
JLAB-THY-17-????

Accessing the nucleon transverse structure in inclusive deep inelastic scattering

Alberto Accardia, Alessandro Bacchettab
aHampton University, Hampton, VA 23668, USA,

and Jefferson Lab, Newport News, VA 23606, USA
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We revisit the standard analysis of inclusive Deep Inelastic Scattering off nucleons taking into
account the fact that on-shell quarks cannot be present in the final state, but they rather decay into
hadrons - a process that can be described in terms of suitable ”jet” correlators. As a consequence, a
spin-flip term associated with the invariant mass of the produced hadrons is generated non pertur-
batively and couples to the target’s transversity distribution function. In inclusive cross sections,
this provides an hitherto neglected and large contribution to the twist-3 part of the g2 structure
function, that can explain the discrepancy between recent calculations and fits of this quantity. It
also provides an extension of the Burkhardt–Cottingham sum rule, putting constraints on the small-
x behavior of the transversity function, as well as an extension of the Efremov–Teryaev–Leader sum
rule, suggesting a novel way to measure the tensor charge of the proton.

I. INTRODUCTION

The tensor charge is a fundamental property of the nucleon, that is at present poorly constrained but of fundamental
importance, not the least because its knowledge can also be used to put constraints on searches for physics beyond
the Standard Model [1–3]. The tensor charge has been estimated in lattice QCD (see, e.g., [4–8]), but only limited
information is available from direct measurements. Its experimental extraction requires first of all flavor-separated
measurements of the so-called transversity parton distribution function, denoted by hq1(x) (see Ref. [9] for a review
and Refs. [10–12] for the most recent extractions). Secondly, one needs to perform flavor-by-flavor integrals of these,
that correspond to the contribution of a parton flavor q to the tensor charge.

The transversity distribution is notoriously difficult to access because it is a chiral-odd function and needs to
be combined with a spin-flip mechanism to appear in a scattering process [13]. Usually, this spin flip is provided
by another nonperturbative distribution or fragmentation function, accessible in Drell-Yan or semi-inclusive Deep
Inelastic Scattering (DIS) [14–17]. The only other known way to attain spin-flip terms in Quantum Electro-Dynamics
and QCD is taking into account mass corrections. In fact, it is well known that the transversity distribution gives a
contribution to the structure function g2 in inclusive DIS (see, e.g., [18] and references therein), and in particular to
the violation of the so-called Wandzura–Wilczek relation for g2 [19]. However, this contribution is proportional to the
current quark mass and can be expected to be negligibly small.

In this paper, we discuss a novel way of accessing the transversity parton distribution function (PDF) and measuring
the proton’s tensor charge in totally inclusive Deep Inelastic Scattering. We revisit the standard analysis of the DIS
handbag diagram, taking into account the fact that on-shell quarks cannot, in fact, be present in the final state, but
they rather decay and form mini-jets of hadrons. This is sufficient to modify the structure of the DIS cut diagram,
even if none of the hadrons is detected in the final state. For a proper description of this effect, we include “jet
correlators” into the analysis, and pay particular attention to ensuring that our results are gauge invariant.

The jet correlators describe interactions of a perturbative quark with vacuum fields, that break chiral symmetry
and generate a non perturbative mass of order 100 MeV, much larger than the current quark mass for light flavors,
as also heuristically advocated in Ref. [20] for a study of transverse target single-spin asymmetries in two-photon
exchange processes. Here, we formalize this idea in the context of collinear factorization, and observe that jet
correlators introduce a new contribution already in one-photon exchange processes, and more precisely to the inclusive
g2 structure function. The new term is proportional to the transversity distribution function multiplied by a new
nonperturbative “jet mass”, which will be precisely defined below, and has the interesting features that: (a) it violates
the Wandzura–Wilczek relation; (b) it extends the Burkhardt–Cottingham sum rule, providing a useful bound on the
small-x behavior of the transversity distribution; (c) it also extends the Efremov–Teryaev–Leader sum rule, providing
a novel way to measure the proton’s tensor charge. We Estimates this new jet-mass-induced contribution based on a
recent extraction of the transversity distribution, and show it can indeed be very large.

