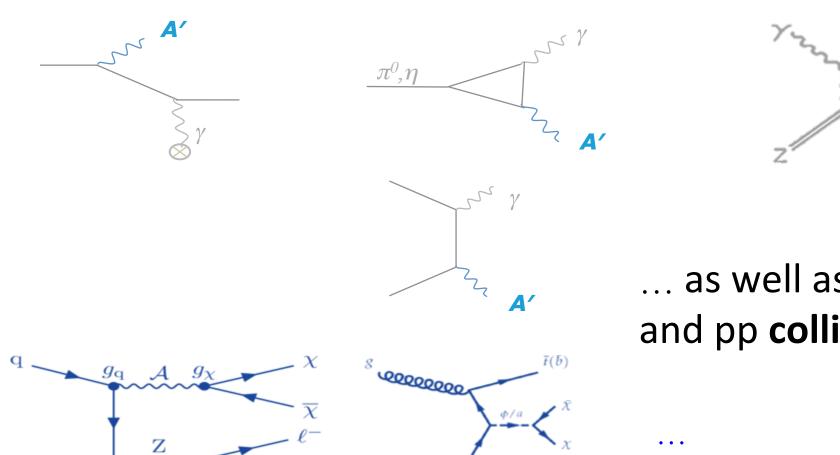
Accelerator facilities for dark sector/light dark matter searches

Stepan Stepanyan

Jefferson Lab


Paolo Valente

We use **electrons**, **positrons**, **protons** (and also **muons**) in **fixed target** experiments

... as well as data from e⁺e⁻ and pp **collisions**

Facilities for dark sector/LDM searches

Existing accelerators

- CEBAF & LERF@JLAB
- DAΦNE LINAC
- SPS extracted beams@CERN
- Colliders:

DAΦNE, LHC, SuperKEKB, BES-III

Approved new accelerators

MESA@Mainz

Proposed accelerators upgrades

- DASEL@SLAC
- BDF@CERN (SHiP)
- Positrons from Synchrotron@Cornell
- VEPP-3 bypass
- Positrons from DA Φ NE ring?

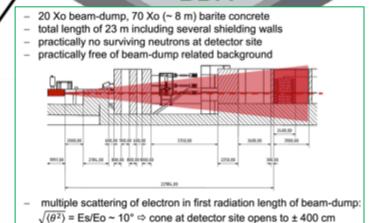
The MESA Facility

two main operation modes:

1. ERL operation: MAGIX experiment high beam currents, thin gas-jet targets,

⇒ dedicated dark sector experiments

2. EB operation: P2 experiment high stability, thick targets, long runs


⇒ high luminosities, stable conditions

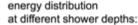
high-power beam-dump parasitic dark sector experiment

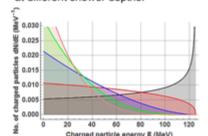
MESA accelerator:

- normal conducting injector
- two superconducting cavities
- several recirculations -
- 1.3 GHz c.w. electron beam

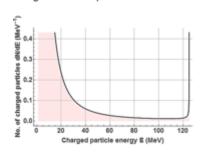
MAGIX on ERL P2 on external beam BDX behind dump?

