beam is composed of 3 interlaced

variable-intensity beams that can be independently directed from any of of the

five passes to any of the three experimental halls (Hall A, Hall B and Hall C). The

accelerator can deliver only a single energy to any one experimental hall at one
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FIG. 2.1: A schematic overview of the CEBAF at Jefferson Lab.

time or the maximum energy (6 GeV) to all three experimental halls. A schematic

of the CEBAF accelerator is shown in Figure 2.1.

In addition to the energy requirement for the present experiment, the acceler-

ator must provide an electron beam with high polarization as well as the capability

of flipping the electron spin direction from parallel to anti-parallel to the direction

of beam motion, or vice versa, at some specific frequency. The first task can be

achieved by applying a circularly polarized laser beam with specific helicity state

to the photocathode to generate highly polarized electrons through the photoelec-

tric effect. A wafer of GaAs/GaAsP, with a strained-superlattice structure [51], is

presently employed as the photocathode in CEBAF as the electron source. The

second task can be implemented by changing the helicity state of the circularly

polarized laser beam, which will be directed onto the photocathode and there-

fore determines the polarization of the emitting electrons, through reversing the
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voltage applied to an electro-optical device, referred to as a Pockels Cell. The

Pockels Cell can flip the polarization of the laser beam at up to 1 kHz and just

meets requirement of Qweak experiment, in which the helicity flipping rate is 960

Hz. The helicity signal is generated in a quartet pattern: +- -+ or -++- by choosing

the first state randomly and the next one opposite. The reason to choose such a

helicity pattern is to compensate any slow linear drift over time during collecting

of the signal, as this will cancel out when we calculate the asymmetry, which is

defined as

AQuartet =
(σ1 + σ4)− (σ2 + σ3)

(σ1 + σ4) + (σ2 + σ3)
, (2.3)

where the superscript i represents the i th helicity state in a quartet, and σ is the

cross section.

The Qweak experiment also uses an insertable half-wave plate (IHWP) to

change the helicity of the electron beam less frequently, at a period of about every

8 hours. The IHWP can be inserted and removed from the path of the laser to me-

chanically flip the helicity of the polarized laser. Consequently, the helicity states

of the electrons are also flipped. In other words, the helicity signal as recorded in

the electronics will be preserved while the true beam asymmetry will be reversed

under the influence of the IHWP. In addition, if there is no helicity-correlation in

electronics, the average over the measured asymmetries from the two states with

IHWP in and out should be zero. Therefore, this provides a powerful tool to detect

any false asymmetries brought by the electronics and to calculate the true physics

asymmetry. Furthermore, this technique also cancels certain beam-related false
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asymmetries, which could be caused by many reasons. For instance, if the Pock-

els cell is not aligned properly, when its high voltage reverses to change the helicity

state, the position and angle of the laser light to enter and exit the Pockels cell

might change, which would produce a helicity-correlated beam property and then

a false asymmetry. Another false asymmetry, related with the helicity-correlated

change in the beam current, arises due to the difference in the voltages, which

were applied on the Pockels cell between helicity states. A charge feedback sys-

tem was then introduced to make small adjustments on the voltages, according

to the difference in the produced charge between helicity states.

In addition to the IHWP, the electron helicity can be also slowly reversed by

using a spin flipper, which is composed of two orthogonal Wien filters and two

solenoid magnets [52]. Unlike the IHWP, which operates on the laser, the spin

flipper operates directly on the electrons and therefore brings the benefit of sup-

pressing any potential impacts the IHWP can not address. To accomplish the spin

flip, the first Wien filter is used to rotate the electron spin from being in the plane of

accelerator by 90◦ to be in the vertical direction. Then the solenoid is orientated to

rotate the spin 90◦ “left” or “right” back to the in-plane direction. The second Wien

filter is set to cancel out the spin processing introduced by the CEBAF transport

magnets to make sure the electron beam is longitudinally polarized with only 180◦

reversed polarization. This second slow reversal technique was typically used

about once every month in the Qweak experiment and we assigned a different

number to the running period if we used this reversal technique. For instance,
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during the 25% measurement, the setting of Wien flipper did not change and we

call it “Wien 0”.

2.4 Liquid Hydrogen Target System

The Qweak experiment used a closed-loop circulating liquid hydrogen (LH2) tar-

get, which contains 55 liters of LH2. The main components of the target system

include a He heat exchanger, a 35 cm long target cell, a centrifugal pump and

a heater. Under the nominal running conditions, the pressure of the LH2 flow is

between 30 to 35 psia and the volume flow rate is settled to 15 l/s. This flow

rate is maintained by the centrifugal pump which is connected to the loop through

flanges at one corner of the loop and which turns at 30 Hz. The liquid hydrogen

in the target loop is kept at the temperature of 20 K. In order to make the liq-

uid hydrogen run smoothly at the nominal condition with a beam energy of 1.165

GeV at 180 µA, the total amount of 2500 Watts of cooling power is required. This

makes Qweak target system the highest power cryogenic target in the world so

far. 85% of the cooling power requirement of the Qweak target system comes

from the energy deposited in the target, dominated by the ionization energy loss

at 4.65 MeV/(g/cm)3 for every passing electron at the beam incident energy. The

rest of the cooling power requirement stems from heat load for the circulation fan,

conductive heat losses, viscous heating, and heat load for the heater feedback

circuit which controls the temperature of the target. In order to achieve the goal
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of this challenging cooling power, two independent subsystem are employed to

provide the liquid Helium which serves as the heat exchange medium. One is

the more traditional JLab End Station Refrigerator (ESR), which at its maximum

working load, can supply 25 g/s of 15 K Helium coolant, which corresponds to 775

W cooling power. The other is the JLab Central Helium Liquefier (CHL), which is

able to supply 25 g/s of 4 K Helium coolant to the experimental Halls from its ex-

cessive capacity, which is equal to 2575 W of cooling power. Although the CHL

itself seems to be enough for our cooling goal, the Qweak experiment adopted

the design of running parallel subsystems for two reasons: one was to make sure

the target ran stably and safely even under some extreme cases; the second was

to provide more flexibility to reach the equilibrium between the two independent

refrigerators by adjusting the working load of the heat exchangers installed in in-

dividual refrigerators. The combination of these two cooling sources is obtained

through a novel hybrid heat exchanger, which is made of three coolant circuits

arranged in three sections. There is another component, called the high power

heater, used in the loop to regulate the loop temperature, especially to compen-

sate for the loss of beam heat when the beam is away, in order to prevent the

hydrogen in the heat exchanger from freezing.

The design of the target cell was instructed by the use of Computational Fluid

Dynamics codes to try to minimize the boiling in the target. The final design cho-

sen was a cell consisting of a conical shape with transverse flow of LH2 with re-

spect to the axis of the beam, as Figure 2.2 shows. This design also steers most
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FIG. 2.2: The overview of 7.5 liters of flow space inside the liquid hydrogen target
cell. The liquid hydrogen flow is in the transverse direction to the beam axis, the
overall length of the target cell is 35 cm and the target cell block itself is depicted
as the outer wireframe [53].

of the scattered electrons out in a direction normal to the exit window. The tar-

get cell has one entrance (upstream) and one exit (downstream) window, which

are primarily made of Aluminum. Both of those two windows are made as thin

as possible, with the upstream window thickness of 0.097 mm and downstream

window of 0.127 mm, to reduce the ep elastic scattering rate in the Aluminum,

which is considered as the biggest background source in the Qweak experiment.

Note that the thickness of the exit window is not a constant number. The bulk of

the window was 0.635 mm in thickness, however, a thin 0.127 mm nipple with

1.58 mm in diameter, was machined at the very center of the window. This de-

sign was to minimize the aluminum background from that region where most of

the electrons pass through [53].
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To study the background contribution from the aluminum cell windows, two

thin aluminum targets are placed at upstream and downstream z locations which

are the same as the z location of the hydrogen cell windows. Additional optics

targets are used, primarily to test and tune the vertex construction from our hori-

zontal drift chambers. The Al targets, optics targets, various solid targets, along

with other ancillary targets were all arranged in a ladder frame, which could be

moved in either the horizontal or vertical direction to put each of targets onto the

beamline.

One of the key factors which needs to be considered is the target boiling

while the incident beam is heating it and therefore changing its density, which

will lead to the increasing target boiling noise. This noise will contribute to the

asymmetry width and thus has the potential to increase the experiment’s running

time. This effect can be mitigated in three ways: enlarging the beam raster size,

increasing the flow rate of LH2 in the target loop associated with the pump speed

and increasing the helicity reversal frequency. The raster is a magnet system

which will direct the beam into an uniform square area on the target. The reason

to use a raster is that the unrastered beam has a rather small diameter ∼150 µm

and will consequently produce huge local heating effect which could drill a hole

in the aluminum target window. In nominal running conditions, the raster size is

usually between 3×3 mm2 to 5×5 mm2. The design goal of the target is to make

sure the target boiling noise should not increase the experiment’s running time

by more than 10%, which implies ≤125 ppm boiling noise at the nominal running
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condition. Special tests were conducted to study the correlation between each

of those factors and the contribution from density fluctuations to the width of the

asymmetry distributions measured in the main detector. These studies indicated

an overall asymmetry width due to boiling σboiling ≃ 48 ppm is expected at our

normal running condition (170 µA beam current, 4 × 4 mm2 raster size, 30 Hz

pump speed and reversal frequency 960 Hz), which met the design goal of the

target. Results from some of those studies can be seen in Fig. 2.3.

FIG. 2.3: Target boiling noise study at 170 µA with varying pump speed and raster
size, respectively. They show that at the nominal pump speed 30 Hz and raster
size 4× 4 mm2, the target noise is well below 50 ppm.

2.5 QTOR Magnet

One of the key components in the Qweak experiment is the magnetic spectrom-

eter ‘QTOR’. Its most important function is to focus the elastic electrons onto a

set of eight main quartz Čerenkov detectors while bending the inelastic electrons

away from the detectors. Due to the requirement of high statistics, the spectrom-
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eter had to be designed to have an open geometry which allows the maximum

detector solid angle. The axially symmetric acceptance in this geometry also is

a desirable feature because it reduces the systematic error related with helicity-

correlatedmotion of the beam. A resistive spectrometer magnet with water-cooled

coils, under those considerations, was chosen for the additional reason of the low

cost and comparative reliablity compared with superconducting solutions.1

The main purpose of the eight coils with a racetrack shape is to generate the

magnetic field. The total DC current to drive the coils under the nominal condi-

tions was 8921 A. The knowledge of the magnetic field was obtained by using

a technique called zero-crossing method, which was initially developed for the

G0 experiment [54]. This technique was to find out many points in space where

the magnetic field is zero from the experimental data. Since those zero-crossing

points were quite sensitive to the actual coil locations, determing the zero-crossing

points allowed us to find out the coil locations in reality. Once the real positions

or the alignment of the coils were determined, the magnetic field at any point,

generated by the current in those coils, could be calculated using the Biot-Savart

law.

The physics behind the working mechanism of the spectrometer is quite ele-

gant and straightforward, which can be described using

∆θ
p
e =

∫
B⊥dl , (2.4)

where B⊥ is the magnetic field perpendicular to the scattered electrons’ path, θ is
1Although the magnet itself ran reliably during the experiment, the power supply for the magnet

was not running so smoothly and therefore caused the loss of several weeks of running time.
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the bending angle, p is momentum of an electron, e is the charge of the proton and

dl represents paths of the electrons. The inelastic electrons’ scattered momentum

pinelastic is smaller than that from electrons from the elastic process pelastic . This, in

turn, will give rise to∆θelastic < ∆θinelastic . Therefore, inelastic electrons with smaller

momentum will end up having a bigger radius or, bending more drastically, while

elastic electrons with bigger momentum will bend less.

Since the scattered elastic electrons have a range of scattered angles, in

order to focus them onto the main detectors with finite size, the QTOR magnet

had to have a radius-dependent magnetic field, in other words, ∂B/∂r is not equal

to zero. The actual curve is shown in the Figure 2.4. The elastic electrons with

smaller angle will experience a larger azimuthal magnetic field when entering into

the QTOR while ones with larger angle will experience a smaller azimuthal field.

The overall effect is to focus those electrons with different angles onto a certain

area, which is where the main detectors are placed.

2.6 Collimators

The collimator system in Qweak experiment plays an essential role in determing

the Q2 acceptance as well as minimizing the background perceived by the main

detectors. The design of the collimator system is instructed by GEANT simula-

tion on the basis of consideration of keeping the contribution to the rate on main

detectors from inelastic electrons reasonably low while maintaining the rate from
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FIG. 2.4: QTOR magnet separates elastic and inelastic electrons while focusing
the elastic ones onto the main detectors.

elastic electrons acceptably maximum.

The collimator system consists of three sequential parts (see Figure 2.5),

each made of lead antimony (95.5% Pb, 4.5% Sb), the second of which is the

acceptance-defining collimator located ∼ 30 cm before the first plane of the Hori-

zontal Drift Chambers. The other two are employed for the purpose of “screening

background events”, namely, to prevent direct line-of-sight from target to detec-

tors and thus to suppress neutral backgrounds, which mainly consist of photons

and neutrons. Each of the collimators has eight azimuthally symmetric openings,

as Fig 2.6 shows. The thickness of the primary collimator (collimator 2) is 15 cm,

the area of each of its eight openings is around 400 cm2, and the radial distance

from the center position of the openings to the beamline axis is approximately
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FIG. 2.5: CAD drawing of the locations of the collimator system, which consists
of three separate parts.
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FIG. 2.6: CAD drawing of the primary collimator, which has eight openings and
are placed azimuthally symmetric along with the beam line.

35 cm. The positions of the collimators, especially the primary collimator, were

measured from a precision survey; the reason to do that is because the position

of the collimator largely determined our elastic electrons’ profile and therefore the

scattering angles, which the measurement of the Q2 relies upon.

In addition, a water-cooled tungsten plug was installed about 1 meter down-

stream of the target in order to prevent the small-angle 0.75◦ → 4◦ scattered par-

ticles from interacting with the downstream beamline in the region, where sec-

ondary scatterings could then hit the main detectors.
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2.7 Detector System

The Qweak experiment, as described before, was designed to run under two

modes: current-mode and event-mode. Different detectors with different configu-

ration were employed under those two running conditions. Under current-mode, in

which high current beam was used, the main detectors, consisting of eight fused

silica bars, were responsible for detecting the elastic electrons focused by the

QTOR magnet and generating the output signal through integration of the de-

tector response. The tracking detectors, combined with main detectors running

under conventional pulse data collecting mode, were only employed under event-

mode, in which few pA to 100 nA magnitude of current beam was supplied to

detect the elastic ep scattered electrons on an event-by-event basis and therefore

provided an opportunity to study the four-momentum transfer Q2 as well as some

background contributions.

2.7.1 Main Detectors

TheQweak experiment used eight Čerenkov detectors, which are positioned sym-

metrically about the beam axis downstream of the QTORmagnet,∼ 1229 cm from

the center of the target. Each Čerenkov detector was made by gluing two 1 meter

long, thin rectangular fused silica radiators (Spectroil 2000 material) together to

form the final size: 200 cm (L) × 18 cm (W) × 1.25 cm (T). Each of the eight

fused silica bars were placed in a light-tight box to reduce the background and
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FIG. 2.7: CAD drawing of the main detector system. Eight fused silica bars were
installed on a Ferris wheel to support them at desired positions. The numbers
were used to distinguish distinct main detectors depending on their position. In
this dissertation, this number scheme is used when referring to specific main de-
tectors.

were installed on a Ferris wheel structure to hold them at desired positions, as

Figure 2.7 shows.

Čerenkov radiation occurs when charged particles pass through a dielectric

medium at a velocity bigger than the speed of light in the same medium. Some of

the photons emitted during the radiation will be directed via total internal reflection

towards the end of the detector bars and can therefore be collected by one of two

5 inch Photomultiplier tubes (PMTs), one each installed at either end of the bar.

These are located away from the scattered electron beam envelope in order to

prevent the scattered electrons from directly interacting in the PMTs. In order to
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further reduce interaction from the background in the PMTs, a 5 cm thick lead brick

was mounted before each PMT. A light-tight housing made of aluminum was also

used as an electrostatic, magnetic and physical protection. The PMTs are Electron

Tubes model D753WKB with S20 photocathode, SbCs dynodes and UV glass

windows. The PMTs were operated with two different settings: one with nominal

gain during current-mode and another with high gain for event-mode data taking.

Under event-mode running, the event rate in each of the main detectors was less

than 1 MHz. The signal was read out for every event and the PMT’s bases were

switched to high gain, which was as high as 107 to guarantee enough sensitivity.

For current-mode, the event rate generated in each of the main detectors was as

high as 800 MHz so that the PMT’s anode current would be 6.4 µA if we assume

that 50 photoelectrons are generated for every incident primary electron. The

PMT’s bases therefore had to be switched to a mode with a low gain of 1000, so

as to keep a low enough current to maintain an adequate lifetime for the PMTs

during the experiment’s running time. Then the signal was sent to a high gain

I-to-V operational amplifier to convert it to a voltage signal. Finally, the signal is

fed into an Analog to Digital Converter (ADC) (see Sec. 2.7) to get the integrated

digital signal.

One of the most major source of noise that could contaminate the signal from

the main detectors is “soft” background. Although low-energy photons do not pro-

duce Čerenkov light in the main detector, high-energy photons, such X or γ rays,

can create electrons with high velocities through either electron-positron pairs or
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the Compton effect. These electrons and positrons can generate Čerenkov light

when passing through the main detector. In order to reduce this effect, 2 cm thick

lead pre-radiators were installed in front of the main detectors and were used to

reduce the flux of high-energy photons. Apart from reducing the soft background,

there is another benefit of using pre-radiators: the scattered electrons going into

the pre-radiators will cause electromagnetic showers, thereby creating many sec-

ondary electrons, each of which can generate Čerenkov light in the detectors.

This shower effect increased the signal size by a factor of 6∼7 compared to the

use of “ bare” detectors. However, we must consider the excessive noise brought

by this shower, which will cause more statistical error. Extensive GEANT simu-

lations were carried out to determine the optimal thickness of pre-radiator which

would cause the minimum excessive noise width. The final result determined 2

cm to be the optimal thickness, which results in 12% excess noise, or equivalently,

an additional 25% in running time. At the beginning, due to this high cost of addi-

tional running time, we did not plan to use prediators in the experiment, but during

the initial commissioning data-taking period, the collaboration found out the “soft”

backgrounds were ∼10 times bigger than expected and therefore the use of the

preradiators was essential.

Pedestals from the main detectors, which are the output of its electronics

when the beam is absent, is also must be carefully monitored and subtracted from

the raw signal when calculating the yield from the main detectors. The pedestal

appears as a peak in the ADC spectrum. Therefore, pedestal runs were taken at
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least once per day or whenever the beam was not available to gather as much

data as possible to get the most updated values.

2.7.2 Tracking Detectors

As already mentioned, the Qweak experiment was designed to run in two modes:

event-mode and current-mode. The tracking detectors described here could only

be used under event-mode, in which a current of order of≤100 nA was employed.

The main purpose of the tracking detectors was to determine the kinematics of

the scattered electrons, therefore to deduce the four-momentum transfer Q2 to

the required precision. Notice here that the Q2, before being used in the Eq. 1.28,

needs to be weighted by the analog response of the main detector, because the

parity-violating asymmetry was measured under the current-mode. The tracking

detectors consisted of two regions of wire chambers: Horizontal Drift Chamber

(HDCs) and Vertical Drift Chambers (VDCs). One additional instrument, a focal

plane scanner, was located in one octant (octant 7) and could be positioned either

upstream or downstream of the main detector in that octant.

Horizontal Drift Chambers

Two pairs of HDCs were built by Virginia Tech collaborators and were installed on

the opposite sides of a rotating support structure, located just before the entrance

of the QTORmagnet but behind the primary collimator, see Figure 2.8. The HDCs

could cover two opposite octants at one time but also had the capability of being
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rotated to cover all eight octants, as well as to be moved radially outward to a

“parking” position, which is out of the acceptance during current-mode running.

There was also a pair of octants (2 and 6) that could be covered redundantly by

either pair. The main purpose of the HDCs was to reconstruct the trajectory of

the scattered electrons and therefore determine their kinematic information, such

as their scattering angle, point of origin in the target, etc. Each package of HDCs

contained two sets of chambers, separated by around 4 cm in z in order to provide

an angular resolution of ≈ 0.6 mrad and position resolution of ≈ 200 µm. A 2050

V voltage was applied onto the aluminum-coated Mylar foils in the HDCs to create

the electrostatic field to make them operate. Each wire plane had 32 gold-plated

tungsten sense wires with 20 µm diameter and each sense wire was separated

by 1.1684 cm.

Each chamber consisted of six wire planes (in the order of xuvx ′u′v ′) where

the orientation of u and v planes have a tilted angle of 53◦ with respect to the short

side of the plane. The gas mixture used in the testing period at Virginia Tech was

Argon-65%-Ethane-35% and in the experiment running time at JLab, Argon-50%-

Ethane-50% were used for the 25% measurement and Run I. In Run II, bottled

Argon-65%-Ethane-35% was used.

