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We demonstrate a new method of extracting parton distributions from lattice calculations. The
starting idea is to treat the generic equal-time matrix element M(Pz3, z

2
3) as a function of the

Ioffe time ν = Pz3 and the distance z3. The next step is to divide M(Pz3, z
2
3) by the rest-frame

densityM(0, z23). Our lattice calculation shows a linear exponential z3-dependence in the rest-frame
function, expected from the Z(z23) factor generated by the gauge link. Still, we observe that the
ratioM(Pz3, z

2
3)/M(0, z23) has a Gaussian-type behavior with respect to z3 for 6 values of P used in

the calculation. This means that Z(z23) factor was canceled in the ratio. When plotted as a function
of ν and z3, the data are very close to z3-independent functions. This phenomenon corresponds to
factorization of the x- and k⊥-dependence for the TMD F(x, k2⊥). For small z3 ≤ 4a, the residual
z3-dependence is explained by perturbative evolution, with αs/π = 0.1.

PACS numbers: 12.38.-t, 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Extraction of parton distribution functions (PDFs)
f(x) [1] on the lattice is a challenging problem attract-
ing a lot of attention. The usual method to approach
PDFs on the lattice is to calculate their moments. How-
ever, recently, X. Ji [2] suggested a method allowing a
calculation of PDFs as functions of x.

Since the PDFs are related to matrix elements of bilo-
cal operators on the light cone z2 = 0, this was a stum-
bling block preventing a direct calculation of these func-
tions in the lattice gauge theory formulated in Euclidean
space.

To overcome this difficulty, X. Ji proposes to use purely
space-like separations z = (0, 0, 0, z3). The functions in
this case are quasi-PDFs Q(y, p3) describing the distri-
bution of the p3 hadron momentum component. The key
point is that quasi-PDFs Q(y, p3) tend to usual PDFs
f(y) in the p3 →∞ limit. The same method can be ap-
plied to distribution amplitudes (DAs). The results of
quasi-PDF calculations on the lattice were reported in
Refs. [3–5] and of the pion quasi-DA in Ref. [6].

Recent papers [7, 8] by one of the authors (AR) con-
tain an investigation of the nonperturbative p3-evolution
of quasi-PDFs and quasi-DAs. This study is based on the
formalism of virtuality distribution functions [9, 10]. The
approach developed in Refs. [7, 8] has established a con-
nection between the quasi-PDFs and the “straight-link”
transverse momentum dependent distributions (TMDs)
F(x, k2

⊥). Starting from simple models for TMDs, mod-
els were built for the nonperturbative evolution of quasi-
PDFs. The derived curves agree qualitatively with the
patterns of p3-evolution produced by lattice simulations.

The structure of quasi-PDFs was further studied in
Ref. [11]. It was shown that, when a hadron is mov-
ing, the parton k3 momentum may be treated as coming
from two sources. The hadron’s motion as a whole yields
the xp3 part, which is governed by the dependence of the

TMD F(x, κ2) on its first argument namely x. The resid-
ual part k3−xp3 is controlled by the way that the TMD
depends on its second argument, κ2, which dictates the
shape of the primordial rest-frame momentum distribu-
tion. Quasi-PDFs due to their convolution nature possess
a rather involved pattern of their p3-evolution, making
mandatory relatively big values p3 & 3 GeV in order to
safely approach the PDF limit.

To accelerate the convergence, a different approach
for the PDF extraction from lattice calculations was
proposed [11]. It is based on the concept of pseudo-
PDFs P(x, z2

3). They generalize the light-cone PDFs
f(x) onto spacelike intervals like z = (0, 0, 0, z3). The
pseudo-PDFs are Fourier transforms of the Ioffe-time [12]
distributions [13]M(ν, z2

3) which are generically given by
matrix elements 〈p|φ(0)φ(z)|p〉 written as functions of
ν = p3z3 and z2

3 . In contrast to quasi-PDFs, the pseudo-
PDFs have the “canonical” −1 ≤ x ≤ 1 support for all
values of z2

3 . In the limit z3 → 0 they tend to PDFs,
showing, in this limit, a typical perturbative evolution
with the scale 1/z3 being the parameter of evolution.

As discussed in [7, 8], the fast nonperturbative de-
crease with z3

3 of the the pseudo-PDFs P(x, z2
3) or the

Ioffe-time distributionM(ν, z2
3), is responsible for delay-

ing the approach of quasi-PDFsQ(y, p3) to the PDF f(y).
An important observation is that one can strongly reduce
the z2

3-dependence by simply dividing the Ioffe-time dis-
tribution M(ν, z2

3) by an appropriate factor D(z2
3) sat-

isfying D(0) = 1 and having the z2
3-dependence close

(on average) to that of M(ν, z2
3). The absence of the

ν-dependence in this factor and its D(0) = 1 normal-
ization guarantees that the ratio M(ν, z2

3)/D(z2
3) taken

in the z2
3 → 0 limit will produce the same PDF as the

original functionM(ν, z2
3) taken in the same limit.

The choice for D(z2
3) advocated in Ref. [11], is to

take it to be equal to the rest-frame function M(0, z2
3).