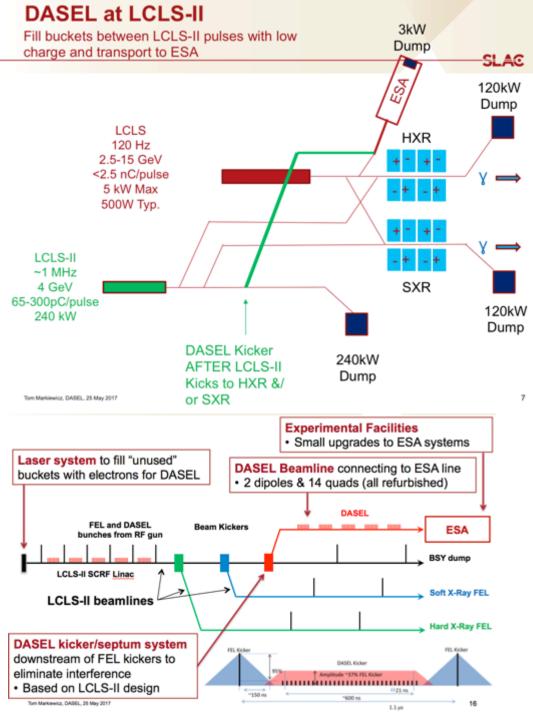
ERL

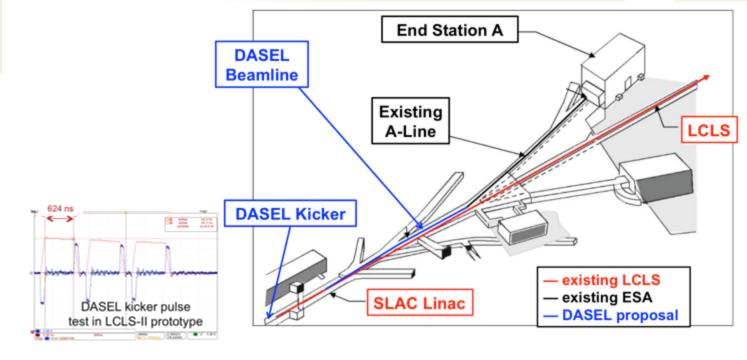

polarized electrons 105 MeV 1 mA


Beam to P2 target

beam energy ~ 147-155 MeV beam current ~ 150 µA


Beam to dump

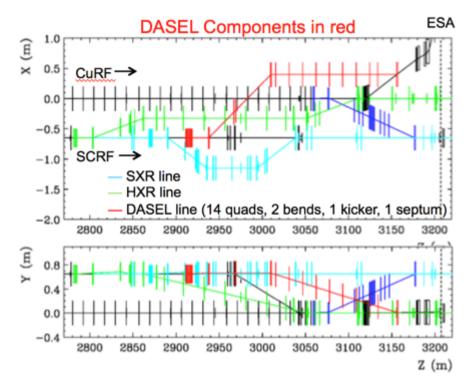

- beam energy ~ 130-138 MeV
- beam power ~ 20 kW
- lateral beam width ~ dump size
- main absorber material: 20 Xo Al
- in 10 000 h of operation:
 - ~ 3 x 10²² electrons
 - ~ 5400 C charge dumped



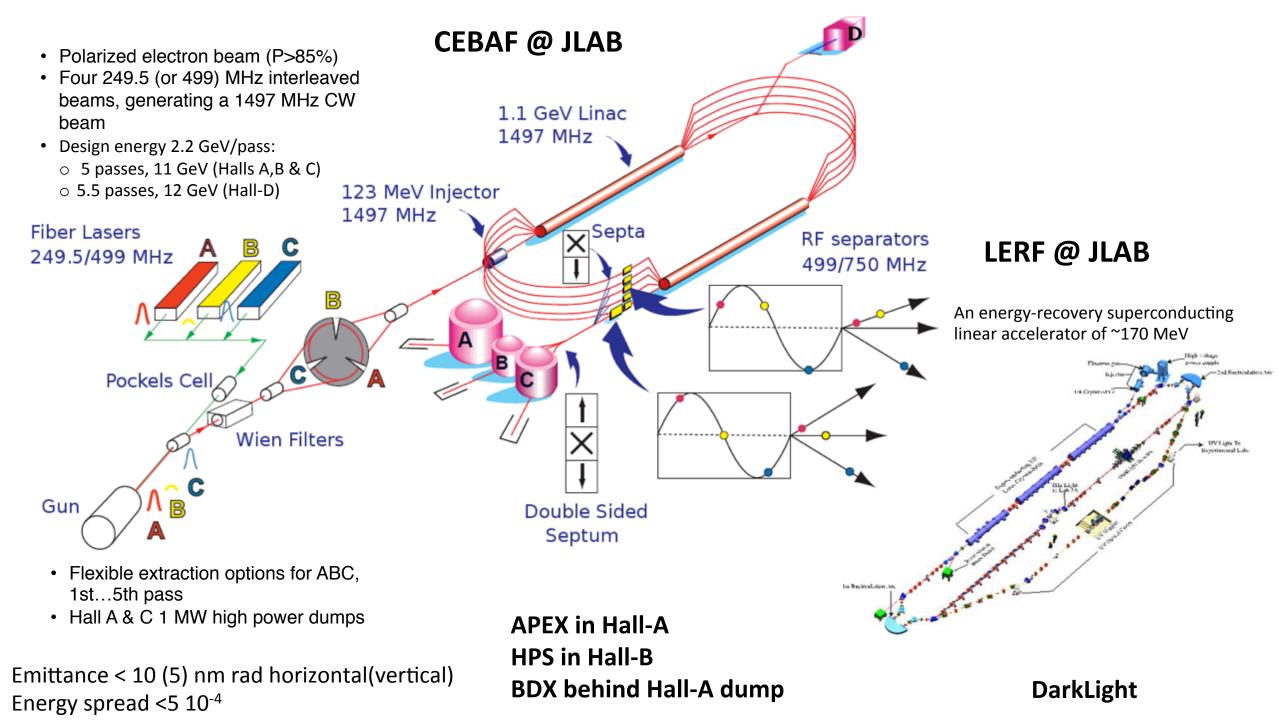
integral over complete shower:

