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Abstract73

We present a new amplitude analysis of the ηπ D-wave in π−p → ηπ−p measured by COMPASS. Employing an
analytical model based on the principles of the relativistic S -matrix, we find two resonances that can be identified
with the a2(1320) and the excited a′2(1700), and perform a comprehensive analysis of their pole positions. For the
mass and width of the a2 we find M = (1308 ± 1 ± 7) MeV and Γ = (113 ± 2 ± 4) MeV, and for the excited state a′2
we obtain M = (1710 ± 10 ± 70) MeV and Γ = (300 ± 40 ± 70) MeV, respectively.

1. Introduction74

The spectrum of hadrons contains a number of poorly determined or missing resonances, whose better knowl-75

edge is key for improving our understanding of Quantum Chromodynamics (QCD). Active research programs in this76

direction are being pursued at various experimental facilities, including the COMPASS and LHCb experiments at77

CERN [1–4], CLAS/CLAS12 and GlueX at JLab [5–7], BESIII at BECPII [8], BaBar, and Belle [9]. To connect78
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3Also at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
4Also at Dept. of Physics, Pusan National University, Busan 609-735, Republic of Korea and at Physics Dept., Brookhaven National Laboratory,

Upton, NY 11973, USA
5Also at Abdus Salam ICTP, 34151 Trieste, Italy
6Also at Chubu University, Kasugai, Aichi 487-8501, Japan
7Also at Dept. of Physics, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan
8Also at KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
9Also at Moscow Institute of Physics and Technology, Moscow Region, 141700, Russia

10Also at Dept. of Physics, National Kaohsiung Normal University, Kaohsiung County 824, Taiwan
11Also at University of Eastern Piedmont, 15100 Alessandria, Italy
12Present address: RWTH Aachen University, III. Physikalisches Institut, 52056 Aachen, Germany
13Present address: Uppsala University, Box 516, 75120 Uppsala, Sweden

Preprint submitted to Physics Letters B May 17, 2017



the experimental observables with the QCD predictions requires amplitude analysis. Fundamental principles of S -79

matrix theory, such as unitarity and analyticity (which originate from probability conservation and causality), should80

be applied in order to construct reliable reaction models. When resonances dominate the spectrum, which is the case81

studied here, unitarity is especially important since it constrains resonance widths and it enables to determine location82

of resonance poles in the complex plane of the multivalued partial wave amplitudes.83

In 2014, COMPASS published high-statistics partial wave analyses of the π−p → η(′)π−p reaction, at pbeam =84

191 GeV [2]. The odd angular-momentum waves have exotic quantum numbers and exhibit structures that may be85

compatible with a hybrid meson [10]. The even waves show strong signals of non-exotic resonances. In particular,86

the D-wave of ηπ, with IG(JPC) = 1−(2++), is dominated by the peak of the a2(1320) and its Breit-Wigner parameters87

were extracted and presented in [2]. The D-wave also exhibits a hint of the first radial excitation, the a′2(1700) [11].88

In this letter we present a new analysis of the D-wave based on an analytical model constrained by unitarity,89

which extends beyond a simple Breit-Wigner parametrization. The model builds on a more general framework for a90

systematical analysis of peripheral meson production, currently under development [12–14]. Fitting the model to the91

results of the mass-independent analysis, i.e. analysis in 40 MeV wide bins of the ηπ mass, from the 2014 COMPASS92

measurement as input, we extract the a2 and a′2 resonance parameters in the single-channel approximation and estimate93

the coupled-channels effects by including the ρπ final state. We determine the statistical uncertainties by means of the94

bootstrap method [15–19], and assess the systematic uncertainties in the pole positions by varying model-dependent95

parameters in the reaction amplitude.96

To the best of our knowledge, this is the first precision determination of pole parameters of these resonances that97

includes the recent, most precise, COMPASS data.98

2. Reaction Model99

We consider the peripheral production process πp → ηπp (Fig. 1(a)), which is dominated by Pomeron (P) ex-100

change. Assuming factorization of the “top” vertex, the πP → ηπ amplitude resembles an ordinary helicity ampli-101

tude [20]. It is a function of s and t1, the ηπ invariant mass squared and the invariant momentum transfer squared102

between the incoming pion and the η, respectively. It also depends on t, the momentum transfer between the nucleon103

target and recoil. In the Gottfried-Jackson (GJ) frame [21] the Pomeron helicity in πP → ηπ equals the ηπ total104

angular momentum projection M, and the helicity amplitudes aM(s, t, t1) can be expanded in partial waves aJM(s, t)105

with total angular momentum J = L. The allowed quantum numbers of the ηπ partial waves are JP = 1−, 2+,106

