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Abstract. K`4 decays have several features of interest: they allow an accurate measurement
of ππ-scattering lengths; the decay is the best source for the determination of some low-energy
constants of chiral perturbation theory (χPT); one form factor of the decay is connected to the
chiral anomaly.

We present the results of our dispersive analysis ofK`4 decays, which provides a resummation
of ππ- and Kπ-rescattering effects. The free parameters of the dispersion relation are fitted to
the data of the high-statistics experiments E865 and NA48/2. By matching to χPT at NLO
and NNLO, we determine the low-energy constants Lr1, Lr2 and Lr3. In contrast to a pure
chiral treatment, the dispersion relation describes the observed curvature of one of the K`4 form
factors, which we understand as an effect of rescattering beyond NNLO.

1. Motivation
K`4, the semileptonic decay of a kaon into two pions and a lepton-neutrino pair, plays a crucial
role in the context of low-energy hadron physics, because it provides almost unique information
about some of the SU(3) O(p4) low-energy constants (LECs) of chiral perturbation theory, the
low-energy effective theory of QCD [1, 2, 3]. Although the K`4 decay offers similar information
as Kπ scattering, it happens at lower energies, where the chiral expansion is more reliable.
Besides, as the hadronic final state contains two pions, K`4 is also one of the best sources of
information on ππ interaction [4, 5, 6].

On the experimental side, we are confronted with impressive precision from the high-statistics
measurements of the E865 experiment at BNL [7, 8] and the NA48/2 experiment at CERN [6, 9].
The statistical errors of the S-wave of one form factor reach in both experiments the sub-percent
level. Matching this precision requires a theoretical treatment beyond one-loop order in the chiral
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expansion. A first treatment beyond one loop, based on dispersion relations, was already done
twenty years ago [10]. The full two-loop calculation became available in 2000 [11]. However, as
we will show below, even at two loops χPT is not able to predict the curvature of one of the
form factors.

Here, we present the results of a new dispersive treatment of K`4 decays [12, 13]. We do not
solve an exact dispersion relation for this process, but an approximate form, which follows if the
contribution of D- and higher waves to the discontinuities are neglected.1 This approximation
is violated only at O(p8) in the chiral counting. The effects due to ππ and Kπ rescattering
in S- and P -wave are resummed to all orders. We expect this to capture the most important
contributions beyond O(p6). Indeed it turns out that the dispersive description is able to
reproduce the curvature of the form factor.

Our final analysis of K`4 decays represents an extension and a major improvement of our
previous dispersive framework [14, 15, 16]. Instead of a single linear combination of form factors,
now we describe the two form factors F and G simultaneously, including more experimental data
in the fits. The new framework is valid also for non-vanishing invariant energies of the lepton
pair. We apply corrections for isospin-breaking effects in the fitted data that have not been
taken into account in the experimental analyses [17]. Besides a matching to one-loop χPT, we
also study the matching at two-loop level.

2. Dispersion relation for K`4

In this section, we provide only a very short summary of our dispersive treatment of the K`4

form factors. For more details, we kindly refer the reader to [12, 13].

2.1. Matrix element and form factors
We consider the charged decay mode

K+(p)→ π+(p1)π−(p2)`+(p`)ν`(pν), (1)

where ` ∈ {e, µ} is either an electron or a muon. So far, experimental data is only available on
the electron mode.

After integrating out the W boson, we end up with a Fermi type current-current interaction
and the matrix element splits up into a leptonic times a hadronic part. The leptonic matrix
element can be treated in a standard way. The hadronic matrix element exhibits the usual V −A
structure of weak interaction. Its Lorentz structure allows us to write the two contributions as〈

π+(p1)π−(p2)
∣∣Vµ(0)

∣∣K+(p)
〉

= − H

M3
K

εµνρσL
νP ρQσ, (2)

〈
π+(p1)π−(p2)

∣∣Aµ(0)
∣∣K+(p)

〉
= −i 1

MK
(PµF +QµG+ LµR) , (3)

where P = p1 + p2, Q = p1 − p2, L = p − p1 − p2. The form factors F , G, H and R are
dimensionless scalar functions of the usual Mandelstam variables s, t and u. In experiments on
the electron mode Ke4, R is not accessible. H gets a first contribution only at O(p4) due to the
chiral anomaly. Here we focus on the form factors F and G.