Vertical Drift Chambers

Five Vertical Drift Chambers were designed and built by our group at the College

of William and Mary. More details regarding the building and testing of the VDCs
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FIG. 2.8: The schematic of the HDCs, installed on a rotating system, covering
octant 3 and 7 in the figure.

can be found in [55]. Four VDCs were shipped to JLab in May of 2010 and two

sets (each set has two VDCs) were installed on the opposite sides of a rotator in

front of the main detectors. Just as for the HDCs, they could be rotated about the

axis of beam line so as to cover all eight octants, as Figure 2.9 shows. In addition,

one pair of octants (3 and 7) could be covered redundantly with either package to

make sure there was no bias brought by the individual properties of the packages.

The term “package” here refers to each pair of VDCs and this term was also used

for HDCs. The VDCs could also be removed radially inward along the rotator’s

arms to avoid damage in the current-mode because of the high rate electron flux

and to prevent interaction of the primary electrons in the VDCs.

The purpose of the VDCs is to ensure that detected electrons are truly from

elastic events and also to characterize the particle trajectories entering the main
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detector. The main components of each VDC are two wire planes with different

wire orientations (noted as u and v , each tilted at 26◦ with respect to the long side

of the plane). Unlike the alignment with the HDCs, which were placed normal to

the beamline axis, the angle between the VDCs’ wire planes and the beamline

axis is ∼ 65.5◦. The sense wires used were gold-plated tungsten wires with 25

µm diameter, each separated by 0.4921 cm in the perpendicular direction to the

wire. Each plane had 279 sense wires which adds up to 2232 wires in total for all

eight wire planes.

FIG. 2.9: The schematic of the VDCs, installed on the Ferris wheel, covering
octant 3 and 7 in the figure.

Each VDC also had three high voltage planes made of aluminum-coated My-

lar foil. When in operation, a negative high voltage as high as 3900 V was applied

to those planes. Along with the grounded sense wires, this provides the electric

field needed for the electrons after the initial ionization to drift towards the sense

wire, undergoing repeated collisions with the gas molecules. If the electric field is
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strong enough, another electron can be knocked out from the gas molecule which

can repeat the process to ionize more gas molecules and therefore produce more

electrons. This effect is called an avalanche and it is essential for the drift cham-

ber to work, because when all the electrons from the avalanche are collected by

wires, a measurable current is obtained. In order to generate ionization when the

charged primary particle is passing through, gas is needed to fill up the chamber

to provide such source of the ionized electrons. Cosmic ray data, combined with

the Garfield [56] simulation helped us to pick Argon-50%-Ethane-50% , which

was bubbled through isopropyl alcohol, to be the final gas mixtures used in the

experiment due to some good features, such as high efficiency.

The amplifier/discriminator chips (MAD) [57] serve as the central part of the

front-end electronics of the VDCs. Each MAD card has 16 channels, with a sense

wire attached to each channel, and was mounted on the circuit board. After the

sense wire is hit, the analog signal is amplified, discriminated and then converted

to a TTL logic signal by the MAD chip, which are installed on a JLab customized

pre-amp discriminator board, and then converted to a Low-voltage differential sig-

nal (LVDS) through a driver to feed twisted-pair cables carrying pulses with oppo-

site signs, which have been used to reduce the radiated electromagnetic noise.

The twisted-pair cables were referred as ribbon cables and their length is approx-

imately 45 m. Then the signal was converted into Emitter-Coupled Signal (ECL)

and duplicated. Those duplicated signals then went through digital delay lines

equipped with a string of hex buffer logic chips serving as delay chips, each of
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FIG. 2.10: The layout of the multiplexing (MUX) system used in the VDCs. The
LVDS signal for each wire is split into two identical ECL signals. Then the ECL
signals passes through two delay lines (“left” and “right”), equipped with a series
of hex buffer chips used to generate discrete steps of time delay.

which provided a 1.3 ns delay (see Figure ??).

This is where the technique of multiplexing comes in. Instead of connect-

ing every wire with a single time to digital converter (TDC) channel, we grouped

18 wires, each separated by eight wires, into two delay lines and connected the

ends of each delay line with two different TDC channels (referred as “left” and

“right”). Therefore, which wires are grouped together are determined by the first

wire number, giving by

wi = w0 + 8 ∗ (i − 1), i = 1, 2, 3 ... 18.

By calculating the time difference between the signals from the left and right chan-

nels, the wire number can be deduced and the timing information can be assigned

to that wire. By adopting this technique, we saved the number of TDC channels
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needed by a factor of 9, and thereby reduced the cost of the VDC electronics

considerably.

The typical single-wire efficiency of the VDCs was 98.55±0.05% [55]. During

the Run I, the VDCs behaved very stably and reached the expected resolution ∼

260 µm. More of the tracking-related performance result will be shown in the

fourth chapter.

2.7.3 Trigger Scintillators (TS)

Two plastic scintillation counters were used to provided the trigger in event-mode

data taking, as well as the reference time for the tracking drift chambers. They

were designed and built by collaborators from George Washington University.

One was mounted on one arm of the VDC’s rotators and the other was mounted

on the other arm. Therefore, the scintilators could rotate along with the VDCs to

cover all of the octants. Each scintillator was made from BC408 (a solid solution

of organic scintillating molecules in a polymerized solvent) made by Saint-Gobain

and was 218.45 cm long, 30.48 cm wide, and 1 cm thick. The size of the scintil-

lator was larger than the Čerenkov bars to make sure that all the elastic electrons

that hit the main detectors must generate a signal at the scintillators.2 Two Photo-

nis XP 4312B PMTs with 3 inch diameter were coupled to each of the scintillators

at two ends (referred to as “left” and “right”). Then it could provide a high gain
2In the Qweak experiment, we chose to use only one TS per octant to minimize the material

in beam profile. At low beam currents ≃ 50 pA, the trigger rate was dominated by false triggers
due to cosmic rays and room background. In hindsight, 2 layers would have perhaps better effect
because it would get rid of those false triggers and thus obtain more clean triggers.
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(∼ 107), which allowed us to see around 100 to 300 pC of charge of the signal

with a full width half maximum (FWHM) of 3.5 ns for a single photoelectron. On

each end of the scintillator, there are six “finger” light guides (see Figure 2.11).

The reason to choose this kind of light guide is because it could collect more light

and provided better timing resolution compared with other types.

The TS also utilized a Constant Fraction Discriminator to reduce the “time-

walk” effect, in which the pulse output time depends on the pulse amplitude. It also

used a mean-timer to average the logic signals from both PMTs at the two ends.

The output pulse was therefore essentially independent of the timing difference

between the two input signals, which were caused by hit position dependence.

The resolution of the mean-timer TS output signal was measured to be 460 ps

(rms value). During the production running, the typical efficiency for the TS was

about 98%∼99%. For more information regarding the TS subsystem, see [58].

2.7.4 The Focal Plane Scanners

As discussed, the tracking system could only be operated at low beam current (≤

100 nA) and could map the light weighted ⟨Q2⟩ over the main Čerenkov detec-

tors. However, in the current-mode with high current, in which the parity-violating

asymmetry was measured, the tracking system could not be operated. However,

the focal plane scanner, which could be employed under both modes, provided

an elegant way of indirectly measuring the ⟨Q2⟩. Therefore, we took the scanner

data both at event-mode and current-mode to ensure the light-weighted Q2 is the
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FIG. 2.11: The schematic of the Trigger Scintillators and their light guides.

same under both modes.

The focal plane scanner consisted of two quartz Čerenkov detectors with 1 cm

thickness, one placed on top of the other, with a 1×1 cm2 active area. Two quartz

detectors were used here to get rid of background noise and could be operated

in the condition where the signal rate is as high as 1 MHz. Each quartz detector

was coupled to a PMT by an air light guide and the PMT were thus used as the

read out device. The scanner motion system could move detectors slowly at a

steady rate across the fiducial area of one main Čerenkov detector and to count

the rate at which it was hit. By doing this, we could get the light-weighted rate

distribution over that Čerenkov detector. By comparing with the distribution under

the event-mode, if we find them to agree with each other at high precision level,

then we can safely conclude that the ⟨Q2⟩ directly determined at event-mode can
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FIG. 2.12: The schematic of the Focal Plane Scanner. Two 1× 1× 1 cm3 quartz
detectors were overlaid to get rid of background noise. Each individual PMT, as
a read out, was coupled to each piece of detector through an air light guide.

be used under current-mode. A schematic of the Focal Plane Scanner is shown

in Figure 2.12.

2.8 The Data Aquisition Systems

The Data Aquisition System (DAQ) consisted of two parallel subsystems: one for

current-mode integrating of the signals from the main detector and beam instru-

mentation and the other with event-mode collecting the signals from the tracking

system as well as beamline instrumentation. These two DAQ systems were im-

plemented in two distinct crates and used distinct DAQ analysis software.

The essential parts of the current-mode data taking were the 18 bit, 500 kHz
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sampling ADCs built by TRIUMF. Their main purposes were to integrate and dig-

itize the signal from the main detectors’ PMTs. The integration must be imple-

mented for each helicity state because we need to calculate the difference be-

tween positive and negative helicity states. This was achieved by using the MPS

(∼ 960 Hz) as the trigger for each integration period. Under that integration rate,

the data rate was 4.5 MB/s, independent of the beam current. The same type of

ADCs were also used to collect the digital signal from beamline monitors (BCMs

and BPMs) in the accelerator injector as well as in Hall C. The beam monitors

and the main detectors were digitized in separate crates, so as to minimize cross-

talk which could cause helicity information from beam monitors to generate false

asymmetries in the main detector’s signals.

Under event-mode, the scattered electron rate was much slower, so we were

able to record individual particle’s amplitude and timing information, and the track-

ing DAQ system behaves like a conventional spectrometer DAQ. In order to fulfill

this task, individual electrons triggered the recording of information from what has

been defined as one event, which normally lasts around 400 ns (determined by

maximum drift time in the drift chamber). The front-end electronics of the track-

ing DAQ was all based on VME, using the JLab F1TDC [59] to record the timing

signals from the HDCs and VDCs as well as the trigger scintillators and the main

detectors. The tracking system also employed ADCs for the main detectors and

the trigger scintillators to record the signal amplitude from their PMTs. SIS3801

scalers from JLab [60] were used to digitize various rates. The beamline informa-
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tion from the same VME crate can be accessed by the tracking DAQ system for

the same purpose under the current-mode. The tracking DAQ could be operated

at rates up to 6 kHz, at which rate the DAQ was saturated with ≃100% dead-time.

For a typical Q2 measurement, the beam current was about 50 pA and the rate

recorded by both TS was∼ 1 kHz, which caused no problem for the tracking DAQ

system. However, the current could be as high as ∼ 100 nA for certain studies in

the tracking runs and the rate in both TS was then ∼ 50 kHz, which exceeded the

maximum rates the tracking DAQ could handle. In order to solve this problem at

higher current, we prescaled the incoming data to lower the rate by a certain fac-

tor. After prescaling, the rate was dropped down to 1→2 kHz in order to minimize

the dead-time.

All the data collected by our DAQ system was streamed into raw data files

in the CODA (CEBAF Online Data Aquisition System) format [61]. CODA is a

software tool along with highly modular hardware and is used for all three Halls.

The basic unit of CODA is the read-out controller, also known as the ROC, which

generally runs VxWorks or Unix to communicate with the Unix processes on the

host CPU. Each DAQ subsystem has its own corresponding ROC number and the

ROC number is stored into the data file and therefore can be used by the analysis

software to connect the information with individual piece of equipment.
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2.9 Beam Instrumentation

One of the most biggest systematic error sources in a parity-violation experiment

is a false asymmetry, which can be caused by a helicity-related beam property

change. The Qweak experiment is no exception, and the proposed experimental

precision requires any individual beam-related false asymmetry to be " 1 ppb.

In order to meet this requirement, beam monitors are needed which can provide

relatively precise, non-invasive continuous measurement of beam properties over

the entire experiment’s running time. Those beam properties include beam charge

and its helicity-correlated difference ∆Q; beam energy E and the energy differ-

ence ∆E ; beam position and angle at target X , Y , X ′, Y ′ and their differences

∆X ,∆Y ,∆X ′ and ∆Y ′.

2.9.1 Beam Current Monitors

The asymmetry used in our experiment is based on normalized yields given by

Aep =
Y + − Y −

Y + − Y − , (2.5)

where Y is value of main detector’s yield after being normalized to the beam

charge. As we mentioned before, we used a charge feedback system (see Sec.

2.3) to control the charge asymmetry, and this normalization is meant to further

reduce the effect of any helicity-correlated change in beam charge. However, a

false asymmetry still might occur when there is a nonlinearity in either the main
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detector response or the charge monitor. Therefore, in order to reduce such false

asymmetry and to measure the beam current precisely, cavity-style beam charge

monitors (BCMs) are used in Hall C for a noninvasive, stable and linear beam cur-

rent measurement. The working mechanism is implemented by using a cylindrical

cavity that is resonant with the transverse magnetic mode TM010 at the frequency

of 1479 kHz [62]. When the beam passes through the cavity, it will be slowed

by an infinitesimal amount because of the electric field, from which power will be

extracted from the beam and stored in the cavity temporarily. Half of the stored

radiofrequency (RF) power will be extracted magnetically by a loop antenna and

then sent to the electronics for later processing. The output RF signal can be

processed to lower frequency, filtered to enhance the signal/noise ratio and then

converted to a DC signal, which is then digitized and recorded.

Since the output RF signal is only proportional to the beam intensity, but does

not provide an absolute calibration, we must use an Unser monitor to allow an

absolute measurement of the beam current, based on the relative measurement

of the BCMs [63]. The Unser monitor is a toroidal transformer designed to make

stable direct measurement of the beam current at high currents. The Hall C BPMs

are normally calibrated with respect to the Unser monitor at high currents and thus

have the capability to provide a direct measurement of the beam current over the

entire experiment period except for the tracking runs (due to the too low current)

because of the linear and stable measurement of the BCMs over a large dynamic

range.



72

Distinct BCMs were employed in the Qweak experiment for different running

periods. For the 25%measurement and Run I, two BCMs (BCM1 and BCM2) with

analog receivers were used as the main current monitors in the Run I. They are

seperated by 1 meter and positioned in the beam line with one (BCM1) in front and

the other behind the Unser monitor. The cavity and Unser monitor are enclosed

in a grey box to provide good magnetic and temperature stablizations. The res-

olution of BCM 1 and 2 were approximately 100 ppm (at 960 Hz) during the Run

I, which contributed to the width of asymmetry distribution in main detectors as

excess noise and was equal to a loss of ∼ 10% of total experiment’s running time.

In order to improve the resolution, we decided to use four BCMs (BCM 5,6,7,8)

with new JLab-designed digital receivers for Run II [64]. The data showed they

outperformed the old BCM 1 and 2, with resolutions ≤ 65 ppm. In addition to the

resolution of the BCMs, the nonlinearity issue for the BCMs were also taken care

of because it might produce the false asymmetry through any nonlinear relation-

ship between true beam current and measured current in BCMs, like

IBCM = Itrue(1 + αItrue), (2.6)

where α is just a parameter to indicate how big the nonlinearity is. Note Eq. 2.4

is just a simple example of the linearity and the relationship between true beam

current and measured value might be much more complicated than Eq. 2.4. Spe-

cial tests were carried out to study the nonlinearity in BCMs and the conclusion

was that, over the full dynamic range of 10→180 µA in current-mode, the degree

of nonlinearity in the BCMs was pretty small, with a residual varying at ∼ ±0.4 µA
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FIG. 2.13: Layout of the 4-wire BPM. The grey circle indicates where the stripline
wire is located while the rastered beam is shown as a red box which is away from
the central axis of the BPM

level [65].

2.9.2 Beam Position Monitors

In addition to knowledge of current intensity, beam position must be determined to

some precision as well, in order to reduce the false asymmetry caused by helicity-

related beam position and angle change. Beam position measurements are car-

ried out along the beamline at different positions by using the stripline beam po-

sition monitors (BPMs).

A stripline BPM consists of 4 quarter-wave antennae, labeled asX+, X−, Y +, Y −.

Each antennae is positioned at 90◦ to each other, and are rotated 45◦ about the

axis of beam line, as Figure 2.13 shows. When the electron beam passes through

the BPM can, currents are induced on the stripline, which picks up the fundamen-
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tal frequency of 1497 MHz of the beam. The intensity of induced current on an

individual stripline is proportional to r to the first order, where r is the distance

from the beam position to the stripline. The difference between signals from the

opposite striplines, which are 180◦ apart, will determine the relative offset along

the axis which connecting those striplines after divided by their sum. As Figure

2.13 shows, the beam position along with the X’ axis, which is the straight line that

passes through stripline A and C, can be deduced by

X ′ ∝ VA − VC
VA + VC

, (2.7)

where V is amplitude of the signal collected on the stripline. Similarly, the beam

position along with the other axis connecting B and D can also be determined.

Then a 45◦ rotation can be made in order to calculate the position in the lab-based

coordinates (X,Y) from the wire-based coordinates (X’,Y’). However, if there is a

difference in the gains between the signals of two opposite striplines, a bias in the

measurement occurs. In order to reduce this effect, the switched electrode elec-

trode (SEE) technique was used in the Hall C BPMs. The main idea of this tech-

nique is to sequentially connect the opposite striplines to the same RF front-end

electronics through a pair of GaAsFET switches. Consequently, a series of sig-

nal from opposite striplines are produced and they are insensitive to any changes

in gains of electronics. The SEE BPMs also have a wide dynamic range, which

allow them to operate at currents inside a range between 1µA and 1000 µA.

Similarly to the nonlinearity issue for the BCMs (see Sec. 2.9.1), a false

asymmetry might arise due to the dependence of the measured value in BPMs on
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the beam current. However, it can be shown that the false asymmetry may exist

but with a negligible contribution to our measured asymmetry [66].

For both the BCMs and BPMs, the pedestals needs to be measured for the

purpose of an unbiased output. In the case of the BCMs, the Unser monitor is

employed which could provide an pedestal calibrated read out. By changing the

beam current, linear fitting of the BCM and the Unser signal could be performed,

and the intercept is equal to the BCM pedestal value. In order to extract the

BPM pedestals, the signals of the wires over a range of currents were plotted

and extraploation to zero current was carried out. This method also applied to

the extraction of the luminosity monitors pedestals, which will be described in the

next section.

2.9.3 Luminosity Monitors

Qweak employed two sets of luminosity monitors (“Lumis”): four at an upstream

position, each oriented at 90◦ to each other and mounted to the upstream face

of the primary collimator (see Figure 2.6); another eight were at a position 17 m

downstream of the target, oriented at 45◦ to each other (see Figure 2.14). All of

them were put at the position which was close to the beam axis and thus have

higher counting rates compared with the main detectors. Each luminosity monitor

is a Čerenkov detector built from fused quartz with an active area 4 cm×3 cm×1.5

cm for the upstream set and 25 cm×7 cm×2 cm for the downstream set.

We must make sure that any fluctuation in the density of the hydrogen target
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caused by the incident electrons does not broaden the experimental asymmetry

width in the final asymmetry measurement. The upstream luminosity monitors,

which were placed at a scattering angle of 5◦, were expected to give about 6 times

smaller statistical error than the main detectors and are employed as a monitor

for target density fluctuations. Since the total width of the measured asymmetry

distribution is the quadrature sum of the statistical error, the width due to density

fluctuations in the target, and other noise, by decreasing the statistical error, the

total width of the upstream luminosity monitors becomes more and more sensitive

to any density fluctuation compared to the width of the main detectors. However,

during the experiment, the width of the asymmetry distribution observed in the

upstream Lumis was approximately the same level as that in the main detectors

∼ 200 ppm, which was mainly due to the electronic noise in the Lumi’s signal

chain.

As mentioned before, the downstream luminosity monitors were put at a dis-

tant downstream position (see Figure 2.14) and thus could monitor the scattered

electrons at a very small angle ∼ 0.5◦. At such small angle, they were expected to

have negligible physics asymmetry compared with that in the main detectors and

they were also very sensitive to any helicity-correlated beam changes, like beam

angle or beam position. Therefore, the downstream luminosity monitors could

serve as a powerful “null asymmetry monitor” to monitor any presence of false

helicity-correlated asymmetry in our experiment if it was non-zero. Furthermore,

they could provide an independent test on the systematic errors after the linear
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FIG. 2.14: Locations of two sets of luminosity monitors used in the experiment.

regression, which was expected to remove most of the false asymmetries due to

any helicity-correlated changes in various beam properties. However, similar to

the upstream Lumis, this set of Lumis also suffered from the unexpectedly high

width problem in the experiment, where the width was at the same level of that

in the main detectors. The reason for this issue is unknown at this moment and

therefore needs further investigation [67].

2.9.4 Halo Monitors

The possible causes of beam halo in an electron accelerator can be attributed

to several reasons [68], but not limited to: scraping between the electron beam

and beam pipe, scattering against the stray gas in the beamline enclosure, self-

interaction of beam electrons, and hits on the photocathode surface by scattered

laser light in the electron source. In our experiment, the beam halo could increase
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the rate of aluminum background either through scraping against the target cell

wall or interacting in the target exit window. The increase in the Al background

would dilute our measured asymmetry and cause a false asymmetry. The Al back-

grounds, which are elastic electrons, could not be reduced by the QTOR and the

halo monitors were thus used as a background monitor to monitor any primary

beam well outside the “Gaussian” tail of the beam.

The way the halo is measured is to let the beam pass through the halo target,

which is a 2 mm thick aluminum piece with two holes: one 8 mm square hole used

for specific “spot check” and the other one is a circular hole, 13 mm in diameter

employed for continuously monitoring during the production running without any

scraping. If the beam halo increases, more scraping will take place and the in-

creased rate caused by the shower will be detected by the following halo monitors.

