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Abstract—The superconducting magnet system in Hall B be-
ing designed and built as part of the Jefferson Lab 12 GeV up-
grade requires powering two conduction cooled superconducting
magnets—a torus and a solenoid. The torus magnet is designed
to operate at 3770 A and the solenoid at 2416 A. Failure modes
and effects analysis determined that voltage level thresholds and
dump switch operation for magnet protection should be tested and
analyzed before incorporating into the system. The designs of the
quench protection and voltage tap subsystems were driven by the
requirement to use a primary hard-wired quench detection sub-
system together with a secondary programmable logic controller
(PLC)-based protection. Parallel path voltage taps feed both the
primary and the secondary quench protection subsystems. The
PLC-based secondary protection is deployed as a backup for the
hard-wired quench detection subsystem and also acts directly on
the dump switch. We describe a series of tests and modifications
carried out on the magnet power supply and the quench protec-
tion system to ensure that the superconducting magnet is protected
against all fault scenarios.

Index Terms—Detection, dump switch, magnet, magnet protec-
tion, power supply, quench, superconductivity.

1. INTRODUCTION

HE torus magnet is one of the two conduction cooled su-

perconducting magnets for 12 GeV upgrade project. This
upgrade is for Experimental Hall B at Jefferson Lab (JLab)
and forms part of the CEBAF Large Acceptance Spectrometer
(CLASI12) [1], [2]. The magnet consists of six superconduct-
ing coils arranged to produce a toroidal magnetic field around
the beam line (see Fig. 1). All six coils are electrically con-
nected in series with joints of superconducting bus-bars. They
are mounted directly onto the He circuit heat exchangers (re-
coolers) in order to conduction cool the splices. The overall in-
ductance of the torus magnet is ~2.0 H with a stored energy of
~14 MJ at 3770 A [3]. The magnet is charged using a supercon-
ducting magnet power supply (MPS). This was a custom design
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Fig. 1.

CLASI2 torus magnet.

from Danfysik based on a model 8500/T854 [4]. The MPS dc
output is low voltage, high current, designed for near zero resis-
tance loads; however, the impedance seen at the magnet/power
supply output terminals can go from pure inductive to an almost
pure resistive state during a quench. Due to the requirements for
high stability and low drift on a static magnetic field, a linear
series-pass regulation topology was selected. The MPS circuit
design allows variable sweep rates for ramping-up and -down
the current in steps. The torus MPS output utilizes two quad-
rant operation allowing for smooth and continuous ramping of
the current into the magnet. Magnetic field polarity reversal is
achieved by means of a mechanical switch to reverse the di-
rection of current flow (unlike a four-quadrant power supply).
The power supply is programmed to sweep magnet currents
at predetermined rates at different current levels without user
intervention.

The power supply is designed to detect a quench and switches
off power automatically. The hard-wired quench detection sub-
system acts directly on the dump switch as a part of the primary
protection system. The quench protection system is capable of
detecting quench-induced voltages at multiple points namely
magnet coils, bus-bars, and the whole magnet in the cryostat.
The quench fault thresholds are set to the expected quench volt-
ages derived from simulations. The voltage thresholds and the
inductance of the magnet set upper limits on the MPS current
ramp rate, in order to avoid false trips.
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TABLE I
TORUS-DC POWER SUPPLY AND FAST ENERGY DUMP SPECIFICATIONS

Description Specification

Output current/voltage +4000 A/ +6 VDC

Ramp rate Variable: +0.2 to £3.0 A/s
Supply voltage 480 V/3-®/60 Hz.
Ambient temperature 15-35°C
Cooling water (flow, temperature) 60 I/m, 15-35 °C
Pressure 300 psig

Ground Isolation >1.0 MQ

Quench protection Fast dc output breaker

Magnet Iop Lror Est  Vpump BRpump Tuax

(A) (H) (MJ) V) () <)
Torus +3770 2.0 14.21 < 500 0.124 <350
Solenoid +2416 6.0 17.50 < 500 0.200 <350

The magnet system was subjected to a failure mode and ef-
fects analysis (FMEA) process to evaluate the robustness of
its protection system and adequacy of the instrumentation to
monitor the performance of the magnet [5]. While the FMEA
includes analysis of the magnet power system, cryogenics, in-
strumentation, mechanical stability, and many other factors, this
discussion focuses solely on the MPS.