3−, . . .. The Pomeron exchange has natural parity and parity relates the amplitudes with opposite spin projections107

aJM = −aJ−M [22]. That is, the M = 0 amplitude is forbidden and the two M = ±1 amplitude are given, up to a sign,108

by a single scalar function.109

The assumption about the Pomeron dominance can be quantified by the magnitude of unnatural partial waves. In110

the analysis of ref. [2], the magnitude of the L = M = 0 wave was estimated to be < 1%, and it also absorbs other111

possible reducible backgrounds. The patterns of azimuthal dependence in the central production of mesons [23–27]112

indicate that at low momentum transfer, t ∼ 0, the Pomeron behaves as a vector [28, 29], which is in agreement with113

the strong dominance of the |M| = 1 component in the COMPASS data. 14 We are unable to further address the nature114

of the exchange from the data of ref. [2] since they are integrated over the momentum transfer t 15. We note here that115

COMPASS has published data in the 3π channel, which are binned both in 3π invariant mass and momentum transfer116

t.117

The COMPASS mass-independent analysis [2] is restricted to partial waves with L = 1 − 6 and |M| = 1 (except118

for the L = |M| = 2 wave). The lowest mass exchanges in the crossed channels of πP → ηπ correspond to the a (in119

the t1 channel) and the f (in the u1 channel) trajectories, thus higher partial waves are not expected to be significant120

in the ηπ mass region of interest,
√

s < 2 GeV. However, the systematic error associated with an analysis based on a121

truncated set of partial waves is hard to estimate.122

To compare with the partial wave intensities measured in [2], which are integrated over t from tmin = −1.0 GeV2
123

to tmax = −0.1 GeV2, we use an effective value for the momentum transfer teff = −0.1 GeV2 and aJM(s) ≡ aJM(s, teff).124

14At larger, positive t, the Pomeron trajectory is expected to pass though J = 2 where it would relate to the tensor glueball.
15For example, Ref. [30] suggested a dominance of f2 exchanges for a2(1320) production. To probe this, one should analyze the t and total

energy dependences.
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Figure 1: (a) Pomeron exchange in π−p → ηπ−p. (b) The πP → ηπ amplitude is expanded in partial waves in the s-channel of the ηπ system,
aJM(s), with J = L and t → teff. Unitarity relates the imaginary part of the amplitude to final state interactions that include all kinematically
allowed intermediate states.

The possible effect of teff dependence is taken into account in the estimate of the systematic uncertainties. The natural125

parity exchange partial wave amplitudes aJM(s) can be identified with the amplitudes Aε=1
LM (s) as defined in Eq. (1) of126

[2], where ε = 1 is the reflectivity eigenvalue that selects the natural parity exchange.127

In the following we consider the single, J = 2, |M| = 1 natural parity partial wave, which we denote by a(s), and128

fit its modulus squared to the measured (acceptance corrected) number of events [2].129

dσ
d
√

s
∝ I(s) =

∫ tmax

tmin

dt p |a(s, t)|2 ≡ N p |a(s)|2 , (1)

where I(s) is the intensity distribution of the D wave and p = λ1/2(s,m2
η,m

2
π)/(2

√
s) is the ηπ breakup momentum.130

q = λ1/2(s,m2
π, teff)/(2

√
s), which will be used later, is the π beam momentum in the ηπ rest frame and λ(x, y, z) =131

x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén triangle function. Since the physical normalization of the cross section is132

not determined in [2], the constant N on the right hand side of Eq. (1) is a free parameter.133

