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We present a precise lattice QCD calculation of the contribution to the neutron-proton mass
splitting arising from strong isospin breaking, mn−mp|QCD = 2.32± 0.17 MeV. We also determine
mΞ− − mΞ0 |QCD = 5.44 ± 0.31 MeV. The calculation is performed at three values of the pion
mass, with several values of the quark mass splitting and multiple lattice volumes, but only a single
lattice spacing and an estimate of discretization errors. The calculations are performed on the
anisotropic clover-Wilson ensembles generated by the Hadron Spectrum Collaboration. The omega-
baryon mass is used to set the scale a−1

t = 6111 ± 127 MeV, while the kaon masses are used to
determine the value of the light-quark mass spitting. The nucleon mass splitting is then determined
as a function of the pion mass. We observe, for the first time, conclusive evidence for non-analytic
light quark mass dependence in lattice QCD calculations of the baryon spectrum. When left as a
free parameter, the fits prefer a nucleon axial coupling of gA = 1.24(56). To highlight the presence
of this chiral logarithm in the nucleon mass splitting, we also compute the isospin splitting in the
cascade-baryon system which is less sensitive to chiral dynamics. Finally, we update the best lattice
QCD determination of the CP-odd pion-nucleon coupling that would arise from a non-zero QCD
theta-term, ḡ0/(

√
2fπ) = (14.7± 1.8± 1.4) · 10−3θ̄.

The original lattice QCD correlation functions, analysis results and extrapolated quantities are
packaged in HDF5 files made publicly available including a simple Python script to access the
numerical results, construct effective mass plots along with our analysis results, and perform the
extrapolations of various quantities determined in this work.

I. INTRODUCTION

Strong nuclear interactions exhibit a near perfect sym-
metry between protons and neutrons. Today, we under-
stand this symmetry as a manifestation of the approxi-
mate SU(2)-flavor symmetry between the up and down
quarks. Violation of SU(2) symmetry is perturbatively
small, but has profound consequences upon our under-
standing of the universe. Isospin breaking leads to a tiny
relative splitting between the nucleon masses (∼ 0.07%),
which allows for the neutron to undergo the weak β-
decay process. The primordial abundance of hydrogen
and helium after big-bang nucleosynthesis is exquisitely
sensitive to the magnitude of isospin breaking, due to the
sensitivity of the weak-reaction rates of nucleons on the
nucleon mass splitting. Varying the size of isospin break-
ing by only 1%, for example, is inconsistent with the ob-
served abundance of primordial nuclei at the two-sigma
level [1]. Explicit isospin breaking in QCD interactions
arises due to the difference between up and down quark
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masses, and leads to charge symmetry breaking phenom-
ena, see Ref. [2] for an overview. Isospin is additionally
broken by the quark electric charges, and the Coulomb
repulsion between protons has a significant influence on
the nuclear landscape, from the stability of the Sun to
neutron-rich exotic nuclei and fission.

Connecting isospin breaking in the Standard Model to
that in nuclear physics is theoretically challenging due to
the strongly coupled nature of low-energy QCD. Prop-
erties of strongly interacting matter, such as the nu-
cleon mass splitting, can be computed using the non-
perturbative numerical technique known as lattice QCD
(LQCD). LQCD utilizes the path-integral formulation of
QCD on a discrete Euclidean spacetime lattice, and al-
lows QCD correlation functions to be stochastically de-
termined. In order to make predictions directly from
QCD, LQCD systematics must be sufficiently controlled.
Calculations must be performed at multiple lattice spac-
ings, such that the continuum limit can be performed.
Multiple lattice volumes must be used to extrapolate to
the infinite volume limit. Finally, the input quark masses
must be tuned and/or extrapolated to their physical val-
ues. A comprehensive world-wide summary of LQCD cal-
culations of important basic QCD quantities can be found
in the FLAG Working Group report [3]. LQCD calcu-
lations utilize state-of-the-art high-performance comput-
ing, and the paramount goal of calculating properties of
the lightest nuclei with all systematics controlled repre-
sents an exascale challenge [4]. To maximize the impact
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of such non-trivial resource requirements, the results need
to be coupled to and understood within the broader field
of nuclear physics. An essential tool to attain this is ef-
fective field theory (EFT) [5]. The EFT description of
low-energy QCD is chiral perturbation theory (χPT) [6–
8], which is formulated in terms of pion degrees of free-
dom as an expansion about the chiral limit. EFTs are
constructed by including all operators consistent with the
symmetries of the theory. While the form of these oper-
ators is dictated by symmetries, the values of the coeffi-
cients, known as low-energy constants (LECs), are a pri-
ori unknown. LECs must be determined by comparing
derived formula to experimentally measured quantities,
or by matching with numerical results from LQCD. In
particular, LQCD affords the ability to determine LECs
of the quark-mass dependent operators, a feat which is
considerably challenging or even impossible when com-
paring with experimental results alone. Prime examples
can be found in Ref. [3]. The true power of χPT is to
economize on LQCD calculations, as the determination
of LECs from QCD permits systematic EFT predictions
for other quantities.

The efficacy of an EFT is determined by the size of its
expansion parameters, which must be sufficiently small to
organize contributions from the multitude of operators.
The expansion parameter for two-flavor χPT is given by
επ = m2

π/Λ
2
χ, where Λχ ∼ 1 GeV is a typical hadronic

scale, and mπ is the mass of the pion. This small param-
eter provides for a rapidly converging expansion for pion
masses up to a few hundred MeV [9]. If one also considers
dynamical strange matter, then kaon and eta degrees of
freedom are relevant. The convergence of SU(3) χPT is
not as good as that of SU(2) due, in part, to the number
of virtual mesons propagating in loop diagrams, and the
size of the expansion parameter εK = m2

K/Λ
2
χ. Heavy

matter fields, such as nucleons and mesons containing a
heavy quark, can also be incorporated in the EFT. This
requires care, however, as the large mass scale can enter
loop corrections and spoil the EFT power counting [10].
A well-known solution to this problem is that of heavy
baryon χPT (HBχPT) [11, 12], in which the theory is
expanded about the infinite mass limit of the baryon, in
a similar spirit to heavy-quark EFT [13]. More recently,
an infrared regularization scheme was proposed [14] and
extended to multi-loop integrals [15, 16] which treats the
nucleon with a relativistic Lagrangian, but has a well-
defined mapping onto the HBχPT power counting. This
new scheme automatically includes the proper kinematic
singularities which appear in various quantities, whereas
the HBχPT formulation requires summation of higher-
order corrections for this to occur.

The hallmark prediction of χPT is the non-analytic
behavior of quantities with respect to the pion mass. Of-
ten this behavior is logarithmic, and referred to gener-
ically as “chiral logs.” Because the square of the pion
mass is proportional to the quark mass at leading or-
der (LO) in χPT, these chiral logs are non-analytic in
the light quark masses. Such effects cannot be pro-

duced by a simple power-series expansion about the chiral
limit, and are crucial predictions for QCD in the non-
perturbative regime. Conclusive evidence for the pre-
dicted quark-mass dependence will expose chiral dynam-
ics in low-energy QCD correlation functions, and fur-
ther establish confidence in LQCD techniques. Such evi-
dence has been observed in properties of light [9, 17] and
heavy [18] mesons and hadrons with a heavy (charm or
bottom) quark [19]; but, to date, there has been no con-
clusive demonstration for such behavior in properties of
baryons composed of light quarks. Suggestive evidence
for the presence of non-analytic light quark mass depen-
dence in the baryon spectrum was presented in Ref. [20]
using various linear combinations of octet and decuplet
baryon masses. In this work, we present, for the first
time, definitive evidence for a chiral log in the strong
isospin splitting of the nucleon. This evidence consti-
tutes an important foundational step for broadening the
reach of LQCD calculations when combined with χPT.