In the Qweak experiment, six halo monitors are employed and each are given a

number to distinguish from each other. The most useful two monitors (halo mon-

itor 3 and 4) were placed upstream of the LH2 target. Both of halo monitor 3 and

4 were PMTs each attached to a piece of Lucite, while halo monitor 4 had a 2 cm

thick lead pre-radiator. During the 25% measurement and Run I, the halo mon-

itors were installed but the halo target could not be inserted because the center

of the halo target hole was found to be 3.8 mm from our nominal beam trajectory.

During the down period of 2011, an offset halo target was machined to resolve

this issue. In the Run II, the halo monitors were found to be useful for monitoring

the beam quality, especially when the quality became bad.
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2.10 Precision Beam Polarimetry

The anticipated dominant systematic error source for theQweak experiment comes

from the uncertainty of the beam polarimetry. In order to meet the proposed error

budget, Qweak requires measurement of the beam polarization to ∆P/P = 1%.

The strategy used to achieve a 1% error in measurement of the beam polarization

involves using both the Hall C Møller Polarimeter and the new Hall C Compton

Polarimeter. Each of these devices is described in turn below.

2.10.1 Hall C Møller Polarimeter

The Hall C Møller Polarimeter [69], has the capability of measuring the absolute

polarization of the electron beam going through Hall C to under 1% precision at

low beam currents. Its operation is based on the spin-dependent Møller scattering

process e⃗ + e⃗ → e + e. The cross section for spin-dependent ee scattering can be

expressed as [70]

(
dσ
dΩ

)

CM
=

(
dσ0

dΩ

)

CM

(
1 +

∑

i ,j
Pb

i AijP t
j

)
, (2.8)

where Pb
i is the i th component of beam polarization, P t

j is the j th component of

target polarization and subscript CMmeans the center-of-mass frame. Aij is called

the analyzing power, which is dependent on the scattering angle θCM. (dσ0/dΩ)

is the unpolarized differential cross section. For the measurement of longitudinal

beam polarization with a longitudinally polarized target, the expression above can
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be simplified as
(
dσ
dΩ

)

CM
=

(
dσ0

dΩ

)

CM

(
1 + Pb

z AzzP t
z
)

, (2.9)

where Azz is given by

Azz = −sin2θCM
7 + cos2θCM

(3 + cos2θCM)2
. (2.10)

The analyzing power reaches a maximum when the scattered angle of the Møller

electrons is 90◦ in the center of mass frame. In order to determine the polarization,

the rate of the scattered electrons is measured in one helicity and then with re-

verting the helicity and measuring the rate again. By subtracting those two rates,

one get the asymmetry

AR =
dσ↑↓

dΩ − dσ↑↑

dΩ
dσ↑↓

dΩ + dσ↑↑

dΩ

= Pb
z AzzP t

z . (2.11)

Therefore, the beam polarization can be deduced by

Pb
z =

AR
AzzP t

z
. (2.12)

The Hall C Møller Polarimeter, as Figure 2.15 shows, consists of a thin pure Fe

target, which can provide its outer shell electrons polarized either parallel or anti-

parallel to the beam by a 4 Tesla magnetic field, which is provided by a supercon-

ducting solenoid. The reason to choose the pure Fe is because its polarization in

saturation is known to great precision, so that the uncertainty of target polarization

used in the previous expression can be tightly constrained under 0.4% [71]. The

effect of beam-current-induced target temperature increase must also be consid-

ered, because the target depolarizes if the temperature is too high. For the Hall C
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FIG. 2.15: The schematic overview of the Hall C Møller Polarimeter. Q1 and Q2
are the two quadrupole magnets. Two lead-glass electron detectors were place
on the left and right side of the beam for a coincidence measurement in order to
suppress the the background. They were located ∼ 50 cm from the beamline so
as to maximize the counting rate.

Møller Polarimeter, several µAs is the safe region for its normal operation where

target depolarization due to heating is acceptably low. Other components include

a small quadrupole to focus the scattered Møller electrons first, a series of tung-

sten alloy collimators to define the azimuthal acceptance, followed by a larger

quadrupole magnet to defocus the envelope of scattered Møller electrons. Two

lead-glass electron detectors were placed on the opposite side of the beam to

measure the scattering rate. The design of using two symmetric detectors was to

reduce the background noise by means of only counting the coincident rate seen

by both detectors.

2.10.2 Hall C Compton Polarimeter

Although the Hall C Møller Polarimeter can measure the beam polarization to less

than 1% error, it still has some properties which prevent it from being used as the
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only polarimeter in our experiment. The most severe problems are that it can not

be used at high current, due to the beam-heating induced depolarization of the

target and that it is an invasive measurement due to the placement of the target,

which means a cost of many hours of production running. In order to overcome

those limitations, a new polarimeter with different working mechanism must be

employed and this is where the Compton Polarimeter comes in. It was commis-

sioned and used for the first time in the Qweak experiment and will also be used

in future experiments in the Hall C.

The Compton Polarimeter is based on the spin-related Compton scattering,

where the polarized beam electrons collide with polarized photons, e⃗ + γ⃗ → e +γ.

Similar to theMøller polarimetry, the polarization of the beam can be deduced from

the difference of rates before and after reversing the electron beam’s polarization,

as the following expression shows

AR =
dσ↑↓

dΩ − dσ↑↑

dΩ
dσ↑↓

dΩ + dσ↑↑

dΩ

= PePγAl ;

notice that here only the longitudinal part of the beam polarization is addressed.

Al is known as the theoretical asymmetry, which mainly depends on the angle of

the back-scattering photons, given fixed incident beam and photon energy. In the

Qweak experiment the scattered electrons and photons have only a very small

angle in the Compton scattering, so in order to prevent those particles from con-

taminating the original beam, we need to use a magnetic chicane system.

The magnetic chicane used in Qweak consists of four dipole magnets as

Figure 2.16 shows. The purpose of the first two magnets is to displace the beam
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FIG. 2.16: The schematic overview of the Compton Polarimeter with a chicane
consisting of four dipole magnets, labeled as D1, D2, D3, D4 respectively.

57 cm vertically from its original place. Then the electron beam is directed to

interact with the laser beam where the Compton scattering can happen. The

laser used here is a 10 W continuous wave laser whose wavelength is 532 nm,

coupled to a low gain, external cavity. The third magnet separates the scattered

electrons from those unaffected ones due to the fact that the scattered electrons

have smaller momentum and thus are bent more drastically. The fourth magnet

is employed to bend the unscattered electron beam out of the Compton chicane

and back to the nominal direction.

The detector system of the Compton polarimeter consists of two independent

parts: a photon detector and an electron detector. Several kinds of crystals were

used as the photon detectors during the run I, including the original candidate

PbWO4, and a GSO(Gd2SiO5) crystal borrowed from Hall A. The backscattered

photons cause scintillation in the crystal and thus the output signal can be gener-

ated through photomultiplier tubes. The electron detectors were built in collabo-

ration between groups from the Universities of Winnipeg, Manitoba, TRIUMF and

Mississippi State University. It used four diamond-strip solid-state electron detec-

tors to detect the scattered electrons. Each detector’s active width is 21 mm×21
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mm and has 96 horizontal micro-strips.

In summary, as mentioned before, the Compton polarimeter can provide non-

invasive, continuous measurement of the beam polarization at high current, which

could not achieved using the Møller polarimeter. It also produces two indepen-

dent measurements using the electron and photon detectors, respectively. In

the nominal conditions of the Qweak experiment, the electron detector can get a

∼1% statistical error in approximately 20 minutes, while for the photon detector,

it needed a longer time, ∼ 2-3 hours. The goal of the systematic error is ≤ 1%,

which is approximately the same as the Møller polarimeter. From the preliminary

analysis of the Compton data, it should have no problem to reach that goal [72].
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CHAPTER 3

Qweak Tracking Software

3.1 Overview of Qweak Track Reconstruction soft-

ware

The Qweak Track Reconstruction (QTR) software package was originally based

on the development of the software for the HERMES experiment [73]. Both exper-

iments used upstream and downstream tracking detectors to detect signals from

the scattered particles and then to derive the kinematics of the charged particles

by connecting the front and rear part of the trajectory, separated by a magnet.

Unlike the HERMES experiment, which needed an algorithm to identify different

hadrons, the QTR only needs to rebuild the trajectory of scattered electrons to

measure the momentum and scattering angle. The QTR was implemented by us-

ing C++ to make it more object-oriented and to reflect the data handling among
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different components of the tracking system in a less abstract and clearer way.

In addition, writing in C++ also provided access to full-fledged and highly effi-

cient libraries, such as the Standard Template Library (STL) [74] and the Boost

Library [75]. The QTR utilized a pattern recognition algorithm combined with a

tree search algorithm as the core part to select the good tracks from a set of raw

hits from individual detector on an event-by-event basis. Furthermore, due to the

fact that we need to determine the four-momentum transfer Q2 within an accu-

racy of 0.5%, the QTR must utilize the full capcacity of each tracking detector and

also requires careful calibration routines which include reference time correction,

t0 correction, drift-time to drift-distance conversion and the extraction of geom-

etry numbers from survey data. In this chapter, details of the QTR as well as

calibration methods will be discussed.

3.2 Overview of QTR Workflow

The main function of the QTR is in the QwTracking.cc file under Tracking/main

directory and it consists of three consecutive steps. The first step is to load detec-

tor information, program options, the pattern recognition database and the QTOR

magnetic field map, if momentum reconstruction is required.

The detector information is calculated in advance through calibration meth-

ods and is saved in various parameter files under the Tracking/priminput di-

rectory. A description of those parameter files is given in Appendix A.1. The
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program options utilize the features provided by the program_options library in

Boost [75], which allow program developers to obtain program options, that is

(name, value) pair, via two conventional ways: by configuration files or using

the command line. The most important configuration file for the QTR is Track-

ing/priminput/detectors.map, which stores the name of the detector files for

each subsystem to load. QTR provides a rich set of command line options which

can be specified when the main function is run. A list of some options can be

found in Appendix A.2. To see a full list of these options, you can type:

qwtracking - -help

The pattern recognition database is constructed the first time you run the QTR or

when explicitly requiring QTR to reconstruct the database by specifying “yes” to

the - -QwTrac- king.regenerate option. More details will be discussed in Sec.

3.5.

TheQTORmagnet fieldmap stores themagnetic field strength vectorsBx , By , Bz

for many discrete field points within the QTOR range in cylindrical coordinates

R , Z ,φ. When the momentum reconstruction is turned on by specifying “no” to the

- -QwTracking.

disable-momentum option, this file will be loaded, because connecting the

front track with rear track requires the field information from QTOR magnet.

The second step of the main function is to iteratively load the raw hit infor-

mation from every event and then to map the electronics information such as raw

time, electronic channel to detector information, such as wire number and drift-
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distance. A hit means a signal from a given wire that could either comes from

a collision between the incident particle and gas molecules or, just noise. The

drift-distance is the perpendicular distance from the trajectory to the wire plane.

Next it will call the QwTrackingWorker class, which is mainly responsible for

the track reconstruction job, to loop through the detector types, and each of two

octants, to get the upstream (HDCs) and downstream (VDCs) track segments.

The third step of the main function is a natural follow-up to the second. It

attempts to connect the HDCs and VDCs track segments by using the so-called

“shooting method” (see Sec. 3.8), in which the inelastic events will fail to connect

but the elastic events will succeed. Once being connected, the four-momentum

transfer Q2 and the scattering angle from the elastic events will be thus deter-

mined.

The working flow of the main function of QTR with basic steps is illustrated in

Figure 3.1.

3.3 Coordinate Systems

Before delving into the details of track reconstruction, it is necessary to take a look

at the two coordinate systems used in the QTR: one is the local coordinates and

the other is the global coordinates. An overview of those two coordinates can be

found in Figure 3.2, where the beam direction is into the paper. Each octant of the

spectrometer has its own local coordinates. The local coordinates are attached
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FIG. 3.1: Overview of the working flow of the main function in QTR.
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to the wire planes, therefore, the origin of the local coordinates is at the center of

the first wire plane in a given package and the local z direction is normal to the

wire plane.

FIG. 3.2: The overview of the coordinate system used in the QTR. The global
coordinates is placed at the center of diagram. Each octant has its own local
coordinates attached to the center of the plane [76].

3.4 Calibration Methods

Although building the pattern database precedes the calibration procedures, some

of the parameter files involved in those procedures, such as t0 map and drift-time

to drift-distance table, are made even before the main function starts. So the

calibration methods, which are used to convert the raw drift-time to drift-distance
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FIG. 3.3: The procedure on how to select hits in the F1TDCs is shown here. For a
given series of hits, a trigger at trigger input is generated first to serve as a “stop”
time. Then a hit selection window, where reference time and regular hit reside,
can be decided.

used in the later tracking-search procedures, are discussed in this section at first.

3.4.1 F1TDC Reference Time Correction

The raw drift-time information, which is read directly from the F1TDC channel,

requires the so-called reference time correction to measure the real time of flight

from the trigger of the trigger scintillator (reference time) to the arrival of the signal

on the wires (raw drift-time). But even before that, those hits needs to be selected

from a series of input signal. The F1TDC used in our experiment is operated in

common-stop mode and the procedure of selection of hits is shown in Figure 3.3.

Another important feature of the JLab F1TDC is that the value directly read out
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from the channel will be cycled for every period of time, which is referred to as

“rollover” (see the “clock reset” in 3.3). Consequently, before simply subtracting

the reference time from raw drift-time, a rollover check is required to see if any

of the reference time and raw drift-time needs the rollover compensation. In our

case, the trollover = 65341 bins and the trigger window is set to 12896 bins [77].

Three possible cases are illustrated in Figure 3.4. Also in [77] can be found that

the trigger window, which is the length of acceptable time after the initialization of

the trigger, is set to 2000 ns.

FIG. 3.4: Three possible cases are shown here. In the top diagram, the raw drift-
time and reference time appear in the same time window, so the direct subtraction
is sufficient; for the middle diagram, the reference time and raw drift-time are in
different window, so in order to calculate their difference, an offset must be added
to reference time, thus: ∆t = treference + trollover − traw ; for the bottom diagram,
similar to the second case, the offset must be added to the raw drift-time in order
to get the right difference: ∆t = traw + trollover − treference.

The reference time subtraction procedure is handled by the SubtractRefer-

enceTime function in each detector’s class.

Notice that up to now, all the time information is recorded in the unit of a TDC

bin. The function ApplyTimeCalibration of each detector class is called to convert

bins to ns for each drift-time. After that, the only step left to be applied to the drift-
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time is t0 correction, which will fix the offset brought by the cable length, which is

the subject of next section.

3.4.2 t0 correction

The time information extracted from CODA file for the VDCs after the reference-

time correction is not the real drift-time, but is the sum of the real drift-time and the

relative signal processing time, which is called t0. The value of t0 is largely deter-

mined by the length of the cable, which connects theMADpre-amplifier/discriminator

cards with the F1TDC module via multiplexing crates and therefore can be re-

garded as a constant. Since not only the cable length of each wire is slightly

different, but most important of all, the speed of propagation variation is also quite

different in different cable and electronics, it is necessary to find t0 for every wire

in order to determine the real drift-time precisely. The t0 algorithm, which will be

described below, is employed to fulfill the task.

Figure 3.5 is a typical drift-time distribution for a single wire before t0 correc-

tion. Notice that the reference time is already subtracted from the raw drift-time

so that the shorter drift-time appears as smaller TDC value. The most important

assumption we make here is that the shortest physical drift-time should be zero.

Therefore the offset, which is equal to t0, should be located at the leftmost of the

spectrum. However, the leftmost individual hits along the time axis, in most cases,

can be mistaken as the t0 value because they are likely just random noise in the

electronics or are hits not related with the event. In order to screen those low-rate
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FIG. 3.5: The left diagram is a typical drift-time distribution for a single wire before
t0 correction. Although the shape is correct, the absolute value is not right. After
the t0 correction, the drift-time distribution is shown as in the right diagram.

unphysical signals, a cut-off threshold is needed and its value is set as the prod-

uct of a preset ratio value and the peak value in the drift-time distribution. Once

the cut-off threshold is applied, the t0 is determined as the smallest value which

satisfies the condition that is equal or greater than the threshold. For the case of

VDCs, the preset ratio is set to 0.5 by default and a detailed example is shown on

the left side of Figure 3.5. The red vertical arrow describes the threshold, which

is equal to half of the maximum height in the distribution. The red dot line indi-

cates the position of t0 for the given wire. The reason to choose 0.5 as the preset
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are twofold: firstly, it sets a high enough value to screen those low rate unphys-

ical signal. Secondly, due to the time resolution from F1TDC, the sampling data

from region where treal=0 would appear as a gaussian distribution like the time

distribution from very early stage presented in Figure 3.5 and the FWHM of this

distribution defines the error in experimental t0 value for every wire.

For a given VDC plane, the correlation between the t0 value and the wire

number is shown in Figure3.6. The fluctuation of the t0 at very low and very high

wire numbers is due to the poor statistics related with the geometry where few

hits are expected. This wouldn’t cause us a problem because the number of valid

tracks with hits in those areas is quite small. For where most of the hits come

from, the t0 stays fairly constant and the only big change in the middle of the

plane indicates a change of cable length.

The procedure of finding out the t0 for every wire is implemented in the inde-

pendent ROOTmacro script named Finding_t0.C underExtensions/Macros/Tracking

directory. The values are saved in Tracking/priminput/R3_timeoffset.mapwhich

is loaded using the QwDriftChamberVDC.LoadTimeWireOffset function. The t0

is subtracted from each specific wire’s initial drift-time using the QwDriftCham-

berVDC.SubtractWireTimeOffset function.

3.4.3 Time to Distance Conversion

One essential part of the QTR is to convert the drift-time, measured by the TDCs,

into drift-distance. Many algorithms exist for converting the drift-time to drift-
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FIG. 3.6: The correlation between t0 value and different wire number in a single
plane of one VDC.

distance; for the Qweak experiment, we decided to use the same method as Hall

A applied on its VDCs [78]. It is called a “flat-box” algorithm, because the final

drift-distance distribution is expected to be almost flat based on the assumption

that the volume of each drift “cell” should be uniformly illuminated under normal

conditions without loss of efficiency for long drift times. The drift-distance can be

calculated by integrating the drift-time distribution dN/dt. The starting point is that

we can rewrite the time distribution as

dN
dt =

dN
dD(t) ×

dD(t)
dt . (3.1)
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Next, given the assumption that the drift cell is spatially uniformly hit, which gives

rise to a constant value for dN/dD(t), we can find that the drift velocity dD(t)/dt is

only proportional to the time distribution dN/dt. By integrating the time distribution

and normalizing properly, the relation between the drift-distance and the drift-time

can be given as

D(t) = dmax
Ntotal

∫ t

0

dN
dt ′ dt ′, (3.2)

where

Ntotal =

∫ tmax

0

dN
dt ′ dt ′.

In the above two equations, dmax is the largest drift distance and tmax is the

largest drift-time. Ntotal is the total number of hits within the time range from the

t = 0 to t = tmax . Since the dN/dt is always a positive number, so D(t) increases

monotonically along with the increasing of the drift-time and reaches themaximum

value of dmax at t = tmax (this can be verified by putting t = tmax into Eq. 3.2).

Since the drift-time spectrum in our cases is not in a simple analytical form,

a numerical method is thus employed to implement the integration in Eq. 3.2.

We first divide the whole range of drift-time into numerous bins, width of each is

0.5 ns. Then by integrating the number of hits from each bin, the drift-distance is

obtained for each specific drift-time and thus a look-up table containing the entries

of drift-time and corresponding drift-distance can be constructed. However, since

the number of entries in the table is finite, we need to use linear interpolation to

calculate the drift-distance if the drift-time falls between two characteristic drift-
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times, as followings

D(t) = D(ti−1) +
t − ti−1

ti − ti−1
× (D(ti)− D(ti−1)), (3.3)

where

ti−1 < t < ti .

The relationship between drift-time and drift-distance for the case of the VDCs and

HDCs are shown in Figure 3.7 and Figure 3.8 respectively. The construction of

the look-up table is implemented by theConvert_vari.CROOTmacro script under

Extensions/Macros/Tracking directory . QwDriftChamberVDC.LoadTtoDparameters

and QwDriftChamberHDC.LoadTtoDparameters functions are called to load their

own look-up table,QwDriftChamberVDC.CalculateDriftDistance andQwDriftCham-

berHDC. CalculateDriftDistance functions are then called to use the value of the

look-up table in every event to deduce the drift-distance. An example of the dis-

tribution of drift-distance in the case of VDCs after applying the look-up table is

shown in Figure 3.9 and the reason that the distribution is not perfectly flat is

probably because of the excessive noise and the angle-depedent time to distance

effect described in the next paragraph.

Notice that in the scope of this dissertation, a preliminary, single drift-time to

drift-distance table in the QTR was used for both the VDCs and HDCs. This ap-

proach assumes every wire in the tracking detector bears the same drift-time to

drift-distance property. Another more profound factor that might influence the final

result is addressed as follows. The track angle of the trajectories changes across

the wire plane. Since the time measured in the TDCs is the time of electrons gen-
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erated through the ionization process, triggered by a particle passing through, to

travel from the trajectory to the sense wire along the least-time path, the corre-

lation between drift-time and drift-distance depends on the track angle. For the

HDCs, since the range of the accepted track angle is rather small, 7◦ → 11◦, as-

suming the same relationship between drift-time and drift-distance of all of the

tracks in the HDCs is reasonable. However, the change of the track angle in the

VDCs is 45◦ → 55◦, therefore, a more precise way to convert the drift-time and

drift-distance is to use different tables as a function of track angle. This approach

was not implemented in the QTR when this dissertation was written.