II. THE QUARK-QUARK JET CORRELATOR

Motivated by mass corrections to inclusive DIS structure functions at large values of the Bjorken invariant xB ,
Accardi and Qiu [21] have introduced in the LO handbag diagram a “jet correlator”, also called “jet factor” by
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Collins and Rogers in Ref. [22], that accounts for invariant mass production in the current region and ensures that
leading twist calculations in collinear factorization are consistent with the xB < 1 requirement imposed by baryon
number conservation. [21]. The jet correlator is depicted in Figure 1(a) and is defined as

Ξij(l, n+) =

∫
d4η

(2π)4
eil·η 〈0| Un+

(+∞,η) ψi(η)ψ̄j(0)Un+

(0,+∞) |0〉 , (1)

In this definition, l is the quark’s four-momentum, Ψ the quark field operator (with quark flavor index omitted for
simplicity), and |0〉 is the nonperturbative vacuum state. Furthermore, the correlator’s gauge invariance is explicitly
guaranteed the two Wilson line operators Un+ , that run to infinity first along along a light-cone plus direction
determined by the vector n+, then along the direction transverse to that vector, see [23] for details. This path choice
for the Wilson line is required by QCD factorization theorems, and the vector n+ is determined by the particular
hard process to which the jet correlator contributes. For example, in the case of inclusive DIS discussed in this paper,
this is determined by the four momentum transfer q and the proton’s momentum p.

The correlator Ξ can be parametrized in terms of jet parton correlation functions Ai and Bi through a Lorentz
covariant Dirac decomposition that utilizes the vectors l and n+,

Ξ(l, n+) = ΛA1(l2)1 +A2(l2) l/ +
Λ2

l · n+
n/+B1(l2) +

iΛ

2l · n+
[ l/ , n/+]B2(l2) , (2)

where Λ is an arbitrary scale, introduced for power counting purposes. In this parametrization, no terms proportional
to γ5 enter because of parity invariance. Time reversal invariance in QCD requires B2 = 0, while B1 contributes only
at twist-4 order and will not be considered further in this paper. We focus, instead, on the role of chiral odd terms
in the g2 structure function up to twist 3. At this order,

Ξ(l, n+) = ΛA1(l2)1 +A2(l2) l/ +O(Λ2/Q2) (3)

is nothing else than the cut quark propagator; note however, that we consider here the full QCD vacuum rather than
the perturbative one (or, in other words, the interacting rather than the free quark fields). The A1 and A2 terms can
be nicely interpreted in terms of the spectral representation of the cut quark propagator (see, e.g., Sec. 6.3 of [24] and
Sec. 2.7.2 of [25]),

Ξ(l) =

∫
dµ2
[
J1(µ2)µ1 + J2(µ2) l/

]
δ(l2 − µ2) , (4)

where µ2 can be interpreted as the invariant mass of the current jet, i.e., of the particles going through the cut in the
top blob of Fig.1(a). The Ji are the spectral functions of the quark propagator, also called “jet functions” in [21], and
can be interpreted as current-jet mass distributions. As a consequence of positivity constraints and CPT invariance,
These satisfy [24–26]

J2(µ2) ≥ J1(µ2) ≥ 0 and

∫
dµ2J2(µ2) = 1 . (5)

From a comparison of Eqns.(2) and (4), one can see that

A1(l2) =

√
l2

Λ
J1(l2) A2(l2) = J2(l2) . (6)

When inserting the jet correlator in the handbag diagram for inclusive DIS, the integration over dl+, or equivalently
dl2/(2l−), is kinematically coupled to the other integrations, and induces corrections of order O(1/Q2) whose effect on
the F2 structure function has been studied in Ref. [21]. In this paper, where we limit our attention to effects of order
O(1/Q), we can neglect k− compared to q−. As a consequence, we can extend the integration over dl2 to infinity, with
the consequence that the jet correlator decouples from the parton correlator Φ, and the inclusive structure functions
only depend on the integrated jet correlator

Ξ(l−, lT ) ≡
∫

dl2

2l−
Ξ(l) =

Λ

2l−
ξ11 + ξ2

n/−
2

+O(lT /l
−) + higher twists . (7)

The neglected lT -dependent and higher twist terms only contribute to O(1/Q2) to the inclusive cross section. Note
that thanks to Eq. (5) we obtain

