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Abstract

Since the Stern-Gerlach experiment in 1922, spin has had major implications on

practically almost all areas of modern physics. Quantum chromodynamics (QCD) is

the fundamental theory that describes strong interaction in terms of quark and gluon

degrees of freedom. While QCD has been well tested in the high-energy regime,

it is still unsolved in the low-energy, non-perturbative regime. With developments

in polarized beam and polarized target technologies, spin offers a unique tool to

probe the internal structure of nucleons and non-perturbative QCD dynamics. The

polarization techniques developed for these fundamental nuclear physics study also

bring new impulses to the idea of polarized fusion, in which spin-polarized deuterium

and tritium (D-T) fuel in a tokamak reactor would provide a boost to the fusion rate.

This thesis consists of three topics based on spin physics. The first topic is the

Jefferson Lab (JLab) Hall A E08-027 (𝑔𝑝2) experiment performed with the polarized

electron beam scattering off a polarized ammonia target to obtain the proton spin-

dependent structure function g2 in the low momentum transfer region (0.02 < Q2

< 0.2 GeV2). The measured data will provide a benchmark test of Chiral Pertur-

bation Theory (𝜒PT) calculations in the non-perturbative region by extracting the

generalized longitudinal-transverse polarizability 𝛿𝐿𝑇 , and help test the Burkhardt-

Cottingham Sum Rule at low Q2. This thesis will discuss the physics motivation, data

analysis, and preliminary results from the E08-027 experiment in Chapters 2−5. The

second topic is focused on the JLab polarized 3He target, which is essential for the

neutron spin structure study. Progress on the upgrade of this target for the JLab 12

GeV program will be presented in Chapter 6. The final topic is an application of such

polarization techniques in thermonuclear fusion. A direct test of spin-polarized fusion

was proposed for the DIII-D tokamak in San Diego using the isospin mirror reaction

D-3He. Preliminary results on the polarized 3He performance in inertial confinement

fusion (ICF) polymer pellets will be presented in Chapter 7.
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Chapter 1

Introduction

The history of spin physics can be traced back to the Stern-Gerlach experiment[1]

in 1922. In this experiment, a beam of silver particles was passed through an inho-

mogeneous magnetic field and was observed to follow a deflection either up or down

at two highly-localized points. In 1925, Uhlenbeck and Goudsmit postulated that the

electron possesses an intrinsic angular momentum[2], referred to as "spin", to explain

the Stern-Gerlach experiment. This postulation had no solid theoretical framework

until Dirac combine quantum mechanics and special relativity and published his fa-

mous relativistic wave equation[3], which required the electron to have such intrinsic

angular momentum. In Dirac formulation, a structureless spin-1/2 particle has a

magnetic momentum �̂� = 𝑄
𝑀
𝑆 where 𝑄 is the charge, 𝑀 is the mass, and 𝑆 is the

spin. When applied to electrons, the magnetic moment given by the Dirac equation

agrees with the results of the Stern-Gerlach experiment. By the end of the 1920s, the

role of electron spin to the atomic electronic structure is fundamentally understood.

In 1933, Estermann and Stern measured the magnetic moment of the proton[4] and

discovered that the proton’s magnetic moment has a marked deviation (∼ 150%) from

Dirac’s prediction, which was the first indication that proton has internal structure.

In the late 1930s, Rabi and his colleagues developed the technique to discern the

magnetic moment and nuclear spin of atoms by using an extended version of the Stern-

Gerlach apparatus[5, 6]. In their work, an oscillating magnetic field was showed to

induce the magnetic moment transitions from one state to the other, which evolved
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into the techniques of modern Nuclear Magnetic Resonance (NMR) and Magnetic

Resonance Imaging (MRI), now in use daily worldwide.

Since the 1950s, with the advancement of techniques to devise high density, high

polarization targets, polarimeters and detectors capable of incredible sensitivity, and

accelerators to accelerate, store and collide polarized particles, spin has become an

important tool to understand the fundamental structure of matter and properties of

the four interactions. In 1956, Wu and collaborators observed a clear violation of

parity conservation in the beta decay of 60Co nuclei with spin aligned in a magnetic

field[8], which confirmed Lee and Yang’s hypothesis[7] that parity is not conserved

in weak interactions. Later on, spin offers an effective laboratory to study Quan-

tum Chromodynamics (QCD) in both perturbative and non-perturbative region to

understand how the nucleon is constructed from the fundamental quark and gluon

degrees of freedom. It was originally expected that the quark spin carried all of the

nucleon spin, but experiments at SLAC[9] and CERN[10] performed with polarized

beams and polarized targets in the late 1980s contradicted this expectation. The

experimental results suggested that only a small percentage of the nucleon spin is

carried by spin of quarks. This disagreement astonished physicists at that time and

is sometimes referred to as the “proton spin crisis”. In the 30 years that followed,

experimental research on these topics has been continued at SLAC, CERN, DESY,

RHIC, Jefferson Lab (JLab) and other facilities[11]. Through decades of efforts in

both theoretical and experimental approaches, the current understanding is that the

quark spin contribution towards the nucleon spin is about 30% and the rest is carried

either by the gluon spin, or by the orbital angular momentum of gluon and quark.

In parallel with the elementary particle physics study, the polarization techniques

have been adopted and further developed for other applications in practically almost

all other areas of physics and beyond: from atomic-molecular-optical physics, con-

densed matter physics, to chemistry, biology and medicine. The University of Virginia

(UVa) is one of the world centers for research and application of spin physics. Besides

the production of polarized NH3[13], ND3[13], and 3He[14] targets for JLab QCD spin

physics study, the polarized 3He and 129Xe applied in MRI in medicine enabled direct
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observation of inhaled gas in airways[15], such as in lungs or sinuses, organs that

are poorly seen with standard MRI based on the detection of proton (water) spin in

tissue. In addition, the UVa-JLab collaboration is developing the technique to apply

polarized 3He and polarized deuterium[17] for the first proof-of-principle, in-situ test

of polarization survival and polarization dependence of D-3He fusion in the DIII-D

tokamak[18], which would pave the way for spin-polarized fusion[19].

This thesis is organized as follows: Chapters 2−5 gives a review of the physics

motivation, experimental setup, data analysis, and preliminary results for the HALL

A E08-027 experiment which measure the proton spin-dependent structure function

𝑔2 in the low 𝑄2 region. Chapter 6 presents the upgrade progress of JLab polarized
3He target for the 12 GeV program which is essential for neutron spin structure study.

Chapter 7 gives a detailed discussion of spin-polarized fusion, and preliminary results

on the polarized 3He performance in inertial confinement fusion (ICF) polymer pellets

using data acquired with a clinical 1.5-T MRI scanner. Chapter 8 presents conclusion

of this thesis.
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Chapter 2

Physics Motivation for the 𝑔
𝑝
2

Measurement

2.1 Introduction to the Nucleon Spin Structure Study

Understanding the nature of the atomic nucleus and its fundamental constituents,

including precision tests of their interactions, is an on-going effort that has lead to

many great discoveries along the way. The seeds of physics about the nucleus took

root with the discovery of the nuclear atomic model by Rutherford in 1911[20]. In

the famous gold foil scattering experiment, Rutherford demonstrated that the positive

charge, and most of the mass of the atom is concentrated in a tiny nucleus. In the

1920s, Rutherford named the nucleus of the lightest atom (hydrogen) as proton and

predicted the existence of an electrically neutral twin to the proton, the neutron[21],

later discovered in 1932 by Chadwick[22]. However, the internal structure of the

nucleon, proton and neutron, remained a mystery until the mid-1960s. In 1964,

Gell-Mann and Zweig proposed that hadrons are in fact composed of quarks, which

are point-like charged spin-1/2 fermions: a three quark composite particle is called

a baryon, such as the proton and the neutron; and a quark-antiquark particle is

called a meson like the pion and the kaon[23, 24]. The first confirmation of the

existence of quarks was provided by inelastic electron-proton scattering experiments

carried out at Stanford Linear Accelerator Center (SLAC) in the late 1960s and early
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1970s[25]. Soon thereafter, QCD emerged as a fundamental theory to describe the

strong interaction between quarks in the form of gluon exchange. In QCD, a nucleon

consists of three quarks (valence quarks), a sea containing quark-antiquark pairs (sea

quarks), and gluons.

QCD has two important features: asymptotic freedom that the strong coupling

constant becomes asymptotically weak as energy increases and the distance between

quarks decreases, and confinement that color charged particles cannot be isolated

singularly but must form together as colorless hadrons. Although QCD is a complete

theory, a full analytic QCD calculation of real physical process is mathematically

impossible at the current stage and a perturbative QCD (pQCD) calculation is used

whenever appropriate. In pQCD, the calculation of a physical process is expanded in

terms of the strong coupling constant 𝛼𝑠. In the high energy and large momentum

transfer region, where 𝛼𝑠 is small and the quarks in the hadrons behave as quasi-free

particles to some extent, predictions from perturbative QCD have been proven to

describe experimental results very well. In the low energy (non-perturbative) region,

where 𝛼𝑠 becomes large (∼ 1), perturbative calculation becomes inappropriate. The

dynamical properties and the degrees of freedom of quarks and gluons are combined

with some non-perturbative QCD aspects, such as confinement and dynamic chiral

symmetry breaking, to provide predictions for measured physical quantities. These

are commonly referred to as low-energy effective field theories such as the chiral

perturbation theory (𝜒PT).

Understanding how the nucleon is constructed from the underlying fundamental

quarks and gluons is one of the most important and challenging questions in modern

nuclear physics. Among all nucleon properties, understanding its spin constitution is

particularly interesting. The nucleon spin structure is often described by various spin

structure functions, which provide insights about how the nucleon spin is distributed

among the nucleon’s constituents (quarks and gluons) and the underlying dynamic

mechanism. As mentioned in Chapter 1, a series of experiments determined the

quark spin contribution to the nucleon spin to be ≈ 30% using polarized beam and

polarized target, but how the remaining 70% of the nucleon spin emerges from quarks
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and gluons is still not understood from QCD.

The detailed spin structure function of the nucleon can be studied by measuring

precisely the spin structure function 𝑔1 and 𝑔2. The proton spin structure function

𝑔𝑝1 and the neutron spin structure functions 𝑔𝑛1 and 𝑔𝑛2 have been measured exten-

sively over a very wide kinematic range[11, 26], however the proton spin structure

function 𝑔𝑝2 remains largely unmeasured. The JLab Hall A Experiment E08-027 was

a measurement of the proton 𝑔𝑝2 structure function at low momentum transfers using

the polarized electron scattering off polarized NH3 target. These proton 𝑔𝑝2 data will

help study the quark-gluon interactions and provide tests of 𝜒PT predictions in the

non-perturbative region.

The following sections will give an introduction about inclusive electron scattering

first, then discuss the theoretical background and motivation (quark-parton model,

Operator Product Expansions, sum rules and moments, 𝜒PT, proton hyperfine struc-

ture) for the proton spin structure function 𝑔𝑝2 measurement.

2.2 Inclusive Electron Scattering

Lepton scattering, particularly electron scattering, has been proven to be a pow-

erful microscope to probe the nucleon structure. Here “inclusive” refer to scattering

measurement where only the scattered electrons are detected. It is a clean probe

with the electromagnetic interaction well understood in the framework of Quantum

Electrodynamics (QED). With the development in polarized beam and polarized tar-

get technologies, doubly polarized inclusive electron scattering experiments have been

used in the study of nucleon spin structure functions. In the following sections, the

relevant kinematic variables, the differential cross-sections and the formulation of

nucleon structure functions will be discussed.
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2.2.1 Kinematic Variables

The general process of inclusive electron scattering is described by:

𝑒(𝑘) +𝑁(𝑃 )→ 𝑒(𝑘
′
) +𝑋(𝑃

′
), (2.1)

with the one-photon exchange (Born approximation) shown in Fig. 2-1. Here the

incident electron with four-momentum 𝑘𝜇 = (𝐸, �⃗�) scatters off a target nucleon (or

nucleus) with four-momentum 𝑃 𝜇 = (𝐸𝑝, 𝑃 ) via the exchange of a single virtual

photon with four-momentum 𝑞𝜇 = (𝜈, �⃗�). In this process, the energy 𝜈 and momentum

�⃗� are transferred to the target. The virtual photon has 𝑞2 < 0 and is called “off the

mass shell”, and the Lorentz-invariant four-momentum transfer squared 𝑄2 ≡ −𝑞2 is

commonly used to describe the scattering process. The virtual photon can be viewed

as the electromagnetic probe to the target nucleon (or nucleus) and the amplitude

of 𝑄2 is associated with the scale (or resolution) that the probe is sensitive to. The

scattered electron 𝑒(𝑘′) is detected at an angle 𝜃 with four-momentum 𝑘′𝜇 = (𝐸 ′, 𝑘′),

which defines the photon’s 𝑞𝜇 = 𝑘𝜇−𝑘′𝜇, while the final hadronic state X(P’) with four-

momentum 𝑃 ′𝜇 = (𝐸 ′𝑝, 𝑃
′) goes undetected. The invariant mass of the undetected

hadronic state is 𝑊 =
√︀

(𝑃 + 𝑞)2. Two additional dimensionless and relativistically

invariant variables are sometimes used as well: the Bjorken scaling variable 𝑥 =

𝑄2/(2𝑃 · 𝑞) and the fraction of electron energy loss 𝑦 = 𝑃 · 𝑞/(𝑃 · 𝑘).

For a fixed-target experiment, the target has 𝑃 𝜇 = (𝑀, 0) in the lab-frame. It is

useful to summarize kinematic relations as follows:

𝜈 ≡ 𝐸 − 𝐸 ′, (2.2)

𝑄2 ≡ −𝑞2 = 4𝐸𝐸 ′ sin2 𝜃

2
, (2.3)

𝑊 2 ≡ (𝑃 + 𝑞)2 = 𝑀2 + 2𝑀𝜈 −𝑄2, (2.4)

𝑥 ≡ 𝑄2

2𝑃 · 𝑞 =
𝑄2

2𝑀𝜈
, (2.5)

𝑦 ≡ 𝑃 · 𝑞
𝑃 · 𝑘 =

𝜈

𝐸
, (2.6)

(2.7)

8



𝑘𝜇 = (𝐸, 𝑘) θ

γ*

𝑘′) = (𝐸	+	, 𝑘′)

𝑃𝜇 = (𝑀,0) 𝑃′𝜇 = (𝐸𝑡+	 , 𝑝′)

𝑞) = (𝜈, �⃗�)

Figure 2-1: Lowest order diagram for inclusive electron scattering.

where the electron mass is neglected if 𝐸 ≫ 𝑚𝑒𝑐
2 and 𝐸 ′ ≫ 𝑚𝑒𝑐

2.

The cross section for electron scattering depends on the kinematics 𝑄2 and 𝜈. As

the increase of 𝑄2 and 𝜈, nucleon electron scattering off light nuclei can be separated

to different types: elastic, quasi-elastic, resonance, and deep inelastic regions. For

the E08-027 experiment, inclusive electron-proton scattering was used, thus no quasi-

elastic is present.

2.2.2 Electron-nucleon Differential Cross Sections

Consider the inclusive electron-nucleon scattering shown in Fig. 2-1, the invariant

matrix 𝑇𝑓𝑖 is:

𝑇𝑓𝑖 = [�̄�𝑠′(𝑘
′) (−𝑖𝑒𝛾𝜇) 𝑢𝑠(𝑘)]

−𝑖
𝑞2
⟨𝑋(𝑃 ′)|𝑖𝑒𝐽𝜈(𝜉)|𝑁𝑆(𝑃 )⟩, (2.8)

where 𝑢 represents the lepton Dirac spinors, 𝑠(𝑠′) is the covariant spin four-vector of

the initial (final) lepton, 𝑆 is the spin four-vector of the initial proton, 𝛾𝑢 is one of the

Dirac matrices, 𝜉 is the spatial four-vector, and 𝐽𝜈(𝜉) represents the unknown elec-

tromagnetic current operator of the hadron. In the laboratory frame, the scattering
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cross section reads[27, 28]:

𝑑𝜎 =
|𝑇𝑓𝑖|2
ℑ

𝑑3𝑘′

2𝐸 ′(2𝜋)3
𝑑3𝑃 ′

2𝐸 ′𝑝(2𝜋)
3
(2𝜋)4𝛿4(𝑘 − 𝑘′ + 𝑃 − 𝑃 ′), (2.9)

where ℑ = 4
√︀

(𝑃 · 𝑘)2 −𝑚2
𝑒𝑀

2 ≈ 4𝑃 ·𝑘 = 4𝐸𝑀 is the flux factor, 𝑑3𝑘′

2𝐸′(2𝜋)3
and 𝑑3𝑃 ′

2𝐸′
𝑝(2𝜋)

3

are normalized phase space factors for the final particle states. 𝑑𝜎 must contain all

the possible transitions of the nucleon from the ground state to any excited states,

hence Eq. 2.9 becomes:

𝑑𝜎 =
𝑑3𝑘′

4𝐸𝐸 ′

∫︁
𝑑4𝑃 ′

2𝐸 ′𝑝

1

2𝑀

∑︁
𝑠′,𝑋

|𝑇𝑓𝑖|2(2𝜋)−2𝛿4(𝑘 − 𝑘′ + 𝑃 − 𝑃 ′). (2.10)

For detecting the final electron in the solid angle 𝑑Ω and in the final energy range

(𝐸 ′, 𝐸 ′ + 𝑑𝐸 ′), one can employ

𝑑3𝑘′ = |𝑘′|2𝑑|𝑘′|𝑑Ω ≈ 𝐸 ′
2
𝑑𝐸 ′𝑑Ω, (2.11)

and obtain the differential cross section

𝑑2𝜎

𝑑Ω𝑑𝐸 ′
=

𝐸 ′

𝐸

1

(2𝜋)2

∫︁
𝑑4𝑃 ′

2𝐸 ′𝑝

1

2𝑀

∑︁
𝑠′,𝑋

|𝑇𝑓𝑖|2𝛿4(𝑘 − 𝑘′ + 𝑃 − 𝑃 ′). (2.12)

The integral part of Eq. 2.12 can be expressed as the form of leptonic tensor 𝐿𝜇𝜈 and

hadronic tensor 𝑊 𝜇𝜈 and then Eq. 2.12 can be written as[28]:

𝑑2𝜎

𝑑Ω𝑑𝐸 ′
=

𝐸 ′

𝐸

1

(4𝜋)2
× 𝑒4

𝑄4
𝐿𝜇𝜈𝑊

𝜇𝜈

=
𝛼2

𝑄4

𝐸 ′

𝐸
𝐿𝜇𝜈𝑊

𝜇𝜈 ,

(2.13)

where 𝛼 ≡ 𝑒2

4𝜋
= 𝛼𝑒𝑚 is the electromagnetic fine structure constant. 𝐿𝜇𝜈 and 𝑊 𝜇𝜈

tensors completely represent the electron and nucleon’s states (momentum and spin),

respectively, including both before and after the virtual photon exchange.

The leptonic tensor is well known and can be calculated in QED as the sum over
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unobserved final electron spin states:

𝐿𝜇𝜈(𝑘, 𝑠; 𝑘
′) =

∑︁
𝑠′

[�̄�𝑠′(𝑘
′) 𝛾𝜇 𝑢𝑠(𝑘)]

* [�̄�𝑠′(𝑘
′) 𝛾𝜈 𝑢𝑠(𝑘)]. (2.14)

It can be split into symmetric (𝑆) and antisymmetric (𝐴) parts under the 𝜇, 𝜈 inter-

change:

𝐿𝜇𝜈(𝑘, 𝑠; 𝑘
′) = 2{𝐿(𝑆)

𝜇𝜈 (𝑘; 𝑘′) + 𝑖𝐿(𝐴)
𝜇𝜈 (𝑘, 𝑠; 𝑘′)}, (2.15)

with

𝐿(𝑆)
𝜇𝜈 (𝑘; 𝑘′) = 𝑘𝜇𝑘

′
𝜈 + 𝑘′𝜇𝑘𝜈 − 𝑔𝜇𝜈 (𝑘 · 𝑘′ −𝑚2), (2.16)

𝐿(𝐴)
𝜇𝜈 (𝑘, 𝑠; 𝑘′) = 𝑚 𝜀𝜇𝜈𝛼𝛽 𝑠𝛼 𝑞𝛽, (2.17)

where 𝑔𝜇𝜈 is the space-time metric, spin four-vector 𝑠𝑢 = �̄� 𝛾𝜇𝛾5 𝑢, and 𝜀𝜇𝜈𝛼𝛽 is

the totally antisymmetric Levi-Cevita tensor with convection 𝜀0123 = +1. For an

unpolarized incident lepton beam, 𝐿(𝐴)
𝜇𝜈 vanishes when averaged over the initial spin.

The hadronic tensor 𝑊𝜇𝜈 , however, depends on the internal structure of the nu-

cleon. This tensor can be expressed in a compact form using the completeness of the

state |𝑋⟩:

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) =

∫︁
𝑑4𝑃 ′

4𝑀𝐸 ′𝑝

∑︁
𝑋

⟨𝑁𝑆(𝑃 )|𝐽𝜇(0)|𝑋(𝑃 ′)⟩⟨𝑋(𝑃 ′)|𝐽𝜈(0)|𝑁𝑆(𝑃 )⟩𝛿4(𝑃 ′ − 𝑃 − 𝑞)

=
1

4𝜋𝑀
⟨𝑁𝑆(𝑃 )|𝐽𝜇(0)𝐽𝜈(0)|𝑁𝑆(𝑃 )⟩(2𝜋)4𝛿4(𝑃 ′ − 𝑃 − 𝑞)

=
1

4𝜋𝑀

∫︁
𝑑4𝜉𝑒𝑖𝑞·𝜉⟨𝑁𝑆(𝑃 )|𝐽𝜇(𝜉)𝐽𝜈(0)|𝑁𝑆(𝑃 )⟩,

(2.18)

where the last step used the integral representation for the 𝛿 function:

𝛿4(𝑃 ′ − 𝑃 − 𝑞) =

∫︁
𝑑4𝜉

(2𝜋)4
𝑒−𝑖(𝑃

′−𝑃−𝑞)·𝜉 (2.19)

Analogous to Eq. (2.15), 𝑊𝜇𝜈(𝑞;𝑃, 𝑆) can be further decomposed into symmetric (𝑆)
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and antisymmetric (𝐴) parts :

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) = 𝑊 (𝑆)
𝜇𝜈 (𝑞;𝑃 ) + 𝑖 𝑊 (𝐴)

𝜇𝜈 (𝑞;𝑃, 𝑆). (2.20)

Following the parity conservation and gauge invariance of the electromagnetic probe,

the most general form of the 𝑊𝜇𝜈 can be expressed as:

𝑊 (𝑆)
𝜇𝜈 (𝑞;𝑃 ) = 𝑊1(𝜈,𝑄

2)

[︂
𝑞𝜇𝑞𝜈
𝑞2
− 𝑔𝜇𝜈

]︂
+
𝑊2(𝜈,𝑄

2)

𝑀2

[︂
𝑃𝜇 −

𝑃 · 𝑞
𝑞2

𝑞𝜇

]︂ [︂
𝑃𝜈 −

𝑃 · 𝑞
𝑞2

𝑞𝜈

]︂
, (2.21)

and

𝑊 (𝐴)
𝜇𝜈 (𝑞;𝑃, 𝑠) = 𝜀𝜇𝜈𝛼𝛽 𝑞𝛼

{︃
𝐺1(𝜈,𝑄

2)𝑆𝛽 +
𝐺2(𝜈,𝑄

2)

𝑀2

[︀
(𝑃 · 𝑞)𝑆𝛽 − (𝑆 · 𝑞)𝑃 𝛽

]︀}︃
,

(2.22)

where 𝑆𝑢 = ¯𝑢(𝑃 ) 𝛾𝜇𝛾5 𝑢(𝑃 )/2𝑀 is the hadron spin four-vector, 𝑊1,2(𝜈,𝑄
2) and

𝐺1,2(𝜈,𝑄
2) are four scalar structure functions describing the internal structure of the

nucleon.

The structure functions can be experimentally extracted from inclusive electron-

nucleon scattering by measuring cross-sections or differences between cross-sections

with different polarization orientations of the initial electron and the target nucleon.

The details will be discussed below.

2.2.3 Unpolarized Structure Functions

Spin-independent structure functions 𝑊1,2(𝜈,𝑄
2), related to the symmetric com-

ponents of the current tensor, 𝑊 (𝑆)
𝜇𝜈 (Eq. 2.21), can be extracted from the unpolarized

cross-section:

𝑑2𝜎𝑢𝑛𝑝𝑜𝑙

𝑑Ω 𝑑𝐸 ′
(𝑘, 𝑃 ; 𝑘′) =

1

4

∑︁
𝑠,𝑆

𝑑2𝜎

𝑑Ω 𝑑𝐸 ′
(𝑘, 𝑠, 𝑃, 𝑆; 𝑘′, 𝑠′)

=
𝛼2

𝑞4
𝐸 ′

𝐸
2𝐿(𝑆)

𝜇𝜈 𝑊 𝜇𝜈(𝑆) . (2.23)
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Substitute Eq. 2.16 and Eq. 2.21 into Eq. 2.23, the unpolarized differential cross

section is

𝑑2𝜎𝑢𝑛𝑝𝑜𝑙

𝑑Ω 𝑑𝐸 ′
=

4𝛼2𝐸 ′2

𝑞4

[︃
2𝑊1(𝜈,𝑄

2) sin2 𝜃

2
+𝑊2(𝜈,𝑄

2) cos2
𝜃

2

]︃

= (
𝑑𝜎

𝑑Ω
)𝑀𝑜𝑡𝑡

[︃
2𝑊1(𝜈,𝑄

2) tan2 𝜃

2
+𝑊2(𝜈,𝑄

2)

]︃
,

(2.24)

where ( 𝑑𝜎
𝑑Ω
)𝑀𝑜𝑡𝑡 =

4𝛼2𝐸′2 cos2 𝜃
2

𝑞4
is the cross section for scattering an electron off a point-

like infinitely heavy target.

2.2.3.1 Structure Functions 𝐹1,2(𝜈,𝑄
2)

𝑊1,2(𝜈,𝑄
2) are often substituted by two dimensionless structure functions in terms

of the Bjorken variable 𝑥 and the squared four-momentum transfer 𝑄2:

𝐹1(𝑥,𝑄
2) = 𝑀𝑊1(𝜈,𝑄

2), (2.25)

𝐹2(𝑥,𝑄
2) = 𝜈𝑊2(𝜈,𝑄

2). (2.26)

𝐹1,2(𝑥,𝑄
2) can be projected from the hadronic tensor by operators 𝑃𝛼𝛽

1,2 [2𝑀𝑊𝛼𝛽] =

𝐹1,2 with [29]

𝑃𝛼𝛽
1 ≡ 1

4

[︂
1

𝑎
𝑃𝛼𝑃 𝛽 − 𝑔𝛼𝛽

]︂
, (2.27)

𝑃𝛼𝛽
2 ≡ 3𝑃 · 𝑞

4𝑎

[︂
𝑃𝛼𝑃 𝛽

𝑎
− 1

3
𝑔𝛼𝛽
]︂
, (2.28)

and

𝑎 =
𝑃 · 𝑞
2𝑥

+𝑀2, (2.29)

in any reference frame and for arbitrary directions of the nucleon spin four-vector.

The unpolarized differential cross section Eq. 2.24 can then be expressed as

𝑑2𝜎𝑢𝑛𝑝𝑜𝑙

𝑑Ω 𝑑𝐸 ′
= (

𝑑𝜎

𝑑Ω
)𝑀𝑜𝑡𝑡

[︃
2

𝑀
𝐹1(𝑥,𝑄

2) tan2 𝜃

2
+

1

𝜈
𝐹2(𝜈,𝑄

2)

]︃
. (2.30)
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As mentioned in Sec. 2.1, the study of 𝐹1,2(𝜈,𝑄
2) at SLAC provided the first exper-

imental evidence that nucleons are made of point-like spin 1/2 quarks. In the deep

inelastic scattering region (typically 𝑊 > 2𝐺𝑒𝑉 and 𝑄2 > 1𝐺𝑒𝑉 2), the structure

functions are observed to have weak dependence on 𝑄2 for a fixed value of 𝑥[9], in

contrast to the elastic form factors (see Sec. 2.2.3.2) that decrease rapidly with 𝑄2.

This phenomenon is known as Bjorken scaling. Any particle with finite size must

have a form factor, so the scaling behavior implies that electrons are scattering off

point-like constituents (quark) within the proton.

The limit of Bjorken scaling is defined in the deep inelastic scattering as [30]:

𝑄2 → ∞,

and 𝜈 → ∞, (2.31)

with 𝑥 =
𝑄2

2𝑀𝜈
fixed.

In this limit, the Bjorken variable 𝑥 can be interpreted as the fraction of the total

nucleon momentum carried by the stuck quark and the structure functions only de-

pends on 𝑥: 𝐹1,2(𝜈,𝑄
2) → 𝐹1,2(𝑥). In other words, the electron nucleon scattering

can be viewed as the electron elastically scattering off an asymptotically free quark

(parton) that carries a fraction x of the nucleon momentum. This is often referred to

as the quark-parton model, to be discussed in more detail in Sec. 2.3.

2.2.3.2 Form Factors 𝐺𝐸,𝑀(𝑄2)

In the kinematic region of elastic scattering, the final nucleon state remains un-

changed (in the ground state) but with a finite recoil to absorb the transfer energy

and momentum. Hence the invariant mass is equal to the mass of proton. In this

case, the scattered electron energy 𝐸 ′ is determined by

𝐸 ′ =
𝐸

1 + 22𝐸
𝑀

sin2 𝜃
2

, (2.32)
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and the energy loss of the electron is

𝜈 =
𝑄2

2𝑀
. (2.33)

The structure functions 𝑊1,2(𝜈,𝑄
2) are commonly written in the form of electromag-

netic Sachs form factors[28]:

𝑊1(𝜈,𝑄
2) = 𝜏𝐺2

𝑀(𝑄2)𝛿(𝜈 − 𝑄2

2𝑀
), (2.34)

𝑊2(𝜈,𝑄
2) =

𝐺2
𝐸(𝑄

2) + 𝜏𝐺2
𝑀(𝑄2)

1 + 𝜏
𝛿(𝜈 − 𝑄2

2𝑀
), (2.35)

where 𝜏 = 𝑄2

4𝑀2 . Now one can obtain the Rosenbluth formula[31] for unpolarized

elastic scattering:

𝑑2𝜎𝑒𝑙

𝑑Ω
= (

𝑑𝜎

𝑑Ω
)𝑀𝑜𝑡𝑡

𝐸 ′

𝐸

[︃
𝐺2

𝐸(𝑄
2) cos2( 𝜃

2
) + 𝜏𝐺2

𝑀(𝑄2)

1 + 𝜏
+ 2𝜏𝐺2

𝑀(𝑄2) sin2(
𝜃

2
)

]︃
, (2.36)

where the factor 𝐸′

𝐸
comes from the recoil with:

𝛿(𝜈 − 𝑄2

2𝑀
) = 𝛿

(︃
𝐸 − 𝐸 ′ − 4𝐸𝐸 ′ sin2 𝜃

2

2𝑀

)︃

=
𝐸 ′

𝐸
𝛿

(︃
𝐸 ′ − 𝐸

1 + 2𝐸
𝑀

sin2 𝜃
2

)︃
.

(2.37)

The Sachs form factors 𝐺𝐸(𝑄
2) and 𝐺𝑀(𝑄2) must have specific values at 𝑄2 = 0

according to the static properties of the corresponding nucleon[28]:

𝐺𝐸𝑝(0) = 1, (2.38)

𝐺𝑀𝑝(0) = 𝜇𝑝, (2.39)

𝐺𝐸𝑛(0) = 0, (2.40)

𝐺𝑀𝑛(0) = 𝜇𝑛, (2.41)
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which means 𝐺𝐸(0), 𝐺𝑀(0) are equal to the electric charge and magnetic momentum

with 𝑝(𝑛) refers to the proton (neutron), 𝜇𝑝 = 2.793 and 𝜇𝑛 = −1.913 are given in

units of nuclear magneton 𝜇𝑁 = 𝑒ℎ̄
2𝑚p

.

In the non-relativistic limit, 𝐺𝐸,𝑀(𝑄2) can be interpreted as the Fourier transfor-

mation of charge distribution 𝜌𝑐ℎ𝑎𝑟𝑔𝑒(𝑟) and magnetization distribution 𝜌𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐(𝑟).

Therefore the elastic scattering cross section allows to map out the extended charge

and current distributions inside the nucleon. From Eq. 2.36, one can extract sepa-

rately the electric and magnetic form factors by measuring the elastic scattering cross

sections at fixed 𝑄2 and different scattering angle.

2.2.4 Polarized Structure Functions

Spin-dependent structure functions 𝐺1,2(𝜈,𝑄
2), related to the asymmetric com-

ponents of the current tensor, 𝑊 (𝐴)
𝜇𝜈 (Eq. 2.22), can be measured from the differences

of cross-sections with opposite target spins:

𝑑2𝜎𝑠,𝑆

𝑑Ω 𝑑𝐸 ′
− 𝑑2𝜎𝑠,−𝑆

𝑑Ω 𝑑𝐸 ′
=

𝑑2𝜎

𝑑Ω 𝑑𝐸 ′
(𝑘, 𝑠, 𝑃,−𝑆; 𝑘′)− 𝑑2𝜎

𝑑Ω 𝑑𝐸 ′
(𝑘, 𝑠, 𝑃, 𝑆; 𝑘′)

=
𝛼2

𝑞4
𝐸 ′

𝐸
4𝐿(𝐴)

𝜇𝜈 𝑊 𝜇𝜈(𝐴) .

(2.42)

Substitute Eq. 2.17 and Eq. 2.22 into Eq. 2.42, the polarized differential cross section

is

𝑑2𝜎𝑠,𝑆

𝑑Ω 𝑑𝐸 ′
− 𝑑2𝜎𝑠,−𝑆

𝑑Ω 𝑑𝐸 ′
=

8𝛼2𝐸 ′

𝑞4𝐸
×{︂[︀

(𝑞 · 𝑆)(𝑞 · 𝑠) +𝑄2(𝑠 · 𝑆)
]︀
𝑀𝐺1(𝜈,𝑄

2) +𝑄2
[︁
(𝑠 · 𝑆)(𝑃 · 𝑞)− (𝑞 · 𝑆)(𝑃 · 𝑠)

]︁𝐺2(𝜈,𝑄
2)

𝑀

}︂
.

(2.43)

Similar to the definitions of unpolarized structure functions in Eq. 2.25 and Eq. 2.26,

𝐺1,2(𝜈,𝑄
2) are often written as dimensionless structure function of Bjorken 𝑥 and 𝑄2:

𝑔1(𝑥,𝑄
2) = 𝑀𝜈𝐺1(𝜈,𝑄

2), (2.44)

𝑔1(𝑥,𝑄
2) = 𝜈2𝐺2(𝜈,𝑄

2). (2.45)
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The corresponding projection operators are 𝑃𝛼𝛽
3 [2𝑀𝑊𝛼𝛽] = 𝑔1 and 𝑃𝛼𝛽

4 [2𝑀𝑊𝛼𝛽] =

𝑔1 + 𝑔2 with [29]

𝑃𝛼𝛽
3 ≡ (𝑃 · 𝑞)2

𝑏𝑀2(𝑞 · 𝑆) [(𝑞 · 𝑆)𝑆𝜆 + 𝑞𝜆]𝑃𝜂𝜀
𝛼𝛽𝜆𝜂, (2.46)

𝑃𝛼𝛽
4 ≡ 1

𝑏

{︂[︂
(𝑃 · 𝑞)2
𝑀2

+ 2(𝑃 · 𝑞)𝑥
]︂
𝑆𝜆 + (𝑞 · 𝑆)𝑞𝜆

}︂
𝑃𝜂𝜀

𝛼𝛽𝜆𝜂. (2.47)

with

𝑏 = −4𝑀
[︂
(𝑃 · 𝑞)2
𝑀2

+ 2(𝑃 · 𝑞)𝑥− (𝑞 · 𝑆)2
]︂
. (2.48)

Similar to 𝐹1,2(𝑥,𝑄
2), 𝑔1(𝑥,𝑄2) are also approximately scaled with Bjorken 𝑥 at the

Bjorken limit:

lim
𝐵𝑗

𝑔1(𝑥,𝑄
2) = 𝑔1(𝑥), (2.49)

lim
𝐵𝑗

𝑔2(𝑥,𝑄
2) = 𝑔2(𝑥) . (2.50)

To measure the spin-dependent structure functions 𝑔1,2(𝑥,𝑄
2), one can consider

the case where electrons are longitudinally polarized with spin along (→) or opposite

(←) the direction of motion, while the target nucleons are polarized along (𝑆) or

opposite to (−𝑆) an arbitrary direction, then Eq. 2.43 becomes:

𝑑2𝜎→,𝑆

𝑑Ω 𝑑𝐸 ′
− 𝑑2𝜎→,−𝑆

𝑑Ω 𝑑𝐸 ′
= − 4𝛼2

𝑄2𝜈𝑀

𝐸 ′

𝐸

×
{︃
[𝐸 cos𝛼 + 𝐸 ′ cosΘ]𝑔1(𝑥,𝑄

2) +
2𝐸𝐸 ′

𝜈
[cosΘ− cos𝛼] 𝑔2(𝑥,𝑄

2)

}︃
.

where 𝛼 (Θ) is the angle between the nucleon spin direction 𝑆 and the incident

(outgoing) electron momentum 𝑘 (𝑘′), and 𝜑 is the azimuthal angle between the

(𝑘, 𝑘′) scattering plane and the (𝑘, 𝑆) polarization plane, as shown in Fig. 2-2. Then

cosΘ can be expressed as

cosΘ = sin 𝜃 sin𝛼 cos𝜑+ cos 𝜃 cos𝛼.
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Hence one can measure the cross section with particular target spin directions to op-

α
Θ

‘

Figure 2-2: Angular Kinematics of polarized electron scattering. The �⃗�, �⃗�′ are the
momentum of incident and outgoing electron, �⃗� is the target spin direction, 𝜃 is the
scattering angle and 𝛼, 𝜑 and Θ define the nucleon spin direction.

timize the 𝑔1,2(𝑥,𝑄
2) significance. There are two favorable target spin configurations:

longitudinal and transverse, defined respect to the electron momentum.

For the longitudinal configuration, the target nucleon is longitudinally polarized

parallel (−→⇒ with 𝛼 = 0) or anti-parallel (−→⇐ with 𝛼 = 𝜋) to the incoming electron

spin, where ⇒ (⇐) denotes the spin direction of target nucleon along (opposite to)

the beam direction. In this case, Θ = 𝜃 and the cross section difference is given by:

Δ𝜎‖ =
𝑑2𝜎

−→⇐

𝑑Ω 𝑑𝐸 ′
− 𝑑2𝜎

−→⇒

𝑑Ω 𝑑𝐸 ′

=
4𝛼2𝐸 ′

𝑄2𝜈𝑀𝐸
×
{︃
[𝐸 + 𝐸 ′ cosΘ]𝑔1(𝑥,𝑄

2) +
2𝐸𝐸 ′

𝜈
[cosΘ− 1] 𝑔2(𝑥,𝑄

2)

}︃

=
4𝛼2𝐸 ′

𝑄2𝜈𝑀𝐸
×
{︃
[𝐸 + 𝐸 ′ cos 𝜃]𝑔1(𝑥,𝑄

2)− 2𝑀𝑥 𝑔2(𝑥,𝑄
2)

}︃
.

(2.51)

It is obvious that the 𝑔1(𝑥,𝑄
2) is much more accessible than the 𝑔2(𝑥,𝑄

2) for longi-

tudinal mode at energies of or above a few GeV and at small scattering angle 𝜃.

For the transverse configuration, the polarized electrons scatter off the target

nucleon transversely polarized with respect to the electron beam direction. In this

case, 𝛼 = 𝜋/2, 𝜑 = 0, and Θ = arccos(sin 𝜃). The cross section difference is given by:
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Δ𝜎⊥ =
𝑑2𝜎→⇑

𝑑Ω 𝑑𝐸 ′
− 𝑑2𝜎→⇓

𝑑Ω 𝑑𝐸 ′

=
4𝛼2𝐸 ′

𝑄2𝜈𝑀𝐸
×
{︃
[𝐸 ′ sin 𝜃]𝑔1(𝑥,𝑄

2) +
2𝐸𝐸 ′

𝜈
sin 𝜃 𝑔2(𝑥,𝑄

2)

}︃

=
4𝛼2𝐸 ′2

𝑄2𝜈𝑀𝐸
sin 𝜃

[︁
𝑔1(𝑥,𝑄

2) +
2𝐸

𝜈
𝑔2(𝑥,𝑄

2)
]︁
,

(2.52)

where ⇓ (⇑) denotes a target spin in the scattering plane, perpendicular to the inci-

dent electron momentum and pointing toward (opposite to) the side of the beamline

where scattered electrons are detected. One can see that the 𝑔2(𝑥,𝑄
2) contribution is

amplified by a factor of 2𝐸/𝜈 compared with the 𝑔1(𝑥,𝑄
2). Hence 𝑔2(𝑥,𝑄

2) is more

favorable in the transverse configuration measurement.

If the spin of the initial electron is flipped while keeping the same target spin

direction, one can obtain the same results as Eq. 2.51 and Eq. 2.52 when ignoring the

parity violation.

In principle, according to Eq. 2.51 and Eq. 2.52, performing two independent

cross-section measurements, with longitudinal and transverse target configurations,

allows measurements of both 𝑔1(𝑥,𝑄
2) and 𝑔2(𝑥,𝑄

2) as

𝑔1(𝑥,𝑄
2) =

𝑀𝑄2

4𝛼2

𝑦

(1− 𝑦)(2− 𝑦)

[︂
Δ𝜎‖ + tan2 𝜃

2
Δ𝜎⊥

]︂
, (2.53)

𝑔2(𝑥,𝑄
2) =

𝑀𝑄2

4𝛼2

𝑦2

2(1− 𝑦)(2− 𝑦)

[︂
−Δ𝜎‖ +

1 + (1− 𝑦) cos 𝜃

(1− 𝑦) sin 𝜃
Δ𝜎⊥

]︂
, (2.54)

where 𝑦 = 𝜈/𝐸.

In practice, rather than measuring the two cross section differences, Δ𝜎‖ and Δ𝜎⊥,

which can be difficult to measure, one can form the structure functions by measuring

asymmetries, in which many experimental limitations and sources of error cancel out.

For a longitudinally polarized target, the longitudinal spin asymmetry 𝐴‖ is defined

as

𝐴‖ =
𝑑𝜎
←−⇒ − 𝑑𝜎

−→⇒

𝑑𝜎
←−⇐ + 𝑑𝜎

−→⇒ =
𝑑𝜎
←−⇐ + 𝑑𝜎

−→⇒

2𝑑𝜎0

. (2.55)
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where 𝜎0 is the unpolarized cross section. Similarly, for a transversely polarized target,

one can define the transverse spin asymmetry:

𝐴⊥ =
𝑑𝜎←⇑ − 𝑑𝜎→⇑

𝑑𝜎←⇑ + 𝑑𝜎→⇑
=

𝑑𝜎←⇑ − 𝑑𝜎→⇑

2𝑑𝜎0

. (2.56)

Then 𝑔1(𝑥,𝑄
2) and 𝑔2(𝑥,𝑄

2) can be extracted by measuring longitudinal asymmetry

𝐴‖, transverse asymmetry 𝐴⊥, and the unpolarized cross section:

𝑔1(𝑥,𝑄
2) =

𝑀𝑄2

4𝛼2

𝑦

(1− 𝑦)(2− 𝑦)
2𝜎0

[︂
𝐴‖ + tan2 𝜃

2
𝐴⊥

]︂
, (2.57)

𝑔2(𝑥,𝑄
2) =

𝑀𝑄2

4𝛼2

𝑦2

2(1− 𝑦)(2− 𝑦)
2𝜎0

[︂
−𝐴‖ +

1 + (1− 𝑦) cos 𝜃

(1− 𝑦) sin 𝜃
𝐴⊥

]︂
. (2.58)

2.2.5 Virtual Photon-Nucleon Absorption Cross Section

In the above sections, the inclusive inelastic cross sections can be written in terms

of structure functions 𝐹1,2 and 𝑔1,2. As shown in Fig. 2-1, the main process of scat-

tering occurs with the exchange of a virtual photon by the electron and nucleon. All

three particles (electron, virtual photon, and nucleon) in this interaction have spin,

and the relative spin direction of each affects the probability of the scattering inter-

action. In the virtual photon notation, the inclusive inelastic cross section can be

written in terms of a virtual photon flux factor and four partial cross sections (𝜎𝐿,

𝜎𝑇 , 𝜎𝑇𝑇 , 𝜎𝐿𝑇 )[32]:

𝑑2𝜎

𝑑Ω 𝑑𝐸 ′
= Γ𝑉

[︁
𝜎𝑇 + 𝜖𝜎𝐿 − ℎ𝑃𝑥

√︀
2𝜖(1− 𝜖)𝜎𝐿𝑇 − ℎ𝑃𝑧

√
1− 𝜖2𝜎𝑇𝑇

]︁
, (2.59)

where ℎ = ±1 refers to the helicity state1 of the longitudinally polarized electron,

and 𝑃𝑧 (𝑃𝑥) is the target polarization parallel (perpendicular) to the direction of the

virtual photon in the scattering plane of the electron, 𝜖 is the photon polarization

𝜖 =
1

1 + 2(1 + 𝜈2/𝑄2) tan2(𝜃/2)
, (2.60)

1Helicity is defined as �⃗�·𝑃
|�⃗�·𝑃 |

.
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and the flux factor Γ𝑉 is

Γ𝑉 =
𝛼𝐸 ′𝐾

2𝜋2𝐸𝑄2(1− 𝜖)
, (2.61)

with 𝐾 the "equivalent photon energy”. 𝐾 is convention-dependent and is expressed

in Hand’s convection[33]:

𝐾 = 𝜈(1− 𝑥) =
𝑊 2 −𝑀2

2𝑀
. (2.62)

The cross section 𝜎𝐿 (𝜎𝑇 ) arises from the absorption of a longitudinal (transverse)

polarized virtual photon while 𝜎𝑇𝑇 (𝜎𝐿𝑇 ) is the transverse-transverse (longitudinal-

transverse) interference terms. For the unpolarized case at the real photon limit

𝑄2 = 0, the total cross section reduces to 𝜎𝑇 since the real photon is only transversely

polarized. The two spin-flip (interference) cross sections, 𝜎𝑇𝑇 (𝜎𝐿𝑇 ), can only be

measured by double-polarization experiments.

The partial cross section transverse (spin-averaged) 𝜎𝑇 and transverse-transverse

(spin-dependent) interference 𝜎𝑇𝑇 can be expressed in terms of helicity dependent

cross section 𝜎1/2 and 𝜎3/2:

𝜎𝑇 = 𝜎1/2 + 𝜎3/2, (2.63)

𝜎𝑇𝑇 = 𝜎1/2 − 𝜎3/2, (2.64)

where 𝜎1/2 and 𝜎3/2 are corresponding to excitations of intermediate states with spin

projections 3/2 and 1/2, respectively, as shown in Fig. 2-3.

The four independent virtual-photon absorption cross sections are functions of 𝑄2

and 𝜈 and are related to the structure functions 𝐹1,2 and 𝑔1,2 as follows:

𝜎𝑇 = 𝜎1/2 + 𝜎3/2 =
4𝜋2𝛼

𝑀𝐾
𝐹1, (2.65)

𝜎𝐿 =
4𝜋2𝛼

𝑀𝐾

[︀1 + 𝛾2

𝛾2𝜈
𝐹2 −

1

𝑀
𝐹1

]︀
, (2.66)

𝜎𝑇𝑇 = 𝜎1/2 − 𝜎3/2 =
4𝜋2𝛼

𝑀𝐾
(𝑔1 − 𝛾2𝑔2), and (2.67)

𝜎𝐿𝑇 =
4𝜋2𝛼

𝑀𝐾
𝛾(𝑔1 + 𝑔2), (2.68)
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𝝈𝟏/𝟐

𝝈𝟑/𝟐

h =	-1

h =	+1

s =	1/2

s =	1/2

𝛾∗ N

𝛾∗ N

Figure 2-3: Helicity projections for the virtual photo-absorption cross sections 𝜎1/2

and 𝜎3/2. The quantities h and s represent the virtual photon helicity and the target
spin.

where

𝛾 =
2𝑀𝑥

𝑄
=

𝑄

𝜈
. (2.69)

Two independent virtual photon-nucleon asymmetry, 𝐴1(𝑥,𝑄
2) and 𝐴2(𝑥,𝑄

2), can

be defined:

𝐴1 =
𝜎𝑇𝑇

𝜎𝑇

=
𝑔1 − 𝛾2𝑔2

𝐹1

, (2.70)

𝐴2 =
𝜎𝐿𝑇

𝜎𝑇

= 𝛾
[︀𝑔1 + 𝑔2

𝐹1

]︀
. (2.71)

Likewise, the structure functions can be written as:

𝑔1(𝑥,𝑄
2) =

𝐹1(𝑥,𝑄
2)

1 + 𝛾2

[︀
𝐴1(𝑥,𝑄

2) + 𝛾𝐴2(𝑥,𝑄
2)
]︀
, (2.72)

𝑔2(𝑥,𝑄
2) =

𝐹1(𝑥,𝑄
2)

1 + 𝛾2

[︂
−𝐴1(𝑥,𝑄

2) +
𝐴2(𝑥,𝑄

2)

𝛾

]︂
. (2.73)

If one knows the absorption asymmetries 𝐴1,2(𝑥,𝑄
2) and structure function 𝐹1(𝑥,𝑄

2),

one can extract the 𝑔2(𝑥,𝑄
2) structure function.