3.5 Pattern Recognition Algorithm

The pattern recognition algorithm uses the template matching technique, which

was used in the ARGUS experiment [79], to identify an acceptable straight line

segment, which is also referred to as a treeline. In this technique, a template,

which is created from hits in an event, is compared with patterns created from

a valid track, which has been saved in advance in a database. The algorithm

employed in the QTR here consists of two basic steps: 1) creation of a pattern

database and 2) the search for straight line segments in the database according

to the signals in an event.

Since the pattern recognition algorithm is only employed to identify two-dimensional

straight lines, therefore, detectors with the same wire orientation, the same de-
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tector type, and the same octant number will be grouped into a single database.

Consequently, instead of being one single file, the database is comprised of sev-

eral files.

Creation of the Pattern Database

Each type of tracking detector consists of a number of layers, however, the def-

inition of a layer is different between the HDCs and the VDCs. For the HDCs, a

layer means a single wire plane, where the number of layers is set to 4 because

there are four wire planes of the same orientation in one package. For the VDCs,

a layer represents a wire cell, where the number of layers is set to 279 for the

case of the VDCs but we only store the maximum number of 8 layers’ information

because eight is equal to the maximum number of wires being hit from a valid

track in a given wire plane. Keep in mind that only one hit is allowed per layer

in a given pattern. In the patterns, each layer is divided into a number of bins

and each of those bins represents a range of position values along the plane for

the HDCs, while in the case of the VDCs, each individual bin means a range of

distances perpendicular to the wire plane. Each bin has a bit value 0 or 1, which

indicates if a hit occurs in that range of position of the plane or not (if it is 0). The

number of bins in each layer depends upon the maximum depth specified by the

user at the very beginning of the database construction, and the spatial resolution

is given by

δr =
Wlayer

Nb
, (3.4)
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where Wlayer is the width of layer and Nb is the total number of bins in that level.

Since the pattern database is stored in terms of a tree structure (refer to the next

section for more details), the number of bins in one level L is 2L, and according to

Eq. 3.4, changing the level by 1 corresponds to a factor of 2 change in the spatial

resolution. The level starts at 0 and goes furthur by 1 each time until it reaches

the maximum depth. For every level, each layer has the option of assigning the

hit represented by bit value 1 to the lower or upper half of the old hit position in

bins (illustrated in Figure 3.10). We can use 0 or 1 to describe the option as lower

or upper half respectively, so if 1 has been chosen, the position with a hit will be

updated to 2× bitold + 1, where bitold is the old hit position in bins. Consequently,

there is a total number of 16 possible descendants for a particular bit pattern in the

case of the HDCs and all the possible combinations in the finer resolution level are

covered. However, we are only interested in straight lines, so those descendants

with a bit pattern that no straight line can pass through will not be saved. Since

the detector layer has a finite spatial resolution determined by our maximum level,

the number of valid bit patterns for all levels is also a finite number and all of them

can be found by repeating the procedure described above.

Therefore, the procedure of creating the pattern database is highly recursive

and the tree is a suitable data structure for storing the pattern database. For

each valid bit pattern matrix, a node is created for storing the bit array value and

the organization of the node is displayed in 3.11. In addition to the suitable data

structure, another feature of our pattern database construction is based on the
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fact that some of the bit patterns only differ by a single bin shift or are just the

mirror image of another pattern, therefore we can regard those bit patterns as a

single case only with different flip and shift properties, as Figure 3.12 shows. By

using this optimization, the disk space used for storing the pattern database was

reduced and the speed of treeline search procedure was accelerated.

Searching for the Treeline

For each event, a two-dimensional bit pattern matrix is created from the set of

hits which enables us to search the equivalent in the pattern database to see if

that set of hits corresponds to a valid track. The basic searching strategy used

here is to start from a very coarse resolution (in our case the root of the tree)

and to proceed using the depth-first strategy (DFS) until the same bit pattern is

found at the deepest level [80, 81]. If the bit pattern is not found at a certain level,

the algorithm will traverse roots in the same level until either 1) exhausting all

the available roots and still not finding the matching bit pattern, then it will return

“false” to declare no treeline has been found for this event, or 2) finding one root

which has the matching bit pattern and then proceeding using DFS again. Once

found, the valid treeline will be constructed and appended into a linked list for

the later procedures. A brief schematic illustration in Figure 3.13 shows how this

procedure works in the case of the HDCs.

It is worthwhile to mention that for a given event, the above procedure does

not require that every hit is in a bit pattern in the database, because the possibility
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of noise hits must be taken into consideration. On the contrary, it does require

that a successful search in an event has every hit in the filled database pattern

correspond to a hit in the event. The QTR can also handle the case when there

are more than one treeline in an event. As mentioned before, they are stored in

a linked list.

Overview of the related classes and methods

The classes used in the pattern recognition algorithm are listed in Table 3.1. The

most important ones are: QwTrackingTree, which is responsible for creating,

saving and loading the pattern database;QwTrackingTreeSearch classes, which

is responsible for searching for the tree lines given the bit pattern from the hits in

an event.

The most crucial functions inQwTrackingTree andQwTrackingTreeSearch

classes are listed with a brief introduction in Table 3.2. Brief descriptions of all the

functions from the two classes can be found in their source files (under Track-

ing/src/ directory).

3.6 Detector Tracking

The term partial track in QTR is defined as a straight line three-dimensional track

going through a specific detector region, which also serves as a prerequisite for

the final track reconstruction. This section will mainly discuss details of how to
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TABLE 3.1: Classes used in the Pattern Recognition Algorithm

QwTrackingTree creates the pattern database
QwHitPattern creates two-dimensional bit pattern based

on the hit information in an event
QwTrackingTreeSearch helper class to perform the treesearch al-

gorithm to find if the bit pattern from signals
in an event has an equivalent pattern in the
pattern database

QwTrackingTreeLine a linked list to store the found treeline
treenode contains the bits which represent a valid

pattern; also contains arrays of nodenodes
which represent this node’s children

nodenode pointer, used to link treenode with its sib-
lings

shorttree similar to treenode, used when reading a
tree in tree search process to minimize the
memory overhead

shortnode similar to nodenode, used along with
shorttree

reconstruct the partial track in each detector region given the hit information from

an event. The procedures used for the HDCs and the VDCs are different, due to

the different chamber geometry, and each are described in turn in the following.

3.6.1 HDCs

As described in the previous section, the starting point for partial track recon-

struction for the HDCs is to map hits from the event into the bit pattern matrix.

For each wire plane, a one-dimensional bit array will be created, given the hits in

this plane. The drift-distance derived from the drift-time (see Sec. 3.4.3 for more

details) can only provide the absolute value of the distance parallel to the wire

plane from where the hit occurs to the closest sense wire. This undetermined
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TABLE 3.2: Some methods used in Pattern Recognition Algorithm

marklin this is a recursive function which is respon-
sible for generating the pattern database.
For a parent node, it generates 2layer pos-
sible son patterns. Each son pattern will be
checked through the consistent function to
see if it corresponds to a straight line.

consistent this function validates a possible hit pattern
by checking if the hit pattern is consistent
with a straight line, given the detector ge-
ometry information.

_ SearchTreeLines() highly recursive function employed to
search if the equivalent of the bit pattern
from a event exists in the database; uses
DFS method for tree search.

sign leads to a left-right ambiguity in which, for a single hit, two possible hit posi-

tions are generated, as illustrated in Figure 3.14. By taking the spatial resolution

of the hits into account, each left or right hit can span more than 1 bin, as Figure

3.14 shows. The size of the bit array for one layer is
i=max∑

i=0
2i where max is equal to

the deepest level. The reason for that is, unlike the node in the pattern database,

which only stores the position of the bin with value 1 for a single level, the bit

array mapped from an event is comprised of bit arrays for levels over the whole

range (see Figure 3.14 for a detailed example). The SetHDCHits function in the

QwHitPattern class is responsible for this mapping task.

Then the pattern recognition algorithm performs a search of the equivalent

of the two-dimensional bit arrays from the event in the pattern database. One

thing that needs to be pointed out is that the original requirement that all 4 layers

must match a pattern in the database is reduced to 3 to allow for some tolerable

inefficiency in the HDCs. Once the treeline is found, it will be appended to the
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treelinelist. Only the hit bin position of the first and the last wire planes in that

equivalent pattern from the database, which is in a given “direction”, is recorded

in a valid treeline. This then makes possible the use of least squares fitting to

solve the “left-and-right” ambiguity for each plane. Here, we start from the point

where the treelines are obtained and walk through the code to describe the class

and the functions involved to solve the “left-and-right” ambiguity and to get the

partial track. Starting from the QwTrackingTreeCombine.TlTreeLineSort func-

tion, the code loops over all valid treelines in the treelineslist obtained from the

pattern recogniton algorithm. For every valid treeline, since only the hit bin posi-

tion from the first and the last detector layers is recorded, a “path” can be thus cal-

culated by connecting those two points. TheQwTrackingTreeCombine.TlCheckForX

is then called to find all the compatible hit positions along this “path” and to pick

out the best combination of positions in terms of χ2, given by

χ2 =
4∑

i=1

(xi − x̂i)2

σ2
i

, (3.5)

from two-dimensional least χ2 fitting of those positions. In Eq. 3.5, xi is the hit

position with the drift-distance converted directly from the drift-time while x̂i is the

track position with the drift-distance calculated from the fitting of the “path”. The

σi is resolution of the drift-distance in the i th plane in a given direction and is set to

0.01 cm by default for all of the wire planes. This step is quite essential because

it provides an elegant solution to solve the “left-right” ambiguity and is thus worth-

while to take a look at the inside part of QwTrackingTreeCombine.TlCheckForX

function to fully understand how we implement this task. Two types of containers
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exist in this function, one is called goodHits and the other is called usedHits. The

key difference between those two containers is that for each detector layer, the

goodHits can have more one hit position as long as the position stays along within

the “ path width”, while the usedHits only allows at most one hit position given the

assumption that a valid track can only have a hit at one position in each layer.

The process of filtering out the unqualified hits and putting them into goodHits is

implemented using QwTrackingTreeCombine.SelectLeftRightHit and is illustrated

in Figure 3.15. At this point, we have multiple hit positions in each detector layer.

In order to pick out the best combination, we’ll simulate the track by picking one hit

position from each layer each time and calculate the χ2 of the track. The number

of combinations we need to consider is in the order of O(n4) with an average n of

≃ 2. This job is carried out by using a for loop to go through every combination

and calling QwTracking.weight_lsq function to calculate its χ2. The best combina-

tion is defined when the the minimum χ2 is reached and the hit positions from that

best combination are put into usedHits. It needs to repeat QwTrackingTreeCom-

bine.TlTreeLineSort function three times, once for every wire direction x , u and v ,

to get the hits for later reconstruction of the partial track.

Finally, the QwTracking.TlTreeCombine function is called to make use of all

the hits from the usedHits containers of the three directions to reconstruct the

partial track. A three-dimensional least χ2 method is employed here (refer to

Sec. 3.7 for more details).
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3.6.2 VDCs

Similar to the HDCs, the first step for partial track reconstruction for the VDCs is to

map the hits into a bit pattern matrix. However, a notable difference between the

HDCs and the VDCs in terms of the usage of pattern recognition is that for HDCs,

the concept of layer represents a wire plane and thus the algorithm is performed

using data from all detectors in the same wire orientation and the same octant

simultaneously, while for the VDCs, a layer describes a single wire cell, thus the

algorithm needs to be done iteratively for every wire plane. This difference also

leads to an extra step in the case of the VDCs, which requires one to perform

matching of the treeline in the samewire direction for the front and back chambers

in a given package.

A typical mapping process is depicted in Figure 3.16 and as can be seen, a

layer is divided into 2maxlevel−1 bins (in our case, the default value of maxlevel is 4).

An effect known as the up-down ambiguity will show up in the case of the VDCs,

for the same reason as the HDCs’ left-right ambiguity. Consequently, a bit pattern

consisting of N layers (N is the number of wires in a VDC wire plane; in our case,

N is equal to 279) will be constructed. This process of mapping is controlled by

theQwHitPattern.SetVDCHits function. A key fact related with the VDC tracking is

that the VDCs are oriented such that the nominal trajectory of a scattered electron

traverses 4 to 8 layers (wire cells) in a single wire plane. Given this assumption,

when identifying the valid treeline from the bit pattern matrix built from an event,
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we’ll loop through the number of layers and take 8 layers each time to search for

its equivalence in the database. Since most of the layers are empty in a single

event, this process can be further optimized by starting with the set where the

first layer being hit is involved. For instance, if the first wire being hit is 42, the

first set of 8 wires that needs to be considered is 36,37,...,41,42. Notice that the

inefficiencies of the VDC wires, which is caused either by missing wires or the

fact that the channel connecting to specific wire does not give out signal during

that event, may cause us to bypass some of the good treelines. Therefore, an

upper limit of missing layers is designed to address this problem by being set to

4. Furthermore, the QTR also has the tolerance of at most 1 mismatched layer

but would be also categorized as missing layers as well.

All the found treelines in a given wire plane are stored in a treelinelist linked

list. Then QwTrackingTreeCombine.TlTreeLineSort is called to loop through the

list of treelines to match wire hits to the hit in the pattern from each treeline

and to calculate the corresponding χ2. By this means, the up-down ambiguity

is resolved for this specific treeline. However, this could be misleading because

another “ghost” treeline still exists in the treelinelist and therefore the up-down

ambiguity is not quite solved yet from this perspective (see right part of Figure

3.16). We need to resort to another plane to solve the up-down ambiguity in a

complete sense, which will be described later.

Next, the QwTrackingTreeSort.rcTreeConnSort is called for two reasons: 1)

to remove treelineswith large χ2 and 2) to remove redundant treelines, i.e., those
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which have a portion of their wires in common.

As said before, a solution for solving the up-down ambiguity lies in the use

of information from two wire planes rather than just one. This is implemented by

calling QwTrackingTreeMatch.MatchRegion3 function (see Figure 3.17), whose

input parameters are two treelinelists with the same wire orientation from the

front and back chamber respectively. The QwTrackingTreeMatch.MatchRegion3

loops through two lists to see if the attempt to pair the front treelines with the

back treelines is possible. For each pair of treelines, a crude straight line can

be draw given the knowledge of which wire sections were hit in each plane and

the corresponding slope is thus obtained. By limiting the difference between the

slope from the crude straight line and the treelines for each wire plane to a small

range, the “ghost” treelines, which do not have a counterpart in the other wire

plane, can be removed. Once a valid pair is found, a new treeline is constructed

with all the hits from the front and the back treelines and is referred as a treeline

in “plane 0”, for it is not linked to any particular plane. Note here that pairs of front

and back treelines used to generate different “plane 0” treelines can not have

any redundancies. For example, if a given front treeline has already been used

to generate a “plane 0” treeline with its counterpart in the back chamber, then

it can not be used to generate the second “plane 0” treeline with another back

chamber treeline, if there is any.

For a single valid track, two “plane 0” treelines are generated, representing

the u and v direction separately. Unlike the case of the HDCs, where we need to
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rely on the three-dimensional least square method (refer to Sec. 3.7) to combine

3 two-dimensional treelines into one three-dimensional partial track, in the case

of the VDCs, the situation becomes much simpler because there are only two

directions, namely, u and v . The code loops over lists of “plane 0” treelines in the

u and v directions separately to ensure every combination of u and v is covered. A

unique corresponding plane is then deduced from both of the “plane 0” treelines

with the following two requirements: 1) the plane is parallel with the wire direction

and 2) the plane contains the “plane 0” treeline (see Figure 3.18). Given two non-

parallel planes, a unique line can be derived from their intersection. Therefore,

the VDCs partial track is obtained by using two “plane 0” treelines. The whole

process is controlled by QwTrackingTreeCombine.TlTreeCombine.

3.7 Three-Dimensional (3D) Least Square Fitting Al-

gorithm

Two linear fitting algorithms are used in the QTR and both are based on the linear

least squares approach. One is the simple two-dimensional (2D) least square

method, which is employed to solve the left and right ambiguity when we find the

treeline (see Sec. 3.6 for more details) and will not be discussed here. The other

is the three-dimensional linear regression method, needed for the HDCs, which

will be outlined in this section. The method is employed to find the partial track

given three treeline segments from the u, v and x directions.
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Similar to the 2D least square fitting method, we will first assume a “path” in

the case of 3D. In order to describe this “path”, four parameters (xoff , xslope, yoff , yslope)

are used to represent the slope and intercept of x and y directions in terms of z .

Therefore, given a z value, the coordinates of corresponding x and y values are

given by

xG = xoff + xslope × z ,

yG = yoff + yslope × z .
(3.6)

The perpendicular distance between the track position and the hit position can be

calculated as

∆u = x̂Lcosθ + ŷLsinθ − uhit , (3.7)

where θ is the angle between the direction, which is normal to the wire orientation,

and the local x axis as Figure 3.19 shows. x̂L and ŷL are the x and y coordinates of

the track point under the local coordinates. uhit is the drift-distance of the hit point.

Remember that the calculation is in the local coordinates (as subscript L indicates

in the Eq. 3.7) where the origin point is at the center of the first wire plane in that

package. But let’s first assume that we have a partial track and the partial track

is always expressed in terms of its parameters in the global coordinate system.

So by using the Eq. 3.6, the x̂ , ŷ coordinates in the global coordinate system are

easy to get

x̂G = xoff + xslope × z ,

ŷG = yoff + yslope × z ,
(3.8)

where z is the location in the beam direction. Thus, we can convert global coor-
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dinates to the local coordinates in Eq. 3.8 by

x̂L = yoff + yslope × z − y0,

ŷL = −(xoff + xslope × z − x0),
(3.9)

where x0, y0 are the wire planes’ centers in the global coordinate system. By sub-

stituting Eq. 3.9 into Eq. 3.7, we get

∆u = (yoff +yslope×z) cos θ−(xoff +xslope×z) sin θ+(x0 sin θ−y0 cos θ−uhit). (3.10)

Given the QwHit class, the hit position for a particular hit is calculated as

uhit = (wire − 1)× δu + udrift + u0, (3.11)

where u0 is the perpendicular distance between the first wire and the center of

that plane (refer to Figure B.3 in Appendix B) and δu is the perpendicular distance

between adjacent wires. The udrift is the drift-distance derived from the time-to-

distance calibration and for here, we assume that the left-or-right ambiguity is

already solved. In QTR, the function QwHit.GetDriftPosition will return a value

equivalent to

udp = (wire − 0.5)× δu + udrift . (3.12)

Substituting Eq. 3.12 into Eq. 3.11, we are able to write Eq. 3.11 into a more

compact form

uhit = udp − 0.5δu + u0. (3.13)

Then the difference ∆u in Eq. 3.10 becomes

∆u = (yoff + yslope × z) cos θ − (xoff + xslope × z) sin θ

− (−x0 sin θ + y0 cos θ + udp − 0.5δu + u0).
(3.14)
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Keeping in mind that our final goal is to deduce the four parameters of the partial

track: xoff , yoff , xslope and yslope, it is reasonable to separate the terms in Eq. 3.14

into two categories in terms of their relationship with those four parameters. Notice

that the only terms that do not depend on those four parameters are the last five

terms, so we can continue simplifying the formula by grouping those terms into a

single term called uirre

uirre = −x0 sin θ + y0 cos θ + udp − 0.5δu + u0. (3.15)

Next, if we sum the quadratic value of the difference ∆u over all hits, we get the

expression χ2 for a set of hits [82]

χ2 =
∑

i
[
(yoff + yslope × zi) cos θi − (xoff + xslope × zi) sin θi − (uirre)i

σi
]2, (3.16)

where the subscript i indicates the hit number and the quantities 1/σ2
i act as

weighting factors. Since one wire plane can contribute at most one hit, zi and

θi are just the plane information where the hit occurs.

To find the values of the parameters xoff , yoff , xslope and yslope that give rise to

the minimum value of χ2, by setting the partial derivatives of χ2 with respect to

each of those parameters to zero, we can get four similar equations:

∂χ2

∂xoff
=

∑
i Ai sin θi = 0,

∂χ2

∂xslope
=

∑
i Ai sin θizi = 0,

∂χ2

∂yoff
=

∑
i Ai cos θi = 0,

∂χ2

∂yslope
=

∑
i Ai cos θizi = 0,

(3.17)
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where

Ai =
(yoff + yslope × zi) cos θi − (xoff + xslope × zi) sin θi − (uirre)i

σ2
i

.

These equations can be rearranged as four linear equations in terms of the four

unknown parameters:

∑
i
(uirre)i sin θi

σ2
i

= −xoff
∑

i Bi − xslope
∑

i Bizi + yoff
∑

i Ci + yslope
∑

i Cizi ,
∑

i
(uirre)i sin θi zi

σ2
i

= −xoff
∑

i Bizi − xslope
∑

i Biz2
i + yoff

∑
i Cizi + yslope

∑
i Ciz2

i ,
∑

i
(uirre)i cos θi

σ2
i

= −xoff
∑

i Ci − xslope
∑

i Cizi + yoff
∑

i Di + yslope
∑

i Dizi ,
∑

i
(uirre)i cos θi zi

σ2
i

= −xoff
∑

i Cizi − xslope
∑

i Ciz2
i + yoff

∑
i Dizi + yslope

∑
i Diz2

i ,
(3.18)

where,

Bi = sin2 θi
σ2

i
,

Ci = sin θi cos θi
σ2

i
,

Di = cos2 θi
σ2

i
.