ξ1 =

∫
dµ2 µ

Λ
J1(µ2) ≡ Mq

Λ
, ξ2 =

∫
dµ2J2(µ2) = 1 , (8)
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FIG. 1: Diagrams contributing to inclusive DIS scattering up to twist-3, including a jet correlator in the top part. Note the
gluon attaches to both the nucleon and jet correlators. The Hermitian conjugates of diagrams (b) and (c), i.e., with gluons
attaching to the right of the cut, are not shown.

where Mq can be interpreted as the average invariant mass produced in the spin-flip fragmentation processes of a quark
of flavor q. It is important to notice that while ξ2 = 1 exactly due to CPT invariance (see Sec. 10.7 of Ref. [26]), the
jet mass 0 < Mq <

∫
dµ2µJ2(µ2) is dynamically determined. From the analytic properties of the spectral functions

we know that J2(µ2) = Zδ(µ2 −mq) + J̄2(µ2)θ(µ2 −m2
π) with Z < 1 and the continuum starting at mπ (the mass of

the pion) due to color confinement effects. Taking into account that J1 < J2, we may therefore estimate

Mq = O(100 MeV) . (9)

Although Mq is in general a nonperturbative quantity, it is interesting to notice that on the perturbative vacuum,

Ξpert(l) = (l/ +mq1) δ(l2 −m2
q) +O(αs) ,

where mq is the current quark mass; therefore Mpert
q = mq, and one recovers the result of the calculation with the

conventional handbag diagram. However, we are here considering non perturbative effects in the quark propagation,
and Mq � mq. Therefore, differently from J2, the J1 function leaves an imprint on the inclusive DIS cross section
even in the asymptotic Q2 →∞ regime.

III. TWIST-3 ANALYSIS

Extending this analysis to the calculation of twist-3 structure functions requires not only to consider the ξ1 term in
the jet correlator, but also quark-gluon-quark correlators in both the proton and the vacuum as depicted in Figs.1(b)
and (c), respectively.

In diagram (b), the ξ1 term contributes to O(1/Q2), so that up to O(1/Q) considered in this paper this give the
same contribution as in the conventional handbag calculation. The novel element in our analysis, instead, is the jet’s
quark-gluon-quark correlator ΞµA(l, k) in diagram (c), defined as(

Ξ̃µA

)
ij

=

∫
d4η

(2π)4
eik·η 〈0| Un+

(+∞,η) gA
µ(η) ψi(η) ψ̄j(0)Un+

(0,+∞)|0〉 . (10)

This diagram and its Hermitian conjugate are not only important to account for all contribution of order O(1/Q),
but also to restore gauge invariance, which is broken in diagram 1(a) due to the different mass of the incoming and
outgoing quark lines, namely, mq 6= Mq.

Rather than directly using the definition (10), it is convenient and instructive to calculate the inclusive cross section
as an integral of the semi-inclusive one summed over all produced hadron flavors, then utilize the QCD equations of
motion, sum over all hadron flavors, and take advantage of∑

h

∫
d2phT

dp−h
2p−h

p−h ∆h(l, ph) = l− Ξ(l) , (11)

where ∆h is the quark fragmentation correlator for production of a hadron of flavor h and momentum ph, discussed
in detail [23]. In terms of the TMD fragmentation functions we are interested in, the sum rule (11) reads∑

h

∫
dzd2phT zD

h
1 (z, phT ) = ξ2 = 1 (12)

∑
h

∫
dzd2phTE

h(z, phT ) = ξ1 = Mq/Λ , (13)
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where Dh
1 (z, phT ) is the twist-2 quark fragmentation function, that depends on the hadron’s collinear momentum

fraction z and transverse momentum phT , and Eh(z, phT ) is a chiral-odd twist-3 function defined in [23].
The role of the ξ1 = Mq/Λ term in inclusive DIS can be discussed by analyzing the following terms of the semi-

inclusive hadronic tensor:

2ΛWµν = i
2Λ

Q
t̂
[µ
ε
ν]ρ
⊥ S⊥ρ (14)

×
∑
q

e2
q

[
2xBg

q
T (xB)