We begin with a description of the lattice calculation,
our analysis strategies, and a determination of the lattice
scale in Sec. II. We use the kaon spectrum to determine
the LQCD input value of 2δ ≡ md−mu that reproduces
the physical value of the isovector light quark mass. In
Sec. III, we present our results for the isovector nucleon
mass as a function of md − mu and mπ, and demon-
strate the presence of non-analytic light quark mass de-
pendence. To solidify this observation, we also present
results for the isovector cascade mass. As the cascade
also forms an isospin doublet, SU(2) χPT describing the
cascade spectrum is largely identical in form to that of
the nucleon, with only the numerical values of the LECs
altered. Phenomenologically, we know the cascade ax-
ial coupling is approximately 5 times smaller than that
of the nucleon. This in turn implies that the coefficient
of the chiral logarithm is approximately 10 times weaker
in the cascade splitting than the nucleon, which is ob-
served in the numerical results. We then briefly discuss
the implications for the QCD θ-term in Sec. IV, before
concluding in Sec. V.

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work are per-
formed on the Hadron Spectrum Collaboration (HSC)
anisotropic clover-Wilson ensembles [21, 22]. The HSC
ensembles exist for a variety of light quark masses and
volumes but just a single lattice spacing with fixed renor-
malized anisotropy ξ = as/at = 3.5.

We show the space-time dimensions in terms of lattice
sites, and bare quark parameters of the datasets used in
Tab. I. The configurations were generated using an im-
proved anisotropic gauge action comprised of combined
plaquette and rectangle terms as described in [23]. The
action simulated two degenerate light quarks of mass ml

and a single flavor for the strange quark with mass ms,
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using the O(a) improved Sheikoleslami Wohlert [24] ac-
tion also known as the Wilson-Clover, or simply “Clover”
action. The fermion action also utilized so called “Stout”
smeared gauge links [25]. Two levels of smearing were
performed, with a stout smearing weight of ρ = 0.22.
The gauge link smearing was performed only in the spa-
tial directions. The anisotropy parameters and clover co-
efficients were tuned non-perturbatively, employing the
Schrödinger Functional method as discussed in [21].

The configurations were generated using the Hybrid
Monte Carlo [26] algorithm, utilizing the Chroma code
[27]. The single-flavor strange quark term was simulated
by Rational Hybrid Monte Carlo [28]. A variety of al-
gorithmic tuning techniques were used to optimize the
configuration generation process, including use of even-
odd preconditioning, utilizing an anisotropic time-step in
the molecular dynamics, splitting the molecular dynam-
ics integration into several time-scales both in the sense
of mass preconditioning [29] of the light quark determi-
nant, and in the same spirit, by splitting the gauge action
into spatial and temporal parts and evolving the tempo-
ral gauge action with its larger forces on a finer timescale.
Finally, the second order “minimum norm” integrator of
Omelyan [30, 31] was employed with an attempt to tune
its parameter λ to minimize the integration truncation
errors. The form of the actions and a majority of the
gauge generation technique optimizations are described
in detail in [22], with the exception of some additional
tuning for the larger lattices ( e.g. further tuning the
integrator parameters ) that were carried out after that
publication.

The two-point correlation functions of the ground-
state hadrons are constructed for this work in a standard
fashion. We generate several gauge-invariant Gaussian-
smeared sources [32] on each gauge configuration with
random space-time locations [33]. From each source, we
solve for the light and strange quark propagators. For
efficient solves, we utilize the deflated eigcg inverter [34]
on CPU machines and the QUDA library [35] with multi-
GPU support [36] on GPU enabled machines. A point
sink or gauge-invariant smeared sink is then applied to
each quark propagator to construct PS (point-smeared)
or SS (smeared-smeared) correlation functions.

In order to induce strong isospin breaking, we follow
the suggestion of Ref. [37] and spread the valence up and
down quark masses symmetrically about the degenerate
light quark mass

mval
u = ml − δ , mval

d = ml + δ . (1)

Because the valence and sea quark masses are not equal,
this is a partially quenched (PQ) LQCD calculation with
induced PQ systematics which must be removed through
the use of PQ χPT [38–45]. In Ref. [37], it was shown
in some detail this choice of symmetric isospin break-
ing significantly suppresses the unitarity violating PQ
effects. Most importantly, it was demonstrated that the
errors from PQ do not enter isospin-odd quantities, such
as mn −mp until O(δ3), well beyond the current preci-

sion of interest. In Table I, we list the ensembles used in
this work, as well as the pion and kaon masses in MeV,
as determined from our scale setting in Sec. II B. We
further list the number of sources and the values of atδ
used in this work. In order to fully control the scale set-
ting, we also vary the valence strange quark mass atm

val
s .

We found the tuned value of atms = −0.0743 results in
a strange quark mass slightly lighter than the physical
one, see Sec. II B. The quality of the correlation func-
tions we compute on these HSC ensembles are very good
as can be inferred from the higher-statistics calculations
on the same ensembles in Refs. [22, 33]. In this article,
we only show the new isospin breaking results not pre-
sented previously. However, the Python script and hfd5
file accompanying this article can be used to generate
the effective masses of all the correlation functions used
in this work.

A. Stochastic and systematic uncertainties of the
ground-state spectrum

In order to determine the stochastic and systematic
uncertainties of the ground-state hadron spectrum, we
employ a fitting strategy that is an evolution of that
described in Ref. [46]. Either multi-exponential (multi-
cosh) fits or the Matrix Prony (MP) method is used to
fit the baryon (meson) correlation functions [33]. A large
set of reasonable choices of fit window, MP window, etc.
are chosen and swept over, resulting in O(100) different
fit choices for each correlation function. Each fit is per-
formed with a seeded bootstrap to preserve the correla-
tions between various hadron correlation functions com-
puted on the same ensembles, and to ensure the same
number of stochastic results across all ensembles, result-
ing in Nbs = 500 statistical samples for each quantity.
We also perform standard least-squares fits for all the
fits in this systematic loop to assess the quality of each
fit. For each fit, a weight is constructed as

wi =
Qi
σ2
E,i

(2)

where σE,i is the stochastic uncertainty determined for
the ground-state energy, and the quality of fit is defined

Q =

∫ ∞
χ2
min

dχ2P(χ2, d), (3)

with

P(χ2, d) =
1

2d/2Γ
(
d
2

) (χ2)
d
2−1e−χ

2/2 (4)

being the probability distribution function for χ2 with
d degrees of freedom. To assess the fitting systematic
uncertainty, the fits from the systematic sweep are re-
sampled with weight to generateNsys = 500 different sys-
tematic fits for each correlation function. By re-sampling
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ensemble mπ mK Ncfg Nsrc atδ atm
val
s

L/as T/at atml atms MeV MeV
16 128 -0.0830 -0.0743 490 629 207 16 {0.0002,0.0004,0.0010} {-0.0743,-0.0728,-0.0713}
32 256 -0.0840 -0.0743 421 588 291 10 {0.0002,0.0004,0.0010} {-0.0743,-0.0728,-0.0713}
32 256 -0.0860 -0.0743 241 506 802 10.5 {0.0002} {-0.0743,-0.0728,-0.0713}

TABLE I. Summary of LQCD ensembles used in this work. We provide approximate values of the pion and kaon masses at the
unitary point after our scale setting procedure II B. The number of configurations Ncfg and average number of random sources
Nsrc as well as the values of the strong isospin breaking parameter 2δ = md −mu used in the valence sector are provided. In
order to control the scale setting, we also use several partially quenched values of the valence strange-quark mass.

with weight, the resulting flat systematic distribution
faithfully represents the weighted distribution of the orig-
inal fits and allows us to enforce an equal number of sys-
tematic samples for every correlation function on every
ensemble.

In order to properly preserve the correlations amongst
various quantities computed on the same ensemble, for
example the nucleon isospin splitting at different values
of atδ, care must be taken to resample the systematic
distributions in a correlated manner. For example, the
multi-exponential/MP fits for mn −mp are aligned such
that the choice of tmin, tmax, nexp, etc. are the same for
each value of atδ on a given ensemble. The weight fac-
tor is then taken as the average of the weights from each
value of atδ, such that the seeded weighted re-sampling
always chooses the fits from each atδ in equal propor-
tion, thus preserving the correlation between the samples.
If this careful alignment is not performed, the resulting
χ2-minimum in the subsequent chiral extrapolations be-
comes at least an order of magnitude too small, as the
correlations become “washed out”.