Using the optical theorem, the absorption of the virtual photon by the nucleon

can be related to the imaginary part of the forward virtual photon-nucleon scattering
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amplitudes. More details will be discussed in Sec. 2.6.

2.3 Structure Functions in the Quark-Parton Model

The structure functions 𝐹1,2(𝑥,𝑄
2) and 𝑔1,2(𝑥,𝑄

2) are useful to describe the struc-

ture of the nucleon. However, these structure functions alone do not provide us an

intuitive picture of the nucleon. In this section, a physical interpretation of these

structure functions is presented.

2.3.1 Quark-Parton Model

After the observation of scaling of structure functions, the parton model [34] was

proposed by Feynman, which provided a clear physical interpretation. Since the

structure functions is Lorentz invariant, the parton model can be formulated in an

infinite momentum frame (the scaling limit), where the nucleon is moving close to the

speed of light. The interaction time (boosted by a factor 1/
√︀

1− 𝑣2/𝑐2) in the nucleon

is so long that the nucleon configuration is essentially frozen. On the other hand, in the

rest frame, the virtual photon-parton interaction time is of order 1/𝑄 which is much

shorter than the strong interaction time of order of 1/Λ𝑄𝐶𝐷. Therefore the nucleon

can be approximately as a collection of collinear, non-interacting constituents, and

each carries a fraction of the nucleon four-momentum. This approximation implies

that the electron scattering at Bjorken limit behaves analogously to elastic lepton-

lepton scattering as shown in Fig. 2-4. The elementary quark tensor 𝑤𝜇𝜈(𝑥, 𝑞, 𝑠) is the

same as the leptonic tensor 𝐿𝜇𝜈 , with the replacements 𝑘𝜇 → 𝑥𝑃 𝜇, 𝑘′𝜇 → 𝑥𝑃 𝜇 + 𝑞𝜇

and multiplied the square of charge 𝑞2𝑖 of quark 𝑖:

𝑤𝜇𝜈(𝑥, 𝑞, 𝑠) = 𝑞2𝑖 [𝑤
(𝑆)
𝜇𝜈 (𝑥, 𝑞) + 𝑖𝑤(𝐴)

𝜇𝜈 (𝑥, 𝑞, 𝑠)] (2.74)
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𝑘𝜇 θ
𝑘′$

𝑃𝜇
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𝑥𝑃$+𝑞$

Figure 2-4: Parton model description of electron-nucleon scattering.

with

𝑤(𝑆)
𝜇𝜈 (𝑥, 𝑞) = 2 [2𝑥2𝑃𝜇𝑃𝜈 + 𝑥𝑃𝜇𝑞𝜈 + 𝑥𝑞𝜇𝑃𝜈 − 𝑥(𝑃 · 𝑞)𝑔𝜇𝜈 ], (2.75)

𝑤(𝐴)
𝜇𝜈 (𝑥, 𝑞, 𝑠) = −2𝑚𝑖 𝜀𝜇𝜈𝛼𝛽 𝑠𝛼𝑞𝛽, (2.76)

where 𝑠 is the spin of the struct quark and its mass is 𝑚𝑖 = 𝑥𝑀 for consistency. The

electron scattering cross section is the sum of the incoherent sum of all cross sections

of the individual quarks and antiquarks. Define 𝑛𝑖(𝑥
′, 𝑠;𝑆) as the number density

of quark 𝑖 which carries four-momentum fraction 𝑥′, the hadronic tensor, Eq. 2.18,

becomes[35]:

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) = 𝑊 (𝑆)
𝜇𝜈 (𝑞;𝑃 ) + 𝑖𝑊 (𝐴)

𝜇𝜈 (𝑞;𝑃, 𝑆)

=
∑︁
𝑖,𝑠

𝑞2𝑖
1

𝑀

1

2𝑃 · 𝑞

∫︁ 1

0

𝑑𝑥′

𝑥′
𝛿(𝑥′ − 𝑥) 𝑛𝑞(𝑥

′, 𝑠;𝑆) 𝑤𝜇𝜈(𝑥
′, 𝑞, 𝑠) ,

(2.77)

where the extra factor 1/𝑥′ is due to the normalisation converting from the parton

flux to the the proton flux. Substitute Eq. 2.74 and Eq. 2.75, Eq. 2.77 can be written
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as

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) = 𝑊 (𝑆)
𝜇𝜈 (𝑞;𝑃 ) + 𝑖𝑊 (𝐴)

𝜇𝜈 (𝑞;𝑃, 𝑆)

=
∑︁
𝑖,𝑠

𝑒2𝑖
1

2𝑀𝑥𝑃 · 𝑞

{︃[︀
2𝑥2𝑃𝜇𝑃𝜈 + 𝑥𝑃𝜇𝑞𝜈 + 𝑥𝑞𝜇𝑃𝜈 − 𝑥(𝑃 · 𝑞)𝑔𝜇𝜈

]︀
+ 𝑖[−2𝑚𝑖 𝜀𝜇𝜈𝛼𝛽 𝑠𝛼𝑞𝛽]

}︃
.

(2.78)

By applying the structure function projection operators 𝑃𝛼𝛽
1,2,3,4 discussed in Sec. 2.2.3.1

and Sec. 2.2.4, one can obtain the well known “naive” Parton Model predictions for

the unpolarized nucleon structure functions:

𝐹1(𝑥) =
1

2

∑︁
𝑖

𝑞2𝑖 𝑞𝑖(𝑥), and (2.79)

𝐹2(𝑥) = 𝑥
∑︁
𝑖

𝑞2𝑖 𝑞𝑖(𝑥) = 2𝑥𝐹1(𝑥) , (2.80)

and the polarized nucleon structure functions:

𝑔1(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖 Δ𝑞𝑖(𝑥), (2.81)

𝑔2(𝑥) = 0, (2.82)

where 𝑞↑𝑖 (𝑥) and 𝑞↓𝑖 (𝑥) are the number of density of quark 𝑖 that carries the fraction

𝑥 of the momentum of nucleon with spin aligned and anti-aligned to the nucleon spin

direction, respectively. 𝑞𝑖(𝑥) = 𝑞↑𝑖 (𝑥)+𝑞↓𝑖 (𝑥) is the unpolarized quark number densities

of quark 𝑖 while Δ𝑞𝑖(𝑥) = 𝑞↑𝑖 (𝑥)− 𝑞↓𝑖 (𝑥) the polarized quark number densities.

In this naive quark-parton model, the quark transverse momentum (relative to

the nucleon spin direction) and the interaction between the struck quark and gluons

is ignored. Any quantities originated from such process, such as 𝑔2, have no simple

interpretation.
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2.3.2 Scaling Violation

The scaling of structure functions is only exact in the Bjorken limit. In fact, at

finite 𝑄2, the photon exchange, shown in Fig. 2-1, is only the major process through

which the electron interacts with the hadronic matter. Other higher-order processes,

such as soft gluon radiations, cannot be separated from the single-photon exchange

in reality and also contribute to the cross section. Fig. 2-5 shows the leading order

process of gluon radiation, in which either the incident quark or scattered quark emits

a gluon. By renormalizing the gluon radiations, the calculated cross section shows

g

g(𝜈 , �⃗�) (𝜈 , �⃗�)

’ ’ ’’

Figure 2-5: Angular Kinematics of polarized electron scattering.

a logarithmic dependence on 𝑄2. Fig. 2-6 shows the experimental 𝑄2-dependence of

proton structure function 𝐹 𝑝
2 [36]. At large value of x, 𝐹 𝑝

2 decreases as 𝑄2 increases,

which indicates the larger probability that the exchanged photon probes a quark that

has radiated a gluon. However, the trend is opposite at small values of x, which means

that the higher probing energy (the better spatial resolution), the larger distribution

of low 𝑥 quarks and anti-quarks are found. These low x distributions are originated

from the very gluons that were radiated at high x.

The variation of the structure functions with 𝑄2 is referred as QCD evolution.

The expression of structure functions can be generalized to have a 𝑄2 dependence:

𝐹1(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖 𝑞𝑖(𝑥,𝑄
2) =

1

2

∑︁
𝑖

𝑒2𝑖

[︁
𝑞↑𝑖 (𝑥,𝑄

2) + 𝑞↓𝑖 (𝑥,𝑄
2)
]︁

(2.83)

𝑔1(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖 Δ𝑞𝑖(𝑥,𝑄
2) =

1

2

∑︁
𝑖

𝑒2𝑖

[︁
𝑞↑𝑖 (𝑥,𝑄

2)− 𝑞↓𝑖 (𝑥,𝑄
2)
]︁

(2.84)
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NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 19.8: The proton structure function F
p
2 measured in electromagnetic scattering of electrons and

positrons on protons (collider experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain
of the HERA data (see Fig. 19.10 for data at smaller x and Q2), and for electrons (SLAC) and muons
(BCDMS, E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown.
The H1+ZEUS combined values are obtained from the measured reduced cross section and converted to F

p
2

with a HERAPDF NLO fit, for all measured points where the predicted ratio of F p
2 to reduced cross-section

was within 10% of unity. The data are plotted as a function of Q2 in bins of fixed x. Some points have
been slightly offset in Q2 for clarity. The H1+ZEUS combined binning in x is used in this plot; all other
data are rebinned to the x values of these data. For the purpose of plotting, F p

2 has been multiplied by 2ix ,
where ix is the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). References:
H1 and ZEUS—H. Abramowicz et al., Eur. Phys. J. C75, 580 (2015) (for both data and HERAPDF
parameterization); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [86]) ;
E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).

Figure 2-6: The proton structure function 𝐹 𝑝
2 measured in electromagnetic scattering

of electrons and positrons off protons (collider experiments H1 and ZEUS for 𝑄2 ≥
2𝐺𝑒𝑉 2) and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed
target. The data are plotted as a function of 𝑄2 in bins of fixed 𝑥. For the purpose of
plotting, 𝐹 𝑝

2 has been multiplied by 2𝑖𝑥 , where 𝑖𝑥 is the number of the 𝑥 bin, ranging
from 𝑖𝑥 = 1 (𝑥 = 0.85) to 𝑖𝑥 = 24 (𝑥 = 0.00005). Plot reproduced from [36].

where 𝑞↑𝑖 (𝑥) and 𝑞↓𝑖 (𝑥) are the number of density of quark 𝑖 that carry fraction x

of the momentum of nucleon with spin aligned and anti-aligned to the nucleon spin
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direction, respectively, when viewed by the probe with a resolution ∼ 1/
√︀

𝑄2.

The 𝑄2-evolution of the parton distributions can be calculated in pQCD by the

DGLAP equations developed by Dokshitzer[37], Gribov, Lipatov[38], Altarelli and

Parisi [39]. Once the parton distributions are known at one particular scale, they can

be calculated at any other scale where QCD is applicable.

2.4 𝑔2 in Operator Product Expansion

From the discussion in Sec. 2.3.1, the spin-dependent structure function 𝑔2, unlike

𝑔1 and 𝐹1,2, does not have an intuitive interpretation in the simple quark-parton

model. At finite 𝑄2, the scaling of structure functions is only a good approximation.

A different theoretical frame is needed to calculate the cross section and to understand

the nucleon structure properly. In this section, the operator product expansion (OPE)

method will be discussed.

2.4.1 Operator Product Expansion

The OPE method was introduced by K. Wilson in 1969[40] to conduct non-

perturbative calculations of the quantum field theory (QFT). It has no model de-

pendence and its main results, such as sum rules, can be derived using general results

from quantum field theory. The OPE method separates the perturbative part of the

product of two operators 𝒪𝑎(𝜉)𝒪𝑏(0) from the non-perturbative part by expansion in

local operators as the four dimensional spatial vector 𝜉 → 0[41]:

lim
𝜉→0
𝒪𝑎(𝜉)𝒪𝑏(0) =

∑︁
𝑘

𝑐𝑎𝑏𝑘(𝜉)𝒪𝑘(0), (2.85)

where the Wilson coefficient 𝑐𝑎𝑏𝑘(𝜉), containing all the spatial information, can be

calculated perturbatively, because the coupling constant is small at short distances 𝑑

in QCD. All non-perturbative effects occur at scales which are much larger than 𝜉,

and thus do not affect the computation of the coefficient functions.

OPE can also be applied in the momentum space. In the limit that 𝑞 → ∞, the
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Fourier transform of Eq. 2.85 forces 𝜉 → 0. The operator product can be expressed

with 𝑞-dependent coefficient functions[41]:

lim
𝑞→∞

∫︁
𝑑4𝜉 𝑒𝑖𝑞·𝜉𝒪𝑎(𝜉)𝒪𝑏(0) =

∑︁
𝑘

𝑐𝑎𝑏𝑘(𝑞)𝒪𝑘(0). (2.86)

This expansion is valid for all matrix elements of QCD provided 𝑞 is much larger

than the characteristic scale Λ𝑄𝐶𝐷. Recall that the inclusive electron scattering cross

section 𝑑𝜎 ≈ 𝐿𝜇𝜈𝑊𝜇𝜈 with the hadronic tensor:

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) =
1

4𝜋𝑀

∫︁
𝑑4𝜉𝑒𝑖𝑞·𝜉⟨𝑁𝑆(𝑃 )|𝐽𝜇(𝜉)𝐽𝜈(0)|𝑁𝑆(𝑃 )⟩, (2.87)

Eq. 2.86 can be applied to the current product 𝐽𝜇(𝜉)𝐽𝜈(0) by using quark and gluon

operators with dimension 𝐷 and spin 𝑛 (For quark field, 𝐷 = 3/2 and 𝑛 = 1/2, while

for gluon field tensor, 𝐷 = 2, 𝑛 = 1). The contribution of any operator to the cross

section is of order:

(𝑃 · 𝑞)𝑛(𝑀
𝑄

)𝐷−2−𝑛 = (𝑃 · 𝑞)𝑛(𝑀
𝑄

)𝜏−2 (2.88)

where the twist 𝜏 is defined as

twist = 𝜏 = 𝐷 − 𝑛 = dimension− spin. (2.89)

Since any gauge invariant operator contains at least two quark fields or two gluon

field tensors, the lowest twist is 2. From Eq. 2.88, at high 𝑄2, the most important

operators in OPE are those with the lowest possible twist since each additional unit

of 𝜏 produces a factor of order 𝑀/𝑄, while higher twists are expected to be important

and are not ignorable at low 𝑄2. The parton model discussed in Sec. 2.3.1 can also

be related to OPE. Its reliable part can be mapped onto the OPE’s leading twist part

corresponding to scattering off asymptotically free quarks[42], while OPE’s other

twist contributions, with no interpretation in the simple parton model, arise from

quark-gluon correlations and non-zero quark masses. Higher-twist processes can be
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described in terms of coherent parton scattering in which more than one parton from

a particular hadron participates[43].

2.4.2 𝑔2 Intepretation

From Sec. 2.4.1, 𝑔2 can be related to hadronic matrix elements of current oper-

ators in OPE. The twist expansion leads to the well-known Cornwall-Norton (CN)

moments[44]:

∫︁ 1

0

𝑥𝑛−1𝑔1(𝑥,𝑄
2)𝑑𝑥 =

1

2
𝑎𝑛−1 for 𝑛 = 1, 3, 5, (2.90)∫︁ 1

0

𝑥𝑛−1𝑔2(𝑥,𝑄
2)𝑑𝑥 =

𝑛− 1

2𝑛
(𝑑𝑛−1 − 𝑎𝑛−1) for 𝑛 = 3, 5, (2.91)

where 𝑎𝑛−1 and 𝑑𝑛−1 are matrix elements of the quark and gluon operators for twist-2

and twist-3, respectively, and the contribution from higher twist are ignored. The fact

that there exist expansions only over n-odd integers is due to the structure function’s

symmetry under charge conjugation. Up to twist-3, 𝑔1 receives the twist-2 operators

only, whereas 𝑔2 receives contribution from both twist-2 and twist-3 operators.

Combine Eq. 2.90 and Eq. 2.91 together, the leading twist term is canceled:

∫︁ 1

0

𝑥𝑛−1
[︂
𝑔1(𝑥,𝑄

2) +
𝑛

𝑛− 1
𝑔2(𝑥,𝑄

2)

]︂
𝑑𝑥 =

𝑑𝑛−1
2

, for n = 3,5. (2.92)

Assume the twist-3 contribution is negligible compared to that of twist-2, Eq.. 2.92

becomes:

∫︁ 1

0

𝑥𝑛−1 [︀𝑔1(𝑥,𝑄2) + 𝑔2(𝑥,𝑄
2)
]︀
𝑑𝑥 =

1

𝑛

∫︁ 1

0

𝑥𝑛−1𝑔1(𝑥,𝑄
2). (2.93)

By applying the Mellin transforms to Eq. 2.93[45], one can obtain the Wandzura-

Wilczek relation[46]:

𝑔𝑤𝑤
2 = 𝑔2(𝑥,𝑄

2) = −𝑔1(𝑥,𝑄2) +

∫︁ 1

𝑥

𝑑𝑦

𝑦
𝑔1(𝑦,𝑄

2), , (2.94)
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where 𝑔𝑤𝑤
2 is denoted to ignore the higher twists. This relation shows that the leading

twist part 𝑔𝑤𝑤
2 is determined completely by 𝑔1 and can be interpreted in the parton

model.

Now the 𝑔2(𝑥,𝑄
2) can be separated into two components up to twist-3: a twist-2

part, 𝑔𝑤𝑤
2 , and a mixed twist part, 𝑔2(𝑥,𝑄2):

𝑔2(𝑥,𝑄
2) = 𝑔𝑤𝑤

2 (𝑥,𝑄2) + 𝑔2(𝑥,𝑄
2) (2.95)

with the 𝑔2(𝑥,𝑄
2) term

𝑔2(𝑥,𝑄
2) = −

∫︁ 1

𝑥

𝜕

𝜕𝑦

[︁𝑚
𝑀

ℎ𝑇 (𝑦,𝑄
2) + 𝜉(𝑦,𝑄2)

]︁𝑑𝑦
𝑦
. (2.96)

where ℎ𝑇 (𝑥,𝑄
2) is a leading twist-2 term arises from transversely polarized quark

distributions and is suppressed by the smallness of the quark mass and 𝜉(𝑥,𝑄2) is a

twist-3 contribution due to the quark-gluon interactions within a nucleon.

The physical interpretation of twist-3 contribution of 𝑔2 can be understood from

the virtual Compton scattering (𝑔2 is the imaginary part of the spin-dependent Comp-

ton amplitude, see Sec. 2.2.5 and Sec. 2.6):

𝛾*(+1) +𝑁(1/2)→ 𝛾*(0) +𝑁(−1/2), (2.97)

where 𝛾* and N represent the virtual photon and nucleon respectively, and the cor-

responding helicity is labeled in the parentheses. As one can see, the process 2.97

involves a t-channel helicity change, and this change must be carried by the intermedi-

ate parton when factorized in terms of parton subprocesses. However, for a massless

fermion, the helicity is conserved in the electromagnetic interaction. In QCD, the

required helicity exchange is allowed in two ways. One way is through single quark

scattering in which the quark carries one unit of orbital angular momentum through

its transverse momentum, the other is through quark scattering with an additional

transversely-polarized gluon from the nucleon target[43]. Fig. 2-7 illustrates the two

helicity exchanges allowed in the virtual Compton scattering process. The left plot
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of Fig. 2-7 shows the first helicity exchange process where scattering takes place on

a single quark (twist-2 contribution), while the right plot shows the second helicity

exchange when scattering involves a quark and gluon (twist-3 contribution).

+1 0

1/2 -1/2

+1 0

1/2 -1/2

Leading	Twist Twist-3

Figure 2-7: Twist-two and twist-three contributions to virtual Compton scattering.

The higher twist corrections increase at low energy with 1
𝑄𝜏 , reflecting the con-

finement of nucleon. Hence a full understanding of the interaction among nucleon

constituents must be studied by looking into contributions beyond the leading twist.

At typical JLab kinematics, 𝑔2 is strongly deviated from the the leading twist behav-

ior described by the Wandzura-Wilczek relation[47, 48]. Therefore, the measurement

of 𝑔2 provides a clean and direct way to study the higher-twist correlations among

partons (quarks and gluons), opening a unique window on the confinement of quarks

and gluons inside the nucleon.

2.5 Chiral Perturbation Theory

In Sec. 2.4.1, the Operator Product Expansion (OPE) is introduced to calculate

the cross section at finite 𝑄2. However, it will fail at low 𝑄2 because the twist

expansion breaks down. At low 𝑄2, the strong coupling constant 𝛼𝑠 becomes large (an

order of 1), and the relevant degrees of freedom in QCD are no longer the elementary of

quarks and gluons. An effective theory known as chiral perturbation theory (𝜒PT)[28,

49], based on the hadronic degree of freedom, allows us to study QCD in the low-

energy regime.
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QCD is a non–abelian gauge theory of strong interaction between colored quarks

and gluons. The complete QCD Lagrangian is[50]

ℒQCD =
∑︁

𝑓=𝑢,𝑑,𝑠,
𝑐,𝑏,𝑡

𝑞𝑓 (𝑖𝐷/−𝑚𝑓 )𝑞𝑓 −
1

4
𝒢𝜇𝜈,𝑎𝒢𝜇𝜈𝑎 , (2.98)

where 𝑔 is the coupling constant (g=
√
4𝜋𝛼𝑠), 𝐺𝜇𝜈 is the strength of the gluon field,

𝑞 is the quark spinor and 𝑚𝑓 is the quark mass of flavor 𝑓 . At an energy of ∼ 1GeV,

the absolute values of running quark masses of 𝑢, 𝑑, 𝑠 quark (𝑚𝑢 ≃ 5 MeV, 𝑚𝑑 ≃ 9

MeV, 𝑚𝑠 ≃ 175 MeV) are small compared to the typical light hadronic mass like the

𝜌 meson (770 MeV) or the proton (938 MeV). For a massless fermion, the chirality

is identical to the particle’s helicity ℎ = �⃗�·𝑝
|�⃗�·𝑝| . And the left and right-handed quark

wavefunctions are written as:

𝑞𝐿 =
1

2
(1− 𝛾5) 𝑞, (2.99)

𝑞𝑅 =
1

2
(1 + 𝛾5) 𝑞. (2.100)

Consider the limit of light quark mass 𝑚𝑢,𝑑,𝑠 ≈ 0, the left-handed and right-handed

quark fields are decoupled from each other in the QCD Lagrangian as[51]:

ℒ0
QCD =

∑︁
𝑙=𝑢,𝑑,𝑠

(𝑞𝑅,𝑙𝑖𝐷/ 𝑞𝑅,𝑙 + 𝑞𝐿,𝑙𝑖𝐷/ 𝑞𝐿,𝑙)−
1

4
𝒢𝜇𝜈,𝑎𝒢𝜇𝜈𝑎 . (2.101)

which means the left and right handed quarks do not interact with each other. Hence

the whole theory admits an 𝑆𝑈(3) × 𝑆𝑈(3) symmetry and the invariance of the

Lagrangian under this group is referred to as the chiral symmetry.

However, the ground state of QCD does not have the full symmetry. Otherwise

each hadron would have a partner of the same mass but opposite parity. In fact,

the chiral symmetry is spontaneously broken down to the vectorial subgroup 𝑆𝑈(3)𝑉

with the appearance of 8 massless pseudoscalar mesons, the Goldstone bosons[52].

In nature, these Goldstone bosons are not exactly massless but acquire a small mass

due to the explicit symmetry breaking from the quark masses, 𝑀2
𝑃 ∼ℳ, where 𝑃 is
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a generic symbol for the pions (𝜋± , 𝜋0), the kaons (𝐾± , �̄�0 , 𝐾0) and the eta (𝜂).

From the hadron spectrum 𝑀𝜂 ≃ 𝑀𝐾 ≫ 𝑀𝜋, one can immediately conclude that

𝑚𝑠 ≫ 𝑚𝑑 ≃ 𝑚𝑢 since the pions do not contain any strange quarks.

At the low energy limit, the effective 𝜒PT Lagrangian can be constructed as:

ℒ𝑄𝐶𝐷 = ℒ0
𝑄𝐶𝐷 + ℒ𝑝

𝑄𝐶𝐷, (2.102)

where ℒ0
𝑄𝐶𝐷 is the chiral symmetric part and the symmetry breaking part:

ℒ𝑝
𝑄𝐶𝐷 = −𝑞ℳ𝑞 (2.103)

can be treated as a 𝜒PT perturbation. The effective Lagrangian systematically incor-

porates the symmetries and symmetry breaking patterns of the fundamental theory

of QCD. The degrees of freedom are the Goldstone bosons.

The 𝜒𝑃𝑇 expansion should be represented the same low energy expansion as QCD

itself. A power series expansion in terms of small mass or momentum of the interacting

particles, is typically performed for any matrix element or amplitude derived from

the effective 𝜒𝑃𝑇 Lagrangian. The convergence radius is expected limited, and can

be tested by the measurement of quantities calculable in 𝜒𝑃𝑇 .

𝜒𝑃𝑇 calculations can be also applied to baryons, however, there is a complication

that the baryon mass does not vanish in the chiral limit and adds a new scale to

the theory[53]. Therefore there is no guarantee that the small momentum expansion

holds an exact one-to-one relation to one-loop graphs. Theorists have considered two

main approaches for dealing with this complication: Heavy Baryon 𝜒PT (HB𝜒PT)

and Relativistic Baryon 𝜒PT (RB𝜒PT). In the HB𝜒PT approach, the baryons are

considered as very heavy and allows for a consistent power counting scheme as an

expansion in the inverse powers of the baryon mass[54, 55]; while RB𝜒PT is a rela-

tivistically invariant formulation and involves infrared regularization that the regular

part can be absorbed into low-energy constants of the effective Lagrangian, whereas

the chiral expansion of the infrared part leads to the non-trivial momentum and

quark-mass dependences of 𝜒PT[56].
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Both HB𝜒PT and RB𝜒PT have been used to study the spin-dependent structure

functions and their moments, and polarizablity sum rules[57, 58, 59, 60]. These

moments and spin polarizability will be discussed in Sec. 2.6.

2.6 Sum rules and Moments

In previous sections, four structure functions 𝐹1,2(𝑥,𝑄
2) and 𝑔1,2(𝑥,𝑄

2) are in-

troduced to describe the internal structure of the nucleon. While the fundamental

theoretical tools, such as lattice QCD and chiral perturbation theory, can not calcu-

late the complete structure functions directly, they can be used to provide calcula-

tions of moments of structure functions, and polarizability sum rules which relate the

moments of the spin structure functions to real or virtual Compton scattering ampli-

tudes. These moments and sum rules provide good opportunities to test theoretical

predictions and study fundamental properties of the nucleon.

The absorption of the virtual photon (𝛾*𝑁 → 𝑋) in the inclusive electron scatter-

ing can be related to the doubly virtual photon-nucleon Compton scattering (VVCS)

(with a virtual photon 𝑞 = 𝑞′ and 𝑞2 = −𝑄2 < 0). Actually, the hadronic tensor

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) in Eq. 2.18 is proportional to the forward virtual Compton tensor[28]

𝑇𝜇𝜈(𝑞, 𝑃 ; 𝑞, 𝑃 ) = 𝚤

∫︁
𝑑4𝜉𝑒𝑖𝑞·𝜉⟨𝑁(𝑃 )|𝒯 𝐽𝜇(𝜉)𝐽𝜈(0)|𝑆(𝑃 )⟩ (2.104)

by

𝑊𝜇𝜈(𝑞;𝑃, 𝑆) =
1

2𝜋𝑀
Im 𝑇𝜇𝜈(𝑞, 𝑃 ; 𝑞, 𝑃 ), (2.105)

where 𝒯 in Eq. 2.104 is the time ordering operator. Similarly to the case of hadronic

tensor in Eq. 2.20, the Compton tensor is constructed with the most general form
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that satisfies parity conservation and gauge invariance:

𝑇𝜇𝜈(𝑞, 𝑃 ; 𝑞, 𝑃 ) =

(︂
−𝑔𝜇𝜈 + 𝑞𝜇𝑞𝜈

𝑞2

)︂
𝑇1(𝜈, 𝑄

2)

+
1

𝑃 · 𝑞

(︂
𝑃 𝜇 − 𝑃 · 𝑞

𝑞2
𝑞𝜇
)︂(︂

𝑃 𝜈 − 𝑃 · 𝑞
𝑞2

𝑞𝜈
)︂
𝑇2(𝜈, 𝑄

2)

+
𝑖

𝑀
𝜖𝜇𝜈𝛼𝛽 𝑞𝛼𝑆𝛽 𝑆1(𝜈, 𝑄

2)

+
𝑖

𝑀3
𝜖𝜇𝜈𝛼𝛽 𝑞𝛼 (𝑃 · 𝑞 𝑆𝛽 − 𝑆 · 𝑞 𝑝𝛽) 𝑆2(𝜈, 𝑄

2),

(2.106)

where all four terms 𝑇1, 𝑇2, 𝑆1 and 𝑆2 have the same dimension of mass and is co-

variant under Lorentz transform. 𝑆1 and 𝑆2 are spin-dependent Compton amplitudes

and can be expressed in terms of two other commonly used VVCS amplitudes 𝑔𝑇𝑇

and 𝑔𝐿𝑇 :

𝑆1(𝜈, 𝑄
2) =

𝜈 𝑀

𝜈2 +𝑄2

(︂
𝑔𝑇𝑇 (𝜈, 𝑄

2) +
𝑄

𝜈
𝑔𝐿𝑇 (𝜈, 𝑄

2)

)︂
(2.107)

𝑆2(𝜈, 𝑄
2) = − 𝑀2

𝜈2 +𝑄2

(︂
𝑔𝑇𝑇 (𝜈, 𝑄

2)− 𝜈

𝑄
𝑔𝐿𝑇 (𝜈, 𝑄

2)

)︂
, (2.108)

where the imaginary part of amplitude 𝑔𝑇𝑇 and 𝑔𝐿𝑇 directly relate to the photo-

absorption cross section by optical theorem as follows:

Im 𝑔𝑇𝑇 (𝜈, 𝑄
2) =

𝐾

4𝜋
𝜎𝑇𝑇 (𝜈, 𝑄

2), (2.109)

Im 𝑔𝐿𝑇 (𝜈, 𝑄
2) =

𝐾

4𝜋
𝜎𝐿𝑇 (𝜈, 𝑄

2). (2.110)

Apply Eq. 2.109 and Eq. 2.110 into Eq. 2.107 and Eq. 2.108, one obtains:

Im 𝑆1(𝜈, 𝑄
2) =

𝜈 𝑀

𝜈2 +𝑄2

𝐾

4𝜋

(︂
𝜎𝑇𝑇 +

𝑄

𝜈
𝜎𝐿𝑇

)︂
=

𝑒2

4𝑀

𝑀

𝜈
𝑔1(𝜈, 𝑄

2) (2.111)

Im 𝑆2(𝜈, 𝑄
2) = − 𝑀2

𝜈2 +𝑄2

𝐾

4𝜋

(︂
𝜎𝑇𝑇 −

𝜈

𝑄
𝜎𝐿𝑇

)︂
=

𝑒2

4𝑀

𝑀2

𝜈2
𝑔2(𝜈, 𝑄

2)(2.112)

In the following sections, three 𝑔2 related sum rule – Burkhardt-Cottingham sum rule,

generalized forward spin polarizability 𝛾0 and transverse-longitudinal polarizability

𝛿𝐿𝑇 – will be discussed.
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2.6.1 Burkhardt-Cottingham Sum Rule

The spin-dependent VVCS amplitude 𝑆2 is odd in 𝜈, which leads to the unsub-

tracted dispersion relation:

Re 𝑆2(𝜈, 𝑄
2) =

2𝜈

𝜋
𝒫
∫︁ ∞
0

Im 𝑆2(𝜈
′, 𝑄2)

𝜈 ′2 − 𝜈2
𝑑𝜈 ′

= Re 𝑆pole
2 +

2𝜈

𝜋
𝒫
∫︁ ∞
𝜈0

Im 𝑆2(𝜈
′, 𝑄2)

𝜈 ′2 − 𝜈2
𝑑𝜈 ′ , (2.113)

where the pole part Re 𝑆pole
2 is elastic contribution, 𝒫 denotes the principle value

integral, 𝜈0 is the pion-production threshold of the nucleon. If assume 𝑆2 at high

energy follows

𝑆2(𝜈,𝑄
2)→ 𝜈𝛼2 , for 𝜈 →∞ , with 𝛼2 < −1 , (2.114)

the unsubtracted dispersion relation can be also applied for the amplitude 𝜈 𝑆2, which

is even in 𝜈:

Re (𝜈 𝑆2(𝜈, 𝑄
2)) =

2

𝜋
𝒫
∫︁ ∞
0

𝜈 ′2Im 𝑆2(𝜈, 𝑄
2)

𝜈 ′2 − 𝜈2
𝑑𝜈 ′

= Re (𝜈 𝑆2)
pole +

2

𝜋
𝒫
∫︁ ∞
𝜈0

𝜈 ′2Im 𝑆2(𝜈, 𝑄
2)

𝜈 ′2 − 𝜈2
𝑑𝜈 ′ . (2.115)

Compare Eq. 2.115 with 𝜈×Eq. 2.113, one obtains the "superconvergence relation”

for any value of 𝑄2:

0 =

∫︁ ∞
0

Im 𝑆2(𝜈, 𝑄
2) 𝑑𝜈 . (2.116)

From Eq. 2.112, one can rewrite Eq. 2.116 as the integral of 𝑔2(𝑥, 𝑄2) structure

function at a fixed 𝑄2:

0 =

∫︁ 1

0

𝑑𝑥 𝑔2 (𝑥, 𝑄
2) . (2.117)

Eq. 2.116 (or Eq. 2.117) is the well known Burkhardt-Cottingham (BC) sum
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rule[61] and is valid for any value of 𝑄2 and could be violated if either of the fol-

lowing two circumstances happens[62]:

∙ 𝑔2 is singular enough that the integral
∫︀ 1

0
𝑑𝑥 𝑔2 (𝑥, 𝑄

2) does not exist.

∙ 𝑔2 has a delta function singularity at 𝑥 = 0.

A direct test of the BC sum rule can be performed either in the DIS region (high

𝑄2) or the low-energy region (low 𝑄2). It should be pointed out that BC sum rule

is not from OPE since OPE does not include the 𝑛 = 1 term of the 𝑔2 expansion in

Eq. 2.91.

2.6.2 Generalized Spin Polarizability 𝛾0 and 𝛿𝐿𝑇

The generalized forward spin polarizability 𝛾0 and and longitudinal-transverse

polarizability 𝛿𝐿𝑇 describe a relation between the nucleon structure functions and

virtual Compton amplitudes, and are powerful tools to study fundamental properties

of the nucleon structure and to test theoretical predictions from QCD. Similar to

the magnetic or electric polarizability which describes the nucleon response to the

electromagnetic field, the spin polarizability characterizes the nucleon spin’s response

to the field from the virtual photon[63]. The spin polarizability sum rules can be

determined using dispersion relations and the optical theorem.

The spin-flip VVCS amplitude 𝑔𝑇𝑇 (𝜈,𝑄
2), which is odd in 𝜈, can be applied with

unsubtracted dispersion relation when assuming an appropriate high-energy converge

behavior:

Re[𝑔𝑇𝑇 (𝜈,𝑄
2)− 𝑔pole𝑇𝑇 (𝜈,𝑄2)] = (

𝜈

2𝜋2
)𝒫
∫︁ ∞
𝜈0

𝐾(𝜈 ′, 𝑄2)𝜎𝑇𝑇 (𝜈
′, 𝑄2)

𝜈 ′2 − 𝜈2
𝑑𝜈 ′, (2.118)

where 𝑔𝑝𝑜𝑙𝑒𝑇𝑇 is the nucleon pole (elastic) contribution and 𝐾 is the virtual photon flux

factor. Expand Eq. 2.118 at low energy, one obtain:

Re 𝑔𝑇𝑇 (𝜈, 𝑄
2)− Re 𝑔pole𝑇𝑇 (𝜈, 𝑄2) =

(︂
2𝛼

𝑀2

)︂
𝐼𝐴(𝑄

2)𝜈 + 𝛾0(𝑄
2)𝜈3 +𝒪(𝜈5) . (2.119)
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The 𝒪(𝜈) term in Eq. 2.118 leads to a generalization of the GDH sum rule[64]:

𝐼𝐴(𝑄
2) =

𝑀2

𝜋 𝑒2

∫︁ ∞
𝜈0

𝐾(𝜈,𝑄2)

𝜈

𝜎𝑇𝑇 (𝜈, 𝑄2)

𝜈
𝑑𝜈,

=
2𝑀2

𝑄2

∫︁ 𝑥0

0

𝑑𝑥

{︂
𝑔1 (𝑥, 𝑄

2)− 4𝑀2

𝑄2
𝑥2 𝑔2 (𝑥, 𝑄

2)

}︂
, (2.120)

while the 𝒪(𝜈3) term yields the generalizated forward spin polarizability:

𝛾0 (𝑄
2) =

1

2𝜋2

∫︁ ∞
𝜈0

𝐾(𝜈,𝑄2)

𝜈

𝜎𝑇𝑇 (𝜈, 𝑄2)

𝜈3
𝑑𝜈

=
𝑒2 4𝑀2

𝜋 𝑄6

∫︁ 𝑥0

0

𝑑𝑥 𝑥2

{︂
𝑔1 (𝑥, 𝑄

2)− 4𝑀2

𝑄2
𝑥2 𝑔2 (𝑥, 𝑄

2)

}︂
. (2.121)

Similarly to 𝑔𝑇𝑇 (𝜈,𝑄
2), one can apply the unsubtracted dispersion relation to longitudinal-

transverse interference amplitude 𝑔𝐿𝑇 (𝜈,𝑄
2), which is even in 𝜈:

Re 𝑔𝐿𝑇 (𝜈,𝑄
2) = Re 𝑔pole𝐿𝑇 (𝜈,𝑄2) +

1

2𝜋2
𝒫
∫︁ ∞
𝜈0

𝜈 ′𝐾(𝜈, , 𝑄2)𝜎𝐿𝑇 (𝜈,𝑄
2)

(𝜈 ′2 − 𝜈2)
𝑑𝜈 ′. (2.122)

and then perform a low energy expansion to obtain:

Re 𝑔𝐿𝑇 (𝜈, 𝑄
2)− Re 𝑔pole𝐿𝑇 (𝜈, 𝑄2) =

(︂
2𝛼

𝑀2

)︂
𝑄𝐼3(𝑄

2) +𝑄𝛿𝐿𝑇 (𝑄
2)𝜈2 +𝒪(𝜈4).

(2.123)

The leading term of Eq. 2.123 gives 𝐼3(𝑄
2):

𝐼3(𝑄
2) =

𝑀2

𝜋 𝑒2

∫︁ ∞
𝜈0

𝐾(𝜈 ,𝑄2)

𝜈

1

𝑄
𝜎𝐿𝑇 (𝜈, 𝑄2) 𝑑𝜈

=
2𝑀2

𝑄2

∫︁ 𝑥0

0

𝑑𝑥
{︀
𝑔1 (𝑥, 𝑄

2) + 𝑔2 (𝑥, 𝑄
2)
}︀
. (2.124)

Meanwhile the 𝒪(𝜈2) term of Eq. 2.123 leads to a generalized longitudinal-transverse
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polarizability:

𝛿𝐿𝑇 (𝑄2) =
1

2𝜋2

∫︁ ∞
𝜈0

𝐾(𝜈, 𝑄2)

𝜈

𝜎𝐿𝑇 (𝜈 ,𝑄
2)

𝑄𝜈2
𝑑𝜈

=
𝑒2 4𝑀2

𝜋 𝑄6

∫︁ 𝑥0

0

𝑑𝑥 𝑥2
{︀
𝑔1 (𝑥, 𝑄

2) + 𝑔2 (𝑥, 𝑄
2)
}︀
. (2.125)

If the spin structure functions 𝑔1,2 are measured through inclusive double-polarized

electron scattering experiments using virtual photons across a wide 𝑥 spectrum, the

generalized spin polarizability can be formed and evaluated. With the 𝑄2 dependence,

the generalized polarizabilities are powerful tools to probe the nucleon structure cov-

ering the whole range from the partonic to the hadronic region, and a benchmark test

of 𝜒PT (see Sec. 2.5) predictions at low 𝑄2.

2.7 Proton Hyperfine Structure

Calculations of the Proton Hyperfine Structure

The spin structure functions also provide important inputs for calculations of

atomic physics. The hyperfine splitting of hydrogen has been measured to very high

precision of 10−13[65]:

Δ𝐸 = 1420.405 751 766 7(9) MHz. (2.126)

However, calculations of this fundamental quantity from QED only shows precision

to a few parts per million[66]. The splitting can be expressed in terms of the Fermi

energy 𝐸𝐹 as

Δ𝐸 = (1 + 𝛿)𝐸𝐹 , (2.127)

with the correction 𝛿 given by

𝛿 = 1 + (𝛿QED + 𝛿𝑅 + 𝛿𝑠𝑚𝑎𝑙𝑙) + Δ𝑆, (2.128)
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where 𝛿QED accounts for the QED radiative correction which is known to a very high

precision, 𝛿𝑅 represents the recoil effects, 𝛿𝑠𝑚𝑎𝑙𝑙 is the relatively small corrections

(hadronic and muonic vacuum polarizations, and weak interaction), and Δ𝑆 is the

proton structure correction and has the largest uncertainty. The Δ𝑆 term depends

on the ground and excited state properties of the proton and can be split into two

terms:

Δ𝑆 = Δ𝑍 +Δpol. (2.129)

The Δ𝑍 term can be expressed as

Δ𝑍 = −2𝛼𝑚𝑒𝑟𝑍
(︀
1 + 𝛿rad𝑍

)︀
(2.130)

where 𝛿rad𝑍 is the radiative correction, and 𝑟𝑍 is the Zemach radius depends on the

electric and magnetic form factors of the proton which can be determined from elastic

scattering[67]:

𝑟𝑍 = − 4

𝜋

∫︁ ∞
0

𝑑𝑄

𝑄2

[︂
𝐺𝐸(𝑄

2)
𝐺𝑀(𝑄2)

1 + 𝜅𝑝

− 1

]︂
. (2.131)

The second term in Eq. 2.129, Δpol, contains contributions from the excited states of

the proton:

Δpol ∼ (Δ1 +Δ2), (2.132)

where Δ1 involves the inelastic Pauli form factor 𝐹2 and the 𝑔1 structure function,

and Δ2 depends only on the 𝑔2 structure function:

Δ1 =
9

4

∫︁ ∞
0

𝑑𝑄2

𝑄2

{︂
𝐹 2
2 (𝑄

2) +
8𝑚2

𝑝

𝑄2
𝐵1(𝑄

2)

}︂
(2.133)

Δ2 = −24𝑚2
𝑝

∫︁ ∞
0

𝑑𝑄2

𝑄4
𝐵2(𝑄

2) (2.134)

with integrals 𝐵1 and 𝐵2:

𝐵1(𝑄
2) =

∫︁ 𝑥th

0

𝑑𝑥 𝛽1(𝜏)𝑔1(𝑥,𝑄
2) (2.135)

𝐵2(𝑄
2) =

∫︁ 𝑥th

0

𝑑𝑥 𝛽2(𝜏)𝑔2(𝑥,𝑄
2) (2.136)
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and

𝛽1(𝜏) =
4

9

[︁
−3𝜏 + 2𝜏 2 + 2(2− 𝜏)

√︀
𝜏(𝜏 + 1)

]︁
, (2.137)

𝛽2(𝜏) = 1 + 2𝜏 − 2
√︀

𝜏(𝜏 + 1). (2.138)

Here 𝜏 = 𝜈2
⧸︀
𝑄2, and the upper integration limit 𝑥𝑡ℎ represents the pion production

threshold.

The correction term Δ2 is dominated by the low 𝑄2 region as shown in Fig. 2-8.

Due to the lack of 𝑔2 data at low 𝑄2, the calculation of Δ2 currently rely heavily on

models. A precise measurement of 𝑔2 at low 𝑄2 can thus have significant impact on

calculations of the hydrogen hyperfine splitting.
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Figure 2-8: The integrand of Δ2 in Eq. 2.129 from MAID [68] model prediction. Plot
reproduced from [69].

2.8 Existing Measurements

2.8.1 Structure Function 𝑔2

From Sec. 2.2, the spin-dependent structure function 𝑔2 can be extracted from

combined measurements of both the longitudinal and the transverse target spin cross

section differences Δ𝜎‖ and Δ𝜎⊥ (Eq. 2.53 and Eq. 2.56), or the corresponding asym-

metries 𝐴||, 𝐴⊥ together with the unpolarized cross section 𝜎0 (Eq. 2.57 and Eq. 2.58).
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The earliest results for 𝑔2 were obtained in the DIS region at SLAC[70] by mea-

suring both the longitudinal and the transverse asymmetries. At the same period,

the SMC collaboration at CERN extracted 𝑔1,2 in the DIS by using a polarized muon

beam scattering off a polarized proton target[71]. The value of 𝑔2 tends to be relatively

small in DIS kinematics, and a high luminosity are usually needed in these measure-

ments. The most precise 𝑔2 data in the DIS is from the dedicated SLAC E155X[72]

which measured 𝑔2 for both the proton and deuteron with neutron 𝑔2 extracted from

their difference. The kinematic range was 0.02 ≤ 𝑥 ≤ 0.8 and 0.7 ≤ 𝑄2 ≤ 20 GeV2.

E143[73] and E155[74] also contribute to the measurement of proton 𝑔2, and their

combined results are shown in Fig. 2-9. The general trend of the data points are

consistent with the solid curve which represents the twist-2 𝑔𝑊𝑊
2 (Eq. 2.94) using

𝑔1 data, with some deviations for the proton, especially at small 𝑥. With the high

polarized beam, JLab also provides very high precise data in DIS. JLab experiment

E97-103[75] measured 𝑔2 for the neutron in DIS using a polarized 3He target to study

its 𝑄2 dependence. The kinematics of the experiment covered 0.58 < 𝑄2 < 1.36 GeV2

and 𝑥 ≈ 0.2. Fig. 2-10 shows 𝑔2 results from E97-103[75], E99-117[76] and SLAC

E155. The precision is improved by more than an order of magnitude compared to

SLAC data[72]. The 𝑔2 data is consistently higher than leading twist g𝑊𝑊
2 which

clearly indicates that higher-twist effects become significantly positive at 𝑄2 values

below 1 GeV2.

In addition to the study of 𝑔2 in DIS, several experiments performed the measure-

ment of 𝑔2 in the nucleon resonance region (𝑊 < 2 GeV) over a wide range in 𝑄2,

to study the internal structure of the nucleon resonance states. The first experiment

that measured 𝑔2 in this region is the SLAC E143 with a beam energy of 9.7 GeV

to cover the resonance region at 𝑄2 = 0.5 GeV2 and 1.2 GeV2 [77]. At JLab, the 𝑔2

at resonance region were investigated by E94-010 (for the neutron)[48] and the Reso-

nance Spin Structure (RSS) collaboration (for the proton)[47]. Experiment E94-010

at JLab collected extensive data for the neutron at low 𝑄2 by extracting directly from

cross section differences for polarized electrons scattering off a 3He target polarized

both along and transverse to the beam, as shown in Fig. 2-11. The 𝑔2 data of 3𝐻𝑒
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Figure 2-9: 𝑄2-averaged structure function 𝑥𝑔2 for the proton and the deuteron in
DIS region. This plot includes data from E155X[72] (solid circle), E143[73] (open
diamond) and E155[74] (open square). The errors are statistical; systematic errors
are shown as the width of the bar at the bottom. Also shown is our twist-2 𝑔𝑊𝑊

2 at the
average 𝑄2 of this experiment at each value of x (solid line), the bag model calculations
of Stratmann[78] (dash-dot-dot) and Song[79] (dot) and the chiral soliton models of
Weigel and Gamberg[80] (dash dot) and Wakamatsu[81] (dash). Plot reproduced
from [72].