∑
h

∫
dzd2phTD

q,h
1 (z, phT ) + 2hq1(xB)

∑
h

∫
dzd2phT Ẽ

q,h(z, phT )

]
+ . . . ,

where gqT (z, phT ) and Ẽq(z, phT ) are twist-3 TMDs originating, respectively, from the quark-quark and the quark-
gluon-quark fragmentation correlators. For clarity, here we reintroduced the quark flavors q, eq being their respective
electric charge. The first term can be easily integrated with the help of the sum rules (12) and (13). To integrate the

second term, however, we first need make use of the relation Ẽ(z) = E(z) − (mq/Λ)zD1(z), which is a consequence
of the QCD equations of motion [23], then make again use of the sum rules (12)-(13) to obtain∑

h

∫
dzd2phT Ẽ

q,h(z, phT ) = ξ1 −
mq

Λ
ξ2 =

Mq −mq

Λ
. (15)

This formula provides a non perturbative generalization of the commonly used
∫
Ẽ = 0 sum rule introduced in [13].

Indeed, calculating the jet correlator on the perturbative vacuum one would obtain, as already discussed, Mq = mq

and the integral would vanish.
Finally, the contraction of the hadronic tensor with the leptonic tensor leads to the following result for the inclusive

DIS cross section up to order Λ/Q [23]:

dσ

dxB dy dφS
=

2α2

xByQ2

y2

2 (1− ε)

{
FT + εFL + S‖λe

√
1− ε2 FLL + |S⊥|λe

√
2 ε(1− ε) cosφS F

cosφS

LT

}
, (16)

where φS is the angle between the transverse component of the proton spin vector and the lepton plane, ε is the ratio
of the longitudinal and transverse photon fluxes, and λe is the electron’s helicity. The structure functions on the right
hand side read

FUU,T = xB
∑
q

e2
q f

q
1 (xB), (17)

FUU,L = 0, (18)

FLL = xB
∑
q

e2
q g

q
1(xB), (19)

F sinφS

UT = 0, (20)

F cosφS

LT = −xB
∑
q

e2
q

2Λ

Q

(
xBg

q
T (xB) +

Mq −mq

Λ
hq1(xB)

)
, (21)

where fq1 , gq1 and hq1 are the unpolarized, polarized, and transversity PDFs,respectively. The second term in the last
structure function is a new result from our analysis, and, although proportional to the jet mass, it is not suppressed
as an inverse power of Q compared to the standard gT term. Perturbatively, Mpert

q = mq and the new term vanishes.
However, on the nonperturbative vacuum the jet mass Mq is much larger than the quark’s current mass mq, originating
a nonnegligible term to the twist-3 part of the target’s g2 structure function, as we will discuss in the next section.

IV. THE g2 STRUCTURE FUNCTION

The new term in Eq.(21) only appears in the g2 = 1
2

∑
q e

2
q(g

q
T − gq1) structure function. Following the derivation in

Ref. [18], one finds

g2(xB) = gWW
2 (xB) +

1

2

∑
a

e2
a

(
g̃a?T (xB) +

∫ 1

xB

dy

y
ĝqT (y) +

mq

Λ

(
hq1
x

)?
(xB) +

Mq −mq

Λ

hq1(xB)

xB

)
, (22)
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where we defined f∗(x) = −f(x)+
∫ 1

x
dy
y f(y), and g̃T and ĝT are pure twist-3 functions defined in that reference. The

first four terms coincide with the result obtained in the conventional handbag approximation [18], while the fifth is
new. Note that even if the relation is written for the sum over quark flavors weighted by their charge squared, it is
also valid flavor by flavor; in fact, the steps leading to such a decomposition are formulated at the quark correlator
level.

The first term is also known as the Wandzura-Wilczek function, gWW
2 = −g∗1 , with g1 = 1

2

∑
q e

2
qg
q
1, and contains all

the twist-2 chiral-even contributions to the g2 structure coming from quark-quark correlators. The second and third
terms contain all “pure twist-3” contributions, i.e., those coming from quark-gluon-quark correlators. The fourth and
fifth terms contain chiral-odd twist-2 contributions and depend on the transversity distribution function, h1. The
fourth term is usually neglected for light quarks since it is proportional to mq = O(1 MeV). The last term, new in
our analysis, is again proportional to the transversity distribution but multiplied by the jet mass Mq = O(100 MeV),
so that it cannot be a priori neglected.