(3.19)

Those equations can be further written in matrix form
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i
(uirre)i sin θi

σ2
i

∑
i
(uirre)i sin θi zi

σ2
i

∑
i
(uirre)i cos θi

σ2
i

∑
i
(uirre)i cos θi zi

σ2
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i Bi

∑
i Bizi

∑
i Ci

∑
i Cizi

∑
i Bizi

∑
i Biz2

i
∑

i Cizi
∑

i Ciz2
i

∑
i Ci

∑
i Cizi

∑
i Di

∑
i Dizi

∑
i Cizi

∑
i Ciz2

i
∑

i Dizi
∑

i Diz2
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−xoff

−xslope

yoff

yslope

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.20)

Therefore, by solving this simple linear algebra equation, the values of all four

parameters xoff , xslope, yoff and yslope can be obtained given the hit information from

the UsedHits container, where each hit will provide the values related with the

subscript i .
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In order to further reduce the impact brought by the noisy hits to the found

partial track, an iteration process is added here: after the geometry of the partial

track is determined from Eq. 3.20, the residual for each hit on a given plane

can be calculated by using Eq. 3.14. The hit with the largest residual is then

deleted from the hit list and one more fitting procedure is performed based on the

remaining his in the list to yield the final geometry parameters of the partial track.

By applying this process, a potential noisy hit, which has not been screened out

in the previous process in the QTR, is filtered out. Even if the deleted hit is a good

one, the number of remaining hits (≥) can still guarantee us to perform a good fit.

3.8 Momentum Determination

In order to obtain the four-momentum transfer Q2 and other kinematic information,

we need to loop over all given partial tracks in the HDCs and the VDCs to attempt

connecting them together. Before the attempt to connect the HDCs and the VDCs

partial tracks, QwBridgingTrackFilter.Filter function is called to filter out any un-

reasonable HDC and VDC candidates. Table 3.3 lists all the available filters in

this function. If the combination of the HDCs and the VDCs partial tracks has

not been filtered out by any filter, then the status variable will becomes kPass and

QwRayTracer.Bridge is called to connect the HDCs and the VDCs partial track.

The method used in QwRayTracer.Bridge is named as the “shooting method”.

The principle behind the ”shooting method” can be described as following several
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TABLE 3.3: List of available filters in QwBridgingTrackFilter.Filter function

θpolar This filter sets the constraint on the scatter-
ing angle of the HDCs partial track. The
range is [1◦,13◦]. If it can not pass this filter,
a fail signal kFailThetaFront is returned.

zvertex Sets the constraint on the range of recon-
structed target vertex in z axis from the
HDCs partial track. The default range is
[-672,628] cm. If failed, kFailVertexZ is re-
turned.

∆θpolar Sets the constraint on the difference be-
tween the scattering angle of the HDCs and
the VDCs partial track. This can be inter-
preted as the beding angle limit in QTOR
magent. The default range is [5,45]degree.
If failed, kFailDiffTheta will be returned.

∆φazimuthal Sets the constraint on the difference be-
tween azimuthal angle of the HDCs and the
VDCs partial track. The default range is [-
20,20] degree. If failed, kFailDiffPhi will be
returned.

∆φfront This filter sets the constraint on the differ-
ence between azimuthal angle of φposition
and φmomentum (illustrated in Figure 3.20) in
the HDCs track only. The default range is
[-5◦,5◦]. If failed, kFailPhiFront will be re-
turned.

steps:

1. Get the first good guess of momentum pinitial from the geometry

information of the HDCs partial track by assuming the electron-proton

reaction is elastic without any energy loss in the target. The formula can be

outlined as

pinitial =
E0

1 + E0
Mp

(1− cos θ)
(3.21)

where E0 is equal to the beam energy 1.165 GeV and θ is the polar angle of
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HDC partial track. Also the position of that partial track r front in the front

face of QTOR is obtained, which is easily calculated by projecting the partial

track onto that plane. It is justifiable to do so because both the HDC and

VDC tracks are in magnetic-field free regions, and are therefore straight line

segments. The position rback in the back face of QTOR can also be obtained

from projecting the VDCs partial track onto the corresponding plane.

2. Given the pinitial and r front , one can ”swim” through the QTOR region with

the aid of a magnetic field map, which provides the value of the magnetic

field of numerous at a series of intermediate points. The Runge-Kutta 4th

order procedure [84] is employed here to solve the two ordinary differential

equations in a numerical way:

v = dr
dt

me
dv
dt = qv × B

(3.22)

with the initial and boundary conditions. Consequently, the corresponding

rback is determined.

3. two different values of momentum will enter Eq. 3.22 for every single

value of pinital : one is pinital +∆p and the other is pinitial −∆p. The value of

∆p is set to 10 MeV by default. Therefore, two distinct values of rback : r+back

and r−back will be obtained. The momentum will be thus updated to a new

value through the Newton-Raphson method:

Pnew = Pinitial −
1

2
×∆p × r+back + r−back − 2× rback

r+back − r−back
(3.23)
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4. Next, by using the Runge-Kutta 4th order procedure again with the new

derived momentum pnew , we can get the corresponding r ′
back . If the

difference between the deduced r ′
back and real rback is within the default

tolerance value, we regard the connection as being successful. Otherwise,

we’ll repeat step 2 with the updated pinitial = pnew .

Notice that the tolerance is set by the res variable in QwRayTracer.Bridge func-

tion, with default value 0.2 cm and the maximum number of iterations allowed, by

default, is 10. If after 10 iterations, the deduced position r ′
back and real position

rback still can not match, the QTR will regard this pair of partial tracks as bad and

will immediately stop and continue to match other pairs in the same event.

3.9 Geometry File

A fully detailed detector geometry file plays an essential role in giving the QTR

capability to reflect the geometry in the real world. A full summary of the items in

the geometry file is given in Appendix B.

The reconstruction of a track is first implemented in the local coordinates and

then changed to the global coordinates given the knowledge of the origin of each

local coordinates associated with wire planes. Thus, the locations of chamber in

the VDCs and the HDCs, which are installed on rotators and located at different z

locations along the beam line, need to be precisely determined. We relied on the

JLab Survey and Alignment Group, which employed a Faro Laser Tracker that is
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able to locate a small fiducial marker within 100 µm. However, the relative position

of each individual wire plane in a single chamber can not be directly measured

due to the fact that the laser tracker can only measure points on the exterior of the

chamber. Fortunately, those positions were rigorously controlled and measured

when the chambers were built and thus should not be away from nominal values

too much (within ≃ 200 µm). In the upstream area (HDCs) where the geometry

numbers need the most rigorous control, an indirect self-consistency method was

utilized to adjust the relative position of the wire planes to see if the change had a

huge impact on the signed residual of wire planes (the signed residual is defined

as the difference between hit position and track position just as Eq. 3.7 shows).

An example is shown in Figure 3.21.

Furthermore, we resorted to the “projection” method to fine-tune the external

geometry of the chambers. The theory behind this method is that we know the

position and the shape of some components in the experiment to a very high

precision, such as the collimators, the Al target and the main detectors. Then the

found track could be projected back to where those components are and if the

geometry of the chambers are perfect, those projected images should be exactly

superimposed with the real images of those components. To see more result,

please refer to Sec. 4.3.2.
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FIG. 3.8: The relationship between drift-time and drift-distance draw from the en-
tries in the look-up table for the HDCs.
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tion of the time spectrum.
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FIG. 3.10: Schematic overview of pattern database generation. Each rectangular
box represents one layer (HDC wire plane) and each highlighted box represents
where the particle hits the chamber. For the case of level=2 on the left, each
layer is divided into 2(2−1) = 2 segments and the bit array value for this bit pattern
is [0, 0, 1, 1]; An example of one of the 16 descendants is also given here on the
right. The level is increased to 3, so there are 2(3−1) = 4 bins in each layer. If we
choose the option array to be [0, 0, 1, 0] then we’ll get the bit pattern shown here
with bit array value [0, 0, 3, 2]. The pattern shown on the right is not saved because
a straight line can not go through those boxes.

FIG. 3.11: The pattern database is organized as a tree. The treenode stores the
bit information which represents a valid straight line. Each treenode has four son
pointers (nodenode) pointing to the head of a linked list and each element in the
linked list is a pointer to the treenode in the next level. The four son pointers
describe four cases: no shift-no flip, shift-no flip, no shift-flip,shift-flip.
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FIG. 3.12: In order to save space as well as speed up the tree search process,
bit patterns with only minor difference are considered as one.

FIG. 3.13: Schematic overview of the tree-search algorithm in the case of the
HDCs: four levels are shown here with increasing resolution. The light shade
color box represents a noise hit while the solid color box stands for the real hit in
each layer.
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FIG. 3.14: The top diagram describes a series of sense wires (black dots) in a
given single HDC layer, with a hit producing two possible hit positions (crosses),
each of which has a resolution as the red bracket depicts. The default value of
the resolution in the case of the HDCs is 0.05 cm. For level = 1, the bit array is
(10); for level = 2, the bit array is (1100); for level = 3, the bit array is (01110000);
for level = 4, the bit array is (0001111000000000). So the overall bit array for this
single layer is 000111100000000001110000110010, in order from the deepest level
to the start level.

FIG. 3.15: Schematic overview of how to select the appropriate hit position ac-
cording to the initial condition of a treeline. The red arrow represent the “path”
and the green triangle points are the hit positions. The sense wires are not shown
here. For each given detector layer, there is a range of positions which sets the
criterion of selecting the hit position (green triangles).
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FIG. 3.16: The left figure shows how a track traverses one VDC wire plane and
generates wire hits. The right figure shows how those hits are mapped into a bit
pattern matrix.

FIG. 3.17: Schematic overview of how the QwTrackingTreeMatch.MatchRegion3
works. Two “crude” tracks (red arrows) are generated from connecting hit wire
clusters in the front and back wire planes. The angle between “crude” tracks and
local treeline is calculated. A selection based on this angle is used to find out the
correct pair of treelines from the front and back wire planes and consequently
remove the “ghost” treelines or “noise” track segment, depicted as crude track 1.
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FIG. 3.18: Overview of the relationship between the unique plane (light orange)
and the “plane 0” treeline (see red arrow). The unique plane (light orange) must
be parallel to the wire orientation and must contain the “plane 0” treeline.
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FIG. 3.19: An example to show how to calculate the ∆u (as in Eq. 3.7) given a u
wire plane of a HDCs at octant 3. The values of x and y coordinates for both track
point and hit point are calculated in the local coordinates. θ is the angle between
u axis and local x ′ axis. The global coordinate system is also displayed here at
upper left corner.
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FIG. 3.20: The diagram depicts how the ∆φfront is defined (see Table 3.3). This
assumes the center of the target is the origin of the track. The green line is the
partial track of the HDCs and has polar angle θ and azimuthal angle ϕ. The
hit position (red point) also has its own θ and φ. If the partial track comes from
the target and is constructed correctly, the difference between ϕ and φ should be
very small and constraining on that difference provides us a filter to remove any
unreasonable HDC partial tracks [83].
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FIG. 3.21: Unlike the QTR analyzer, this method employes a so-called ”brute-
force” method to iteratively go through all the combinations of hit positions to
create the optimal partial track, which has the minimum χ2. Once the three-
dimensional track segment is found, the difference between the hit positon and
track position as equation(3.12) shows can be determined for every plane. This
plot shows the result for the first chamber of package1 in HDC. Ideally, the real
offset values for wire planes should lead to the distribution with minimum rms val-
ues.



132

CHAPTER 4

Tracking Data Analysis and

Kinematics

4.1 Overview

The tracking data for the Qweak experiment was collected over two running pe-

riods, denoted as Run I and Run II. Each data set is analyzed using the same

tracking software package but with different parameter files to represent the dif-

ferent configurations between various running periods, such as beam energy and

QTOR current.

Tab. 4.1 presents an overview of the tracking data in each period.

In data set 1, we took measurements of Q2 not only on the hydrogen target

but also on optics targets and an aluminum target, which serve as useful auxiliary

measurements to calibrate the geometry of the tracking system to ensure the
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TABLE 4.1: The overview of the tracking data set

Dataset Time Run Number
1 January 2011 Run I
2 March 2011 Run I
3 May 2011 Run I
4 November 2011 Run II
5 January 2012 Run II
6 May 2012 Run II

correct Q2 calculation. Systematic studies on beam raster size, beam position

and QTOR current were also carried out at that time. Furthermore, the chambers

were rotated to different positions to study the dependence of Q2 on octant.

In March 2011, since the HDC could not be rotated because of being blocked

by the installation of some additional shielding (the “Pb donut”), the only position

measured for Q2 was at octant 1+5. Compared to data set 1, a beam rate study

was performed by adjusting the beam slit position.

In May 2011, the main goal was to study the light-weighted track distribution

on all main detectors. Therefore, most of the runs were “VDC only” runs.

In November 2011, the interference between the HDCs and the additional

shielding was corrected, so that the HDCs were again rotatable and consequently

more rotations were performed in that period.

The measurement in January 2012 was the last major period when Q2 was

studied. In this period, most of the standard Q2 runs, such as with the LH2 target,

were taken. For the final measurement inMay 2012, a study of theQ2 dependence

on the beam angle was added.
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4.2 Q2 results

For the final precision 4% measurement of Qp
W , the value of Q2 needs to be mea-

sured to a precision of 0.5% or better. In this dissertation, the best result of Q2 up

to date will be presented.

The four-momentum transferQ2 of elastic scattering between an electron and

a proton is given by:

Q2 =
4E 2 sin2 θ

2

1 + 2 E
M sin2 θ

2

(4.1)

where E is the incident electron energy at the scattering vertex, θ the scattering

angle and M the proton mass. In fact, for elastic scattering, the Q2 can also be

calculated by three other equations:

Q2 = 4EE ′ sin2
θ

2
(4.2)

Q2 =
4E ′2 sin2 θ

2

1− 2E ′

M sin2 θ
2

(4.3)

Q2 = 2M(E − E ′) (4.4)

Therefore, the measurement of any two of E ,E ′ and θ will suffice to calculate Q2.

In this dissertation, Eq. 4.1 is used to yield the value of Q2. The reason is that the

absolute energy of the beam can be measured to ≤0.1% precision by using Hall

C’s arc-energy measurement procedure [85]. However, the incident energy used

in Eq. 4.1 is not equivalent to the value from the beam energy measurement, but

needs to be accounted for the energy loss in the target, which will be described in

more detail in Sec. 4.3.3. In addition to the precise determination of the incident
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energy at the vertex, good knowledge of the locations and geometry of the tracking

detectors and robust tracking software performance are requirements to yield the

correct scattering angle. Furtheremore, various cuts are developed and studied

in order to be used as powerful tools to screen out the false tracks which will

otherwisely bias the result ofQ2 determination. One thing that needs to be noticed

is that although it seems that the E ′ and therefore the VDCs are redundant if Eq.

4.1 is used, we still need VDCs, for mainly two reasons: the first is to select the

elastic scattering events out of those seen by the HDCs through good track fitting

in the VDCs, and the second is to make corrections for biasing due to the analog

response of main detectors. Therefore all of the above topics will be discussed in

the later sections.

4.2.1 Geometry of Tracking System and Projection

The scattering angle θ used in Eq. 4.1 to determine the Q2 value, largely depends

on the spatial locations of the HDCs and locations of the target and the beam. In

principle, once the equation of the trajectory of scattered electrons is given by the

tracking analyzer, it can be projected to any location along with the beam line as

long as there’s no magnetic field in the path to change its linear form into a non-

linear form. The projection mainly serves a two-fold role in the Q2 determination:

one is to check the quality of reconstructed tracks from the analyzer in individual

subsystems and the second is to help to tune the spatial locations of the HDCs

to a high precision level. Notice that all the results in this section have had the
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FIG. 4.1: This figure shows the projection to the aluminum target. From left to
right, the position of the back HDC chamber in package 1wasmoved from nominal
position (0mum) to +600 µm. Themean X value of the projection therefore shifted
from 0.7 mm to 6.7 mm.

standard cuts applied, namely, the MD and the MT cuts, which will be discussed

in the next section.

For the latter, a study was performed of the systematic effect of the locations

of the HDC chambers on the measured Q2. The spatial locations of the HDC

chambers used in the analysis were changed in a way that only moved the back

chamber in the dispersive direction. By doing that, the scattered angle θ and

the Q2 will change accordingly. Fig. 4.1 and Fig. 4.2 show the variation of the

projection to the aluminum targets (this will be discussed in more details in the

next few paragraphs) and the variation of the Q2 along with the change of position

in the back chambers of the HDCs respectively. Each change is equal to 300 µm

and it is already enough to see the obvious change in both projection and the

value of Q2. By using this method, we fine-tuned the HDCs chamber to a level of

hundreds of microns of confidence.

For the first purpose mentioned above, one of the aluminum thin targets or
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FIG. 4.2: This figure shows the Q2 dependence on the position of the back HDC
chamber in package 1. A 300 µm change can result in ∼0.8% change on Q2.

one of the optics targets was used, and during those runs, the beam raster size

was set to 1×1mm2. In this dissertation, only the results from the downstream

aluminum targets are shown. The center of the downstream aluminum targets

were located at Z=-637 cm (the center of the QTOR is defined as Z=0 cm, and

the beam travels along the positive Z direction) with different thicknesses varying

from 0.1737 to 0.7115 cm, which is equivalent to different number of radiation

lengths. Fig. 4.3 shows the projection of the reconstructed partial tracks from

package 1 to the plane Z=-637 cm, with the measured Z vertex and χ distribution

(for the definition of χ, see Eq. 3.16) in run 13722. The measured Z vertex is

defined as the position along the beam axis where the perpendicular distance

between the reconstructed partial track and the beam axis reaches a minimum.

Tab. 4.2 gives a summary of the projection result from both packages in that run.

It can be seen that with the latest geometry calibration, the measured Z vertex is
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FIG. 4.3: The left graph shows the projection to the target plane where the 4% ra-
diation length downstream aluminum target is used, from package 1 in run 13722.
The statistics box shows the mean and RMS of the projected coordinates. The
upper right graph is the distribution of measured Z vertex and the lower right is
the χ distribution.

< 1 cm from the actual center of the target with a relatively narrow distribution.

The resolution from package 1 is generally better than that from package 2, which

might be due to one “missing” plane in package 2.1

Fig. 4.4 shows the measured vertex distribution from run 15112, where three

optics targets were used. The optics target were made of carbon-foil, with a foil

spacing of 16 cm for a total length of 32 cm. Each optics target is 2 mm thick.

Three distinct spikes denoted as “1,3,5” were measured, with some smearing
1The “missing” plane is plane 10 in package 2 of the HDCs; this plane could not be run at full

voltage, for an unknown reason. At the reduced voltage used, the efficiency was low (≤10%),
therefore effectively making it a missing plane from track reconstruction.
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TABLE 4.2: Summary of projection result to a thin Al target from run 13722

Package Mean of X (mm) RMS of X (mm) Mean of Y RMS of Y
1 0.847 5.57 -0.271 5.75
2 0.770 5.76 0.510 6.13
Package Mean Z of Vertex

(cm)
RMS of Z Vertex (cm) Mean of χ RMS of χ

1 -636.4 6.32 2.74 1.04
2 -637.6 6.04 2.99 1.21

TABLE 4.3: Fitted Z location for 1,3,5 optics target from run 15112.

peak Z center
(cm)

σ (cm) Expected
Z value
(cm)

1 -671.88 4.60 -670.98
2 -655.40 3.89 -653.17
3 -637.41 3.84 -636.37

among peaks due to the tracking resolution. Here, the Gaussian function is used

to fit each peak and the result is shown in Tab. 4.3. The center is only 1∼2 cm

away from the actual position of the optical target. With any future improvement

of the geometry, the separation of each individual spike should become more

obvious and the peak location should also be more close to the actual position.

Fig. 4.5 show a series of projection results from LH2 target runs where differ-

ent octants were covered and a 4 × 4 mm2 beam raster was used. A summary

of the measured Z vertex distribution can be found in Tab. 4.4. The center of the

LH2 target is assumed to be -653.108 cm, and the measured center is ∼ 2 cm

away from that value. This could be explained by some unfiltered tracks which do

not come from the scattered events or the unphysical tracks reconstructed by the

software. The tilted shape towards the upstream direction can also be explained

by the fact that the more scattering events will occur at smaller angle because dσ
dθ
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FIG. 4.4: Measured Z vertex from package 1 from run 15112 where three optics
targets were used. The red curve is the result of a fit to the sum of three Gaussian
distributions.
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TABLE 4.4: Summary of measured Z vertex distribution

Run Package Octant Mean (cm) RMS (cm)
13653 1 1 -654.0 12.32
13653 2 5 -655.1 12.30
13671 1 8 -655.6 12.74
13671 2 4 -653.4 12.67
13674 1 2 -655.3 12.91
13674 2 6 -653.6 12.50
13676 1 3 -654.4 12.82
13676 2 7 -653.2 12.41

gets larger at smaller θ. With more rigorous filters developed in future, such as

the matching filter (see Sec. 4.2.2) or improved tracking software, the difference

between the measured and the real should be smaller. The RMS value indicates

how well the length of the target is measured. Since the length of our LH2 target is

35 cm, the ideal RMS value, assuming the uniform scattering, can be calculated

as

ZRMS =

√√√√1

L

∫ L
2

− L
2

z2dz , (4.5)

where L is the length of the target. Therefore, the ideal value for the RMS is ∼ 10

cm and the measured RMS is ∼ 13 cm.