Figure 2-10: 𝑔2 results for the neutron in DIS and low 𝑄2 region. This plot includes
data from includes E97-103[75] (solid circle), E99-117[76] (open triangle) and SLAC
E155[74] (open square). The solid curve shows predicted 𝑔𝑊𝑊

2 at 𝑄2 = 1 GeV2. Plot
reproduced from [75].
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shows a positive response in the Δ(1232) resonance region and a strong deviation

from the leading twist 𝑔𝑊𝑊
2 estimation. The lowest 𝑄2 measurement of proton 𝑔2 is

from the RSS experiment in Hall C. It measured 𝑔2 for the proton in the resonance

region at an average 𝑄2 = 1.3 GeV2 and the result is shown in Fig. 2-12. It is clear

that the leading twist 𝑔𝑊𝑊
2 is insufficient to describe the data in the low 𝑄2 region.
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Figure 4: 3He g2 (filled circle) from E94-010 [3] compared to gWW
2 (band). Sta-

tistical error only. The constant Q2 value is indicated in GeV2 in each panel.

14

Figure 2-11: 3He 𝑔2 data from E94-010. The average 𝑄2 for each data set are indicated
in GeV2 with the grey bands representing the 𝑔𝑊𝑊

2 expectations. Plot reproduced
from [48].
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Figure 2-12: Proton 𝑔2 data from RSS experiment compared with the 𝑔𝑊𝑊
2 (line)

expectations at an averaged 𝑄2 = 1.3 GeV2. The Δ(1232) resonance is at 𝑥 ≈ 0.7.
Plot reproduced from [47].

2.8.2 Burkhardt-Cottingham (BC) sum rule

From Eq. 2.117 in Sec. 2.6, the BC sum rule states that the first moment of 𝑔2 is

zero (Γ2(𝑄
2) =

∫︀ 1

0
𝑑𝑥 𝑔2(𝑥,𝑄

2) = 0) and is expected to be valid for any value of 𝑄2.

SLAC E155X performed the first measurement of the moment Γ2(𝑄
2) for proton,

deuteron, neutron (extracted from the difference of deuteron and proton). After this,

JLab Hall A conducted a series of experiments (E94-010 [48], E97-110 [82] and E01-

012 [83]) to measure the neutron Γ2(𝑄
2) with a polarized 3He target in a wide range

of kinematics. The measurement of the proton Γ2(𝑄
2) was performed in the RSS

experiment in Hall C at an average 𝑄2 of 1.3 GeV2.

Fig. 2-13 shows existing world data for Γ2(𝑄
2) for the proton (top) and the neu-

tron (bottom). The open symbols represent the experimentally measured data which

typically cover the resonance region, and the solid squares are the complete integral

including the unmeasured 𝑥 = 1 (elastic) and low 𝑥 contributions. The nucleon elastic

contribution at 𝑥 = 1 can be easily evaluated using the well-known form factors, and

the unmeasured low 𝑥 contribution is estimated using the Wandzura-Wilczek relation

(Eq.2.94). For the neutron, the BC sum rule has been satisfied within uncertainties,

across several different experiments and a large range of 𝑄2.
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The BC sum rule for the proton is largely untested, see the top panel of Fig. 2-13,

due to lack of data. The proton data from SLAC E155X[72] appears to be inconsistent

with the BC sum rule at the 2.75 𝜎 level. E155X covered the 𝑥 range 0.02 ≤ 𝑥 ≤ 0.8

with an averaged 𝑄2 ≈ 5 GeV2 and the full coverage is 0.8 ≤ 𝑄2 ≤ 8.2 GeV2. In

addition to the large experimental uncertainty, there is also an uncertainty from the

low-𝑥 extrapolation, assumed 𝑔2 = 𝑔𝑤𝑤
2 , which is difficult to quantify. The preliminary

result from JLab RSS agrees with the BC sum rule prediction within the experimental

uncertainty.

𝑄"(GeV")

Proton

Neutron

Figure 2-13: Tests of the BC sum rule for the proton (top) and neutron (bottom).
The data is from Hall C RSS (Red) and Hall A experiments E94-010 [48](Black), E97-
110 [82](Green) and E01-012 [83] (Blue), together with SLAC E155x[72] (Brown). The
open symbols are the measured values and the solid symbols are the total moments,
including the elastic and estimated contributions from the unmeasured high-energy
region. The data from experiments RSS and E97-110 are still preliminary. Plot
reproduced from [69].
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2.8.3 Generalized Spin Polarizability 𝛾0 and 𝛿𝐿𝑇

From Eq. 2.121 and Eq. 2.125, the generalized polarizabilities 𝛾0 and 𝛿𝐿𝑇 have

an extra 1/𝜈2weighting and thus converge much faster than the first moments. In

this case, the unmeasured large-𝜈 region will contribute less to the integral which

minimizes the uncertainty due to extrapolation. At low 𝑄2, the generalized polariz-

abilities have been calculated in 𝜒PT calculations (see Sec. 2.5). Measurements of the

generalized spin polarizabilities 𝛾0 and 𝛿𝐿𝑇 provides perfect tools to understand the

dynamics of QCD in the chiral perturbation region. Fig. 2-14 shows the comparison

between experimental results and the 𝜒PT calculations.

The neutron results of 𝛾0(𝑄2) and 𝛿𝐿𝑇 (𝑄
2), blue dots in the neutron panel of Fig. 2-

14 were obtained from Hall A E94-010 at Jefferson Lab [84]. Top right plot shows the

neutron 𝛾𝑛
0 (𝑄

2) data at the two lowest 𝑄2 values of 0.10 and 0.26 GeV2 with 𝜒PT

calculations and MAID predictions. The statistical uncertainties of the experimental

data are smaller than the size of the symbols in the plot. At the lowest 𝑄2 point

(𝑄2 = 0.1 GeV2), the experimental result agree with the infrared-regularized (IR)

version RB𝜒PT[60] calculation including the resonance contributions (red bands),

but disagree with HB𝜒PT[59] calculation without explicit resonance contributions

(blue dashed line), which indicates that the resonance contribution is significant for

the heavy baryon approximation at this 𝑄2. The MAID prediction is consistent with

the higher-𝑄2 data, but overestimates the strength at lower 𝑄2. Refs.[59, 60] have

pointed out that 𝛿𝐿𝑇 is insensitive to the Δ resonance while 𝛾0 is sensitive, so 𝛿𝐿𝑇

should be more suitable than 𝛾0 to serve as a testing ground for the 𝜒PT calculations.

The bottom-right panel of Fig. 2-14 shows the result of 𝛿𝐿𝑇 compared with 𝜒PT

calculations and the MAID predictions. The MAID predictions are in good agreement

with the data, however, the predictions from both the HB𝜒PT and (the IR version

of) RB𝜒PT are in significant disagreement with the data even at the lowest 𝑄2 of

0.1 GeV2, which is known as the "𝛿𝐿𝑇 puzzle". The puzzle presents a challenge to

the Chiral Perturbation Theory. However, the most recent calculation using leading-

order and next-to-leading-order RB𝜒PT[85] (blue bands) shows reasonable agreement

48



Figure 2-14: Generalized spin polarizability 𝛾0 and 𝛿𝐿𝑇 for the proton (left) and the
neutron (right). All the neutron data points are from E94-010 experiment[84]. The
proton data at 𝑄2 = 0 (purple dot) are from ELSA[86], and at finite 𝑄2 (blue dots)
from EG1 experiment at JLab[87]. The blue dashed line is the HB𝜒PT calculation[59],
off the scale in the upper panels. The red bands shows the IR version of the RB𝜒PT
calculation[60]. The grey bands are the recent RB𝜒PT calculation from Ref.[88] while
the red solid lines and blue bands shows the latest LO and NLO RB𝜒PT calculations
respectively[85]. Black dotted lines represent the empirical evaluation using the MAID
model. Plot reproduced from [85].

with 𝛿𝐿𝑇 data, which might suggest the puzzle is solved. The proton 𝛿𝐿𝑇 is absent in

Fig. 2-14.

2.9 Motivation Summary

At low and moderate 𝑄2, data on the proton 𝑔2 structure function are scarce.

Measurements of the proton 𝑔𝑝2 structure function at low 𝑄2 will provide a benchmark

test of Chiral Perturbation Theory (𝜒PT), examine the Burkhardt-Cottingham (BC)

sum rule, and bring important inputs to calculations of the proton hyperfine structure.
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Chapter 3

The 𝑔
𝑝
2 experiment

Experiment E08-027 (the 𝑔𝑝2 experiment)[69] was conducted in Hall A at Thomas

Jefferson National Accelerator Facility (JLab) from March to May in 2012. The

experiment aims to measure the proton spin-dependent structure function 𝑔2 in the

low 𝑄2 region (0.02 < 𝑄2 < 0.2 GeV2). As mentioned in Chapter 2, the measured

proton 𝑔𝑝2 data will provide a benchmark test of Chiral Perturbation Theory (𝜒PT)

by extracting the generalized longitudinal-transverse spin polarizability 𝛿𝐿𝑇 , examine

the Burkhardt-Cottingham (BC) sum rule for the proton, and bring important inputs

to the proton hyperfine structure calculation.

During the experiment, a longitudinal polarized electron beam of energies between

1.157 and 3.350 GeV scattered off a transversely polarized NH3 (proton) target, to

measure the transverse polarized cross section difference 𝜎⊥. Then 𝑔2 can be extracted

using Eq. 2.57 and Eq. 2.58 when combined with the longitudinal cross section differ-

ence 𝜎‖ from the Hall B EG4 experiment[89]. One set of 𝜎‖ data were also collected

in E08-027 at a beam energy of 2.254 GeV with the goal of verifying the EG4 data.

The scattered electrons were detected by the Hall A High Resolution Spectrometers

(HRS). The standard HRS can reach a minimum angle 12.5o respect to the beam

direction. To access the low 𝑄2 of this experiment, detection of smaller scattering

angles is desirable. Therefore a so-called “septum” magnet was installed in front of

the HRS to bend the scattered electron into HRS. The minimum angle reached using

septum was ≈ 5.77∘. The kinematic configurations are listed in Table. 3.1. For some
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low energy settings, a 2.5 T target field was used to reach the minimum possible

𝑄2 because a transverse 5 T field would deflect scattered electrons outside of the

acceptance of the Hall A spectrometers.

Fig. 3-1 shows the kinematic coverage of the experiment. In each configuration,

with a different beam energy or target field, a series of different momentum settings

was used to measure a wide kinematic range of scattered electrons. After obtaining

𝑔2 in a wide coverage of 𝜈 and 𝑥, the sum rule and moments (in Sec. 2.6) can then

be formed and the corresponding theory can be tested.

This chapter will describe the experimental setup and the instrumentation used

for the E08-027 experiment.

Figure 3-1: Kinematic coverage of experiment E08-027. The legends show the beam
energy and target field strength for each setting.
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Beam Energy (GeV) Field (T) Field Angle (degree) Septum
1 2.254 0 N/A 48-48-16
2 2.254 2.5 90 48-48-16
3 2.254 2.5 90 40-32-16
4 1.710 2.5 90 40-00-16
5 1.157 2.5 90 40-00-16
6 2.254 5 0 40-00-16
7 2.254 5 90 40-00-16
8 3.350 5 90 40-00-16

Table 3.1: Beam energy, target field and septum configurations for the E08-027 ex-
periment. Previously, either right or left septum magnet has three pairs of coils with
(48 - 48 - 16) turns on top and (16 - 48 - 48) turns on bottom. The septum config-
urations listed here represent the number of turns of coils for the top right septum,
see Sec. 3.5.

3.1 The Electron Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) at JLab provides

multi-GeV continuous-wave (cw) polarized electron beams for medium energy physics

study. The electron accelerator consists of one polarized electron source, two super-

conducting linear accelerators (linac), two re-circulation arcs (magnets), and magnetic

elements to extract the beam to the three Halls (named Halls A, B, C). After the

accelerator upgrade in 2014-15, a fourth Hall (Hall D) was added.

The layout of the electron accelerator is shown in Fig. 3-2. As required by many

experiments, the CEBAF beam is usually highly polarized. The polarized electrons

are produced from a strained gallium arsenide (GaAs) cathode by shining the 780

nm circularly polarized laser light at the injector. The spin of photo-emitted elec-

trons can be flipped by switching the circular polarization state of the laser light,

which is achieved by changing the voltage of the Pockels cell. The Pockels Cell is a

crystal that acts as a quarter-wave retardation plate when a high voltage is applied

on it, and flipping the polarity of the high voltage can thus flip the light circular

polarization direction. During E08-027, the beam helicity was flipped at 960.02 Hz to

be compatible with other experimental halls. The sequence for beam helicity states
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followed a quartet pattern, either +−−+ or −++−, and the sequence of the quartet

was random. This pattern eliminates the linear background and minimizes the low

frequency systematic uncertainty[90]. To control the helicity dependent systematic

effects, an insertable half-wave plate (IHWP) can be placed upstream of the Pockels

cell in the photon beamline, to reverse the beam helicity manually several times per

day[91].

On the photocathode, electrons are then extracted and accelerated to the injector

under a constant, -100 kV electric field. At the injector, electrons are accelerated from

an initial energy of 100 keV to 45 MeV by two and a quarter cryomodule, and then

injected into the north linac, which consists of 20 consecutive cryomodules: with each

full pass of the accelerator, the electrons gain 400− 600 MeV in each linac. Between

north and south linacs, electrons are bended in the recirculation arc (a radius of

around 80 m) for continuous accelerating. Each pass of electron needs a different

set of recirculation arcs. The electrons can be accelerated up to 5 passes, reaching a

maximum energy of 6 GeV (before the upgrade). After the accelerator upgrade, the

maximum energy became 11 GeV to Halls A, B, C and 12 GeV to Hall D.

The entire accelerator is operated at a radio frequency (RF) of 1497 MHz, and the

electron bunches are splitted to 499 MHz for each hall. After passing the south linac

and reaching the required beam energy of one hall, RF separators and beam septa can

allow particular bunch trains and energies to be extracted and sent to the experimental

hall. By using this technique, CEBAF can provide beams with independent currents

and at different but correlated energies to three halls simultaneously. The maximum

total current available among the three halls is around 200 𝜇A and the average beam

polarization is about 85%. Typically, Halls A and C take beam currents 1-100 𝜇A,

whereas Hall B typically runs at less than 100 nA.

During the E08-027 experiment, electron beams were delivered into Hall A with

current 𝐼𝑒 ∼ 50 nA and five beam energies (1.1, 1.7, 2.2, 3.3 GeV) for production

data taking. The average beam polarization during the experiment was ≈ 85%.
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refrigerator
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Figure 3-2: Layout of the CEBAF facility in the 6 GeV era[92]. The electron beam
is produced at the injector and accelerated in the two superconducting linacs up to 5
times. The linac energies shown are for operation at 4 GeV while each linac operates
at 600 MeV for 6GeV. The electron beam can be extracted simultaneously to each of
the three experimental halls A, B and C.

3.2 Overview of Hall A

Hall A is the largest experimental Hall among the existing halls with a floor

diameter of 53 m. Fig. 3-3 shows the top and the side view of Hall A during E08-

027 experiment. The key elements include the beam line, the polarized NH3 target,

septum magnets, High Resolution Spectrometers and their detector packages, which

will be discussed in following sections.

3.3 Hall A beamline

During the E08-027 experiment, the JLab-UVA polarized ammonia target was

used in Hall A for the first time. This target utilized the Dynamical Nuclear Polar-

ization (DNP) technique to polarize the solid ammonia at a temperature around 1 K

and a magnetic field about 5 T. However, the strong transverse 5T field would signifi-
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Figure 3-3: Schematic of Hall A during E08-027[93].

cantly bend the electron beam and the scattered electrons. To properly transport the

electron beam in the presence of the target field, two chicane dipoles were installed

upstream of the target to compensate for the bending effect of the target field, and

a local dump was installed downstream of target for the energy setting (𝐸𝑒 = 3.3

GeV) where the electron beam cannot reach the standard beam dump of Hall A.

To minimize the beam-introduced depolarization effect on the target, a pair of slow

rasters was also used in Hall A for the first time to spread the beam uniformly over

the target, and a very low beam current 𝐼𝑒 ∼ 50 nA was required. Since the typical

Hall A experiments before 𝑔𝑝2 all used current between 1 𝜇𝐴 and 100 𝜇𝐴, such a low

current required new beam current monitors (BCMs) and beam position monitors

(BPMs) that work at low currents. The elements of the beam line are labeled as

1− 8𝑏 in Fig. 3-2.
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3.3.1 Beam Energy Measurement

The beam energy during the E08-027 experiment was measured using the Arc

method[92]. The principle of this method is that the momentum 𝑃 of a charged

particle is related to the bending angle 𝜃 in a given magnetic field as:

𝑃 = 𝑘

∫︀
�⃗� · �⃗�
𝜃

, (3.1)

where
∫︀
�⃗� · �⃗� (in T·m) is the integral of the transverse magnetic field along the

trajectory, and 𝑘 = 0.299792 GeV·rad·T−1m−1/c.

Fig. 3-3 shows the layout of the Arc measurement. Eight dipole magnets are used

to produce the magnetic field for bending, but cannot be probed directly since they

are located in the vacuum. Their integral
∫︀
�⃗� · �⃗� is measured using a 9th identical

dipole (reference magnet) located outside of the arc and connected in series with the

other 8. Two sets of superharps (wire scanners) are installed at both the entrance and

the exit of the arc to monitor any deviation from the nominal bending angle (34.4o).

The Arc energy measurement provides an absolute measurement to the 2×10−4 GeV

level. However, the Arc method is invasive and cannot be made in parallel to the

production data taking.

During production running, the beam energy was monitored by the “Tiefenbach”

measurement[92]. The Tiefenbach beam energy value is calculated from the current

values of the arc
∫︀
�⃗� · �⃗� and the arc beam position monitors (BPM), and is recorded

in the data stream continuously. The energy from this method is accurate to the

5× 10−4 GeV level.

3.3.2 Beam Current Monitor

In the E08-027 experiment, the beam current was measured by two beam current

monitors (BCMs), labeled as id 1 in Fig. 3-3. The whole system contains two RF

cavities, an Unser monitor, and a BCM receiver with a data-acquisition system.

The two RF cavities are stainless steel cylindrical high-Q(≈ 3000) waveguides
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Figure 3-4: Schematic of the arc energy measurement. Plot reproduced from [94].

located 23 m upstream of the the target center. Their response is tuned to the

frequency of the electron beam (1497 MHz). When the electron beam passes through

the cavity, the cavity will output a signal with voltage proportional to the beam

current.

The BCM receiver converts raw signals to be compatible with the DAQ system.

Since the original RMS-to-DC converter works linearly only within 1 to 200 𝜇A and

did not work at the low current of 50 nA[95], a new BCM receiver was designed

and built by the JLab instrumentation group to achieve a reasonable signal/noise

(S/N) ratio in the beam current range of several nA to several 𝜇A[96]. The new

BCM receiver consists of an analog part and a digital part. The analog part converts

the ratio frequency (RF) signal to the intermediate frequency (IF) signal by a mixer

and then amplifies it, while the digital part digitizes the signal by a 36 MSPS ADC
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and then applies two filters to increase the S/N ratio before converted back to 0-

10V analog signal to match the existing Hall A DAQ system. The voltage signal is

converted to frequency signal by a voltage-to-frequency module in the DAQ system

and then counted by the scaler.

The BCMs are traditionally calibrated with a Faraday cup in the injector, and

double-checked by the Unser monitor located between the two RF cavities. However,

both Unser and Faraday cup could not work at low currents. Therefore a tungsten

calorimeter[97] (id 4 in Fig. 3-3) was installed for calibrating the BCMs. The tungsten

calorimeter is pumped into vacuum to minimize the heat loss so that its temperature

change is dominated by the energy deposited from the electron beam. The typical

heat loss is around 0.2% if the measurement takes less than 20 min[97]. The relation

between the total charge 𝑄 and the temperature change Δ𝑇 can be expressed as

𝑄 =
𝑒𝐾𝑤Δ𝑇

𝐸𝑒

, (3.2)

where 𝐸𝑒 is the beam energy, 𝐾𝑤 = (8555.5 ± 50) J/K is the heat capacity of the

tungsten measured before the experiment[98], and 𝑒 is the electron charge to convert

the unit of 𝐸𝑒 (in eV) to Joules. Then the BCM readout signal can be calibrated with

the charge 𝑄 by:

𝑁 = (𝐶𝐼 + 𝐶0)𝑡, (3.3)

where 𝑁 is the BCM scaler reading, 𝐶0 is the pedestal value of BCM, and 𝐶 is

the calibration constant and 𝐼 is the current. During the E08-027 experiment, the

calibration constant uncertainties were below 0.7% for 90% of the runs[99].

3.3.3 Rasters

The size of the beam spot is around 100 𝜇m when it enters Hall A, which will bring

significant depolarization and heating to the target. In E08-027 experiment, besides

the use of low current beams (around 50 nA), two raster systems, a fast raster and
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a slow raster (id 2 and 3 in Fig. 3-3), were installed at around 17 m upstream of the

target to distribute the beam uniformly to a size of 20 mm in diameter at the target

by time-varing dipole magnetic fields. The fast raster and the slow raster are labeled

2 and 3 in Fig. 3-3, respectively, and each consists of two dipole magnets.

The fast raster is a standard Hall A beamline component. The same current as

the standard operation, in a triangular waveform with frequency 25 kHz, was used to

drive the two dipoles to move the beam in x and y directions. A rectangular pattern

of about 2 mm×2 mm was formed, as shown in Fig. 3-5.

Figure 3-5: Fast raster pattern, produced from the magnet current signal[100].

For the g2p experiment, in addition to the existing fast raster system, a slow

raster system was installed the first time in Hall A to be able to uniformly cover the

large target cross section which has a ≈ 25 mm diameter. The waveforms for the 𝑥

and 𝑦 directions are generally independently from a dual-channel function-generator

(Model agilent 33522A):

𝐼𝑥 = 𝐴𝑥𝑓(𝑡
1/2) sin(𝜔𝑡),

𝐼𝑦 = 𝐴𝑦𝑓([𝑡+ 𝑡0]
1/2) sin(𝜔𝑡+ 𝜑), (3.4)

where 𝐴𝑥 and 𝐴𝑦 are the maximum amplitudes, 𝑡0 (𝜑) is the AM (sin phase) difference
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between 𝑥 and 𝑦 waveforms, 𝜔 = 99.4124 Hz is the frequency, 𝑓(𝑡1/2) is a parametric

function responsible for generating a uniform circular pattern and includes four pe-

riodic piece-wise function: the first term is 𝑡1/2, the second term is (𝑇/2 − 𝑡)1/2, the

third term is −(𝑡 − 𝑇/2)1/2, and the final term -(𝑇 − 𝑡)1/2, with each term account

for one quarter cycle 𝑇/4. The cycled function has a frequency of 30 Hz. During the

E08-027 experiment, 𝑡0 = 0 is manually set to 0 to avoid nonuniform distortion, the

phase 𝜑 = 𝜋/2 is locked by the function generator, and the period of cycled function

is 𝑇 = 1/30 s. A typical slow raster pattern 2 cm×2 cm is shown in Fig. 3-6. A 2.2

Figure 3-6: Slow raster pattern, produced from the magnet current signal[100].

cm circular rastered beam was achieved by combining these two rasters.

3.3.4 Beam Position Monitor

For the E08-027 experiment, the beam position and directions were measured by

two Beam Position Monitors (BPMs), labeled as id 8a and 8b in Fig. 3-3. Each BPM

contains four antennas (marked as 𝑢+, 𝑢− and 𝑣+, 𝑣−) parallel to the beam direction

and are oriented at 45o from the horizontal and vertical planes in a vacuum chamber,

as shown in Fig. 3-7. When the beam passes through the BPM chamber, each antenna

picks up signals that are inversely proportional to the distance from the beam.
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Assuming the antennas did not affect each other and neglect the edge effect due

to the finite length of the chamber, the signal amplitude picked up by each antenna

can be expressed as[101, 102]

𝜑𝑖 = 𝜑0𝐼
𝑅2 − 𝜌2

𝑅2 + 𝜌2 − 2𝑅𝜌 cos(𝜃𝑖 − 𝜃0)
, (3.5)

where 𝜑𝑖 is the signal received in the antenna, and 𝑖 is the channel 𝑢+, 𝑢−, 𝑣+ or

𝑣−, 𝜑0 is a constant related to the geometry of the BPM chamber and the output

resistance, 𝐼 is the beam current, 𝑅 is the radius of the BPM vacuum chamber, 𝜌 is

the radial position of the beam, and 𝜃𝑖−𝜃0 is the angle difference between the antenna

and the beam in the polar coordinate. The beam position can then be extracted in

v+

u-
v-

u+

M15

Figure 3-7: Diagram of BPM[100].

the BPM local coordinates using Eq. 3.5:

𝑈 = 𝑅𝐷𝑈

(︁ 1

𝐷2
𝑢 +𝐷2

𝑣

− 1√︀
𝐷2

𝑢 +𝐷2
𝑣

√︃
1

𝐷2
𝑢 +𝐷2

𝑣

− 1
)︁
, (3.6)

where 𝑈 denotes 𝑢 or 𝑣, and 𝐷𝑢 (𝐷𝑣) is the ratio of the signal difference to signal

sum in the 𝑢 (𝑣) direction:

𝐷𝑈 =
𝜑𝑈+ − 𝜑𝑈−

𝜑𝑈+ + 𝜑𝑈−
. (3.7)
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The BPMs were calibrated by two superharps: one installed between the BPMs

and the other installed upstream of the upstream chicane magnet, as shown in Fig. 3-

3. Each harp consists of three wires with a thickness of 50 𝜇m, oriented vertically

and at ±45o respectively, and is fixed to a chassis controlled by a step motor[103], as

shown in Fig. 3-8. The original position of each wire is surveyed with a precision of

0.1 mm. During a harp scan, the electron beam is sensed by the three wires one by

one in the harp. The absolute beam position could be calculated with the recorded

wire signal combined with the survey result. Then the BPMs can be calibrated by

comparing the harp result with the BPM signal in that scan. The two BPMs were

Move	into	the	beam	pipe

Figure 3-8: Diagram of harp. The harp is made of 3 wires (red), arranged on a
fork-shape holder that can be moved in and out of the beam with a motor[100].

placed very close to each other due to the space limitation between the second chicane

magnet and the target: one BPM was placed 95.5 cm upstream of the target while

the other was placed 69 cm upstream. After obtaining the beam position information

at the BPM location, transport functions were fitted to transport the beam position

from the BPMs to the target, to account for the strong target magnetic field effect.

The short distance between BPMs (26.5 cm) magnified the position uncertainty from

the BPMs to target.

As mentioned in Sec. 3.3.3, the beam was spread by a fast raster at 25 kHz. The

BPM cannot provide the beam position event by event, only the center of the raster

pattern. Therefore, beam position and the angle at the target are extracted event-

by-event by combining information from the BPMs (average value) and the signals

from the rasters (event dependent).

For the E08-027 experiment, the uncertainty of beam position at target was pre-
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viously reported to be 1 ∼ 2 mm, while the uncertainty for the incident angle was

1 ∼ 2 mrad[100]. However, these still need further investigation.

3.3.5 Beam Polarization Measurement

For the E08-027 experiment, the polarization of the electron beam was measured

by the Møller polarimetry, labeled as id 5 Fig. 3-3. The principle is that the cross

section of polarized electrons (beam) scattering off polarized atomic electrons in a

magnetized foil (target), �⃗�− + �⃗�− → 𝑒− + 𝑒+, depends on the beam and target polar-

izations 𝑃𝑏 and 𝑃𝑡 as[92]

𝜎 ∝ (1 +
∑︁

𝑖=𝑋,𝑌,𝑍

(𝐴𝑖𝑖𝑃𝑏,𝑖𝑃𝑡,𝑖)), (3.8)

where 𝑖 = 𝑍 represent the projection of polarization along beam direction, while

𝑖 = 𝑌 represents the projection perpendicular to the scattering plane X-Z). 𝐴𝑖𝑖 is

the analyzing power that depends on the scattering angle in the center of mass (CM)

frame (𝜃𝐶𝑀), and can be expressed as:

𝐴𝑍𝑍 = −sin2 𝜃𝐶𝑀 · (7 + cos2 𝜃𝐶𝑀)

(3 + cos2 𝜃𝐶𝑀)2
,

𝐴𝑋𝑋 = −𝐴𝑌 𝑌 = − sin4 𝜃𝐶𝑀

(3 + cos2 𝜃𝐶𝑀)2
. (3.9)

As one can see, the analyzing power does not depend on the beam energy.

The main purpose of the polarimeter is to measure the longitudinal beam polar-

ization, which corresponds to analyzing power 𝐴𝑍𝑍 . At 𝜃𝐶𝑀 = 90∘, the analyzing

power has its maximum 𝐴𝑍𝑍,𝑚𝑎𝑥 = 7/9.

The setup for the Møller polarimetry polarimeter is shown in Fig. 3-9. A thin

magnetically saturated ferromagnetic foil is used as the polarized electron target

with an average electron polarization of about 8% at 24 mT[92]. The scattered

electrons are selected by a magnetic spectrometer consists of a sequence of three

quadrupole magnets and a dipole magnet, and then measured by the detector consists
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of scintillators and lead-glass calorimeter modules in two arms in order to detect the

two scattered electrons in coincidence. A pair of asymmetry is measured at two

different target angles ±20∘ with respect to the beam in the horizontal plane and

the two asymmetry results are averaged to cancel the possible contribution from

transverse polarization of the target, whose asymmetries would have opposite signs

for these target angles. The beam longitudinal polarization is measured as:
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Beam direction

V
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Figure 3-9: Schematic diagram of the Møller polarimeter[92, 104].

𝑃𝑏,𝑍 =
𝑁+ −𝑁−
𝑁+ +𝑁−

· 1

𝑃𝑡 · cos 𝜃𝑡· < 𝐴𝑍𝑍 >
, (3.10)

where 𝑁+ and 𝑁− are the event counting rates with two opposite mutual orientation

of the beam and target polarization, < 𝐴𝑍𝑍 > is obtained from a Monte-Carlo cal-

culation of the Møller spectrometer acceptance, 𝑃𝑡 is the target polarization derived

from special magnetization measurements of the foil samples, 𝜃𝑡 is the target angle

measured using a scale which is engraved on the target holder and seen with an TV

camera. Eq. 3.10 is used at different values of the target angle 𝜃𝑡.

The Møller measurement is invasive and takes a couple of hours to complete. Dur-
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# Date Polarization and Statistical Error (%) Systematic Error (%)
1 03/03/2012 79.91±0.20 ±1.7
2 03/30/2012 80.43±0.46 ±1.7
3 03/30/2012 79.89±0.58 ±1.7
4 04/10/2012 88.52±0.30 ±1.7
5 04/23/2012 89.72±0.29 ±1.7
6 05/04/2012 83.47±0.57 ±1.7
7 05/04/2012 81.82±0.59 ±1.7
8 05/04/2012 80.40±0.45 ±1.7
9 05/15/2012 83.59±0.31 ±1.7

Table 3.2: Results of the Møller measurements during E08-007[105].

ing the E08-027 experiment, it was often scheduled immediately after long unavailable

beam periods or configuration changes in the accelerator. Nine measurements were

taken during the experiment and the results are shown in Table. 3.2. The relative sys-

tematic uncertainty 1.7% is dominated by the knowledge of the foil polarization[106].

3.3.6 Chicane Magnets

In the E08-027 experiment, the strong transverse magnetic field in the target

region caused the electron beam deflect downwards when the beam passed through.

Two chicane magnets were placed in front of the target and the BPMs to pre-bend

the beam upwards to compensate for the bending in the target region, as shown as

id 7 in Fig. 3-3. The first chicane magnet was installed at 5.92 m upstream from

the target center while the second one at 2.66 m upstream. The beam was bent

downwards of the horizontal plane in the first chicane magnet, and then bent back

towards the target in the second magnet at an angle to compensate the bending in

the target field. In different beam energy or target field configurations, the vertical

positions of the two chicane magnets were adjusted so that the beam could incident

straightly on the target. Fig. 3-10 shows the two chicane magnets installed for the

E08-027 experiment.
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Chicane
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Target

Figure 3-10: Chicane dipole magnets upstream of the target.

3.3.7 Local Beam Dump

For the 5 T longitudinal and the 2.5 T transverse target field settings, the beam,

can reach the standard Hall A dump. However, due to the limited installation space

for the chicane magnets, the beam cannot be bent back to the Hall A dump under

the 5 T transverse target field. At this low beam current (around 50 nA), a local

beam dump (id 11 in Fig. 3-3) was allowed to be installed downstream of the target

center and upstream of the septum magnet to stop the electron beam. The local

dump consisted of a series of tungsten and copper plates. Fig. 3-11 shows the local

dump used in the experiment.

3.4 The polarized NH3 Target

During the E08-027 experiment, a polarized ammonia (NH3) target was used to

provide the polarized proton for electron scattering. The protons in the irradiated

NH3 were polarized using Dynamic Nuclear Polarization (DNP) technique at a tem-
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Figure 3-11: Local beam dump (blue one) in front of the septum magnet.

perature of 1 K and at fields of 2.5 and 5.0 T, and their polarization was measured

by Nuclear Magnetic Resonance (NMR). The 2.5 T transverse field configuration was

used at the low energy settings to reach the minimum possible 𝑄2 because a trans-

verse 5 T field would strongly deflect scattered electrons outside the acceptance of the

Hall A spectrometers due to the power and construction limit for the chicane dipole

magnet. Providing much lower proton polarizations.

There are several advantages to choose polarized ammonia as a polarized proton

source: it is capable of reaching high proton polarizations, above 90% at the 5 T

magnetic field settings; it can be polarized very quickly, within 30 minutes or less;

and it holds up very well to radiation damage, which was important to minimize beam

down time during the run period. In this section, the principle of Dynamic Nuclear

Polarization, the target setup, and the polarization measurement will be discussed.
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3.4.1 Principles of Dynamic Nuclear Polarization

At a magnetic field 𝐵 and temperature 𝑇 , the spin-1/2 particles are polarized

according to the Boltzmann statistics with thermal equilibrium polarization:

𝑃𝑇𝐸 =
𝑒

𝜇𝐵
𝑘𝑇 − 𝑒

−𝜇𝐵
𝑘𝑇

𝑒
𝜇𝐵
𝑘𝑇 + 𝑒

−𝜇𝐵
𝑘𝑇

= tanh

(︂
𝜇𝐵

𝑘𝑇

)︂
, (3.11)

where 𝑘 = 1.38×10−23 J/K is the Boltzmann constant and 𝜇 is the magnetic moment

of the particle. For a typical configuration during E08-027 experiment, temperature

𝑇 = 1K, 𝐵 = 2.5T, electron polarization is approximately 92% according to Eq. 3.11

with 𝜇𝑒 = 9.2740× 10−24 J/T. However, the proton polarization is only 0.25% since

proton’s magnetic momentum 𝜇𝑝 = 1.4106 × 10−26 J/T is about 1/660 of 𝜇𝑒. This

small thermal polarization of proton is clearly not practical for spin-structure mea-

surements. On the other hand, it is very difficult to reach a magnetic field far beyond

2.5T and a temperature far below 1K, other approaches must be pursued to achieve

a high polarization for the proton.

A DNP technique was developed to enhance the polarization by transferring the

polarization of free electrons in the medium to the nucleon via electron-proton cou-

pling using an additional microwave field[107, 108]. For the electron-proton system,

the Hamiltonian can be expressed as

𝐻 = �⃗�𝑒 · �⃗� + �⃗�𝑝 · �⃗� +𝐻𝑠𝑠, (3.12)

where 𝐻𝑠𝑠 represents the spin-spin interaction between the electron and the proton.

As a result of hyper-fine splitting from the spin-spin interaction, the ground state of

the proton is split to four sublevels, as shown in Fig. 3-12. By carefully tuning the

RF frequency 𝜈𝜇 from the microwave generator, the coupled electron and proton spin

system can be pumped to the desired state as:

𝑒↓𝑝↓ → 𝑒↑𝑝↑ if 𝜈𝜇− = 𝜈𝐸𝑃𝑅 − 𝜈𝑁𝑀𝑅, or (3.13)

𝑒↓𝑝↑ → 𝑒↑𝑝↓ if 𝜈𝜇+ = 𝜈𝐸𝑃𝑅 + 𝜈𝑁𝑀𝑅, (3.14)
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where 𝑒↓ and 𝑝↓ (𝑒↓ and 𝑝↓) represents the state with the electron and the proton spin

aligned (anti-aligned) to the magnetic field, 𝜈EPR is the electron’s EPR (electron para-

magnetic resonance) frequency, respectively, and 𝜈NMR is the proton’s NMR (nuclear

magnetic resonance) frequency. From the pumping processes (Eq. 3.13 and 3.14),

either positive or negative proton polarizations can be achieved in the same magnetic

field by using the microwave frequency 𝜈𝜇− or 𝜈𝜇+. The pumped electron-proton spin
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Figure 3-12: Dynamic Nuclear Polarization method to positively polarize protons.
Plot reproduced from [109].

state is not permanent and relax back to the lowest energy state later. At temperature

1K, the proton’ spin relaxes on the order of tens of minutes, whereas the electron’s

spin relaxation time is very fast with an order of milliseconds. Therefore, the rapid

relaxed electron can then be used to pump another proton by the microwave. If the

pump rate is greater than or equal to the proton spin relaxation rate, a high proton

polarization can be achieved and maintained.

3.4.2 Setup

The polarized ammonia target system used in E08-027 is shown in Fig. 3-13.

To optimize the DNP process, the magnetic field must be not only very strong,

but also very uniform over the volume of the target material. For this target, a
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field nonuniformity Δ𝐵/𝐵 of less than 10−4 over a cylindrical volume with 2 cm in

diameter and 2 cm long, was achieved by a superconducting magnet maintained at 4

K with a reservoir of liquid helium [110]. The open geometry of the magnet can allow

the beam to pass through in both longitudinal and transverse configurations. An

aluminum scattering chamber, with multiple thin windows for the electron to pass,

is evacuated to approximately 10−7 torr and provides an insulating vacuum for the

cryogenic components inside. The target sample is placed in the magnet center via a

target insert and maintained at 1 K in a helium container (referred to as the target

nose) with the 4He evaporation refrigerator and Roots pump set. The cooling power

is about 3 W in the experimental condition.
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Figure 3-13: A cross section of the polarized target setup showing the location of the
magnet, the NMR coil, and liquid helium and nitrogen reservoirs used to cool the
setup[110].
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The target insert contained several cells: a NH3 cell, a CH2 hole, a carbon hole,

a second NH3 cell, a dummy cell and a carbon cell from top to bottom, as shown

in Fig. 3-14. The two NH3 cells, filled with ammonia beads and covered by thin

aluminium foils, are used for production data taking. A short Cu-Ni capillary coil

was also installed in the cell for NMR measurement. A dummy cell identical to the

NH3 cell but without any ammonia beads was used for dilution study. The carbon

cell was used for optics study. The CH2 hole and the carbon hole were designed to

load the CH2 foil and the carbon foil, also for optics study. The position of the target

insert can be moved vertically to select different cells by a remote controlled stepper

motor.

Carbon	Cell

Dummy	Cell

NH# Cell

NH#	Cell

CH(	Hole
Carbon	Hole

Figure 3-14: The end of the target insert with a NH3 cell, a CH2 hole, a carbon hole,
a NH3 cell, a dummy cell and a carbon cell from top to bottom.

Before the experiment, the ammonia beads were irradiated with a 10 MeV linear

accelerator at the National Institute of Standards and Technology (NIST) to produce

a few additional radicals in the material. The irradiation causes the normally colorless

frozen ammonia beads to turn a deep purple color, as shown in Fig. 3-15. The radicals

can speed up the DNP process but also increase the proton depolarization rate, so

the number of radicals in the material must be carefully balanced to maintain a high
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polarization. As more electron beam is delivered to the ammonia, the more of the

excess radicals, the less efficient of the DNP process. Therefore, the ammonia beads

need to be heated between 70 and 100 K for 10 to 60 minutes to force the radicals to

recombine after a long beam run. This process is called annealing the target. While

anneals allow polarization recovery for a given ammonia sample, the sample still have

a limited lifetime due to creation of bad radicals from accumulated radiation damage

and thus need to be replaced periodically[111].

Figure 3-15: NH3 beads before (left) and after (right) irradiation.

The microwaves to drive the spin transition in DNP are provided via an Extended

Interaction Oscillator (EIO) tube and carried via waveguides to a horn positioned

near the ammonia cup. The optimal frequency of the microwave radiation is not a

constant value due to the radiation damage and need to be tweaked during the run

period.

3.4.3 Target Polarization Measurement

To measure the proton polarization, a nuclear magnetic resonance (NMR) system

is used. When the spin system is irradiated by a RF field at the Larmor frequency

perpendicular to the static target field, the spin system can either absorb or emit

some energy as the spins flip. The system response to the RF irradiation is described

by its magnetic susceptibility 𝜒(𝜔), which can be expressed as a dispersive term 𝜒′(𝜔)
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and an absorptive term 𝜒′′(𝜔)[112]:

𝜒(𝜔) = 𝜒′(𝜔)− 𝑖𝜒′′(𝜔). (3.15)

The integral of the absorptive portion 𝜒′′(𝜔) over frequency is proportional to the

polarization[113]:

𝑃 = 𝐾

∫︁ ∞
0

𝜒′′(𝜔)𝑑𝜔, (3.16)

where the constant 𝐾 accounts for the correction factor for the NMR system prop-

erties, such as spin density and gyromagnetic ratio. The absorptive signal can be

observed using the NMR coil via a Q-meter. The NMR circuit surrounds or is embed-

ded in the target material with inductance 𝐿𝐶 and resistance 𝑟𝐶 , and its impedance

can be changed under an inductive coupling between spins in the material and the

coil’s magnetic field as:

𝑍𝐶 = 𝑟𝐶 + 𝑖𝜔𝐿𝐶

[︀
1 + 4𝜋𝜂𝜒′(𝜔)− 𝑖4𝜋𝜂𝜒′′(𝜔)

]︀
= 𝑟𝐶 + 4𝜋𝜔𝐿𝐶𝜂𝜒

′′(𝜔) + 𝑖
[︁
𝜔𝐿𝐶

(︀
1 + 4𝜋𝜂𝜒′(𝜔)

)︀]︁
,

(3.17)

where 𝜂 is the filling factor of the coil. The Q-meter is connected to the NMR coil via

a coaxial transmission cable, a capacitor C, and a damping resistance R that forms

a series LRC circuit with resonance 𝜔0 =
√
𝐿𝐶𝐶 at the proton’s Larmor frequency.

When scanning RF frequency through 𝜔0, the inductance is changed as the target

material absorbs or emits energy, and so does the complex output voltage 𝑉 (𝑤, 𝜒)

since it is proportional to 𝜒. In the absence of 𝜒, 𝑉 (𝑤, 0) is measured, and is often

referred as the Q-curve. For a positive target polarization, the impedance is increased

around 𝜔0 of the particle since target spins absorb energy from the RF to flip from

aligned (low energy) to anti-aligned (high energy), while the impedance is decreased

around 𝜔0 for a negative polarization. The signal difference between the polarized

case and the Q-curve (baseline) gives the NMR signal[112]:

𝑆(𝜔) = 𝑅𝑒[𝑉 (𝑤, 𝜒)− 𝑉 (𝑤, 0)] ≈ 𝜒′′(𝜔). (3.18)
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Therefore, integrating the dip or the peak in the signal due to absorption or emission

provides a proportional measure of the material’s polarization. The left plot of Fig. 3-

16 shows the the raw signal in red with the baseline signal in blue, while the right

plot shows the subtracted NMR signal.

Figure 3-16: An typical NMR signal for the polarized ammonia target. The horizontal
axis index is proportional to the frequency of the RF generator. The left plot shows
the raw signal (red) and the Q-curve signal (blue), while the right plot shows the
NMR signal after subtracting the 𝑄-curve from the raw signals. Plot reproduced
from [114].

The NMR method is a relative proton polarization measurement and needs to be

calibrated. In the E08-027 experiment, it was calibrated with thermal equilibrium

measurements with known polarization 𝑃𝑇𝐸 shown in Eq. 3.11. The absolute proton

polarization can then be expressed as

𝑃 =

∫︀∞
0

𝑆𝑒𝑛ℎ(𝜔)𝑑𝜔∫︀∞
0

𝑆𝑇𝐸(𝜔)𝑑𝜔
𝑃𝑇𝐸, (3.19)

where 𝑆𝑇𝐸 is the NMR signal at thermal equilibrium and 𝑆𝑒𝑛ℎ is the NMR signal

during experimental run. The calibrated polarization for the 2.5 T target field is

shown run-by-run with an average polarization of 15% in Fig. 3-17, while the average

polarization was ≈ 70% for the 5T target field, shown in Fig. 3-18. The target

polarization uncertainty is still being finalized. There are two major contributions

to the uncertainty: one is from the uncertainty of the NMR signal; the other is the

uncertainty in the magnetic field and temperature readings of the TE measurement.
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The current estimate of the uncertainty is about 1% relative for the sample with 8 TE

measurements, and 5% relative for the worst case where only one TE measurement

was performed.

Ta
rg
et
	P
ol
ar
iza

tio
n	
(%
)

Figure 3-17: Target polarization for the 2.5 T field configuration for each run. Plot
reproduced from [114].
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Figure 3-18: Target polarization for the 5 T field configuration for each run. Plot
reproduced from [114].
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3.5 Septum Magnets

During the 𝑔𝑝2 experiment, a pair of room temperature septum magnets (id 10 in

Fig. 3-3) were used to bend the scattered electrons from a scattering angle of 5.77∘

into the minimum achievable central angle of HRS (12.5∘). Each magnet has three

pairs of coils with (48 − 48 − 16) turns on the top and (48 − 48 − 16) turns on

the bottom, as shown in Fig. 3-19. Unfortunately, the right top septum electrical

lead was burnt twice, and the burnt wires were shorted to iron, which resulted in

(40 − 32 − 16) turns and (40 − 00 − 16) turns, respectively. The left septum coils

remained unchanged. The septum configurations in Table 3.1 refer to the top right

septum coil status during the run.

Figure 3-19: Picture of the septum magnet pair. The unscattered beam hit in the
pipe between the septums (perpendicular to the paper).

3.6 High Resolution Spectrometers

E08-027 experiment used the two standard and nearly identical Hall A high reso-

lution spectrometers (HRS) to detect the scattered electrons, located 12.5∘ respect to
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the beam line on each side. Each HRS consists of three superconducting quadrupole

and one superconducting dipole magnets in a QQDQ configuration, as shown in Fig. 3-

20. The first quadrupole Q1 is convergent in the dispersive (vertical) plane while Q2

and Q3 provide a transverse focusing. The dipole bends the electrons 45∘ in the verti-

cal direction with a momentum resolution at the 10−4 level. The main characteristics

of the HRS are summarized in Table 3.3.
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Figure 3-20: Sideview of the Hall A High Resolution Spectrometer’s magnet
system[92].

3.7 Detector Package

The detector package for each HRS is installed in a shield hut with the data

acquisition electronics (DAQ) at the end of the HRS magnet group (id 14 in Fig. 3-

4). For E08-027 experiment, the detector configuration are shown in Fig. 3-21.

Details of these detectors will be discussed in this section.
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Configuration QQDQ vertical bend
Bending angle 45∘

Optical lengh 24.2 m
Momentum range 0.3-4.0 GeV/𝑐
Momentum acceptance (𝛿𝑝/𝑝) ±4.5%
Momentum resolution 2× 10−4

Dispersion at the focus (D) 12.4 m
Radial linear magnification (M) -2.5
𝐷/𝑀 5.0
Horizontal angular acceptance ±30 mrad
Vertical angular acceptance ± 60 mrad
Horizontal resolution 1.5 mrad
Vertical resolution 4.0 mrad
Solid angle at 𝛿𝑝/𝑝 = 0, 𝑦0 = 0 6 msr
Transverse length acceptance ±5 cm
Transverse position resolution 2.5 mm

Table 3.3: Main characteristics of the standard Hall A high resolution
spectrometers[92]. The resolution values shown are the FWHM values.
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Figure 3-21: Detector package for HRS.
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3.7.1 Vertical Drift Chambers

A pair of vertical drift chambers (VDC) are used to provide the particle tracking

information in each HRS. The tracking information combined with the spectrometer

optics can be used to reconstruct the position, angle, and momentum of the scattered

particles at the interaction point at the target.