- DASEL will operate with 10 nA beams at 46 MHz (21.5 ns period) using spare oscillator output: 50 DASEL pulses per LCLS-II cycle (phase I, \approx 2021)
- Upgradable to ≈μA with bunches at 186 MHz (5.4 ns period) with new high frequency low power laser: 200 DASEL pulses per LCLS-II cycle (phase II, ≈**2025**)
- Can vary current at experiment using ESA spoiler/collimator from maximum current down to 1 e- per shot
- Collimators will be used to control IP spot sizes as well
- LOI written September 2016 and will be updated August 2017
- Plan a Preliminary Design Report in Fall 2017 with FDR in 2018
- Aggressive schedule has beam-line commissioning at end of 2020

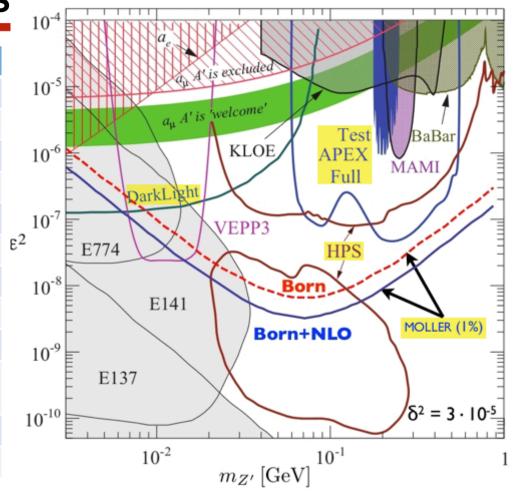
Moreover:


- Benefits from LCLS-II engineering & refurbished magnets (2 dipoles, 14 quadrupoles, 6 correctors) to minimize cost (<10 M) and schedule
- Capable of delivering 8 GeV beam but would operate at 4 GeV at start

LDMX experiment proposed at DASEL


DASEL Parameters

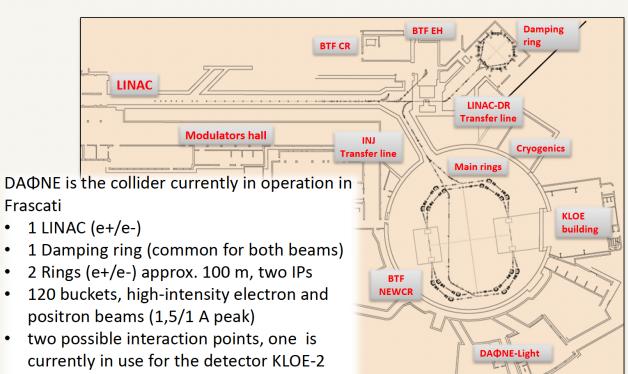
Experiment Parameters	LDMX experiment (~2020)	Super-HPS-style upgrade (~2025)	
Energy	4.0 GeV (possible to upgrade to 8.0 GeV)	4.0 GeV (possible to upgrade to 8.0 GeV)	
Bunch spacing	21.5 ns	5.4 ns	
Bunch charge	0.05 – 20 e-	70,000 e- (10 fC)	
Macro pulse beam current	0.1 – 150 pA	2 uA	
Duty cycle	55% (600 ns out of 1.1 us)	55% (600 ns out of 1.1 us)	
Beam norm. emittance (rms)	~100 um; < 1000 um	~1 um	
Bunch energy spread	<1%	<1%	
IP spot size	4 cm x 4 cm (rastering at 40 MHz could be used)	<250 um including jitter	
Max beam power	0.6 W	5 kW	
ESA Spoiler Parameters			
Charge reduction	0 – 99.99%	N/A	
Emittance increase	1 - 1000x	N/A	
Max beam power	55 W	N/A	
Spoiler thickness	0 – 0.5 <u>r.l.</u>	N/A	
Accelerator Parameters			
Macro pulse beam current	0-25 nA	2 uA	
Beam norm. emittance (rms)	~1um; < 25 um	~1um; < 25 um	
Beam admittance (edge)	<50 nm; defined by LCLS-II collimators	<50 nm; defined by LCLS-II collimators	
Bunch energy spread (FWHM)	<2%; defined by LCLS-II collimators	<2%; defined by LCLS-II collimators	
Bunch length (rms)	<1 cm	<1 cm	
Max beam power	55 W 5 kW		