Unlike the projection from runs using aluminum or optics targets, the Z plane

chosen to project the tracks to here is the primary collimator. As Fig. 4.5 shows,

almost all the reconstructed tracks were confined within the aperture of the primary

collmator with Z=-370.719 cm, which is expected, and is also a useful metric of

the quality of the tracking system. The projection results from the other seven

octants can be found in Appendix D.
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FIG. 4.5: Projection result from package 1 in run 13653 where octant 1 is covered.
This was a run using the full LH2 target. The left pnael is projection to Z of primary
collimator. The upper right plane is the distribution of measured Z vertex and the
lower right is the χ distribution.
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4.2.2 Cuts

Various cuts have been developed to reject poorly-fit or non-elastic scattering

tracks from the analyzer. The cuts being used in this dissertation include the

main detector cut (MD cut) and a HDC multiple tracks cut (MT cut).

The MD cut is a cut that requires that the main detector in the appropriate

octant actually fired. It is implemented through the use of the time spectrum of

signals from the main detectors. Since the tracking system can only cover one oc-

tant pair at one time, we need to decide which main detector’s TDC signal needs

to be looked at. The adopted cut requires that both PMTs on the given main de-

tector have fired at the “prompt” time, but does not check the ADC values. Fig. 4.6

shows the cut used in the latest tracking data analysis. Fig. 4.7 and Fig. 4.8 shows

the θ and φ distribution from events from a typical hydrogen target run where the

TDC signal is within and outside themain detector’s “prompt” window respectively.

It can be seen from both plots that more outliers are found for events where the

TDC signal is outside our defined “prompt” window.

The MT cut is a cut that sets an upper limit on the number of valid hits in

the HDCs region. Since the tracking analyzer has a poor capability of finding the

correct track if two or more tracks go through the same package of detectors at

the same, it is necessary to implement this cut in our analysis to make sure that

the track is coming out of a clean single event. Since the minimum number of hits

required for a reconstructed track in one package of the HDC is 9, so the threshold
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FIG. 4.6: The histogram shows the time distribution in one of the two PMTs in
main detector 1. Only hits between the two blue vertical lines are considered as
being valid hits.

FIG. 4.7: The histogram shows the θ distribution of reconstructed tracks from the
events where the TDC time in the main detector is within the “prompt” window
(red) and events where the time is out of that window (blue). The left and right
axes use different scales and the right axis shows the scale of the histogram in
blue. The scheme of double axes is the same for the Fig. 4.8 to Fig. 4.10.
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FIG. 4.8: The histogram shows the φ distribution of reconstructed tracks from the
events where the TDC time in the main detector is within the “prompt” window
(red) and events where the time is out of that window (blue).

is set to be 18, which is twice that value. From Fig. 4.9, it is can be seen 18 is

quite a loose cut, where the multiple-track event only accounts for ≤3.2% of total

events, so it is a small effect. Similar to the MD cut, Fig. 4.10 and Fig. 4.11 also

shows that with the MT cut, the distributions of θ and φ are more narrow and have

less outliers.

In addition to the MD and the MT cuts, other types of cuts can also be used

to select the good-fit and elastic tracks from the initial results from the analyzer.

Among them, the most notable ones are DirectionThetaOff, DirectionPhiOff, Po-

sitionThetaOff and PositionPhiOff cuts. Before explaining the definition of those

cuts, let’s first look at how the value of θ and φ relating with those cuts are de-

fined. The θ and φ correspond to the polar and azimuth angles. The partial track

found in the VDCs has its own θ3 and φ3 and if being projected to the back plane
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FIG. 4.9: The histogram shows the distribution of valid HDC hits (“valid hit” means
its distance is bigger than 0 and it is the first hit on that wire) for events from
package 1 in run 13653.

FIG. 4.10: The histogram shows the θ distribution of reconstructed tracks from
the events where the number of valid hits in the HDCs is smaller than the MT cut
(red) and events where the number is bigger than the cut (blue).
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FIG. 4.11: The histogram shows the φ distribution of reconstructed tracks from
the events where the number of valid hits in the HDCs is smaller than the MT cut
(red) and events where the number is bigger than the cut (blue).

of the QTOR, which is a virtual position at Z = 577 cm and served as a reference

plane, a point with polar coordinates (θ03, φ0
3) is obtained. However, we can not

compare the same quantities from the partial track found in the HDC because

there is a magnetic field between the HDCs and the VDCs. Therefore, we need

to let the partial track of the HDC travel through the entire magnetic field and then

calculate its θ′2, φ′
2, θ02 and φ0

2, the last two of which requires that the track is pro-

jected to the same plane where θ03 and φ0
3 are calculated. Then the cuts are just

based on the difference between each pair of those four values. For instance, the

DirectionThetaOff is simply equal to

∆θ = θ3 − θ′2. (4.6)

The Fig. 4.12 shows the distribution of one of those matching variables ∆θ for

a typical hydrogen target; the shape is close to a Gaussian curve and therefore
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FIG. 4.12: The histogram shows the distribution of the DirectionThetaOff variable
in package 1 in run 13653. The y axis is in logarithmic scale.

a cut using the width σ can be developed in the future to select the appropriate

events.

4.3 Systematic Uncertainties

In order to study the impact on Q2 brought by various systematic factors, we took

a lot of different testing runs by deliberately changing the factors we wanted to

study. In this section, I’ll discuss these distinct systematic factors impacts on the

value of Q2.
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4.3.1 Beam Properties

The first thing that needs to be studied is how a change of beam properties will

influence the measured Q2. Those beam properties include beam position, raster

size, beam rate and beam angle.

Beam Raster Size

The study was carried out by changing the beam raster size from 1 mm×1 mm to

5 mm×5 mm. During that data-taken period, all other beam properties were kept

relatively stable. The result is shown in Fig. 4.13 and a linear fit is performed.

The maximum slope is 0.0025 ± 0.0083 in units of m(GeV)2/mm2 in package 2.

If we assume 1 σ deviation for the worst scenario, the slope would be 0.0108

m(GeV)2/mm2. Since the beam raster size is 4× 4 mm2 for LH2 target runs, this

indicates the effect brought by the beam raster size from a 0× 0 mm2 case to our

nominal situation is only ∼ 0.043 m(GeV)2, which is < 0.2% of Q2 and therefore

is a negligible effect on the Q2 value. Both fitted slopes are consistent with zero,

as expected since we had no reason to expect a dependence of < Q2 > on the

raster size and this was also confirmed in simulation.

Beam Position

The study was performed by changing the beam position at the target in the X

and Y directions separately. The data set was collected at two distinct tracking
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FIG. 4.13: This plot shows the correlation between Q2 and the beam raster size
for both packages in runs 13653-13657.The p0 and p1 in the statistical box are
the intercept and slope of the linear fit. Both fitted slopes are consistent with zero.
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detectors positions: one was octant 1&5 and the other was octant 3&7. The first

plot, Fig. 4.14 shows the result of changing the beam position in the X direction

in steps of 1 mm when the detectors were at octant 1 and 5. The relationship is

almost linear and when the beam is moved to the positive X direction, the Q2 in

package 2 increases. This is all as expected because as the beam moves in the

positiveX direction, it alsomoves away from package 2 at octant 1. Consequently,

the scattering angle observed in the package 2 increases, resulting in bigger Q2.

Since package 1 is in the opposite octant, all the behavior is opposite for package

1. Using the same analysis method as in the beam raster size study, the linear

fit indicates that the maximum slope is 0.107 m(GeV)2/mm if 1σ is added. The

nominal position of the beam is believed to be controlled within ≃ 100 µm, which

is equivalent to 0.0107 m(GeV)2/mm and∼0.4% of Q2. In the production running,

only the pair of Q2 from opposite octants will be extracted, therefore due to the

cancellation effect, the error brought by the beam position should be expected to

be even less than that number. Fig. 4.14 shows the result when beam position

changes along the Y direction. It is expected that the impact on the Q2 is quite

small. Both measured slopes are consistent with zero as expected. The largest

slope (1σ added) is 0.0283 m(GeV)2/mm and it is equal to ∼0.1% of Q2.

A similar study was carried out when the detectors were at octant 3 and 7. The

beam position moved in the Y direction. The result is in Fig. 4.16 and it indicates

a 0.5% uncertainty in Q2 if the uncertainty of the beam position is controlled within

100 µm. Again, like octant 1&5, only the pair of Q2 will be extracted, which results



152

FIG. 4.14: This plot shows the correlation between Q2 and the beam position in
the X direction when detectors are at octant 1 and 5. The run numbers are 14955-
14961. Package 2 is at octant 1 while package 1 covers the opposite octant.

in smaller correction due to the change of beam position.

The Tab. 4.5 also shows the rate of the change of Q2 when the beam moves

along with the direction that is the same as how the tracking detectors are placed.

The magnitude of the rate itself is quite consistent, which is as expected. The

result from GEANT 4 simulation is also listed here [86], and since the uncertainty

of the simulation is ∼0.02 m(GeV)2/mm, the difference between the real data and

the simulation is within 1σ. This again follows what one would expect. Notice

that for octants other than those on which the study were carried out, the same

magnitude of slope are assumed and therefore the average number in Tab. 4.5

will be applied for the other eight octants.
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FIG. 4.15: This plot shows the correlation between Q2 and the beam position in
the Y direction when detectors are at octant 1 and 5. The run numbers are 14963-
14969. Package 2 is at octant 1 while package 1 covers the opposite octant.

FIG. 4.16: This plot shows the correlation between Q2 and the beam position in
the Y direction when detectors are at octant 1 and 5. The run numbers are 15070-
15080. Package 2 is at octant 7 while package 1 covers the opposite octant.



154

TABLE 4.5: The summary of slopes for beam position study.

Octant Slope (m(GeV)2/mm) Simulation
(m(GeV)2/mm)

1 99.5±7.6 120.0± 7.0
5 106.6±7.0 115 ± 7.0
3 120.0±6.6 108 ± 7.0
7 107.0±7.1 125.0 ± 7.0
average 109.0±3.5 117± 3.5

Beam Rate

Since the beam current used in event-mode is only on the order of 50 pA, it is hard

to measure its absolute rate, so we decided to use the HDCs’ “FAST OR” rates as

the proxy to measure the beam rate. The “FAST OR” rate is the sum of the rate of

16 wires (one half of an HDC plane) of one plane of the HDC. The first beam rate

study was carried out in November 2011 and was repeated in January 2012. The

result for both packages can be found in Fig. 4.17 and Fig. 4.18 respectively. In

the first study, the rate was changed from 15 kHz to 45 kHz (15,27,36, 45 kHz) and

the second study was from 40 kHz to 120 kHz. From the first study, the largest

slope, appearing in the package2, is 0.00508 m(GeV)2/kHz, if 1 σ deviation is

assumed. This also indicates that the difference brought by the beam rate going

from 0 kHz to 45 kHz is ∼ 0.20 m(GeV)2, which is < 0.8% of Q2. For the second

run, the result indicates that the difference brought by the beam rate going from 0

kHz to 120 kHz is ∼ 0.12 m(GeV)2, which is < 0.5% of Q2.
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FIG. 4.17: This plot shows the correlation between Q2 and the HDCs’ “FAST OR”
rate, which is used as a proxy for beam rate at such low current, for both packages
in runs 13723-13726.
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FIG. 4.18: This plot shows the correlation between Q2 and the HDCs’ fast or rate,
which is used as a proxy for beam rate at such low current, for both packages in
runs 15137-15141.
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Beam Angle

The fourth study related with a beam property was completed by changing the

beam angle from -600 µrad to +600 µrad in steps of 300 µrad in the X , Y direction

separately. Fig. 4.19 shows the result when octant 3 and 7 were covered and the

beam angle was changed in the Y direction. Only data for package 2 is available

because one of the VDCs in the package 1 malfunctioned due to a “pinched”

gas line that prevented gas from flowing and therefore prevented the chambers

from running under full voltage for those runs. A test when the beam angle in

the X direction was changed was also carried out and the result can be seen in

Fig. 4.20. The slopes, acutally, are consistent with zero and aremuch smaller than

the values from simulation study, which is around 0.434±0.014 m(GeV)2/mrad.

The reason for this discrepancy is because in the QTR software, the scattering

angle θ is determined as the difference between trajectory seen by the HDCs and

the nominal beam axis, which is not the case if the beam axis is tilted. Since

we can not determine the beam incident angle at the scattering point from the

tracking data, the θ derived from QTR software, is not accurate if the beam angle

is tilted. In order to get a correct value for this study, we would need to use Eq.4.4

to calculate the Q2.
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FIG. 4.19: This plot shows the correlation between Q2 and the beam angle in the
Y direction. The run numbers are 18497-18505, when tracking chambers were
put in the octant 3 and 7 locations.

FIG. 4.20: This plot shows the correlation between Q2 and the beam angle in the
X direction. The run numbers are 18570-18573, when tracking chambers were
put on the octant 1 and 5 locations.
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4.3.2 Beam energy measurement

In Eq. 4.1, the energy used to calculate Q2 is the incident energy at the scattering

vertex. In order to get the most precise value, we need to know the beam energy

before the beam enters the target as well as the energy loss in the target. In this

section, how we calculated the incident beam energy and its result will be dis-

cussed and the next section will focus on the energy loss. Eight dipoles in the arc

section of Hall C beam line are used to bend the incident beam by a total of 34.3◦.

During the energy measurement, those dipoles are switched on and the current in

the magnet is varied to set the position of the beam going along the center of those

magnets. Two pairs of harp scanners, which are made of tungsten wires, were

placed at the entrance and the exit of the arc respectively to measure the initial

and final position and direction of the beam. With the known entering and exit-

ing position and direction of the beam, combined with the magnetic field integral

from the eight dipoles2, the beam energy can be therefore deduced. Four energy

measurements were carried out during the whole data-taking period. The result

can be found in Tab. 4.6 and the error for the measurement was mainly due to the

knowledge of the integrated magnetic field. It can be seen that the biggest uncer-

tainty on this measured value is only ∼0.1%, which is equal to ∼0.2% uncertainty

for Q2.
2the magnetic field integral of only one dipole is measured and the values of the other 7 dipoles

are assumed to be the same.
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TABLE 4.6: Results from beam energy measurements

Time Value (MeV) Uncertainty (MeV) Run Period
January 2011 1160.33 1.1 Run I
May 2011 1160.44 1.1 Run I
December 2011 1158.27 1.1 Run II
May 2012 1159.48 1.1 Run II

4.3.3 Energy loss in the target

As mentioned in Sec. 4.2, the energy E used in Eq. 4.1 is not the value from Hall

C’s arc-energy measurement, therefore one needs to subtract the energy loss in

the target to arrive at the vertex energy. The energy loss is due to ionization,

internal Bremsstrahlung and multiple scattering. The amount of energy loss can

not be measured directly from the experiment, so we had to resort to simulation

to give us the precise value. The Qweak’s Geant3 and Geant4 teams carried out

the simulation task separately. The simulation deliberately assumes the scattering

vertex is at the end of the target in order to calculate the energy loss through the

entire LH2 target. The result from Geant3 and Geant 4 simulation shows a 11.4%

difference in the total loss of energy (68.0 MeV compared to 60.6 MeV). However,

since the scattering event randomly occurs in the target for the real experiment,

another simulation was carried out to chose the vertex randomly along the length

of the target and the result shows the mean pre-scattering energy is 1155 MeV

for both Geant3 and Geant4, which means a 5 MeV loss. Consequently, the

difference of the energy loss by using the Geant3 and Geant4 is 5×11.4%=0.57

MeV, which is equal to a ∼0.1% uncertainty of Q2.
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FIG. 4.21: This plot shows the correlation betweenQ2 and the octant position. The
run numbers are 13671-13681. The red points are results when the detectors are
at “reversed” position.

4.3.4 Octant Variance

Since neither the locations of the detectors and collimators nor the QTOR mag-

netic field have perfect azimuthal symmetry (despite them being designed to be

symmetric), the Q2 is not consistent along with the octant-pair number. Instead,

it shows an octant-to-octant variations in mean Q2. Fig. 4.21 shows the variation.

However, for the final extraction of Qp
W , only the pair-wise result of Q2 is used, so

the pair-wise result is also shown in Fig. 4.22.
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FIG. 4.22: This plot shows the correlation between Q2 and the octant pair. The
run numbers are 13671-13681. The red points are results when the detectors are
at “reversed” position.

4.3.5 Stability

The biggest uncertainty ofQ2 comes from the run-to-run instability, especially over

different data-taking periods. Fig. 4.23 shows the Q2 result for several runs under

some similar conditions, like positions of the tracking detectors, etc. The biggest

uncertainty, from Fig. 4.23 is ∼ 1.3% . Different factors can contribute to this

variation, for instance, one of wires in the back chamber at HDC was known to

be broken during the data-taking period in January of 2012, which caused the

low efficiency of partial track reconstruction where that broken wire was involved.

Consequently, a bias of Q2 was generated out of the tracking software. However,

the source for this ∼ 1.3% uncertainty has not been identified yet.
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FIG. 4.23: This plot shows the Q2 values from both packages at the same location
(octant 1&5) from three different data-taking period, which spans 7 months. The
blue represents the data from package 1 while red represents package2. The
statistic box above is the result from data of package 1.
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4.4 Light-weighting effect on Q2

The Q2 measured under the event mode can not be used as the final Q2 value

to extract Qp
W in Eq.1.29 because the parity asymmetry was measured under the

current mode, which is the value integrated over a window while the Q2 discussed

in this chapter was measured under the event mode. Therefore, in order to ap-

ply this correction, we need to resort to the concept of light-weighting Q2, which

is the average Q2 over the entire main detectors weighted by the number of the

photo-electrons produced by the main detector PMTs at different locations. The

correction that needs to be applied to the event-mode Q2 to get the effective Q2

is ∼1% [87], which is quite close to 1.2%, the expectation from GEANT4 simula-

tion [88].

Another important assumption is used here that the rate distribution, namely,

the weighting functionmust be consistent from low to high current. Since the track-

ing detectors can not be used at high current, the scanner consequently becomes

the instrument to detect the variation of the rate distribution. Several runs were

taken at both low and high current and the study shows a relatively stable rate

distribution and the fluctuation of the distribution only results in a 0.09% change

on the effective Q2 [89].
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4.5 The Summary of Error Sources for Q2

A summary of error sources which contribute to the uncertainty in the value of

Q2 as of this writing is in Tab. 4.7. In this table, all the errors related with the

beam properties are discussed in Sec. 4.3.1. However, since those studies were

carried out in only one pair of octants, we need to assume the same errors are

also applied to other octants. For some properties, like beam raster size and beam

rate, this seems quite reasonable. For other octant-related beam properties, like

beam position and beam angle, a sine interpolation is necessary. Therefore, all

the errors related to beam properties in Tab. 4.7 are all-octant averaged. All the

other errors summarized in Tab. 4.7 are also averaged values for all eight octants.

Among those uncertainties, the biggest resources are the stability and octant pair

variation: for the stability, various recent studies indicate that we could possibly

ignore the problematic Run I data when the error is quite big [90]. Instead, we used

the real data from Run II to calibrate the Geant4 simulation first. After the real and

synthetic data matched, we changed the parameters to be consistent with Run I

to get the result. In this way, the error source from stability is ”hybrid”: simulation

from Run I and measured data from Run II. Consequently, we are confident that

this error source could be reduced below 1%. If the statement holds true, the total

error for Q2 would be 1.6% (shown as value in the parenthesis in Tab. 4.7).
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TABLE 4.7: Contributions to the uncertainty in < Q2 >

Source ∆ < Q2 > / < Q2 >
Statistics 0.1%
Beam Energy ≤0.1%
Beam Raster
Size

≤0.1%

Beam Position 0.2%
Beam Rate ≤0.1%
Beam Angle 0.1%
Energy Loss in
Target

0.1%

Octant pair vari-
ation

1%

Geometry effect 0.3%
Stability 2%
Cuts 0.5%
Total 2.3%(1.6%)

4.6 Path Forward to 0.5% precision

As mentioned in the proposal, the error bar for Q2 for the final 4% Qweak mea-

surement is 0.5%. In order to reach that goal, we still need to reduce the current

error by 1%. Simulation could be resorted to understand the reasons for the error

for some sources such as the stability and octant pair variation. If necessary, we

could use the simulation data itself to generate the error contribution for those

sources. The cuts could also be investigated and refined. If all this works well,

the Q2 with an error bar of 0.5% should be reached. At the time of writing of this

thesis, these efforts are still underway by the collaboration.
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CHAPTER 5

Parity Data Analysis

5.1 Overview of the Data

The data of the Qweak experiment was collected over nearly two years, from

June 2010 to May 2012. After initial commissioning of the apparatus and beam,

the “production” data-taking took place. The production data were divided into

three stages, known as the “25% measurement”, “Run 1” and “Run 2”. The first

is named for the expected precision on the proton’s weak charge that it will pro-

vide, and represents the first 20 days of data-taking. This was followed by Run

1, which took place from Feb 2011 to May 2011. After a 6 months shutdown

of the accelerator, Run 2 began and lasted from Nov 2011 to May 2012. Each

data set was “blinded” by an independent blinding factor, so later they could be

analyzed and the results could be revealed independently. The initial “blinded” re-

sults of the 25%measurement have been reported in the PhD theses of Katherine
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Mayers [58] and John Leckey [55]. In this dissertation, a more up-to-date and un-

blinded result of the 25% measurement of the Qp
W is presented.

