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We show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momen-
tum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that
necessitates using large p3 & 3 GeV momenta to get reasonably close to the PDF limit. As an alter-
native approach, we propose to use pseudo-PDFs P(x, z23) that generalize the light-front PDFs onto
spacelike intervals and are related to Ioffe-time distributionsM(ν, z23), the functions of the Ioffe time
ν = p3z3 and the distance parameter z23 with respect to which it displays perturbative evolution for
small z3. In this form, one may divide out the z23 dependence coming from the primordial rest-frame
distribution and from the problematic factor due to lattice renormalization of the gauge link. The
ν-dependence remains intact and determines the shape of PDFs.

PACS numbers: 12.38.-t, 11.15.Ha, 12.38.Gc

Introduction. The parton distribution functions
(PDFs) f(x) [1] are related to matrix elements of bilo-
cal operators on the light cone z2 = 0, which prevents
a straightforward calculation of these functions in the
lattice gauge theory formulated in Euclidean space. The
usual way out is to calculate their moments. However, re-
cently, X. Ji [2] suggested a method allowing to calculate
PDFs as functions of x. To this end, he proposes to use
purely space-like separations z = (0, 0, 0, z3). Then one
deals with quasi-PDFs Q(y, p3) describing sharing of the
p3 hadron momentum component, and tending to PDFs
f(y) in the p3 →∞ limit. The same method can be ap-
plied to distribution amplitudes (DAs). The results of
lattice calculations of quasi-PDFs were reported in Refs.
[3–5] and of the pion quasi-DA in Ref. [6].

In our recent papers [7, 8], we have studied nonper-
turbative evolution of quasi-PDFs and quasi-DAs using
the formalism of virtuality distribution functions [9, 10].
We found that quasi-PDFs can be obtained from the
transverse momentum dependent distributions (TMDs)
F(x, k2

⊥). We built models for the nonperturbative evo-
lution of quasi-PDFs using simple models for TMDs. Our
results are in qualitative agreement with the p3-evolution
patterns obtained in lattice calculations.

In the present paper, our first goal is to develop a pic-
ture for quasi-PDFs as hybrids of PDFs and primordial
momentum distributions of partons in a hadron at rest.
As an intermediate step, we demonstrate that the con-
nection between TMDs and quasi-PDFs [7] is a mere con-
sequence of Lorentz invariance. Then we show that, when
the hadron is moving, the parton k3 momentum comes
from two sources. The motion of the hadron as a whole
gives the xp3 part, governed by the dependence of the
TMD F(x, κ2) on its x argument. The remaining part
k3 − xP is governed by the dependence of the TMD on
its second argument, κ2, governing the primordial rest-
frame momentum distribution. The convolution nature
of quasi-PDFs results in a rather complicated pattern
of their p3 evolution, necessitating rather large values

p3 ∼ 3 GeV for getting close to the PDF limit.
Thus, our second goal is to propose an alternative ap-

proach for lattice PDF extraction. To this end, we intro-
duce pseudo-PDFs P(x, z2

3) that generalize the light-cone
PDFs f(x) onto spacelike intervals like z = (0, 0, 0, z3).
The pseudo-PDFs are Fourier transforms of the Ioffe-time
[11] distributions [12] M(ν, z2

3) that are basically given
by generic matrix elements like 〈p|φ(0)φ(z)|p〉 written as
functions of ν = p3z3 and z2

3 . Unlike quasi-PDFs, the
pseudo-PDFs have the “canonical” −1 ≤ x ≤ 1 support
for all z2

3 . They tend to PDFs when z3 → 0, showing in
this limit a usual perturbative evolution with 1/z3 serv-
ing as an evolution parameter. Finally, we discuss how
these properties of pseudo-PDFs may be used for extrac-
tion of PDFs on the lattice.
Generic matrix element and Lorentz invariance. His-

torically [1], PDFs were introduced to describe spin-1/2
quarks. Since complications related to spin do not affect
the very concept of parton distributions, we start with
a simple example of a scalar theory. In that case, infor-
mation about the target is accumulated in the generic
matrix element 〈p|φ(0)φ(z)|p〉. By Lorentz invariance, it
is a function of two invariants, (pz) and z2 (or −z2 if we
want a positive value for spacelike z):

〈p|φ(0)φ(z)|p〉 =M((pz),−z2) . (1)

It can be shown [7, 13] that, for all contributing Feynman
diagrams, its Fourier transform P(x,−z2) with respect to
(pz) has the −1 ≤ x ≤ 1 support, i.e.,

M((pz),−z2) =

∫ 1

−1

dx e−ix(pz) P(x,−z2) . (2)