An additional advantage of this choice is that both
M(ν, z2

3) and M(0, z2
3) contain the same multiplicative
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factor Z(z2
3) generated by the renormalization of the

gauge link. In the ratio, it should cancel out.
Our goal in the present work is an exploratory lattice

calculation of the u-d proton PDF using the strategy out-
lined in Ref. [11]. To make this article self-contained,
we reproduce in Sections II and III the main ideas of
Ref. [11]. The description of the method used for the lat-
tice extraction of the reduced Ioffe-time distribution is
given in Section IV. The data analysis and interpretation
is discussed in Section V. The summary of the paper is
given in Section VI.

II. PARTON DISTRIBUTIONS

A. Generic matrix element and Lorentz invariance

The basic object for defining parton distributions is
a matrix element of a bilocal operator that (skipping
inessential details of its spin structure) may be written
generically like 〈p|φ(0)φ(z)|p〉. Due to invariance under
Lorentz transformations, it is given by a function of two
scalars, (pz) (which will be denoted by −ν) and z2 (or
−z2, in order to have a positive value for spacelike z)

〈p|φ(0)φ(z)|p〉 =M(−(pz),−z2) =M(ν,−z2) . (1)

One can demonstrate [7, 14] that, for all relevant Feyn-
man diagrams, its Fourier transform P(x,−z2) with re-
spect to (pz) has −1 ≤ x ≤ 1 as support, i.e.,

M(−(pz),−z2) =

∫ 1

−1

dx e−ix(pz) P(x,−z2) . (2)

We want to point out, that Eq. (2) serves as a covariant
definition of x. In this definition of x, one does not need
to assume that p2 = 0 or z2 = 0.

B. Collinear distributions and pseudo-PDFs

Selecting some particular cases of z and p, one can
obtain expressions for various parton distributions, all
of them being expressed in terms of the same function
M(−(pz),−z2). More specifically, by choosing a light-
like z, e.g., having solely the light-front component z−,
we parametrize the matrix element by f(x), the twist-2
parton distribution

M(−p+z−, 0) =

∫ 1

−1

dx f(x) e−ixp+z− . (3)

The function f(x) has the standard probabilistic inter-
pretation, in which x is the fraction of the target mo-
mentum component p+ carried by the parton. One can
rewrite this definition as

M(ν, 0) =

∫ 1

−1

dx f(x) eixν . (4)

The inverse relation is given by

f(x) =
1

2π

∫ ∞

−∞
dν e−ixνM(ν, 0) = P(x, 0) . (5)

Due to the fact that f(x) = P(x, 0), the function
P(x,−z2) provides a generalization of the concept of
PDFs onto non-lightlike intervals z2 (in principle, z2 may
be even timelike). Following [11] , we will be referring to
it as the pseudo-PDF. The variable (pz) = −ν is called
often the Ioffe time [12], and consequentlyM(ν,−z2) is
the Ioffe-time distribution [13].

It is well known that in renormalizable theories (in-
cluding QCD), the function M(ν,−z2) has logarithmic
∼ ln(−z2) singularities which generate the perturbative
evolution of parton densities. In the approach based
on the operator product expansion (OPE), the standard
procedure is to remove these singularities with the help
of some prescription. The most popular of them is the
MS scheme based on dimensional regularization. Con-
sequently the resulting PDFs have a dependence on the
renormalization scale µ, and therefore one should write
the PDFs as f(x, µ2).

At small spacelike z2 and at the leading logarithm
level, the pseudo-PDFs are related to the MS distribu-
tions by a simple rescaling of their second arguments. In
particular, when z2 = −z2

3 , one has

P(x, z2
3) = f

(
x, (2e−γE/z3)2

)
, (6)

where γE is the Euler’s constant. The rescaling factor be-
tween µ and 1/z3 is very close to 1, since 2e−γE = 1.12.

C. Transverse momentum dependent distributions

Treating the target momentum p as longitudinal,
p = (E,0⊥, P ), one can introduce transverse degrees of
freedom. In particular, taking z that has z− and
z⊥ = {z1, z2} components only, one defines the TMD
F(x, k2

⊥) as follows

P(x, z2
⊥) =

∫
d2k⊥e

i(k⊥z⊥)F(x, k2
⊥) . (7)

In this context, the pseudo-PDFs P(x, z2
⊥) actually coin-

cide with the impact parameter distributions, a familiar
object used in many TMD studies.

The logarithmic ∼ ln z2
⊥ terms in P(x, z2

⊥) come from
the ∼ 1/k2

⊥ hard tail of F(x, k2
⊥). Because of this ob-

servation, it makes sense to treat P(x, z2
⊥) as a sum of a

soft part Psoft(x, z2
⊥), that is finite as z2

⊥ tends to zero,
and of a hard part which reflects the evolution. For the
case of TMDs, the soft part decreases faster than 1/k2

⊥,
for example, like a Gaussian e−k

2
⊥/Λ

2

. In the space of
z⊥, the distributions are then concentrated in the region
z⊥ . 1/Λ.
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider equal-time space-
like separations z = (0, 0, 0, z3) (or, for brevity, z = z3).
Then, in the p = (E, 0⊥, P ) frame, one can introduce the
quasi-PDF Q(y, P ) through a parametrization

〈p|φ(0)φ(z3)|p〉 =

∫ ∞

−∞
dy Q(y, P ) eiyPz3 . (8)