In principle, one should consider the coupled-channel problem involving all the kinematically allowed interme-134

diate states (see Fig. 1(b)). Far from thresholds, a narrow peak in the data is generated by a pole in the closest135

unphysical sheet, regardless of the number of open channels. The residues (related to the branching ratios) depend on136

the individual couplings of each channel to the resonance, and therefore their extraction requires the inclusion of all137

the relevant channels. However, the pole position is expected to be essentially insensitive to the inclusion of multiple138

channels. This is easily understood in the Breit-Wigner approximation, where the total width extracted for a given139

state is independent of the branchings to individual channels. Thus, when investigating the pole position we restrict140

the analysis to the elastic approximation, where only ηπ can appear in the intermediate state. We will elaborate on the141

effects of introducing the ρπ channel, which is known to be a dominant one of the decay of a2(1320) [11], as part of142

the systematic checks.143
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In the resonance region, unitarity gives constraints for both the ηπ interaction and production. Denoting the
ηπ → ηπ scattering D-wave by f (s), unitarity and analyticity determine the imaginary part of both amplitudes above
the ηπ threshold, sth = (mη + mπ)2,

Im â(s) = ρ(s) f̂ ∗(s) â(s), (2)

Im f̂ (s) = ρ(s) | f̂ (s)|2. (3)

From the analysis of kinematical singularities [31–33] it follows that the amplitude a(s) appearing in Eq. (1) has144

kinematical singularities proportional to K(s) = p2q, and f (s) has singularities proportional to p4 . The reduced partial145

waves in Eqs.(2),(3) are free from kinematical singularities, and defined by e.g. â(s) = a(s)/K(s), f̂ (s) = f (s)/p4,146

with ρ(s) = 2p5/
√

s being the two-body phase space factor that absorbs the barrier factors of the D-wave. Note that147

Eq. (2) is the elastic approximation of Fig. 1(b).148

We write f̂ in the standard N-over-D form, f̂ (s) = N(s)/D(s), with N(s) absorbing singularities from exchange149

interactions, i.e. “forces” acting between ηπ also known as left hand cuts, and D(s) containing the right hand cuts,150

associated with direct channel thresholds. Unitarity in Eq. (3) leads to a relation between D and N, Im D(s) =151

−ρ(s)N(s), with the general solution152

D(s) = D0(s) −
1
π

∫ ∞
sth

ds′
ρ(s′)N(s′)

s′ − s
. (4)

where the function D0(s) is real for s > sth and can be parametrized as153

D0(s) = c0 − c1s −
c2

c3 − s
. (5)

The rational function in Eq. (5) is a sum over two so-called Castillejo-Dalitz-Dyson (CDD) poles [34] with the first154

pole located at s = ∞ (CDD∞) and the second at s = c3. CDD poles produce real zeros of the amplitude f̂ and155

they also lead to poles of f̂ on the complex plane (second sheet). Since these poles are introduced via parameters156

(c1, c2) rather than being generated through N (cf. Eq. (4)), they are commonly attributed to genuine QCD states, i.e.157

states that do not originate from effective, long-range interactions such as the pion exchange [35]. To fix the arbitrary158

normalization of N(s) and D(s), we set c0 = (1.23)2 since it is expected to be numerically close to the a2 mass squared159

expressed in GeV. One also expects c1 to be approximately equal to the slope of the leading Regge trajectory [36]. The160

quark model [37] and lattice QCD [38] predict two states in the energy region of interest, so we use only two CDD161

poles. It follows from Eq. (4) that the singularities of N(s) (which originate from the finite range of the interaction)162

will also appear on the second sheet in D(s), together with the resonance poles generated by the CDD terms. We use163

a simple model for N(s), where the left hand cut is approximated by a higher order pole,164

ρ(s)N(s) = g
λ5/2(s,m2

η,m
2
π)

(s + sR)n . (6)

Here, g and sR effectively parametrize the strength and inverse range of the exchange forces in the D-wave, whereas165

the power n = 7 makes the integral in Eq. (4) converge without subtractions. The parametrization of N(s) removes the166

kinematical 1/s singularity in ρ(s). Therefore, dynamical singularities on the second sheet are either associated with167

the particles represented by the CDD poles, or the exchange forces parametrized by the higher order pole in N(s).168

The general parameterization for â(s), constrained by unitarity in Eq. (2), is obtained following similar arguments169

and is given by a ratio of two functions170

â(s) =
n(s)
D(s)

, (7)

where D(s) is given by Eq. (4) and brings in the effects of ηπ final state interactions, while n(s) describes the exchange171

interactions in the production process πP → ηπ and contains the associated left hand singularities. In both the172

production process and the elastic scattering no important contributions from light meson exchanges are expected173

since the lightest resonances in the t1 and u1 channels are the a2 and f2 mesons, respectively. Therefore the numerator174

function in Eq. (7) is expected to be a smooth function of s in the complex plane near the physical region, with one175
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(a) CDD∞ pole only.
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(b) Two CDD poles.