2.2. Reconstruction theorem and integral equations
Let us for the moment regard the di-lepton invariant squared energy s` = L2 as a fixed parameter.
Based on fixed-s/t/u dispersion relations, one can derive a decomposition of the form factors

1 This means that D- and higher partial waves have no right-hand unitarity cut. However, they are still non-zero
and have left-hand cuts due to unitarity in the crossed channels.
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into functions of only one Mandelstam variable, known as ‘reconstruction theorem’ [18, 19]. In
[20] the reconstruction theorem is used for a similar dispersive description of the K`4 form factors
in order to study isospin-breaking effects in the phases at two loops. The derivation neglects
the imaginary parts of D- and higher partial waves, an O(p8) effect:

F (s, t, u) = M0(s) +
u− t
M2
K

M1(s) + (terms involving functions of t or u) +O(p8),

G(s, t, u) = M̃1(s) + (terms involving functions of t or u) +O(p8),

(4)

where the functions of one variable M0, . . . are defined to contain only the right-hand cut of the
partial waves of the form factors F and G in the three channels. E.g. the function M0 contains
the right-hand cut of the s-channel S-wave f0 of the form factor F :

M0(s) = P (s) +
s2

π

∫ ∞
4M2

π

ds′
Imf0(s)

(s′ − s− iε)s′2
, (5)

where P (s) is a subtraction polynomial. Eight more functions M1, . . . take care of the right-
hand cuts of S- and P -waves in all channels, such that all the discontinuities are divided up into
functions of a single variable. They satisfy inhomogeneous Omnès equations with the solution

M0(s) = Ω0
0(s)

{
P̃ (s) +

s3

π

∫ Λ2

4M2
π

ds′
M̂0(s′) sin δ0

0(s′)

|Ω0
0(s′)|(s′ − s− iε)s′3

}
, (6)

where P̃ (s) is a new subtraction polynomial and the Omnès function is given by

Ω0
0(s) = exp

{
s

π

∫ ∞
4M2

π

ds′
δ0

0(s′)

(s′ − s− iε)s′

}
. (7)

In total, 9 subtraction constants appear. We need the following elastic ππ and Kπ phase shifts
as input, which we assume to reach a multiple of π at the cut-off Λ2:

• δ0
0 , δ1

1 : elastic ππ-scattering phase shifts [21, 22],

• δ1/2
0 , δ

1/2
1 , δ

3/2
0 , δ

3/2
1 : elastic Kπ-scattering phase shifts [23, 24].

The inhomogeneities in the Omnès problem are given by the differences of the functions M0, . . .
and the corresponding partial wave, e.g. M̂0(s) = f0(s)−M0(s). These ‘hat functions’ contain
the left-hand cut of the partial wave and we compute them by projecting out the partial wave of
the decomposed form factor (4). The inhomogeneities M̂0, . . . are then given as angular averages
of all the functions M0, . . .. Hence, we face a set of coupled integral equations: the functions M0,
. . . are defined by dispersion integrals involving the inhomogeneities M̂0, . . ., which are again
defined as angular integrals of the functions M0, . . .. This system can be solved by iteration.

2.3. Numerical solution of the dispersion relation
We note that the integral equations are linear in the subtraction constants. Therefore, for each
subtraction constant we construct a basis solution, which we obtain by solving numerically the
integral equations in an iterative procedure. The final result is a linear combination of these
basis solutions.

We determine the subtraction constants using three sources of information: first, we fit
the experimental data on the form factors F and G from the high-statistics experiments
NA48/2 [6, 9] and E865 [7, 8]. Secondly, we use as an additional constraint the well-known
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soft-pion theorem [25, 26, 27], which establishes the following relations between F , G and f+,
the K`3 vector form factor:

F (M2
π ,M

2
K ,M

2
π + s`)−G(M2

π ,M
2
K ,M

2
π + s`) = O(M2

π),

F (M2
π ,M

2
π + s`,M

2
K) +G(M2

π ,M
2
π + s`,M

2
K) =

√
2MK

Fπ
f+(M2

π + s`) +O(M2
π).

(8)

Finally, we fix the subtraction constants that are not well determined by the data with chiral
input.

3. Results
3.1. Fits to data
We perform a fit of the dispersion relation to both, the E865 [7, 8] and NA48/2 data
sets [6, 9], corrected for additional isospin-breaking effects that were not taken into account
in the experimental analyses [17]. Recently, a two-dimensional data set on the S-wave of F has
become available (addendum to [9]): in this set, not only a single bin but up to 10 bins are used
in s`-direction. If we allow for varying values of the di-lepton invariant squared energy s`, the
subtraction constants become functions of this parameter and the functions M0, . . . depend on
two variables, e.g. M0(s, s`). We perform our fits in the two-dimensional (s, s`)-plane using the
full available data sets on the S- and P -waves of the form factors, given by

Fs(s, s`) =
(
M0(s, s`) + M̂0(s, s`)

)
e−iδ

0
0(s),

F̃p(s, s`) =
(
M1(s, s`) + M̂1(s, s`)

)
e−iδ

1
1(s),

Gp(s, s`) =
(
M̃1(s, s`) + ˆ̃M1(s, s`)

)
e−iδ

1
1(s).