According to this definition, the quasi-PDF Q(y, P ) de-
scribes the probability that the parton carries the fraction
y of the parent hadron’s third momentum component P .
Returning to the idea of treating the matrix element as
a function of the variables ν and −z2 (which in this case
are given by Pz3 and z2

3), we have

M(ν, z2
3) =

∫ ∞

−∞
dy Q(y, P ) eiyν . (9)

Since z2
3 = ν2/P 2, the inverse Fourier transformation

may be written as

Q(y, P ) =
1

2π

∫ ∞

−∞
dν e−iyνM(ν, ν2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P →∞ limit,
since formallyM(ν, ν2/P 2)→M(ν, 0) when P →∞.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(ν, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x, κ2) on κ2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) may be described by
the transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

∫ ∞

−∞
dk1

∫ 1

−1

dxF(x, k2
1 + (y − x)2P 2) .

(11)

While being a mere result of Lorentz invariance, it tells
us that the distribution of the parton k3 momentum
is influenced by the same physics that generates the
k⊥-dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulas that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements having the fol-
lowing structure

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)ψ(z)|p〉 , (12)

where Ê(0, z;A) is the standard 0 → z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can be decom-
posed into pα and zα parts

Mα(z, p) =2pαMp(−(zp),−z2) + zαMz(−(zp),−z2) .
(13)

While theMp(−(zp),−z2) part gives the twist-2 distri-
bution when z2 → 0, the Mz(−(zp),−z2) is a purely
higher-twist contamination. Thus, one may wish to make
an effort to eliminate it from definitions of TMDs and
quasi-PDFs.

Introducing TMDs, one takes z = (z−, z⊥) and the
α = + component of Mα. Hence, the zα-part drops
out, and one gets a TMD F(x, k2

⊥) that is related to
Mp(ν, z

2
⊥) by the scalar formulas (2), (7). After that,

Mp(ν, z
2
⊥) is the only surviving part ofMα(z, p), and in

the remaining discussion we use the short hand notation
ofM≡Mp.

In case of quasi-distributions Q(y, P ), we can avoid the
zα contamination by considering the time component of
Mα(z = z3, p) and defining

M0(z3, p) = 2p0

∫ 1

−1

dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

⊥).
It should be emphasized that the operator defining

Mα(z, p) includes a 0 → z straight-line link instead of
a stapled link that is used in the definitions of TMDs
which appear as part of the description of semi-inclusive
DIS and Drell-Yan processes. It is well known that the
stapled links reflect initial or final state interactions spe-
cific to these processes.

The “straight-link” TMDs, in this sense, describe the
structure of a hadron when it is in its non-disturbed or
“primordial” state. One may argue that such a TMD
cannot be directly measured in a scattering experiment.
However, it is a well-defined object in quantum field the-
ory, and its study on the lattice could be per se, an ex-
citing endeavor.

C. Factorized models

The structure of the quasi-PDFs may be illustrated on
the example of the simplest models in which the nonper-
turbative (or soft) part of the TMDs F(x, k2

⊥) is repre-
sented by a product

F soft(x, k2
⊥) = f(x)K(k2

⊥) (15)

of the collinear parton distribution f(x) and a
k2
⊥-dependent factor K(k2

⊥), usually modeled by a Gaus-
sian. As we shall see, the quasi-PDFs have a rather com-
plicated structure, even when they are built from these
simple factorized models.
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FIG. 1. Evolution of quasi-PDF Q(y, P ) in the factorized
Gaussian model for P/Λ = 1, 5, 10, 50.

For the Ioffe-time distributionM(ν,−z2), this Ansatz
corresponds to the factorization assumption

Msoft(ν, z2
3) =Msoft(ν, 0)M(0, z2

3) (16)

for its soft part. Still, even if the soft TMD factorizes, the
soft part of the quasi-PDF has the convolution structure
of Eq. (11). Taking, for example, a Gaussian form

KG(k2
⊥) =

1

πΛ2
e−k

2
⊥/Λ

2

, (17)

one gets the following model for the quasi-PDF

QG(y, P ) =
P

Λ
√
π

∫ 1

−1

dx f(x) e−(x−y)2P 2/Λ2

. (18)

Choosing for f(x) a simple toy PDF resembling the nu-
cleon valence densities f(x) = 4(1−x)3θ(0 ≤ x ≤ 1), one
gets the curves shown in Fig. 1. For large P , the quasi-
PDF clearly tends to the f(y) PDF form. In particular,
using a momentum P ∼ 10Λ one gets a quasi-PDF that
is rather close to the P →∞ limiting shape. Still, since
Λ ∼ 〈k⊥〉, assuming the folklore value 〈k⊥〉 ∼ 300 MeV
one translates the P ∼ 10Λ estimate into P ∼ 3 GeV,
which is rather large. Thus, a natural question is how to
improve the convergence.

D. Pseudo-PDFs

The involved structure of a quasi-PDF Q(y, P ) can
be attributed to the formal fact that it is given by
the Fourier ν-transform of the functionM(ν, ν2/P 2), in
which ν appears both in the first and second argument of
the Ioffe-time distribution. Due to this complication, to
get close to the PDF limit, one should take P -values that
are sufficiently large to neglect the ν-dependence coming
from the second argument.