Figure 2: Intensity distribution and fits to the JPC = 2++ wave for different number of CDD poles, (a) using only CDD∞ and (b) using CDD∞ and
the CDD pole at s = c3. Red lines are fit results with I(s) given by Eq. (1). Data is taken from [2]. The inset shows the a′2 region. The error bands
correspond to the 3σ (99.7%) confidence level.

exception. The CDD pole at s = c3 produces a zero in â(s). Since a zero in the elastic scattering amplitude does not176

in general imply a zero in the production amplitude, we write n(s) as177

n(s) =
1

c3 − s

np∑
j

a j T j(ω(s)). (8)

where the function to the right of the pole is expected to be analytical in s near the physical region. We parametrize it178

using the Chebyshev polynomials T j, with ω(s) = s/(s+Λ) approximating the left hand singularities in the production179

process, πP→ ηπ. The real coefficients a j are determined from the fit to the data. In the analysis, we fix Λ = 1 GeV2.180

We choose an expansion in Chebyshev polynomials as opposed to a simple power series inω to reduce the correlations181

between the a j parameters. Since we examine the partial wave intensities integrated over the momentum transfer t,182

we assume that the expansion coefficients are independent of t. The only t-dependence comes from the residual183

kinematical dependence on the breakup momentum q.184

Finally, we comment on the relation between the N-over-D method and the K-matrix parametrization. If one185

assumes that there are no left hand singularities, i.e. let N(s) be a constant, then Eq. (4) is identical to that of the186

standard K-matrix formalism [39]. Hence, we can relate both approaches through K−1(s) = D0(s). It is also worth187

noting that the parameterization in Eq. (5) automatically satisfies causality, i.e. there are no poles on the physical188

energy sheet.189

3. Methodology190

We fit our model to the intensity distribution for π−p → ηπ−p in the D-wave (56 data points) [2], as defined in191

Eq. (1), by minimizing χ2. We fix the overall scale, N = 106 (cf. Eq. (1)), and fit the coefficients a j (cf. Eq. (8)),192

which are then expected to be O(1), and also the parameters in the D(s) function. In the first step we obtain the best193

fit for a given total number of parameters, and in the second step we estimate the statistical errors using the bootstrap194

technique [15–19]. To wit, we generate 105 pseudodata sets, each data point being resampled according to a Gaussian195

distribution having as mean and standard deviation the original value and error in the data file, and we repeat the fit196

for each set. In this way, we obtain 105 different values for the fit parameters, and we take the means and standard197

deviations as expected values and statistical uncertainties, respectively.198

To assess the systematic uncertainties we study the dependence of the pole parameters on variations of the model,199

namely we change i) the number of CDD poles from 1 to 3, ii) the total number of terms in the expansion of the200
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Figure 3: (a) Amplitude numerator function,
∑np

j a j T j(ω(s)) for different values of np. (b) The reduced ηπ → ηπ partial amplitude in D-wave,

f̂ (s) = N(s)/D(s). Shown are the real (red) and imaginary (blue) parts as a function of the ηπ invariant mass with 3σ error band. The node in the
imaginary part at 1.7 GeV is apparent, the uncertainties having the same size as the central dashed line.

numerator function n(s), iii) the dependence on the left hand cut model sR, iv) the dependence on the momentum201

transfered teff, and v) the dependence on coupled-channel effects.202

As discussed earlier an acceptable numerator function n(s) should be “smooth” in the resonance region, i.e. with-203

out significant peaks or dips on the scale of the resonance widths. The parameters ci and g of the denominator function204

are related to resonance parameters, while sR controls the distant second sheet singularities due to exchange forces.205

The expansion in n(s), shown in Fig. 3(a) for sR = 1.5 GeV2 and two CDD poles, has a singularity occurring at206

s = −1.0 GeV2, because of the definition of ω(s). For variations in n(s) between np = 3 and np = 7, we find that207