II. DC POWER SUPPLY—SUPERCONDUCTING MAGNET

The power supply employed on the torus and the solenoid
magnet is a Danfysik Model 8500 rated at 4000 A/6 V, with
an integrated dump resistor, 124 and 200 m{2 for the torus and
the solenoid, respectively [4]. The MPS incorporates features
designed to mitigate or prevent failure modes during the magnet
operation. These features include: controlled current ramping
(up or down), fast dump switch and resistor to de-energize the
magnet, integrated polarity reversal switch, slow dump capa-
bility, and multiple dc current transducers for current-based in-
terlocks. Additionally, a separate rack mounted programmable
logic controller (PLC)-based controller initiates/programs ramp
rate of the current, monitor’s interlocks on the magnet, and
checks the overall health of the magnet. Salient MPS and en-
ergy dump specifications are given in Table I.

III. SUPERCONDUCTING MPS TEST

As part of the magnet energization process and readiness
review, hi-pot, interlock functionality, full output current test
with shorted terminals, and evaluation of the test dump switch
opening times were established toward system realization.

A hi-pot test, (with measurement of the leakage current) was
successfully completed at 1 kV. To perform the hi-pot test,
ground fault leakage current resistor was temporarily removed.
Interlock functionality was also successfully tested and veri-
fied. Subsequently, a full output current test at 4000 A was
successfully performed upon shorting the terminals after the
water-cooled leads.

The power supplies employed for the torus and the solenoid
were adequate by design having a total time delay of <750 ms
between quench set threshold is exceeded and the time for the
dump switch to fully open during energizing and operation for
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Fig. 3.  Dump switch coil configuration: (a) Danfysik factory setting and

(b) with JLab modification.

magnet safety. With similar power supplies across the labora-
tory, the suggestion was to improve on the overall delay using
the mechanical breaker. Danfysik system consists of an inte-
grated mechanical breaker along with quench detector (QD).
Any improvement on the overall delay helps us to keep the
hot spot temperature in the superconductor low (<150 K) dur-
ing a quench event. Switching the power supply off during any
magnet quench condition is crucial for the safety of the super-
conducting magnet and the MPS. The timing diagram for the
quench detection process is shown in Fig. 2. The time is divided
into three parts.

1) T_q (s) is the time between quench initiation and quench
threshold is exceeded,

2) T_qi (s) is the time between when the quench threshold is
exceeded and the quench-interlock relay contact opening, which
is a constant attributed to the associated electronics (see Fig. 3),

3) T_dsw (s) is the subsequent time for the dump switch to
fully open. As shown in Fig. 4, T_qi is measured to be about
12 ms, T_dsw is measured to be about 580 ms, and T_total is
about 600 ms.

A complete quench detection timing analysis and the mod-
ifications of the dump switch timing circuit have been carried
out at JLab. The initial tests carried out on the MPS with the
factory setting for the timing of the opening of the dump switch
measured ~600 ms, shown in Fig. 5, based on the factory con-
figuration shown in Fig. 3(a). After conferring with the MPS
and the dump switch manufacturers, the dump switch circuitry
was reconfigured as shown in Fig. 3(b). The reconfiguration in-
volved changing the series-connected dump switch coil resistor
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Fig. 5. Traces showing the dump switch timing with factory setting from
vendor is about 600 ms to open.

Fig. 6. Traces showing the dump switch timing after JLab modification is
about 60 ms to open.

to be in parallel with the dump switch coil. The value of the
resistor, RE, was also increased from 1.0 to 1.25 k€2 in order
to decrease the switching time. The modification significantly
reduced the T_total time to ~60 ms as shown in Fig. 6. The
overall time from quench initiation to dump switch opening is
estimated to be less than 120 ms (T_qi = 30 ms and T_dsw =
90 ms) which is significantly lower than the 600 ms measured
prior to the modifications [6].
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Schematic arrangement of torus magnet dump resistor in protection

IV. QD BOARD CONFIGURATION

The design of the quench protection (see Fig. 7) and voltage
tap subsystems were driven by the anticipated level of voltages
developed during a magnet quench and a full FMEA process
[7]-[9]. A dual protection scheme is employed, where a pri-
mary hard-wired analog circuit works in conjunction with a
digital PLC-based circuit. Parallel paths feed the primary and
secondary quench protection subsystems. The primary hard-
wired quench detection system was provided as standard by
Danfysik. Each quench detection module consists of four dif-
ferential input channels. Each input channel is capable of local
balancing and varying/adjusting the delay that acts directly to
convey a relay contact state for the MPS to open the fast dump
switch. The secondary quench detection is performed in the
PLC, where voltage tap data is fed from a second dedicated
unit with eight four-channel N9239 24-bit analog input mod-
ules. The digitized voltages are compared against user-selected
thresholds, in software, to turn the MPS OFF and activate the
fast dump switch, when a fault condition is detected.