Another way [11] is to try to eliminate the
z2

3-dependence induced by M(ν, z2
3). The main idea is

based on the observation that if one takes the ν-Fourier
transform of the modified function M(ν, z2

3)/D(z2
3), the

z3 → 0 limit will give the same PDF as the original Ioffe-
time distribution, provided that D(z2

3) is a function of z2
3

only (but not of ν) and is equal to 1 for z2
3 = 0.

Thus, the strategy is to find a function D(z2
3) whose

z2
3-dependence would compensate, as much as possible,
the z2

3-dependence of M(ν, z2
3). The next step is to fit

the residual polynomial z2
3-dependence by polynomials

of z2
3 (they may be different for different values of ν),

and in this way extrapolate the data to z2
3 = 0 limit.

The Fourier transform of the resulting function would
correspond to the same PDF as the z2

3 limit of the original
Ioffe distributionM(ν, z2

3).
In the most lucky situation, the ratioM(ν, z2

3)/D(z2
3)

would have no polynomial z2
3-dependence (or just a

very mild one). In particular, when M(ν, z2
3) factor-

izes, i.e., M(ν, z2
3) = M(ν, 0)M(0, z2

3), one should take
D(z2

3) =M(0, z2
3). In this case, the reduced function

M(ν, z2
3) ≡ M(ν, z2

3)

M(0, z2
3)

(19)

is equal toM(ν, 0), and the task of obtaining the z3 → 0
limit is accomplished.

While there is no “first principle” reason for such a
factorization, one may expect that the functionsM(ν, z2

3)
for different ν have more or less similar dependence on
z3, basically reflecting the finite size of the nucleon.

As we mentioned already, the soft part of M(ν, z2
3)

factorizes if the soft part of TMD F(x, k2
⊥) factorizes.

That this happens, is a standard assumption of the TMD
practitioners (see, e.g., Ref. [15]). So, there are good
chances that this part of the z2

3-dependence ofM(ν, z2
3)

will be canceled or strongly reduced by the rest-frame
functionM(0, z2

3).
On the lattice, there is another (and troublesome, see,

e.g., Ref. [16]) source of z3-dependence: the Z(z2
3) fac-

tor generated by the renormalization of the gauge link
Ê(0, z3;A). Fortunately, this problematic factor Z(z2

3)
does not depend on ν and is the same for the numera-
tor and denominator of the ratio M(ν, z2

3). This provides
another motivation for usingM(0, z2

3) as a factor D(z2
3).

Thus, the proposal is to perform a lattice study of the
reduced Ioffe-time function M(ν, z2

3). Even if it would
have a residual polynomial z2

3-dependence, it should be
much easier to extrapolate this dependence to z3 = 0,
than the z3-dependence of the original Ioffe-time distri-
butionM(ν, z2

3).
Furthermore, if one observes that the ratio M(ν, z2

3)
does not have z3-dependence, one should conclude that
M(ν, z2

3) factorizes. In fact, such a factorization has been
already observed several years ago in the pioneering study
[17] of the transverse momentum distributions in lattice
QCD.

Still, there is an unavoidable source of factorization
breaking. When z3 is small, M(ν, z2

3) has logarithmic
ln z2

3 singularities generating the perturbative evolution
of PDFs. As we discussed, 1/z3 is analogous then to
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FIG. 2. Real part of model distributionM(ν) and the func-
tion −B ⊗ ReM that governs its evolution (the minus sign
here is for convenience of placing two curves on one figure).

the renormalization parameter µ of the scale-dependent
PDFs f(x, µ2) within the standard OPE approach.

More specifically, for small values of z3, the pseudo-
PDF P(x, z2

3) satisfies a leading-order evolution equation
with respect to 1/z3 that is identical to the evolution
equation for f(x, µ2) with respect to µ. The evolution
equation for the Ioffe-time distributionM(ν, z2

3) can also
be written [13],

d

d ln z2
3

M(ν, z2
3) = −αs

2π
CF

∫ 1

0

duB(u)M(uν, z2
3),

(20)

where CF = 4/3, and the leading-order evolution kernel
B(u) for the non-singlet quark case is given [13] by

B(u) =

[
1 + u2

1− u

]

+

, (21)

where [. . .]+ denotes the conventional “plus” prescription,
i.e.

∫ 1

0

du

[
1 + u2

1− u

]

+

M(uν)

=

∫ 1

0

du
1 + u2

1− u [M(uν)−M(ν)]. (22)

Note that being a Fourier transform,

M(ν) =

∫ 1

−1

dx f(x) eixν , (23)

the Ioffe-time distribution has real and imaginary parts
even if the function f(x) is real (which is the case with
parton distributions). In particular,

ReM(ν) =

∫ 1

−1

dx f(x) cos(xν) , (24)

2 4 6 8 10 12 14

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8 Im M

ν

B ⊗ Im M

FIG. 3. Imaginary part of model Ioffe-time distributionM(ν)
and the function B ⊗ ImM that governs its evolution.

and

ImM(ν) =

∫ 1

−1

dx f(x) sin(xν) . (25)

In Fig. 2, we show the function ReM(ν) for a model
PDF

q(x) =
315

32

√
x(1− x)3θ(0 ≤ x ≤ 1) . (26)

Its integral is normalized to 1, and it is nonzero for pos-
itive x only, which corresponds to the absence of anti-
quarks. As we shall see, this particular form appears in
the description of actual lattice data. In Fig. 3, we show
the function ImM(ν) for the same model PDF.