∆c1 = 0.02 GeV−2, ∆c2 = 0.01 GeV2, ∆c3 = 0.04 GeV2, and ∆g = 3.1 GeV4 are the largest deviations, showing that208

the resonance pole positions are relatively independent of n(s).209

The fit with CDD∞ only (9 parameters), Fig 2(a), for sR = 1.5 GeV2 and np = 6, does not capture either the dip210

at 1.5 GeV or the bump at 1.7 GeV. The fit with two CDD poles (11 parameters) in contrast, Fig. 2(b), captures both211

features, giving a χ2/ndof = 91.89/45 = 2.04. The addition of another CDD pole does not improve the fit, as the data212

resolution is incapable of indicating any further resonances. Specifically the residue of the additional pole turns out213

to be compatible with zero, leaving the other fit parameters unchanged. We associate no systematic error to that.214

The dependence on teff is expected to affect the overall normalization mostly. Indeed the variation from −1.0215

Denominator parameters Production parameters [GeV−2]
c1 0.526 ± 0.001 GeV−2 a0 1.63 ± 0.05
c2 0.246 ± 0.001 GeV2 a1 0.97 ± 0.09
c3 2.36 ± 0.01 GeV2 a2 −6.1 ± 0.2
g 115.35 ± 0.03 GeV4 a3 3.37 ± 0.05

a4 4.2 ± 0.01
a5 −5.87 ± 0.01
a6 2.58 ± 0.04

Table 1: Parameters for the fit with two CDD poles, sR = 1.5 GeV2, N = 106, c0 = (1.23)2, and the number of expansion parameters np = 6,
leading to χ2/ndof = 2.04. Uncertainties are determined from a bootstrap analysis using 105 random fits.
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Figure 4: Location of second-sheet pole positions with two CDD poles, np = 6, and with sR varied from 1.0 GeV2 to 2.5 GeV2. Poles are shown
with 2σ (95.5%) confidence level contours from uncertainties computed using 105 bootstrap fits.

GeV2 to −0.1 GeV2 gives less than 2% difference for the a′2(1700) parameters, and < 1h for the a2(1320), and can216

be neglected compared to the other uncertainties.217

4. Results218

This analysis allows us to extract the ηπ → ηπ elastic amplitude in the D-wave. By construction, the amplitude219

has a zero at s = c3. Figure 3(b) shows the real and imaginary part of f̂ (s), with the 3σ error bands estimated by220

the bootstrap analysis. Resonance poles are extracted by analytically continuing the denominator of the ηπ elastic221

amplitude to the second Riemann sheet across the unitarity cut using DII(s) = D(s) + 2iρ(s)N(s). By construction, no222

first-sheet poles are present. We find three second-sheet poles in the energy range of (mπ + mη) ≤
√

s ≤ 3 GeV, as223

shown in Fig. 4 for np = 6 and sR = {1.0, 1.5, 2.0, 2.5} GeV2.224

The mass and width are defined as m = Re √sp and Γ = −2 Im √sp where sp is the pole position in the s225

plane. Two of the poles found can be identified as the a2(1320) and a′2(1700) resonances in the PDG [11]. The226

lighter of the two corresponds to the a2(1320). For sR = 1.5 GeV2, the pole has mass and width m = (1308 ± 1)227

MeV and Γ = (113 ± 2) MeV. Values of sR between 1.0–2.5 GeV2 lead to pole deviations ∆ m = 4 MeV and228

∆ Γ = 3 MeV. The heavier pole corresponds to the excited a′2(1700). For sR = 1.5 GeV2, the resonance has mass229

and width m = (1710 ± 10) MeV and Γ = (300 ± 40) MeV, respectively. The deviations for the different sR values230

are ∆ m = 60 MeV and ∆ Γ = 60 MeV. The a2(1320) and a′2(1700) poles (see Fig. 4) are found to be stable under231

variations of sR, which modulates the left hand cut. As expected, there is a third pole that depends strongly on sR and232

it reflects the singularity in N(s) modeled as a pole. Its mass ranges from 1.4 to 3.3 GeV, and its width varies between233