Integrated QD units are capable of detecting the fault condi-
tions that may arise both in the superconducting magnet coils or
in the vapor-cooled current leads at least across two channels.
The magnet diagnostic system (MDS) is associated with the
control and the data acquisition (DAQ) subsystems. The MDS
has been engineered to include a hard-wired interlock safety
system. It will protect each magnet system in the event any se-
lected magnet parameter or limit exceeds user-set thresholds.
The MDS primarily monitors voltages across the coils, mag-
net water-cooled bus-bars, splices, and the vapor-cooled current
leads.

The quench protection system, mechanical dump switch, in-
terlocks, and remote control systems were all tested and verified
for reliable operation/functioning as expected during normal
steady-state magnet operation at 3770 A. During the commis-
sioning of the MPS, maximum current applied across the shorted
terminals was 4 kA in the forward and the reverse directions.
Gains across the channels of the QD’s (end of comparator) were
carefully tuned and set to hard-wired detection threshold volt-
ages. The threshold voltages are based on the results of quench
analysis under various conditions. The differential output
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Fig. 8.  Circuit used for impedance-matching simulations—CLR, Op-Amp,
and QD board.

voltages across the QD channels (output of the amplifier into
the comparator) are adjustable over the range of 2 mV to 2.0 V
under fault condition. The quench detection unit triggers the
energy dump circuit, when a fast magnet current ramp-down
is sensed via a direct analog interlock, once the differential set
threshold is reached.

For risk assessment and mitigation (RAM) planning, rigorous
and repetitive tests were carried out with an artificial quench sig-
nal (differential voltage) sent to the quench protection system.
Both primary and the secondary quench protection system tests
were completed satisfactorily for reliability and repeatability.
The MPS has compatibility using RS 232/422/485 remote con-
trol access with in-built safety features, e.g., ramping-down the
current automatically in the event of a power loss, a temperature
rise, an open interlock, etc.

One of the design features in the QDs of the torus mag-
net was to have a patch panel for routing the voltage signals
and to allow for local diagnostics. The voltage taps, mentioned
earlier, are wired into the input terminals on the patch panel.
These current-limited signals are then routed to the QD or the
DAQ circuitry, sometimes in parallel. DAQ consists of isolated
amplifier feeding the input of National Instruments ADC mod-
ule, sampled using N.I.’s CompactRIO (cRIO). Further, cRIO
transmits the sampled data to a PLC which then is used for
decision making. The voltage tap signals meet national fire pro-
tection association (NFPA) 70E Class-I limits with the addition
of current-limiting resistors (CLRs). These CLRs, in turn, affect
the input impedance of the factory configured QD circuits and
their associated DAQ channels. The modifications were carried
out on the standard off-the-shelf QD boards from Danfysik in
order not to exceed predetermined circuit-loading requirements.
With QD and DAQ systems in parallel, the result in a complex
voltage divider network that needed the modifications as carried
out to balance the circuit/s. To modify the QD boards to com-
ply with Class-I requirements, it was necessary to overcome the
balancing issue across the voltage taps in QD’s that share a com-
mon node with DAQ’s in parallel as shown in Fig. 8. The DAQ
impedance, primarily from the op-amp with 380 k2 and QD
impedance, ~15 k€2, has two 150 k€2 CLRs connected in series.
This suggests that the total impedance seen across the DAQ only
is of the order of ~680 k{2 in comparison to the total impedance
across the QD’s only which is ~315 k€. Therefore, the imbal-
ances with the DAQ included produce significant dips in the
measured voltages across the magnet due to the impedance mis-
match. QD simulation results along with the measured values
are shown in Fig. 9.
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Fig. 9. Voltage across QD’s and voltage taps across torus magnet—simulated
and measured with adopted impedance matching modifications.