It is important to estimate the size of the various contributions to the non Wandzura-Wilczek part of g2. We define
the shorthand notation

gtw3
2 =

1

2

∑
q

e2
q

(
g̃q?T (xB) +

∫ 1

xB

dy

y
ĝqT (y)

)

gquark
2 =

1

2

∑
q

e2
q

mq

Λ

(
hq1
x

)?
(xB) , (23)

gjet
2 =

1

2

∑
q

e2
q

Mq −mq

Λ

hq1(xB)

xB
.

These terms are compared in Figure 2 to the g2 − gWW
2 function obtained in the very recent JAM15 fit of polarized

DIS asymmetries [27], that includes a large amount of precise data at large xB and small Q2 from Jefferson Lab,
and simultaneously fits the higher-twist components of g1 and g2 to the data1. For the “pure twist-3” contribution,
gtw3

2 , i.e., the contribution from quark-gluon-quark matrix elements, we show a recent light-front model calculation

by Braun et al. [28] (for bag model calculations, see [29, 30]). To estimate the contributions from quark (gquark
2 )

and jet mass (gjet
2 ) effects, that depend on chiral-odd quark-quark matrix elements, we use the recent Pavia15 fit of

the transversity distribution from Ref. [10], which is comparable also to other extractions [12, 31]. Furthermore, we
choose the values of the mass parameters to be mq = 5 MeV and Mq = 100 MeV.

As one can see, in the proton case the pure twist-3 contribution is quite smaller in magnitude than, and nearly
opposite in sign compared to, the twist-3 term extracted in the JAM15 fit. The quark-mass contribution, as expected,
is essentially negligible. For what concerns the jet-mass contribution, the uncertainties due to the h1 extraction are
very large, especially at low xB . In addition, there is an overall normalization uncertainty due to the choice of Mq,
not shown in the plot. In any case, the jet-mass contribution is strikingly large, and of the same order of magnitude
as the chiral-even twist 3 term. If we assume the latter to be of the order of the model calculation by Braun et al., the
breaking of the Wandzura-Wilczek relation can be used to constrain the extractions of the transversity distribution.
This is in particular true at low xB , where the pure twist-3 term is expected to vanish. Moreover, it is quite clear that
the gap between the pure twist-3 gtw3

2 function and the JAM15 fit can be explained by the new jet-mass contribution
we discuss in this paper.

In the neutron case, the jet contribution is very negative at intermediate to large values of xB . If one trusts the
order of magnitude of the gtw3

2 calculation by Braun et al., one would conclude that the jet contribution should not

be that large. However, for a neutron target, gjet2 depends strongly on the d quark’s transversity, whose fit suffers
from large systematic uncertainties and saturates the negative Soffer bound. Recent data in p+ p collisions indicate,

in fact, that hq=d1 might be less negative than in the Pavia15 fits [32]. Correspondingly the jet contribution to the
proton at xB ≈ 0.1 would become less positive, improving as well the agreement with the JAM15 fit.

1 Keep in mind, however, that the JAM15 fit imposes the
∫
dxg2(x) = 0 Burkhardt–Cottingham sum rule, which, however, is broken by

inclusion of jet correlators, as discussed in Section V.
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FIG. 2: Different contributions to the non Wandzura-Wilczek part of the proton (left) and neutron (right) g2 structure functions
compared to the JAM15 fit of the g2 − gWW

2 function (solid black) [27]. The quark and jet contributions are shown with a
dotted red and a dot-dashed green line respectively, with uncertainty bands coming form the Pavia15 fit of the transversity
function [10]. The uncertainty in the choice mq = 5 GeV and Mq = 100 GeV is not shown. The pure twist-3 contribution
calculated by Braun et al. [28] is shown as a dashed blue line (no uncertainty estimate was provided in the original reference).