Tom Markiewicz, DASEL, 25 May 2017

LERF and CEBAF Beam Parameters

	LERF	CEBAF	
Max. Energy	170 MeV	11 GeV (ABC)	
		12 GeV (D)	
Duty Factor	CW	CW	
Max. Beam Power	>1 MW	1 MW	
Bunch Charge (Min-Max)	60-135 pC	0.004 fC – 1.3 pC	
Repetition Rate on Target	4.68 - 74.85 MHz	31.2 – 499 MHz	
Nominal Hall Repetition Rate	74.85 MHz	249.5 MHz	
Number of Exp. Halls	1	4	
Max. Number of Passes	1	5.5	
Emittance (geometric) at full energy	50 nm-rad(X)/ 30 nm-rad(Y)	3 nm-rad(X)/1 nm-rad(Y)	
Energy Spread at full energy	0.02%	0.018%	
Polarization	None	>85%	

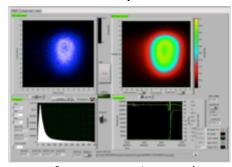

Frascati

two test facilities:

BTF (e-/e+/n)DAONE Light

The DAONE complex- LINAC

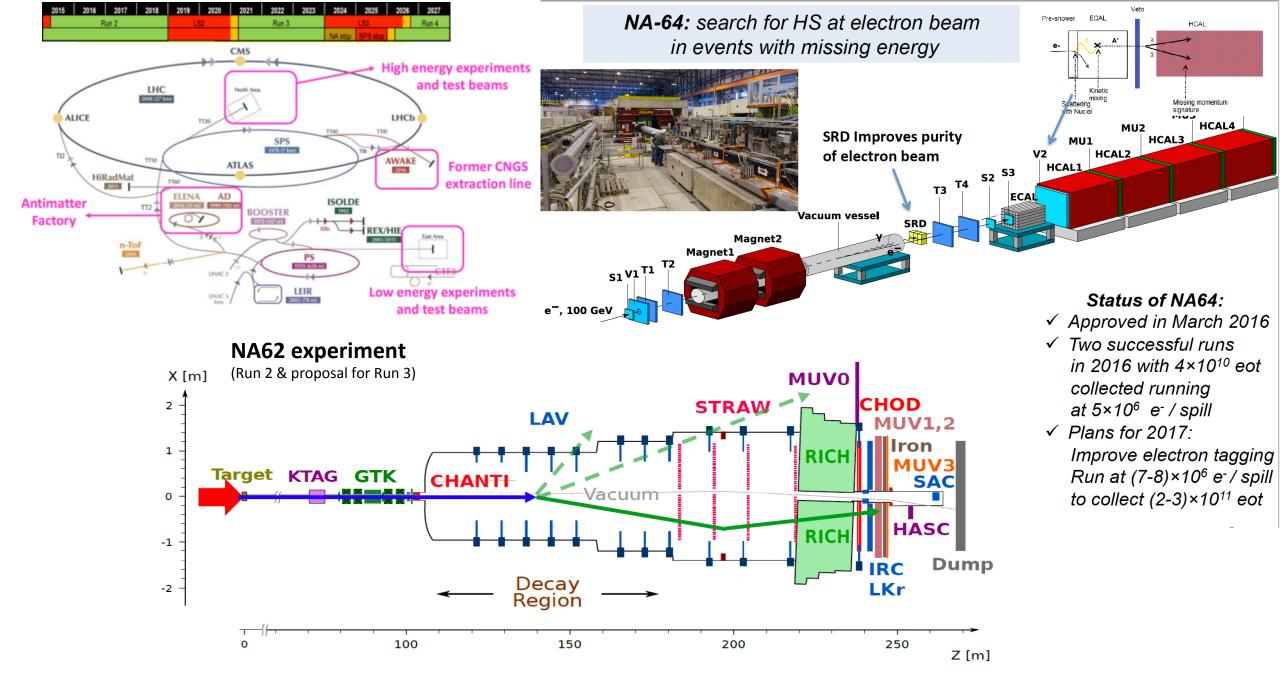
Laboratori Nazionali di Frascati (LNF) Frascati (Rome, IT)