The two VDCs are placed horizontally, with the long edge along the nominal

particle dispersive direction. The two chambers are separated by 335 mm, as shown

in Fig. 3-22. Each chamber is made of two wire planes (368 sense wires spaced by

4.24 mm per plane) in a UV configuration. Each plane is oriented at 90∘ to each

other and at 45∘ with respect to the dispersive direction.

The frame is applied at a negative high voltage of −4 kV and the wires are kept

at the ground level. The drift chambers are filled with a mixture of 62% argon and

38% ethane. Argon serves as the ionizing medium while ethane absorbs the photons

produced from ionization. When a charged particle crosses the VDC planes, it ionizes

the atoms along its path and leaves a track of electrons and ions along its trajectory

behind. The ionized electrons drift along the electric field lines at a velocity of ≈
50 𝜇m/ns and produce an electron avalanche as they approach the sense wires where

the electric field is the strongest. This avalanche fires the sense wires and generates a

timing signal which is then read out by a time to digital converter (TDC). Electrons

that travel across the wires at an angle 45∘ typically fire four to six wires, as shown in

Fig. 3-23. The “start” for the TDC is the signal from the sense wire while the event

trigger supervisor provides the “stop”. The drift distance for each wire in a cluster is

determined by the drift velocity and the TDC signal. A linear fit of the drift distance

gives the cross-over point at the sense wire plane. The trajectory of the particles can

be reconstructed by the VDC accurately with a position and an angle resolution of

100 𝜇m and 0.5 mrad, respectively.
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Figure 3-22: Top and sideview of the VDCs[92].

3.7.2 Scintillator Planes and Trigger Electronics

In E08-027 experiment, two scintillator planes, S1 and S2m, were used to form

the trigger for the DAQ system. Both planes are composed of overlapping paddles of

plastic scintillators[92], and are separated 2 m apart with S1 before the Cherenkov

detector and S2m after, as shown in Fig. 3-24. The S1 plane is comprised of 6

overlapping paddles, while there are 12 paddles for S2m. Each paddle is viewed by

two photomultiplier tubes (PMTs) placed at its two ends. The timing resolution for

each plane is about 0.3 ns. The main trigger T3 (T1) on Left HRS or LHRS (Right

HRS or RHRS) is formed as follows:

∙ A paddle in S1 is defined to be fired if there are signals from both its left and

right PMTs;
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Figure 3-23: Configuration of wire chambers[92, 104].

∙ A paddle in S2m is defined to be fired if there are signals from both its left and

right PMTs;

∙ One S1 paddle and one S2m paddle are both fired within a specified timing

window.

These main T3(T1) triggers represent “good” events. In order to monitor the efficiency

of the main trigger T3 (T1), a secondary trigger T4 (T2) was formed on LHRS

(RHRS). These efficiency triggers are formed exclusive to the main triggers as:

∙ Either the S1 or S2m plane fires, but not both.

∙ The event caused the gas Cherenkov to fire.

The T4 (T2) triggers represent possible “good” events but one of the scintillator planes

failed to detect.

All triggers are counted by helicity-gated scalers (deadtime-less) and sent to the

trigger supervisor (TS). The TS synchronizes all the detector readouts and determine
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Figure 3-24: A diagram of the S1 and S2m scintillator planes. Plot reproduced from
[115].

if the event should be sent to the DAQ system. When the event rate is high, the DAQ

system cannot read all events and has a deadtime (DT). The deadtime comes from

two sources: computer deadtime, which is related to the speed of data processing and

can be decreased by scaling the incoming events with a prescale value (𝑝𝑠) at the

TS; electronic deadtime, arises due to the response of the detectors and is usually

negligible compared to the computer deadtime. The fraction of events recorded by

the DAQ is called the livetime 𝐿𝑇 = 1−𝐷𝑇 and can be measured as:

𝐿𝑇± =
𝑝𝑠 · 𝑇±𝑎𝑐𝑐
𝑇±𝑡𝑜𝑡

, (3.20)

where ± denote the helicity status, 𝑇±𝑎𝑐𝑐 is the number of triggers accepted by the

DAQ for the corresponding helicity, and 𝑇±𝑡𝑜𝑡 is the total number of triggers for that

helicity recorded by the scaler.
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The trigger efficiency is defined as:

𝜂 =
𝑇𝑚𝑎𝑖𝑛

𝑇𝑚𝑎𝑖𝑛 + 𝑇𝑒𝑓𝑓

, (3.21)

where 𝑇𝑚𝑎𝑖𝑛 and 𝑇𝑒𝑓𝑓 are the total numbers of trigger counts for the main and the

efficiency triggers, respectively. Fig. 3-25 shows the trigger efficiency during E08-

027 experiment. The trigger efficiency was very high (mostly above 99%) for all

production runs, which contributes less than 1% correction to the cross section.

Figure 3-25: Trigger efficiencies for LHRS (left) and RHRS (right), using Eq. 3.21.
Plot reproduced from [116].

3.7.3 Gas Cherenkov Detector

E08-027 experiment measured inclusive electron scattering, thus the particle de-

tection must be able to distinguish electrons from background particles (mostly pions).

The gas Cherenkov detector was sandwiched between two scintillator planes to pro-

vide the PID information, together with two layers of lead glass calorimeter, which

will be discussed in Sec. 3.7.4.

The principle is that when a charged particle travels through a transparent ma-

terial (with refraction index 𝑛) at a speed higher than the light in that material, the

disturbance to the local electromagnetic field accumulates in the medium as a result

of limited response speed (light speed 𝑐/𝑛), thus a coherent shockwave is radiated
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at an angle 𝜃 = arccos( 1
𝑛𝛽
) with respect to the particle direction. This phenomenon

is known as Cherenkov radiation. Fig. 3-26 shows the geometry of the Cherenkov

radiation. The threshold for the production of Cherenkov radiation is given by

𝛽𝑐 ≥ 𝑐

𝑛
or 𝛽 ≥ 1

𝑛
(3.22)

which means the momentum of the particle of mass 𝑚 must satisfy:

𝑝 =
𝑚𝑣√︀

1− (𝑣
𝑐
)2
≥ 𝑚𝑐√

𝑛2 − 1
. (3.23)

Particle	travels
at	speed	𝑣 > #

$

Cherenkov	 light	direction

𝜃

Figure 3-26: Cherenkov radiation is emitted in a cone with 𝜃 = arccos( 1
𝑛𝛽
).

During the experiment, the Cherenkov tanks in both HRSs are filled with car-

bon dioxide gas with refraction index 𝑛 = 1.00041[92]. From Eq. 3.23, the momen-

tum threshold for electrons is 0.018 GeV/c, whereas the threshold for pions is 4.87

GeV/c. Thus, in the designed HRS momentum range 0.3 ∼ 4.0 GeV/c, electrons emit

Cherenkov radiation, but pions do not. So the gas Cherenkov detector can be used

to identify electrons from pions.
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The path length for a particle to travel in the Cherenkov detector is about 1.5 m.

10 spherical mirrors were installed partially overlapped to focus the Cherenkov light

to 10 PMTs. The signal from the PMTs passes through an analog-to-digital converter

(ADC) and is then summed together to represent the total light output for the cor-

responding event. However, particles, such as pions can still have a small probability

to generate Cherenkov light by producing 𝛿-electrons. These contamination events

can be further cleaned by using the lead-glass calorimeter in Sec. 3.7.4.

3.7.4 Lead Glass Calorimeters

In E08-027 experiment, two layers of lead glass in each HRS were used to provide

additional pion rejection capability in addition to that of the gas Cerenkov counter.

When high energy charged particles pass through a dense material like lead glass,

an electromagnetic shower of photons and electron-positron pairs are produced. The

total amount of light radiated is proportional to the energy deposited in the mate-

rial and can be detected by PMTs mounted at the ends of lead glass blocks. For

electrons, as well as positrons and photons, most of their energy will be deposited in

HRS’s calorimeters. However, charged hadrons, such as pions, have a low probabil-

ity to produce an electromagnetic shower, and they trigger only a small signal from

ionization energy loss. Therefore one can separate electrons and pions by looking at

the deposited energy difference.

The left and the right HRS calorimeters are slightly different in construction[92].

For LHRS, both layers of lead glass are oriented perpendicular to the particle’s track

and each contained 34 lead glass blocks of size 14.5 cm×14.5 cm×30 cm (first layer)

or 14.5 cm×14.5 cm×35 cm (second layer). The first layer is often referred as pionre-

jector 1, while the second layer pionrejector 2. For RHRS, the first layer (preshower)

consisted of 48 10 cm×10 cm×35 cm lead glass blocks oriented perpendicular to the

particle track. The second layer (shower) is composed of 80 15 cm×15 cm×35 cm

blocks and oriented parallel to the particle track. The major difference is that the

scattered electrons deposit their full energy in the RHRS calorimeter, while for the

LHRS they deposit only about 95% of energy at a momentum of 1 GeV and this
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fraction varies with energy.

SF-5

XP2050
Al 25 mm

14.5 x 14.5 x 30 (35) cm50 mm

XP2050 14.5 x 14.5 x 35 cm

R 3036

Al 19 mm

Al 13 mm

SF-5

10 x 10 x 35 cm

TF-1

HRS-L

HRS-R

Figure 3-27: The electromagnetic calorimeters in the HRS[92]. The scattered particles
direction is from bottom to top.
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Chapter 4

Data Analysis

In E08-027 experiment, the proton spin structure functions are extracted from

asymmetries and unpolarized cross sections measured using the polarized electron

beam scattering off polarized NH3 (proton) target, according to Eq. 2.57 and Eq. 2.58.

This chapter will present an overview of the data analysis.

4.1 Asymmetries and Cross-Sections

The longitudinal and transverse physics asymmetries are defined as the ratio of the

difference in polarized cross sections to the sum, and can be measured experimentally:

𝐴𝑝ℎ𝑦𝑠
‖,⊥ =

𝐴𝑟𝑎𝑤
‖,⊥

𝑓𝑃𝑏𝑃𝑡

, (4.1)

where f is a dilution factor to account for events arising from unpolarized material in

the target, 𝑃𝑏 is the beam polarization, 𝑃𝑡 is the target polarization, 𝐴𝑟𝑎𝑤 is the raw

asymmetry and can be calculated from the measured quantities (number of events

𝑁±, live time 𝐿𝑇±, charge 𝑄±) in the ± helicity state:

𝐴𝑟𝑎𝑤 =

𝑁+

𝐿𝑇+𝑄+ − 𝑁−

𝐿𝑇−𝑄−

𝑁+

𝐿𝑇+𝑄+ + 𝑁−

𝐿𝑇−𝑄−

. (4.2)
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The Born asymmetries, which is commonly used to compare with theoretical results

(applied in Eq. 2.57 and Eq. 2.58), can then be calculated from the physics asymmetry

by applying internal and external radiative corrections:

𝐴𝐵𝑜𝑟𝑛
‖,⊥ = 𝐴𝑝ℎ𝑦𝑠

‖,⊥ + 𝐴𝑒𝑥𝑡
‖,⊥ + 𝐴𝑖𝑛𝑡

‖,⊥. (4.3)

The physics unpolarized cross section is defined as the unpolarized cross section

from interested particle (proton) only, and can be expressed as the product of the

total raw unpolarized cross section 𝜎𝑟𝑎𝑤
0 and the dilution factor:

𝜎𝑝ℎ𝑦𝑠
0 = 𝑓𝜎𝑟𝑎𝑤. (4.4)

𝜎𝑟𝑎𝑤
0 can be calculated in terms of measurable quantities:

𝜎𝑟𝑎𝑤
0 =

𝑑2𝜎𝑟𝑎𝑤

𝑑Ω 𝑑𝐸 ′
=

𝑝𝑠 ·𝑁𝑎𝑐𝑐

𝐿𝑇 · 𝜖𝑑𝑒𝑡
1

𝑁𝑖𝑛𝜌Δ𝑧

1

ΔΩΔ𝐸 ′
(4.5)

where 𝑁𝑎𝑐𝑐 is the number of events survive the HRS acceptance and PID cuts, 𝑝𝑠

is the prescale factor, 𝐿𝑇 is the livetime, 𝜖𝑑𝑒𝑡 is the product of hardware and soft-

ware cut detector efficiencies, 𝑁𝑖𝑛 = 𝑄/𝑒 is the number of electrons incident on the

target measured from BCMs, 𝜌 is the target density, ΔΩ (Δ𝐸 ′) are the solid angle

(momentum) acceptance seen by the spectrometer, and Δ𝑧 is the target length.

The unpolarized Born cross section can be determined after applying external and

internal radiative corrections:

𝜎𝐵𝑜𝑟𝑛
0 = 𝜎𝑝ℎ𝑦𝑠

0 + 𝜎𝑖𝑛𝑡
0 + 𝜎𝑒𝑥𝑡

0 . (4.6)

Finally, the cross section difference can be expressed as

Δ𝜎𝑝ℎ𝑦𝑠
‖,⊥ = 2𝐴𝑝ℎ𝑦𝑠

‖,⊥ 𝜎𝑝ℎ𝑦𝑠
0 , (4.7)

and also need be radiative corrected to be compared with theoretical predictions.
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4.2 Detector Calibration and Efficiencies

The detector efficiency 𝜖𝑑𝑒𝑡 in Eq. 4.5 can be expressed as:

𝜖𝑑𝑒𝑡 = 𝜖𝑐𝑒𝑟𝜖𝑐𝑎𝑙𝜖𝑇 𝜖𝑉 𝐷𝐶 (4.8)

where 𝜖𝑉 𝐷𝐶 is the VDC efficiency, 𝜖𝑇 is the trigger efficiency, 𝜖𝑐𝑒𝑟 and 𝜖𝑐𝑎𝑙 are the

Cherenkov and lead glass calorimeter cut efficiencies respectively. The product 𝜖𝑃𝐼𝐷=𝜖𝑐𝑒𝑟·
𝜖𝑐𝑎𝑙 is also called the PID efficiency.

4.2.1 Gas Cherenkov

As discussed in Sec. 3.7.3, the Gas Cherenkov provides part of the particle iden-

tification for E08-027 experiment. In this section, the calibration procedure and its

cut efficiency will be discussed.

4.2.1.1 Calibration

The gas Cherenkov contains 10 individual mirrors to focus the Cherenkov light to

10 individual PMTs. The signal sum of the 10 ADC signals of PMTs is used as one

of the PID cuts to select electron events. Calibration of the gas Cherenkov is to align

the response of all 10 ADC signals by setting their single photo-electron (SPE) peaks

at one particular ADC channel. A good electron event usually produces multiple

photoelectrons in the gas Cherenkov, while the SPE events result from secondary

scattering (such as pion-induced 𝛿 electrons) within the detector or from noise in the

photomultiplier tube.

A typical signal for the ADC of one PMT is shown in the left plot of Fig. 4-1. To

isolate the SPE peak (around 120) cleanly, one needs to remove the contribution from

the pedestal and the main peak. Fig. 4-2 shows the geometric cut combined with tight

timing cuts that are applied to exclude the pedestal and the main peak contributions.

The isolated peak is fitted with a Landau-Gaussian convolution function to account

for the residual background tail leftover after cuts are applied, as shown in the right
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Figure 4-1: A typical ADC signal from one PMT of Gas Cherenkov.

plot of Fig. 4-1. Once the center of the peak is determined from the fit, a calibration

constant is obtained to shift that peak to channel 100 for all 10 PMT signals.

4.2.1.2 Cut Efficiency

Gas Cherenkov is used to identify good electron events to be used in the final

analysis by cutting out other events, such as pions. As seen in Fig. 4-1, on the left side

of the ADC spectrum, there are some pedestal or 𝛿-electron events and these events

need be removed. The Cherenkov cut is optimized to maximize the pion rejection

efficiency while minimizing the inefficiency caused by removing good electron events.

To determine the cut efficiency for Cherenkov on the LHRS, a electron sample

was chosen in the lead glass calorimeter which are well separated from the pedestal

or pion events, while a pion sample was selected to be away from the good electron

events, as shown in the left plot of Fig. 4-3. The electron cut efficiency 𝜖𝑐𝑒𝑟 can be
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Figure 4-2: The geometric cut (right) and a tight timing cut (left) to isolate the SPE
peak. The green curve are the selected events for both plots. The geometric cut
is to exclude the main peak events, while the timing cut is to minimize the noise
background. Most of selected events come from photon leakage of adjacent mirrors.

defined as:

𝜖𝑐𝑒𝑟 =
𝑁𝑒−𝑎𝑐𝑐

𝑁𝑒−𝑡𝑜𝑡
, (4.9)

where 𝑁𝑒−𝑎𝑐𝑐 is the number of events in the electron sample (with total sample number

𝑁𝑒−𝑡𝑜𝑡) that survive the Cherenkov cut selection, and the pion rejection efficiency 𝜂𝑐𝑒𝑟

is defined by

𝜂𝑐𝑒𝑟 =
𝑁𝜋−𝑎𝑐𝑐

𝑁𝜋−𝑡𝑜𝑡
, (4.10)

where 𝑁𝜋−𝑎𝑐𝑐 is the number of events in 𝜋 sample (total sample number 𝑁𝜋−𝑡𝑜𝑡) that

survive the Cherenkov cut selection.

The cut optimization for Cherenkov cut is shown in the right plot of Fig. 4-3.

The cut is defined as the sum of 10 ADC signals above a chosen ADC channel. The
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electron cut efficiency remains flat when cutting below ADC channel 200 and then

decreases, while the pion rejection efficiency increases rapidly till 120 and then slightly

increases for higher cut. During data analysis, the gas Cherenkov cut was placed at

channel 150 for RHRS, while on the LHRS the cut was placed at channel 200. The

electron cut efficiency is maintained high for both cases, as shown in Fig. 4-4.

v

Cherenkov	ADC	Cut

Electron	sample

pion	sample

Figure 4-3: An optimization of Cherenkov Cut. The left plot shows the sample
selection using left HRS pion rejectors while the right shows the electron cut and
pion rejector efficiencies versus cut. The red vertical line located at ADC channel 210
shows the electron cut with an electron efficiency 99.9%.

Figure 4-4: Electron cut efficiencies for the gas Cherenkov on the left and right
HRS. The data points include one representative run for each kinematic setting. Plot
reproduced from [117].
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4.2.2 Lead Glass Calorimeter

As discussed in Sec. 3.7.4, the lead glass calorimeter provides particle identifica-

tion in addition to the Gas Cherenkov for E08-027 experiment. In this section, the

calibration procedure and its cut efficiency will be discussed.

4.2.2.1 Calibration

There are two layer of lead glass in each HRS. The layers of the LHRS calorimeter

are referred as the first and second layer of the pion rejector (prl1 and prl2), while

the two layers of the RHRS are referred as the preshower and shower for RHRS. The

calibration is to convert the raw ADC signal from each PMT to the energy deposited

within the corresponding lead glass block. Since the cascade of secondary particles is

typically spread over several adjacent blocks of lead glass, the output of these blocks

are summed to give the deposited energy.

As mentioned in Sec. 3.7.4, the calorimeter on RHRS is a full energy absorber

(thickness around 20 radiation length) that absorbs the total energy of electrons. Its

calibration is very straightforward, and the calibration constant can be obtained from

the 𝜒2 minimization:

𝜒2 =
𝑛∑︁
𝑖

[︃∑︁
𝑗

𝐶𝑗 · (𝐴𝑖
𝑗 − 𝑝𝑗) +

∑︁
𝑘

𝐶𝑘 · (𝐴𝑖
𝑘 − 𝑝𝑘)− 𝑃𝑘𝑖𝑛𝑖

]︃2
(4.11)

where 𝑖 is for summing over all events used for the calibration; for each event, 𝑗 (𝑘)

is the 𝑗-th (𝑘-th) block in the preshower (shower), 𝐴𝑖
𝑗 (𝐴𝑖

𝑘) is the ADC value of the

𝑗-th (𝑘-th) block in the preshower (shower), 𝑝𝑗 (𝑝𝑘) is the pedestal value of the 𝑗-th

(𝑘-th) block in the preshower (shower), 𝑃 𝑖
𝑘𝑖𝑛 is the momentum of the 𝑖-th event, and

𝐶𝑗 (𝐶𝑘) is the calibration constant to be determined for the preshower (shower).

However, for the LHRS, the electron energy is not fully deposited. Assuming the

nominal electron track direction as the longitudinal direction, the average longitudinal
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shower profile can be described by a gamma distribution[118]:

𝑑𝐸

𝑑𝑡
= 𝐸0𝛽(𝛽𝑡)

𝛼−1 𝑒
−𝛽𝑡

Γ(𝛼)
(4.12)

where 𝑡 is the shower depth expressed in radiation length, 𝑡𝛼−1 describes the rising

part of the shower profile where particle multiplication occurs, 𝑒−𝛽𝑡 represents the

absorption process (Compton and photo effect for photons, stopping of electrons

due to ionization) dominating at larger distance, 𝛼 and 𝛽 are parameters, Γ(𝛼) =∫︀∞
0

𝑒−𝑧𝑧𝛼−1𝑑𝑧. The shower max is found to grow logarithmically with energy 𝐸0 of

the incident particle

𝑡𝑚𝑎𝑥 =
𝛼− 1

𝛽
= 𝑙𝑛(

𝐸0

𝐸𝑐

)− 0.5. (4.13)

Therefore, the pion rejector can be calibrated in two steps:

The first step of calibration is to align the signal response for all blocks in each

layer. As shown in Fig. 4-5, the pedestal signal is fitted with Gaussian function for

the 22-th block in pion rejector 1 in the left plot, while the main signal is fitted with

Gauss-Landau function in the right plot. The difference in the two peak positions

defines the response of the block.

The second step is to obtain the proportional gain for each layer to convert to the

deposited energy by fitting for all events:

𝜌𝐸 ′𝑝𝑟𝑙1 + 𝜇𝐸 ′𝑝𝑟𝑙2 =

∫︁ 𝑇

0

𝑑𝐸

𝑑𝑡
(4.14)

where 𝐸 ′𝑝𝑟𝑙1 and 𝐸 ′𝑝𝑟𝑙2 are the sum of all aligned ADC signal (main peak signal sub-

tracted by the corresponding pedestal) in pion rejector 1 and 2 respectively, 𝜌 and

𝜇 are the gain factor to be determined from the calibration, and 𝑇 is the radiation

thickness of the trajectory. For the pion rejector, the lead glass type SF-5 has radi-

ation length X0 = 2.55 cm and critical energy 𝐸𝑐 = 15.8 MeV, and a total radiation

thickness 𝑇 = 11.3 X0 for a nominal trajectory. Fig. 4-6 shows the reconstructed total

energy versus momentum for all production momentum settings after calibrations.
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Figure 4-5: Pedestal signal (left) and Main signal (right) for the 22-th block in pion
rejector 1.
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Figure 4-6: Reconstructed total energy versus momentum for pion rejector.
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4.2.2.2 Cut Efficiency

Lead glass calorimeter was used to provide two standard PID cuts: one cut on the

first layer of lead glass, the other on the total energy deposited in the calorimeter.

Similar to the optimizing of Cherenkov cut, the lead glass cuts are studied using

pure/clean electron sample events selected using the Cherenkov signal, and the cuts

are optimized that the overall electron detection efficiency does not fall below 99%.

The cuts are momentum dependent. The electron cut efficiency for lead glass is shown

in Fig. 4-7.

Figure 4-7: Electron cut efficiencies for the lead glass on the left and the right HRS.
The data points include one representative run for each kinematic setting. Plot
reproduced from [117].

After applying both Cherenkov cuts and lead glass cuts, the level of residual pion

contamination is very low, with 𝜋/𝑒 < 0.0052 for all kinematic settings for both the

left and right HRS[117].

4.2.3 VDC

As discussed in Sec. 3.7.1, the VDC provides particle tracking information for

E08-027 experiment. In this section, the calibration procedure and its efficiency will

be discussed.
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4.2.3.1 Calibration

The VDC provides the tracking information by measuring the timing difference

of signals in all sensed wires when a particle passes through. To compare the drift

time spectrum from all the sensed wires, one need to remove timing offset due to

the different cable length or signal processing for different wires. The calibration is

to provide a reference timing position 𝑡0 for the TDC spectrum of each wire in the

plane. This reference position is determined by differentiating the region of short

drift times channel by channel to select the max-slope and then extrapolating the

max-slope point linearly to the channel axis. The point of intersection is chosen as

𝑡0. Then the TDC spectrum is shifted so the 𝑡0 is positioned at 0. Fig. 4-8 shows a

typical time spectrum after 𝑡0 correction.
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Figure 4-8: A typical time spectrum after 𝑡0 correction for all wires on one VDC
plane for one run. The red linear curve is the max-slope point extrapolated to the
horizontal axis, to check the 𝑡0 correction.

The time spectrum of Fig. 4-8 is not flat and has several features. Assuming a

99



uniform number of trajectories crossing the VDC area, in an element of drift cell, the

number of events per time bin can be expressed as:

𝑑𝑁

𝑑𝑡
=

𝑑𝑁

𝑑𝑠

𝑑𝑠

𝑑𝑡
(4.15)

where ds is an element of distance along an electric field line in the drift cell, dN/ds

is the linear density of tracks along ds, and ds/dt is the mean drift velocity of the

ionization within ds. The distinct regions of the time spectrum can be understood as

follows[119]:

∙ Region A: region near the HV frame, particles has larger trajectory angles and

intersecting a smaller portion of the cell near the HV frame, which results in a

less detecting probability (smaller dN/ds) and a long drifting time.

∙ Region B: a flat respond region with all the field lines are parallel, and hence

a constant dN/ds and ds/dt.

∙ Region C: the transition region where field lines begin to change from parallel

to quasi-radial closer to the sense wires, dN/ds begins to increase while ds/dt

remains more or less constant.

∙ Region D: the region very close to the sense wires where the drift velocity

ds/dt increases drastically and dN/ds goes through a maximum.

4.2.3.2 Efficiency

The VDC efficiency is defined as the fraction of good events with a successful

track reconstruction to the total events.

For the HRS set-up, we can use the PID and acceptance cuts to select a clean

sample of electrons and study how many of these events have valid tracks as well as

blocks along such tracks to verify good track reconstruction. The VDC efficiency can

then be redefined as:

𝜖𝑉 𝐷𝐶 =
𝑁𝑔𝑜𝑜𝑑

𝑁𝑡𝑜𝑡

(4.16)
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where 𝑁𝑡𝑜𝑡 is the total number of events that survive the acceptance and PID cuts

(sample), and 𝑁𝑔𝑜𝑜𝑑 is the number of events with a successful track reconstruction

and which is also verified by the lead glass calorimeter signal. PID cuts used here

in 𝑁𝑡𝑜𝑡 are the combination of Cerenkov and lead glass cuts and do not contain any

track information.

Under normal conditions, each detected particle leaves only one track in the VDC,

but multi-track events can occur when there is noise or several particles passing

through VDC simultaneously. For most of 6 GeV era experiments in Hall A, the

event rate is low and only a small fraction of events has multi-tracks. Usually, only

events with a single track are used in the physics analysis for convenience, thus the

physics result need be corrected for the loss due to multi-track events. Since the

fraction of multi-track events is tiny, one can simply assume the multi-track events

contains at least one good track and have the similar distribution with the single-track

events, then Eq. 4.16 can be written as:

𝜖𝑉 𝐷𝐶 =
𝑁𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑟𝑎𝑐𝑘

𝑁𝑡𝑜𝑡

(4.17)

where the 𝑁𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑟𝑎𝑐𝑘 is the number of events with good single-track events in the

sample.

For kinematics settings with higher event rates, the fraction of multi-track events

also become higher. Fig. 4-9 shows the main trigger (T3) raw rate versus momentum

in the top plot while the fraction of multi-track event is shown in the bottom plot.

Form Fig. 4-9, one can see that the fraction of multi-track events can reach 30%

for some kinematic settings. The multitrack events must be examined carefully to

determine whether or not the event has one or more good track reconstructed in the

VDC.

4.2.3.2.1 Geometry Correction

In principle, the PID cuts are usually applied in terms of the sum of ADCs in the

detector, and thus the PID efficiency does not depends on the accuracy of knowing the
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position for the detectors as long as they cover the whole acceptance for all trajectories

from the HRS. However, in order to precisely reconstruct the VDC track information,

the position of the detector package, especially the lead glass calorimeters respect

to the VDC, must be measured or known accurately. One can then point the VDC

trajectory to the correct location in the calorimeter to sum up the total deposited

energy in the adjacent blocks. However, the position of the calorimeter was not

measured in the experiment.

Fortunately, this information can be recovered from data. Fig. 4-10 shows the

pointing from VDC to the pion rejector using the VDC track information and the

geometry (such as distance and orientation between the VDC and the lead glass)

in the Hall A Analyzer database. Each layer of lead glass consists of 2 × 17 blocks

arranged as in Fig. 4-11. The reconstructed track location in the pion rejector is

shown in Fig. 4-12. The top plot of Fig. 4-12 shows the events in the center blocks

(8-th and 25-th) of pion rejector 1 with the previous geometry configuration, while

the bottom plots shows the events in two groups of blocks (one group is 3-th and

20-th, the other is 11-th and 28-th) separated by a distance of 8 blocks. The top plot

tells the offset of pion rejector in the �̂� (vertical) direction compared to the database,

while the bottom plot tells the offset along the nominal particle direction 𝑧. From

Fig. 4-12, the pion rejector prl1 and prl2 were moved ≈ 42 cm along the 𝑧 direction

and ≈ 21 cm in the �̂� direction compared to the previous geometry stored in the Hall

A Analyzer database.

After correcting the geometric information of the lead glass blocks in the database,

a cross check was done by comparing the reconstructed center in the pion rejector

(using VDC tracking information) with the cluster center of the energy deposited in

the pion rejector. The cluster center is the ADC signal weighted location of the 2× 3

blocks (2 blocks along 𝑦 and 3 blocks along �̂�) around the block with the maximum

ADC signal. The comparison is shown in Fig. 4-13. For around 99.6% of good

single-track electron events, the reconstructed track center is located within half of

a block compared to the averaged cluster center of the deposited energy in the pion

rejector. The wave-like pattern is due to that most of the deposited energy (∼ 90%)
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Figure 4-11: The arrangement of the blocks in one layer of lead glass (pion rejector).

104



was deposited in one block in the �̂� direction. Similar procedure was followed for the

RHRS preshower and shower geometric information and the cross check.

Figure 4-12: Positions check for pion rejector 1 (prl1) in LHRS. L.prl1.y and L.prl1.x
is the pointed position at prl1 from VDC tracking information by using the values in
the previous Hall A Analyzer Database. However, the distance between Block #3 and
#11 was 8 block width (1.2 m) in reality but the plot shows 1.08 m. In addition, the
Block #8 center would be located at the origin point according to the same database
while the plot shows -19 cm. The block positions were moved 42 cm further in 𝑧 and
21 cm in the 𝑥 direction.
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Figure 4-13: Distribution of reconstructed center compared with the real energy-
averaged cluster center in the lead glass after updating the geometric information in
the database.

4.2.3.2.2 Efficiency and Systematic Study

As mentioned in Sec. 4.2.3.2, for each multi-track event, a careful examination

is needed to determine whether there is at least one good track reconstructed by

the VDC. A multi-track event is expected to be good if the energy deposited in the

calorimeter by one of the tracks satisfies the PID cuts and this track is also within

the acceptance cuts used to select the sample. Fig. 4-14 shows the acceptance used

for this study in LHRS. The track number distribution for the kinematics with beam

energy 𝐸𝑏 = 1.157 GeV and spectrometer momentum 𝑃0 = 1.082 GeV is shown in

Table 4.1.

After correcting the geometry in Sec. 4.2.3.2.1, the track information from VDC

can be mapped to the energy deposited in the lead glass. Fig. 4-15 shows the deposited

energy (sum of both layers) distribution in the pion rejector for track #1 (𝐸1) and

track #2 (𝐸2) in two-track events. There are four distinct areas in Fig. 4-15:
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Figure 4-14: LHRS acceptance cuts. The red line represents the raw variable and the
green line indicates the selected events.

Number of tracks 0 1 2 3 4 5 6 7 More than 7
Probability (%) 0.11 71.37 18.05 7.13 2.10 0.76 0.28 0.11 0.09

Table 4.1: Track number distribution for the kinematic setting with beam energy
𝐸𝑏 = 1.157 GeV and spectrometer momentum 𝑃0 = 1.082 GeV.

∙ Region A: 𝐸1 < 𝐸𝑃𝐼𝐷 and 𝐸2 < 𝐸𝑃𝐼𝐷 where 𝐸𝑃𝐼𝐷 is the PID cut for the total

energy deposited in the two layers of lead glass. In this area, the events could

not pass through PID cuts, so no good track is expected.

∙ Region B: 𝐸1 ≥ 𝐸𝑃𝐼𝐷 and 𝐸2 < 𝐸𝑃𝐼𝐷. If the first track is within acceptance

and its energy deposited in the first layer of lead glass also satisfies the PID

energy cut in the first layer (this is the other PID cut only on the first layer of

lead glass, see Sec. 4.2.2), track 1 is expected to be good not track 2.

∙ Region C: 𝐸1 < 𝐸𝑃𝐼𝐷 and 𝐸2 ≥ 𝐸𝑃𝐼𝐷, similar to Region B, but now track 2

is good but not track 1.
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Figure 4-15: Distribution of deposited energy in the LHRS pion rejector for track
#1 (𝐸1) and track #2 (𝐸2) in two-track events for Run 5039 with spectrometer
momentum 𝑃0 = 1.082 GeV. The green square represents the cut 𝐸𝑃𝐼𝐷 < 𝐸1, 𝐸2 <
2𝐸𝑃𝐼𝐷.

∙ Region D: 𝐸1 > 2𝐸𝑃𝐼𝐷 or 𝐸2 > 2𝐸𝑃𝐼𝐷. if one track is within acceptance and

its energy deposited in the first layer of lead glass also satisfies the PID energy

cut in this layer (this is the other PID cut only on the first layer of lead glass,

see Sec. 4.2.2), at least one good track is expected.

∙ Region E: the green square with 𝐸𝑃𝐼𝐷 < 𝐸1, 𝐸2 < 2𝐸𝑃𝐼𝐷. These events can

arise from two good tracks, or one good track and one noise track, or two noise

tracks, so need be treated more carefully. Fig. 4-16 shows the distance between
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two tracks for these events in both x and y directions.

– Case I: there is at least one block distance between the pointed blocks

at lead glass, it is safely to count at least one good track, since typically

around 95% of energy is deposited in one lead glass.

– Case II: two tracks came into the lead glass within a distance of one

block width (no block between them), which is the peak distribution in

the left plot of Fig. 4-16. In this case, two tracks overlapped in the energy

deposition and it is difficult to separate the energy contribution from each

track. Several kinds of cluster overlaps are shown in Fig. 4-17. If one

cluster energy subtracts twice the energy deposited in the directly pointed

blocks by another track, satisfying the PID and acceptance cuts, we can

also expect it to have at least one good track. These events may occur due

to knock-out 𝛿 electrons or misconstructed tracks in the VDC.

Figure 4-16: Distance distribution in x (left) and y (right) for two track events with
𝐸𝑃𝐼𝐷 < 𝐸1, 𝐸2 < 2𝐸𝑃𝐼𝐷. The Green curves indicates the size of one single block.
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Figure 4-17: Several kinds of cluster overlap between two tracks in pion rejector. Red
and blue line represents two trajectory.

The VDC inefficiency gives the upper limit of systematic uncertainty of VDC

efficiency while the unresolved tracks bring the lower limit of systematic uncertainty.

For run number 5039, with the beam energy 𝐸 = 1.157𝐺𝑒𝑉 and momentum 𝑝0 =

1.082𝐺𝑒𝑉/𝑐, the two-track event probability is 18.05% and the good two-track events

is 17.72+0.33
−0.78%. Fig. 4-18 shows the fraction of good events in the two-track events

among the sample.

A software was developed to analyze the multi-track events up to 7-track. For

the run number 5039, the probability for an event entry to have one or more good

tracks is 98.81+1.19
−1.67% while the probability for an event entry to have only one track

and be good is 71.10%. For multi-track events that have two or more good electrons,

the probability is very low at this ∼ 100 ns TDC timing window and the effects is

expected to be properly corrected by the deadtime. The distribution of total VDC

track efficiency (at least one good track) versus spectrometer momentum is shown in

Fig. 4-19 for LHRS and Fig. 4-20 for RHRS.
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Figure 4-18: The fraction of events with at least one good track among the two-track
events in the sample.
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Figure 4-19: LHRS VDC efficiency with systematic uncertainty
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Figure 4-20: RHRS VDC efficiency with systematic uncertainty

4.3 Packing Fraction Analysis

In E08-027 experiment, the ammonia beads were used as the target material and

filled into a 2.83 cm length cell and immersed in liquid helium, as shown in Fig. 4-21.

Due to the size and shape of the ammonia beads, some liquid Helium also filled the

space between beads. The packing fraction (𝑝𝑓), or the effective length of ammonia

target material immersed in the liquid helium, can change for each material sample

and must be understood. The packing fraction can be extracted from data collected

using the NH3 target, the dummy target, the empty target (same as dummy target,

but no endcaps and NMR coils), and the carbon target described in Sec. 3.4[120].

These runs obtained from non-NH3 target are referred as "dilution runs".

In general, the normalized yields from a given material x can be written as:

𝑌𝑥 =
𝐴𝑁𝐴𝜌𝑥𝐿𝑥𝜎𝑥

𝑀𝑥

(4.18)

where 𝑁𝐴 is Avogadro’s number, 𝐴 is the experimental acceptance factor, 𝜌𝑥 is the
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Figure 4-21: NH3 target in the target nose. The target nose is 4.20 cm in diameter,
the target cell length is 2.83 cm, each of the aluminum endcap has a thickness of 0.7
mil.

material density, 𝑀𝑥 is the molar mass, 𝐿𝑥 is the material thickness, and 𝜎𝑥 is the

cross section for the material with radiative effects included.

Denote the measured yields for NH3 target, the dummy target, the empty target

and the carbon target as 𝑌𝑝𝑟𝑜𝑑, 𝑌𝑑𝑢𝑚𝑚𝑦, 𝑌𝑒𝑚𝑝𝑡𝑦, 𝑌𝑐𝑎𝑟𝑏𝑜𝑛. Following Eq. 4.18, these

yields can be expressed as:

𝑌𝑝𝑟𝑜𝑑 = 𝐴𝑁𝐴

[︂
𝜌𝑁𝐻3𝐿𝑐𝑒𝑙𝑙 · 𝑝𝑓

𝑀𝑁𝐻3

(𝜎𝑁 + 3𝜎𝐻) +
𝜌𝐻𝑒(𝐿𝑡𝑜𝑡𝑎𝑙 − 𝐿𝑐𝑒𝑙𝑙 · 𝑝𝑓)𝜎𝐻𝑒

𝑀𝐻𝑒

+
𝜌𝐴𝑙𝐿𝐴𝑙𝜎𝐴𝑙

𝑀𝐴𝑙

]︂
,

(4.19)

𝑌𝑒𝑚𝑝𝑡𝑦 = 𝐴𝑁𝐴
𝜌𝐻𝑒𝐿𝑡𝑜𝑡𝑎𝑙𝜎𝐻𝑒

𝑀𝐻𝑒

, (4.20)

𝑌𝑑𝑢𝑚𝑚𝑦 = 𝐴𝑁𝐴

[︂
𝜌𝐻𝑒𝐿𝑡𝑜𝑡𝑎𝑙𝜎𝐻𝑒

𝑀𝐻𝑒

+
𝜌𝐴𝑙𝐿𝐴𝑙𝜎𝐴𝑙

𝑀𝐴𝑙

]︂
, (4.21)

𝑌𝑐𝑎𝑟𝑏𝑜𝑛 = 𝐴𝑁𝐴

[︂
𝜌𝐶𝐿𝐶𝜎𝐶

𝑀𝐶

+
𝜌𝐻𝑒(𝐿𝑡𝑜𝑡𝑎𝑙 − 𝐿𝐶)𝜎𝐻𝑒

𝑀𝐻𝑒

]︂
, (4.22)

where 𝑝𝑓 is the packing factor, 𝐿𝑡𝑔 is the cell thickness 2.83 cm, and 𝐿𝑡𝑜𝑡𝑎𝑙 is the

effective length (3.70 cm) of the target nose along the beam line. From Eqs. 4.19-

4.22, the production yields 𝑌𝑝𝑟𝑜𝑑 can then be expressed in terms of dilution run yields

𝑌𝑑𝑢𝑚𝑚𝑦, 𝑌𝑒𝑚𝑝𝑡𝑦, 𝑌𝑐𝑎𝑟𝑏𝑜𝑛 as

𝑝𝑓 =
𝑌𝑝𝑟𝑜𝑑 − 𝑌𝑑𝑢𝑚𝑚𝑦(︁

𝑀𝐶𝜌𝑁𝐻3
𝐿𝑐𝑒𝑙𝑙·𝑝𝑓

𝑀𝑁𝐻3
𝜌𝐶𝐿𝐶

)︁(︁
𝑌𝑐𝑎𝑟𝑏𝑜𝑛 − 𝐿𝑡𝑜𝑡𝑎𝑙−𝐿𝐶

𝐿𝑡𝑜𝑡𝑎𝑙
𝑌𝑒𝑚𝑝𝑡𝑦

)︁
(𝑎+ 3𝑏)− 𝑐 𝐿𝑐𝑒𝑙𝑙

𝐿𝑡𝑜𝑡𝑎𝑙
𝑌𝑒𝑚𝑝𝑡𝑦

, (4.23)
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where 𝑎 represents the factor used to scale 𝜎𝐶 (carbon target) to 𝜎𝑁 (in the ammonia

target), 𝑏 represents the factor used to scale 𝜎𝐶 (carbon target) to 𝜎𝐻 (in the ammonia

target), and 𝑐 represents the factor used to scale 𝜎𝐻𝑒 (empty target) to 𝜎𝐻𝑒 (in the

ammonia target), see detailed discussions about the scaling factor 𝑎, 𝑏, 𝑐 in Ref.[120].

In the DIS region, an approximation for factor 𝑎 is to take the ratio of the number of

constituent nucleons in each material as 𝜎14𝑁 = 7
6
𝜎𝐶 → 𝑎 = 7

6
if radiation thickness

is the same for NH3 and carbon targets.

A calculated packing fraction versus the energy transfer 𝜈 for material ID 19 is

shown in Fig. 4-22. A linear fit is performed in the large 𝜈 region where there is

a good approximation for cross section scaling[120, 121, 122] to obtain the packing

fraction with 𝑝𝑓 = 0.597 ± 0.025. In E08-027 experiment, a total of 10 different

ammonia samples were used. The results are shown in Table 4.2. See Ref. [120] for

more details about packing fraction analysis.

Figure 4-22: Calculated packing fraction with a linear fit at large 𝜈 for material ID
19. Each points represents a run configuration. Plot reproduced from [120].

114



Beam Energy (GeV) Field (T) Field Angle (degree) Material ID Packing Fraction
2.254 5 0 17 0.516±0.019
2.254 5 0 18 0.581±0.019
2.254 5 90 19 0.597±0.025
2.254 5 90 20 0.610±0.028
3.350 5 90 19 0.644±0.015
3.350 5 90 20 0.544±0.011
2.254 2.5 90 7 0.630±0.048
2.254 2.5 90 8 0.658±0.051
1.710 2.5 90 7 0.770±0.059
1.710 2.5 90 8 0.850±0.066

Table 4.2: Packing fractions for each kinematics. For 1.1 GeV setting, the packing
fraction of material ID 11, 12, and 14 are still being studied. The parking fraction
obtained were different for the same material in different kinematic setting, which
may due to fact that the target cells were changed out and warmed up during the
kinematic setting change. Table reproduced from [120].

4.4 Dilution Analysis

The measured asymmetry is diluted by contributions from the unpolarized mate-

rial in the target, such as nitrogen, liquid helium and the aluminum foil end caps on

the ammonia target cups, and thus needs be corrected by a dilution factor to remove

the contamination to get physics asymmetry as shown in Eq. 4.1.

The raw asymmetry can be written as:

𝐴𝑟𝑎𝑤 =
𝑌 +
𝐻 − 𝑌 −𝐻

𝑌 +
𝐻 + 𝑌 −𝐻 + 𝑌𝑏𝑔

, (4.24)

where 𝑌 +
𝐻 and 𝑌 −𝐻 are the yields arise from polarized proton with positive and negative

helicity states, respectively, and 𝑌𝑏𝑔 is the yields of electrons scattered from various

unpolarized materials:

𝑌𝑏𝑔 = 𝑌𝑁 + 𝑌𝐻𝑒 + 𝑌𝐴𝑙

= 𝐴𝑁𝐴

[︂
𝜌𝑁𝐻3𝐿𝑐𝑒𝑙𝑙 · 𝑝𝑓

𝑀𝑁𝐻3

(𝜎𝑁) +
𝜌𝐻𝑒(𝐿𝑡𝑜𝑡𝑎𝑙 − 𝐿𝑐𝑒𝑙𝑙 · 𝑝𝑓)𝜎𝐻𝑒

𝑀𝐻𝑒

+
𝜌𝐴𝑙𝐿𝐴𝑙𝜎𝐴𝑙

𝑀𝐴𝑙

]︂
,

(4.25)
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where 𝑝𝑓 is the packing fraction determined in the previous section. Similar to the

packing fraction analysis, 𝑌𝑏𝑔 can be formed using dilution run data from carbon,

dummy, empty targets. Then Eq. 4.25 can be written as the yields of these dilution

runs:

𝑌𝑏𝑔 =

(︂
𝑀𝐶𝜌𝑁𝐻3𝐿𝑐𝑒𝑙𝑙 · 𝑝𝑓

𝑀𝑁𝐻3𝜌𝐶𝐿𝐶

)︂(︂
𝑌𝑐𝑎𝑟𝑏𝑜𝑛 −

𝐿𝑡𝑜𝑡𝑎𝑙 − 𝐿𝐶

𝐿𝑡𝑜𝑡𝑎𝑙

𝑌𝑒𝑚𝑝𝑡𝑦

)︂
𝑎− 𝑐

𝐿𝑡𝑔

𝐿𝑡𝑜𝑡𝑎𝑙

𝑌𝑒𝑚𝑝𝑡𝑦, (4.26)

where 𝑎 and 𝑐 are the scaling factors discussed in Sec. 4.3.

Comparing Eq. 4.1 and Eq. 4.24, the dilution factor 𝐷𝑓 can be calculated as:

𝐷𝑓 = 1− 𝑌𝑏𝑔

𝑌𝑝𝑟𝑜𝑑

= 1−

(︁
𝑀𝐶𝜌𝑁𝐻3

𝐿𝑐𝑒𝑙𝑙·𝑝𝑓
𝑀𝑁𝐻3

𝜌𝐶𝐿𝐶

)︁(︁
𝑌𝑐𝑎𝑟𝑏𝑜𝑛 − 𝐿𝑡𝑜𝑡𝑎𝑙−𝐿𝐶

𝐿𝑡𝑜𝑡𝑎𝑙
𝑌𝑒𝑚𝑝𝑡𝑦

)︁
𝑎− 𝑐 𝐿𝑡𝑔

𝐿𝑡𝑜𝑡𝑎𝑙
𝑌𝑒𝑚𝑝𝑡𝑦

𝑌𝑝𝑟𝑜𝑑

,

(4.27)

The dilution results calculated via Eq. 4.27 are shown in Fig. 4-23 and Fig. 4-24.

The uncertainty is dominated by systematic uncertainties. The largest contribution

is from the model used for cross section scaling, typically (5-10)% depending on the

target. The dilution results for 𝐸𝑏 = 1.1 GeV and 𝐸𝑏 = 3.3 GeV setting are still being

studied. See Ref.[120] for more details about dilution analysis.

Figure 4-23: Dilution factors for 𝐸𝑏 = 1.710 GeV, field 2.5 T transverse setting (left)
and 𝐸𝑏 = 2.254 GeV, field 2.5 T transverse setting (right). Plot reproduced from
[120].
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Figure 4-24: Dilution factors for 𝐸𝑏 = 2.254 GeV, field 5 T transverse setting (left)
and 𝐸𝑏 = 2.254 GeV, field 5 T longitudinal setting (right). Plot reproduced from
[120].