We also show in these figures the convolution inte-
grals governing the evolution, namely −B ⊗ ReM(ν)
and B ⊗ ImM(ν). The reader can notice that, B⊗M(ν)
is zero for ν = 0, the fact resulting from the vector cur-
rent conservation. As a consequence, the perturbative
evolution leaves the rest-frame density M(0, z2

3) (which
is always real) unaffected. In other words, the ln z2

3

terms are present only in the numeratorM(ν, z2
3) of the

M(ν, z2
3) ratio, but not in itsM(0, z2

3) denominator.
Note also that the evolution of the real part always

leads to a decrease of ReM(ν, z2
3) when z2

3 increases. For
the imaginary part, the evolution pattern is more compli-
cated. Namely, below ν ∼ 5.5, the function ImM(ν, z2

3)
increases when z2

3 increases. Only above ν ∼ 5.5, the
evolution leads to a decrease of ImM(uν, z2

3) with z2
3 ,

and the evolution pattern becomes similar to that of the
real part.

IV. NUMERICAL INVESTIGATION

In order to check numerically the ideas discussed above
we performed lattice QCD calculations in the quenched
approximation at β = 6.0 on 323 × 64 lattices (lattice
spacing a = 0.093 fm). We used the non-perturbatively
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FIG. 4. Nucleon dispersion relation. Energies and momenta
are in lattice units. The solid line is the continuum dispersion
relation (not a fit) while the errorband is an indication of the
statistical error of the lattice nucleon energies.

tuned clover fermion action with the clover coefficients
computed by the Alpha collaboration [18].

We used a total of 500 configurations separated by
1000 updates each one consisting of four over-relaxation
and one heatbath sweeps. On each configuration we
computed correlation functions from 6 randomly selected
point sources. The pion and nucleon masses in this setup
were determined to be 601(1) MeV and 1411(4)MeV re-
spectively. Conversion to physical energy units was per-
formed used the Alpha collaboration scale setting for
quenched QCD [19].

Our nucleon states were boosted up to a total mo-
mentum of 2.5GeV (corresponding to the 6th lattice mo-
mentum). Inside this momentum range, the continuum
dispersion relation for the nucleon was satisfied within
the errors of the calculation, indicating small lattice ar-
tifacts of O(aP ). In Fig. 4 we plot the nucleon energy
as a function of momentum along with the continuum
dispersion relation corresponding to our lattice nucleon
zero momentum energy.

The computation of the matrix elements was per-
formed using the methodology described in [20] with an
operator insertion given by Eq. (12). Taking the time
component of the current we can isolateMp(−z ·p,−z2)
which as discussed above is directly related to PDFs.

Following [20] we need to compute two types of corre-
lation functions. The first is a regular nucleon two point
function given by

CP (t) = 〈NP (t)NP (0)〉 , (27)

where NP (t) is a helicity averaged, non-relativistic nu-
cleon interpolating field with momentum p. The quark
fields in Np(t) are smeared with a gauge invariant Gaus-
sian smearing. This choice of an interpolation field is
known to couple well to the nucleon ground state (see
discussion in [20]). The quark smearing width was opti-
mized to give good overlap with the nucleon ground state

t/a

t/a

FIG. 5. Typical fits used to extract the reduced matrix el-
ement. The upper panel corresponds to p = 2π/L · 2 and
z = 4 and the lower panel to p = 2π/L · 3 and z = 8, where
momentum and position are in lattice units.

within the range of momenta in our calculation. The sec-
ond correlator is given by

C
O0(z)
P (t) = 〈NP (t)O0(z)NP (0)〉 , (28)

where

O0(z) = ψ(0)γ0τ3Ê(0, z;A)ψ(z) , (29)

with τ3 being the flavor Pauli matrix. The proton mo-
mentum and the displacement of the quark fields were
both taken along the ẑ axis (~z = z3ẑ and ~p = P ẑ). We
define the effective matrix element as

Meff(z3P, z
2
3 ; t) =

C
O0(z)
P (t+ 1)

CP (t+ 1)
− C

O0(z)
P (t)

CP (t)
. (30)

As it was shown in [20], our matrix element can then be
extracted at the large Euclidean time separation as

M(z3P, z
2
3) = lim

t→∞
Meff(z3P, z

2
3 ; t) . (31)

This method of extracting the matrix element, contrary
to the traditional sequential source approach, allows for
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the computation of the matrix element using all source-
sink separations for the nucleon creation and annihilation
operators.

The resulting effective matrix element has contamina-
tions from excited states that scale as e−t∆E , where t
is the Euclidean time separation of the nucleon creation
and annihilation operators, and ∆E is the mass gap to
the first excited state of the nucleon. Furthermore, it al-
lows for the computation of all nucleon matrix elements
that correspond to different nucleon momentum spin po-
larization and flavor structure without additional com-
putational cost.

As a result, the total computational cost of this ap-
proach is less than the equivalent cost of performing
the calculations with the sequential source method, espe-
cially because in our approach we put emphasis on having
as many nucleon momentum states as possible. This ap-
proach has recently been successfully used for both single
and multi-nucleon matrix element calculations [21–23].