Primary beams

	Design	Operational (top)	
Electron beam final energy	800 MeV	510 MeV (750)	
Positron conversion energy	250 MeV	220 MeV	
Positron beam final energy	550 MeV	510 MeV (535)	
RF frequency	2856 MHz		
Accelerating structure	SLAC-type, CG, 2π/3		
RF Amplifiers	4 x 45 MW sledded klystrons TH2128C		
Beam pulse rep. rate	1 to 50 Hz	1 to 50 Hz	
Beam macropulse length	10 nsec	1.4 ns to 250 ns	
Gun current for positron	8 A	8 A	
Beam spot on positron converter	1 mm	1 mm	
Normalized Emittance (mm mrad)	1 (electron) 10 (positron)	1 (electron) 10 (positron)	
RMS Energy spread	0.5% (electron) 1.0% (positron)	0.5% (electron) 1.0% (positron)	
Output electron current (510MeV)	>150 mA	180 mA (>500)	
Electron current on positron converter	5 A	5.2 A	
Output positron current (510MeV)	36 mA	50 mA (>85)	
Transport efficiency from capture section to linac end	90%	90%	

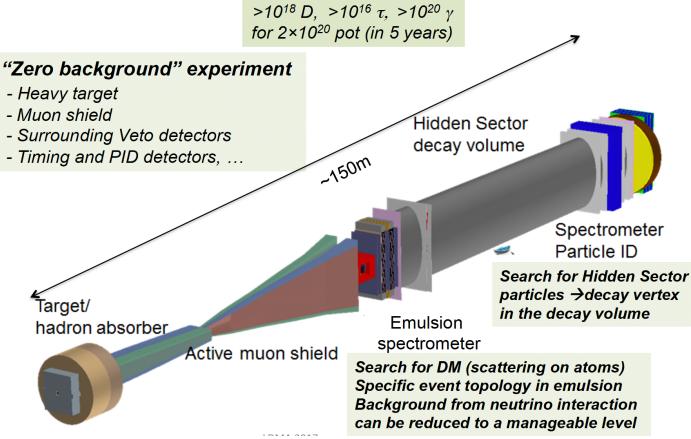
Secondary beams


1.6 10⁵ E=150 MeV electrons/10 ns

Aim at 10⁴ E=550 MeV positrons/200 ns for PADME

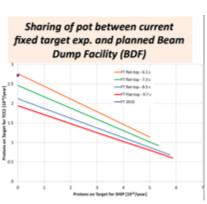
PADME ≈2018

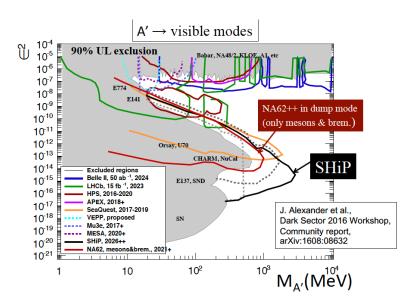
Parameter		Values				
Maximum average flux	3.125 10 ¹⁰ particles/s					
Spot size	1–25 mm (y) 1–55 mm (x)					
Divergence	1–2 mrad					
	Parasitic mode Dedicated mode			licated mode		
Pulse duration	10 ns		1.5-40 ns Selectable			
Repetition rate	Variable between 10 Hz and 49 Hz Depending on DAFNE mode		I-49 Hz Selectable			
	With target	Without target	With target	Without target		
Particle species	e* or e* Selectable by user	e* or e* Depending on DAFNE mode	e* or e" Selectable			
Energy	25-500 MeV	510 MeV	25-700 MeV (e ⁻) 25-500 MeV (e ⁺)	250-730 MeV (e ⁻) 250-530 MeV (e ⁻)		
Energy spread	1% at 500 MeV	0.5%	0.5%			
Intensity (particles/bunch)	1-105	10 ⁷ -1.5 10 ¹⁰	1-105	103-3 1010		