1.3 and 1.8 GeV as sR changes from 1 GeV2 to 2.5 GeV2. In the limit g → 0, this pole moves to −sR as expected,234

while the other two migrate to the real axis above threshold [40].235

Changing the number of expansion terms between np = 3 and np = 7 does not in any significant way affect236

the a2(1320) or a′2(1700) pole positions. The maximal deviations are ∆ m(a2) = 5 MeV, ∆ Γ(a2) = 1 MeV and237

∆ m(a′2) = 40 MeV, ∆ Γ(a′2) = 30 MeV between three and seven terms in the n(s) expansion.238

To demonstrate that coupled-channel effects do not influence the pole positions, we consider an extension of239

the model to include a second channel also measured by COMPASS, ρπ [3], and simultaneously fit the ηπ [2] and240

the ρπ [3] final states. The branching ratio of the a2(1320) is saturated at the level of ∼85% by the ηπ and 3π241

channels [11], with the ρπS-wave having the dominant contribution. For simplicity we consider the ρ to be a stable242

particle with mass 775 MeV, the finite width of the ρ being relevant only for
√

s < 1 GeV. The amplitude is then243

â j(s) =
∑

k [D(s)]−1
jk (s) nk(s). The denominator is now a 2 × 2 matrix, whose diagonal elements are of the form given244

by Eq. (4), with the appropriate phase space for each channel. The off-diagonal term is parametrized as a single real245

constant. The production elements nk(s) are as in Eq. (8), with independent coefficients for each channel. We also246

used a K matrix coupled-channel fit and obtained very similar results as shown in Figure 5. The coupled-channel247
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Figure 5: Coupled-channel D-wave fit, (a) using a model based on CDD poles, (b) using the standard K-matrix parametrization. Both parameteri-
zations give pole positions consistent with the single-channel analysis. The ηπ data is taken from [2] and the ρπ data from [3].

effects produce a competition between the parameters in the numerators to fit the bump at 1.6 GeV in ηπ and the dip at248

1.8 GeV in ρπ at the same time. The ρπ data prefers not to have any excited a′2(1700), which conversely is evident in249

the ηπ data; therefore, the uncertainty in the a′2(1700) pole position increases, as it is practically unconstrained by the250

ρπ data. Note, however, that in [3], the dip at ∼ 1.8 GeV in the ρπ data is t-dependent, while we use the t-integrated251

intensity, so it is expected that the effects of the a′2 are suppressed.252

We find the following deviations in the pole positions relative to the single-channel fit: ∆m(a2) = 2 MeV, ∆Γ(a2) =253

3 MeV, ∆m(a′2) = 20 MeV and ∆Γ(a′2) = 10 MeV. These deviations are rather small and we quote them within our254

systematic errors.255

5. Summary256

We describe the 2++ wave of πp→ ηπp reaction in a single-channel analysis emphasizing unitarity and analyticity257

of the amplitude. These fundamental S -matrix principles significantly constrain the possible form of the amplitude258

making the analysis more stable than standard ones that use sums of Breit-Wigner resonances with phenomenological259

background terms.260

The robustness of the model allows us to reliably reproduce the data, and to extract pole positions by analytical
continuation to the complex s-plane. We use the single-energy partial waves in [2] to extract the pole positions. We
find two poles which can be identified as the a2(1320) and the a′2(1700) resonances, with pole parameters

m(a2) = (1308 ± 1 ± 7) MeV, m(a′2) = (1710 ± 10 ± 70) MeV,
Γ(a2) = (113 ± 2 ± 4) MeV, Γ(a′2) = (300 ± 40 ± 70) MeV,

where the first uncertainty is statistical (from the bootstrap analysis) and the second is systematic. The systematic261

uncertainty is obtained adding in quadrature the different systematic effects, i.e. the dependence on the number of262

terms in the expansion of the numerator function n(s), on sR, on teff (negligible), and on the coupled-channel effects.263

The a2 results are consistent with the previous a2(1320) results found in [2]. We note that a new mass-dependent264

COMPASS analysis of the 3π final state using Breit-Wigner forms in 14 waves is in progress.265

The third pole found tends to −sR in the limit of vanishing coupling, indicating that this pole arises from the266

treatment of the exchange forces, and not from the CDD poles that account for the resonances.267

In the future this analysis will be extended to also include the η(′)π channel [41] where the large exotic P-wave is268

observed [2].269
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Additional material is available online through an interactive website [42, 43].270
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