Note that Eq. (2) gives a covariant definition of x. There
is no need to assume that p2 = 0 or z2 = 0 to define x.
Collinear PDFs. Choosing some special cases of p and

z, one can get expressions for various parton distribu-
tions, all in terms of the same functionM((pz),−z2). In
particular, taking a light-lke z, e.g., that having the light-
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front minus component z− only, we parameterize the ma-
trix element by the twist-2 parton distribution f(x)

M(p+z−, 0) =

∫ 1

−1

dx f(x) e−ixp+z− , (3)

with f(x) having the usual interpretation of probability
that the parton carries the fraction x of the target mo-
mentum component p+. The inverse relation is given by

f(x) =
1

2π

∫ ∞
−∞

dν eixνM(ν, 0) = P(x, 0) . (4)

Since f(x) = P(x, 0), the function P(x,−z2) generalizes
PDFs onto non-lightlike intervals z2, and we will call it
pseudo-PDF. The variable ν is called the Ioffe time [11],
andM(ν,−z2) is the Ioffe-time distribution [12].

Note that the definition of P(x,−z2) is simpler than
that of f(x) because it does not require taking a subtle
z2 → 0 limit. In renormalizable theories, the function
M(ν, z2) has ∼ ln z2 singularities generating perturba-
tive evolution of parton densities. Within the operator
product expansion (OPE) approach, the ln z2 singulari-
ties are subtracted using some prescription, say, dimen-
sional renormalization, and the resulting PDFs depend
on the renormalization scale µ, i.e., f(x)→ f(x, µ2).
Transverse momentum dependent distributions.

Treating the target momentum p as longitudinal,
p = (E,0⊥, P ), one can introduce transverse degrees
of freedom. Taking z that has z− and z⊥ = {z1, z2}
components only, one defines the TMD F(x, k2

⊥)

M(ν, z2
1 + z2

2) =

∫ 1

−1

dx e−ixν
∫ ∞
−∞

dk1e
−ik1z1

×
∫ ∞
−∞

dk2 e
−ik2z2F(x, k2

1 + k2
2) . (5)

The ∼ ln z2
⊥ terms in M(ν, z2

⊥) are produced by the
∼ 1/k2

⊥ hard tail of F(x, k2
⊥). Thus, it makes sense to

visualize M(ν, z2
⊥) as a sum of a soft part Msoft(ν, z2

⊥),
that has a finite z2

⊥ → 0 limit and a hard part reflecting
the evolution. For TMDs, soft part decreases faster than
1/k2
⊥, say, like a Gaussian e−k

2
⊥/Λ

2

. In the z⊥ space, the
distributions are then concentrated in z⊥ ∼ 1/Λ region.
Quasi-Distributions. Since one cannot have light-like

separations on the lattice, it was proposed [2] to con-
sider spacelike separations z = (0, 0, 0, z3) [or, for brevity,
z = z3]. Then, in the p = (E, 0⊥, P ) frame, one intro-
duces quasi-PDF Q(y, P ) through a parametrization

〈p|φ(0)φ(z3)|p〉 =

∫ ∞
−∞

dy Q(y, P ) eiyPz3 . (6)

The inverse Fourier transformation

Q(y, P ) =
1

2π

∫ ∞
−∞

dν eiyνM(ν, ν2/P 2) (7)

indicates that Q(y, P ) tends to f(y) in the P →∞ limit,
as far as M(ν, ν2/P 2) → M(ν, 0). The deviation of
quasi-PDF Q(y, P ) from the PDF f(y) may be described
in terms of TMDs. To this end, we substitute Eq. (5)
with z1 = 0 and z2 = ν/P into Eq. (7) to convert it into
the expression for quasi-PDFs in terms of TMDs

Q(y, P )/P =

∫ ∞
−∞

dk1

∫ 1

−1

dxF(x, k2
1 + (y − x)2P 2) .

(8)

Originally, this relation was derived in Ref. [7] using a
Nakanishi-type representation of Refs. [9, 10]. Now, we
see that it is a mere consequence of Lorentz invariance.
Quantum chromodynamics (QCD) case. The formu-

las derived above are directly applicable for non-singlet
parton densities in QCD. In that case, one deals with
matrix elements of

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)ψ(z)|p〉 (9)

type, where Ê(0, z;A) is the standard 0→ z straight-line
gauge link in the quark (adjoint) representation. These
matrix elements may be decomposed into pα and zα

parts: Mα(z, p) = pαMp((zp),−z2) + zαMz((zp),−z2).
The Mp((zp),−z2) part gives the twist-2 distribution
when z2 → 0, while Mz((zp),−z2) is a purely higher-
twist contamination, and it is better to get rid of it.