The use of the full covariance matrix is critical in the
subsequent analysis due to the correlations amongst re-
sults computed on the same sea-quark ensembles but
with different values of the valence quark mass param-
eters. The interested reader can repeat our analysis as
both the original LQCD correlation functions, as well as
our full analysis results are provided in accompanying
hdf5 files with some routines written in Python that can
access the numerical results.

B. Scale setting

In order to relate dimensionless quantities computed
on the lattice to physical quantities comparable to exper-
iment, a lattice scale must be determined. There is ambi-
guity in choosing a scale-setting method, but all choices
must result in the same continuum limit. This ambiguity
becomes more relevant when one has just a single lattice
spacing, as in the present work. We choose the omega
baryon mass, mΩ, to set the scale in this work. Using a
hadronic scale allows for a direct comparison with experi-
mental quantities, after electromagnetic corrections have
been accounted for. The omega baryon has mild light-
quark mass dependence as it is composed of only strange

valence quarks. This also results in a rapidly convergent
SU(2) chiral extrapolation for mΩ [47].

As the lattice ensembles were generated with a strange
quark mass near its physical value, only a simple interpo-
lation in the strange mass is needed. In order to perform
the necessary light and strange quark mass extrapola-
tions to determine the scale, we utilize the two ratios of
hadronic quantities [22]

lΩ ≡
m2
π

m2
Ω

, sΩ ≡
2m2

K −m2
π

m2
Ω

. (5)

At LO (leading order) in χPT we have the relations

m2
π = 2Bml , m2

K = B(ml +ms) , (6)

where we quote the isospin-averaged kaon mass. In or-
der to capture the strange-quark mass dependence, we
compute the spectrum with 3 different values of the va-
lence strange quark mass, with values provided in Table I.
The omega baryon mass can then be determined for each
choice of parameters and fit as a function of lΩ and sΩ.
For the unitary points, one has the simple parameteriza-
tion

mΩ = m0 + c
(1)
l lΩ + c(1)

s sΩ + ... (7)

where the (...) denote terms higher order in lΩ and sΩ.
We can use PQχPT for the decuplet baryons [48] to make
an Ansatz for the dependence on atm

val
s . Using the LO

χPT expressions for the meson masses, one has

mPQ
Ω = mPQ

0 + c
(1)
l

(
lΩ +

1

2
sseaΩ

)
+ c(1)

s svalΩ , (8)

where m0 = mPQ
0 + 1

2c
(1)
l sseaΩ . Written in this way, the

fit parameters c
(1)
l and c

(1)
s are found to agree between

the unitary and PQ theories.
The calculated values of atmΩ are extrapolated to the

physical point as functions of lΩ, svalΩ and sseaΩ using
the above parameterizations. Denoting quantities at the

physical point with a ∗ (e.g. l∗Ω = m2 phys
π /m2 phys

Ω ), we
can determine an ensemble independent scale

a∗t ≡
atmΩ(l∗Ω, s

∗
Ω)

mphys
Ω

. (9)



5

V atml atms atm
val
s atmπ± atmK± atmK0 atmΩ lΩ sΩ

163 × 128 -0.0830 -0.0743 -0.0743 0.0801(4)(1) 0.1028(3)(1) 0.1038(3)(1) 0.301(3)(2) 0.0707(15)(9) 0.1646(36)(22)
163 × 128 -0.0830 -0.0743 -0.0728 – 0.1064(3)(1) 0.1073(3)(1) 0.307(3)(2) 0.0680(14)(8) 0.1739(35)(21)
163 × 128 -0.0830 -0.0743 -0.0713 – 0.1098(3)(1) 0.1107(3)(1) 0.313(3)(2) 0.0656(12)(8) 0.1825(35)(21)
323 × 256 -0.0840 -0.0743 -0.0743 0.0689(1)(2) 0.0963(1)(1) 0.0972(1)(1) 0.293(2)(2) 0.0553(7)(8) 0.1627(19)(24)
323 × 256 -0.0840 -0.0743 -0.0728 – 0.1000(1)(1) 0.1009(1)(1) 0.299(2)(2) 0.0530(6)(7) 0.1722(19)(23)
323 × 256 -0.0840 -0.0743 -0.0713 – 0.1035(1)(1) 0.1044(1)(1) 0.305(2)(2) 0.0509(5)(6) 0.1810(19)(52)
323 × 256 -0.0860 -0.0743 -0.0743 0.0393(1)(1) 0.08276(6)(7) 0.08383(6)(6) 0.275(1)(1) 0.0205(2)(1) 0.1629(13)(7)
323 × 256 -0.0860 -0.0743 -0.0728 – 0.08691(7)(5) 0.08791(7)(5) 0.282(1)(1) 0.0195(1)(1) 0.1725(13)(6)
323 × 256 -0.0860 -0.0743 -0.0713 – 0.09086(7)(5) 0.09182(7)(5) 0.289(1)(1) 0.0186(1)(1) 0.1816(13)(6)

TABLE II. Computed values of the hadron spectrum in lattice units and the corresponding values of lΩ and sΩ. These results
are computed with the smallest value of atδ = 0.0002.

0.02 0.04 0.06 0.08
lΩ = m2

π/m
2
Ω

0.14

0.16

0.18

s Ω
=

(2
m

2 K
−
m

2 π
)/
m

2 Ω

mπ ' 241 MeV
mπ ' 422 MeV
mπ ' 489 MeV

FIG. 1. Parameter space of lΩ and sΩ used in this work. The
vertical and horizontal dashed lines denote the physical values
of lΩ and sΩ with electromagnetic corrections subtracted.

The parameter space of lΩ and sΩ used in this work is
depicted in Figure 1 and listed in Table II.

In this work, we are interested in the strong isospin-
breaking corrections to mn−mp. We therefore define the
physical point in the absence of electromagnetic correc-
tions. Unless the electromagnetic corrections to mΩ are
unnaturally large (greater than several MeV), these cor-
rections are sub-percent and well within our total uncer-
tainty budget, and therefore we choose to neglect them.
The strong isospin breaking in the pion spectrum isO(δ2)
and assumed to be small [3]. Further, the electromag-
netic corrections to the π0 are suppressed [49]. We there-
fore take the QCD value of mπ in the absence of electro-
magnetism as defined by mπ0 . The FLAG [3] estimate of
the electromagnetic self-energy corrections to the kaon
spectrum can be used to define the QCD value of the

isospin-averaged kaon mass mQCD
K = 494 MeV (the un-

certainties on these QCD input values are well within our
total uncertainty). The physical point is then defined in

0.02 0.04 0.06 0.08
lΩ = m2

π/m
2
Ω

0.26

0.28

0.30

0.32

a
tm

Ω
mπ ' 241 MeV
mπ ' 422 MeV
mπ ' 489 MeV

FIG. 2. The lΩ dependence of atmΩ. The dashed vertical
lines denote the physical value of l∗Ω.

this work as mphys
Ω ≡ mPDG

Ω and

l∗Ω ≡
m2
π0

m2,PDG
Ω

= 0.0065 ,

s∗Ω ≡
2m2,QCD

K −m2
π0

m2,PDG
Ω

= 0.1681 . (10)

In Figures 2 and 3, we depict the values of atmΩ vs.
lΩ and sΩ. One observes linear dependence of atmΩ in
both lΩ and sΩ, consistent with the LO expressions in
Eqs. (7) and (8). Using the results listed in Table II, the
omega mass is determined as a function of lΩ and sΩ.
Both the unitary and PQ formula fit the data well with
the following caveat: a fully correlated fit to all data,
including errors in the independent variables, produces
an unexpectedly large χ2 despite having small residuals,
normalized by the extrapolated uncertainty. Removing
the two heaviest valence strange quark masses, atms =
{−0.0728,−0.0713}, in the two heaviest sea ensembles
from the fit produces a much better χ2, while losing none
of the predictive power of the fit, even for the points not
included. Using these quantities for the fit, we tabulate
our fit results in Table III. We find the unitary and PQ
fits results are perfectly consistent, with the PQ fit having
a factor of 2 larger systematic uncertainty. We take the
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PQ atm0 c
(1)
l c

(1)
s χ2 dof Q atm

phys
Ω at[fm] a−1

t [MeV]
no 0.139(07)(04) 0.50(13)(8) 0.77(2)(01) 0.39 4 0.98 0.2721(35)(18) 0.0320(4)(2) 6145(80)(40)
yes 0.099(19)(23) 0.50(14)(7) 0.77(3)(11) 0.38 4 0.98 0.2736(38)(56) 0.0322(4)(7) 6111(85)(94)

TABLE III. Scale-setting extrapolation using Eqs. (7) and (8).