4.5 Optics and Simulation

4.5.1 Spectrometer Optics Study

As discussed in Sec. 3.7.1, the VDC provides the particle tracking information

by determining the raw wire hits and drift times. Two spatial and two angular

variables are extracted from VDC signals to represent the event in the focal plane

(𝑓𝑝) coordinate system. The kinematic variables at the target of each event can then

be reconstructed from the focal plane coordinates using the spectrometer optics. The

spectrometer optics describes the property of the magnet system of the spectrometer

in which the charged particle travels like light through lenses. In the standard HRS (or

HRS + septum) configuration, a single calibrated matrix is introduced to describe the

optics. In E08-027 experiment, the strong transverse field makes the single matrix

method challenging. Instead, a two-step reconstruction was used to separate the

target field effects from the standard magnets system[123]. In the target region, the

motion of particles is calculated using the equation of motion of charged particles

in the magnetic field, while a optics matrix is optimized to describe the particles’

motion outside of the target region. In this section, an overview of the procedures of

spectrometer optics is discussed, more details can be found in Ref. [123].
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4.5.1.1 Coordinate System

A short overview of the target and focal plane coordinate systems used in the

spectrometer optics study is presented. More details can be found in reference [124].

4.5.1.2 Hall Coordinate System (HCS)

Fig. 4-25 shows the definition of HCS: the origin is the Hall A center, �⃗� is along

the beam line and points downstream, �⃗� is vertically up.

Figure 4-25: Hall coordinate system (top view). Plot reproduced from [123].

4.5.1.3 Target Coordinate System (TCS)

Each spectrometer defines its own TCS. The central ray of the spectrometer, which

is the line perpendicular to the plane of the sieve slit passing through the center point

of the central sieve slit hole, defines �⃗�tg axis. The �⃗�tg points vertically down and �⃗�tg

points to the right facing the spectrometer. The offsets between TCS center and

HCS center should be zero in the ideal case, but in reality there are non-zero offsets

𝐷𝑥 and 𝐷𝑦 defined in the vertical and horizontal directions in TCS, respectively.

Fig. 4-26 illustrates the TCS with respect to the HCS and definitions of the offsets.

The kinematics of each scattering event are described by four variables (𝛿, 𝜃tg, 𝑦tg,
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𝜑tg) in TCS. 𝛿 is related to the momentum 𝑃 of scattered particle and the central

spectrometer momentum 𝑃0 as 𝛿 = (𝑃 − 𝑃0)/𝑃0. 𝑦tg is the y coordinate of the

interception point of the particle trajectory and the 𝜑tg = 0 plane. The out-of-plane

angle 𝜃tg and the in-plane angle 𝜑tg are given by the tangent of the actual angles. For

events passing through a hole on the sieve slits with position (𝑥sieve, 𝑦sieve), these are

simply 𝜃tg = 𝑑𝑥sieve/𝐿 and 𝜑tg = 𝑑𝑦sieve/𝐿, with 𝐿 the drift length of the particle.
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Figure 4-26: Target coordinate system (top and side view). Plot reproduced
from[104].

4.5.1.4 Detector Coordinate System (DCS)

The Detector Coordinate System (DCS) is defined by the positions of the VDC

planes, as shown in Fig. 4-27. The origin of DCS is defined by the intersection of wire

184 of the VDC1 U1 plane and the perpendicular projection of wire 184 in the VDC1

V1 plane onto the VDC U1 plane. �⃗� is perpendicular to the VDC U1 plane pointing
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vertically up while �⃗� is along the long symmetry axis of the lower VDC pointing

downstream.
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Figure 4-27: Detector coordinate system (top and side view). Plot reproduced
from[104].

4.5.1.5 Transport Coordinate System (TRCS)

The TRCS at the focal plane (plane U1) is generated by rotating the DCS clock-

wise around its 𝑦 axis by 45∘.

4.5.1.6 Focal Plane Coordinate System (FCS)

This is the coordinate system for optics analysis. Because of the focusing of

the HRS magnet system, particles from different scattering angles with the same

momentum will be focused at the focal plane. The FCS is defined by rotating the

DCS around its 𝑦-axis by an varying angle 𝜌 (𝑥tr) that the new 𝑧-axis is always parallel

to the local central ray with scattering angle 𝜃tg = 𝜑tg = 0, as shown in Fig. 4-28.

In this rotated coordinate system, the dispersive angle 𝜃fp is small all over the focal

plane and is approximately symmetric distributed with respect to 𝜃fp = 0, thus the
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expansions of the optics matrix will converge faster during the optics calibration if

the rotated system is used.

�
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X

^

^

Y
^

Trajectories with = =0� �tg tg

Figure 4-28: Rotated focal plane coordinate system. Plot reproduced from[104].

4.5.1.7 Optics Calibration

For the standard configuration (without the target field), an optics matrix is

optimized to map the measured focal plane variables (𝑥fp, 𝜃fp, 𝑦fp, 𝜑fp) to the TCS

variables (𝛿, 𝜃tg, 𝑦tg, 𝜑tg). The first order optics matrix can be expressed as,

⎛⎜⎜⎜⎜⎜⎜⎝
𝛿

𝜃

𝑦

𝜑

⎞⎟⎟⎟⎟⎟⎟⎠
tg

=

⎛⎜⎜⎜⎜⎜⎜⎝
< 𝛿|𝑥 > < 𝛿|𝜃 > 0 0

< 𝜃|𝑥 > < 𝛿|𝜃 > 0 0

0 0 < 𝑦|𝑦 > < 𝑦|𝜑 >

0 0 < 𝜑|𝑦 > < 𝜑|𝜑 >

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

𝑥

𝜃

𝑦

𝜑

⎞⎟⎟⎟⎟⎟⎟⎠
fp

. (4.28)

In practice, the matrix is more complicated with a set of tensors 𝐷𝑗𝑘𝑙, 𝑇𝑗𝑘𝑙, 𝑌𝑗𝑘𝑙 and

𝑃𝑗𝑘𝑙 to relate the focal plane coordinates to each target variable:

𝛿 =
∑︁
𝑗𝑘𝑙

𝐷𝑗𝑘𝑙𝜃
𝑗
fp𝑦

𝑘
fp𝜑

𝑙
fp, (4.29)

𝜃tg =
∑︁
𝑗𝑘𝑙

𝑇𝑗𝑘𝑙𝜃
𝑗
fp𝑦

𝑘
fp𝜑

𝑙
fp, (4.30)

𝑦tg =
∑︁
𝑗𝑘𝑙

𝑌𝑗𝑘𝑙𝜃
𝑗
fp𝑦

𝑘
fp𝜑

𝑙
fp, (4.31)

𝜑tg =
∑︁
𝑗𝑘𝑙

𝑃𝑗𝑘𝑙𝜃
𝑗
fp𝑦

𝑘
fp𝜑

𝑙
fp, (4.32)

121



where the tensors 𝐷𝑗𝑘𝑙, 𝑇𝑗𝑘𝑙 and 𝑃𝑗𝑘𝑙 are polynomials in 𝑥fp. For example,

𝐷𝑗𝑘𝑙 =
𝑚∑︁
𝑖=0

𝐶𝐷
𝑖𝑗𝑘𝑙𝑥

𝑖
fp. (4.33)

where 𝐶𝑖𝑗𝑘𝑙 are the optics matrix elements. The matrix elements can be determined

from the data with the coordinates known at both the target plane and focal plane

by minimizing the 𝜒2:

𝜒2(𝑤) =
∑︁
𝑁

(

∑︀
𝑖𝑗𝑘𝑙 𝐶

𝑤
𝑖𝑗𝑘𝑙𝑥

𝑖
fp𝜃

𝑗
fp𝑦

𝑘
fp𝜑

𝑙
fp − 𝑤0

𝜎𝑁
𝑤

)2, (4.34)

where 𝑁 is the total number of events, 𝑤 can be any target variable (𝛿, 𝜃tg, 𝑦tg or

𝜑tg), 𝑤0 is the nominal value for the corresponding variable. Typically, sieve slits hole

data are used to determine 𝜃tg and 𝜑tg, and carbon foils are used to determine 𝛿 or

𝑦tg. The sieve slit is a 0.2 inch-thick tungsten plate with holes arranged in a grid

pattern covering the angular acceptance, as shown in Fig. 4-29.

For E08-027 experiment, a two-step approach was developed to accommodate the

effect from the strong transverse magnetic field of the polarized NH3 target. The first

step is to remove the target effects and obtain the effective reference values (𝑥ref , 𝜃ref ,

𝑦ref , 𝜑ref) at target coordinates, as shown in Fig. 4-30. These effective reference values

are determined by simulating a large number of electrons drifting in the magnetic field

from the target reaction point to the holes of sieve slit. When the simulated point

(𝑥drift, 𝑦drift) is within the tolerance of the actual hole position (𝑥sieve, 𝑦sieve), the

effective reference values are obtained by linearly projecting it back to the target

plane:

𝑥ref = 𝑥drift − 𝐿𝜃drift, (4.35)

𝜃ref = 𝜃drift, (4.36)

𝑦ref = 𝑦drift − 𝐿𝜑drift, (4.37)

𝜑ref = 𝜑drift, (4.38)

(4.39)
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where 𝐿 is the distance from the sieve slit to the TCS origin. Fig. 4-31 shows the

effective reference values (𝜃ref , 𝜑ref) for the 𝑃0 = 1.710 GeV configuration.

Figure 4-29: The design of the sieve slit used during the g2p experiment. during E08-
027. The dimensions are in mm. There are two kinds of holes: small hole (diameter
1.4 mm); large holes (diameter 2.7 mm). The two large holes are used to determine
the orientation of the sieve slit. Plot reproduced from[123]

Figure 4-30: Determine the new reference values for the optics optimization with
simulation. Plot reproduced from[123].

The second step for optics calibration is a standard procedure as the case without

target field by minimizing with effective reference value as the nominal value 𝑤0. Thus
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Figure 4-31: The effective reference values (𝜃ref , 𝜑ref) for 1.710 GeV (left) and the
corresponding actual target plane angle at the reaction point (right). Plot reproduced
from[123].

the target variables or the effective reference variables must be precisely known, which

can be obtained using the survey results combined with a sieve-slit collimator and a

foil target and some well-known physics process like elastic scattering. A set of data

was taken on single carbon foil with the sieve slit in to optimize the matrix. For each

set of optics data, a delta scan was performed by setting the spectrometer momentum

0%, ±1%, ±2%, ±3% of the carbon elastic peak to cover the spectrometer momentum

acceptance, and a beam position scan was performed at (±4, 0) mm and (0, ±4) mm

in HCS by manually adjusting the point beam to increase the 𝑦tg coverge. Since the

sieve slit was in during optics data taking, the spectrometer angle acceptance (𝜃tg and

𝜑tg) was also covered. After obtaining the optics matrix, the reconstruction of target

variables (𝛿, 𝜃tg, 𝑦tg, 𝜑tg) is shown in Fig. 4-32. The effective variables (𝑥ref , 𝜃ref ,

𝑦ref , 𝜑ref) are obtained via the matrix directly. The effective variables are projected

linearly to the sieve slits and then traced back to target plane in the target field

with simulation. Due to the poor resolution of 𝑦tg calibration at small scattering

angles[92, 123], the 𝑦tg is determined from BPM readout instead.
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Figure 4-32: Reconstruction of the target kinematic variables. Plot reproduced
from[123].

In E08-027 experiment, the HRS field and the septum field were set proportional

to the central momentum, so the optical property does not change when the electron

momentum setting changes. However, due to the broken of the septum magnet, this

situation changed and the matrix needs to be re-calibrated. The optics performance

is summarized in Table 4.3. The resolution of each variable is evaluated as:

𝑅𝑒𝑠(𝑤) =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑠=1

(𝑤𝑠 − 𝑤0)2, (4.40)

where 𝑁 is the total number of events used in the optimization, 𝑤 is the calculated

value with optics matrix for the target variable and 𝑤0 is the reference values. See

Ref. [123] for more details about optics study.

4.5.2 Simulation

For E08-027 experiment, a Monte-Carlo simulation package, called "g2psim", was

developed to simulate the entire physics process of this experiment. This program

consists of the target region raytracing (see Sec. 4.5.1.7), transport functions from

Snake (See Ref. [125]), cross section models (inelastic: P. Bosted Model[126], quasi-

free-scattering (QFS) model[127]; elastic: H[128], 4He[129], 12𝐶[130, 131], 14𝑁 [129]),
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𝐸𝑏𝑒𝑎𝑚 Field Field 𝜃𝑟𝑒𝑠 (mrad) 𝜑𝑟𝑒𝑠

HRS (GeV) (T) Angle Septum 𝛿𝑟𝑒𝑠 (mrad) (mrad)
LHRS 2.254 2.5 90∘ 48-48-16 2.0× 10−4 1.7 1.7
LHRS 2.254 2.5 90∘ 40-32-16 2.2× 10−4 1.8 1.8
LHRS 1.710 2.5 90∘ 40-00-16 2.4× 10−4 2.4 1.5
LHRS 1.157 2.5 90∘ 40-00-16 3.2× 10−4 2.1 1.3
LHRS 2.254 5.0 0∘ 40-00-16 2.2× 10−4 1.6 1.2
RHRS 2.254 2.5 90∘ 48-48-16 1.8× 10−4 1.6 1.2
RHRS 2.254 2.5 90∘ 40-32-16 2.5× 10−4 2.2 1.8
RHRS 1.710 2.5 90∘ 40-00-16 2.3× 10−4 2.7 1.7
RHRS 1.157 2.5 90∘ 40-00-16 3.4× 10−4 1.9 1.5

Table 4.3: Summary of optics performance with the target field. The resolutions are
calculated using Eq. 4.25. Table reproduced from [123].

and energy loss and radiation processes. In this section, the energy loss processes and

multiple scattering in the simulation will be discussed.

4.5.2.1 Radiation in Simulation

A charge particle will experience several kinds of interactions when passing through

material. It will lose energy and be deflected from initial direction. These interac-

tions include: inelastic collisions with atomic electrons in the material, scattering

off nuclei, bremesstrahlung, emission of Cherenkov radiation, and nuclear reactions.

The bremesstrahlung can be divided into external and internal ones, depending on

whether the interaction occurs on the scattering nuclei or some other nuclei. For g2p

experiment, most of these processes are electromagnetic effects and are calculable

in QED. However, to study the detector acceptance, the QED calculation involving

the analytical integration over the photonic phase space is complicated or not desir-

able because it requires knowing specifics of the detector geometry and resolutions.

The Monte Carlo simulation which provides the radiative effects is very crucial to

help study this issue. Ionization, internal and external bremesstrahlung are the most

contributing radiative effects in addition to the primary scattering.

Ionization is due to the charged particle colliding atomic electrons. The average

energy loss per unit path length for an electron is described by the modified Bethe-

126



Bloch formula[132]:

𝑑𝐸

𝑑𝑥
= 2𝜋𝑁𝐴𝑟

2
𝑒𝑚𝑒𝑐

2𝜌
𝑍

𝐴

1

𝛽2

[︂
ln(

𝜏 2(𝜏 + 2)

2(𝐼/(𝑚𝑒))2
− 𝐹 (𝜏)− 𝛿 − 2

𝐶

𝑍

]︂
, (4.41)

where 𝑁𝐴 is Avogadro‘s number, 𝑟𝑒 is the classical electron radius (2.818 fm), 𝐼 is the

mean excitation potential of material, 𝜌 is the density of the absorb material, 𝑍 (𝐴)

is the atomic number (weight) of the material, 𝛽 = 𝑣/𝑐 is for the incident electron, 𝛿

is the shell correction, 𝐶 is the density correction due to the the fact that the incident

electron polarizes atoms along its path and this polarization shields the full electric

field intensity for the atomic electrons far away from the path, 𝜏 and 𝐹 (𝜏) are factors:

𝜏 =
𝐸 −𝑚𝑒𝑐

2

𝑚𝑒𝑐2
, and (4.42)

𝐹 (𝜏) = 1− 𝛽2 +
𝜏 2/8− (2𝜏 + 1) ln 2

(𝜏 + 1)2
. (4.43)

For a given electron passing through the media, the energy loss is not always equal

to the mean value given by Eq. 4.41 because of the statistical nature in the number of

collisions and the associated energy loss in each collision. In the simulation package,

the ionization energy loss is divided to discrete and continuous energy loss. The

discrete energy loss represents the energy loss due to the explicit production of a 𝛿

electron. The cross section for generating a 𝛿 electron is determined by the 𝛿 electron

production threshold. The random sampling of the 𝛿 electron energy is based on

[133, 134]. The discrete energy loss is above the 𝛿 electron production threshold.

The cumulative effect of ionization below the 𝛿-ray production threshold is counted

as continuous energy loss. A parameterised model by L. Urbán is applied for the fluc-

tuation of energy loss. It is assumed that the atoms have only two energy levels with

binding energy 𝐸1 and 𝐸2. The particle-atom interaction will then be an excitation

with energy loss 𝐸1 or 𝐸2, or an ionisation with an energy loss distributed according

to a function 𝑔(𝐸) ∼ 1/𝐸2. See more details in Ref.[133, 134].

In addition to ionization energy loss, the electron also lose energy by interacting

with the Coulomb field of the transverse medium. The lost energy is emitted as a
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forms of photons due to bremesstrahlung. The external bremesstrahlung describes

the bremesstrahlung in the field of other nuclei, not the actual nucleus the electron

scatters. The probability for an electron of 𝐸0 to radiate Δ𝐸 = 𝐸0 − 𝐸 through a

distance of 𝑡 radiation length in the target is given by[135]:

𝐼(𝐸0, 𝐸, 𝑡) = 𝑏𝑡(𝐸0 − 𝐸)−1

[︃
𝐸

𝐸0

+
3

4

(︂
𝐸0 − 𝐸

𝐸

)︂2
]︃(︂

ln
𝐸0

𝐸

)︂𝑏

𝑡, (4.44)

where 𝑏 is

𝑏 =
3

4

[︂
1 +

1

9

𝑍 + 1

𝑍 + 𝜑

]︂
ln(183𝑍−1), (4.45)

with

𝜑 = ln(1440𝑍−2/3)/ ln(183𝑍−1). (4.46)

In the simulation, the distribution of Eq. 4.44 is sampled with the acceptance

and rejection method. After each sampling, the energy of the electron decreases by

Δ𝐸 but direction is kept the same direction in approximation since bremsstrahlung

is very forwardly peaked.

Internal bremsstrahlung is defined as energy loss due to photon emission resulting

from the primary nuclear interaction. The radiation effects on the cross section can

be decomposed to vacuum polarization correction, noninfrared vertex contribution,

and the radiative tail. The sum of vacuum and vertex corrections is:

𝛿𝑣 =
2𝛼

𝜋
(−14

9
+

13

12
ln
−𝑞2
𝑚2

), (4.47)

with 𝑚 the electron mass and contributed contributes as 𝑒−𝛿𝑣 to scale the Born cross

section. While the radiative tail can be approximated by the equivalent radiator

concept[135], with one before and after scattering, each of thickness

𝑡𝑒𝑞𝑢𝑖𝑣 =
−𝛼
𝜋

(ln
−𝑞2
𝑚2
− 1). (4.48)

128



In the simulation, the probability distribution of internal bremesstrahlung is com-

puted the same approach as for external bremesstrahlung by using 𝑡𝑒𝑞𝑢𝑖𝑣 in place of 𝑡

in Eq. 4.44 and calculated separately for before and after scattering.

4.5.2.2 Multiple Scattering

As the charged particle passes through the material, it will be deflected by many

small-angle scatterings. Most of these deflections are due to Coulomb scattering from

nuclei as described by the Rutherford cross section. The probability distribution for

the deflected angle 𝜃 can be approximated with a Gaussian distribution. Assume

the scattering happens only in one plane, the standard deviation 𝜎𝜃 for traveling 𝑡

radiation length in the relativistic limit is[136]:

𝜎𝜃 =
0.0136

𝐸
2
√
𝑡 [1 + 0.038 ln(𝑡)] , (4.49)

where E is the energy of the particle. In the simulation, the deflected angle is gener-

ated by a random Gaussian distribution.

4.5.2.3 Simulation Results

Fig. 4-33 shows the absolute yield comparison between simulation and data. The

data are from a carbon run with no liquid helium, beam raster on, and at the longi-

tudinal 5T target field configuration. The simulation agrees with data in the central

region of acceptance −0.05 mrad< 𝜃tg < 0.05 mrad, which suggests the radiation

model works well. For the region away from the center, deviations are found and are

still under study. These deviations may be due to applying the optics (a coverage

using point beam ±4 mm, see Sec. 4.5.1.7) to the large raster size (10mm in diameter)

or due to the aperture in the Snake transportation functions.

129



-5 0 5 10 15 20 250

20

40

60

80

100

120

140

𝜈 (MeV)

Yi
el
ds
	(u
b/
sr
)

Figure 4-33: Yields comparison between simulation and experimental data. The data
are from a carbon run with no liquid helium, raster on, and at the longitudinal 5T
target field configuration. More updates can be found in [137].

4.6 Yield Drift Study

For the same experimental condition, the runs with the same kinematics setting

should have the same yields:

𝑌 =
𝑁𝑎𝑐𝑐 · 𝑝𝑠

𝑄 · 𝐿𝑇 · 𝜖𝑑𝑒𝑡
. (4.50)

However, during the E08-027 experiment, there are 23/135 momentum settings where

the yields differ by more than than 4% within the same kinematic setting. Fig. 4-34

shows the yields with a 7% deviation for the 𝐸𝑏𝑒𝑎𝑚 = 2.2 GeV, 𝑃 = 1.6 GeV, 5T

transverse setting. A method was developed to resolve the issue by studying the

raster pattern, as shown in Fig. 4-35. The left plot shows the raster pattern in Happex

DAQ which is triggered by the helicity signal (∼1 kHz). A cut in the raster pattern

(block spot with 6 mm in diameter) can be used to extract the corresponding charge.
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Figure 4-34: Yields versus 𝜈 for 𝐸𝑏𝑒𝑎𝑚 = 2.2 GeV, 𝑃 = 1.6 GeV, 5T transverse setting
(left); Relative yields versus number for the same setting (right).

Figure 4-35: 6 mm raster cut (black spot) in both Happex (left) and Fastbus (right)
DAQ. With these raster cuts, the uncertainty from the boundary of raster (right) is
removed.

Meanwhile, the right plot shows the raster pattern in the Fastbus DAQ which is from

the physics trigger (∼ 6 kHz), so a cut in the raster size can be used to extract the
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Figure 4-36: Relative yields versus run number for 𝐸𝑏𝑒𝑎𝑚 = 2.2 GeV, 𝑃 = 1.6 GeV,
5T transverse setting after applying the 6 mm raster cut.

corresponding scattering events. Therefore, after applying the raster size cut, the

corresponding yields and charge can be obtained. The yields spread becomes 3.5% as

shown in Fig. 4-36. By applying this method, about half of the drifts are reduced to

below 4%. More details can be found in [137].
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Chapter 5

Preliminary Results

In this chapter, preliminary results are presented for asymmetries, polarized cross-

section differences, the spin structure functions for the beam energy 2.254 GeV with

the target field 5.0 T both longitudinal and transverse settings. The spin structure

functions contribute to the spin polarizabilities 𝛾0 and 𝛿𝐿𝑇 are also discussed. For

other energy settings, the dilution and packing fraction analysis are still ongoing, and

thus their results are not included here.

5.1 Asymmetry Results

The method to extract the asymmetry is described by Eq. 4.1. Each of the re-

quired parameters has been discussed in previous sections, such as beam charge 𝑄 in

Sec. 3.3.2, beam polarization 𝑃𝑏 in Sec. 3.3.5, target polarization 𝑃𝑡 in Sec. 3.4, and

dilution factor 𝑓 in Sec. 4.4. The statistical uncertainty of the raw asymmetry can

be written as:

𝛿𝐴𝑟𝑎𝑤 =
2𝑌+𝑌−

(𝑌+ + 𝑌−)2

√︃
𝑆2
+

𝑁+

+
𝑆2
−

𝑁−
≈ 1

2

√︃
𝑆2
+

𝑁+

+
𝑆2
−

𝑁−
, (5.1)

where 𝑌± is the yield corresponding to ± helicity state (Eq. 4.50), while 𝑆± =

𝜎𝑁±/
√
𝑁± is a correction factor. In general, the fluctuation in the number of events

𝑁± follows the Poisson distribution with 𝜎𝑁± =
√
𝑁±, therefore 𝑆±=1. However,
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when the raw trigger rate is high enough, a prescale factor is used to scale the DAQ

event rate, and thus the correction factor 𝑆± is changed due to an additional source

contribution from acceptance fluctuation[138]:

𝑆 =

√︂
1− 𝐿𝑇 ·𝑅(1− 1

𝑝𝑠
), (5.2)

where 𝐿𝑇 is the livetime correction of the DAQ system, 𝑝𝑠 is the prescale factor,

and 𝑅 is the acceptance for useful events which can be obtained form the number

of accepted events to the number of recorded events. From Eq. 4.1, the statistical

uncertainty of physics asymmetry can be written as:

𝛿𝐴𝑝ℎ𝑦𝑠 =
1

𝑓𝑃𝑡𝑃𝑏

𝛿𝐴𝑟𝑎𝑤, (5.3)

where the uncertainties of the target and beam polarizations and dilution factor are

considered as systematic uncertainties, and not considered here.

The asymmetry results are often formed in each bin of 𝑊 (or 𝜈) to show the evo-

lution. During the experiment, several runs were taken for each momentum setting,

and therefore the asymmetry calculated from corresponding runs are combined using

a statistically weighted average:

𝐴 =

∑︀
𝑖𝐴𝑖/𝛿𝐴

2
𝑖∑︀

𝑖 1/𝛿𝐴
2
𝑖

, (5.4)

with

𝛿𝐴 =

√︃
1∑︀

𝑖 1/𝛿𝐴
2
𝑖

, (5.5)

where 𝐴𝑖 is the asymmetry calculated for the 𝑖-th run and 𝛿𝐴𝑖 is the corresponding

statistical uncertainty.

Fig. 5-1 shows the physics asymmetry at beam energy 2.254 GeV setting with

the target field 5.0 T both longitudinal and transverse. The error bars shown are

statistical uncertainties.
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Figure 5-1: Physics asymmetries for the configurations with 2.254 GeV beam energy
and 5.0 T target field. Only the statistical uncertainty is shown in the error bar.
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5.2 Radiative Corrections

The electron scattering diagram in Fig. 2-1 shows only the leading order process

of one photon exchange, which is usually considered in the theoretical predictions.

However, as mentioned in Sec. 4.5.2.1, ionization, vacuum polarization and vertex

correction, internal and external bremesstrahlung, are contained in the experimental

data. Therefore, the quantities extracted from the data, such as asymmetries and

cross sections, need be corrected to compare with theoretical calculations, and this

correction is referred as the radiative correction.

For the preliminary results presented here, the radiative corrections to the asym-

metry is based on model predictions. The MAID model[139] is used to generate the

polarized cross section difference. The internal radiative effects are calculated us-

ing the POLRAD formalism[140], while the external parts (ionization and external

bremesstrahlung) are determined using the methods developed by Mo and Tsai[141].

The polarized elastic tail contributions are also taken into account by using the MAS-

CARD code[142] combined with the corresponding form factors.

The unpolarized cross section is generated by the fits of P. Bosted[126]. The

inelastic radiative effects are calculated with the fits of P. Bosted as inputs for both

the internal and external corrections, while the elastic tail is again from Mo and Tsai

formalism.

Fig. 5-2 shows the radiated and unradiated asymmetries compared with model

predictions for 2.254 GeV beam energy setting with 5.0 T target field both longitudinal

and transverse. The input for the scattering angle represents the average scattering

angle determined from the data.

The difference between the radiated and unradiated asymmetry curves in Fig. 5-2

are applied to the data asymmetry 𝐴uncorrected as the radiative correction:

𝐴corrected = 𝐴uncorrected +Δmodel
RC , (5.6)
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(a) Longitudinal configuration.
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Figure 5-2: Comparison of the radiated and unradiated model predictions for the
asymmetries with 2.254 GeV beam energy and 5.0 T target field both longitudinal
and transverse.
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with

Δmodel
RC = 𝐴model

unrad − 𝐴model
rad . (5.7)

The radiative-corrected and uncorrected physics asymmetries are shown in Fig. 5-

3. The grey band shows the estimated systematic uncertainty. The current status of

systematic uncertainty is given by

𝛿𝐴𝑠𝑦𝑠
𝑝ℎ𝑦𝑠 =

√︃
(
𝜕𝐴

𝜕𝑓
𝛿𝑓 )2 + (

𝜕𝐴

𝜕𝑃𝑡

𝛿𝑃𝑡)
2 + (

𝜕𝐴

𝜕𝑃𝑏

𝛿𝑃𝑏
)2 + (𝛿𝐴𝜋)2 + (𝛿𝐴𝑄)2 + (𝛿𝐴𝐿𝑇 )2 + (𝛿Δ𝑅𝐶)2

(5.8)

where

∙ Dilution Factor (𝑓): The systematic uncertainty is around 6.0% for the lon-

gitudinal setting, while 6.5% for the transverse setting, see Sec. 4.4.

∙ Beam Polarization (𝑃𝑏): the uncertainty on the Moller measurement is given

as 1.7%, see Sec. 3.3.5.

∙ Target Polarization (𝑃𝑡): the target polarization uncertainty is (2-4.5)% de-

pends on run, see Sec. 3.3.5.

∙ Livetime Asymmetry (𝐴𝐿𝑇 ): 𝛿𝐴𝐿𝑇 ≈ 5.5× 10−6, see Ref.[115].

∙ Charge Asymmetry (𝐴𝑄): 𝛿𝐴𝐿𝑇 ≈ 1.1× 10−4, see Ref.[115].

∙ Pion Asymmetry (𝐴𝜋): 𝛿𝐴𝜋 ≈ 4.5× 10−5, see Ref.[115].

∙ Radiative Correction (Δ𝑅𝐶): since the MAID model predictions are not

tested at the kinematics of this experiment, the difference between the mea-

sured data asymmetry (blue points in Fig. 5-3) and the radiated MAID model

predictions (blue dashed line in Fig. 5-3) is taken as the uncertainty for radia-

tive correction. It contributes the leading error currently, but will be reduced

when the cross sections of this experiment are available.

Other contributions, such as acceptance effects, are still being studied.
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(a) Longitudinal configuration.
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Figure 5-3: Comparison of the radiative-corrected and uncorrected physics asymme-
tries for the kinematic settings with 2.254 GeV beam energy and 5.0 T target field
both longitudinal and transverse. The statistical uncertainty is shown as the error
bar on each data point, while the systematic is shown as the grey band. The errors
for the uncorrected asymmetry are not shown in this plot.
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5.3 Polarized Cross-Section Differences

The polarized cross-section differences can be calculated using Eq. 4.7. Since the

unpolarized cross section is still being studied, the fits of P. Bosted [126] are used

as the unpolarized cross-section. The radiative-uncorrected polarized cross section

difference can be evaluated as

Δ𝜎uncorrected
‖,⊥ = 2𝐴uncorrected

‖,⊥ · 𝜎uncorrected
0 , (5.9)

where 𝐴uncorrected
‖,⊥ is from Eq. 4.1 and 𝜎uncorrected

0 is the radiated version of the fits of

P. Bosted, while the radiative-corrected polarized cross section difference is given by

Δ𝜎corrected
‖,⊥ = 2𝐴corrected

‖,⊥ · 𝜎corrected
0 , (5.10)

where 𝐴corrected
‖,⊥ is from by Eq. 5.6 and 𝜎corrected

0 is the fits of P. Bosted.

The radiative-corrected and uncorrected cross-section differences are shown in

Fig. 5-4. The systematic uncertainty of radiative-corrected cross-section difference

results has two major contributions. One is the systematic uncertainties of the asym-

metries 𝐴‖,⊥ discussed in Sec. 5.2, the other is from the unpolarized cross-sections

𝜎uncorrected
0 which is estimated to be 5% when calculated using fits of P. Bosted.

5.4 Spin Structure Function 𝑔𝑝2

As discussed in Sec. 2.2.4, the polarized structure functions 𝑔1 and 𝑔2 can be writ-

ten in terms of the cross section differences Δ𝜎‖,⊥ by Eqs. 2.53 and 2.54. In the

analysis of this thesis, the Δ𝜎‖,⊥ results were obtained using asymmetries measured

in E08-027 combined with model predictions for 𝜎0 in Sec. 5.3. Since the kinematics

of the longitudinal and transverse settings are not the same (field bending differently),

the cross section difference cannot simply be combined to extract the structure func-

tions. We combine MAID predictions Δ𝜎‖ to extract 𝑔2 from the transverse setting

result of Δ𝜎⊥ using Eq. 2.54. Because the transverse setting cross section difference
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Figure 5-4: Comparison of the radiative-corrected and uncorrected cross-section dif-
ference for the kinematic settings with 2.254 GeV beam energy and 5.0 T target field
both longitudinal and transverse. The statistical uncertainty is shown as the error
bar on each data point, while the systematic is shown as the grey band. The errors
for the uncorrected asymmetry are not shown in this plot.
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is dominated by 𝑔2 (see Eq. 2.52), the systematic uncertainty due to using MAID

is minimized. Similarly, the MAID predictions for Δ𝜎⊥ is combined with Δ𝜎‖ from

the longitudinal setting data to evaluate 𝑔1. The MAID model input is assumed 40%

relative uncertainty for both cases. The extracted 𝑔1 and 𝑔2 results are shown in

Fig. 5-5. The statistical uncertainties are propagated from Sec. 5.3, while the sys-

tematic uncertainties is propagated from Sec. 5.3 with additional contribution from

MAID model predictions.

5.5 Burkhardt-Cottingham Sum Rule

With a preliminary result for 𝑔2 from Sec. 5.4, the contribution to the first moment

of 𝑔2 can be formed. Fig. 5-6 shows the integrand value versus Bjorken 𝑥 for the

transverse setting. The longitudinal setting is not shown since the 𝑔2 is dominant by

the model predictions for Δ𝜎⊥ in that case. The statistical uncertainty is shown as

the black error bar, while the total uncertainty shown as the red error bar. From

Fig. 5-6, one can see that the contribution from the measured resonance region to the

integral is overall negative, which is consistent to RSS results shown in Fig. 2-13.

5.6 Spin Polarizability 𝛾0 and 𝛿𝐿𝑇

As discussed in Sec. 2.6.2, the generalized spin polarizabilities 𝛾0 and 𝛿𝐿𝑇 can be

expressed as moments of 𝑔1 and 𝑔2 by Eq. 2.121 and Eq. 2.125, respectively. The

integrals need to be evaluated from 𝑥 = 0 to the pion threshold (𝑥 ≈ 0.25 at this

setting). Fig. 5-7 and Fig. 5-8 shows the integrand value versus x using the preliminary

results from Sec. 5.4 . The statistical uncertainty is shown as the black error bar,

while the total uncertainty is shown as the red error bar. The unmeasured low 𝑥

region will be assumed to follow 𝑔𝑤𝑤
2 (Eq. 2.94) and expected to be suppressed fast

due to the 𝑥2 weighting in the integrals.

142



1100 1200 1300 1400 1500 1600 1700 1800
W(MeV)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
g1 model
g2 model
g1 data

Very Preliminary

(a) Longitudinal configuration. MAID model calculation for Δ𝜎⊥ was
combined with data to extract the 𝑔𝑝1 .
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(b) Transverse configuration. MAID model calculation for Δ𝜎‖ was com-
bined with data to extract the 𝑔𝑝2 .

Figure 5-5: 𝑔1 and 𝑔2 results for the kinematic settings with 2.254 GeV beam energy
and 5.0 T target field both longitudinal and transverse. The statistical uncertainty is
shown as the error bar on each data point, while the systematic is shown as the grey
band. The errors for the uncorrected asymmetry are not shown in this plot.
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Figure 5-6: 𝑔2 versus Bjorken 𝑥 for the kinematic setting with 2.254 GeV beam energy
and 5.0 T transverse target field. The black error bars show the statistical uncertainty
𝛿stat while the red error bars show the total uncertainty 𝛿tot.

5.7 Summary and Outlook

The E08-027 experiment successfully collected data to extract the proton 𝑔2 struc-

ture function in the 𝑄2 range of (0.02 − 0.2) GeV2. In this thesis, the preliminary

results of the asymmetry at 2.254 GeV beam energy and 5.0 T target field (both

longitudinal and transverse) are presented. The polarized cross sections difference

Δ𝜎‖,⊥ are obtained and presented with inputs from models and world data, because

the analysis of cross section is still ongoing. Once the acceptance is finalized and the

cross section is ready, the model prediction inputs will be replaced and the prelim-

inary radiative correction will be improved with proper tuning to the data. These

studies will improve the systematic uncertainties.

For the 2.254 GeV and target field 5.0 T setting, both longitudinal and transverse

data were collected. While the transverse data will eventually provide precision results

on Δ𝜎⊥ as described above, the longitudinal data will be used to extract Δ𝜎‖ as a

cross check of another JLab experiments, EG4, which focused on measuring 𝑔𝑝1 using
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(a) Longitudinal configuration. MAID model calculation for Δ𝜎⊥
was combined with data to extract the 𝛿𝐿𝑇 integrand.
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(b) Transverse configuration. MAID model calculation for Δ𝜎‖ was
combined with data to extract the 𝛿𝐿𝑇 integrand.

Figure 5-7: Preliminary results for the 𝛿𝐿𝑇 integrand, 4𝑒2𝑀2

𝜋𝑄6 𝑥2 [𝑔1(𝑥,𝑄
2) + 𝑔2(𝑥,𝑄

2)],
for the kinematic settings with 2.254 GeV beam energy and 5.0 T target field both
longitudinal and transverse. The average 𝑄2 is ≈0.1 GeV2 for this setting. The black
error bars show the statistical uncertainty 𝛿stat while the red error bars show the total
uncertainty 𝛿tot.
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(a) Longitudinal configuration. MAID model calculation for Δ𝜎⊥
was combined with data to extract the 𝛾0 integrand.
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(b) Transverse configuration. MAID model calculation for Δ𝜎⊥ was
combined with data to extract the 𝛾0 integrand.

Figure 5-8: Preliminary results for the 𝛾0 integrand, 4𝑒2𝑀2

𝜋𝑄6 𝑥2
[︁
𝑔1 − 4𝑀2

𝑄2 𝑥2𝑔2

]︁
, for

for the kinematic settings with 2.254 GeV beam energy and 5.0 T target field both
longitudinal and transverse. The average 𝑄2 is ≈0.1 GeV2 for this setting. The black
error bars show the statistical uncertainty 𝛿stat while the red error bars show the total
uncertainty 𝛿tot.
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CLAS in Hall B at very low 𝑄2. The analysis on the longitudinal data presented in

the previous paragraph paves the way for such cross check in the near future. For

energies of E08-027 other than 2.254 GeV (and target field 5.0 T), only transverse

target data were collected.

For all beam energy settings of E08-027, eventually the high precision results on

Δ𝜎⊥ will be combined with Δ𝜎‖ results from Hall B EG4 to extract both 𝑔𝑝1 and 𝑔𝑃2

at low 𝑄2.

Once the studies mentioned above are done, the precision proton spin structure

function 𝑔2 will be used to provide the first test of BC sum rule at low 𝑄2 for proton,

which has remained largely untested until now. The generalized spin polarizabilities

𝛾0 and 𝛿𝐿𝑇 can also be formed to provide a benchmark test of 𝜒PT theory calculations.

The E08-027 collaboration will continue the work to finalize these important physics

quantities.
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Chapter 6

JLab Polarized 3He Target

This chapter will discuss the application of polarized 3He gas in JLab-based nuclear

physics.

6.1 Introduction

Polarized targets are essential for nucleon spin structure study. Because a free

neutron target cannot be made dense due to its short lifetime (885.7±0.8s [136]) ,

polarized light nuclear targets such as deuteron and 3He are typically used as effective

polarized neutron targets. For a 3He nucleus, as shown in Fig. 6-1, its ground state

is dominated by an S-wave configuration in which the two proton spins are aligned

opposite to one another and the neutron accounts for the nuclear spin [143]. Polarized
3He targets have been widely used in the neutron electromagnetic form factor and spin

structure function studies at MIT-Bates, SLAC, DESY, MAMI and JLab. At JLab,

thirteen 6 GeV experiments (GDH [48, 84, 144, 145], 𝐺𝑛
𝑀 [146, 147], 𝐴𝑛

1 [76, 148], 𝑔𝑛2 [75],

Spin-duality[83], Small-Angle-GDH[82], 𝐺𝑛
𝐸[149], Transversity[150, 151], 𝐴𝑦-DIS[152],

𝑑𝑛2 [153], 𝐴𝑦-QE[154], (𝑒, 𝑒′𝑑)[155] and 𝐴𝑦-(𝑒, 𝑒′𝑛)[156]) have successfully utilized the

polarized 3He target.
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Figure 6-1: The 3He wave function.

6.2 Spin-Exchange Optical Pumping

For 3He atoms, the ground state 11𝑆0 is a single state with total electronic an-

gular momentum J=0. Its total angular momentum 𝐹 is equal to the nuclear spin

𝐼, F=I=1/2, and the thermal equilibrium nuclear polarization follows Boltzmann

distribution:

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = tanh
𝜇3He𝐵

𝑘𝐵𝑇
, (6.1)

where 𝜇3He = 1.0746×10−26𝐽/𝑇 is the magnetic momentum, 𝑘𝐵 = 1.3806×10−23𝐽/𝐾
is the Boltzmann constant, B is the magnetic field, and T is the temperature. For a

25 G field and room temperature, 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ≈ 6.64× 10−9.

There have been two methods used to polarize 3He nuclei beyond its thermal

equilibrium value. The first one is based on metastability-exchange optical pumping

(MEOP)[157], where the 3He are optically pumped to the 23𝑆1 atomic metastable

state (an excited state with a lifetime much longer than regular excited state, but

shorter than the stable ground state, often functions as a temporary “energy trap”)

and the polarized meta-stable state ⃗3He(23𝑆1) subsequently transfer their polariza-

tion to the ground state nuclei 3He(11𝑆0) through metastability-exchange collisions
⃗3He(23𝑆1)+3He(11𝑆0)→ ⃗3He(11𝑆0)+3He(23𝑆1). The efficiency of this method is de-

termined by the amount and the lifetime of the metastable 3He atoms. However,

the presence of 3He metastable states will lead to the depolarization of other 3He

metastable states through collisions, especially at pressure > 0.005 atm. So this ap-
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proach is only suitable for low density targets. The second technique is based on

spin exchange optical pumping (SEOP) [158], where a vapor of alkali-metal atoms

is polarized by laser first and then the polarization is transferred to 3He nuclei in

a hyperfine spin-exchange interaction during collisions. The spin-exchange optical

pumping method can be more easily applied to achieve high density targets (around

10 atm). This method was originally developed at SLAC and has been utilized for all

the polarized 3He related experiments at JLab since 1998. The details of SEOP will

be discussed below.

6.2.1 Optical Pumping

The first step of SEOP is the optical pumping that polarize Rb vaporized atoms

in a magnetic field by using a circularly polarized laser light. The magnetic filed is

typically 25 G and is parallel to the laser propagation direction to split the Zeeman

levels. Fig. 6-2 shows the D1 transition of Rb atoms from 5𝑆1/2 → 5𝑃1/2, ignoring

the effect of the nuclear spin. According to the angular momentum selection rule for

dipole transition, only Rb atoms from the ground state 5𝑆1/2 with 𝑚𝐽 = −1/2 is

excited to state 5𝑃1/2 with 𝑚𝐽 = +1/2 under the 795 nm right circularly polarized

light. Then they decay back to two sub-levels of 5𝑆1/2 with equal probability. So

the Rb vapor is pumped to accumulate in the 𝑚𝐽 = +1/2 5𝑆1/2 state. As shown in

Fig. 6-2, the electron decays from 5𝑃1/2 to 5𝑆1/2 and emits a photon in all spatial

direction. However, this photon is unpolarized and can be reabsorbed by other Rb

atom, which depolarizes the Rb vapor. Fortunately, a small amount of 𝑁2 (≃ 0.1

amg) added to the system can mitigate this effect[159]. The excited electron decays

back to ground state mostly (≈95%) through non-radiatively quenching since N2 has

vibrational and rotational degrees of freedom to absorb the energy.

For Rb vapor, there are two depolarization effects, caused by collisions between

Rb atoms with the cell wall, and interatomic collisions. The Rb spin will reach

an equilibrium population distribution determined by the optical pumping and the

relaxation processes, which can be strongly deviated from the thermal equilibrium in

Eq. 6.1. In other words, the Rb vapor can become highly polarized.
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Figure 6-2: The Optical pumping of Rb.

The actual optical pumping is more complex than Fig. 6-2 if one also consider the

hyperfine splitting between Rb nuclear spin (𝐼 = 5/2 for 85Rb and 7/2 for 87Rb) and

the electron angular momentum (S=1/2, L=0). As the external magnetic field is weak

for this target, the hyperfine interaction is much stronger than Zeeman splitting. The

hyperfine structure Hamiltonian for Rb ground state in the presence of static magnetic

field H⃗ = Hẑ is

ℋℎ𝑓𝑠 = 𝐴ℎ𝑓𝑠I · S⃗− �⃗�𝑠 · H⃗− �⃗�𝐼 · H⃗

= 𝐴ℎ𝑓𝑠I · S⃗−
𝜇𝑠

𝑆
𝑆𝑧𝐻𝑧 −

𝜇𝐼

𝐼
𝐼𝑧𝐻𝑧,

(6.2)

where 𝐴ℎ𝑓𝑠 is the coupling coefficient, 𝐼 is the nuclear spin, �⃗� is the electron spin,

�⃗�𝑠 = 𝑔𝑠𝜇𝐵�⃗� is the electron magnetic moment (g-factor 𝑔𝑠 = −2.0023, Bohr magneton

𝜇𝐵 = 9.2740 × 10−24 J/K, S=1/2), �⃗�𝐼 = 𝑔𝐼𝜇𝑁𝐼 is the nuclear magnetic moment (

g-factor 𝑔𝐼 = 0.5413 for 85Rb, nuclear magneton 𝜇𝑁 = 5.0508 × 10−27 J/K). The

eigenstates of ℋℎ𝑓𝑠 are described by quantum numbers F and 𝑚𝐹 as |𝐹,𝑚𝐹 ⟩. F is

the total angular momentum of the state at field 𝐻 → 0 and 𝑚𝐹 is the eigenvalue

of 𝐹𝑧 = 𝐼𝑧 + 𝑆𝑧 at any field H. So the ground state 5𝑆1/2 state actually splits to
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multi-levels 𝑚𝐹 = −𝐹,−(𝐹 − 1), ..., 𝐹 − 1, 𝐹 with 𝐹 = 𝐼 ± 1/2. The Rb atom is

highly pumped to 𝑚𝐹 = 𝐹 state under a right circularly polarized laser light and

𝑚𝐹 = −𝐹 for left-handed.

The pumping efficiency depends on the quality of the laser. The absorption line

shape of Rb is broadened and shifted by the interatomic collisions[160, 161]. The Rb

𝐷1 transition absorption spectrum has a FWHM of around 0.3 nm and the absorp-

tion peak fluctuates by typically 0.05nm due to the operational high pressure of 3He

(≈10 amg) and temperature (230 ∘C). If the laser light has a very large line width,

a significant amount of light does not fall within the absorption line-width and is

wasted. Moreover, the unusable light also adds to the thermal depolarization. In

recent years, optical pumping has been greatly improved with the advance of laser

techniques. Fig. 6-3 shows the light profile between different lasers with the same

power 30 Watts. The newly available narrow-linewidth diode lasers (COMET, QPC,

Raytum) with FWHM≈0.25 nm provide a much higher optical pumping efficiency

than the broad-width diode lasers (Coherent) with FWHM≈1.5 nm and the in-beam
3He target polarization subsequently increased from 50% (during GEN[149] in 2006)

to 60%(during Transversity[150, 151] in 2009).

6.2.2 Spin Exchange

The second step is the spin exchange through which the polarized alkali atoms

transfer their electron spin polarization to 3He nuclei. The spin-exchange process is

dominated by binary collisions. Alkali atoms interact with 3He nuclei through both

isotropic hyperfine interaction and spin-rotation interaction. The isotropic hyperfine

interaction is the one produces spin-exchange and is described by Hamiltonian[162]:

𝐻𝑆𝐸 = 𝛼I · S⃗, (6.3)
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Figure 6-3: Comparison of laser wavelength spectrum between vendors. Coherent
is the broad-width diode laser (FWHM≈1.5 nm) while QPC and Raytum are new
narrow-width ones (FWHM≈0.25 nm).

where I⃗ is the 3He nucleon spin, S⃗ is the spin of the alkali valence electron and 𝛼 is

the coupling constant for Fermi-contact interaction:

𝛼(𝑅) =
16𝜋

3

𝜇𝐵𝜇3𝐻𝑒

𝐼
|𝜑(𝑅)2| (6.4)

where 𝑅 is the internuclear separation between alkali and 3He and 𝜑(𝑅) is the valence

electron wave function at the position of the 3He nucleus. During hyperfine interac-

tion, the total spin is conserved, as shown in Fig. 6-4. The spin-rotation interaction

contributes to the relaxation and depends on the coupling between rotational angular

momentum of the alkali-3He pair and the alkali valence electron spin.