As mentioned before, three variables need to be measured or known (see

Eq. 1.28) in order to calculate Qp
W : the physics asymmetry (Ap

LR), the Q2 and

B(Q2). The precise measurement of Ap
LR requires us to measure the polarization

and to correct for any helicity-correlated false asymmetry and backgrounds in the

raw asymmetry (Ap
Raw ). This chapter will be mainly focused on the measurement

of Ap
LR , and the other two observables, Q2 and B(Q2), are discussed in chapter 4

and chapter 6 respectively.

Before discussing details of the calculation of the Qp
W , several terms, which

will be mentioned repeatedly in later sections, need to be defined here. “IN” and

“OUT” refer to the status of the IHWP (refer back to Chapter 2 for the definition

of this term) when the data was taken. “IN+OUT” means the sum of the result

from two opposite IHWP settings, which will provide a “null test” to see if any

false asymmetry due to the beam properties is largely removed. “IN-OUT” is the

difference between those two IHWP settings and should be equal to the true raw

physics asymmetry. For the data itself, the term “runlet” is used to describe about

∼6 minutes of data in a run, which is also equal to the maximum limit of 2 GB per

file of raw data on disk. A “run” is normally equal to ∼ 1 hour of data and a “slug”

is a term to describe a collection of data in a given IHWP setting. Typically the

data in a slug is ∼ 8 hours of data.

All data presented in this dissertation from the 25% measurement repre-
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sented only one configuration of the other slow-reversal device, the “DoubleWien”,

therefore the true beam helicity for each slug was determined just by the IHWP

setting.

5.2 Data Processing Scheme for Parity Data

The raw data, which is saved as a CODA file, is firstly decoded using the Qw-

Analysis software into the data formats, which can be read and analyzed later by

the ROOT software. The MySQL database is chosen here to store the output of

the root files and also to provide a convenient channel to read the data. All the

data can be accessed by using various softwares that support the MySQL; the

smallest unit that can read from the database is a runlet. In other words, if some

analysis needs to be done quartet by quartet, you have to bypass the database

and instead examine the rootfiles directly. The next step is to apply the linear

regression method to correct for any helicity-related false asymmetries and the

new results were also stored in the database marked with the specific number

of the regression scheme being used. The whole data process scheme in this

experiment for parity data is summarized in a flow chart in Fig. 5.1

5.3 Data Quality

The first step of all is to check the quality of the collected data. There were nu-

merous reasons that could cause bad quality data, such as a hardware failure,
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FIG. 5.1: Data process scheme in the Qweak experiment for parity data.

beam trips, beam ramps and excursion of the beam from the nominal positions,

etc. Three different types of cuts are available in the analysis. The most basic one

is the hardware cut, which is aimed at removing the data that fail to pass the gen-

eral hardware integrity checks. Each channel of a given readout electronics has

an error code and this error code could be combined to indicate that one of the

subsystems has a problem. For instance, combined BPMs and MD signals could

use the combined error code to check if any of its components has a hardware

issue. The causes of the error code in a given channel include saturation of the

signal, inconsistency of the output, incorrect increment of the sequence number,

etc. The single event cut, which is more focused on the performance of each in-

dividual subsystem compared to the hardware cut, sets the valid range for data
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from those subsystems (BCMs, BPMs, ... ), which effectively excludes an event

in which the beam behaves outrageously. The last type of cut is named the sta-

bility cut. This cut is used to remove the data which were taken when the beam

was quite unstable, such as during beam ramps (when the beam recovered to

the standard current after the beam trip occurred), beam trips, beam position ex-

cursions and main detector yield fluctuations. Unlike the single event cut, this cut

uses a 5 second buffer of data to calculate its root mean square value to see if the

value is within the preset range. If not, all the data within that 5 second buffer is

marked with a stability cut error. More details related to this event cut framework

can be found in [91].

All the collected data at the runlet level were labeled into three categories in

the database in terms of their qualities: good, suspect and bad. For the analysis

in this dissertation, the criterion used for defining the suspect and bad runlets are

listed in Tab. 5.1. Notice that the first two slugs in the 25% measurement, slug 29

and slug 30, will not be considered for the analysis in this dissertation because the

beam current was <100 µA current in > 95% of the runlets from those two slugs.

For the rest of the slugs, the “good” runlets after removing the bad and suspect

ones accounts for 87% of the total data recorded.

TABLE 5.1: the criterion of the data quality

Beam Current Charge Asymmetry
(Aq)

suspect <100 µA >10 ppm
bad unusable data1 >100 ppm

1The instruments, like QTOR or a main detector were off.
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5.4 The Measurement of the Raw Asymmetry Araw

After the data quality check, the next natural step is to get the raw asymmetry Araw

before any correction. To measure the correct yield for a single PMT, the pedestal

is firstly removed from the raw yield and then the yield is normalized to the beam

charge. Since there are 8 Main Detectors and 16 PMTs, different combinations

can be formed to measure Araw . The simplest one is called Amadallpmtavg and can

be outlined as

Amdallpmtavg =
1

16

16∑

i=1

Ai , i = 1, 2 ... 16 (5.1)

where Ai is the asymmetry measured by a single PMT.

For the other two methods, one concept, the tube weighting wi , needs to be

defined by using the following formula:

wi =
1

Yi
, i = 1, 2 ... 16 (5.2)

where Yi is the mean value of the yield from a single PMT. The basic idea is

for a larger number of events received, which is quantified by Yi , the statistical

error should be smaller. The two methods that use wi are called Amdallbarsavg and

Amdallbars . For Amdallbarsavg , each bar’s asymmetry is calculated first,

Yi =
wi_posYi_pos + wi_negYi_neg

wi_pos + wi_neg
, (5.3)

Ai =
Y +

i − Y −
i

Y +
i − Y −

i
, i = 1, 2 ... 8, (5.4)

where pos and neg refers to the two PMTs for a specified bar i . Then similar to

Eq. 5.1, the total asymmetry Amdallbarsavg is calculated by taking the average of all
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eight Ai .

Amadallbars , which calculates a single value by taking all 16 PMTs’ weighted

yields, can be outlined as:

Y =

∑wiYi∑wi
, i = 1, 2 ... 8, (5.5)

Amdallbars =
Y + − Y −

Y + + Y − . (5.6)

For the 25% measurement, the difference between the results using those three

methods were found to be quite small, in the order of ∼ 1 ppb. So in this disser-

tation, the simplest method, Amdallpmtavg is used for later calculation.

5.5 Polarization

During the 25% measurement period, only the Møller polarimeter was used to

measure the absolute beam polarization (the Compton polarization was still being

commissioned). The results with only statistical errors are shown in Fig. 5.2. The

first measurement was taken 10 days before the first slug that is included in the

25% measurement and is considered to have suffered from a high voltage issue

in the lead-glass detector and also a different laser spot was used on the polarized

source photocathode, so it will not be included here. Furthermore, considering the

impact brought by the variation of beam position, the value in Fig. 5.2 needs to be

corrected in terms of the beam position to provide a final value. This correction has

been done on a run-by-run basis and the result is shown in Fig. 5.3. An additional

0.37% systematic uncertainty is attached to each slug to represent the run-to-
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run unknown uncertainties, which makes the extracted polarization 88.07%. In

additional to the typical systematic uncertainties for the Møller measurement, an

additional uncertainty, which is due to a turn-to-turn short in one of the four coil

packs in quad3, which is one of the quadrupole magnets in the Møller polarimeter,

found by the Møller group in spring of 2011, also needs to be addressed. The full

impact is still under the investigation and an additional 1% correction from a sim-

ulation study is applied to the measured value and a conservative additional ≈1%

systematic error is added to get the final extraction of the beam polarization [92]:

Pe = (88.95± 0.19stat. ± 0.93sys. ± 0.89Q3−sys)% (5.7)

5.6 Corrections for Helicity-relatedBeamProperties

Any change of beam properties with beam helicity state can introduce the so-

called false parity asymmetries. In order to remove this effect, the following for-

mula is used:

Areg = Ameas −
n∑

i=1

(
∂A
∂Pi

)δPi , (5.8)

where Pi stands for different beam parameters: position (X , Y ), angle (X ′, Y ′),

energy (E ). Their helicity-correlated difference, denoted as δPi , was measured

continously by using the BCMs and BPMs while the data were collected. Tab. 5.2

shows a summary of those differences during the 25% measurement. Since the

beam modulation system was not available during the 25% measurement [93],

the detector sensitivities of beam parameters (∂A)/(∂Pi) had to be calculated by
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FIG. 5.2: Møller Polarimetry results for the 25% measurement; online results with
only statistical error bars.

using a multidimensional regression scheme in which the raw asymmetry was

fitted to linear dependencies on the various beam parameters Pi , which varied

“naturally” during the data-taking. As typical results, the sensitivities to position

X and position Y for different MDs in slug 35 are shown in Fig. 5.4 and Fig. 5.5

respectively. The general shape of the fitting curve is expected because of the

different positions of individual main detectors. For instance, MD1 and MD5 are
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FIG. 5.3: Møller Polarimetry results for the 25%measurement, after correction for
beam-related effects.

positioned horizontally, so they are quite sensitive to the change in the X direction

while MD3 and MD7, which are in the vertical position, are mostly sensitive to any

change in Y direction.

In the Qweak experiment, different sets of devices along the beamline are

available to measure the beam parameters. The locations of all those devices can

TABLE 5.2: Helicity-correlated differences in the 25%measurement averaged out
on the slug basis for two different IHWP states.

Helicity-correlated differ-
ence

IHWP IN IHWP OUT

Target X difference (nm) −11.7± 1.2 −7.9± 1.1
Target Y difference (nm) 92.4± 2.8 −34.0± 2.9
Slope X difference (nrad) 0.36± 0.04 0.15± 0.04
Slope Y difference (nrad) 2.24± 0.07 0.88± 0.07
Energy (ppb) −19.4± 0.6 −16.7± 0.6
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FIG. 5.4: MD sensitivity to position X for individual Main detectors in slug 35. The
statistical error bar for each measurement is only in the order of 10−5, so it is not
drawn here.

be found in Appendix C. For the position and angle (X , X ′, Y , Y ′), two options are

used: 1) either use BPM pairs (3h04 and 3h09/3h09b) to project to the target or 2)

directly use target variables (targetX, targetY, targetXSlope, targetYSlope3). For

energy E , two options are also present to measure its value: 1) use BPM 3c12X,

which is located the largest dispersion position in the beam arc or 2) use combined

results of BPM 3c12X, targetX and targetXSlope as an energy calculator. The

second option is potentially better because it uses more BPMs to decouple the

sensitivities to the beam position and to the beam energy from the detecotrs while

the drawback is that any error occurring to any one of those BPMs will cause an
3These variables are determined by using the fit result from signals from the following BPMs:

3H09B, 3H09, 3H08, 3H07B and 3H07A.
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FIG. 5.5: MD sensitivity to position Y for individual Main detectors in slug 35. The
statistical error bar for each measurement is only in the order of 10−5, so it will not
be drawn here.

invalid event. In addition, the beam charge asymmetry (AQ) can also be chosen

to add to the variable set in order to remove any nonlinearity effect in the main

detector yield. Last but not least, the asymmetry observed in the upstream Lumis,

can also be used as a variable in regression. Consequently, a total number of ten

different regression schemes were considered in this thesis.

Detailed comparison between those distinct regression schemes for the 25%

measurement have been carried out. Here, only five regression schemes’ results

are displayed for the purpose of studying the effect brought by using different

regression variables. Their names and variables are listed in Tab. 5.3.

Unlike the std, 5+1 and set3 regression schemes, where the value of the
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TABLE 5.3: Variables used in std, 5+1, set3, set5, set6 and set7 regression
schemes.

std
target X
target Y
target X′

target Y′

energy calcula-
tor

set5
BPM 3h09b
BPM 3h04
BPM 3c12X

set7
BPM 3h09
BPM 3h04
BPM 3c12X

5+1
target X
target Y
target X′

target Y′

energy calcula-
tor
AQ

set3
target X
target Y
target X′

target Y′

BPM 3c12X
AQ

set6
BPM 3h09b
BPM 3h04
BPM 3c12X
AQ

position and angle are given by the corresponding calculated variables, set5, set6

and set7 use the combinations of two BPMs to represent the position and angle:

position-like = bpm3h09(b)+bpm3h04

angle-like = bpm3h09(b)-bpm3h04

The first comparison is carried out between 5+1 and set3 where the only

difference is how the energy is measured. The total corrections to the raw asym-

metry for both two schemes are shown slug-by-slug in Tab. 5.4. Notice that the

correction to the asymmetry is always in the unit of ppb for all the comparisons in

this section, unless otherwise specified. From the Tab. 5.4, it can be concluded

that the choice of the energy variable has almost no impact on the regressed

asymmetries for this dataset.
4The value of the corrections for the IHWP out status was multiplied by -1 in order to correct

the sign for the half-wave plate status.
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TABLE 5.4: Total corrections of 5+1 and set3 to raw asymmetry, in ppb, for two
correction schemes. All the total corrections shown in the next few tables are
handled in the same way.

slug correction (5+1) correction (set3))
31 79.61 79.61
32 -38.50 -38.46
33 13.42 13.42
34 -38.73 -38.73
35 49.48 49.48
36 -58.87 -58.87
37 44.43 44.43
38 -69.24 -69.24
39 15.85 15.85
40 -72.74 -72.74
total -321.874 -321.87

The next comparison is to see how the choice of BPM pairs will change the

asymmetry. The comparison between set5 and set7 is shown in Tab. 5.5 and it

can be seen that the largest difference is only ∼ 4 ppb. Therefore, the choice of

whether to use BPM 3h09b or BPM 3h09 almost does not affect the final result.

The result of the comparison between target BPMs (set3) and BPM pairs (set6)

is shown in Tab. 5.6 and it seems that using the target BPMs will typically bring

larger correction (1 ∼ 10 ppb) to the regressed asymmetry. The largest discrep-

ancy comes from whether the charge asymmetry is used during the regression or

not, which could be as large as 20 ppb, as seen in Tab. 5.7. If the charge asymme-

try is used, the width of the asymmetry is reduced significantly. However, since

the reason for this effect is still under investigation and since the reason for a

sensitivity to AQ is not understood, to be conservative, regression schemes that

are used in this dissertation are those without using the charge asymmetry during
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TABLE 5.5: Total corrections of set5 and set7 to raw asymmetries, in ppb, for two
correction schemes.

slug correction (set5) correction (set7))
31 74.45 78.21
32 -31.89 -31.80
33 16.06 15.69
34 -27.87 -27.33
35 23.05 24.09
36 -51.37 -51.17
37 18.06 16.25
38 -57.20 -56.69
39 -13.75 -13.33
40 -56.06 -55.92
total -193.36 -187.4

TABLE 5.6: Total corrections of set3 and set6 to raw asymmetries, in ppb, for two
correction schemes.

slug correction (set6) correction (set3))
31 79.61 76.98
32 -38.46 -28.95
33 13.42 0.26
34 -38.73 -36.12
35 49.48 44.46
36 -58.87 -57.56
37 44.43 38.09
38 -69.24 -69.07
39 15.85 3.60
40 -72.74 -72.38
total -321.11 -273.51
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TABLE 5.7: Total corrections of set5 and set3 to raw asymmetry, in ppb, for two
correction schemes.

slug correction (set5) correction (set3))
31 74.45 76.98
32 -31.89 -28.95
33 16.06 0.26
34 -27.87 -36.12
35 23.05 44.46
36 -51.37 -57.56
37 18.06 38.09
38 -57.2 -69.07
39 13.75 3.60
40 -56.06 -72.38
total -193.36 -273.51

TABLE 5.8: Asymmetry under different regression schemes for slugs 31-40, in
ppb.

Regression Scheme Asymmetry Error
Raw -173.70 29.53
Std -200.62 29.44
Set5 -194.41 29.48
Set7 -193.38 29.42

the regression. They are std, set5 and set7. In Tab. 5.8, the asymmetry with the

error for those regression schemes are listed for slugs 31-40, and the difference

between the asymmetries for different schemes is within ∼ 7 ppb.

5.7 Corrections for Backgrounds

Even if the helicity-related false asymmetry is kept to a minimum level to our best

knowledge, we still need to remove various background noise sources, which

contribute to the measured parity-violating asymmetry. The formula to yield the
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physics asymmetry is given by

Aep =
Ameas/Pe −

∑
i fiAbkgd

i
1−

∑
i fi

, (5.9)

where fi is called the dilution factor and is defined as the ratio between the main

detector light yield from the background source i and the total observed yield

fi =
Y bkgd

i
Y bkgd

i + Y signal
i

. (5.10)

For this experiment, the biggest background source comes from the aluminum tar-

get window, which accounts for a ≃ 20% correction to the physics asymmetry Aep.

Other sources, like N → ∆ inelastic events, the transverse component in beam

polarization and soft backgrounds will also be considered in the data analysis in

this dissertation.

5.7.1 Aluminum Target Window and Dilution

Since the target used in the experiment includes upstream and downstream alu-

minum windows, our detected events include electrons from inelastic, elastic or

even quasielastic scattering between the beam electrons and aluminum in those

windows. As can be seen in Eqs. 5.3-4, in order to assess the aluminum back-

ground correction to the physics asymmetry, two parts need to be evaluated: the

asymmetry AAl and the dilution factor fAl .

Unlike the Aep, the asymmetry AAl is also determined by the weak charge of

the neutron, which is -1 at tree level. Therefore, the AAl is around ten times bigger

than Aep and a detailed theoretical prediction for AAl can be found in [94]. Ten



184

slugs of data were taken to study the magnitude of AAl by using the 4% down-

stream aluminum target with beam at 15∼30 µA for the 25% measurement be-

tween 01/26/2011 and 02/03/2011. The regressed value for Aep was found to be

1.66±0.17stat ppm and is shown in Fig. 5.6 slug-by-slug. After further correcting for

beam polarization, QTOR transport and beamline backgrounds (discussed later),

a radiative correction must also be applied due to the additional radiative energy

losses in the aluminum as well as the hydrogen target. The magnitude of the ra-

diative correction is obtained from simulation. The final aluminum asymmetry for

the 25% measurement is 1.76± 0.26 ppm [58].

The dilution factor fAl is defined as the ratio in the main detector’s acceptance

between the rate of scattering occurring in the aluminum target window and the

total rate of scattering from the filled hydrogen target. Two methods were used to

measure this quantity: the first is to use an empty target and directly measure the

rate from the aluminum target window; the second method is to use the target full

of cold gas with varying density, which is used to indirectly obtain the scattering

rate from the aluminum target window by extrapolating to the vacuum. Data were

collected by using both methods during the Run 1. A low beam current∼ 1µA was

used in the empty target method to protect the aluminum window and thus event

mode data-taking was adopted in those measurements. A reference target made

of carbon was also used as a reference target during these studies to account

for the potential systematic changes during individual runs, such as the difference

in the pedestal of BCMs at different beam current or at different time. The mea-



185

sured value from both methods were compared and they agree with each other

adequately (a 1% difference) at 0.03226± 0.00236 [95].

The impact of uncertainties from asymmetry in the aluminum target window

to the physics asymmetry can be summarized in the following relationships:

(
dAep
Aep

)AAl = −dAAl
Aep

× fAl
1−

∑
i fi

, (5.11)

(
dAep
Aep

)fAl =
dfAl

(1−
∑

i fi)2
×

AM/Pe + (−1 +
∑

i ̸=Al fi)AAl −
∑

i ̸=Al Ai fi
Aep

. (5.12)

For our case, AAl ∼ 10Aep and fAl ∼ 0, then Eqs. 5.11-12 can be simplified to

(
dAep
Aep

)AAl =
AAl
Aep

× f
1− f × dAAl

AAl
≃ 10fAl

dAAl
AAl

, (5.13)

(
dAep
Aep

)fAl ≃ dfAl ×
AAl
Aep

. (5.14)

With our measured values, the uncertainties from the asymmetry and the dilution

factor are 9.8 ppb combined. A more detailed calculation will be discussed in

Sec.5.9.

5.7.2 Inelastic Backgrounds

The inelastic scattering between the electron and the proton contributes to ALR

through the electroweak excitation of the ∆(1323) baryon resonance

N V→ ∆, (5.15)

where N is the nucleon and V = γ, W ±, Z 0. In the Qweak experiment, this transi-

tion is probed by the electromagnetic (V = γ) and neutral weak (V = Z 0), where

∆ eventually decays into a nucleon and a π. Although the QTOR magnet was
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FIG. 5.6: The regressed value of the parity-violating asymmetry of aluminum for
the 25% measurement. The p0 values are the fit values for all of the slugs in each
IHWP status assuming a constant value.

used to bend most of the inelastic electrons away from the acceptance of the

main detector, which led to a tiny fraction (as high as ∼ 0.2%) of the rate seen

by the main detector, the inelastic asymmetry is expected to be Q2-dependent,

given by A ≈ 10−4Q2/(GeV)2 [96]. At Q2 ∼ 0.026(GeV)2, this indicates that this

asymmetry is∼10 times bigger than the elastic asymmetry and the estimated cor-

rection from this asymmetry becomes non-negligible and therefore needs to be

measured. Notice that the value of ∼ 0.2% inelastic rate percentage is derived

from an initial crude simulation. The total detected rate is firstly compared be-

tween simulation and experimental data to make sure they are about the same,

so the percentage of the inelastic rate in the total rate derived from the simula-

tion should be consequently close to its counterpart under normal experimental
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running situations.