0.16 0.17 0.18 0.19
sΩ = (2m2

K −m2
π)/m2

Ω

0.26

0.28

0.30

0.32

a
tm

Ω

mπ ' 241 MeV
mπ ' 422 MeV
mπ ' 489 MeV

FIG. 3. The sΩ dependence of atmΩ. The dashed vertical
lines denote the physical value of s∗Ω.

PQ fit as our determination of the scale:

1

a∗t
= 6111± 85± 94 MeV, (11)

where the first uncertainty is statistical and the second is
systematic. The statistical and systematic uncertainties
can be individually determined by taking the complete
statistical-systematic covariance matrix constructed from
the Nbs×Nsys samples, and first averaging over the sys-
tematic or statistical fluctuations, respectively.

C. The kaon spectrum and determination of δ

In order to determine the QCD contribution to the nu-
cleon isovector mass, we must first determine the physical
value of δ. At LO in χPT, the kaon masses are

m2
K± = B(ms +mu) , m2

K0 = B(ms +md) . (12)

A calculation of ∆m2
K ≡ m2

K0 −m2
K± = 2Bδ allows for

this determination. The electromagnetic contributions
to this kaon splitting must be subtracted. We use the
value of the strong isospin splitting provided in the FLAG
report

∆m2
K

∣∣∣
QCD

= 5930 MeV2 . (13)

The values of the kaon mass splitting computed in this
work are provided in Table IV. The kaon splitting ex-
hibits a slight pion-mass dependence, indicating the pres-
ence of NLO (next-to-leading order) corrections. We do

atml atms mπ [MeV] atδ (at∆mK)2

-0.0860 -0.0743 241 0.0002 0.000178(03)
-0.0840 -0.0743 421 0.0002 0.000189(02)
-0.0830 -0.0743 490 0.0002 0.000196(05)
-0.0840 -0.0743 421 0.0004 0.000378(03)
-0.0830 -0.0743 490 0.0004 0.000392(06)
-0.0840 -0.0743 421 0.0010 0.000947(05)
-0.0830 -0.0743 490 0.0010 0.000980(12)

TABLE IV. Kaon mass splitting versus δ and mπ on the
various ensembles.

atB α χ2/dof Q atδ
∗[10−4]

0.411(6)(5) 13.5(3)(3) 2.25/5 0.81 1.87(2)(2)

TABLE V. Extrapolation of ∆m2
K using Eq. (14) and the

determination of atδ
∗. Notice, we treat the scale dependence

of the LEC α implicitly, because we work at the standard
renormalization scale µ = 770 MeV throughout.

not observe any atm
val
s dependence. Starting from the

work of Gasser and Leutwyler [50], we can integrate out
the strange quark contribution to ∆m2

K to arrive at the
NLO formula

∆m2
K = 2Bδ

[
1 + α(µ)m2

π −
m2
π

(4πf)2
ln

(
m2
π

µ2

)]
. (14)

In this expression, α(µ) is an unknown LEC and f is the
pion decay constant in the chiral limit with the normal-
ization fπ = 130 MeV and we set µ = 770 MeV.1 In our
χPT analysis, we use the FLAGNf = 2+1 determination
of f = 122.6 MeV as input to the fits. This expression
describes the data well as observed in our analysis results
collected in Table V.

We solve for the value of atδ that reproduces the phys-
ical QCD kaon splitting, Eq. (13), finding

atδ
∗ = 1.87(2)(2)× 10−4 , (15)

where the first and second uncertainties arise from
the stochastic and systematic uncertainties, respectively.
The extrapolation and determination of atδ

∗ are depicted
in Figure 4. Interestingly, we can use the value of atB

1 In this and all subsequent χPT analyses, we work at the stan-
dard χPT renormalization scale µ = 770 MeV and treat an µ-
dependence of LECs implicitly.
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FIG. 4. Plot of strong isospin splitting ∆m2
K versus lat-

tice values for δ. The gray band is the predicted value of
∆m2

K(δ,mπ = mphy
π ) while the colored lines are the central

values for the corresponding pion masses. The magenta point
is the distribution of atδ

phys.

atml atms mπ/MeV atδ atδM
δ
N/(atδ) atδM

δ
Ξ/(atδ)

-0.0860 -0.0743 241 0.0002 2.31(08)(09) 4.66(12)(19)
-0.0840 -0.0743 421 0.0002 2.34(04)(05) 4.29(05)(10)
-0.0840 -0.0743 421 0.0004 2.34(04)(05) 4.31(05)(10)
-0.0840 -0.0743 421 0.0010 2.33(04)(05) 4.30(05)(10)
-0.0830 -0.0743 490 0.0002 2.15(05)(07) 3.83(08)(04)
-0.0830 -0.0743 490 0.0004 2.15(05)(07) 3.83(08)(04)
-0.0830 -0.0743 490 0.0010 2.14(05)(07) 3.83(08)(04)

TABLE VI. The nucleon (atδM
δ
N ) and cascade (atδM

δ
Ξ) mass

splittings, normalized by atδ for different values of atδ and mπ

on the various ensembles.

determined in this fit to estimate the bare vacuum con-
densate, Σ = BF 2, with F = 86.6 MeV as the pion decay
constant in the Fπ = 92.2 MeV normalization. Using our
lattice scale, Eq. (11), we obtain the bare value

Σ̊1/3 = 266(4)(1) MeV , (16)

which is very similar to the FLAG average [3]. As we
have not performed the necessary renormalization, this is
a qualitative comparison. However, it seems to imply the
isovector quark-mass renormalization is close to unity.

III. ISOVECTOR NUCLEON MASS AND
CHIRAL LOGARITHMS

We now turn to the nucleon mass splitting. We define
the isovector masses to be the positive quantities

δMδ
N ≡ mn −mp , δM δ

Ξ ≡ mΞ− −mΞ0 . (17)

In Table VI, we list the numerical values of the nucleon
and cascade mass splittings determined in this work. If
Figure 5, we display sample effective mass plots of the
nucleon and cascade isovector masses. These values can

0 5 10 15 20 25 30

t
2.0

2.5

3.0

3.5

4.0

4.5

5.0

m
ef
f

(t
,
τ

=
4)
×

10
4

P-S
S-S

0.05

Prob (m)

Stat. + Syst. pdf
δM δ

N atml = −0.0830 atms = −0.0743 atδ = −0.0743

0 5 10 15 20 25 30

t
5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

m
ef
f

(t
,
τ

=
4)
×

10
4

P-S
S-S

0.020.040.06

Prob (m)

Stat. + Syst. pdf
δM δ

Ξ atml = −0.0830 atms = −0.0743 atδ = −0.0743

0 5 10 15 20 25 30

t
3.0

3.5

4.0

4.5

5.0

5.5

m
ef
f

(t
,
τ

=
4)
×

10
4 P-S

S-S

0.05

Prob (m)

Stat. + Syst. pdf
δM δ

N atml = −0.0860 atms = −0.0743 atδ = −0.0743

0 5 10 15 20 25 30

t
0.7

0.8

0.9

1.0

1.1

m
ef
f

(t
,
τ

=
4)
×

10
4 P-S

S-S

0.05 0.1 0.15

Prob (m)

Stat. + Syst. pdf
δM δ

Ξ atml = −0.0860 atms = −0.0743 atδ = −0.0743

FIG. 5. Sample effective masses of the nucleon and cas-
cade isovector correlation functions. The resulting ground-
state mass splitting determined from Matrix Prony and multi-
exponential fits is displayed as a horizontal band over the re-
gion of times considered.
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be converted to MeV using the scale Eq. (11) and the
physical value of atδ