V. MOMENTS OF THE g2 STRUCTURE FUNCTION

It is interesting to consider the moments of the non Wandzura-Wilczek contribution to g2,

dN ≡ (N + 1)

∫ 1

0

xN
(
g2(x)− gWW

2 (x)

)
. (24)

For a generic function f , let us define it’s N -th moment as f [N ] =
∫ 1

0
dxxNf(x). It is then straightforward to verify

that f∗[N ] = −f [N ]N/(N + 1) and

dN = (N + 1)g2[N ] +Ng1[N ] (25)

=
1

2

∑
q

e2
q

[
ĝqT [N ]−Ng̃qT [N ] +

(N + 1)Mq − (2N + 1)mq

Λ
hq1[N − 1]

]
. (26)

The zero-th moment, d0 =
∫
g2, provides an interesting relationship between transversity and the inclusive structure

function g2: ∫
dx g2(x) =

∑
q

e2
q

Mq −mq

Λ

∫
dx

1

x
hq1(x) . (27)

Here we used the fact that ĝqT [0] vanishes identically due to the symmetry properties of the quark-gluon-quark
correlators [18]. Note that the only surviving term on the right-hand side is the new jet contribution. Thus, our new

sum rule (27) generalizes the Burkhardt–Cottingham (BC) sum rule [33], which states that
∫ 1

0
dx g2(x) = 0, while

we have shown that jet-mass corrections, and in particular from invariant mass generation in spin-flip processes, can
directly violate this. In fact, the possibility of a violation of the BC sum rule due to contributions from spin-flip
processes was already mentioned in the original derivation, but these do not show up in treatments that only consider
free-field quark propagators for the struck quark [13]. Although we formulated (27) in terms of a sum over quark
flavors in order to display a clear connection to the structure function g2, we stress that this is valid also flavor by
flavor, i.e., for each single flavor the only measurable nonzero contribution to the zeroth moment of the structure
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function gq2 comes from the coupling between its jet mass and transversity function2.
One should notice that since h1 is slowly driven to 0 by QCD evolution as Q2 →∞, the BC sum rule is still satisfied

at least asymptotically. At finite scales, however, the only way to preserve the validity of the BC sum rule is if∫
dx

1

x
hq1(x) = 0 . (28)

Interestingly, one can show that this constraint, if valid at any given scale Q0 is conserved through QCD evolution.
However, we think that it is unlikely to be satisfied in general, since Eq.(28) is explicitly broken in perturbative
QCD [34], as well as in model calculations [35–40]. Then, if we assume that the BC sum rule is broken by a finite

amount (which is very reasonable from the recent small-x estimate g2 ∝ x
√
αsNc/π, with Nc = 3 the number of colors,

and alphas the strong coupling constant [41]) we obtain that h1(x)/x must be integrable. This implies a a bound on
the small x behavior of the transversity,

hq1(x) ∝ xε ε > 0 . (29)

This bound can be very useful, e.g., in transversity fits, where the data at small x is, as yet, very limited, and in
general for proper extrapolations to xB = 0 when experimentally measuring moments.

The first moment, d1, is the first one to display a contribution from the pure twist-3 part of g2:

d1 =
1

2

∑
q

e2
q

(
ĝqT [1]− 2g̃qT [1] +

2Mq − 3mq

Λ
hq1[0]

)
(30)

where hq1[0] =
∫ 1

0
dxhq1(x) is the contribution of a quark q to the target’s tensor charge. The second moment,

d2 =
1

2

∑
q

e2
q

(
ĝqT [2]− 3g̃qT [2] +

3Mq − 4mq

Λ
hq1[1]

)
, (31)

is also interesting because the pure twist-3 part can be related to quark-gluon-quark local matrix elements, see [13],
and interpreted as the average color force experienced by the struck quark as it exits the nucleon [42]; for experimental
measurements of d2, see, e.g., Refs. [43–47].

For both the d1 and d2 moments, the transversity contribution is a background to the extraction of the pure twist-3
piece. Fortunately, it is a quantity that can be extracted from the lattice [4–8] or fitted [10–12]. Furthermore, the
new sum rule (??) and the bound (29) promise to improve future transversity fits. Therefore the pure twist-3 part
can, in principle, be properly isolated and measured.