The speed at which the Rb valence electron transfers its polarization to 3He is

defined as the spin exchange rate per 3He atom

𝛾Rb−3He
SE = 𝑘Rb−3He

SE [𝑅𝑏], (6.5)

where [Rb] is the Rb number density, 𝑘Rb−3He
SE =6.8×10−20 cm3[163] is the spin-exchange
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constant for Rb−3He collisions.

The spin exchange efficiency 𝜂 is equal to the ratio of spin exchange rate to the

total spin relaxation rate

𝜂 =
𝛾Rb
SE [

3He]

ΓRb[Rb]
=

𝑘Rb
SE [

3He]

ΓRb

, (6.6)

where [Rb] ([3He]) is the density for Rb (3He), ΓRb is the total alkali spin relaxation

rate. For Rb at 180 ∘C, 𝜂 is around 0.02 when 3He has a density of ∼ 7 amg[164],

which means 50 polarized Rb atoms are needed to polarized one initially unpolarized
3He nucleus.

795nm
Polarized	laser

Rb

𝐻𝑒#

Figure 6-4: Spin exchange between Rb and 3He due to binary collisions.

In recent years, an advanced technique called Rb-K hybrid spin-exchange optical

pumping was developed and greatly improved the spin exchange efficiency 𝜂. The

main reason is that K relaxation ΓK is much slower than Rb, thus the spin exchange

efficiency is about one order of magnitude higher as shown in Fig. 6-5, although

𝑘K−3He
SE =5.5×10−20cm3< 𝑘Rb−3He

SE [165, 166]. However, there is no commercial and

high-power narrow-width laser to polarize K directly. On the other hand, K can be

polarized through the fast Rb-K spin-exchange and the K vapor can reach almost

the same polarization as Rb vapor. Fig. 6-6 shows the additional spin exchange path

Rb-K-He in the hybrid cell. The spin exchange efficiency was studied for various

155



K/Rb density ratios [166]. A ratio of [K]/[Rb]≃5 is usually chosen to make the target

performance optimal. The hybrid pumping was utilized before narrow-diode lasers

were available, and subsequently increase the in-beam 3He target polarization from

40%(during A1n[76, 148] in 2001) to 50% (during GEN[149] in 2006).

Figure 6-5: Spin exchange efficiency comparison (note logarithmic scale) for 3He-Rb
(7.0 amagat of 3He) and 3He-K (6.9 amagat of 3He) versus temperature[164].

Rb

K

𝐻𝑒#

795nm
Polarized	Laser

Figure 6-6: Spin exchange between Rb, K and 3He.
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6.2.3 Polarization Evolution over Time

Consider a single chamber cell, the 3He polarization evolution over time can be

described as
𝑑𝑃3He

𝑑𝑡
= 𝛾SE(𝑃𝐴 − 𝑃3He)− ΓR𝑃3He, (6.7)

where 𝑃𝐴 is the average alkali polarization, 𝛾SE is the alkali-3He spin-exchange rate

per 3He atom, ΓR is the overall relaxation rate of the 3He. Solving Eq. 6.7, the 3He

polarization is

𝑃3He(𝑡) = 𝑃𝐴

(︂
𝛾SE

𝛾SE + ΓR

)︂(︀
1− 𝑒−(𝛾SE+ΓR)𝑡

)︀
. (6.8)

From Eq. 6.8, one can define the spin up time constant:

𝑡3He =
1

𝛾SE + ΓR

(6.9)

to describe how fast the 3He can reach the maximum polarization and the theoretically

achievable maximum 3He polarization is

𝑃3He = 𝑃𝐴

(︂
𝛾SE

𝛾SE + ΓR

)︂
. (6.10)

To achieve the best 3He polarization, an optimal condition need be found to

maximize 𝛾SE or minimize ΓR. To minimize ΓR, one can choose a cell which has the

best performance (minimize wall relaxation) under the same spin up conditions; to

maximize 𝛾SE, one can increase the alkali vapor polarization by increasing usable laser

power. The 3He cell at JLab usually has two chambers, but the polarization evolution

is similar between two chambers, see details in Sec. 6.3.4. Without the electron beam,

a maximum 3He polarization over 70% was reached with a well chosen cell (Brady)

and around 60 W of usable laser light.

6.2.4 Polarized Target System at JLab

The polarized 3He target at JLab is based on the SEOP method and a specific

design is needed to fulfill the SEOP conditions: an optics system to produce the circu-

157



larly polarized light for optical pumping, an oven system to keep the alkali vaporized,

a holding magnetic field system to provide the Zeeman splitting energy levels for al-

kali atoms, and polarimetry to measure the 3He polarization. Fig. 6-7 shows main

elements of the target system in the latest Transversity experiment[150, 151]. More

details will be discussed in the following sections.

Figure 6-7: Polarized 3He target setup during the Transversity experiment[167].

6.2.4.1 3He Diffusion Cell

The 3He gas is contained in a hand-blown glass cell. The glass material must be

free of magnetic material to not disturb the uniformity of the magnetic field. It is

often constructed from an aluminosilicate glass called GE180 which contains very few

magnetic compounds, can hold a high pressure (typically 10 atm) safely and has a

relatively small radiation thickness.

To fit for the electron scattering experiment, the cell typically has a double cham-

ber design as shown in Fig 6-8 and Fig 6-9. The spin-exchange optical pumping takes

places in the upper “pumping chamber” and the electron beam passes through the

lower 40 cm long “target chamber”. The spherical shape of the pumping chamber

is designed to reduce the surface relaxation (high surface/volume ratio) while the

long tube shape of the target chamber is to maximize the beam-target interaction
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probability. The polarized 3He gas diffuses from pumping chamber to target chamber

through 9-cm long “transfer tube” and hence this design is referred to as "diffusion

cell". The cell is filled to a pressure of about 7 atm with around 1% N2 (in pressure)

and a mixture of K and Rb. The alkali mixture is added in the upper 3 inches di-

ameter sphere pumping chamber only. A small lip extending from the transfer tube

is to prevent alkali flow down to transfer tube when the pumping chamber is heated

up. The thickness of target chamber windows at the end (where the beam passes)

is (100-150) 𝜇m, much thinner than the side wall thickness (about 1.5mm), to min-

imize the background electron scattering and electron energy loss. Fig. 6-9 shows

the dimension of a typical 3He cell. A cell can easily perform badly if any magnetic

contamination is present or if the inner cell wall is not smooth. In order to achieve a
3He relaxation time of 20 hours or above (at room temperature and without electron

beam), the construction and filling processes must be performed very carefully.

Polarization
Diffuse	down

Polarized
Laser

Oven
@230	 𝑐	#

Holding	Field	25	Gauss

Electron	Beam

Figure 6-8: Image of a typical polarized 3He Cell using during 6 GeV experiment[168].

6.2.4.2 Polarization Optics

The laser system consists of three narrow-width diode lasers, each with an unpo-

larized light output power of 30 W and a wavelength of 795 nm. A polarization optics
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Figure 6-9: Geometry of a typical polarized 3He Cell used by Transversity
experiment[168].

system was developed to produce the circularly polarized light for optical pumping,

as shown in Fig. 6-10. The output from the optical fiber of each laser is highly di-

vergent and is focused by the convex lens with 𝑓1 = 8.83 cm. The distance between

fiber and lens is adjusted to make the aperture at the target match the pumping

chamber size. The unpolarized light is split into a horizontal (P-wave) and a verti-

cal (S-wave) linearly polarized components by the beam splitter. About 95% of the

P-wave component transmits through the splitter and is reflected towards the target.

All the S-wave gets reflected by the beam splitter, passes through a 𝜆/4 wave plate, is

reflected by a flat mirror, then passes through the 𝜆/4 wave plate again, and becomes

the P-wave component to transmit through the beam splitter. At this point, most of

the unpolarized laser light becomes linearly polarized P-wave. After passing through

the additional 𝜆/4 plate with the correct orientation, both paths of the P-wave beam

turn into circularly polarized light and are directed towards the pumping chamber of

the 3He cell. The helicity of the light and thus the spin direction of 3He nuclei can

be flipped by simply rotating the 𝜆/4 plate by 90 degrees.

A small amount (≈5%) of the original P-wave is reflected by the beam splitter

together with the original S-wave. This portion of P-wave turns into S-wave after

passing the 𝜆/4 plate twice and then is reflected back to the optical fiber. A careful
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adjustment of the beam splitter is needed to minimize this back-reflection and to

prevent damage to the fiber.

Focusing	 lens
FL	=	8.83	cm

Laser
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splitter
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s p
𝜆/4	waveplate
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Figure 6-10: The optics system to produce circularly polarized light[94].

6.2.4.3 Holding Magnetic Field

For the polarized 3He target, the 3He nuclei are pumped to the 𝑚𝐹 = −𝐹 (+𝐹 )

state which means the polarization direction can only be parallel (anti-parallel) to the

holding field. Different polarized-3He experiments may require different 3He polar-

ization directions with respect to the electron beam, requiring different holding field

directions. Even during the same experiment, several polarization directions may be

required. Three pairs of Helmholtz coils in orthogonal directions are typically used,

see Fig. 6-7. Each pair is separately powered by independent power supplies to pro-

vide 3D tunable ability in both the field direction and the amplitude (between 25 G

and 32 G). The diameters of coils are 1.27 m, 1.45 m, 1.83 m for horizontal along

the beam, perpendicular to the beam and the vertical-direction field’s Helmholtz coils

respectively. Magnetic field uniformity is a very important parameter for the target
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system performance: the field gradient should be small enough to minimize the polar-

ization loss during Nuclear Magnetic Resonance measurements and the polarization

relaxation due to thermal motion in the inhomogeneous field, but should be large

enough to suppress the masing effect (see Sec. 6.6.4). A pair of anti-Helmholtz coils

can help make the gradient satisfied in the desired direction. If the gradient is too

large, a pair of "anti"-Helmholtz can keep the gradient in the appropriate range along

desired direction. The magnetic field gradient of the system is kept at roughly (5-30)

mG/cm through the whole cell region.

6.2.4.4 Oven System

The oven heats the pumping chamber to keep the alkali vaporized for optical

pumping. The oven is made of calcium-silicate based nonmagnetic material CS85.

The heating source for the oven is provided by a hot flow of pressurized air. The

air flow used (dry and filtered at room temperature) is provided by a dedicated

compressor, and then passes through two heaters before entering the oven. The oven

temperature can be adjusted by changing the air flow speed and the heat voltage.

The oven internal air temperature is measured using a resistance temperature detector

(RTD) and its read-back is fed into a digital proportional-integral-derivative (PID)

controller to make the temperature stable by turning on/off one of the heat power

automatically. The typical oven temperature is kept at (230±1) ∘C. The part of

the cell outside the oven (including target chamber and part of transfer tube) is kept

below 100 ∘C to prevent the alkali vapor from entering the target chamber. Any alkali

vapor flowing down would liquidize and be collected by the "lip" on the transfer tube.

This temperature gradient makes the 3He gas to be much denser than 7 amg in the

target chamber.

6.3 Polarimetry

For all 6 GeV experiments, two primary methods were used to measure the 3He

polarization – nuclear magnetic resonance (NMR) polarimetry and electron paramag-
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netic resonance (EPR) polarimetry. The NMR measures the electromagnetic signal

induced by the 3He spin reversal through the adiabatic fast passage (AFP) and is used

to monitor the 3He polarization relatively. The EPR measures the frequency shift on

the EPR lines of the Rb atom caused by the polarized 3He, and thus can provide

an absolute polarization measurement to calibrate the 3He NMR signal. These NMR

and EPR polarimetry methods have been intensively cross-checked and confirmed by

results from elastic scattering asymmetry off 3He.

6.3.1 NMR Polarimetry

6.3.1.1 AFP Principle

NMR is based on flipping the 3He spin using the AFP technique. AFP can be

achieved by changing either the holding field amplitude or the oscillating RF field

frequency.

When the 3He nucleon is placed in a holding field H⃗ = Hẑ, the 3He nuclear spin

does not align fully with the holding field, but precesses around it:

𝑑M⃗
𝑑𝑡

= 𝛾M⃗× H⃗, (6.11)

where 𝛾 is the 3He gyromagnetic ratio (𝛾 = −3.243 kHz/G) and M⃗ is the magnetic

moment (M⃗=𝛾I) of 3He with I⃗ the nuclear spin. It is useful to describe the system in

a frame rotating with �⃗� = 𝜔𝑧. Denote (�̂�, 𝑦, 𝑧) as the basis vector in the lab frame

and (�̂�′ , 𝑦′ , 𝑧′) in the rotating frame:

�̂�
′

= �̂� cos𝜔𝑡+ 𝑦 sin𝜔𝑡, (6.12)

𝑦
′

= −�̂� sin𝜔𝑡+ 𝑦 cos𝜔𝑡, (6.13)

𝑧
′

= 𝑧. (6.14)
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Their derivatives can be written as

𝑑

𝑑𝑡

⎛⎝�̂�
′

𝑦
′

⎞⎠ = �⃗� ×

⎛⎝�̂�
′

𝑦
′

⎞⎠ . (6.15)

Notice that the left side of Eq.6.11 can be expressed in the rotating frame as(︃
𝑑M⃗
𝑑𝑡

)︃
𝑙𝑎𝑏

=
𝑑

𝑑𝑡
(𝑀

′

𝑥�̂�
′
+𝑀

′

𝑦𝑦
′
+𝑀

′

𝑧𝑧
′
)

= 𝑀
′

𝑥

𝑑�̂�
′

𝑑𝑡
+𝑀

′

𝑦

𝑑𝑦
′

𝑑𝑡
+ �̂�

′ 𝑑𝑀
′
𝑥

𝑑𝑡
+ 𝑦

′ 𝑑𝑀
′
𝑦

𝑑𝑡
+ 𝑧

′ 𝑑𝑀
′
𝑧

𝑑𝑡

= �⃗� × �⃗� +

(︃
𝑑M⃗
𝑑𝑡

)︃
𝑟𝑜𝑡

,

(6.16)

where the term
(︁

𝑑M⃗
𝑑𝑡

)︁
𝑟𝑜𝑡

represents the derivatives of �⃗� in the rotation frame. Com-

bining Eq. 6.11 and Eq. 6.16 gives(︃
𝑑M⃗
𝑑𝑡

)︃
𝑟𝑜𝑡

= 𝛾M⃗× (H⃗ +
�⃗�

𝛾
). (6.17)

M⃗ will be static in the rotational frame if 𝐻 is along 𝑧 and one picks the frequency

𝜔0=−𝛾H. This frequency is called the Larmor frequency.

During an AFP, a small oscillating RF field �⃗�1=2𝐻1 cos(𝜔𝑡)�̂� (typically 𝐻1≈ 90

mG, frequency 𝜔/2𝜋 ≈ 91 kHz) is applied in the vertical direction, as shown in

Fig. 6-11. This RF field can be decomposed into two counter-rotating components

with frequency ±𝜔 in the lab frame:

�⃗�1 = [𝐻1 cos(𝜔t)x̂ +𝐻1 sin(𝜔t)ŷ] + [𝐻1 cos(𝜔t)x̂−𝐻1 sin(𝜔t)ŷ]. (6.18)

In the rotating frame, the first term in Eq. 6.18 becomes �⃗�1 = 𝐻1�̂�
′. Ignoring the

effect of the second term first, the motion of magnetization in the rotating frame from

Eq. 6.17 is (︃
𝑑M⃗
𝑑𝑡

)︃
𝑟𝑜𝑡

= 𝛾M⃗× [(H +
𝜔

𝛾
)𝑧′ +𝐻1�̂�

′], (6.19)
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Figure 6-11: The field setup for NMR system.

where 𝐻𝑧′ = 𝐻𝑧 is now the main holding field in the horizontal direction. The

effective field then can be written as

�⃗�𝑒𝑓𝑓 = (H +
𝜔

𝛾
)ẑ′ +𝐻1x̂

′. (6.20)

which is static in the frame with magnitude:

𝐻𝑒𝑓𝑓 =

√︂
(𝐻 +

𝜔

𝛾
)2 +𝐻2

1 . (6.21)

Therefore, if we change (𝐻 + 𝜔
𝛾
) from positive to negative, the spin will follow the

effective field direction and flip from -𝑧 to +𝑧, while the 𝐻1 field ensures the field is

not zero when it crosses the resonances.

The effect of the second term in Eq. 6.18 can be seen easily if establishing a

new frame rotates with �⃗� = −𝜔𝑧[169]. Following the same procedure, the effective

magnetic field in the new rotating frame is give by

�⃗�
′

𝑒𝑓𝑓 = (H− 𝜔

𝛾
)ẑ +𝐻1x̂, (6.22)
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which means that the magnetization vector processes about �⃗�
′

𝑒𝑓𝑓 with angular fre-

quency 𝜔
′
= 𝛾𝐻

′

𝑒𝑓𝑓 ≈ 2𝜔 (note 𝜔 = −𝛾𝐻), and �⃗�
′

𝑒𝑓𝑓 deviates from the z axis by an

angle 𝜃 = arcsin(𝐻1/𝐻
′

𝑒𝑓𝑓 )≈𝐻1/(2𝐻) ≈ 0. So, its effect is negligible and only the

first term in Eq. 6.18 has a significant effect on the magnetization vector.

Therefore, the goal of AFP is for the spin to precess about �⃗�𝑒𝑓𝑓 which is chosen

to be along �̂�′ only, until it flips. The AFP can be achieved by either changing

the holding field strength (𝐻, "field sweep") or RF field frequency (𝜔, "frequency

sweep"). Fig. 6-12 shows the magnetic fields in both rotational and lab frame during

a field sweep. As the holding field 𝐻 increases, the (H + 𝜔/𝛾)𝑧 component of the

effective field decreases first as in Case A, becomes zero as 𝐻 reaches resonance field

𝐻0 = −𝜔/𝛾 as in Case B, and then changes to the opposite direction as 𝐻 > 𝐻0 as in

Case C. As a result, the 3He nucleus spin is flipped. The NMR sweep must satisfy the

𝐻 	#$$ = 𝐻	 +
𝜔	
𝛾 𝑧 +𝐻+𝑥

𝐻	=𝐻	𝑧

𝐻+ = 𝐻+ 𝑥

𝐻+(cos 𝜔𝑡 𝑥
+𝑠𝑖𝑛	(𝜔𝑡)�⃗�)

𝐻+(cos(𝜔𝑡) 𝑥
−𝑠𝑖𝑛	(𝜔𝑡)�⃗�)

𝐻	=𝐻	𝑧

𝐻+(cos 𝜔𝑡 𝑥
+𝑠𝑖𝑛	(𝜔𝑡)�⃗�)

𝐻+(cos 𝜔𝑡 𝑥
−𝑠𝑖𝑛	(𝜔𝑡)�⃗�)

𝐻	=𝐻	𝑧

𝐻+(cos 𝜔𝑡 𝑥
+𝑠𝑖𝑛	(𝜔𝑡)�⃗�)

𝐻+(cos 𝜔𝑡 𝑥
−𝑠𝑖𝑛	(𝜔𝑡)�⃗�)

A.	𝐻 < 𝐻9 B.	𝐻 = 𝐻9 (resonance) C.	𝐻 > 𝐻9

𝐻+

𝐻 	#$$ = 𝐻+�⃗�
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𝐻 	#$$ = 𝐻	 +
𝜔	
𝛾 𝑧 +𝐻+𝑥
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Rotation	Frame

𝐻	#$$

𝐻	#$$ 𝐻	#$$

Figure 6-12: Fields in both the lab frame and the rotation frame. Case A shows the
fields when the holding field 𝐻 is smaller than the resonance field 𝐻0; Case B shows
the fields at resonance 𝐻 = 𝐻0; Case C shows the fields when the holding field 𝐻
larger than the resonance field 𝐻0 and the 𝑧 component of the effective field direction
flips.

AFP condition, that is, the holding field in the field sweep (or RF field frequency in

frequency sweep) changes slowly enough for 3He spin to follow the effective magnetic

field (adiabatic condition) and fast enough to pass the minimum effective field (= 𝐻1)
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to have less relaxation (fast condition):

𝐷|H|2
H1

2 ≤
𝑑
𝑑𝑡
(H + 𝜔

𝛾
)

H1

≤ 𝛾H1, (6.23)

where 𝐷 is the 3He diffusion rate. Use the setup at JLab, the AFP condition is

(102𝑠)−1 ≤
𝑑
𝑑𝑡
(H + 𝜔

𝛾
)

H1

≤ (10−3𝑠)−1. (6.24)

Typically, a AFP field sweep is conducted at fixed frequency (91 kHz) and changing

holding field 𝐻 (scan rate 1.2 G/s) through the resonance (𝐻0 =28.06 G) from 25 G to

32 G and then scan back, while a AFP frequency sweep is done at a fixed holding field

(25 G) but changing RF frequency (scan rate 4 kHz/s) through resonance (𝜔0 = 81

kHz) from 78 kHz to 85 kHz and then scan back.

Most of the 3He nucleus spin will undergo a spin reversal as the field scans through

the resonance H0. The percentage of polarization loss during the sweep is character-

ized as AFP loss, typically <1% for the NMR system.

In the lab frame, the 3He spin precesses around 𝜔𝑧 with an angle with respect to

the 𝑧-axis

𝜃 = arctan(
𝐻1√︁

(𝐻 + 𝜔
𝛾
)2 +𝐻2

1

). (6.25)

This spin rotating will introduce a electro-motive forced (EMF) signal in both pick-

up coils. The pick-up coils are put transverse to holding field and perpendicular to

the RF field as shown in Fig. 6-13. The opposite orientations of the two pick-up

coils are used to subtract the background and double the NMR signal. The induced

signal is proportional to the transverse magnetization 𝑀𝑇 and also the average 3He

polarization:

𝑆𝑁𝑀𝑅(𝑡) ∝𝑀𝑇 ∝ ⟨𝑃3He⟩(𝐻𝑒𝑓𝑓 )𝑇 ∝ ⟨𝑃3He⟩
𝐻1√︁

(𝐻 + 𝜔
𝛾
)2 +𝐻2

1

. (6.26)
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preamplifier

Figure 6-13: Pick-up coils for NMR.

6.3.1.2 NMR Measurement

Fig. 6-14 shows the setup for the NMR system. During the NMR measurement,

the function generator (HP 3324A) provides a constant or sweeping RF signal to the

RF coil and the pick-up coils detect the EMF signal at the same time. The EMF signal

goes through the pre-amplifier (Model SR620) first, then is integrated by the Lock-in

Amplifier (Model SR844) referenced at the RF frequency. The lock-in samples the

signal every ∼10 ms and sends data via GPIB interface to be stored in computer.

Fig. 6-15 shows a typical NMR signal during field sweep. The NMR signal is fitted

by several ansatz functions (eg. Eq. 6.26) which reproduce the NMR height within 1%.

This 1% was included as a part of the systematic uncertainty for the final polarization.

The fitted NMR height (signal height at resonance after removing background) is

proportional to the averaged 3He polarization but needs to be calibrated. One method

for calibration is water NMR which measures the water thermal polarization signal
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Figure 6-14: The electronic set up for the NMR measurements.
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Figure 6-15: A typical NMR signal versus holding field 𝐻.

within a water cell with the same size and shape and located in the same position as

the 3He cell in the holding field, the other is EPR which will be discussed below.
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6.3.2 EPR Polarimetry

EPR is a technique that detects transitions between the Rb electron’s spin levels

rather than 3He nuclear ones. It measures the difference in the frequency shift of the

Zeeman splitting of alkali atoms with the 3He magnetization aligned and anti-aligned

to the holding field, where the 3He spin flip is done by an AFP measurement. From

this difference one can precisely determine the additional magnetic field due to the

polarized 3He gas. Unlike the 3He NMR mentioned above, EPR provides an absolute

polarization measurement for the 3He in the pumping chamber.

6.3.2.1 EPR Principle

In a field H⃗ of a few 10s of G, the interaction between the external magnetic

field and the alkali atom is comparable to the hyperfine interaction, as discussed in

Sec. 6.2.2 . The ground state of an alkali atom can be described by the Breit-Rabi

formula[170]:

𝐸𝐹=𝐼±1/2,𝑚𝐹
= − Δ𝐸ℎ𝑓𝑠

2(2𝐼 + 1)
− 𝑔𝐼𝜇𝑁𝐻𝑚𝐹 ±

Δ𝐸ℎ𝑓𝑠

2

√︂
1 +

4𝑚𝐹

2𝐼 + 1
𝑥+ 𝑥2, (6.27)

where 𝐸ℎ𝑓𝑠 is the hyperfine splitting energy measured in[171], 𝑥 = (𝑔𝐼𝜇𝑁−𝑔𝑠𝜇𝐵)𝐻/Δ𝐸ℎ𝑓𝑠

describes the strength of the Zeeman splitting compared to the hyperfine interaction.

EPR measures the resonance frequency 𝜈𝐸𝑃𝑅+ (𝜈𝐸𝑃𝑅−) for transition between

𝑚𝐹 = 𝐹 (−𝐹 ) and 𝑚𝐹 = 𝐹 − 1(−𝐹 + 1) with 𝐹 = 𝐼 + 1/2. The resonance frequency

𝜈𝐸𝑃𝑅± can be calculated from Eq. 6.27 as

𝜈𝐸𝑃𝑅± = 𝐸𝐹=𝐼+1/2,𝑚𝐹=±𝐹 − 𝐸𝐹=𝐼+1/2,𝑚𝐹=±(𝐹−1)

= −𝐻

2
(𝑔𝐼𝜇𝑁 + 𝑔𝑠𝜇𝐵) +

[︁
± 1∓

√︂
1± 2

2𝐼 − 1

2𝐼 + 1
𝑥+ 𝑥2

]︁Δ𝐸ℎ𝑓𝑠

2
.

(6.28)

When the 3He spin is aligned or anti-aligned with the holding field, the total field

experienced by the alkali atoms will change according to the 3He spin direction as

𝐻𝑡𝑜𝑡 = 𝐻 ±Δ𝐻 where Δ𝐻 is the additional field generated by the 3He spin. Since
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Δ𝐻 ≪ 𝐻, the EPR frequency variation is very small. The change Δ𝜈𝐸𝑃𝑅 can thus

be approximated as

Δ𝜈𝐸𝑃𝑅 =
𝑑𝜈𝐸𝑃𝑅

𝑑𝐻
Δ𝐻 =

𝑑𝜈𝐸𝑃𝑅

𝑑𝐻
(Δ𝐻𝑀 +Δ𝐻𝑆𝐸). (6.29)

Here Δ𝐻𝑆𝐸 is the contribution from spin exchange collisions between the alkali atoms

and the 3He atoms, and Δ𝐻𝑀 corresponds to 3He magnetization which is proportional

to the 3He polarization 𝑃3𝐻𝑒 and the 3He number density [𝑛3He]

Δ𝐻𝑀 = 𝐺𝜇0𝜇3He[𝑛3He]𝑃3He, (6.30)

where 𝜇3He is the magnetic moment of 3He, G is a geometric factor characterizing the

cell (2/3 for a sphere cell). The variation in the EPR frequency Δ𝜈𝐸𝑃𝑅 is related to

the 3He polarization 𝑃3He as[172]

Δ𝜈𝐸𝑃𝑅 =
2𝜇0

3

𝑑𝜈(𝐹,𝑚𝐹 )

𝑑𝐻
𝜅0𝜇3He[𝑛3He]𝑃3He, (6.31)

where 𝑑𝜈(𝐹,𝑚𝐹 )
𝑑𝐻

can be derived from Eq. 6.28[173] and 𝜅0 = Δ𝐻𝑀+Δ𝐻𝑆𝐸

Δ𝐻𝑀
is a constant

that parametrizes the spin-exchange effective field. 𝜅0 depends on the temperature

but not on density, and has been measured[172, 174]:

𝜅
39K
0 (𝑇 ) = (5.99± 0.11) + (0.0086± 0.0020)(𝑇 − 200∘𝐶) (6.32)

𝜅
85Rb
0 (𝑇 ) = 6.39 + (0.00916± 0.00026)(𝑇 − 200∘𝐶). (6.33)

The highest temperature at which 𝜅0 were measured is 200∘𝐶 for K and thus need

extrapolated to the JLab working condition (∼ 230∘). The uncertainty is also extrap-

olated and contributes the largest source of systematic error (2-3%) in the pumping

chamber’s polarization EPR measurement.

For the typical JLab condition, the EPR frequency shift 2Δ𝜈𝐸𝑃𝑅 = 𝜈𝐸𝑃𝑅−−𝜈𝐸𝑃𝑅+

is around 0.3% for potassium with statistical error 𝛿(Δ𝜈𝐸𝑃𝑅)/Δ𝜈𝐸𝑃𝑅 < 0.2%, as

shown in Fig. 6-16.
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6.3.2.2 EPR Measurement

Fig. 6-17 shows the setup of EPR frequency modulation sweep system. The func-

tion generator (Model HP E4400B) generates a frequency-modulated RF signal. The

modulation source comes from a constant 100 Hz sine wave and a DC output from a

proportional integral (PI) box. The modulated RF signal is amplified by a RF am-

plifier (Model EI 3100L) first and sent to the EPR RF coil. Compared to the NMR

RF coil which is used to produce the RF field for AFP in the whole cell region, the

EPR RF coil has a size of around 4 inch in diameter and is mounted very close to

the pumping chamber, to introduce the EPR transition in the pumping chamber only.

Once the alkali vapor is polarized by the diode laser, most of the Rb electrons are

in the 𝐹 = 3, 𝑀𝐹 = 3 (or −3) state and cannot absorb the polarized light, and thus

the 785 nm 𝐷2 florescence (5𝑃3/2 → 5𝑆1/2) is weak or almost absent. For both Rb or

K, the EPR transition will lower both the K and Rb polarization, and re-polarizing

the Rb from 5𝑆1/2 to 5𝑃1/2 produces strong 𝐷2 florescence from 5𝑃3/2 to 5𝑆1/2 because

of the collisional mixing between 5𝑃3/2 and 5𝑃1/2, as shown in Fig. 6-18. The 𝐷2 light

is detected by a photodiode and measured by the lock-in amplifier (Model EGG 7265).

A 𝐷2 filter is placed before the photodiode to avoid the 𝐷1 light background. The

lock-in amplifier output signal is approximately the derivative of the EPR florescence

curve as a function of the RF frequency and is sent to the PI box input. The PI box

provides a feedback to adjust the function generator’s modulation frequency and help

lock the EPR resonance by maintaining the lock-in signal at zero. Using this method,

an EPR resonance can be reached when scanning the frequency. Fig. 6-19 shows a

typical frequency scan spectrum to find EPR resonance for 39K with 𝑚𝐹 = +2 to

𝑚𝐹 = +1. After the EPR resonance is found and locked, an NMR-AFP frequency

sweep is performed to flip the 3He spin to get the frequency shift Δ𝜈𝐸𝑃𝑅 as shown in

previous Fig. 6-16.

The frequency shift Δ𝜈𝐸𝑃𝑅 in this particular measurement was Δ𝜈𝐸𝑃𝑅 = (34.78±
0.06) kHz, which is calculated to give the polarization 𝑃3He = (30.3 ± 0.4)% using
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Eq. 6.30.
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Figure 6-18: Optical pumping for 85𝑅𝑏 during an EPR measurement for 39K.
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𝑚𝐹 = +2 to 𝑚𝐹 = +1 with the PI box disabled.
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6.3.3 Alkali Polarimetry

The NMR and EPR discussed in the Sec. 6.3.1 and Sec. 6.3.2 are polarimetry for
3He. This section will discuss the polarimetry for the alkali vapor.

From Sec. 6.2.3, the maximum 3He polarization is proportional to the alkali polar-

ization as Eq. 6.10. The alkali polarization can be determined from EPR amplitude

modulation sweeps. Compared to the EPR frequency modulation sweep mentioned

in Sec. 6.3.2, the only difference is that the EPR RF signal generated by function

generator (Model E4401B) is modulated with the amplitude input from the modu-

lation sources. Fig. 6-20 shows the EPR spectrum from the amplitude modulation

sweep: 𝐷2 light relative intensity versus the frequency. In the plot, the highest peak

corresponds to the transition |𝐹 = 2,𝑚 = 2⟩ ↔ |𝐹 = 2,𝑚 = 1⟩ for 39𝐾.
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Figure 6-20: D2 light intensity versus the frequency from the EPR Amplitude mod-
ulation measurement.

According to[175, 176], the area 𝐴𝐹,𝑚 under a particular line |𝐹,𝑚⟩ ↔ |𝐹,𝑚− 1⟩
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in the EPR spectrum is proportional to the population difference between these two

states |𝐹,𝑚⟩ and |𝐹,𝑚− 1⟩:

𝐴𝐹,𝑚 ∝ 𝑓𝐼 [𝐴][
𝐻𝑅𝐹

2𝐼 + 1
]2[𝐹 (𝐹 + 1)−𝑚(𝑚− 1)](𝜌𝐹,𝑚 − 𝜌𝐹,𝑚−1), (6.34)

where 𝑓𝐼 is the natural fraction of the isotope, [𝐴] is the alkali number density, 𝐻𝑅𝐹

the RF magnetic field strength, and density 𝜌𝐹,𝑚 ∝ 𝑒𝛽𝑚 with 𝛽 = 1+𝑃𝐴

1−𝑃𝐴
, with 𝑃𝐴 the

polarization of the alkali atoms.

In practice, the adjacent EPR transitions |𝐹,𝑚⟩ ↔ |𝐹,𝑚 − 1⟩ and |𝐹,𝑚 − 1⟩ ↔
|𝐹,𝑚− 2⟩ can be well resolved, but not for twin transitions |𝐹,𝑚⟩ ↔ |𝐹,𝑚− 1⟩ with

𝐹 = 𝐼 + 1/2 and |𝐹 ′
,𝑚⟩ ↔ |𝐹 ′

,𝑚 − 1⟩ with 𝐹
′
= 𝐼 − 1/2 since their difference is

too small. Therefore, for the same alkali species, the ratio of areas of two successive

peaks 𝑚↔ 𝑚− 1 and 𝑚
′ ↔ 𝑚

′ − 1 is given by:

𝑟 =
𝐴𝐹,𝑚 + 𝐴𝐹 ′ ,𝑚

𝐴𝐹,𝑚′ + 𝐴𝐹 ′ ,𝑚′

=

[︂
𝐹 (𝐹 + 1)−𝑚(𝑚− 1) + 𝐹

′
(𝐹

′
+ 1)−𝑚(𝑚− 1)

𝐹 (𝐹 + 1)−𝑚′(𝑚′ − 1) + 𝐹 ′(𝐹 ′ + 1)−𝑚′(𝑚′ − 1)

]︂
𝛽(𝑚−𝑚

′
).

(6.35)

If choose 𝑚
′
= 𝑚− 1, the above Eq. 6.35 can be rewritten as

𝑃𝐴 =
[𝐹 2 − (𝑚− 1)(𝑚− 2)]𝑟 − [𝐹 2 −𝑚(𝑚− 1)]

[𝐹 2 − (𝑚− 1)(𝑚− 2)]𝑟 + [𝐹 2 −𝑚(𝑚− 1)]
. (6.36)

For a nuclear spin 𝐼 = 3/2 isotope like 39K or 87Rb under laser pumping, m=2, the

ratio is

𝑟 =
𝐴2,2

𝐴2,1 + 𝐴1,1

, (6.37)

and the the alkali polarization is

𝑃𝐴 =
𝑟 − 0.5

𝑟 + 0.5
. (6.38)

For 6 GeV targets, the potassium polarization is close to 100% with three narrow-
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width diode lasers.

6.3.4 Two Chamber Polarization Model

Polarized 3He cells at JLab usually consist two chambers with a small transfer tube

connecting them, as shown in Fig. 6-8. The 3He is polarized only in the pumping

chamber and diffuses down to the target chamber. EPR can provide an absolute

polarization measurement on the pumping chamber with high precision, however the

target chamber is where the electron scattering happens, therefore a two chamber

polarization model was developed to study the polarization dynamics and to obtain

the polarization in the target chamber[177, 178]:

𝑑𝑃𝑝

𝑑𝑡
= 𝛾𝑆𝐸(𝑃𝐴 − 𝑃𝑝)− Γ𝑝𝑃𝑝 − 𝑑𝑝(𝑃𝑝 − 𝑃𝑡), (6.39)

𝑑𝑃𝑡

𝑑𝑡
= −Γ𝑡𝑃𝑡 + 𝑑𝑡(𝑃𝑝 − 𝑃𝑡), (6.40)

where 𝑃𝑝 (𝑃𝑡) are the 3He polarization in the pumping chamber (target chamber), 𝑃𝐴

is the average alkali polarization, 𝛾𝑆𝐸 is the spin-exchange rate per nucleus, Γ𝑝 (Γ𝑡) is

the 3He spin relaxation rate per nucleus in the pumping chamber (target chamber), 𝑑𝑝

(𝑑𝑡) is the probability per unit time per nucleus that a nucleus will exit the pumping

(target) chamber and enter the target (pumping) chamber. Substitute the Eq. 6.40

into Eq. 6.39, we obtain an homogeneous linear equation:

𝑑𝑃 2
𝑡

𝑑𝑡2
+ (𝑑𝑡 + Γ𝑡 + 𝑑𝑝 + Γ𝑝 + 𝛾𝑆𝐸)

𝑑𝑃𝑡

𝑑𝑡
+ [𝑑𝑝Γ𝑡 + (𝛾𝑆𝐸 + Γ𝑝)(Γ𝑡 + 𝑑𝑡)]𝑃𝑡 − 𝑑𝑡𝛾𝑆𝐸𝑃𝐴 = 0.

(6.41)

For an arbitrary initial condition:

𝑃𝑝(𝑡 = 0) = 𝑋, (6.42)

𝑃𝑡(𝑡 = 0) = 𝑌, (6.43)
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and the equilibrium condition:

𝑑𝑃𝑝

𝑑𝑡
(𝑡 =∞) = 0, (6.44)

𝑑𝑃𝑡

𝑑𝑡
(𝑡 =∞) = 0, (6.45)

the two chamber model can be solved analytically and the results are as follows:

𝑃𝑝(𝑡,𝑋, 𝑌 ) = 𝐶𝑝𝑒
−Γ𝑓 𝑡 + (−𝑃∞𝑝 − 𝐶𝑝 +𝑋)𝑒−Γ𝑠𝑡 + 𝑃∞𝑝 , (6.46)

𝑃𝑡(𝑡,𝑋, 𝑌 ) = 𝐶𝑡𝑒
−Γ𝑓 𝑡 + (−𝑃∞𝑡 − 𝐶𝑡 + 𝑌 )𝑒−Γ𝑠𝑡 + 𝑃∞𝑡 , (6.47)

where 𝑃∞𝑝 (𝑃∞𝑡 ) is the maximum polarization in the pumping chamber (target cham-

ber), Γ𝑓 (Γ𝑠) is the fast (slow) time constant that governs the time evolution of the

polarization, 𝐶𝑝 (𝐶𝑡) is the specific coefficient for the polarization in the pumping

chamber (target chamber). They can be written as:

Γ𝑓 =
1

2
[(𝑑𝑝 + Γ𝑝 + 𝑑𝑡 + Γ𝑡 + 𝛾𝑆𝐸) +

√︁
(𝑑𝑝 + Γ𝑝 + 𝛾𝑆𝐸 − 𝑑𝑡 − Γ𝑡)2 + 4𝑑𝑝𝑑𝑡], (6.48)

Γ𝑠 =
1

2
[(𝑑𝑝 + Γ𝑝 + 𝑑𝑡 + Γ𝑡 + 𝛾𝑆𝐸)−

√︁
(𝑑𝑝 + Γ𝑝 + 𝛾𝑆𝐸 − 𝑑𝑡 − Γ𝑡)2 + 4𝑑𝑝𝑑𝑡], (6.49)

𝑃∞𝑝 =
𝑃𝐴𝛾𝑆𝐸(𝑑𝑡 + Γ𝑡)

(𝑑𝑝 + Γ𝑝 + 𝛾𝑆𝐸)(𝑑𝑡 + Γ𝑡)− 𝑑𝑝𝑑𝑡
, (6.50)

𝑃∞𝑡 =
𝑑𝑡

𝑑𝑡 + Γ𝑡

𝑃∞𝑝 , (6.51)

𝐶𝑝 =
Γ𝑠𝑃

∞
𝑝 − 𝛾𝑆𝐸𝑃𝐴 +𝑋(𝛾𝑆𝐸 + Γ𝑝 + 𝑑𝑝 − Γ𝑠)− 𝑌 𝑑𝑝

Γ𝑓 − Γ𝑠

, (6.52)

𝐶𝑡 = 𝐶𝑝
𝑑𝑡

Γ𝑡 + 𝑑𝑡 − Γ𝑓

=
Γ𝑠𝑃

∞
𝑡 −𝑋𝑑𝑡 + 𝑌 (Γ𝑡 + 𝑑𝑡 − Γ𝑠)

Γ𝑓 − Γ𝑠

. (6.53)

At the fast diffusion limit, 𝑑𝑝, 𝑑𝑡 » 𝛾𝑆𝐸, Γ𝑡, Γ𝑝, one can get Γ𝑓 ≈ 𝑑𝑝 + 𝑑𝑡, Γ𝑠 ≈
1/2 [Γ𝑝 + Γ𝑡 + 𝛾𝑆𝐸 − (𝑑𝑝 − 𝑑𝑡)/(𝑑𝑝 + 𝑑𝑡)(Γ𝑝 + 𝛾𝑆𝐸 − Γ𝑡)], and the polarization of both

chambers can be expressed in a unified polarization evolution function as shown in

Eq. 6.8 with Γ𝑅 = Γ𝑠.

Assume the flux is constant and temperature varies linearly along the transfer

178



tube, the diffusion rate 𝑑𝑝 (𝑑𝑡) can be computed as [159]

𝑑𝑡 =
𝐴𝑡𝑡𝐷0

𝑉𝑡𝐿𝑡𝑡

𝑛0(2−𝑚)(𝑇𝑝 − 𝑇𝑡)

𝑛𝑡𝑇
𝑚−1
0 (𝑇 2−𝑚

𝑝 − 𝑇𝑚−2
𝑡 )

, (6.54)

𝑑𝑝 =
𝑛𝑡𝑉𝑡𝑑𝑡
𝑛𝑝𝑉𝑝

, (6.55)

where 𝐷0 = 2.789 ± 0.007 cm2/s is the diffusion constant at 𝑇0 = 353.14 K, 𝑚 =

1.705 ± 0.003 describes the temperature dependence of the diffusion constant, 𝑛0 =

0.7733 amg is the density scale factor, 𝐴𝑡𝑡 (𝐿𝑡𝑡) is the cross section (length) of transfer

tube, 𝑇𝑝 (𝑇𝑝) is the average pumping (target) chamber inner gas temperature, 𝑛𝑝 (𝑛𝑡)

is the pumping chamber (target chamber) density and 𝑉𝑝 (𝑉𝑡) is the pumping chamber

(target chamber) inner volume.

For the typical 3He system during Transversity experiment[168], the diffusion rate

is estimated as 𝑑𝑡 = 0.83 h−1 with uncertainty 𝛿𝑑𝑡
𝑑𝑡
≈ 20%. This will contribute one

of the largest systematic uncertainty (2-3)% in the target chamber polarization.

During a normal production run, the total relaxation rate Γ𝑡 has 5 contributions:

Γ𝑡 = Γ𝑑𝑖𝑝 + Γ𝑤𝑎𝑙𝑙 + Γ𝑏𝑒𝑎𝑚 + Γ𝐴𝐹𝑃 + ΓΔ𝐵. (6.56)

where Γ𝑑𝑖𝑝 is related to 3He-3He dipolar interaction, Γ𝑤𝑎𝑙𝑙 is contributed from collisions

between the 3He nucleus and the cell glass wall, Γ𝑏𝑒𝑎𝑚 is the beam depolarization effect

through ionization, Γ𝐴𝐹𝑃 is from NMR-AFP sweep, and ΓΔ𝐵 is the relaxation due

to magnetic field gradient. During transversity experiment [168, 179], the pumping

chamber polarization is around 60%, Γ𝑡 is around 0.1 h−1, 𝑑𝑡 is around (0.6-0.8) h−1,

so the polarization gradient between target chamber and pumping chamber (Eq. 6.51):

𝑃𝑡

𝑃𝑝

= (1 + Γ𝑡/𝑑𝑡)
−1 = (85− 90)%, (6.57)

which means for 𝑃𝑝 ≈ (50 − 60)%, the target chamber’s absolute polarization is

(5-10)% lower than the pumping chamber polarization.
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6.4 Performance in the 6 GeV Era

By implementing both the narrow-width diode laser and the hybrid-pumping tech-

nique (Rb-K mixture), the spin up times for the JLab target were shortened from

approximately 10 hours to 5 hours [168, 173], and the maximum polarization was in-

creased from 40% (during A1n[76, 148] in 2001) to 60% (during Transversity[150, 151]

in 2009), with a 15 𝜇A electron beam on target[168, 173]. Without beam, the max-

imum 3He polarization reached more than 70% (Cell Brady). At 15 𝜇A, this target

(40 cm long, 10 amg) used during Transversity, also set a world polarized luminosity

record for polarized 3He (𝑃3He × 𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 ≈ 1.0 × 1036/cm2/s). The Fig. 6-21

shows the figure-of-merit (𝑃 2
3He × Current) evolution during the 6 GeV era.
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Figure 6-21: Figure-of-Merit history for high luminosity polarized 3He targets used
at SLAC and then the 6 GeV era of JLab[168].

For electron scattering experiments, the experiment performance depends directly

on the target chamber polarization and its uncertainty. Table 6.1 shows systematic un-

certainty for the target chamber polarization during the Transversity experiment[168].

There are several limitations for the target performance, described in this section.
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Items Rel. Pol. Error

Pumping Chamber

K-3He EPR 𝜅0 2.7%
Pumping chamber density 1.8%
Pumping chamber temperature 0.5%
Density fluctuation 0.4%
Stat. error of NMR calib. constant 0.3%

Polarization Gradient

Diffusion rate 2.3%
Target chamber intrinsic lifetime 2.0%
Beam depolarization 1.6%
Transfer tube depolarization 0.5%
Spin flip loss 0.2%

Sum all 4.9%

Table 6.1: Systematic uncertainty budget for target polarization during the Transver-
sity experiment[168].

6.4.1 Limitation of the 6 GeV Diffusion Cell

All 6 GeV experiments used the same cell design (Fig. 6-8) where the polarization

propagates from the pumping to the target chamber purely by diffusion. We hence-

forth name such design “diffusion cell”. From Sec. 6.3.4 and Table 6.1, the target

chamber absolute polarization has some limitations due to the diffusion cell design:

∙ Target chamber absolute polarization is typically (5-10)% lower than the pump-

ing chamber during the series of Transversity experiments due to the slow dif-

fusion. This largely comes from the long transfer tube.

∙ One of the largest systematic uncertainty (2-3%) is due to the estimated uncer-

tainty of diffusion rate 𝛿𝑑𝑡
𝑑𝑡
≈ 20%.

Some tests were performed to understand the diffusion rates [177, 178]. However,

these measurements were done with initial polarization zero and without electron

beam, which means the polarization gradient between pumping chamber and target

chamber was not large. The larger the polarization gradient, the more significant

the diffusion plays in the two chamber polarization dynamics, and thus the more

accurate the diffusion rate studies is needed. A dedicated study on the diffusion rate

was performed on cell Moss in EEL lab at JLab in 2012. The 3He target was pumped
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to high polarization for both pumping chamber and target chamber first. A RF field

was then applied to destroy the polarization in the target chamber completely while

keeping the pumping chamber polarization as high as possible. Then both pumping

chamber and target chamber polarization were recorded by NMR independently every

10 minutes, as shown in Fig. 6-22.

From Sec.6.3.4, the pumping chamber polarization 𝑃𝑝(𝑡,𝑋, 𝑌 ) and target chamber

polarization 𝑃𝑡(𝑡,𝑋, 𝑌 ) can be described using Eq. 6.46 and Eq. 6.47 respectively.