TABLE 1T
Torus QD RESISTOR VALUES—BEFORE AND AFTER IMPEDANCE MATCHING

CLR (kQ2) QD Impedance Potentiometer Dividing Resistors
k) resistance (kS2) on the QD
board (k2)
X Y X Y X Y X Y
150 50 14.75 300 0.1 2.0 2.0 49.9

X: Before modifications carried out.
Y: Optimized values after carrying out simulations and adopted in the final configuration.

In order to mitigate the impedance mismatch, a number of
simulations using LTSpice were carried out with varying CLRs
and resistors on the QD board (modular design in order to keep
consistent across channels and spares) [10]. These simulations
capture all QD and DAQ setup presets across all channels en-
visaged for the torus magnet protection system. The balancing
potentiometer and divider are modified in order to obtain the
same linearity of input voltage. The optimized solution is shown
in Table II, complying with all Class-I requirements.

After carrying out the modifications on the input resistors
(based on the simulations), measured and simulated values
agree. The worst case observed before modifications is at the
start and end of the magnet leads. It is measured ~2.75 V com-
pared to ~4.4 V after modification, against 5.0 V as simulated.
The AV of 600 mV can be attributed to three DAQ channels
connected to a single node compared to one DAQ channel.

V. BENCH SETUP AND TESTS

As part of a RAM program at JLab, the modified QD boards
were tested on the bench with a voltage-divider circuit and a
potentiometer for adjusting the balance, as shown in Fig. 10,
before incorporation into the protection system. This adjustable
voltage divider circuit mimics quench threshold voltages from
100 mV to 2.25 V. In the bench setup, output of the adjustable
voltage-divider circuit was connected to 50 k2 series resistors
going to the upper and the lower input sections of the quench
voltage detection channel. The tests confirmed that 50 k{2 series
resistors were indeed suitable to allow setting of the gains on
the QD boards.
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Fig. 10. (a) Schematic layout generic QD board circuit diagram provided by
Danfysik and modifications carried out on the boards. (b) Schematic layout of
the test set up after modifications on the board.

VI. SUMMARY

Both power supplies for superconducting magnets in Hall B
at JLab were commissioned in May 2016. Both power supplies
are modified to: 1) accommodate the impedance matching of
CLR with QD and DAQ input impedance, 2) decrease overall
fast dump switching time after a quench event to <120 ms.
Successful multiple fast dumps up to 3.0 kA were carried out
with the integrated MPS on the torus during the magnet system
commissioning phase, with triggering via both primary and the
secondary protection subsystems. The torus MPS and magnet
are successfully integrated and are fully operational in Hall B.

ACKNOWLEDGMENT

The authors would like to thank B. Flora (FNAL), S.
Prestemon (LBNL), Y. Iwasa (MIT), and S. Lassiter (JLab) for
their valuable suggestions during reviews. The authors would
also like to acknowledge the support of Hall B staff and in par-
ticular the members of EES-DC Power Group during the study,
conducting test, and discussion. The U.S. Government retains a
nonexclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce this manuscript for U.S. Government purposes.

REFERENCES

[1] C.Rode, “Jefferson lab 12 GeV upgrade,” in Proc. Adv. Cryo. Eng. Conf.,
2010, vol. 1218, pp. 26-33.

[2] R.J. Fair and G. L. Young, “Superconducting magnets for the 12 GeV
upgrade at Jefferson laboratory,” IEEE Trans. Appl. Supercond., vol. 25,
no. 3, Jun. 2015, Art. no. 4500205. doi: 10.1109/TASC. 2014.2365737.

[3] P. K. Ghoshal et al., “Electromagnetic and mechanical analysis of the
coil structure for the clasl2 torus for 12 GeV upgrade,” IEEE Trans.
Appl. Supercond., vol. 25, no. 3, Jun. 2015, Art. no. 4500705. doi:
10.1109/TASC.2014.2382604.

[4] C. Neilsen, “Design report USA 502337-201, Hall B, torus/solenoid
MPS,” Danfysik, Taastrup, Denmark, MPS 854 - Danfysik Syste. 8500,
Jun. 2014. [Online]. Available: www.danfysik.com.

[5] P.K. Ghoshal et al., “FMEA on the superconducting torus for the jefferson
Lab 12 GeV accelerator upgrade,” IEEE Trans. Appl. Supercond., vol. 25,
no. 3, Jun. 2015, Art. no. 4901005. doi: 10.1109/TASC.2015.2388591.