(9)

Figure 1 shows the fit results for the S-wave of the form factor F . The two-dimensional phase
space is projected on the s-axis and only the data sets with a single bin in s`-direction are
plotted. The dispersive description reproduces beautifully the observed curvature of the form
factor Fs. Note that χPT alone is not able to describe this curvature, which can be understood
as a higher-order effect of ππ rescattering, fully taken into account in the dispersive Omnès
representation of the form factor.

3.2. Matching to χPT
We perform the matching to χPT directly on the level of the subtraction constants. This means
that we decompose the chiral expression at NLO or NNLO according to the reconstruction
theorem and write the functions M0, . . . in a chirally expanded Omnès form. This allows us
to directly identify the subtraction polynomials P̃ (s) in (6) with chiral expressions. Such a
procedure separates the resummation of rescattering effects from the chiral matching. Note also
that we subtract all the functions M0, . . . at zero energy.

By matching the dispersion relation to χPT, we are able to determine the LECs Lr1, Lr2 and
Lr3. Using the information on the s`-dependence of the form factors, also Lr9 can be extracted,
though the present experimental data does not allow a precise determination.

If we perform the matching at two-loop level, many NNLO LECs Cri enter the matching
equations. We compare different input values for the Cri [28, 29, 30] and assign a 50% uncertainty
to the contribution of the Cri to the subtraction constants. This Cri contribution is then fitted
as well, using constraints on the chiral convergence of the subtraction constants. We find that
the Cri input values of the BE14 global fit [30] lead to the best chiral convergence and a good
χ2 of the whole fit.
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Figure 1. Fit result for the S-wave of the form factor F . The dispersive description reproduces
beautifully the curvature of the form factor. The (s, s`)-phase space is projected on the s-axis,
the plotted lines correspond to splines through the (s, s`)-values of the data sets with a single
bin in s`-direction.

In table 1, we show the results of the matching at NLO and NNLO for the low-energy
constants Lr1, Lr2 and Lr3. For the NNLO matching, the BE14 Cri input values were used. For
comparison, we also quote the values of the BE14 global fit [30].

Table 1. Results for the LECs (µ = 770 MeV).

103 · Lr1 103 · Lr2 103 · Lr3 χ2/dof

Dispersive treatment, NLO matching 0.51(6) 0.89(9) −2.82(12) 141/116 = 1.2
Dispersive treatment, NNLO matching 0.69(18) 0.63(13) −2.63(46) 122/122 = 1.0

BE14 global fit [30] 0.53(6) 0.81(4) −3.07(20)

At NLO, a large contribution to the uncertainties comes from the high-energy behaviour of
the phase shifts, either from the ππ phases in the case of Lr1 and Lr2 or the Kπ phases in the
case of Lr3. At NNLO, the largest uncertainty is due to the fitted contribution of the Cri .

4. Conclusions
We have presented a dispersive representation of K`4 decays that provides a model independent
parametrisation valid up to and including O(p6). The dispersion relation is based on unitarity,
analyticity and crossing. It includes a full resummation of ππ- and Kπ-rescattering effects.
The dispersion relation is parametrised by subtraction constants that we determine by fitting
experimental data and by using the soft-pion theorem as well as chiral input.

In contrast to a pure chiral description, the dispersion relation describes perfectly the
experimentally observed curvature of the S-wave of the form factor F , which we interpret as
a result of significant ππ-rescattering effects. This is yet another case in which high-precision
data clearly call for effects which go even beyond NNLO in χPT.

By using the matching equations to χPT we have extracted the values of the low-energy
constants Lr1, Lr2 and Lr3. The correction from NLO to NNLO, when matching the chiral and
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dispersive representations and fitting the latter to the data are smaller than the corrections
from NLO to NNLO observed in direct χPT fits. Constraints on the chiral convergence of the
subtraction constants allow us to reduce the dependence on the input values for the Cri . Still,
the poorly known values of the Cri are responsible for the larger uncertainties in the matching
at NNLO.

The two-dimensional NA48/2 data set for the S-wave of F , which shows both the s- as well
as the s`-dependence, has allowed us to extract a value for Lr9 [13], which is roughly compatible
with previous determinations. In accuracy, however, it cannot compete yet, as it reflects the low
precision in the measurement of the s`-dependence of F . A new high-statistics measurement
of Ke4 could improve on this and provide a new determination of Lr9. Regarding prospects for
forthcoming experiments, we refer to [31].
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