In order to normalize our lattice matrix elements we
note that, for z3 = 0, the matrix element M(z3P, z

2
3)

corresponds to a local vector (iso-vector) current, and
therefore should be equal to 1. However, on the lattice
this is not the case due to lattice artifacts. Therefore we
introduce a renormalization constant

ZP =
1

M(z3P, z2
3)|z3=0

. (32)

The factor ZP has to be independent from P . However,
again due to lattice artifacts or potential fitting system-
atics, this is not the case. For this reason, we renormalize
the matrix element for each momentum with its own ZP
factor taking this way advantage of maximal statistical
correlations to reduce statistical errors, as well as the
cancellation of lattice artifacts in the ratio. Therefore,
our matrix element is extracted using the ratio

M(z3P, z
2
3) = lim

t→∞

Meff(z3P, z
2
3 ; t)

Meff(z3P, z2
3 ; t)|z3=0

. (33)

In order to determine the reduced matrix element
M(ν, z2

3) we introduce the double ratio

M(ν, z2
3) = lim

t→∞

Meff(z3P, z
2
3 ; t)

Meff(z3P, z2
3 ; t)|z3=0

×
Meff(z3P, z

2
3 ; t)

∣∣
P=0,z3=0

Meff(z3P, z2
3 ; t)|P=0

. (34)

In practice, the infinite t limit is obtained with a fit to
a constant for a suitable choice of a fitting range. In all
cases we studied, the average χ2 per degree of freedom
was O(1). Typical fits used to extract the reduced matrix
element are presented in Fig. 5. All fits are performed
with the full covariance matrix and the error bars are
determined with the jackknife method.

In this calculation we used momenta up to 6 · 2π/L
along the z-axis. This corresponds to a physical momen-
tum of about 2.5GeV.

V. DISCUSSION OF RESULTS

A. Rest-frame density and Z factor

An important object is the rest-frame density
M(0, z2

3). It is produced by data at P = 0. The re-
sults for its imaginary part are compatible with zero, as
required. The real part, shown in Fig. 6, is a symmetric
function of z3, and has a clearly visible linear component
in its fall-off with |z3| for small and middle values of |z3|.
In fact, a linear exponential factor Z(z2

3) ∼ e−c|z3|/a is
expected as a manifestation of the nonperturbative ef-
fects generated by the straight-line gauge link.

0 5 10 15
0

0.2

0.4

0.6

0.8

1 Re M(0, z2
3)

z3/a

FIG. 6. Real part of the rest-frame densityM(0, z23)

B. Reduced Ioffe-time distributions

In Fig. 7, we plot the results for the real part of the
ratio M(Pz3, z

2
3)/M(0, z2

3) as a function of z3 taken at
six fixed values of the momentum P . One can see that all
the curves have a Gaussian-like shape. Thus, the Z(z2

3)
link renormalization factor has been canceled in the ratio,
as expected.

Furthermore, the curves look similar to each other, dif-
fering only by a decreasing width with P . In Fig. 8 , we
plot the same data, but change the axis to ν = Pz3. As
one can see, now the data practically fall on the same
curve. For the imaginary part, the situation is similar.

This phenomenon corresponds to factorization of the
x- and k⊥-dependence for the soft TMD F(x, k2

⊥), as
discussed in previous sections.

C. Quark-antiquark decomposition

The real part of the Ioffe-time distribution is obtained
from the cosine Fourier transform

MR(ν) ≡
∫ 1

0

dx cos(νx) qv(x) (35)
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-2 0 2 4 6 8 10 12 14
z

-0.2

0

0.2

0.4

0.6

0.8

1

p=1
p=2
p=3
p=4
p=5
p=6

Re M(Pz3, z
2
3)

z3/a

FIG. 7. Real part of the reduced distribution M(Pz3, z
2
3)

plotted as a function of z3. Here, P = 2πp/L.

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

ν

Re M(ν, z2
3)

FIG. 8. Real part of M(ν, z23) plotted as a function of ν = Pz3
and compared to the curve given by Eqs. (35), (36).

of the function qv(x) given by the difference qv(x) =
q(x)− q̄(x) of quark and antiquark distributions. In our
case, q is u − d and q̄ = ū − d̄. The x-integral of u − ū
equals to the number of u-quarks in the proton, which
is 2, while the x-integral of d − d̄ equals 1. Thus, the
x-integral of qv(x) should be equal to 1.

We found that our data for the real part are well de-
scribed if one chooses the function

qv(x) =
315

32

√
x(1− x)3 , (36)

whose x-integral is normalized to 1. To get it, we formed
cosine Fourier transforms M(ν; a, b) of the normalized
xa(1 − x)b-type functions and found the parameters a, b
by fitting our data.