∗, Eq. (15).
At LO in the chiral expansion, we write the heavy

baryon Lagrangian [11] with the conventions of Ref. [45],
with the replacement αN = −4αM of that work,

L(LO)
N = N̄iv ·DN − T̄µiv ·DTµ + ∆T̄µTµ

− αN
2
N̄MN + 2γM T̄

µMTµ (18)

where M = 1
2 (ξ†mqξ

† + ξm†qξ). We similarly construct
the SU(2) Lagrangian for the Ξ,Ξ∗ system, following
Ref. [47], but keep the normalization similar to that in
Ref. [45] instead of using the extra 1/(4πf) in the LO
operators,

L(LO)
Ξ = Ξ̄iv ·DΞ− Ξ̄∗,µiv ·DΞ∗µ + ∆Ξ∗ΞΞ̄∗,µΞ∗µ

− αΞ

2
Ξ̄MΞ− 2αΞ∗Ξ̄∗,µMΞ∗µ (19)

The present choice of normalization is such that the
LO isovector masses are proportional to δ, with the slopes
δMδ

N,Ξ = αN,Ξδ. The NLO contributions that scale as

m3
π for the isoscalar mass exactly cancel in the isovector

mass, provided one utilizes the symmetric PQ isospin
breaking, Eq. (1), or includes isospin breaking in the
sea quarks with a unitary calculation. The first non-
vanishing corrections arise at NNLO (next-to-next-to-
leading order), originating from the self-energy correc-
tions due to virtual pion loops. These long-range cor-
rections depend logarithmically on the pion mass; and,
provided they have a large coefficient, cannot be well pa-
rameterized by a low-order power-series expansion about
the chiral limit. It is precisely this non-analytic behav-
ior that signals the influence of chiral dynamics in QCD
observables.

At NNLO in the SU(2) chiral expansion, the expres-
sion for the nucleon mass splitting, including partial
quenching effects, is given by [37]

δMδ
N = δ

{
αN

[
1− (6g2

A + 1)
m2
π

(4πfπ)2
ln

(
m2
π

µ2

)]
+ 4g2

πN∆

(
20

9
γM − αN

) J (mπ,∆, µ)

(4πfπ)2

+ β(µ)
2m2

π

(4πfπ)2
+

αN∆4
PQ

2m2
π(4πfπ)2

(4− 3g2
0)

}
. (20)

In this expression, all finite contributions are absorbed
into the LECs which stem from local operators. The
quantity αNδ is the LO contribution to δMδ

N and simi-
larly, the LO contribution to the delta-resonance isospin
splitting is proportional to γMδ, e.g.

m∆+ −m∆++ =
4

3
γMδ . (21)

The axial couplings gA and gπN∆ are well known phe-
nomenologically. At this order in the chiral expansion,

gA can be either the nucleon axial charge or its chiral
limit value, with the difference being of higher order than
NNLO. The quantity ∆ ≡ m∆−mN is the delta-nucleon
mass splitting, which is ∆ ' 293 MeV at the physical
pion mass. J (mπ,∆, µ) is a non-analytic function ap-
pearing above, defined as [45]2

J (m,∆, µ) = 2∆
√

∆2 −m2 ln

(
∆−

√
∆2 −m2 + iε

∆ +
√

∆2 −m2 + iε

)

+m2 ln

(
m2

µ2

)
+ 2∆2 ln

(
4∆2

m2

)
. (22)

For m > ∆, we can use the equality between ln and
arctan to express this function with all positive and real
arguments:

√
∆2 −m2 ln

(
∆−

√
∆2 −m2 + iε

∆ +
√

∆2 −m2 + iε

)

= 2
√
m2 −∆2 arctan

(√
m2

∆2
− 1

)
. (23)

In Eq. (20), the last contribution arises from the PQ ef-
fect but comes with no new LECs. The simplification
of this PQ effects occurs because of the symmetric split-
ting of the valence quark masses about the degenerate
sea quark mass, Eq. (1), with the definition [37]

∆2
PQ = 2Bδ . (24)

For this choice of PQ LQCD, the same quantity which
controls the isospin breaking effects also controls the PQ
effects. Lastly, g0 is the singlet axial coupling which can
be reliably estimated phenomenologically.

We would like to assess the various contributions to
δMδ

N arising in Eq. (20). At LO in χPT, ∆2
PQ = ∆m2

K ,

Eq. (14), so the size of the PQ corrections can be read-
ily estimated. Normalizing the PQ correction by the LO
term, and using our computed values of ∆m2

K from Ta-
ble IV as estimates for ∆2

PQ, we find

εPQ ≡
δMδ,PQ

N

δMδ,LO
N

=
(4− 3g2

0)∆4
PQ

2m2
π(4πfπ)2

. 5 · 10−4 , (25)

for all values of the parameters used in this work. The
bound is derived from the lightest pion mass, where this
effect is the largest. This is consistent with the observa-
tion that our results in Table VI show no sign of quadratic
atδ dependence. Thus, the PQ effects can be safely ig-
nored as they are much smaller than our other uncertain-
ties.

2 Compared with the more standard definition of J ′, found
for example in Refs. [48, 51], following Ref. [45], we define
J (m,∆, µ) = J ′(m,∆, µ) − J ′(0,∆, µ) with a suitable absorp-
tion of analytic pion mass terms in the LECs.
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A. χ-extrapolation of δMδ
N

We begin with the simplest extrapolation using only
the nucleon and pion degrees of freedom ,for which the
quark-mass dependence is given by

δMδ
N = δ

{
αN

[
1− m2

π

(4πf)2
(6g2

A + 1) ln

(
m2
π

µ2

)]
+ β(µ)

2m2
π

(4πf)2

}
. (26)

In this work, we have not computed the pion decay con-
stant or the nucleon axial coupling. While the pion decay
constant has a relatively large pion-mass dependence, it
is know that the nucleon axial coupling has a very mild
pion-mass dependence. For a recent review including gA,
see Ref. [52]. Whether we take f to be the chiral-limit
value of fπ, the physical value or pion-mass dependent,
the differences are all higher order than NNLO. For our
central values, we take f = fphyπ = 130.4 MeV. Because
we are interested in identifying the presence of the chiral
logarithm in Eq. (26), we try setting the nucleon axial
coupling to its physical value gA = 1.2723 and also let-
ting it float as a free parameter in the minimization. It is
worth noting that fits to the isoscalar nucleon mass, with
gA left a free parameter, return values consistent with
0 or significantly smaller than the measured value [53].
This is due, in part, to the dramatic pion-mass depen-
dence observed in LQCD spectrum calculations in which
the nucleon mass scales linearly in the pion mass [54, 55].

In the first extrapolation analysis we perform, we set
gA = 1.2723. With this value, Eq. (26) predicts a strong
pion-mass dependence due to the large coefficient in front
of the logarithm, 6g2

A + 1. The resulting fit is tabulated
in Table VII and depicted in Figure 6, and produces the
value

δMδ
N = 2.28(11)(3)(5) MeV . (27)

The first uncertainty is from combined statistical and
systematic uncertainties in the correlator analysis. The
second uncertainty is from the value of atδ

∗ we determine,
Eq. (15), and the third uncertainty is from our scale set-
ting analysis, Eq. (11). As is evident from the quality of
fit, this extrapolation is strongly favored by our numeri-
cal results. The strong curvature arises from the compe-
tition between the logarithm and the local counter-term
β in Eq. (26). This very rapid pion-mass dependence is
precisely what cannot be accounted for easily in a power-
series expansion about mπ = 0, but is easily accommo-
dated using the extrapolation formula predicted by χPT.
A detailed study of power-series expansion fits shows that
the size of the higher-order terms are as large or larger
than the lower-order terms, and the result is unstable
with respect to the inclusion of higher-order terms.