However, a modification is needed to account for the AFP loss from each NMR

measurement. Denote the i-th measurement polarization as 𝑃 𝑖
𝑝 (𝑃 𝑖

𝑡 ), the AFP loss

as 1 − 𝛽𝑝 (1 − 𝛽𝑡) with 𝛽𝑝,𝑡 ≈ 1, the measurement time interval as Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖,

the (i+1)-th measurement can be described using Eq. 6.46- 6.47 with initial values

𝑋 = 𝑃 𝑖
𝑝𝛽

2
𝑝 and 𝑌 = 𝑃 𝑖

𝑡𝛽
2
𝑡 :

𝑃 𝑖+1
𝑝 = 𝑃𝑝(Δ𝑡, 𝑃 𝑖

𝑝𝛽
2
𝑝 , 𝑃

𝑖
𝑡𝛽

2
𝑝) (6.58)

𝑃 𝑖+1
𝑡 = 𝑃𝑡(Δ𝑡, 𝑃 𝑖

𝑝𝛽
2
𝑡 , 𝑃

𝑖
𝑡𝛽

2
𝑡 ). (6.59)

Fitting the measured NMR amplitudes using Eq. 6.58 and Eq. 6.59 leads to the

parameters as shown in Table 6.2. For the cell Moss, the transfer tube cross section

𝐴𝑡𝑡 = 0.71 cm2, the transfer tube length 𝐿𝑡𝑡 = 9.4 cm, the transfer tube volume

𝑉𝑡𝑡 = 6.6 cm3, the target chamber volume 𝑉𝑡 = 74.0 cm3, the pumping chamber

volume 𝑉𝑡 = 190.3 cm3 and the filled 3He density 𝑛3𝐻𝑒 = 7.96 amg. The 3He density

in target chamber is related to the ratio of gas temperature in target chamber and

pumping chamber, and is given by

𝑛𝑡 =
𝑛3He

1 + 𝑉𝑝

𝑉𝑡𝑜𝑡
( 𝑇𝑡

𝑇𝑝
− 1)

, (6.60)

(6.61)

with 𝑉𝑡𝑜𝑡 = 𝑉𝑡 + 𝑉𝑝. During the measurement, 𝑇𝑝 = 240.5 ∘C and 𝑇𝑡 = 31.7 ∘C,

the calculated diffusion rate 𝑑𝑡 from Eq. 6.55 is 0.79 h−1 which agrees with the fitted

value (0.81± 0.02) h−1 within one 𝜎.
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Figure 6-22: A test of the two chamber diffusion model performed in 2012 on cell
Moss. The left shows the polarization evolution on the target chamber while the
right shows for the pumping chamber. The red curves are from model predictions.
The blue markers are the measured NMR amplitudes scaled by a fitted constant for
the left plot, and a fixed EPR constant for the right.

Fitting Parameters Fitting Results
Target Chamber diffusion rate 𝑑𝑡 (0.80± 0.02) h−1

Target Chamber relaxation rate Γ𝑡 (0.04± 0.01) h−1

Target chamber NMR calibration factor 1.05± 0.01
Target Chamber AFP loss 𝛽𝑡 0.22% fixed from AFP test
Pumping Chamber Diffusion rate 𝑑𝑝 (0.40± 0.05) h−1

Pumping Chamber relaxation rate Γ𝑝 (0.06± 0.02) h−1

Pumping chamber NMR calibration factor 1.36 fixed from EPR test
Pumping Chamber AFP loss 𝛽𝑝 0.85% fixed from AFP test
Alkali polarization 𝑃𝐴 (94± 3)%
spin-exchange rate 𝛾𝑆𝐸 (0.073± 0.006) h−1

Table 6.2: Fitting results for the 2012 diffusion rate test.

6.4.2 Limitation of Polarimetry

As described in Sec. 6.3, two kinds of polarimetry, NMR and EPR were used to

measure the polarization of the target. The relative uncertainty of the polarization
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was around 5% for hybrid cells (GEn and transversity series). One main aspect of

this thesis work is to prepare the 3He target for the 12 GeV era of JLab. From

Sec. 6.3.2, Sec. 6.3.4 and Table 6.1, the target chamber polarization polarimetry has

the following limitations:

∙ Existing measurements of the EPR calibration constant 𝜅0 were only performed

at below 200∘C, will contributes as one of the largest systematic uncertainty (2-

3)% to EPR polarimetry.

∙ For high-beam current required by 12 GeV experiments, metal end-windows of

target chamber are desirable. Therefore, NMR will not be suitable for measure-

ments on the target chamber.

To satisfy the requirements of the approved experiments for the 12 GeV program

at JLab, an upgrade of the polarized 3He is essential, as will be discussed in the

following sections.

6.5 Upgrade Plan for the 3He Target at 12 GeV

For the 12 GeV program at JLab, there are already seven polarized 3He target

related experiments approved with high scientific ratings (three A’s and four A-’s).

Among the seven experiments, two experiments (with the SoLID spectrometer[180,

181]) demands the performance already achieved during the 6 GeV era, while the

other five require a significant improvement and can be divided into two groups. The

first group consists of three experiments (𝐴𝑛
1 -Hall A[182], 𝑑𝑛2 -Hall C[183] and SIDIS-

SBS[184]) which requires a factor of 3-4 in the figure-of-merit, while the second group

(𝐴𝑛
1 - Hall C[185] and GEN-II[186]) needs a further factor of 2, as shown in Table 6.4.

A two-stage plan was developed to upgrade the polarized 3He target to meet the

requirements of these experiments[187]. Stage One aims to have a 40 cm long, 10 amg

target with 30 𝜇A electron beam current and reach an in-beam target polarization

of 60%, a factor of 2–3 improvement in the figure of merit. In addition, the precision

of the polarization measurement will be improved from 5% to 3%. This target will
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Expt. Density Length Pol. Current Pol. Luminosity Pol. Rel. Err.
𝐴𝑛

1 -Hall A 10 amg 60 cm 65% 30 𝜇A 3× 1036/cm2/s 3%
SIDIS-Hall A 10 amg 60 cm 65% 40 𝜇A 4× 1036/cm2/s 3%
𝑑𝑛2 -Hall C 10 amg 60 cm 55% 30 𝜇A 3× 1036/cm2/s 3%
𝐴𝑛

1 -Hall C 10 amg 60 cm 60% 60 𝜇A 6× 1036/cm2/s 3%
GENII-Hall A 10 amg 60 cm 65% 60 𝜇A 6× 1036/cm2/s 3%
SIDIS E12-10-006 Achieved during 6 GeV era
SIDIS E12-11-007 Achieved during 6 GeV era

Table 6.3: Polarized 3He Target needed by the approved 12 GeV experiments. As a
comparison, the highest polarization luminosity (defined as 𝑃3He×Current) during 6
GeV, achieved during the transversity experiment, was 1.0× 1036 cm−2s−1.

satisfy the requirement of the first group of 12 GeV experiments to an acceptable

level. Stage Two is to meet the needs of the second group of experiments: a 60 cm

long, 10 amg target with a polarization reaching 65% with a 60 𝜇A beam current. A

metal end-window or metal target chamber cell with double-pumping-chamber design

will be needed to handle the high beam current in this stage.

For the first stage, with the limited resources (engineering/design manpower and

funding) available, the new target system will make full use of the existing 6 GeV

setup and the upgrade steps are outlined as following:

∙ using convection flow to increase the 3He transfer rate between two chambers.

∙ using a larger pumping chamber size: 3.5 inches in diameter, compared to the

3 inch during 6 GeV running. The volume will increase by 50%.

∙ developing a new polarimetry called pulsed NMR and calibrate it with EPR

and water NMR.

∙ shielding the pumping chamber from radiation damage. The typical cell lifetime

is around 4 weeks under the 6 GeV beam running condition. The pumping

chamber gradually darkens due to radiation and ruptures under the high power

laser pumping.

∙ measuring the EPR calibration constant 𝜅0 to a higher temperature that covers

the hybrid cell operation temperature. These measurements will be performed
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by JLab users (Prof. Cates’s group at the University of Virginia and Prof.

Averett’s group at the College of William and Mary).

∙ using metal end-windows for the target chamber. This is optional for a 30𝜇A

beam, but is required for higher currents. This is currently also being studied

by Prof. Cates’s group at the University of Virginia.

6.6 Upgrade Progress

Fig. 6-23 shows the mechanical design of the target system for Stage One, which

is very different from 6 GeV experiments. To have the target system ready, R&D

efforts are ongoing to study the performance of the convection cell, a pulsed-NMR

system, radiation shielding for high current beam and systematic uncertainties in

target polarization measurements [188]. More details will be discussed in the following

sections.

Figure 6-23: The polarized 3He target mechanical design at JLab.

6.6.1 Convection System

A convection type cell was developed and tested at UVa [189]. The geometry of

convection cell Protovec-I is shown in Fig. 6-24. The pumping chamber is a 3.5 inch
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diameter sphere located inside a 230 ∘C oven (where 3He nuclei are polarized through

spin exchange with a Rb-K mixture that is in turn polarized by 795 nm laser light).

The target chamber is a 40 cm long tube. Compared with the previous diffusion cell

shown in Fig. 6-8 and Fig. 6-9, the main difference is that it consists of a pair of short

transfer tubes between the pumping chamber and the target chamber. A heating coil

is placed on one of the transfer tube which cause the gas to flow due to convection.

The convection design circulates gas between the pumping and target chambers much

more rapidly than the previous design, which relied upon diffusion of the gas through

a single tube connecting the chambers. In this section, I will describe a model for

the polarization dynamics in the convection cell, and studies of the convection speed,

AFP loss, spin up and down processes, and alkali polarization measurements for the

convection cell.
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Figure 6-24: Geometry of Convection Cell Provotec-I.
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6.6.1.1 Convection Model

A two chamber convection model was developed to study the polarization dynam-

ics with convection. The polarization of the 3He in the two chambers can be described

by

𝑑𝑃𝑝

𝑑𝑡
= 𝛾𝑆𝐸(𝑃𝐴 − 𝑃𝑝)− Γ𝑝𝑃𝑝 − (𝑑𝑝 +𝐺𝑝)(𝑃𝑝 − 𝑃𝑡), (6.62)

𝑑𝑃𝑡

𝑑𝑡
= −Γ𝑡𝑃𝑡 + (𝑑𝑡 +𝐺𝑡)(𝑃𝑝 − 𝑃𝑡). (6.63)

The above functions are very similar to the two chamber diffusion model discussed in

Sec. 6.3.4, but with two additional terms 𝐺𝑝 and 𝐺𝑡 that are related to the convection.

𝐺𝑝 (𝐺𝑡) is the probability per unit time per nucleus that a nucleus exits the pumping

(target) chamber and enters the target (pumping) chamber due to convection, and

can be expressed as:

𝐺𝑝 =
𝑣𝐴𝑡

𝑉𝑡

𝑛𝑡𝑉𝑡

𝑛𝑝𝑉𝑝

≈ 𝑣

𝐿

𝑛𝑡𝑉𝑡

𝑛𝑝𝑉𝑝

, (6.64)

𝐺𝑡 =
𝑣𝐴𝑡

𝑉𝑡

≈ 𝑣

𝐿
. (6.65)

Here 𝑣 is the convection velocity of 3He gas in the target chamber, 𝐿 is the length of

the target chamber, 𝑉𝑡 (𝐴𝑡) is the target chamber volume (cross section).

The polarization evolution in the two chambers are the same as Eq. 6.46 and

Eq. 6.47 if substituting 𝑑𝑝 (𝑑𝑡) by 𝐺𝑝+𝑑𝑝 (𝐺𝑡+𝑑𝑡). From Eq. 6.57, the polarization

gradient between the target chamber and the pumping chamber under a convection

speed 𝑣 is

𝑃𝑡

𝑃𝑝

=

(︂
1 +

Γ𝑡

𝑑𝑡 +𝐺𝑡

)︂−1
. (6.66)

Therefore, the additional term 𝐺𝑡 reduces the polarization gradient between two

chambers. Fig. 6-25 shows the calculated polarization gradient versus convection

speed in the target chamber. For a typical convection speed around 6 cm/min, 𝐺𝑡 ≫
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𝑑𝑡, and 𝑃𝑡

𝑃𝑝
≈ 98%. So the 3He polarization of the target chamber is almost the same as

pumping chamber, and the systematic uncertainty of the target chamber polarization

can be reduced. Many tests have been performed to demonstrate that the convection

system works properly, to be described in the following sections.
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Figure 6-25: Polarization gradient versus convection speed in the target chamber
calculated using Eq. 6.66. The target chamber relaxation rate is assumed to be 0.1
h−1.

6.6.1.2 Convection Speed

From Fig. 6-25 convection speed is one of the key factor for the upgraded target

system since the polarization gradient depends directly on it. Fig. 6-26 shows the

setup for the convective flow measurement at JLab performed in 2013. A small

heater on one of the two transfer tubes is used to establish a convective flow of gas

between the pumping and target chambers, while a RF pulse from the Free-Induction-

Decay (FID) coil is used to perturb the polarization of gas inside the 1.0 inch bulb

on the other transfer tube. The polarization dynamics inside the target chamber are

then monitored with two sets of pickup coils using NMR-AFP. The recorded NMR
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amplitudes are shown in Fig. 6-27. The convection speed can then be determined

from the time difference between the two dips in the two sets of NMR amplitude

curves and the distance between the two pickup coils. The convection speed was

determined to be around 5.7 cm/min in the target chamber.

Figure 6-26: Set up for convection flow test.

6.6.1.3 AFP Loss

AFP loss refers to the polarization loss during one NMR scan. The NMR sweep

speed is optimized to minimize the depolarization, typically less than 1% relative

polarization is lost during each NMR measurement. For the convection design, the
3He gas circulates in the cell and experiences a large gradient of the Helmholtz holding

field in the whole cell region in a short time. In addition, the constant flow will cause

more collisions between the cell wall and 3He atoms. Both of these two processes can

bring larger depolarization effects than diffusion only cells. AFP loss studies were

used to characterize these effects by measuring the difference between subsequent up-

sweep and down-sweep NMR amplitudes. These AFP measurements have been made

with the convection heater on and off, and in both the target and pumping chambers.
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Figure 6-27: NMR signal amplitude versus time from the two pickup coils during
the convection speed test, performed on cell Provotec-I at JLab in 2013. The red
and green curves are the NMR amplitudes measured by the first pickup coil and the
second pickup coil, respectively. Two pickup coils are 14.5 cm apart. The result
indicates a gas flow velocity of 5.7 cm/min in the target chamber.

Results are show in Fig. 6-28 and Table 6.4. The total loss between AFP scans with

convection on is slightly larger, but acceptable.

AFP loss per sweep target chamber pumping chamber
without convection 0.16% 0.72%

with convection 0.85% 0.87%

Table 6.4: AFP loss with convection on and off for both the pumping chamber and
target chamber when the laser was off. The results were corrected for polarization
loss due to spin relaxation. The absolute uncertainty for the AFP loss is about 0.05%.

6.6.1.4 Spin Up Test

The spin up test is to study how fast the 3He gas can be pumped to the maximum

polarization. At the typical convection speed 6 cm/min, 𝐺𝑝𝑐, 𝐺𝑡𝑐 ≫ 𝛾𝑆𝐸, Γ𝑡𝑐, Γ𝑝𝑐, the

polarization of both chambers can be expressed in a unified time evolution function
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Figure 6-28: NMR amplitudes versus time (25 sweeps 2 minutes apart) for the target
chamber during an AFP loss study, performed on cell Provotec-I at JLab in 2013.
Red and green markers indicate the NMR sweep up and down amplitudes. The result
with convection off (on) is shown in the left (right) plot, and numerical values are
shown in Table 6.4.

as shown in Eq. 6.8. One can express it as:

𝑃 (𝑡) = 𝑃 0 + (𝑃∞ − 𝑃 0)(1− 𝑒−
𝑡
𝜏 ), (6.67)

where 𝑃∞ is the maximum polarization, 𝑃 0 is the initial polarization at 𝑡 = 0.

A NMR field sweep consists of two scans: scan the field up though the resonance

and scan back to the original field. Denoting the i-th measurement polarization as 𝑃 𝑖
𝑢𝑝

for the up sweeps (𝑃 𝑖
𝑑𝑛 for the down sweeps), the AFP loss as 1−𝛽, the measurement

time interval as Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖, the (i+1)-th measurement can be described:

𝑃 𝑖+1
𝑢𝑝 = 𝑃 𝑖

𝑢𝑝𝛽
2 + (𝑃∞ − 𝑃 𝑖

𝑢𝑝𝛽
2)(1− 𝑒−

Δ𝑡
𝜏 ), (6.68)

𝑃 𝑖+1
𝑑𝑛 = [𝑃 𝑖

𝑑𝑛𝛽 + (𝑃∞ − 𝑃 𝑖
𝑑𝑛𝛽)(1− 𝑒−

Δ𝑡
𝜏 )]𝛽. (6.69)

At 𝑡 = (𝑛− 1)Δ𝑡, these functions can be solved analytically as

𝑃 𝑛
𝑢𝑝 = −𝑃∞(1− 𝑒−

Δ𝑡
𝜏 )

𝛽2𝑒−
Δ𝑡
𝜏 − 1

+

[︃
𝑃∞(1− 𝑒−

Δ𝑡
𝜏 )

𝛽2𝑒−
Δ𝑡
𝜏 − 1

+ 𝑃 0

]︃
(𝛽2𝑒−

Δ𝑡
𝜏 )𝑛−1 (6.70)

𝑃 𝑛
𝑑𝑛 = 𝛽𝑃 𝑛

𝑢𝑝. (6.71)
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Fig. 6-29 shows the fitting for the pumping chamber (target chamber) spin up curve

using Eq. 6.70 and Eq. 6.71 with a 𝜒2 ≈ 1. The spin up time constants for the pumping

chamber is 𝜏𝑠𝑝𝑖𝑛𝑢𝑝= (6.5 ± 0.1) hours and the target chamber is 𝜏𝑠𝑝𝑖𝑛𝑢𝑝= (6.4 ± 0.1)

hours.
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Figure 6-29: Spin up curves with convection on for the pumping chamber (left) and
the target chamber (right) on cell Protovec-I at JLab in 2013. The two sets of data in
each are for NMR up-sweep (red markers) and down-sweep (blue markers), and the
curves are fits using Eq. 6.70 and Eq. 6.71 with 𝛽 fixed from AFP study.

6.6.1.5 Spin Down Test

A spin down test studies how fast the 3He depolarizes when lasers are off, and

provides data on the spin relaxation rate Γ𝑡 (Eq. 6.56). When the oven is cool and

there is no electron beam, the relaxation depends largely on the wall relaxation. The

wall relaxation rate depends on the procedure and the quality of the cell making and

can vary significantly from cell to cell. A good cell should have a spin down time

constant above 20 hours.

For cells with convection flow, more depolarization effects can occur, as discussed

in Sec. 6.6.1.3. Therefore, it is essential to conduct a spin down measurement with

the convection flow on and the oven off. Similar to the approach in Sec. 6.6.1.4,
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The polarization evolution 𝑃 𝑛
𝑢𝑝 (𝑃 𝑛

𝑑𝑛) can be described as a function of the number of

measurements n, the constant time interval Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 and the AFP loss 1− 𝛽:

𝑃 𝑛
𝑢𝑝 = 𝑃 0(𝛽2𝑒−

Δ𝑡
𝜏 )𝑛−1, (6.72)

𝑃 𝑛
𝑑𝑛 = 𝑃 𝑛

𝑢𝑝𝛽. (6.73)

Fig. 6-30 shows the fitting for the pumping chamber and target chamber spin down

curves using Eq. 6.72 and Eq. 6.73. The averaged spin down time constant for the

two chambers is 𝜏𝑠𝑝𝑖𝑛𝑑𝑜𝑤𝑛= (30.8± 0.3) h. And the constants are almost identical in

the two chambers, and are long, indicates that this convection cell works properly.
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Figure 6-30: Spin down curve with convection on for the pumping chamber (left) and
the target chamber (right) on cell Provotec-I at JLab in 2013. The two sets of data
in each are for NMR up-sweep (black markers) and down-sweep (green markers), and
the curves are fits using Eq. 6.72 and Eq. 6.73.

6.6.1.6 Alkali Polarization

From Sec. 6.3.3, EPR amplitude modulation sweep can be used to measure the

alkali polarization. The alkali polarization 𝑃𝐴 can be expressed as the ratio of areas

under two peaks in the measured EPR spectrum, as shown in Eq. 6.37- 6.38. However,
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the EPR RF introduces an additional depolarization effect on the alkali[173]. The

alkali polarization can be expressed as

𝑃𝐴(Γ𝑅𝐹 ) =
𝛾𝑝𝑢𝑚𝑝

𝛾𝑝𝑢𝑚𝑝 + Γ𝐴 + Γ𝑅𝐹

, (6.74)

where 𝛾𝑝𝑢𝑚𝑝 is the optical pumping rate, Γ𝐴 is total alkali relaxation rate in the

absence of EPR RF, and Γ𝑅𝐹 is the EPR RF depolarization rate which is proportional

to the RF power. We can write the alkali polarization as a function of the RF power

𝑃𝑅𝐹 :

1

𝑃𝐴

=
𝛾𝑝𝑢𝑚𝑝 + Γ𝐴

𝛾𝑝𝑢𝑚𝑝

+
Γ𝑅𝐹

𝛾𝑝𝑢𝑚𝑝

=
1

𝑃0

+ 𝑘𝑃𝑅𝐹 , (6.75)

with 𝑃0 the alkali polarization without EPR RF perturbation.

Fig. 6-31 shows the the alkali polarization curve with different RF powers and

two kinds of laser conditions. The Eq. 6.75 was fitted for both laser conditions with

a 𝜒2 ≈ 1 achieved. The alkali polarization 𝑃0 was 𝑃 0
39K= (96.7 ± 0.2)% by using

one Coherent and one QPC laser while 𝑃 0
39K= (93± 1%) for only one Coherent laser.

These results indicate a high alkali polarization was reached for the convection cell

with a 3.5-inch diameter pumping chamber.

6.6.2 Pulsed NMR

Two kinds of polarimetry, NMR and EPR, were used to measure the polarization

of 3He targets during the 6 GeV era. However, the metal target chambers will be

essential for future 12 GeV experiments with very high luminosity. This will present

problems for NMR on the target chamber due to attenuation of the RF fields. A

pulsed-NMR system is suitable for measurements on the transfer tube connecting the

metal target chamber to the glass pumping chamber, was developed at UVa first and

then modified and built in the JLab target lab.
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Figure 6-31: Alkali polarization versus the RF power, performed on cell Provotec-I at
JLab in 2014. The left shows the polarization curve using one QPC and one Coherent
lasers while the right for only one Coherent laser. Data points are fitted using Eq. 6.75
and the alkali polarization without EPR RF, 𝑃 0 is extracted and shown in each panel.

6.6.2.1 Pulsed NMR Principle

At the holding field H⃗ = Hẑ, a RF pulse �⃗�1=2𝐻1cos(𝜔𝑡)�̂� tuned to the 3He Larmor

frequency, is sent to the FID coil shown in Fig. 6-26. At resonance in the rotating

frame, the spin sees a constant field of

H⃗𝑒𝑓𝑓 = 𝐻1�̂�, (6.76)

which is orthogonal to its spin direction, as shown in Fig. 6-32. As a result, the 3He

magnetization vector tips away from the holding field through an angle 𝜃𝑡𝑖𝑝 given by

𝜃𝑡𝑖𝑝 =
1

2
𝛾𝐻1𝑡𝑝𝑢𝑙𝑠𝑒, , (6.77)

where 𝛾 is the gyro-magnetic ratio and 𝑡𝑝𝑢𝑙𝑠𝑒 is the RF pulse duration. At the con-

clusion of the pulse, the spin components �⃗� orthogonal to the holding field will
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experience free induction decay, described by the Bloch equations in the lab frame:

𝜕𝑀𝑥

𝜕𝑡
= 𝛾𝑀𝑦𝐻 −

𝑀𝑥

𝑇2

, (6.78)

𝜕𝑀𝑦

𝜕𝑡
= −𝛾𝑀𝑥𝐻 −

𝑀𝑦

𝑇2

, (6.79)

𝜕𝑀𝑧

𝜕𝑡
= −𝑀𝑧 −𝑀𝑒𝑞

𝑇1

, (6.80)

where 𝑇2 (𝑇1) is the transverse (longitudinal) relaxation time and 𝑀𝑒𝑞 is the equilib-

rium magnetization at 𝑡 =∞. The solutions of the Bloch equations are[190]

𝑀𝑥(𝑡) = [𝑀𝑥(0) cos(𝜔𝑡)−𝑀𝑦(0) sin(𝜔𝑡)]𝑒
− 𝑡

𝑇2 , (6.81)

𝑀𝑦(𝑡) = [𝑀𝑥(0) sin(𝜔𝑡) +𝑀𝑦(0) cos(𝜔𝑡)]𝑒
− 𝑡

𝑇2 , (6.82)

𝑀𝑧(𝑡) = 𝑀𝑒𝑞 + [𝑀𝑧(0)−𝑀𝑒𝑞]𝑒
− 𝑡

𝑇1 , (6.83)

where 𝜔 = 𝛾𝐻. The transverse magnetizations 𝑀𝑥,𝑦 = 𝑀𝑧 sin(𝜃𝑡𝑖𝑝) which generate

the FID signal with amplitude S(t):

𝑆(𝑡) ∝ 𝑑𝑀𝑥,𝑦(𝑡)

𝑑𝑡
= 𝜔𝑀𝑧 sin(𝜃𝑡𝑖𝑝) sin(𝜔𝑡+ 𝜑0)𝑒

−𝑡/𝑇2 , (6.84)

where 𝜑0 is related to how the pickup coil is oriented with respect to spin direction

at the end of the RF pulse. This signal is used to evaluate the 3He polarization after

calibrating with either EPR or NMR.

6.6.2.2 Pulsed NMR Measurement

The JLab pulsed-NMR system setup is shown in Fig. 6-33. At the beginning, the

gate generator (Model DS 345) sends out a TTL pulse with the timing window equals

to 𝑡𝑝𝑢𝑙𝑠𝑒. The RF function generator (a) (Model DS 345) is triggered at the rising edge

of the TTL pulse and output the RF pulse tuned at Larmor frequency (81 KHz) to

the FID coil through the switch (a) (Model Mini-Circuits ZYSWA-2-50DR Coaxial

Switch). The switches control the signal flow depends on whether the TTL signal

voltage level is high or low. When the TTL signal is high, the switch (a) lets the
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Figure 6-32: The field and magnetization change during the pulsed NMR measure-
ment.

RF pulse pass through to the FID coil to tip away the 3He spin while the switch (b)

stops the RF going into the pre-amplifier (a) (Model SR560) to avoid damage; when

the TTL signal is low, the switch (a) disconnects the FID coil from the RF function

generator (a) to prevent noise while the switch (b) sends the FID signal from pulsed

NMR coil to the pre-amplifier (a). The output from the pre-amplifier (a) is sent to

a mixer (Model Mini-Circuits ZAD-8 Frequency Mixer) where the FID signal mixes

with a signal from a reference RF generator (b) (Model DS345). The reference RF

frequency is chosen to be the Larmor frequency 𝑓0 ±Δ𝑓(Δ𝑓 ≃200Hz). Output from

the mixer is sent into the preamplifier (b) to filter and boost the signal with frequency

Δ𝑓 . The oscilloscope is triggered by the falling edge of the TTL pulse and starts to

record the output signal from the pre-amplifier (b). Fig. 6-34 shows a typical FID

signal.

The pulsed-NMR results were cross-calibrated against NMR-AFP and EPR mea-

surements made on all-glass target systems. Fig. 6-35 shows the ratio of amplitudes

from pulsed NMR to NMR (both on target chamber) during a spin down measure-
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Figure 6-33: JLab pulsed-NMR system schematic.
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Figure 6-34: A typical FID signal. The blue curve are the fits using Eq. 6.84.
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ment. The fitted ratio is 7.98± 0.07, which means the relative uncertainty of calibra-

tion constant is within 1%. Further systematic studies of the pulsed-NMR setup are

currently underway.
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Figure 6-35: Ratio of Pulsed-NMR amplitude to NMR amplitude versus the NMR
amplitude on cell Provotec-I at JLab in 2015. Both pNMR and NMR measured the
polarization in target chamber.

6.6.3 Radiation Shielding

The polarized 3He target is required to be able to handle at least 30 𝜇A of electron

beam for future 12 GeV experiments. A high beam current means more radiation

damage to the pumping chamber, which will cause rupture of the cell. A radiation

shielding study for the pumping chamber was performed using a Geant4 simulation.

The polarized 3He target setup is shown in Fig. 6-36.

The radiation study results are shown in Fig. 6-37. Doses corresponding to 350

hours of beam time were simulated for both the past Transversity experiment at 6

GeV [191, 192] and the future 𝐴𝑛
1 -HallA[193] experiment at 12 GeV. For a convection
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Figure 6-36: Simulation setup for radiation shielding study. The left plot shows the
setup including the 3He target, oven, collimators and a piece of shielding plate of lead,
while the right plot shows the setup with the beam line.

cell with 25-cm long transfer tubes, the radiation damage is less than that of the

diffusion cell utilized in the previous Transversity experiment.
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Figure 6-37: Dose on the pumping chamber due to radiation.
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6.6.4 Masing effect

A high uniformity of the holding field is required to minimize the target depolar-

ization. However, it was found that when the field gradient is reduced to less than

(10− 15) mg/cm, masing effects[159] start when a particular polarization is reached,

causing a significant drop in the 3He polarization. The masing effect can be due to

the nonlinear coupling between the 3He spin and nearby coils. As the spins precess

around the holding field, they introduce a small voltage in the nearby coils. This

voltage will drive a current flow which induces a transverse RF field to tip the 3He

magnetization, then causes a larger induced current and in turn a larger transverse

RF field. This effect was clearly observed with the FID coils in the target system,

as shown in Fig. 6-38. The effect appeared (disappeared) with the connecting (dis-

connecting) of the FID coil whose Q value is tuned close to the Larmor frequency.

To remove this masing effect, a pair of anti-Helmholtz was used to increase the field

gradient. The anti-Helmholtz coils’ axis was coincident with that of the holding field

coils.

Figure 6-38: Masing effects for the 3He system, test performed on cell Provotec-I in
2013.

202



6.7 Summary

The JLab polarized 3He target had a world-record performance during the 6 GeV

era. R&D activities are ongoing to upgrade the target for the 12 GeV program. Initial

tests of the convection cells and the pulsed-NMR system have been made and proven

successful. Full polarization tests and systematic studies are being studied further by

two other UVa PhD students. The goal is to have the target system ready for the A𝑛
1

experiment in Hall C in 2019.
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Chapter 7

Polarized 3He Performance in

Tokamak Fuel Pellets

This chapter will discuss a possible application of polarized 3He for future spin-

polarized thermonuclear fusion. The work described here is to study the performance

of polarized 3He in inertial confinement fusion (ICF) polymer shells, including the

polarization survival when 3He gas permeates through the shell wall and the spin

relaxation time 𝑇1 after permeation. The purpose of such study is to prepare for a

future demonstration experiment of spin-polarized fusion.

7.1 Introduction

Energy continues to be one of the leading problems the world is facing. Tradi-

tional fossil fuels have a limited supply and cause significant environmental issues.

Renewable energy sources, such as solar and wind energy, have been developed fast

in recent years and are commercially used at some occasions, but have their own

limitations and are not suitable for large urban or industrial continuous use. Fission

nuclear power plants, based on breaking a large nucleus into medium size ones, offer

a great power but bring problems such as radioactive waste and occasionally even

catastrophic Chernobyl or Fukushima Dai-ichi like accidents. An attractive approach

to the energy problem is thermonuclear fusion, based on the union of two small nuclei
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to a larger one, which causes no air or radioactive pollution and no risk of uncon-

trolled energy release, holding the promise of a clean, sustainable, and powerful energy

supply.

The following sections will introduce concepts of thermonuclear fusion, spin-polarized

fusion and then present the performance study of polarized 3He inside inertial con-

finement fusion (ICF) polymer shells (pellets).

7.2 Thermonuclear Fusion

7.2.1 Principles of Thermonuclear Fusion

Nuclear fusion is a reaction that combines light elements together to form heavier

elements and often releases a large amount of energy because of the difference in the

nuclear binding energy.

Nuclear binding energy is defined as the amount of energy necessary to break the

nucleus apart into individual protons and neutrons. For a nucleus 𝐴
𝑍𝑋 with 𝑍 protons

and 𝐴− 𝑍 neutrons, the binding energy can be computed as:

𝐵𝐸𝑛𝑢𝑐𝑙𝑒𝑎𝑟 = Δ𝑚𝑐2 =
[︁
𝑍𝑚𝑝 + (𝐴− 𝑍)𝑚𝑛 −𝑀𝑋

]︁
𝑐2. (7.1)

where 𝑚𝑝 is the proton mass, 𝑚𝑛 is the neutron mass, and 𝑀𝑋 is the nuclear mass of
𝐴
𝑍𝑋. Fig. 7-1 shows the binding energy per nucleon curve, 𝐵𝐸/𝐴. Such A-dependence

of the nuclear binding energy can be interpreted using the liquid drop model, which

describes the nucleus as a liquid drop due to its non-compressible feature, the limited

range of the nuclear strong force (∼ 1 fm), and including features such as Coulomb

repulsion among protons. From Fig. 7-1, 𝐵𝐸/𝐴 is clearly peaked at medium-A nuclei

such as 56Fe. For elements heavier than iron, such as uranium and plutonium, they

release energy when fissioned into 2 or more smaller nuclei. While for elements lighter

than iron, such as hydrogen and helium, they release energy when fused to a more

stable nucleus. The energy released in fusion is about 3.5 MeV/nucleon, much higher

than nuclear fission (1 MeV/nucleon) and fossil fuels (less than 101−2 eV/nucleon).
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Figure 7-1: The binding energy per nucleon curve. Plot reproduced from[194].

To describe the energy released in nuclear reactions, we define the 𝑄-value of a

binary reaction 𝐴+𝐵 → 𝐶 +𝐷 + . . ., as:

𝑄 = (𝑚𝐴 +𝑚𝐵 −𝑚𝐶 −𝑚𝐷 − . . .)𝑐2. (7.2)

The following is a list of a few favorable nuclear fusion reactions for energy production:

D+D → T + 𝑝, 𝑄 = 4.03 MeV (7.3)

D+D → 3He + 𝑛, 𝑄 = 3.27 MeV (7.4)

D+ T → 𝛼 + 𝑛, 𝑄 = 17.59 MeV (7.5)

D+ 3He → 𝛼 + 𝑝, 𝑄 = 18.35 MeV (7.6)

T + T → 𝛼 + 2 𝑛, 𝑄 = 11.33 MeV (7.7)

3He + 3He → 𝛼 + 2 𝑝, 𝑄 = 12.86 MeV (7.8)

T + 3He → 𝛼 + 𝑝+ 𝑛, 𝑄 = 12.1 MeV (7.9)

T + 3He → 𝛼 +D, 𝑄 = 9.5 MeV (7.10)

𝑝+ 6Li → 𝛼 + 3He, 𝑄 = 4.02 MeV (7.11)

𝑝+ 11B → 3 𝛼, 𝑄 = 8.68 MeV (7.12)
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where D stands for 2
1H (deuteron), H for 3

1H (triton), 𝛼 for 4He nucleus, and 𝑝 (𝑛) for

the proton (neutron). The reaction D + T−→𝛼+𝑛 is the most favorable reaction for

fusion reactors. This reaction holds several attractive features including large energy

release, easily available fusion fuel, and a larger cross section over other reactions

(especially at temperature around 10 keV).

7.2.2 Conditions of Thermonuclear Fusion

In the Standard Model of particle physics, the strong nuclear force, described by

Quantum Chromodynamics (QCD), is one of the four fundamental forces of nature,

with the others being gravity, the electromagnetic force, and the weak nuclear force.

Strong nuclear force is the interaction between particles (quarks) that carry color

charge. It is mediated by massless gluons and binds quarks together to form hadrons,

including mesons (𝑞𝑞) and baryons (𝑞𝑞𝑞). Quarks, gluons and their dynamics are

mostly confined within hadrons due to color-confinement. Outside of nucleons, the

strong interaction appears as a residue force, remains outside nucleons which is what

we commonly call the strong nuclear force. This strong nuclear force is responsible for

the nuclear binding energy. According to H. Yukawa, the nucleon-nucleon force can be

modeled as an exchange force mediated by massive mesons (Nobel Prize 1949)[195],

and hence has a very short range. As shown in Fig. 7-2, the one pion exchange

dominates the force in separation distance up to a few fm; and the closer range (1

fm< 𝑟 <2 fm) receives significant contributions also from the exchange of multi-pions

and heavy mesons (𝜌, 𝜔, and 𝜎). The force beyond a few fm is zero. For distances

below 1 fm, there is a very strong repulsive force possibly due to overlapping of the

quark wavefunction within different nucleons. And some approximate QCD lattice

simulations reproduced the empirical form of this potential recently[196, 197].

For nuclei x and y to fuse, they must be extremely close together in order for

the attractive nuclear force to happen. However, there is also the repulsive Coulomb

force preventing the positively charged nuclei to approach each other. In contrast to

the nuclear force, the electric force falls off inversely as the square of the distance and

does not diminish beyond a certain distance. The Coulomb barrier between the two
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Figure 7-2: The nuclear force between nucleon and nucleon. Plot reproduced from
[196].

reacting particles x and y separated at a distance 𝑑 is

𝑉𝑐 =
𝑒2𝑍𝑥𝑍𝑦

4𝜋𝜖0(𝑅𝑥 +𝑅𝑦 + 𝑑)
, (7.13)

where 𝑍𝑥 (𝑍𝑦) is the atomic number of x (y), 𝜖0 is the vacuum permittivity, 𝑅𝑥 (𝑅𝑦) is

the radius of the nucleus and can be expressed as the function of 𝐴, the total number

of nucleons:

𝑅 = 1.2𝐴1/3 fm. (7.14)

For D-T fusion, Eq. 7.13 gives the calculated Coulomb barrier to be around

0.44 MeV at 𝑑 = 0, and thus fusion could happen as long as the two nuclei are

within ≈ 2 fm of each other, where the strong nuclear force can take over.

The barrier can be overcome in two ways in principle. The first way is through

beam target scattering, but the cross section 𝜎 is too small to be useful. The second

way is to heat the material so that the thermal energy of the nuclei can overcome

the Coulomb barrier. Typically, this means the atoms are ionized and we deal with

plasma. In some way this is also scattering, but the particles move back and forth,
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rather than beam-target scattering where beam particles scatter once or not at all,

and are lost right away. For particles in a gas at temperature 𝑇 , the probability of the

thermal velocity between 𝑣 and 𝑣 + 𝑑𝑣 can be described by the Maxwell-Boltzmann

distribution:

𝑝(𝑣) ∝ 𝑣2𝑒−
𝑚𝑣2

2𝑘𝑇 (7.15)

where 𝑘 is the Boltzmann constant, 𝑚 is the particle mass. The kinetic energy

corresponding to the most probable speed is 𝑘𝑇 . In the case of D-T reaction, the

energy requirement for 𝑘𝑇 ≥ 𝑉𝑐 = 0.44MeV gives 𝑇 ≈ 109 K. In reality, fusion can

happen at 𝑇 < 109 K because of two mechanisms. One is that a significant population

of particles is in the high energy tail of Eq. 7.15 with energy larger than 𝑘𝑇 . The

other is due to quantum tunneling that the nuclei do not have to have energy 𝐸 > 𝑉𝑐

to overcome the coulomb barrier completely.

The reaction cross section 𝜎 is a measure of the probability for fusion to happen

and is a function of the relative velocity of the two reactant nuclei. Consider the

velocity distribution, the average reaction rate (fusions per volume per time) is

𝑓 = 𝑛𝑥𝑛𝑦⟨𝑣𝜎⟩, (7.16)

where ⟨𝜎𝑣⟩ is called reactivity and is expressed as

⟨𝜎𝑣⟩ =

∫︁
𝑝(𝑣)𝜎(𝑣)𝑣𝑑𝑣. (7.17)

Fig. 7-3 shows the average reaction rate for several commonly considered fusion re-

actions. Fusion reaction rates increase rapidly with the plasma temperature first and

then gradually drop off. The D-T reaction rate peaks at a lower temperature around

70 keV ( ≈ 8× 108 K) and reaches a higher value compared with other reactions.

The energy released per unit of volume from fusion is

𝐸𝑓 = 𝑛𝑥𝑛𝑦⟨𝑣𝜎⟩𝑄𝜏, (7.18)
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Figure 7-3: The fusion reaction rate versus temperature. Plot reproduced from [198].

where 𝜏 is the plasma confinement time. The thermal energy per unit of volume

required for heating the plasma is

𝐸𝑝 = 3(𝑛𝑥 + 𝑛𝑦)𝑘𝑇 = 3𝑛𝑘𝑇, (7.19)

where 𝑛 ≡ 𝑛𝑥 + 𝑛𝑦 is the total ion density.

The ignition point is defined as when the fusion power generated can maintain

the plasma temperature without any external source of energy, at which point the

fusion becomes self-sustaining. We consider fusion heating to be provided only from

deposited energy in the plasma from charged particles. The ignition point can be

achieved if the charged particle heating is enough to heat the plasma. Assuming

equal ion density between the two species, i.e., 𝑛𝑥 = 𝑛𝑦 = 𝑛/2, Eq. 7.18 and Eq. 7.19

gives

𝑛𝜏 >
12𝑘𝑇

⟨𝑣𝜎⟩𝑄𝑐ℎ

, (7.20)

where 𝑄𝑐ℎ is the energy carried by charged particle in the fusion final state. This is
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called the Lawson criterion for ignition.

For a D-T reactor, the fusion heating is from the deposited energy by 𝛼 particles

with 𝑄𝑐ℎ= 3.5 MeV. The right side 12𝑘𝑇
⟨𝑣𝜎⟩𝑄𝑐ℎ

minimizes near 𝑘𝑇 = 25 keV (≈ 3×108 K),

so 𝑛𝜏 needs to at least satisfy

𝑛𝜏 >

(︂
12𝑘𝑇

⟨𝑣𝜎⟩𝑄𝑐ℎ

)︂
𝑚𝑖𝑛

≈ 1.5× 1020
𝑠

𝑚3
(7.21)

for the D-T interaction to be self-sustaining. The approaches and status of the ther-

monuclear fusion will be discussed in the following section.

7.2.3 Status of Thermonuclear Fusion

The Lawson criterion for ignition is achieved in stars and also by man-made hydro-

gen bombs on earth, as shown in Fig. 7-4. However, in a laboratory, it is an extremely

challenging condition to satisfy for the controlled nuclear fusion. There are two main

approaches being studied: magnetic confinement and inertial confinement. The first

method uses strong magnetic fields to confine the hot plasma in a region thermally

insulated from the surroundings, and is applied in facilities worldwide including the

Joint European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) in

UK, the Tokamak Fusion Test Reactor (TFTR) and DIII-D National Fusion Facility

(DIII-D) in the USA, the Japan Torus-60 (JT-60) in Japan, and the Experimen-

tal Advanced Superconducting Tokamak (EAST) in China. The second confinement

method involves compressing a small pellet containing fusion fuel to extremely high

densities using strong lasers or particle beams, and is used in the National Ignition

Facility (NIF) in the USA and the Laser Mégajoule (LMJ) in France.

Despite decades of research, self-sustained energy production has not been reached

in any of the fusion reactors built so far. The major industrialized nations of the

world are currently engaging in an unprecedented effort to build the first prototype

500 MegaWatts Tokamak, the International Thermonuclear Experimental Reactor

(ITER), with the goal of demonstrating the scientific feasibility of fusion power, as

shown in Fig. 7-5. ITER is now under construction in Cadarache, France. Then,
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Figure 7-4: Nuclear fusion generates the power for the sun (left) and hydrogen bombs
(right). Plot reproduced from [199].

the first demonstration power plant, DEMOnstration Power Station (DEMO), could

start the construction shortly after the ITER full-power experiment (by year 2030)

and start generating net electricity into the grid by 2050, according to the European

Roadmap[200].

Figure 7-5: ITER Tokamak is currently being built in southern France in the frame-
work of a collaboration between China, Europe, India, Japan, Korea, Russia and the
USA. It will use superconducting coils. Its major radius 𝑅0 is around 6.2 m, minor
radius is 2.0 m, and its plasma volume is 820 m3. The toroidal field at 𝑅0 is 5.3 T.
Plot reproduced from [200].
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7.3 Spin Polarized Fusion

The idea of spin-polarized fusion was proposed as early as 1980s[19]. It was

predicted that the fusion cross section between deuterium (D) and tritium (T) is

boosted 50% when the fuel is fully polarized along the local magnetic field, the same

principle also applies to its isospin-mirrored process, the D-3He fusion. These two

reactions are shown in Fig. 7-6.

n p
p n
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n
p

p n
n

n ppn

n
ppn

p

p

TD D

He	
$ +3.5MeV He	

$ +3.6MeV

He	
%

n+14.1MeV p+14.7MeV

Figure 7-6: Fusion reactions D+T→𝛼+n (left) and D+3He→𝛼+p (right). The re-
leased energy arises from the decrease in the total rest mass of particles. The resulting
kinematic energy of each final state is shown.

7.3.1 Principles of Spin Polarized Fusion

At the low energy, the D-T reaction cross section arises primarily (about 99%) by

forming an intermediate resonance state of 5He, at 107 keV above the rest mass of

the unbound D and T:

D+ T→5 He* → 𝛼 + 𝑛. (7.22)
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This excited state of 5He has spin 𝐽=3/2 and even parity ( 𝐽𝜋 = 3
2

+). If the reacting

D-T system has a total angular momentum 𝐽=3/2 and even parity, the excited state

can be formed with high probability and the fusion occurs; otherwise the reaction

cannot happen in principle and in reality the probability is two orders smaller in

magnitude. For the typical fusion reactors at the keV level, the reaction is dominated

by the s-wave process, so the angular momentum must be supplied by the spin of D

(spin 1/2) and T (spin 1) nuclei. There are six ways to combine the spin of D and T,

and 2/3 of them form the 𝐽=3/2 state and 1/3 of them form the 𝐽=1/2 state, which

implies that in an unpolarized plasma only 2/3 of nuclei can undergo fusion. Thus,

compared with the unpolarized plasma, aligning all D and T ions’ spins parallel to

each other can enhance the fusion rate by 50%. In a Tokamak, this can be achieved

by aligning both spins parallel to the toroidal field.

Assuming the field is along the 𝑧 direction, the nuclear cross section for D+T−→𝛼+n

averaged over all possible spin orientations of D and T can be approximated as[18, 204]

⟨𝑑𝜎(𝜃)
𝑑𝜃

𝑣⟩ =
1

4𝜋
⟨𝜎0𝑣⟩𝑊 (𝜃). (7.23)

Here 1
4𝜋
⟨𝜎0𝑣⟩ is the isotropic rate observed in an unpolarized case and 𝑊 (𝜃) is a

purely angular function and can be expressed as

𝑊 (𝜃) = 1− 1

2
𝑃 𝑉
𝐷𝑃𝑇 +

1

2
[ 3𝑃 𝑉

𝐷𝑃𝑇 sin2 𝜃 +
1

2
𝑃 𝑇
𝐷(1− 3 cos2 𝜃)] (7.24)

where 𝑃 𝑉
𝐷 = 𝑁+1 − 𝑁−1 ∈ [−1, 1] is the deuteron vector polarization, 𝑃 𝑇

𝐷 = 𝑁+1 +

𝑁−1−2𝑁0 ∈ [−2, 1] is the deuteron tensor polarization, 𝑃𝑇 = 𝑁+1/2−𝑁−1/2 ∈ [−1, 1]
is the triton polarization, 𝜃 is the initial polar (pitch) angle of the charged fusion

products with respect to the local magnetic field. For unpolarized plasma, 𝑊 (𝜃) = 1.

If the spin of D is parallel (↑↑)or anti-parallel (↑↓) to the spin of T along the
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magnetic field, 𝑊 (𝜃) can be written as

𝑊 (𝜃)↑↑ =
9

4
sin2 𝜃, and (7.25)

𝑊 (𝜃)↑↓ =
1

4
(3 + cos2 𝜃). (7.26)

From Eq. 7.25 and Eq. 7.26, an additional advantage of spin-polarized fusion is that

the emitted 𝛼 particles have a skew distribution in angle, which could be used to

improve the confinement for 𝛼 heating.

The total cross section could be obtained by integrating Eq. 7.24 over 𝜃, the result

can be written as a function of polarization vectors:

⟨𝜎𝑣⟩ = ⟨𝜎0𝑣⟩
{︂
1 +

1

2
𝑃 𝑉
𝐷 · 𝑃𝑇

}︂
. (7.27)

It is obvious that the reaction rate is increased by 50% if initial spins of D and T are

aligned parallel to each other.

The increase in the reaction rate will increase the 𝛼 particle production. For

a large-scale Tokamak such as ITER which can contain all the 𝛼 products, the in-

creased 𝛼 particle production can raise the temperature of the plasma core through

collisional damping on electrons, which then further increase the reaction rate. These

improvements can possibly lead to a higher fusion gain and achieve a more economical

running condition.