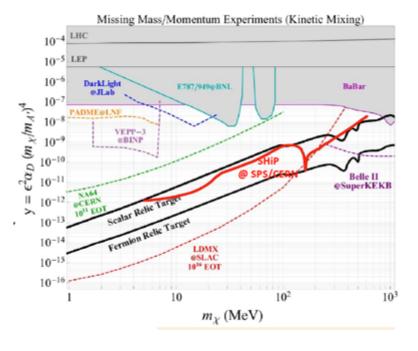


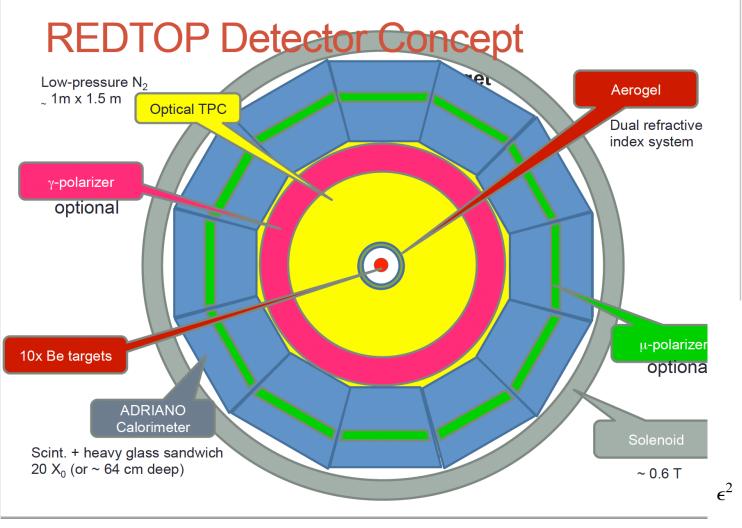
Secondary beams at CERN North Area: <200 GeV electrons in H4 and 75 GeV kaons (+pions) in K12

The SHiP experiment at SPS

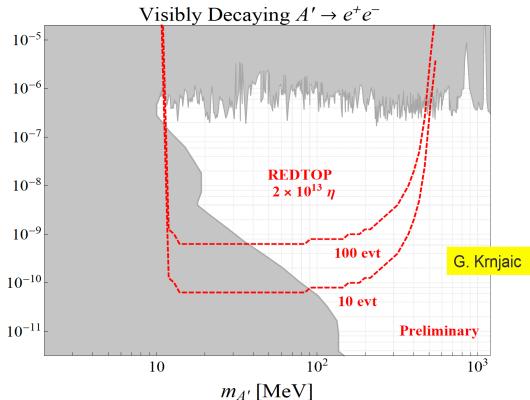

(to search for HS particles with O(10 GeV) masses)


SHiP Technical Proposal: 1504.04956




Proposed Beam Dump Facility @CERN North Area

- 450 GeV maximum SPS energy
- Start with Run 4 ≈2027



- Yield of 2 x 10^{13} η mesons per year (total inelatic x-section is 10-20 mbar in the 2 GeV beam energy region)
- Can also serve as a η' factory
- 4π (almost) detector which can be used with beams of different energies and particle species

- Incident proton energy of ~
 1.8 1.9 GeV
- Intensity > 1x10¹¹ POT/sec
- Corresponds to beam power of ~ 30 W
- Impinges on a sparse target
 - 10 x 0.1 mm Nb or 10 x 0.33 mm Be spaced 10 cm apart better vertex resol. w/ Nb but more primary hadrons
- Large beam spot (~1 cm) with small divergence (< 1°)
- Inelastic interaction every 100 nsec per target