αN β gA χ2/dof Q atδM
δ
N MeV

1.64(09) -5.2(1.3) fixed 2.73/5 0.74 2.28(11)(3)(5)
1.67(47) -5.1(2.3) 1.24(56) 2.72/4 0.61 2.29(32)(3)(5)

TABLE VII. Chiral extrapolation of δMδ
N using Eq. (26)

with gA input (fixed) or free to float in the minimization.
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mπ/Λχ

1.6

1.8

2.0
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δM
δ N
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]

mπ = mphys
π

mπ ' 241 [MeV]
mπ ' 422 [MeV]
mπ ' 489 [MeV]

FIG. 6. The nucleon mass splitting δMδ
N versus mπ/Λχ

where Λχ = 2
√

2πf . The numerical results show statistical
uncertainties only. The multiple values at the two heavier
pion masses arise from the three values of atδ used in this work
and are split for clarity. These values have been converted to
MeV and scaled to the physical quark mass splitting atδ

∗,
Eq. (15).

1. Support for a large χ-log coefficient in the LQCD results

From the perspective of exposing non-analytic light
quark-mass dependence, the most interesting prospect
in our analysis is to relax the input of gA and see what
value the numerical results favor. In the subsequent anal-
ysis, we let gA float and only input the value of fπ,
which we take to be the physical pion decay constant, as
above. The resulting fit results are provided in Table VII.
As demonstrated by this analysis, the numerical results
strongly favor a large coefficient of the χ-logarithm, with
a value of nucleon axial coupling

gA = 1.24(56) . (28)

While there is a large uncertainty on the axial coupling,
it is very encouraging that the numerical results for the
isovector mass prefer a large value, as this is the coef-
ficient of the χ-logarithm. This is in sharp contrast to
the numerical analysis of the isoscalar nucleon mass [53],
where floating gA results gA . 0.4. This observation
quantitatively justifies for the first time our choice to in-
put the value of gA = 1.2723 to our analysis.
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FIG. 7. Analysis of δMδ
N excluding the heaviest pion mass

results.

2. Influence of heaviest pion mass on the χ-log

One may worry that the largest pion mass data
strongly influences the fit and induces the curvature. To
test this, we drop the heaviest pion mass results from
the analysis, resulting in the fit depicted in Figure 7.
As is evident, the resulting fit is in perfect agreement,
but less precise, indicating the heaviest pion mass re-
sults align with the predicted χPT formula, and only
serve to improve the precision of the analysis. The re-
sulting nucleon mass splitting in this case is δMδ

N =
2.28(15)(03)(05) MeV, to be compared to Eq. (27).

3. ∆-full extrapolation

The last chiral extrapolation systematic we explore is
whether the numerical results are sensitive to the delta-
resonance contributions. For mπ & 290 MeV, the delta-
resonance becomes stable as mN + mπ > m∆ in this
pion-mass regime. The delta degrees of freedom are also
strongly coupled to the nucleon with gπN∆ ' 1.5. For
these reasons, there is an expectation that these contri-
butions will be important to include explicitly. Neglect-
ing the delta degrees of freedom is equivalent to inte-
grating them out using a small expansion parameter of
ε∆π = mπ/∆, which is clearly not small for LQCD calcu-
lations with pion masses heavier than physical.

In order to assess whether our numerical results sup-
port the inclusion of the delta degrees of freedom, we
perform several different analyses. In each assessment,
we use the extrapolation formula

δMδ
N = δ

{
αN

[
1− (6g2

A + 1)
m2
π

(4πfπ)2
ln

(
m2
π

µ2

)]
+ 4g2

πN∆

(
20

9
γM − αN

) J (mπ,∆, µ)

(4πfπ)2

+ β(µ)
2m2

π

(4πfπ)2

}
. (29)

atml atms mπ atδ ∆ ∆Ξ∗Ξ

[MeV] [MeV] [MeV]
-0.0860 -0.0743 241 0.0002 330(12)(12) 244(06)(06)
-0.0840 -0.0743 421 0.0002 318(12)(06) 257(06)(06)
-0.0840 -0.0743 421 0.0004 318(12)(06) 257(06)(06)
-0.0840 -0.0743 421 0.0010 318(12)(06) 263(06)(06)
-0.0830 -0.0743 490 0.0002 244(24)(18) 232(12)(06)
-0.0830 -0.0743 490 0.0004 244(24)(18) 232(12)(06)
-0.0830 -0.0743 490 0.0010 244(24)(18) 232(12)(06)

TABLE VIII. The delta-nucleon (at∆) and cascade (at∆Ξ∗Ξ)
mass splittings determined in this work, for different values
of atδ and mπ on the various ensembles.

atml atms mπ atδ m∆− −m∆0 mΞ∗− −mΞ∗0

[MeV] [MeV] [MeV]
-0.0860 -0.0743 241 0.0002 – 3.09(14)(24)
-0.0840 -0.0743 421 0.0002 2.80(05)(12) 2.86(04)(08)
-0.0840 -0.0743 421 0.0004 5.56(10)(24) 5.72(09)(15)
-0.0840 -0.0743 421 0.0010 13.6(23)(55) 14.2(02)(04)
-0.0830 -0.0743 490 0.0002 2.52(06)(08) 2.68(06)(12)
-0.0830 -0.0743 490 0.0004 5.05(13)(15) 5.36(12)(24)
-0.0830 -0.0743 490 0.0010 12.7(03)(04) 13.3(03)(05)

TABLE IX. The ∆ baryon mass splitting used in the deter-
mination of γm e.g. Eq. (21). The Ξ∗ baryon mass splitting
is used to determine αΞ∗ as in Eq. (33). As the ∆ baryon is
unstable at the lightest pion mass, no fit was taken from this
ensemble.

To perform the analysis, we also determine or estimate
the values of ∆ = m∆ − mN and γM using the delta
correlation functions. The values of ∆ are collected in
Table VIII and the isospin splittings m∆− −m∆0 in Ta-
ble IX. From Eq. (21), we see only the product γMδ is
renormalization scheme and scale independent and as we
are working with bare values of δ. Thus, we find estimate
the unrenormalized LEC

γ̊M = 1.68(3) . (30)

Given the similarity of our estimate of the condensate Σ̊,
Eq. (16) with that in the FLAG report [3], we expect this
to be a good approximation of the renormalized LEC.

When assessing the contribution of these new terms,
we always take gA = 1.2723 because that is consistent
with our unrestricted analysis in Sec. III A 1. The lead-
ing large-Nc relation between gA and gπN∆ provides the
estimate [56, 57]

gπN∆ =
6

5
gA +O

(
1

Nc

)
. (31)

We perform the analysis of our results using Eq. (29) aug-
mented with Bayesian constrained fits with several gener-
ous values of a Gaussian prior width.3 The results are col-

3 There has been a recent interest in using Bayesian analysis meth-
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g̃πN∆ αN β ĝπN∆ δMδ
N MeV

1.50(25) 1.79(10) -16(3) 1.51(25) 2.40(12)(4)(5)
1.50(50) 1.78(12) -15(6) 1.46(47) 2.39(14)(4)(5)
1.50(∞) 1.66(32) -6(22) 0.49(4.47) 2.29(28)(4)(5)

TABLE X. Chiral extrapolation of δMδ
N using Eq. (29) with

a Bayesian constraint on gπN∆. The prior width given to
the augmented χ2 is denoted g̃πN∆ and ĝπN∆ is the resulting
posterior value. For any small finite prior width, the coupling
is just determined by the prior, Eq (31).

lected in Table X. All fits have a good fit-statistic and the
predicted values of δMδ

N are largely insensitive to these
modifications. However, we observe that the extracted
uncertainty on the gπN∆ axial coupling tracks the size of
the prior width indicating the numerical results provide
no guidance for the delta contributions. The strongest
conclusion one can draw from this analysis is that the
numerical results are not inconsistent with the contribu-
tions from the delta degrees of freedom, but there is no
quantitative support for them.