We should also note that the Mq jet mass parameter can also be experimentally measured, e.g., in electron-positron
collisions. A promising avenue is through inclusive single hadron production, e+e− → hX, and inclusive dihadron
production from the same hemisphere, e+e− → hhX, see Fig. 3. In single-hadron production, the fragmentation
functions play the role of PDFs in DIS and couple to the jet functions in an analogous way. To access the spin-flip
J1 function one needs to detect a polarized hadron, such as a ∆ baryon. In double hadron production, the enlarged
number of Dirac structures of the dihadron fragmentation correlators related to the relative momentum of the two
hadrons [48, 49] allows one to access the jet function in novel ways, and in particular to isolate the contribution from
the helicity-flip J1 term in combination with the chiral-odd fragmentation function H^

1 .

e+

e− Ξ

∆h

h

e+

e− Ξ

∆2h
h1, h2

FIG. 3: Single hadron (left) and double hadron (right) production in e+e− collisions at LO with jet and fragmentation
correlators.

2 This conclusion is true even if the BC sum rule is broken by a J = 0 fixed pole with non-polynomial residue [13], since this would appear
as a δ(xB) contribution and would not be measurable.
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To conclude this section, we note that the jet contribution also leads to an explicit breaking of the Efremov–
Teryaev–Leader (ETL) sum rule [50], in which the pure twist-3 contribution to the first moment of g2 − gWW

2 also
disappears. To see this, let’s define the valence contribution to a given structure function as fV = 1

2

∑
q e

2
q(f

q − f q̄).
Then, as shown in [50], ĝVT [1]− 2g̃VT [1] = 0, and from Eq. (30) we obtain

dV1 =
1

2

∑
q

e2
q

2Mq −mq

Λ

(
hq1[0]− hq̄1[0]

)
. (32)

Assuming Mlight ≡Mu ≈Md � mu,md and isospin symmetry of the proton and neutron, we can also see that

dV1 =
Mlight

Λ
δT (p) , (33)

This gives an alternative way to access the proton tensor charge, δT (p) =
∑
q e

2
q

(
hq1[0]−hq̄1[0]

)
, by measuring or fitting

moments of the flavor separated g2 structure function.

VI. CONCLUSIONS

In this paper, we revisited the inclusive DIS analysis, including the effects due to the production of a system
of final state hadrons in the current direction, which we conveniently referred to as a “jet.” We described this in
terms of a jet correlator that corresponds, up to twist-4 contributions, to the nonperturbative quark cut propagator,
or, equivalently, to the quark’s spectral function, and of a quark-gluon-quark jet correlator needed to insure gauge
invariance of the calculation. We then carried out the analysis of the DIS cross section up to contribution of order
1/Q. The introduction of the jet correlators leads to a difference in the expression of the structure function g2

in inclusive DIS with respect to the standard analysis: a new term appears, proportional to a jet mass parameter
Mq = O(100 MeV) and to the transversity distribution function. This new term contributes to the violation of the
Wandzura-Wilczek relation, in addition to the standard pure twist-3 terms and quark mass corrections. Contrary to
these standard terms, however, the new jet mass correction does not necessarily integrate to zero and so violates also
the BC and ETL sum rules. This is yet another example of how surprising and rich the phenomenology of polarized
inclusive DIS can be.

Detailed measurements of the g2 structure function can be used to constrain the jet mass parameter Mq, the
transversity distribution function and the nucleon tensor charge, helping their extraction from other observables, e.g.,
in electron-positron annihilation and semi-inclusive DIS. Knowledge of the jet mass parameter and of the transversity
distribution will eventually be needed for a precise extraction of pure twist-3 terms from the g2 structure function, or
from transverse target single spin asymmetries [51].

Finally, studying and classifying all the contributions of jet correlators to single and ouble hadron production in
electron-positron annihilation events will open up a rich phenomenology. Measurements in the asymptotically large
Q2 regime will provide access to the integral of the J1 jet function, i.e., to the jet-mass parameter Mq, and therefore
(in conjunction with precise measurements or lattice QCD calculations of the first h1 moment) also of the target’s
tensor charge through the modified ETL sum rule. Equally interesting is the possibility to experimentally measure, at
finite values of Q2, the momentum dependence of the jet functions J1 and J2, that enter structure functions integrated
only up to µ2 = Q2(1/xB − 1) [21]. In other words, it may become possible to experimentally access also the quark’s
spectral function itself.
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