Spin-polarized fusion requires that the polarization of the fuel persists in the toka-

mak long enough for fusion to occur. Many depolarization mechanisms, such as mag-

netic gradient and collisions, have been explored and polarization survival is expected

theoretically[19]. However, polarization survival in an actual plasma environment has

never been tested. A plan was developed to perform a direct measurement of the spin

dependence of the D+3He→𝛼+p reaction in the plasma, see more details in the next

section.
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7.3.2 Spin-Polarized Fusion D-3He in the Tokamak

The polarization survival test is a crucial step towards future spin-polarized fusion,

but a direct test has not been carried out due to lack of technology to produce and

handle polarized material. However, this situation has changed recently and a direct

polarization survival test is now becoming practically possible.

The highly-polarized D (in the form of HD molecule) has been developed for nu-

clear and particle experiments[17, 201], and highly-polarized 3He gas is routinely pro-

duced for both medical imaging applications and studies of nucleon spin structure[159,

173]. Polymer shells (pellets) have been extensively developed for the inertial confine-

ment fusion (ICF) [202] and can be used to contain polarized material[18]. Cryogenic

injection guns have been demonstrated to deliver ICF pellets of cryo-temperature

into the Tokamak plasma core with high efficiency[203]. Therefore, the polarization

survival can now be tested using D+3He→𝛼+p in the plasma. This reaction is an

isospin-mirror reaction of D+T→𝛼+n. Their intermediate states 5He (from D-T)

and 5Li (from D-3He) have nearly identical low-energy structures and the reaction

processes involve identical spins and the same nuclear physics principles. The fully

polarized D and 3He fusion reaction rate can be increased (or decreased) 50% when

they are aligned parallel (or anti-parallel) with respect to each other, just as for the

D-T case. The lessons learned from polarized D-3He fusion can be directly applied to

spin-polarized D-T fusion.

An approach was developed to perform a direct test in the DIII-D tokamak in San

Diego as follows[18, 204, 205]:

∙ Conduct R&D on polarized 3He with existing University of Virginia facilities.

The 3He gas needs to be polarized in a glass cell first by using the spin-exchange

optical pumping method discussed in Sec. 6.2.2 and then permeates into ICF

pellets. Fig. 7-7 shows one particular ICF pellet made of Gas-Discharge-Polymer

(GDP), sitting inside a 3mm inner diameter glass tube. The GDP pellet is made

of C2(CH3)H2, is about 1.8 mm in diameter and (for this particular shell) is 0.014

mm in wall thickness. A total of 12 shells were supplied by General Atomics
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(GA)[202] for our study. The permeation time constant for 3He to diffuse inside

this pellet is around 240 s at 295 K, but increases rapidly with decreasing

temperature, and reaches about 300 years at the liquid N2 temperature (77 K)

as shown on the right plot of Fig. 7-7. Therefore, the pellet can be sealed by

cooling down with liquid 𝑁2. Depending on how long the polarization remains

within the pellet, a 3He polarizer may need to be built locally at DIII-D.

pellet

Figure 7-7: A GDP pellet (1.8 mm in diameter and 0.014 mm in wall thickness)
inside a glass tube with 3 mm inner diameter (left) and the permeation time constant
measured by the HDice group at JLab (right)[18, 204].

∙ Produce polarized deuterium with existing JLab HDice facility[17]. About 200-

400 atm unpolarized HD will diffuse into a ICF pellet and then is cooled down

to reach solid state. The D can be polarized to about 40% in the pellet using

the polarizing technique of nuclear physics’s HDice target[201]. These polarized

HD pellets can be stored in a cryostat and shipped to DIII-D.

∙ Inject HD and 3He pellets using the cryo-gun developed by Oak Ridge National

Laboratory (ORNL) with alternating spin alignments into the high temperature
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plasma at DIII-D and then detect the proton yield difference.

Figure 7-8: DIII-D tokamak in San Diego operated by GA[206]. Its a research-scale
tokamak with room temperature coils. Its major radius 𝑅0 is 1.67 m, minor radius is
0.67 m, plasma volume is 30 𝑚3. The toroidal field at 𝑅0 is 2.1 T. Plot reproduced
from [207].

Fig. 7-8 shows the structure of DIII-D. Assuming an anticipated polarization of

40% for D and 65% for 3He, the expected proton yields from Eq. 7.28 for parallel and

anti-parallel configurations are

⟨𝜎𝑣⟩↑↑ = 1.13⟨𝜎0𝑣⟩, (7.28)

⟨𝜎𝑣⟩↑↓ = 0.87⟨𝜎0𝑣⟩, (7.29)

so the proton yield ratio of anti-parallel to parallel spin alignment is

⟨𝜎𝑣⟩↑↓
⟨𝜎𝑣⟩↑↑

= 0.77. (7.30)

Considering the DIII-D acceptance efficiency, the predicted proton yield is shown

in Fig. 7-12. The left plot shows the spatial distribution of the predicted fusion

rate density for the D-3He reaction assuming unpolarized fuels (scaled from 2
1D−2

1 D

219



reaction with DIII-D Shot 96369). The right plot shows the predicted yields ratio

along the inner wall of the DIII-D vacuum vessel. The predicted ratio holds a strong

deviation from 1 for a large range of wall locations. A systematic study in [18, 204, 205]

showed that 4 shots in each spin direction are needed to reach a 5𝜎 significance if

assuming a 8% systematic shot-to-shot variation. For reference, the typical neutron

production rate varied less than 10% between shots for the past 2
1D −2

1 D fusion

experiments at ion temperature 8 keV in the DIII-D tokamak[205].

R	

z

Figure 7-9: Predicted results for D-3He reaction in DIII-D. The left plot shows the
spatial distribution of the predicted proton rate density for the D-3He reaction as-
suming unpolarized while the right shows the predicted ratio in the proton rate of
anti-parallel to parallel along the inner wall of the DIII-D vacuum vessle. Plot repro-
duced from [18, 204, 205].

In this approach, one condition that must be satisfied is that the 3He gas polariza-

tion must survive permeation of the GDP pellet wall and the polarization decay time

must be sufficiently long enough to allow the pellet to be injected into the plasma.

However, there exists no data on the 3He performance in GDP pellets. The perfor-

mance study of 3He in the pellet is now actively pursued by a UVa-JLab team using

MRI and the details are discussed below.
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7.4 MRI Methods

The Medical Resonance Imaging (MRI) is based on a similar principle as the

pulsed NMR polarimetry discussed in Sec. 6.6.2.2, but is much more sophisticated to

achieve the multidimensional imaging[208].

7.4.1 Multidimensional Space Imaging

From Sec. 6.6.2.2, the FID signal S(t) for one voxel (or pixel) can be expressed as

𝑆(𝑡) = 𝐴𝑒𝑖𝜔0𝑡𝑒−𝑡/𝑇2 , (7.31)

where 𝜔0 = 2𝜋𝑓0 is the Larmor frequency, 𝑇2 is the transverse spin relaxation time

constant, 𝐴 is a constant factor accounts for the transverse magnetization after the

RF pulse, the coil detection efficiency, and the system gain.

Now consider imaging in space and ignore the exponential time decay term first

(the exponential time decay term will be discussed in Sec. 7.4.3). For the 1D case,

with spin density 𝜌(𝑧) along the holding field direction 𝑧 and assuming 𝐴 is constant,

the integrated signal is

𝑆(𝑡) = 𝐴

∫︁ ∞
−∞

𝜌(𝑧)𝑒𝑖𝜔0𝑡𝑑𝑧. (7.32)

If a small linear gradient 𝐺𝑧 = 𝑑𝐵𝑧/𝑑𝑧 is applied along 𝑧 direction after the RF pulse,

the magnetic field experienced by nuclei at 𝑧 is

𝐵𝑧 = 𝐵0 + 𝑧𝐺𝑧 (7.33)

and the corresponding precessional frequency is

𝜔(𝑧) = 𝛾(𝐵0 + 𝑧𝐺𝑧), (7.34)

where 𝛾 is gyromagnetic ratio of the nuclear species (here means 3He). Eq. 7.32 then
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becomes

𝑆(𝑡) = 𝐴

∫︁ ∞
−∞

𝜌(𝑧)𝑒𝑖𝜔0𝑡+𝑖𝛾𝐺𝑧𝑧𝑡𝑑𝑧, (7.35)

where 𝜔0 = 𝛾𝐵0. Define 𝑘𝑧 ≡ 𝛾𝐺𝑧𝑡/2𝜋, Eq. 7.35 can be rewritten as

𝑆(𝑡) = 𝑠(𝑘𝑧) = 𝐴

∫︁ ∞
−∞

𝜌(𝑧)𝑒𝑖2𝜋(𝑓0𝑡+𝑘𝑧𝑧)𝑑𝑧. (7.36)

One can see that the signal 𝑠(𝑘𝑧) is the Fourier transform of 𝜌(𝑧). So the spin density

𝜌(𝑧) can be extracted with the reverse Fourier transform as

𝜌(𝑧) = 𝑒−𝑖2𝜋𝑓0𝑡
1

2𝜋𝐴

∫︁ ∞
−∞

𝑠(𝑘𝑧)𝑒
−𝑖2𝜋𝑘𝑧𝑧𝑑𝑘𝑧

∝ 1

2𝜋

∫︁ ∞
−∞

𝑠(𝑘𝑧)𝑒
−𝑖2𝜋𝑘𝑧𝑧𝑑𝑘𝑧

= 𝐹𝐹𝑇−1[𝑠(𝑘𝑧)].

(7.37)

Now consider the 3D case, the gradient

�⃗� =
𝑑𝐺𝑧

𝑑𝑥
�̂�+

𝑑𝐺𝑧

𝑑𝑦
𝑦 +

𝑑𝐺𝑧

𝑑𝑧
𝑧 = 𝐺𝑥�̂�+𝐺𝑦𝑦 +𝐺𝑧𝑧 (7.38)

is superimposed on the main magnetic field, and can point in any direction, causing

the z component of the total magnetic field to vary linearly along that direction:

𝐵(𝑥, 𝑦, 𝑧) = 𝐵0 + �⃗� · �⃗� = 𝐵0 + 𝑥𝐺𝑥 + 𝑦𝐺𝑦 + 𝑧𝐺𝑧. (7.39)

Then Eq.7.36 and Eq. 7.37 can be extended to 3D as

𝑆(𝑡) = 𝑠(�⃗�) = 𝐴

∫︁ ∞
−∞

𝜌(�⃗�)𝑒𝑖2𝜋(𝑓0𝑡+�⃗�·�⃗�)𝑑�⃗� (7.40)

𝜌(�⃗�) ∝ 𝐹𝐹𝑇−1[𝑠(�⃗�)]. (7.41)

where �⃗� = 𝛾�⃗�𝑡/2𝜋 defines the so-called “k-space" and 𝑠(�⃗�) is usually referred as the

“k-space data”.
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In a general case, the applied gradient pulse �⃗� may be time dependent: �⃗�(𝑡).

Following the same procedure, the signal 𝑆(𝑡) and spin density 𝜌(�⃗�) can be related as

𝑆(𝑡) = 𝑠(�⃗�) = 𝐴

∫︁ ∞
−∞

𝜌(�⃗�)𝑒𝑖2𝜋𝑓0𝑡+𝑖𝛾
∫︀ 𝑡
0 �⃗�·�⃗�𝑑𝑡′𝑑�⃗�

= 𝐴

∫︁ ∞
−∞

𝜌(�⃗�)𝑒𝑖2𝜋(𝑓0𝑡+�⃗�·�⃗�)𝑑�⃗�

(7.42)

𝜌(�⃗�) ∝ 𝐹𝐹𝑇−1[𝑠(�⃗�)]. (7.43)

with �⃗� the time integral of the applied gradient:

�⃗� =
𝛾

2𝜋

∫︁ 𝑡

0

�⃗�(𝑡
′
)𝑑𝑡

′
. (7.44)

According to Eq. 7.42 and Eq. 7.43, the MRI measures the Fourier components of

the image in the k-space by sampling the NMR signal in the presence of the gradient

pulse �⃗�(𝑡). The image of the spin distribution is recovered by taking the inverse

Fourier transform of the k-space data.

To obtain k-space data in 1D, one can first apply a RF excitation, then apply 1D

gradient 𝐺𝑧(𝑡) and sample the FID signal at the same time (typical sampling duration

≪ 𝑇2 to avoid the relaxation effect). For a 2D k-space (𝑘𝑧×𝑘𝑥), one can apply multiple

excitations by keeping gradient 𝐺𝑧(𝑡) the same but with different gradient 𝐺𝑥(𝑡) in

the 𝑥 direction thus producing discrete 𝑘𝑥-space data. This is similar for the 3D case.

An image acquired by this technique is often referred as an projection image.

In practice, the discrete k-space data are recorded from the detectors, which form

a vector for 1D imaging and a matrix for 2D or 3D cases. For the frequently used 2D

space imaging, the image of spin distribution is reconstructed using discrete Fourier

transform:

𝜌(𝑚Δ𝑥, 𝑛Δ𝑦) =
1

𝑁𝑥𝑁𝑦

𝑁𝑥−1∑︁
𝑝=0

𝑁𝑦−1∑︁
𝑞=0

𝑠(𝑝Δ𝑘𝑥, 𝑞Δ𝑘𝑦)𝑒
2𝜋𝑖𝑚𝑝

𝑁𝑥 𝑒
2𝜋𝑖 𝑛𝑞

𝑁𝑦 . (7.45)

where 𝑁𝑥 (𝑁𝑦) is the number of points sampled along the 𝑘𝑥 (𝑘𝑦) directions, Δ𝑥 (Δ𝑦)
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is the resolution of the reconstructed image which is related to the k-space range as

Δ𝑥 =
1

𝑁𝑥Δ𝑘𝑥
(7.46)

Δ𝑦 =
1

𝑁𝑦Δ𝑘𝑦
. (7.47)

7.4.2 Slice-selected Imaging

Slice-selected imaging acquires a series of 2D slices through the area of interest

with well-defined orientation thickness[209]. The selective RF pulse is applied at a

frequency 𝜔0 with bandwidth ±Δ𝜔. Nuclei, whose resonance frequency is between

𝜔0 − Δ𝜔 and 𝜔0 + Δ𝜔, are tipped away from the holding field to generate the FID

signal while nuclei outside of the frequency range are not affected. Fig. 7-10 shows

the relationship between the frequency bandwidth of the pulse, the strength of the

slice-select gradient, and the slice thickness of the image in the left plot. The slice

thickness 𝑑 is related to the frequency bandwidth and the slice-select gradient as

𝑑 =
2Δ𝜔

𝛾𝐺𝑠𝑙𝑖𝑐𝑒

, (7.48)

if the RF pulse has a step frequency profile as shown in the right plot of Fig. 7-10.

The ideal pulse to achieve the frequency profile shown in Fig. 7-10 is an amplitude-

modulated sine wave with base frequency 𝜔0, described by

𝑥(𝑡) ∝ sin Δ𝜔𝑡
2

Δ𝜔𝑡
2

sin(𝜔0𝑡). (7.49)

However, this pulse would require an infinite number of side lobes (Fig. 7-11) and

hence infinite transmission time to uniformly and exclusively excite the discrete band

of frequencies. In practice, the pulse is “apodized” by limiting the number of side

lobes. Typically, a Gaussian profile in frequency is generated to select the slice,

which corresponds to a Gaussian profile in the thickness sampling.
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Figure 7-10: Slice selection imaging. The left plot shows the relationship between the
frequency bandwidth of the pulse, the strength of the slice-select gradient slice, and
the slice thickness of the image, while the right shows the corresponding frequency
profile.

Figure 7-11: Ideal signal for slice selection in time domain[208].

7.4.3 Chemical Shifting Imaging

Chemical shift is the phenomenon that the same atomic nucleus differs slightly

in resonance frequency when the nucleus is bound inside different molecules or by

different molecular sites. The Chemical Shifting Imaging (CSI) provides mapping

of chemical shifts by sampling the FID signal in the time dimension, in addition to

the multi-dimensional space imaging through k-space. In practice, for each excitation,
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gradients are applied before readout to select particular resonance region to maximize

the sensitivity for one chosen point in k-space, and then the gradient is turned off

and the FID signal is sampled. This is basically a point-by-point scheme in k-space

sampling. The CSI technique has several advantages: maximizing signal-to-noise ratio

by taking full advantage of the long transverse spin relaxation time 𝑇2, minimizing

signal loss associated with gas diffusion during gradient application, and providing

sensitivity to monitor the NMR frequency shift due to magnetic field disturbances.

For a 2D CSI, the spectrum for one pixel can be described as

𝜌(𝑙Δ𝑓,𝑚Δ𝑥, 𝑛Δ𝑦) =
1

𝑁𝑡𝑁𝑥𝑁𝑦

𝑁𝑡−1∑︁
𝑟=0

𝑁𝑥−1∑︁
𝑝=0

𝑁𝑦−1∑︁
𝑞=0

𝑠(𝑟Δ𝑡, 𝑝Δ𝑘𝑥, 𝑞Δ𝑘𝑦)𝑒
2𝜋𝑖 𝑙𝑟

𝑁𝑡 𝑒2𝜋𝑖
𝑚𝑝
𝑁𝑥 𝑒

2𝜋𝑖 𝑛𝑞
𝑁𝑦 .

(7.50)

For one particular voxel located at (𝑚Δ𝑥, 𝑛Δ𝑦), the time dependence of the FID

signal, 𝑆(𝑡) = 𝐴𝑒−𝑡/𝑇2𝑒+𝑖𝜔0𝑡, corresponds to a frequency spectrum and can be modeled

with

𝐺(𝜔) =

∫︁ ∞
0

𝑆(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 =

∫︁ ∞
0

𝐴𝑒−𝑡/𝑇2𝑒+𝑖𝜔0𝑡𝑒−𝑖𝜔𝑡𝑑𝑡 =

∫︁ ∞
0

𝐴𝑒
− 1

𝑇2
𝑡
𝑒−𝑖(𝜔−𝜔0)𝑡𝑑𝑡

=
𝐴

1
𝑇2

+ 𝑖(𝜔 − 𝜔0)
=

𝐴[ 1
𝑇2
− 𝑖(𝜔 − 𝜔0)]

( 1
𝑇2
)2 + (𝜔 − 𝜔0)2

,

(7.51)

if the whole FID signal is measured for 𝑡 = (0,∞).

However, it is impossible to measure the entire FID signal to 𝑡 = ∞. The FID

signal S(t) is measured typically within a limited time 𝑡 ∈ [0, 𝑇 ]. If one expresses the

time window function 𝑓(𝑡) and FID signal 𝑆(𝑡) as

𝑓(𝑡) =

⎧⎪⎨⎪⎩1 if 𝑡 ∈ [0, 𝑇 ],

0 if 𝑡 > 𝑇 or 𝑡 < 0,

(7.52)

and

𝑆(𝑡) =

⎧⎪⎨⎪⎩𝐴𝑒−𝑡/𝑇2𝑒𝑖𝜔0𝑡 if 𝑡 ≥ 0,

0 if 𝑡 < 0,

(7.53)
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the spectrum 𝜌(𝑚Δ𝑥, 𝑛Δ𝑦) can be described by the Fourier transform of the product

𝑓(𝑡)× 𝑆(𝑡):

𝐻(𝜔) =

∫︁ ∞
0

𝑓(𝑡)× 𝑆(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 = −𝐴𝑒
−𝑇 [ 1

𝑇2
+𝑖(𝜔−𝜔0)] − 1

1
𝑇2

+ 𝑖(𝜔 − 𝜔0)

=
𝐴[ 1

𝑇2
− 𝑖(𝜔 − 𝜔0)]

( 1
𝑇2
)2 + (𝜔 − 𝜔0)2

− 𝐴
𝑒−𝑇/𝑇2 [cos(𝜔𝑇 − 𝜔0𝑇 )− 𝑖 sin(𝜔𝑇 − 𝜔0𝑇 )]

1
𝑇2

+ 𝑖(𝜔 − 𝜔0)
.

(7.54)

Here the first term is exactly the same as in Eq. 7.51 and the second term is the new

part due to truncating the FID signal in time. Denote the second term as 𝑁(𝜔):

𝑁(𝜔) = −𝐴𝑒−𝑇/𝑇2 [cos(𝜔𝑇 − 𝜔0𝑇 )− 𝑖 sin(𝜔𝑇 − 𝜔0𝑇 )]
1
𝑇2

+ 𝑖(𝜔 − 𝜔0)

=
−𝐴𝑒−𝑇/𝑇2 [ 1

𝑇2
cos(𝜔𝑇 − 𝜔0𝑇 )− (𝜔 − 𝜔0) sin(𝜔𝑇 − 𝜔0𝑇 )]

( 1
𝑇2
)2 + (𝜔 − 𝜔0)2

+ 𝑖
𝐴𝑒−𝑇/𝑇2 [(𝜔 − 𝜔0) cos(𝜔𝑇 − 𝜔0𝑇 ) +

1
𝑇2

sin(𝜔𝑇 − 𝜔0𝑇 )]

( 1
𝑇2
)2 + (𝜔 − 𝜔0)2

.

(7.55)

The 𝑁(𝜔) term oscillates with a period of Δ𝑓 = 1/𝑇 . In summary, when the FID

signal is sampled in a limited time window [0, 𝑇 ], the spectrum 𝜌(𝑚Δ𝑥, 𝑛Δ𝑦) can be

expressed as

𝐹𝐹𝑇 [𝑓(𝑡)× 𝑆(𝑡)] = 𝐺(𝜔) +𝑁(𝜔). (7.56)

7.5 Test Setup at UVa

The polarization and permeation tests of 3He into GDP pellets are performed at

the radiology research facility (Snyder Building) at the School of Medicine of Univer-

sity of Virginia. A series of tests were done to study the ability to fill GDP pellets

with pressurized polarized 3He, using data acquired with a clinical 1.5-T magnetic

resonance imaging (MRI) scanner.
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7.5.1 Setup

Fig. 7-12 shows the setup for the UVa medical 3He polarizer, very similar to the

JLab polarized 3He target setup discussed in Sec. 6.2.4, using hybrid spin-exchange

optical pumping and narrow-width diode laser. This polarizer routinely produce 3He

up to 8 atm with a (60-70)% polarization. The polarized 3He gas from the polarizer

is dispensed into an L-shape tube (Fig. 7-15) with GDP pellets inside and transferred

to the MRI setup for imaging, Fig. 7-13. The MRI scanner has a center field of 1.5 T

and provides a relative polarization measurement of 3He. An L-tube holder is used to

help align the tube bottom with the free-induction-decay (FID) coil center and the

isocenter of the MRI magnet system. The FID coil generates the RF field around the

tube bottom and receives the 3He FID signal after the RF pulse. The FID coil was

designed to achieve a 0.5 mm resolution. The holder and FID coil were also able to

accommodate an optional liquid nitrogen bath surrounding the end of the L-tube, as

shown in the left of Fig. 7-14.

Helmholtz	coils

Comet	Lasers

Oven

Figure 7-12: Polarizer setup at UVa.
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MRI	Scanner

L-shape	 𝐻𝑒	
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Figure 7-13: Setup for MRI scan on 3He tube at UVa.

For	L𝑁" Bath	(Optional)	 Side	View

FID	coil

L-tube

FID	coil	inside

x

y

Z

Figure 7-14: Styrofoam holder used to precisely position the L-tube (left) and the
side view of holder with L-tube in (right).

7.5.2 L-Tubes and GDP Pellets

The L-tubes are made of Pyrex and blown by Mike Souza (Princeton University).

There are a total of 11 L-tubes produced and categorized into two groups: 7 tubes

with a round bottom and an inner diameter of 3mm (Tube A, B, C, D, E, F, G) and 4

tubes with a flat bottom and also an inner diameter of 3 mm (Tube H, I, X1, X2). As

in nuclear physics targets (Sec. 6.2.4.1), the tube performance depends largely on the
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tube construction processes. Polarization lifetime (𝑇1) measurements were performed

to screen the quality of tubes. Tubes with long 𝑇1 were used for permeation tests,

while those with short 𝑇1 will be prepared as thermal calibration tubes. In a 1.5 T

field, for the L-tubes of second group with the flat bottom, the frequency profile of

FID signals in the pixel close to the tube bottom were found to be strongly distorted

with multi-peaks due to the large amount of glass material. Therefore, most of 3𝐻𝑒

tests were performed with L-tubes of the first group. Fig. 7-15 shows the schematic

design for the L-tube of the first group. One can define a right-handed coordinates

with 𝑧 along the field direction, �̂� horizontal, 𝑦 vertical for the tube image illustration,

as shown in Fig. 7-14 and 7-15. Table 7.1 shows the list of our GDP pellets provided

x

y

Z

Figure 7-15: Schematic design of L-tubes with 3 mm inner diameter.

by General Atomics.

7.5.3 Imaging Analysis

For the 2D space imaging data, the analysis is very straightforward. Fig. 7-16

shows the 2D spin distribution 𝜌(𝑚Δ𝑥, 𝑛Δ𝑦) for an L-tube filled with polarized 3𝐻𝑒

gas from the inverse FFT of the k-space data by employing Eq. 7.45 directly.
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Hole No. Capsule ∼ O.D./Wall Thickness (𝜇m)
1 10-23-1 1788/15
2 10-23-2 1788/15
3 10-23-3 1788/15
4 10-23-4 1788/15
5 empty
6 11-27-1 1918/26.4
7 11-27-2 1918/26.4
8 11-27-3 1918/26.4
9 11-27-4 1918/26.4
10 empty
11 11-33-1 1804/14
12 11-33-2 1804/14
13 11-33-3 1804/14
14 11-33-4 1804/14
15 empty

Table 7.1: GDP pellets capsules provided by General Atomics[210].
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Figure 7-16: 2D space imaging for an L-tube (Tube E) filled with 3He. The left plot
shows the k-space data while the right shows the corresponding spin distribution in
the 2D space, clearly showing the shape of the bottom of the L-tube.
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However, the CSI imaging analysis is more complicated. The typical 2D CSI data

are sampled with a fixed 96 ms data acquisition window (𝑇 = 96 ms in Eq. 7.52) with

a 20 kHz sampling rate for each gradient application, as shown in Fig. 7-17. For each

voxel, a direct FFT will get a resolution 10.4 Hz in the frequency domain, which is

close to 1/𝑇2≈ 10 Hz, as shown in Fig. 7-18. This resolution cannot show the peak

structure clearly and make the peak fitting inaccurate.

Figure 7-17: Raw CSI Data in time domain for one scan (pixel x=6, y=37 of tube
E). The top plot shows the real part of the FID signal, while the bottom show the
imaginary part.

A technique called zero paddling was used to increase the resolution in the fre-

quency domain. The CSI data is paddled to 1s in Fig. 7-19, which gives a resolution

of 1Hz. An oscillation appears after FFT as shown in Fig. 7-20. This is due to that

the truncation of FID spectrum to 96 ms, which causes the 𝑁(𝜔) term in Eq. 7.55.

The 2D zero-paddled CSI data is then put into Eq. 7.50 to get the frequency spec-

trum for each voxel 𝜌(𝑙Δ𝑓,𝑚Δ𝑥, 𝑛Δ𝑦). The spectrum is described well by Eq. 7.63

as shown in Fig. 7-21: The left most plot shows the 2D map for the fitted amplitude

𝐴, which relates to the spin distribution in the 2D spatial coordinates. The right top

two plots show the fitting for the frequency spectrum in voxel (x=6, y=53) while the
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Figure 7-18: FFT of Raw CSI Data for one scan (pixel x=6, y=37 of tube E). The
top plot shows the real part FFT, while the bottom show the imaginary part.

Figure 7-19: Zero-paddled CSI Data in time domain for one scan (pixel x=6, y=37 of
tube E). The top plot shows the real part of FID signal, while the bottom show the
imaginary part. The signal beyond the 0.96 ms sampling window is filled arbitrarily
by zero’s. This is called zero-paddling.
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Figure 7-20: FFT of zero-paddled CSI Data for one scan (pixel x=6, y=37 of tube
E). The top plot shows the real part FFT, while the bottom show the imaginary part.

right bottom two are for voxel (x=6, y=54).

Slice-selected data were analyzed similar to the CSI data, and are not detailed

here.

7.6 Study of Polarized 3He Performance in ICF Pel-

lets

The polarization and permeation of 3He in the GDP pellet are recorded dynam-

ically by using MRI imaging techniques. The following tests were done to study the
3He performance in the pellets.

7.6.1 Demonstration of 3He Polarization Survival in the Pellet

The first step was to demonstrate the 3He polarization can survive in the pellet

after permeation.
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Figure 7-21: Fitting result for tube E filled with 3He. The left most plot shows the
fitted Amplitude A in the 2D spatial coordinates. The right top two plots shows
the fitting (blue and cyan curves) for the frequency spectrum along with data (black
markers) in voxel (x=6, y=53) while the right bottom two shows for the voxel (x=6,
y=54).

The left plot of Fig. 7-22 shows two pellets sitting at the bottom of tube. To

perform the measurement, the L-tube and pellets were evacuated to around 10 mTorr

at the beginning. Then the L-tube was filled with polarized 3He (pressure around 6

atm and polarization about 60%) from the polarizers and waited 15 mins (this is about

4 times the permeation time constant at room temperature) for 3He to permeate into

the pellet. The tube was then disconnected from the polarizer and put into the holder

with a liquid nitrogen bath (shown in Fig. 7-14) and an MRI image was acquired.

The 3He tube and pellets were clearly visible in the middle plot of Fig. 7-22. From

Sec. 7.3.2, the 3He inside the pellet is sealed by the wall at this low temperature.

Next, the 3He outside of pellets was evacuated and another MRI image was acquired

as shown in the right plot of Fig. 7-22. Only the pellets were visible this time, which

means that although the absolute 3He polarization was yet to be determined, the 3He

polarization did survive after permeation.
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2 mm Ø x14 
µm wall ICF 
pellets in 
glass tube 

MRI:
Pol 𝑯𝒆𝟑

in tube

MRI:
𝑯𝒆𝟑 outside	

removed	at	
L𝑁%	temp.

Figure 7-22: Demonstration of 3He polarization survival in GDP pellets (Tube D,
Pellets 10-23-3 and 10-23-4, on 10/24/2015). The left plot shows two pellets sitting
at the bottom of tube, the middle plot shows one slice of the 3D image of the tube
after 3He permeation, and the right plot shows the same image after removing the
3He outside of pellet at the liquid nitrogen temperature.

7.6.2 Measurement of 3He Polarization Relaxation Time 𝑇1 in

ICF Pellets

The second step is to measure 3He polarization relaxation time 𝑇1 in the pellet at

the liquid nitrogen temperature. For the purpose of testing in the Tokamak in the

future, the 3He polarization must not only survive during the permeation through

pellet walls, but also need to have a sufficiently long relaxation time inside the pellet

to allow enough time for the pellets to be injected into the plasma.

A similar approach as Sec. 7.6.1 was used. After the evacuation of the gas outside

of the pellet at the liquid nitrogen temperature, a time sequence of images were

acquired at t=0, 30 , 90, 210 min, as shown in Fig. 7-23. The signal strength, which

236



is proportional to the 3He polarization, decayed over time. The evolution of the

polarization can be described by

𝑃 (𝑡𝑖) = 𝑃0𝑒
−𝑡𝑖/𝑇1 [1− (cos 𝜃)𝑛]𝑁𝑖 , (7.57)

where 𝑃0 is the initial polarization, 𝑒−𝑡𝑖/𝑇1 is from spin relaxation and [1− (cos 𝜃)𝑛]𝑁𝑖

is due to the depolarization caused by each RF excitation. Here 𝜃 is the tipping or flip

angle, 𝑛 is the number of excitations per image, 𝑁𝑖 is the number of images acquired

before 𝑡𝑖. The RF-corrected polarization is the raw polarization divided by the RF

correction factor, which can be written as

𝑃 (𝑡𝑖)

[1− (cos 𝜃)𝑛]𝑁𝑖
= 𝑃0𝑒

−𝑡𝑖/𝑇1 . (7.58)

During the measurement, 𝜃 = 1.6∘, 𝑛 = 40 × 16, 𝑁𝑖=0, 1, 2, 3. Fig. 7-24 shows the

RF-corrected signal and the fitting using Eq. 7.58. The fitted 𝑇1 is around 5 hours

which indicates that the 3He can survive long enough for the pellet to be transferred

to a 77 K cryogenic injector and be rejected into a tokamak.

t=0	min																																30	min																														90	min																														210	min	

Figure 7-23: A time series of images acquired to measure the 3He polarization relax-
ation in the pellets at the liquid nitrogen temperature (Tube D, Pellet 11-27-3, on
11/15/2015). The signal strength decreased over time.
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𝑇" ≈ 5	hours	at	77	K	

Figure 7-24: The 3He signal versus time in the pellet (Tube D, Pellet 11-27-3, on
11/15/2015). The red points show the mean signal in the pellet while the green
points the RF-corrected ones. The green curve is the fit using Eq. 7.58.

7.6.3 Measurement of the Flip Angle Map

This measurement is designed to measure the flip angle at each pixel or voxel, to

characterize the depolarization effect for a RF excitation, which is a very important

input for both 𝑇1 measurements (as in Sec. 7.6.2) and for the permeation test discussed

in the next section (Sec. 7.6.4). This test was conducted at room temperature.

From Eq. 7.57, if the time difference between images Δ𝑡𝑖 = 𝑡𝑖−𝑡𝑖−1 is small enough

that 𝑒−Δ𝑡𝑖/𝑇1 ≈ 1, the 3He polarization evolution is given by

𝑃 (𝑡𝑖) = 𝑃0[1− (cos 𝜃)𝑛]𝑁𝑖 . (7.59)

Therefore, a sequence of 2D projection images acquired within a very short time can

be used to extract the flip angle. Eq. 7.59 can be rewritten as a linear function:

log(𝑃 (𝑡𝑖)) = log(𝑃0) +𝑁𝑖[1− (cos 𝜃)𝑛]

= 𝑎+ 𝑏𝑁𝑖

(7.60)
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Figure 7-25: A sequence of 2D images acquired for flip angle measurement (Tube D,
no glass bead, on 04/17/2016). The ten images were acquired every 0.32 s back-to-
back (each consists of 40 RF excitations with repetition time 8 ms). The top shows
the first 5 images in the same color scale from left to right while the bottoms shows
the last 5 images. The unit is in pixel/0.5mm for both x and y direction.

where 𝑎 = log(𝑃0) and 𝑏 = 1−(cos 𝜃)𝑛. The left plot of Fig. 7-26 shows the raw signal

versus measurement number for pixel (x=4, y=32) while the right plot of Fig. 7-26
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shows the log scale. The log of signal deviated from the linear after the fourth point

due to the fast diffusion. Only the first four points were fitted using Eq. 7.60 and

the extracted flip angle is (6.00 ± 0.08) degrees for this pixel. Fig. 7-27 shows the

obtained flip angle map.
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Figure 7-26: The signal versus measurement number for pixel (x=4, y=32) (Tube D,
no glass bead, on 04/17/2016). The right plot shows the amplitude in log scale and
fitted using the linear function of Eq. 7.60.

A more precise determination of the flip angle (than Eq. 7.60) can be done by

including diffusion effect. A model was built to study both the diffusion and RF ex-

citation simultaneously. Assuming no temperature gradient in the tube and dividing

the tube into 0.5-mm sections in the vertical (y) direction, the polarization changes

in 𝑖th-pixel due to the polarization gradient is given by[210]:

(
𝑑𝑃𝑖(𝑡)

𝑑𝑡
)diff =

𝐴𝑖+1𝐷

𝑉𝑖𝐿𝑖+1

(𝑃𝑖+1 − 𝑃𝑖) (7.61)

where 𝐴𝑖+1 and 𝐿𝑖+1 are the cross-sectional area and the thickness (𝐿𝑖+1 = 0.5 mm)

of the 𝑖 + 1-th section, 𝑉𝑖 is the volume of the 𝑖-th section, and 𝑃𝑖+1 (𝑃𝑖) is the
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Figure 7-27: The fitted flip angle map (Tube D, no glass bead, on 04/17/2016) as
a function of 𝑦 for 4 𝑥 positions. 𝑦 = 10 corresponds to the tube bottom (FID coil
center), and 𝑦 = 50 and beyond are outside the FID coil range.

polarization in the 𝑖+ 1-th (𝑖-th) section.

The polarization dynamics during the measurement can be described by

𝑃𝑖(𝑡+ 𝛿𝑡) =

{︂
𝑃𝑖(𝑡)(1−

𝛿𝑡

𝑇1

) + 𝛿𝑡

[︂
(
𝑑𝑃𝑖(𝑡)

𝑑𝑡
)diff − (

𝑑𝑃𝑖−1(𝑡)

𝑑𝑡
)diff

]︂}︂
(1− cos(𝜃𝑖))

𝑁𝑖 ,

(7.62)

where 𝑁𝑖 is the number of excitations acquired between [𝑡, 𝑡 + 𝛿𝑡] (𝑁𝑖 can be 0). In

addition, the FID coil can be approximated as two rectangular loops in the (𝑦, 𝑧)

plane, separated in 𝑥 direction with well-defined field strength in the space. By fitting

the raw signal with the Eq. 7.62 and the FID coil’s magnetic field functions (the y-

dependence of the RF field perpendicular to 1.5 T field), the diffusion constant can

also be extracted. The fitted diffusion constant is 𝐷 = (0.135± 0.001) cm2/s for this

measurement.
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7.6.4 Measurement of the 3He Polarization Survival during

Permeation

Our last test, performed in Aug. 2016, was to quantify how large the polarization

loss during permeation is. We used a 2-mm GDP shell with 26 𝜇𝑚 wall thickness

(Pellet 11-27-3) contained in tube F for this test. The test was done at room tem-

perature.

From Sec. 7.3.2, permeation time constant 𝜏 were measured for all pellets of Ta-

ble 7.1 and 𝜏 for pellet 11-27-3 is 374 s at room temperature. This is long enough

such that several MRI scans can be acquired. Compared with the previous test, an

ante-chamber was used to serve as a moveable container for the polarized 3He so

that the tube could be filled while inside the scanner rather than at the polarizer.

Fig. 7-28 shows one L-tube connected with the ante-chamber. Before the measure-

ment, the ante-chamber, L-tube and pellets were evacuated. Then polarized 3He was

only filled into the ante-chamber from the polarizer, with the valve closed between

ante-chamber and the L-tube. The ante-chamber and the L-tube were carried to the

scanner together. Several minutes were allowed to pass to make sure the polarization

reaches equilibrium in the ante-chamber (to avoid the position-dependent depolariza-

tion effect when being moved into the strong field of the MRI scanner). The valve

was then opened to allow the 3He to fill the L-tube and the permeation began. At

that instant (30 s after releasing the gas), a quick 2D image in 𝑥− 𝑦 plane was taken

to determine the frequency for slice positioning in the 𝑦 direction, see Fig. 7-29. The

pellet was placed on top of a glass bead to prevent the pellet from touching the bot-

tom of tube, where the large amount of glass at the concave bottom was found to

cause a strong signal distortion. The polarization dynamics was recorded as a time

series of slice-selected images. Each image took 10× 10 RF excitations with a repe-

tition time of around 100 ms. The flip angle of each excitation was set to around 1.5

degrees in the FID coil center, resulting in a ≈ 3.4% relative polarization decrease

per image due to RF excitations. Fig. 7-30 shows the time sequence MRI images of

the cross-sectional slice at the pellet. For pixels located within the pellet, the signal
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strength increased at first as permeation contribution dominated and then decayed

following the 𝑇1 exponential curve, while the signal strength of pixels outside of pellet

decayed with a different 𝑇1.

Ante-chamber

L-tube

Figure 7-28: The L-tube connected with an ante-chamber.

A model was developed to describe the permeation and polarization dynamics

inside and outside of pellets[210]:

𝐴𝑡𝑢𝑏𝑒
𝑖 = 𝐴0𝑒

− 𝑡𝑖
𝑇 𝑡𝑢𝑏𝑒
1 𝜂𝑅𝐹

𝑖 (7.63)

𝐴𝑝𝑒𝑙𝑙𝑒𝑡
𝑖 = 𝐴𝑝𝑒𝑙𝑙𝑒𝑡

𝑖−1

(︁
cos

𝑁𝑖−1
2 𝜃𝑖

)︁
𝑒
− 𝑡𝑖−𝑡𝑖−1

𝑇
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(7.64)

where 𝐴0 is the value representing the initial polarization in the tube, 𝑖 is the number

of measurement, 𝑇 𝑡𝑢𝑏𝑒
1 (𝑇 𝑝𝑒𝑙𝑙𝑒𝑡

1 ) is the 3He spin relaxation time constant outside (inside)

of the pellet, 𝜃𝑖 is the flip angle, 𝜂𝑅𝐹
𝑖 accounts for the RF loss and diffusion effect in
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Figure 7-29: First step of the permeation test. A quick 2D image was measured for
slice positioning when the permeation started.
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Figure 7-30: Test of 3He polarization permeation through the pellet wall (Tube F,
Pellet 11-27-3, 08/14/2016). A time sequence of slice-selection MRI images showing
a cross-sectional slice through the 2 mm diameter spherical GDP pellet contained in
the 3 mm ID glass tube during permeation of polarized 3He.

the tube (discussed in Sec. 7.6.3), 𝜏 is the permeation time constant, and 𝑃𝑖𝑛

𝑃𝑜𝑢𝑡
is the

polarization retention after permeation into the pellet.

The values 𝐴𝑝𝑒𝑙𝑙𝑒𝑡
𝑖 and 𝐴𝑡𝑢𝑏𝑒

𝑖 in Eq. 7.63 and Eq. 7.64 were further combined for
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each pixel using the slice thickness profile that accounts for different contributions

from inside/outside the pellet volume, and were fit to the 2D slice-select CSI data to

extract the permeation time, polarization loss during permeation and spin relaxation

time constant 𝑇1. Preliminary results are shown in Fig. 7-31 and Table 7.2. These

indicated that about 2/3 of the polarization survived the permeation and the 3He

gas has a sufficiently long spin relaxation time inside the pellet at room temperature.

However, these results are still preliminary due to several reasons. One reason is

Figure 7-31: Fitting for the permeation test (Tube F, Pellet 11-27-3, 08/14/2016).
The blue (red) points are the measured amplitude outside (inside) of pellet averaged
over the relevant pixels, and the blue (red) curve is the fitting result using the model
of Eq. 7.63 and Eq. 7.64. The fitting results are shown in Table 7.2.

Fitting Parameters Fitting Results
Spin relaxation 𝑇 𝑝𝑒𝑙𝑙𝑒𝑡

1 (67± 3) min
Spin relaxation 𝑇 𝑡𝑢𝑏𝑒

1 (41± 1) min
Permeation time constant 𝜏 (387± 2) s
Fraction of polarization that survives permeation 𝑃𝑖𝑛/𝑃𝑜𝑢𝑡 (67± 1) %

Table 7.2: The fitting results for the permeation test.
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that the MRI signal itself can be affected by diffusion and this effect is different for

pixels inside and outside the pellet. Such correction must be applied to MRI data.

It can be simulated if the exact pressure polarization, and the diffusion constants are

known for inside/outside pellet for each image. Another reason is that it was found

the GDP pellet easily pick up static charge during pumping, and this static charge

could significantly affect the 3He polarization immediately around the pellet and can

affect the fitting. Both effects are currently being investigated intensively.

7.6.5 Thermal-equilibrium Polarization Calibration using MRI

The MR imaging on the polarized 3He is only a relative polarization measure-

ment. This section describes the TE calibration which aims to quantify the absolute

polarization in the tube or pellet.

The thermally polarized 3He gas at room temperature and 1.5 T has a known

polarization of about 4 ppm using Eq. 6.1. About 3 atm 3He gas was filled in an L-

tube with an identical shape as the permeation test but with a much short 𝑇1 (these

are often L-tubes produced with bad quality) and located in the same position on

the MRI scanner to make a direct comparison. Since the thermal polarization is very

small, a large flip angle (≈ 80∘) was used and typically around 50-100 MRI images

are acquired and averaged to increase the signal-to-noise ratio. However, a large flip

angle means the TE polarization is almost completely lost after each excitation, and

one must wait for a time ≫ 𝑇1 for the TE polarization to recover. Even for a tube

with bad quality, the 𝑇1 can be still around 10 min, thus a long time is needed to

acquire one image (about 10 hours for one image of resolution 16× 48). To minimize

𝑇1, about 0.89 atm of 𝑂2 was added into the tube to accelerate 3He spin relaxation

so that the thermal polarization could be recovered rapidly after each measurement.

The expected 𝑇1 for 3He with O2 presence is given by[211]

1

𝑇1

= 0.45[𝑂2](
299

𝑇
)0.42 s−1/amg, (7.65)

where [𝑂2] is the oxygen density and 𝑇 is the temperature of the gas. At an oxygen
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density [𝑂2] = 0.89 amg, the calculated 𝑇1 = 2.5 s for 3He. Each thermal-equilibrium

image was acquired using 16 × 48 RF excitations with a repetition time of 5 s. For

a measurement with a flip angle 80 degrees, about 89% of the thermal-equilibrium

polarization is recovered during the 5 s repetition time.
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Figure 7-32: Absolute polarization calibration using CSI images. The left plot shows
the TE 3He CSI image at 300 K and 1.5 T (Tube A, on 07/04/2016), the middle plot
shows the hyperpolarized 3He CSI image of an L-tube with a glass bead at the bottom
(Tube E, on 04/17/2016), and the right plot shows the calibrated polarization at 𝑡 = 0
for three hyperpolarized 3He CSI images acquired back-to-back. The presence of the
glass bead is clearly evident at 𝑦 = (5− 7) mm on the right. The region 𝑦 = (8, 13)
mm has a polarization of (42± 2)% from this test.

Fig. 7-32 shows the absolute polarization calibration for hyperpolarized 3He CSI

images. A total of 3 CSI measurements were performed back-to-back. The left

plot shows the TE 3He CSI image at 300 K and 1.5T, the middle plot shows the

first hyperpolarized 3He CSI image located at almost the same location in the MRI

system (acquired with 12 × 76 excitations with repetition time of around 100 ms,

flip angle setting 2 degrees). A glass bead was put at the bottom of the tube in the

hyperpolarized case. The calibrated polarization at 𝑡 = 0 is shown along the tube

y direction in the right plot for all three measurements, corrected for the RF loss,

diffusion effects, and 𝑇1 loss. The agreement among the reconstructed polarization

from the three CSI data indicates the 𝑇1 loss and diffusion effect are accounted for

correctly. The 3He polarization was found to be around (42 ± 2)% at the beginning

of the test, within 5 mm of the tube bottom. The increase in the polarization for
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larger y (𝑦 > 13 mm) is believed to be due to systematic uncertainty in determining

the flip angle map, as this region is near the edge of the FID coil.

7.7 Summary

Nuclear fusion has long been considered an ultimate solution for a clean, renew-

able, and powerful method of energy production. The use of spin-polarized fuel in a

tokamak reactor would provide a significant boost to the fusion rate. The study of 3He

performance in polymer pellets is a crucial step towards realizing a direct polariza-

tion survival test by using the reaction D + 3He→𝛼+ p in the DIII-D tokamak. The

initial tests, described in Sec. 7.6, have demonstrated the ability to fill polarized 3He

into GDP pellets with high in-pellet polarization and sufficiently long spin relaxation

time. Further tests are being carried out to maximize the in-pellet polarization and to

improve the systematics uncertainties in the permeation test and the TE calibration.

All these efforts are paving the way for a promising future of spin-polarized fusion.
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Chapter 8

Conclusions

In this thesis, we discussed the development of spin physics and its application in

parallel with the fundamental research. The JLab Hall A E08-027 experiment studied

the proton spin structure (Chapters 2−5). The measured proton spin-dependent

structure function 𝑔2 at low momentum transfers can be used to study the quark-gluon

interaction, and provide tests of predictions from effective field theory such as 𝜒PT

in the non-perturbative region. The JLab polarized 3He target upgrade, discussed

in Chapter 6, is essential for the neutron spin structure study in the JLab 12 GeV

program, which will provide complementary information to the flavor separation of

nucleon structure. In Chapter 7, the polarization techniques are applied to study the

polarized 3He performance in ICF polymer pellets using data acquired with a clinical

1.5-T MRI scanner. The purpose of such study is to prepare for the first proof-of-

principle, in-situ test of polarization survival and polarization dependence of D-3He

fusion in the DIII-D tokamak.

In summary, spin, a fundamental property of elementary particles like rest mass

and charge, will continue to play an important role in modern physics. The develop-

ment of spin physics will continue to drive a wide range of scientific and industrial

applications, and offer more possibilities for our daily life.
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