4. δMδ
Ξ and the lack of χ-logarithmic behavior

The cascade also forms an isodoublet, like the nucleon.
At low-energies, the SU(2) χPT theory for the Ξ will be
identical in form to that of the nucleon with only nu-
merical values of the LECs being different, as reflected
in Eqs. (18) and (19). Including virtual corrections from
the resonant spin-3/2 Ξ∗ states breaks the exact map-
ping of Eq. (20) to the Ξ,Ξ∗ system, as the Ξ∗ form an
iso-doublet while the ∆ states form an iso-quartet. Ac-
counting for these differences, the full expression for the
iso-vector Ξ mass becomes

δMδ
Ξ = δ

{
αΞ

[
1− (6g2

πΞΞ + 1)
m2
π

(4πfπ)2
ln

(
m2
π

µ2

)]
+ g2

πΞΞ∗ (4αΞ∗ − 3αΞ)
J (mπ,∆Ξ∗Ξ, µ)

(4πfπ)2

+ βΞ(µ)
2m2

π

(4πfπ)2

}
. (32)

This expression can be determined from Ref. [62] by
matching SU(3) onto SU(2) χPT [47]. We use the LO
contribution to the Ξ∗ isospin splitting to determine αΞ∗ ,
e.g.

mΞ∗− −mΞ∗0 = −4αΞ∗δ, (33)

with the data collected in Table IX. This allows an esti-
mation of the unrenormalized LEC

α̊Ξ∗ = −0.58(2) . (34)

ods for determining LECs in EFTs [58–61].

Phenomenologically, we know the Ξ axial charge is
much smaller than the nucleon axial charge. Similarly,
the axial transition coupling is suppressed [47],

gπΞΞ ' 0.24 , gπΞΞ∗ ' gπN∆√
3
' 0.87 . (35)

Comparing the coefficient of the chiral-log term arising
from the Ξ − π virtual state, we estimate that this log-
arithmic mπ contribution is O(10) times smaller than in
δMδ

N . We observe the pion-mass dependence of δMδ
Ξ is

much milder than that of the nucleon, see Figure 8. How-
ever, the contribution from the Ξ∗−π virtual corrections
is not as suppressed.

In order to assess the contributions from the Ξ∗ states,
we therefore perform an analysis using Bayesian priors
on both axial couplings, gπΞΞ and gπΞΞ∗ . We explore
setting prior widths that are 1, 2, 5 and 10% of the phe-
nomenological values in Eq. (35). We use both the ex-
perimental ∆Ξ∗Ξ splitting as well as those determined in
this work, see Table VIII. The results of these analyses
are collected in Table XI and a representative extrapola-
tion is depicted in Figure 8. As with the nucleon isovector
mass, we find the uncertainty on gπΞΞ and gπΞΞ∗ scales
with the prior width we set. However, we also observe
the resulting value of δMδ

Ξ is stable as we increase the
prior width. We therefore take the results with 5% prior
widths on the axial couplings. There is a systematic as-
sociated with using the experimental value of ∆Ξ∗Ξ and
the values determined in this work, which is nominally
higher order. For our final prediction, we therefore split
this difference as a systematic

δMδ
Ξ = 5.44(24)(8)(5)(7) MeV , (36)

where the uncertainties are the fitting statisti-
cal/systematic uncertainty, the uncertainty from atδ

∗,
the scale-setting uncertainty and finally the uncertainty
from ∆Ξ∗Ξ.

5. χ-logarithms in the isovector nucleon mass

Taken all together, we find the evidence presented here
to be conclusive evidence for the presence of non-analytic
light quark mass dependence in the nucleon spectrum:

• strong pion-mass dependence is observed which
cannot be accounted for with a power-series expan-
sion aboutmπ = 0, Figure 6 but perfectly predicted
and accounted for with χPT;

• the observed pion-mass dependent curvature is not
sensitive to the inclusion of the heaviest pion mass
data, Figure 7;

• relaxing the coefficient of the χ-log to freely vary
results in the large value of gA consistent with the
experimental value, Eq. (28);
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g̃πΞΞ g̃πΞΞ∗ ĝπΞΞ ĝπΞΞ∗ αΞ βΞ δMδ
Ξ MeV

∆ΞΞ∗ = 213.5 MeV
0.240(02) 0.882(09) 0.240(02) 0.882(09) 4.59(22) -2.6(14) 5.37(24)(8)(5)
0.240(05) 0.882(18) 0.240(05) 0.882(18) 4.59(23) -2.6(15) 5.37(24)(8)(5)
0.240(12) 0.882(44) 0.240(12) 0.882(44) 4.59(22) -2.6(15) 5.37(24)(8)(5)
0.240(24) 0.882(88) 0.240(24) 0.885(88) 4.59(23) -2.6(19) 5.37(25)(8)(5)

∆ΞΞ∗ = ∆LQCD
ΞΞ∗ MeV

0.240(02) 0.882(09) 0.240(02) 0.882(09) 4.70(24) -2.3(15) 5.50(25)(8)(5)
0.240(05) 0.882(18) 0.240(05) 0.882(18) 4.70(24) -2.3(16) 5.50(25)(8)(5)
0.240(12) 0.882(44) 0.240(12) 0.882(44) 4.70(24) -2.3(17) 5.50(25)(8)(5)
0.240(24) 0.882(88) 0.240(24) 0.884(88) 4.70(24) -2.3(20) 5.50(26)(8)(5)

TABLE XI. Chiral extrapolation of δMδ
Ξ using Eq. (32) with Bayesian constrained fits. The prior values are denoted as g̃πΞΞ

while the posteriors are denoted as ĝπΞΞ.

0.0 0.1 0.2 0.3 0.4 0.5
mπ/Λχ

2.0

3.0

4.0

5.0

6.0

δM
δ Ξ

[M
eV

]

mπ = mphys
π

mπ ' 241 [MeV]
mπ ' 422 [MeV]
mπ ' 489 [MeV]

FIG. 8. The mass splitting δMδ
Ξ [MeV] versus mπ with gπΞΞ

and gπΞΞ∗ constrained with 5% prior widths. The numerical
results show statistical uncertainties only. The multiple values
at the two heavier pion masses arise from the three values of
atδ used in this work and are split for visual clarity.

• the lack of observation of strong pion-mass depen-
dence in the cascade isovector mass, which is in
accordance with expectations predicted by χPT,
Figure 7.

To be conservative, for our final determination of δMδ
N ,

we use a fit including both nucleon and delta intermediate
states, Eq. (29). We use our prior knowledge of gA and
gπN∆ from experiment to allow these couplings to float
in the numerical minimization, but we apply reasonable
prior widths to their central values via an augmented χ2

with Gaussian priors. We explore the sensitivity of the
extrapolated value of δMδ

N to the size of the prior widths
on these axial couplings with 1, 2, 5 and 10% widths. As
with δMδ

Ξ, we use both the value of ∆ = m∆−mN from
experiment, and determined in this work, Table VIII as
a further extrapolation systematic. The results of this
study are presented in Table XII. The posterior uncer-
tainties on the axial couplings track the prior widths,
however, the resulting value of δδM is not sensitive to this
variation. We observe dependence on the values of ∆,
which we take as an extrapolation systematic. Our final

0.0 0.1 0.2 0.3 0.4 0.5
mπ/Λχ

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

δM
δ N

[M
eV

]
mπ = mphys

π

mπ ' 241 [MeV]
mπ ' 422 [MeV]
mπ ' 489 [MeV]

FIG. 9. The mass splitting δMδ
N [MeV] versus mπ with gA

and gπN∆ constrained with 5% prior widths. The numerical
results show statistical uncertainties only. The multiple values
at the two heavier pion masses arise from the three values of
atδ used in this work and are split for visual clarity.

prediction for the strong contribution to the isovector
nucleon mass is

δMδ
N = 2.32(12)(4)(5)(8) MeV , (37)

where the uncertainties are the fitting statisti-
cal/systematic uncertainty, the uncertainty from atδ

∗,
the scale-setting uncertainty and finally the uncertainty
from ∆. A representative fit is provided in Figure 9.