[6] S. Philip, “JLab Hall-B torus power supply setup and acceptance testing,”
Jefferson Lab Anal., Newport News, VA, USA, Rep. B000000401-R017,
Apr. 2016.

[71 P. K. Ghoshal and R. Rajput-Ghoshal, “Quench analysis—single coil
quench analysis using Wilson model (analytical),” Jefferson Lab Anal.,
Newport News, VA, USA, Rep. BO00000401-A012, Apr. 2013.

4703006

[8] V. Kashikhin et al., “Torus CLASI12-superconducting magnet quench
analysis,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, Jun. 2014,
Art. no. 4500405. doi: 10.1109/TASC.2014.2299531.

[9] P. K. Ghoshal, G. Biallas, R. J. Fair, C. Luongo, and R. Rajput-Ghoshal,
“Design of quench tolerant sections in coil leads and splices for torus
magnet at jefferson lab,” Jefferson Lab Anal., Newport News, VA, USA,
Rep. BO00000401-A027, May 2016.

[10] Linear Technology, Milpitas, CA, USA, “Open source design
tool for electrical engineers, ‘LTspice’.” 2016. [Online]. Available:
http://www.linear.com/designtools/software/

Probir K. Ghoshal (M’05-SM’11) received the B.E. (Hons.) degree in elec-
trical engineering from the Government Engineering College, Bilaspur, India,
in 1992, the M.Tech. degree in cryogenic engineering from Indian Institute of
Technology, Kharagpur, India in 1995, and the Ph.D. degree in electrical engi-
neering from University of Cambridge, Cambridge, U.K., in 2009.

He worked as a Project engineer/Assistant manager for 6 years, since Feb.
1995 in engineering and cryogenic industry. In 2001, he relocated to Oxford,
U.K., working for Oxford Instruments NanoScience involved with various su-
perconducting magnets including world’s highest fully superconducting magnet
22.5T using both LTS and HTS till December 2010 as a Principal Engineer. He
moved to the USA working for General Electric—Global Research Center, NY,
USA, from December 2010 till January 2013 on applied superconductivity and
cryogenics. Since January 2013, he has been working as a Senior Staff Engineer
(Superconducting Magnet Engineer) at the Thomas Jefferson National Accel-
erator Facility, Newport News, VA, USA, on 12 GeV accelerator upgrade. He
also contributed a chapter to High Temperature Superconductors (HTS) for En-
ergy Applications (Woodhead Publishing, 2011). He has publications in review
journals and patents.

Dr. Ghoshal is a Technical Editor and Reviewer of the IEEE TRANSACTIONS
ON APPLIED SUPERCONDUCTIVITY and a Reviewer of Superconducting Science
and Technology (Institute of Physics), U.K. He is a Chartered Engineer, Member
of Institute of Engineering and Technology (U.K.), Member of Indian Cryogenic
Council, and Member of Indian Vacuum Society.

Ramakrishna Bachimanchi received the B.E. degree in electronics and com-
munication engineering from Vasavi College of Engineering, Osmania Univer-
sity, Hyderabad, India, in 2004, and the M.S. degree in computer engineering
from George Mason University, Fairfax, VA, USA, in 2007.

From 2006 to 2007, he worked as a graduate teaching and research assis-
tant in the Department of Electrical and Computer Engineering, George Mason
University. Since March 2007, he has been working as a Staff Engineer in
the Division of Electrical Engineering, Thomas Jefferson National Accelerator
Facility, Newport News, VA, USA. He primarily contributes to circuit design,
PCB layout, system design, testing, integration, and FPGA and microprocessor
implementation. He acquired skills working on accelerator RF systems—data
acquisition, digital signal processing, cavity control, etc.

Ruben J. Fair (SM’11) received the B.Sc. (Hons) Eng. degree in electrical en-
gineering and the Ph.D. degree in electrical engineering from Imperial College
of Science and Technology, London, U.K., in 1985 and 1991, respectively.