If one takes z = (z−, z⊥) in the α = + component
of Oα, the zα-part drops out, and one can introduce a
TMD F(x, k2

⊥) that is related toMp(ν, z
2
⊥) by the scalar

formula (5). For quasi-distributions, the easiest way to
remove the zα contamination is to take the time compo-
nent ofMα(z = z3, p) and define

M0(z3, p) = 2p0

∫ 1

−1

dy Q(y, P ) eiyPz3 . (10)

Then the connection between Q(y, P ) and F(x, k2
⊥) is

given by the scalar formula (8).
Momentum distributions. The quasi-PDFs describe

the distribution in the fraction y ≡ k3/P of the third
component k3 of the parton momentum to that of the
hadron. One can introduce distributions in k3 itself:
R(k3, P ) ≡ Q(k3/P )/P . Then

R(k3, P ) =

∫ 1

−1

dxR(x, k3 − xP ) , (11)

where

R(x, k3) ≡
∫ ∞
−∞

dk1F(x, k2
1 + k2

3) (12)

is the TMD F(x, κ2) integrated over the k1 component
of the two-dimensional vector κ = {k1, k3}.

For a hadron at rest, we have

R(k3, P = 0) ≡ r(k3) =

∫ 1

−1

dxR(x, k3) . (13)
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FIG. 1. Momentum distributions R(k, P ) in the factorized
Gaussian model for P/Λ = 1, 10, 50.

This one-dimensional distribution may be directly ob-
tained through a parameterization of the density

ρ(z2
3) ≡M(0, z2

3) =

∫ ∞
−∞

dk3 r(k3) eik3z3 (14)

given by 〈p|φ(0)φ(z3)|p〉|p=0. Thus, r(k3) describes a
primordial distribution of k3 in a rest-frame hadron.
Factorized models. When the hadron is moving, the

parton k3 momentum, according to Eq. (11), comes from
two sources. The first part, xP comes from the motion of
the hadron as a whole, and the probability to get xP is
governed by the dependence of the TMD F(x, κ2) on its
first argument, x. On the other hand, the probability to
get the remaining part k3−xP is governed by the depen-
dence of the TMD on its second argument, κ2, governing
the primordial rest-frame momentum distribution.

Since these two sources of k3 look like rather in-
dependent, it is natural to try a factorized model
R(x, k3 − xP ) = f(x)r(k3 − xP ) (the x integral of f(x)
is normalized to 1). For original M(ν,−z2) function,
this Ansatz corresponds to the factorization assumption
M(ν,−z2) =M(ν, 0)M(0,−z2).

For illustration, we take a Gaussian form ρG(z2
3) =

e−z
2
3Λ2/4 for the rest-frame density. It corresponds to

rG(k3) =
1√
πΛ

e−k
2
3/Λ

2

. (15)

For f(x), we take a simple PDF resembling nucleon va-
lence densities f(x) = 4(1 − x)3θ(0 ≤ x ≤ 1). As
one can see from Fig. 1, the curve for R(k, P ) changes
from a Gaussian shape for small P to a shape resembling
stretched PDF for large P . Rescaling to y = k/P variable
gives the quasi-PDF Q(y, P ) shown in Fig. 2. For large
P , it clearly tends to the f(y) PDF form. In particular,
using a momentum P ∼ 10Λ one gets a quasi-PDF that
is rather close to the P →∞ limiting shape. Still, since
Λ ∼ 〈k⊥〉, assuming the folklore value 〈k⊥〉 ∼ 300 MeV
one translates the P ∼ 10Λ estimate into P ∼ 3 GeV,
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FIG. 2. Evolution of quasi-PDF Q(y, P ) in the factorized
Gaussian model for P/Λ = 1, 10, 50.

which is uncomfortably large. Thus, a natural question
is how to improve the convergence.
Pseudo-PDFs. A formal reason for the complicated

structure of a quasi-PDF Q(y, P ) is the fact that it is
obtained by the ν-integral of M(ν, z2

3)eiνy along a non-
horizontal line z3 = ν/P in the (ν, z3) plane (see Eq. (7)).
With increasing P , its slope decreases, the line becomes
more horizontal, and quasi-PDFs convert into PDFs.

In contrast, pseudo-PDFs P(x, z2
3), by definition, are

given by integration ofM(ν, z2
3)eiνx over horizontal lines

z3 = const. A very attractive feature of the pseudo-PDFs
is that they have the −1 ≤ x ≤ 1 support for all z3 values.
For small z3, they convert into PDFs.