IV. IMPLICATIONS FOR THE QCD θ-TERM

CP (Charge-Parity) violation from the QCD θ̄ term
is intimately related to the quark masses [63–65]. Via
the U(1)A anomaly, the θ̄ term can be rotated into a
complex quark-mass term, which, after performing addi-
tional non-anomalous SU(Nf ) rotations needed to align
the vacuum of the theories with and without CP vio-
lation, is isoscalar and proportional to the light quark
reduced mass m∗. In SU(2), m∗ = (1/mu + 1/md)

−1
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g̃A g̃πN∆ ĝA ĝπN∆ αN β δMδ
N MeV

∆ = 293 MeV
1.27(01) 1.53(02) 1.27(01) 1.53(02) 1.80(09) -15.9(08) 2.40(11)(4)(5)
1.27(03) 1.53(03) 1.27(03) 1.53(03) 1.80(09) -15.9(09) 2.40(12)(4)(5)
1.27(06) 1.53(08) 1.28(06) 1.53(08) 1.80(10) -16.0(14) 2.40(12)(4)(5)
1.27(13) 1.53(15) 1.29(12) 1.52(15) 1.79(14) -16.0(24) 2.40(13)(4)(5)

∆ = ∆LQCD MeV
1.27(01) 1.53(02) 1.27(01) 1.53(02) 1.67(12) -15.2(12) 2.23(14)(3)(5)
1.27(03) 1.53(03) 1.27(03) 1.53(03) 1.67(12) -15.2(12) 2.23(12)(3)(5)
1.27(06) 1.53(08) 1.26(06) 1.51(08) 1.67(13) -15.0(16) 2.23(12)(3)(5)
1.27(13) 1.53(15) 1.24(13) 1.48(15) 1.68(15) -14.2(26) 2.24(15)(3)(5)

TABLE XII. Chiral extrapolation of δMδ
N using Eq. (29) with Bayesian constrained fits. Here g̃πN∆ is the prior width given

to the augmented χ2 and ĝπN∆ is the resulting fit value. For any small finite prior width, the coupling is just determined by
the prior, Eq (31).

and the quark-mass operator can be expressed as

Lm = −m̄q̄q + δ q̄τ3q +m∗θ̄q̄iγ5q

= −m̄q̄q + δq̄τ3q +
m̄

2

(
1− δ2

m̄2

)
θ̄q̄iγ5q, (38)

where 2m̄ = mu + md. The observation of Ref. [65] is
that the QCD θ̄ term and the quark mass difference are
related by an SU(2)L×SU(2)R rotation, and this implies
that chiral symmetry relates the matrix elements of the
isoscalar θ̄ term between nN nucleon and nπ pions to
those of the isovector quark-mass term with nN nucleons
and nπ−1 pions. These relations are particularly robust
for the leading interactions induced by Lm in the χPT
Lagrangian [62, 66].

The pseudoscalar mass term in Eq. (38) induces
isospin invariant, TV (time-reversal violating) pion-
baryon couplings,

L = − ḡ0√
2fπ

N̄τ · πN − ḡ0 Ξ√
2fπ

Ξ̄ τ · πΞ + . . . , (39)

where . . . includes terms with multiple pions, which are
fixed by chiral symmetry, and TV couplings of the Σ
and Λ, which we will not discuss. The coupling of great-
est phenomenological interest is ḡ0, which determines the
leading non-analytic contributions to the nucleon EDM
(electric dipole moment) [65] and the momentum depen-
dence of the nucleon EDFF (electric dipole form factor)
[67, 68]. Furthermore, ḡ0 dominates the nucleon-nucleon
TV potential induced by the QCD θ̄ term, and, conse-
quently, the θ̄ term contribution to the EDM of 3He, and
of diamagnetic atoms, such as 199Hg and 129Xe.

Chiral symmetry implies that, for CP violation in-
duced by the QCD θ̄ term, the nonperturbative infor-
mation entering ḡ0 and ḡ0Ξ is determined by the quark
mass contribution to nucleon and cascade mass splittings

[65, 66]

ḡ0(θ̄) = δMδ
N

m̄

2δ

(
1− δ2

m̄2

)
θ̄ ,

ḡ0 Ξ(θ̄) = δMδ
Ξ

m̄

2δ

(
1− δ2

m̄2

)
θ̄. (40)

These relations were derived at LO in χPT, but it has
been showed that they are respected by all loop correc-
tions of O(επ), and violated only by finite counterterms
[62].

Our extraction of the nucleon and cascade mass split-
tings allows for a precise determination of ḡ0 and ḡ0Ξ.
We find

ḡ0√
2fπ

= (14.7± 1.8± 1.4) · 10−3 θ̄, (41)

ḡ0Ξ√
2fπ

= (34.4± 4.0± 3.5) · 10−3 θ̄, (42)

where we used the FLAG averages for δ/m̄ at the physical
point, δ/m̄ = 0.37 ± 0.03 [3]. The first error in Eqs.
(41) and (42) comes from the lattice errors on the mass
splittings and δ/m̄, combined in quadrature. The second
error is an estimate of the O(επ) corrections to Eq. (40),
which, following Ref. [62], we conservatively estimate to
be at the 10% level.

The pion-nucleon coupling ḡ0 determines the non-
analytic dependence of the neutron EDM on the pion
mass [65]. At NLO in χPT [65, 68, 69]

dn = d̄n(µ) +
egAḡ0

8π2f2
π

(
log

(
µ2

m2
π

)
− πmπ

2mN

)
(43)

where d̄n(µ) is a counterterm needed to absorb the scale
dependence of the chiral loop, and a very similar expres-
sion holds for the EDM of the Ξ baryon. Recent LQCD
calculations of the nucleon EDM induced by the QCD
θ̄ term [70–72] do not yet show evidence of this non-
analytic behavior. As the precision improves and calcu-
lations at pion masses closer to the physical point are
performed, it will be important for LQCD to confirm, or,
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maybe more interestingly, refute the behavior predicted
by Eq. (43).

In addition, our calculation predicts the slope of the
nucleon EDFF. Defining SB = −dFB(~q 2)/d~q 2, where FB
is the EDFF of the baryon B and ~q indicates the photon
three-momentum, at the physical pion mass we find

Sn = (0.69± 0.08) · 10−4 θ̄ e fm3 (44)

gπΞΞSn
gASΞ−

=
δMδ

N

δMδ
Ξ

1− 5πmπ
4mN

1− 5πmπ
4mΞ

= 0.30± 0.02, (45)

where we used the NLO χPT expression of the EDFF
[66, 69]. While these predictions are of little phenomeno-
logical interest, since there are no plans to measure the
momentum dependence of the nucleon or Ξ EDFF, they
provide important benchmarks to check the validity of
current and future LQCD calculations of baryonic EDMs.

V. CONCLUSIONS

We perform precise lattice QCD calculations of the
ground state isovector spectrum by utilizing a symmet-
ric breaking of isospin in the valence sector about the
degenerate sea-quark mass. These results demonstrate
the first conclusive evidence for non-analytic light-quark
mass dependence in the baryon spectrum. The quan-
tity which prominently displays this non-analytic behav-
ior is the isovector nucleon mass splitting. The evidence
includes the observation of rapidly changing pion mass
dependence in this quantity, which cannot be simply un-
derstood with a well behave power-series expansion about
the chiral limit. The presence of the non-analytic χ-log
is robust to several systematic variations, including let-
ting the coefficient of the χ-log float as a free parameter.
We also observe the isovector Ξ spectrum has a milder
pion mass dependence, lending significant confidence in
our understanding low-energy QCD through the confir-
mation of non-analytic pion-mass dependence predicted
by χPT.

There are just a few LQCD calculations of mn − mp

in the literature [73–79], including a preliminary version
of this research [80]. We provide the most precise result,
although only Refs. [77, 78] have complete control of all
lattice systematics, notably a continuum limit. Precise
knowledge of the QCD contribution to mn−mp will also
allow for a more precise determination of the QED contri-
bution than presently exists [81–83] when combined with
the experimentally measured splitting. While we are not
able to perform the continuum limit of our results, we es-
timate the discretization effects to be 0.07 MeV for δMδ

N
and 0.16 MeV for δMδ

Ξ with the assumption of either
O(a2

s) of O(α2a2) contributions.
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