In 1988 he joined GEC-Alsthom Large Machines Ltd. as a Hydrogenerator
Design Engineer and left in 1994 to join Oxford Instruments (NMR Division)
as a Design and Development Engineer working on a range of new supercon-
ducting magnets, including the world’s first persistent 900 MHz NMR magnet.
In 1999, he accepted the position of Principal Engineer at Oxford Instruments
(Research Instruments) to lead a team of engineers developing superconducting
magnets and ultralow temperature refrigerators for the physics community. In
2005, he was selected to lead the New Product Introduction Engineering team,
Oxford Instruments Nanoscience. In 2007, he join Converteam (now General
Electric Power Conversion) where he led a team of engineers to develop the
world’s first high temperature superconducting hydrogenerator and also set up
a Cryogenics Laboratory. In 2010, he was recruited by the General Electric
Global Research Center, Niskayuna, NY, USA, to develop a strategic road map
for a range of superconducting machines. While at the research center, he led a
team which was awarded funding from the Department of Energy to design a
superconducting wind turbine generator. He accepted a position as a Principal
Engineer at the Jefferson Laboratory, Newport News, VA, USA, in 2013 to lead
a team overseeing the design, build, installation, and commissioning of eight
superconducting magnets for the 12 GeV accelerator upgrade project. He also
contributed a chapter to High Temperature Superconductors (HTS) for Energy
Applications (Woodhead Publishing, 2011). He has publications in review jour-
nals and patents.

Dr. Fair is a Chartered Engineer and a Member of the Institute of Engineering
and Technology (U.K.).


http://dx.doi.org/10.1109/TASC. ignorespaces 2014.2365737
http://dx.doi.org/10.1109/TASC.2014.2382604
http://dx.doi.org/10.1109/TASC.2015.2388591
http://dx.doi.org/10.1109/TASC.2014.2299531

4703006

David Gelhaar served in the U.S. Navy from October 5, 1982 until honor-
ably discharged in August of 1990. David had successfully completed training
at US Navy Electronics Technician "A" School (Nuclear), Great Lakes June
1983, US Navy Nuclear Power School Training August 1984, US Navy Nu-
clear Power Prototype Training August 1985. During that time, assisted in the
pre-commissioning, initial sea trials, and original crew of the USS Theodore
Roosevelt in the Reactor Department and a Reactor Operator and Reactor Tech-
nician and served at the Maintenance Group Supervisor for #2 Reactor RC
Division. After discharge, took a position in the RF Group at Thomas Jefferson
National Accelerator Facility, Virginia and was responsible for the Low Level
Checkout for all original High Power Amplifier and Cathode Power Supply
system and later moved to the DC Power Group to assist with maintenance,
repair and reliability improvements and took responsibility for the 20 Amp trim
and shunt system upgrades for the new 12 GeV program. Mr. Gelhaar helped
12GeV integrating new high power Danfysik power supplies to the supercon-
ducting magnets.

Onish Kumar received the B.S. degree in electrical engineering from the Uni-
versity of Illinois at Urbana-Champaign, Champaign, IL, USA, in December
2010.

During 2010-2011, he worked as an undergraduate research assistant at the
University of Illinois at Urbana-Champaign. In March 2011, he Joined Bitrode
Corporation, St. Louis, MO, USA, as a Product Engineer, where he designed
linear and SMPS for battery industry. In the year 2014, he joined The Thomas
Jefferson National Accelerator Facility, Newport News, VA, USA, as a Staff
Engineer in DC Power Group, where he contributes in the development of vari-
ous circuit designs; PCB board schematics and layouts, system integration and
testing, FPGA-based design, etc.

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 8, DECEMBER 2017

Sarin Philip (M’11) received the B.Sc. degree in electrical engineering from
Virginia Technology, Blacksburg, VA, USA, in 2004.

Since 2005, he has been employed as an Engineer with the Electrical En-
gineering Group, Jefferson Lab, working on accelerator magnets and power
supplies. Since 2015, he has been a Group Leader of the DC Power and Mag-
nets Division, Electrical Engineering Group.

Mark A. Todd received the A.A.S. degree in electronics technology from
Tidewater Community College, Virginia Beach, VA, USA, in 1997.

He served for more than 7 years in the United States Air Force as an Instru-
mentation Mechanic, building, installing, and repairing telemetry electronics
systems for various airborne platforms. At the Command level, he worked as an
Intelligence Analyst, gathering, disseminating, and analyzing relevant commu-
nications, signals, and photographic intelligence. He has more than 20 years of
experience working with high power technology as well as electromechanical
systems, motion control, and telecommunications equipment.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