More precisely, when z3 is small, z3 is analogous to the
renormalization parameter µ of scale-dependent PDFs
f(x, µ2) of the standard OPE approach. In particular,
for small z3, the pseudo-PDF P(x, z2

3) satisfies a leading-
order evolution equation with respect to 1/z3 that co-
incides with the evolution equation for f(x, µ2) with re-
spect to µ. One can also write the evolution equation
[12] for the Ioffe-time distributionM(ν, z2

3),

d

d ln z2
3

M(ν, z2
3) =

αs
2π

CF

∫ 1

0

duB(u)M(uν, z2
3), (16)

where the leading-order evolution kernel B(u) for the
non-singlet quark case is given [12] by

B(u) =

[
1 + u2

1− u

]
+

, (17)

with [. . .]+ denoting the standard “plus” prescription.
For the model used above (and x→ −x symmetrized,

as required for non-singlet PDFs), we have M(ν, 0) =
12
[
ν2 − 4 sin2(ν/2)

]
/ν4 . The shapes of this function

and of the convolution integral B ⊗M(ν) are shown in
Fig. 3. As one can see, B ⊗M(ν) vanishes for ν = 0,
which reflects conservation of the vector current. Thus,
the rest-frame densityM(0, z2

3) is not affected by pertur-
bative evolution.
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FIG. 3. Model Ioffe-time distribution M(ν, 0) and the func-
tion B ⊗M governing its evolution.

Lattice implementation. A possible way to find the
Ioffe-time distribution on the lattice (suggested by K.
Orginos) is to calculateM(Pz3, z

2
3) for several values of

P , and then to fit the results by a function of ν and z2
3 .

Recalling our discussion of two apparently indepen-
dent sources of obtaining k3 for a moving hadron, one
may hope that M(ν, z2

3) factorizes, i.e., M(ν, z2
3) =

M(ν, 0)M(0, z2
3). Then the reduced function

M(ν, z2
3) ≡ M(ν, z2

3)

M(0, z2
3)

(18)

is equal toM(ν, 0), and the goal of obtainingM(ν, 0) is
reached. What remains is just to take its Fourier trans-
form to get the PDF f(x).

A serious disadvantage of quasi-PDFs is that they have
the x-convolution structure (8) even if the TMD [and
M(ν, z2

3)] factorizes. On the other hand, using pseudo-
PDFs in the form of the ratio M(ν, z2

3), one divides out
the z2

3-dependence of the primordial distribution with-
out affecting the ν-dependence that dictates the shape of
PDF. A further advantage of using the ratio (pointed out
by K. Orginos) is the cancellation of the z2

3-dependence
generated on the lattice by the gauge link Ê(0, z3;A).

In reality, M(ν, z2
3) will have a residual z2

3-dependence.
It comes both from a possible violation of factorization
for the soft part and from unavoidable perturbative evo-
lution. For nonzero ν, the latter should be visible as a
ln(1/z2

3Λ2) spike for small z2
3 .

Hence, a proposed strategy is to extrapolate M(ν, z2
3)

to z2
3 = 0 from not too small values of z2

3 , say, from
those above 1 fm2. The resulting function Msoft(ν, 0)
may be treated as the Ioffe-time distribution producing
the PDF f0(x) “at low normalization point”. The re-
maining ln(1/z2

3Λ2) spikes at small z3 will generate its
evolution. Of course, an actual technical implementation
of this program should be discussed when the lattice data
onM(ν, z2

3) will become available.

Summary. In this paper, we showed that quasi-PDFs
may be seen as hybrids of PDFs and the primordial rest-
frame momentum distributions of partons. In this con-
text, the parton’s k3 momentum comes from the motion
of the hadron as a whole and from the primordial rest-
frame momentum distribution. The complicated con-
volution nature of quasi-PDFs necessitates using p3 &
3 GeV to wipe out the primordial momentum distribu-
tion effects and get reasonably close to the PDF limit.

As an alternative approach, we propose to use pseudo-
PDFs P(x, z2

3) that generalize the light-front PDFs onto
spacelike intervals. By a Fourier transform, they are re-
lated to the Ioffe-time distributions M(ν, z2

3) given by
generic matrix elements written as functions of ν = p3z3

and z2
3 . The advantageous features of pseudo-PDFs are

that they, first, have the same −1 ≤ x ≤ 1 support as
PDFs, and second, their z2

3-dependence for small z2
3 is

governed by a usual evolution equation.
Forming the ratio M(ν, z2

3)/M(0, z2
3) of Ioffe-time

distributions one divides out the bulk of z2
3 depen-

dence generated by the primordial rest-frame distribu-
tion. Furthermore, taking this ratio one can exclude
the z2

3-dependent factor coming from the Ê(0, z3;A) link
creating difficulties (see, e.g., [14]) for lattice calculations
of quasi-PDFs.

Testing the efficiency of using pseudo-PDFs for lattice
extractions of PDFs is a challenge for future studies.
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