The comparison of the data with the curve based on
Eqs. (35), (36) is shown in Fig. 8. We also com-
pare our qv(x) with three global fits for the difference

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

q v

x

uv(x) − dv(x)

MSTW

NNPDF31

CJ15

This work

FIG. 9. Valence distribution qv(x) as given by Eq. (36)
compared with the Q2 = 1 GeV2 NNLO global
fits NNPDF31_nnlo_pch_as_0118_mc_164 [24] and
MSTW2008nnlo68cl_nf4 [25]; and the NLO global fit
CJ15nlo [26], all extracted using the LHAPD6 library [27].
The bands around the global fits indicate their experimental
and systematic uncertainties.

uv(x)− dv(x) of the valence distributions, see Fig. 9.
One can see a reasonable agreement between our curve
and NNPDF31 [24] NNLO fit down to x = 0.1 and with
MSTW [25] NNLO fit down to x = 0.05. We also show
the NLO fit CJ15 [26].

Since the areas under each curve are equal to 1, our
curve compensates the strong deficiency in the x < 0.1
region by exceeding the NNLO curves at x > 0.1 values.
In other words, if our curve would better describe data
in the x < 0.1 region, it would necessarily be smaller in
the x > 0.1 region.

The sine Fourier transform

MI(ν) ≡
∫ 1

0

dx sin(νx) q+(x) (37)

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

ν

Im M(ν, z2
3)

FIG. 10. Imaginary part of M(ν, z23) compared to the curve
based on q̄(x) = 0.
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0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1 Im M(ν, z2
3)

ν

FIG. 11. Imaginary part of M(ν, z23) compared to the curve
based on q̄(x) given by Eq. (38).

is built from the function q+(x) = q(x)+ q̄(x), which may
be also represented as q+(x) = qv(x) + 2q̄(x). If we ne-
glect the antiquark contribution and use q+(x) = qv(x),
we get the curve shown in Fig. 10. The agreement with
the data is strongly improved if we use a non-vanishing
antiquark contribution, namely

q̄(x) = ū(x)− d̄(x) = 0.07
[
20x(1− x)3

]
, (38)

see Fig. 11. This result corresponds to
∫ 1

0

dx [ū(x)− d̄(x)] = 0.07 . (39)

The combined distribution

q(x) = u(x)− d(x)

= [qv(x) + q̄(x)] θ(x > 0)− q̄(−x) θ(x < 0) (40)

defined on the −1 ≤ x ≤ 1 interval is shown in Fig. 12.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

u(x) � d(x)

x

FIG. 12. Overall distribution q(x) as defined by Eq. (40).

D. Evolution

While an overall agreement of the data with a
z3-independent curve looks satisfactory, one can easily
notice a residual z3-dependence in the data. It is espe-
cially visible when, for a particular ν, there are several
data points corresponding to different values of z3. It
is interesting to check if this dependence corresponds to
perturbative evolution.

To begin with, the evolution of the real part should
lead to its decrease when z2

3 increases. On the other
hand, as pointed out at the end of section III, the func-
tion ImM(ν, z2

3) increases when z2
3 increases as long as

ν . 5.5. Our data follow these patterns.
As we discussed, the evolution corresponds to ln z2

3

singularities of the Ioffe-time distributions for small z2
3 .

Thus, a natural idea is to check if the data corresponding
to small z′3 and z3 may be related by

M(ν, z′
2
3)=M(ν, z2

3) − 2

3

αs
π

ln(z′3
2
/z2

3)B ⊗M (ν, z2
3)

(41)

for some value of αs. Here B is the evolution kernel (21).
In our case,

B ⊗M (ν) =

∫ 1

0

du
1 + u2

1− u [M(uν)−M(ν)]. (42)

More specifically, we fix the point z′3 at the
value z0 = 2a corresponding to the MS-scheme scale
µ0 = 1 GeV and build the function

M̃(ν, z2
0)≡M(ν, z2

3) − 2

3

αs
π

ln(z2
0/z

2
3)B ⊗M (ν, z2

3)

(43)

from the data points for M (ν, z2
3) using various values

for αs.
Since the perturbative evolution is expected for small

z3, we include in this analysis the data with z3 up to
4 lattice spacings, which corresponds to energy scales
µ = 2, 1, 0.7 and 0.5 GeV.

For the real part, these data points are shown in
Fig. 13. As one can see, there is a visible scatter of the
data points. Using αs/π = 0.1, we calculate the “evolved”
data points corresponding to the function M̃(ν, z2

0). The
results are shown in Fig. 14. The evolved data points
are now very close to a universal curve.

In Fig. 15, we show the initial data points for the
imaginary part. The evolved data points constructed us-
ing the same αs/π = 0.1 value are shown in Fig. 16.
Again, they are close to a universal curve. This analy-
sis indicates that the residual z2

3-dependence of M (ν, z2
3)

at fixed ν is compatible with the expected logarithmic
evolution at small z2

3 . Clearly this is an important fea-
ture of our calculation which needs to be further studied
as it will play an essential role in reliable extraction of
renormalized PDFs from this type of lattice calculations.
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FIG. 13. Real part of M(ν, z23) for z3/a = 1, 2, 3, and 4.
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FIG. 14. Evolved data points for the real part.

VI. SUMMARY

In this paper, we demonstrated a new method of ex-
tracting parton distributions from lattice calculations. It
is based on the ideas, formulated in Ref. [11].