In order to measure the inelastic asymmetry, the magnet current was reduced

to 6700 A to produce the maximum rate of inelastic scattering in the main detector.

A total of 20 hours of data was taken in February of 2011. Another two sets

of data with higher statistics were taken in April of 2011 and December of 2011

respectively. The latest result from John Leacock’s analysis [97] showed that

Ainel ≈ −3.02± 0.97 ppm, (5.16)

where the uncertainty is purely statistical. The dilution factor finel was also deter-

mined from simulation to be (2.00±0.05)×10−4 at the nominal beam current 8921

A in that analysis. Considering the dilution and Ainel leads to -3.02 a correction

with an error 0.97.

5.7.3 Soft Backgrounds

In the Qweak experiment, photons and neutrons that hit the main detectors were

the two major soft backgrounds and their sources mainly came from two places:

one was primary electrons interacting in the beamline and the other was electro-

magnetic showers, created by the scattered electrons, on the collimators and the

shielding wall. The effect of the soft background from the beam line was mea-

sured by using a thick tungsten “shutter” to block one of the octants of the primary

collimators (octant 7), thereby blocking most of the scattered electrons from the

target and leaving the beamline background only. The signal in the main detector

was measured after and before the “shutter” was moved in, which allowed us to
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calculate the dilution factor by

f =
background

background + signal . (5.17)

The analysis of Run 1’s data, which was carried out in May 2011, showed that

the dilution factor, averaged over various raster sizes (3mm2 → 5mm2), was

(0.193±0.064)%. The asymmetry from the beam line is estimated indirectly by us-

ing the background monitors and upstream lumis to measure the asymmetry and

then scale this down by a certain factor. This method is based upon the assump-

tion that the ratio between the beam line asymmetry and asymmetry observed

by the main detectors is a fixed value. The value for the beam line asymmetry

is measured to be −5.5 ± 11.5 ppm. This octant plug technique, however, could

not measure the dilution from the showers created by the elastically scattered

electrons hitting the edges of the collimators and shield walls; we refer to this as

the QTOR transport background, Therefore, in order to measure the total QTOR

transport background, special tests were carried out to use the main detector as

the trigger in event-mode. The basic idea behind this test is that both the main

detector and trigger scintillator could detect the charged particles, while only the

main detector could perceive high-energy photons indirectly (see Sec. 2.7.1).

Consequently, the signal from neutral backgrounds was revealed by subtracting

the signal in the scintillator from that in the main detector. More details of this

measurement can be found in [98]. The preliminary result in [98] also showed

that the contribution from the “soft backgrounds” is ∼ (1± 0.5)% to the total yields

in the main detector. The asymmetry for this kind of background is estimated to
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be ∼ 0± 200 ppb.

5.8 Transverse Asymmetry

In addition to the corrections from various backgrounds, there are still some other

corrections that need to be considered before arriving at the physics asymme-

try. One of those examples is the parity-conserving transverse asymmetry Bn.

In ep scattering, Bn arises when the polarization is in the transverse direction with

respect to the momentum and is due to the imaginary part of the 2γ exchange am-

plitude [99]. Consequently, for a given main detector, the measured asymmetry

can be written as

Ameasured(φdet) = |P|APV + |PT |Bn sin(φdet − φs) + Bother , (5.18)

where |PT | is the transverse polarization in the beam, φdet is the azimuthal an-

gle of that given detector, φs is the phase offset and Bother is all the other back-

ground. Consequently, if our main detector system was perfectly symmetric in

the azimuthal direction, Bn is expected to be canceled out when signals from all

the eight detectors are averaged out. Special tests were performed to quantify

this effect by using the beam with fully transverse polarization either in horizontal

or vertical direction. Then the collected data from all eight main detectors with

distinct azimuthal angle φdet were used to fit to the function [100]

Adet = |PT |Bn sin(φdet − φs) + C , (5.19)
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where C represents the effect due to any broken symmetry which could not be

canceled out when averaging all the signals. Fig. 5.7 shows an example of fit-

ting the asymmetry from vertical and horizontal transverse LH2 data sets. The

preliminary analysis from LH2 data showed that the magnitude of the transverse

asymmetry was [100]

Bn = (−5305± 71stat. ± 150sys.) ppb. (5.20)

FIG. 5.7: The fitting of the raw asymmetry against the octant number on the elastic
horizontal and vertical transverse LH2 data sets.

The total leakage from the transverse component of the beam is then calcu-

lated by summing over the product of the residual polarization and the residual

term C , which are calculated assuming the beam is either at 100% vertical or hor-

izontal transverse polarization. Notice that the residual polarization Phorizontal and

Pvertical during longitudinal data taking were measured by fitting the ratio of the

measured φ-dependent asymmetry during longitudinal to the measured asymme-

try during full transverse running and they were found to be (3.8 ± 0.9)% and
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TABLE 5.9: Summary of the values of the “null” test and the true physics asym-
metry for slugs 31-40 before and after the standard regression scheme is applied,
in ppb.

(IN+OUT)/2 (OUT-IN)/2
Raw 70.35±29.58 -173.70±29.53
Standard 67.60±29.53 -200.62±29.44

(4.2± 0.9)% respectively [101]. The final false asymmetry result is determined to

be

∆Atrans = 0.47± 3.88 ppb (5.21)

5.9 Physics Asymmetry

As discussed in Sec.5.6, different regression schemes can be used to correct

the false parity asymmetries brought by the helicity-correlated difference and the

comparison in Tab.5.8 shows only as large as 7 ppb difference between different

regression schemes. In this dissertation, the standard regression scheme is used

as the final scheme to correct the false asymmetry. Fig. 5.8 and Fig. 5.9 shows

the results before (“raw”) and after the regression is applied. The “IN+OUT” and

“OUT-IN” values are also summarized in Tab.5.9. Notice that 70.35 ppb value of

the “IN+OUT” is deviated from 0, which is expected from theoretical point of view,

it still falls into 95% confidence level by taking into account the error bars.

In order to obtain the true physics asymmetry from Ameasured , which is the

asymmetry after regression applied, Eq.5.9 is needed to correct the contributions

from various background noise sources, which are discussed in Sec.5.7. A sum-
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TABLE 5.10: Summary of the error on each individual background correction in
ppb and its relative uncertainties on Aep for the 25% measurement, in ppb.

Background Asymmetry
(ppm)

Dilution factor Total correction
(ppb)

Aluminum 1.76±0.26 0.0323±0.0024 56.9±10.11
Inelastic -3.02±0.97 0.0002±0.0000 -0.6±0.2
Beamline -5.50±11.50 0.00193±0.0006 -10.62±23.02
QTORtrans 0.00±0.20 0.0010±0.0005 0.0±0.2
Total 0.034 45.7±25.14

mary of each background’s asymmetry and its dilution factor is shown in Tab.5.10.

Using Eq.5.9 and information from Tab.5.10, the physics asymmetry is calculated

to be:

Aep = −280.79 ppb. (5.22)

Furthermore, the contribution of each error source to Aep can be calculated using

the following two equations:

(
dAep
Aep

)Ai = −dAi
Aep

× fi
1−

∑
k fk

, (5.23)

(
dAep
Aep

)fi =
dfi

(1−
∑

k fk)2
×

AM/Pe + (−1 +
∑

k ̸=i fk)Ai −
∑

k ̸=i Ak fk
Aep

, (5.24)

where the subscript i corresponds to the i th background and the total uncertainty

from source i then can be calculated as

(
dAep
Aep

)i =

√

(
dAep
Aep

)2Ai + (
dAep
Aep

)2fi . (5.25)

A breakdown of the absolute and relative uncertainties to Aep from each indi-

vidual source is given in Tab. 5.11. The final physics asymmetry therefore is:

Aep = −280.79± 34.26stat. ± 27.37sys.. (5.26)
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TABLE 5.11: Summary of each individual correction and its relative uncertainties
on Aep for the 25% measurement, in ppb.

Source Correction error Contribution to dAep/Aep
Statistical 34.26 12.2%
Polarization 5.50 1.96%
Aluminum background 10.11 3.6%
Inelastic background 0.20 0.07%
Beam line background 23.02 8.2%
QTORtran 0.20 0.07%
Regression 8.14 2.9%
Transverse 4.49 1.6%
Total 43.85 15.6

FIG. 5.8: Raw asymmetry Aep for slugs 31-40. The red points are the results when
the IHWP status is out while the blues are results when IHWP is in. The p0 in each
statistical box shows the average values of asymmetries for those two different
IHWP status.
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FIG. 5.9: Asymmetry Aep for slugs 31-40, after applying the standard regression
scheme. The red points are the results when the IHWP status is out while the
blues are results when IHWP is in. The p0 in each statistical box shows the aver-
age values of asymmetries for those two different IHWP status.
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CHAPTER 6

Result and Outlook

6.1 The 25% measurement of Qp
W

The final elastic asymmetry, after all corrections are applied, is−280.79±34.26stat.±

27.37sys. from Sec.5.9 at Q2 = 0.025 GeV2. This new result, combined with other

PVES experiments’ data, is plotted in Fig. 6.1. Notice that the value and error bar

plotted in Fig. 6.1, APV = −279 ± 35stat. ± 31sys., which is the official result of the

collaboration, as published in [50], is slightly different from those in this disserta-

tion. But this few ppb difference will not affect the validity of the final values at the

current precision. The value of Qp
W at Q2 = 0, can be extrapolated through the

following equation:

Ap
LR/A0 ≃ Q2Qp

W + Q4B(Q2), (6.1)

where the meaning of each item has been discussed in Sec.1.6. Fig. 6.1 shows

the global fit combined other PVES experiment where the value of Q2 ranges
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from 0.025 (GeV/c)2 to 0.63 (GeV/c)2. Notice that this global fit is under the for-

ward limit angle assumption, which means the angle dependence of the hadronic

form factor contribution has been removed from the asymmetry by the amount

of A(θ, Q2) − A(0◦, Q2). By using this method, the two dimensional function of

A(θ, Q2) is collapsed into a one dimensional function A(Q2) and therefore can be

conveniently plotted and fitted. In addition to removing the angle dependence,

the γZ correction, which is the biggest theoretical correction, also needs to be

taken care of. The γZ correction can be divided into two parts: one part is depen-

dent on Q2 and beam energy E and will vanish when both those two quantities

are zero; the other part is intrinsic and will survive when Q2 = 0 and E = 0.

What we need to remove for every asymmetry is the first part. As discussed

in Sec.1.7, the most updated result shows the correction at the kinematics of

Qweak is 7.8 ± 0.5% [21]. The value of Qp
W obtained after all those correction,

is Qp
W (PVES) = 0.064 ± 0.012, which is consistent with the prediction from the

standard model Qp
W (SM) = 0.0710± 0.0007 with a higher precision than any other

previous experiment.

6.2 More recent results and path to the 4% result

The rapid progress in recalculating the correction from γZ box leads to decreasing

uncertainties and also help us to interpret the Qp
W better. The latest up to date re-

sult can be found in Qweak collaboration’s papers. There are still several factors
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FIG. 6.1: Current world data from parity-violating electron-proton experiments,
including Qweak’s 25% result, with the extrapolation to Q2 = 0 to get the value of
Qp

W .
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needed to be improved in order to meet the original 4% Qp
W goal. These includes,

but are not limited to: 1) statistics: all the data-taken periods have already been

finished by the May of 2012 (refer to Sec.5.1 for more information); what has

been showed and analyzed in this dissertation only includes data from 25% mea-

surement. Therefore, with more data being analyzed, the error from statistics is

expected to be greatly reduced to close to the proposed value of 2.1%. 2) beam

polarization: the proposed error is 1% and the current error stays at 2% 3) Q2:

the latest result shows the error of Q2 is limited to 1.6%. By futher investigating

the data and combining with the simulation result, we expect that the stability and

octant variant error sources can be reduced. 4) aluminum and beamline back-

ground: those two items currently are the two biggest systematic error sources

(3.6% and 8.2% each) contributing to the dAep/Aep. The proposed values for all

the backgrounds is 0.5%. Therefore, in order to meet the final goal, much effort

needs to be put to better understand the data and reduce the errors.
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APPENDIX A

Details of Parameter Files and

Running Options in QTR

The QTR relies upon a lot of pre-configured parameter files to precisely recon-

struct track. A lot of running options have also been provided in order to make

it convenient for people to use the QTR. This Appendix provides a list of the im-

portant parameter files as well as the most common options available when the

tracking analyzer is run.

A.1 Parameter Files

For each type of tracking detector, there are four kinds of parameter file needed

to be loaded:

• The Geometry File (qweak_new.geo): This file contains the positions in lab

coordinates of each detector for HDCs and VDCs. Local information, such as

the number of wires in each individual detector, the angle of wire orientation,

the active size of the detector, can be also found in this file. More details can
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be found in Sec. 3.9.

• The t0 map (R3_timeoffset.map andR2_timeoffset.map): This file contains

the t0 correction value for every wire in VDCs. More details are discussed in

Sec. 3.4.2.

• The drift-time to drift-distance tables (R2_TtoDtable.map andR3_TtoDtable.map):

The algorithm used to map the drift-time into the corresponding drift-distance,

required that we built a look-up table in order to do a quick conversion. The

first text map contains the look-up table for HDCs while the second for VDCs.

More details are discussed in Sec. 3.4.3.

• The electronics map (qweak_R2.map and qweak_R3.map): These two files

contain important information which help to link each electronic channel with

a specific corresponding physical element, such as package, plane and wire,

for HDCs and VDCs, respectively.

A.2 Running Options

Below is the list of the most common running options:

• -r run number : This option specifies the dataset with the given run number

to analyze.

• -e event: This option specifies the event number to analyze. A range of

events can be specified by separating the start event number and end event

number with a semicolon, such as 1:100. The start event number can be even

omitted, like :100 to tell the QTR to analyze the event from the first event until

event 100. If this option does not appear in the command line, the QTR will

analyze all the events in the dataset.
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• - -disable-by-type subsystem name: This option specifies the name of the

subsystem one wants the QTR to ignore. For VDCs, the subsystem name is

QwDriftChamberVDC while for HDCs, the name is QwDriftChamberHDC.

• - -disable-wireoffset {YES|NO}: Sets the option of turning on or off the Sub-

tractWireOffset functions. For more information, see Sec. 3.4.2.

• - -use-tdchits {YES|NO}: If 1(YES) is chosen, a TDC-based Root file will be

created. Otherwise, the normal wire-based Root file is constructed.

• - - R3-octant octant number : This option is used to load the specific octant

geometry information for VDCs.

• - - R2-octant octant number : This option is used to load the specific octant

geometry information for HDCs.

• - -QwTracking.regenerate {YES|NO}: This option specifies if one wants to

create the pattern database. The default value, which is recommended, is

0(NO) unless numbers in the geometry map are changed.

• - -QwTracking.disable-momentum {YES|NO}: This option specifies if one

wants to reconstuct the full track by connecting the HDCs and VDCs partial

tracks. The default value is 1(YES).

• - -QwTracking.disable-tracking {YES|NO}: If choosing 1(YES), the QTR will

ignore all the tracking jobs. In other words, only the drift-time and drift-

distance information will be obtained while no treelines will be reconstructed.
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APPENDIX B

Details of Geometry File in QTR

This Appendix provides a full summary of all entries which are used to describe a

given wire plane. To make numbers in the geometry file easier to be maintained

and more readable, each package is assumed to be placed at octant 3. The units

used in the geometry file are cm for length and degree for angle. A typical line

corresponding to a given wire plane in the geometry file typically has 23 entries,

they’re listed in order as follows:

1. name: this entry gives wire plane an alias, like VDC_leftfront in order for

people to better recognize wire plane when reading the geometry file

2. type: indicates the type of detector. For the HDCs and the VDCs, this entry

is always drift.

3. z : this entry specifies the z position of the wire plane in the global coordinates.

4. rotational angle about global x : the VDCs are oriented in such a way that

the whole local coordinate system needs to rotate about the global x axis a

certain degree (See Figure ??). This entry records value of this “tilt” angle.

For the HDCs, since the wire plane is perpendicular to the beam axis, this
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entry is thus 0.

5. spatial resolution: this entry describes how accurate is the drift-time timing

information.

6. tracking resolution: this entry is used to represent the hit resolution when

mapping the drift-distance from an event into corresponding bit patterns (refer

Sec. 3.6.1 for more details).

7. slope matching: this is limit of the slope difference used in the process of

matching the treelines from front and back chambers in the case of the VDCs

(refer Sec 3.6.2 for more details).

8. package: this entry specifies which package this wire plane belongs to. We

use letter u (up) and d (down) to represent package 1 and package 2, re-

spectively.

9. region: region number where 3 stands for the VDCs and 2 for the HDCs.

10. type: detector type. d for both the HDCs and the VDCs.

11. direction: the wire direction in the plane. For the VDCs, there are two direc-

tions: u and v ; for the HDCs, three directions can be found: x , u and v .

12. x : x position of wire plane in the global coordinates.

13. y : y position of wire plane in the global coordinates.

14. the width of active area in local x: for both the VDCs and the HDCs, the

longer edges are always placed parallel to the local y axis.

15. the width of active area in local y .

16. the width of active area in local z .
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17. wire spacing: this entry records the perpendicular distance between adja-

cent wires.

18. position of the first wire: this entry is the distance between the location of

the first wire and the local coordinates’ origin (see Figure ?? to Figure B.4 for

more details).

19. cos θ: θ is the angle between uv and local xy coordinates (See Figure ?? to

Figure B.4 for more details).

20. sin θ: see item 19.

21. rotational angle about global z : similar to item 3, this entry is the rotational

angle of the whole local coordinates about global z axis.

22. number of wires: this records how many wires in a given wire plane.

23. plane ID: this ID tag is used to keep track of each individual wire plane in

the QTR.
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FIG. B.1: The layout of two v planes from both packages in the VDCs. In the
geometry map, the package 1 is placed at octant 5 (beam right) while all the
numbers are read from octant 3, which can be obtained by rotating the package
1 by 90◦ in counterclockwise direction from octant 5. Similar to the package 1,
the numbers of package2 saved in the geometry file is also read from octant 3
and this is obtained by rotating 90◦ in clockwise direction from octant 1. The u
direction is perpendicular to the wire orientation and pointing from wire with small
number to wire with big number. θ is the counterclockwise rotational angle from u
to local x and its cos and sin value are saved as item 19 and 20 in the geometry
file. For two v planes in the VDCs, the nominal values of θ are 26.565◦(beam left)
and 206.565◦(beam right).
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FIG. B.2: The layout of two u planes from both packages in the VDCs.Unlike
??, the wire orientation is changed as well as the position of the first wire. So the
nominal values of θ are adjusted to 333.435◦(beam left) and 153.435◦(beam right)
accordingly.

FIG. B.3: The layout of one u plane in the HDCs. It is placed at octant 3 where all
the numbers are read. Unlike the mirror image relationship between two opposite
octants in the VDCs, the octant is just the rotational image of the opposite one in
the HDCs, which leads to the same treatment of both packages. Similar to VDCs,
the u is perpendicular to the wire orientation and always points from first wire to
the last wire. The θ for u plane is 153.435◦.
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FIG. B.4: The layout of one v plane in the HDCs. It is placed at octant 3 where all
the numbers are read. The θ for u plane is 216.87◦. Notice that there are three
directions in HDCs and only u(B.3) and v are drawn here, the x is ignored for it
being simple.
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APPENDIX C

Hall C beamline apparatus layout

This section displays the side view of the layout of all the Hall C apparatus along

the beamline. Notice that the names of the apparatus in this figure are different

from the names used in this dissertation. The name discrepancies for some of

apparatus mentioned in this dissertation are listed below.

• IPM3H04A: BPM3h04

• IPM3H09: BPM3h09

• IPM3H09B: BPM3h09B

• IBC3H05: Hall C BCM1

• IBC3H05A: Hall C BCM2
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FIG. C.1: The side view of the layout of apparatus along the Hall C beamline.



210

APPENDIX D

Projections of Reconstructed Tracks

for all Ocants

This section displays the result of projecting the HDC tracks to collimator 2, and the

hydrogen target from a series of runs where where all eight octants were covered

(See Sec. 4.2.1).
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FIG. D.1: Projection result from package 2 in run 13653 where octant 5 is covered.

FIG. D.2: Projection result from package 1 in run 13671 where octant 8 is covered.
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FIG. D.3: Projection result from package 2 in run 13671 where octant 4 is covered.

FIG. D.4: Projection result from package 1 in run 13674 where octant 2 is covered.
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FIG. D.5: Projection result from package 2 in run 13674 where octant 6 is covered.

FIG. D.6: Projection result from package 1 in run 13676 where octant 3 is covered.
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FIG. D.7: Projection result from package 2 in run 13676 where octant 7 is covered.
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APPENDIX E

Personal Contributions to Qweak

For hardware, I was involved with building and calibrating the VDCs at the College

of William and Mary from 2007 to 2010.

I became an expert on the tracking software. Initially, this work included the track

reconstruction only in the VDCs using the cosmic rays. This led to the optimization

of the VDCs. When the commissioning started, I made numerous improvements

to the QTR, which efficiency and precision of the linking the partial tracks between

each tracking system improves significantly. I also kept constantly updated the

geomtry of the tracking system in order to make them more consistent with the

reality.

The analysis of the Q2 as well as the 25% dataset was my independent work.
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