First, we treat the generic equal-time matrix element
as a function M(ν, z2

3) of the Ioffe time ν = Pz3 and
the distance z3. The next idea is to form the ratio
M(ν, z2

3) ≡ M(ν, z2
3)/M(0, z2

3) of the Ioffe-time distri-
bution M(ν, z2

3) and the rest-frame density given by
M(0, z2

3).
Our lattice calculation clearly shows the presence of

a linear component in the z3-dependence of the rest-
frame function, that may be attributed to the expected
Z(z2

3) ∼ e−c|z3|/a behavior generated by the gauge
link. On the next step, we observe that the ratio
M(Pz3, z

2
3)/M(0, z2

3) has a Gaussian-type behavior with
respect to z3 for all 6 values of P that were used in the
calculation. This means that Z(z2

3) factors entering into

-1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

⌫

Im M(⌫, z2
3)

FIG. 15. Imaginary part of M(ν, z23) for z3/a = 1, 2, 3, and 4.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ImfM(⌫, z2
0)

⌫

FIG. 16. Evolved data points for the imaginary part.

the numerator and denominator of the M(Pz3, z
2
3) ratio

have been canceled, as expected.
Still, there is no a priori principle predicting that

the remaining non-logarithmic z2
3-dependence cancels be-

tween the numerator and the denominator of the ratio
M(ν, z2

3)/M(0, z2
3). Such a z2

3-dependence can be re-
moved if needed with a systematic fitting procedure from
which the Ioffe time PDF will be extracted in the z2

3 = 0
limit.

However, we found that when plotted as a function
of ν and z3, the data both for the real and imaginary
parts of M(ν, z2

3) are very close to the respective univer-
sal functions. This observation indicates that the soft
part of the z2

3-dependence ofM(ν, z2
3) has been canceled

by the rest-frame density M(0, z2
3). This phenomenon

corresponds to factorization of the x- and k⊥-dependence
for the TMD F(x, k2

⊥).
While this evidence in favor of the factorization prop-

erty is an important result on its own, we want to stress
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that our approach is not based on the factorization. It
is based on the use of the ratio M(ν, z2

3)/M(0, z2
3). Its

residual soft z2
3-dependence may be systematically ana-

lyzed and fitted, so that the z2
3-limit may be taken in a

controllable way.
Luckily, the data do not show a visible polynomial de-

pendence on z2
3 within our current statistical and system-

atic errors. In future work we intend to carefully study
the residual polynomial z2

3 effects and incorporate them
in the extraction of PDFs using the lattice methodology
introduced here.

In addition, we have checked that, for small z3 ≤ 4a,
the residual z3-dependence may be explained by per-
turbative evolution, with the αs value corresponding to
αs/π = 0.1. We have evolved these small-z3 data points
to the z3 = 2a scale, which corresponds to µ2 = 1 GeV2.
The evolved data better approximate universal curves
both for real and imaginary parts ofM, supporting the
argument that perturbative evolution is observed.

Thus, these ν . 4 parts of the universal curves may be
treated as corresponding to the µ2 = 1 GeV2 scale. Other
data points correspond to z3 > 4a values, and formally
should be treated as corresponding to scales µ2 . 0.25
GeV2. We do not think it is reasonable to use perturba-
tive evolution from such scales to 1 GeV2. Still, all these
data points basically lie on the same universal curve that
looks like a smooth continuation of the ν ≤ 4 curve. This
indicates that evolution stops at such scales.

Hence, the ν ≥ 4 part of the universal curve giving
an overall description of the data may be treated as cor-
responding to PDFs “at low normalization point”, below
which evolution stops. It may be considered as the start-
ing condition for evolution, just like the µ2 = 1 GeV2

curve is treated in the MSTW parametrization.
Our curve (36) for the valence uv(x)− dv(x) distribu-

tion rather closely follows the NNPDF31 and, especially,
MSTW NNLO global fits down to very small x values,
showing the (1 − x)3 behavior for x → 1 in accord with
usual expectations.

Still, it strongly deviates from the global fits for
x < 0.1 in the NNPDF31 case and for x < 0.05 in the
MSTW case. Thus, our curve does not reproduce the ex-
perimentally established ∼ 1/

√
x Regge growth of the

valence PDFs. It is quite possible that this outcome
is caused by the short-distance cut-off imposed by dis-
cretization. To check if this is true, we need to repeat

our calculation using a smaller lattice spacing.
The data also indicate a nonzero positive antiquark dis-

tribution q̄(x) = ū(x) − d̄(x). It changes the x-integral
of q(x) by 7% and has ∼ x(1 − x)3 behavior. Since we
are using the quenched approximation, these antiquarks
come from “connected diagrams”. Hence, one should ex-
pect that the ratio ū/d̄ must follow the flavor content of
the proton, i.e. ū/d̄ ∼ 2 and ū > d̄. Our data agree with
this expectation.

The present study has an exploratory nature, and its
main goal was to develop techniques for lattice extraction
of PDFs based on the ideas of Ref. [11]. Our results indi-
cate that the basic method we put forward has a strong
potential for obtaining reliable PDFs from lattice QCD.
In future work we will refine our methods for incorpo-
rating evolution and controlling residual polynomial z2

3

effects in the extraction of the Ioffe time distributions.
To achieve this, it is evident that smaller lattice spac-

ings are required as well as a larger range of nucleon
momenta. Furthermore, we need to study finite volume
effects as well as to incorporate dynamical fermions with
pion masses closer to the physical point. We plan to ad-
dress all these issues in our future work.
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