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We present the first lattice QCD study of coupled isoscalar ππ,KK, ηη S- and D-wave scattering
using a value of the quark mass corresponding to mπ ∼ 391 MeV. We find analogues of the
experimental σ, f0(980), f2(1270) and f ′2(1525) states, where the σ appears as a stable bound-state
below ππ threshold, and, similar to what is seen in experiment, the f0(980) manifests itself as a dip
in the ππ cross section in the vicinity of the KK threshold. The D-wave f2 states are observed as
narrow peaks, with the lighter state dominantly decaying to ππ and the heavier state to KK. The
presence of these states is determined rigorously by finding the pole singularity content of scattering
amplitudes, and their couplings to decay channels are established from the residues of the poles.

I. INTRODUCTION

The composition of the lightest hadrons with scalar
(JP = 0+) quantum numbers remains a mystery. From
one viewpoint, this is peculiar – being rather light and
thus having only limited possible decay channels, we might
expect them to provide a relatively simple system to study,
but yet they have proven to be rather challenging. The
lightest isoscalar scalar mesons are particularly interest-
ing, as they appear to be two quite different objects – an
extremely broad and light f0(500) (historically called the
σ, a name we will continue to use), and a rather narrow
f0(980) appearing very close to the KK threshold [1, 2].
These states appear in ππ scattering in a way which chal-
lenges our naive view of hadron resonances as peak-like
enhancements in cross-sections, appearing rather as a very
broad bump with a sharp dip at the KK threshold [3–17].

The σ and f0(980) have commonly been placed to-
gether with the K?

0 (800) (or κ) and a0(980) resonances
into a nonet of (broken) SU(3) flavor. The κ appears
to be a strange analogue of the σ, being a very broad
resonance enhancing πK scattering at low energies, while
the isovector a0(980) closely resembles the f0(980). The
a0(980) appears at the KK threshold, and likely shares
the f0(980)’s strong coupling to KK. It is observed
through its decay to πη, but the lack of direct data on πη
elastic scattering limits the precision with which it can
be studied.

In the simplest interpretation of the constituent quark
model, the scalar nonet would arise from qq̄(3P0) construc-
tions, but such an assignment for the states discussed
above appears unnatural given that the related qq̄(3P1,2)
states lie at much higher masses. In addition, this picture
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provides no explanation for the near degeneracy of the
the f0(980) and a0(980), nor why the σ and κ are appar-
ently lighter than them. One suggestion which attempts
to remedy this is to have the nonet be of dominantly
qqq̄q̄ construction [18], with the a0(980) and f0(980) hav-
ing hidden strangeness, making them heavier than the
σ which is proposed to contain only light quarks. Alter-
natively, given their proximity to the KK threshold, a
natural suggestion is that the a0(980) and f0(980) might
be dominated by KK molecular configurations, where
the binding is provided by residual interhadron forces (see
Ref. [19] for a review of resonances as hadronic molecules).
In a variation on this idea, dynamical modeling which
has a qq̄ ‘seed’ being dressed by strong coupling to its
meson-meson decay modes has proven capable of gen-
erating light scalar resonances which resemble those in
experiment [20].

In contrast to the scalar sector, the lightest isoscalar
tensor mesons (JP = 2+) present a situation that much
more closely aligns with our naive view of hadron reso-
nances. In the constituent quark picture, two states can
be constructed from combinations of uu+dd and ss pairs
in the 3P2 configuration. Experimentally the f2(1270) and
f ′2(1525) appear as “bump-like” enhancements which are
well described by Breit-Wigner parametrizations, with
the lighter state dominantly decaying to the ππ final state
(84%), and the heavier state to KK (89%) [21]. These
decay characteristics are taken as support for the quark-
model assignment f2(1270) ∼ uū + dd̄, f ′2(1525) ∼ ss̄
using the phenomenology of the ‘OZI’ rule, where qq̄ pair
creation is proposed to dominate existing qq̄ annihilation
in hadron decays. The rates of two-photon decays of
these states have also been presented as support for these
assignments (see Ref. [22] and references therein).

The presence of a resonance in a hadron scattering
process has a rigorous signature in the form of a pole
singularity in the partial-wave amplitude, tJ (s). A pole at

a complex value of Mandelstam s = sR =
(
mR − i 1

2ΓR
)2

influences scattering for real values of s – in particular

mailto:briceno@jlab.org
mailto:dudek@jlab.org
mailto:edwards@jlab.org
mailto:wilsond2@tcd.ie


2

for small value of the width ΓR, the effect is typically
a sharp peak. In general, the scattering amplitude is a
matrix in the space of kinematically open channels, and
near a resonance pole the elements of the matrix take the
form tij ∼ ci cj

sR−s , where ci is the coupling to the i channel.
A rigorous presentation of hadron resonances will take
the form of a list of pole positions and the associated
couplings.

As described above, dynamical models working at the
level of constituent quarks and/or hadrons are informative,
and offer frameworks within which experimental observa-
tions may be placed, but ultimately all observed hadron
phenomena must have an origin within QCD. Lattice
QCD provides an explicit numerical approach to studying
QCD at energies relevant to resonance physics, where it
is fundamentally non-perturbative. After discretizing the
theory on a finite hypercubic grid, an ensemble of gluon
field configurations can be generated, and using these cor-
relation functions evaluated. By computing appropriate
two-point correlation functions, the discrete spectrum of
QCD eigenstates in the finite-volume defined by the lat-
tice can be determined. These can be related to scattering
amplitudes through the Lüscher formalism [23–25] and its
extensions [26–33] which connect the volume dependence
of the discrete spectrum to scattering amplitudes in an
infinite volume.

An approach which has proven successful [34–37] pro-
ceeds by parametrizing the energy-dependence of coupled-
channel amplitudes and fitting a large set of energy levels,
from one or more lattice volumes, within a kinematic
window [30]. A dense spectrum of energy levels will
tightly constrain the possible energy-dependence of the
scattering t-matrix, and to acquire as many energy levels
as possible, we may consider systems with various total
momenta [31, 32]. Currently this approach is limited to
energies below three-hadron and higher thresholds – to
go beyond this an extension of this formalism is required,
and progress in this direction is being made [38–43].

In this first study of excited isoscalar meson resonances,
we will calculate a version of QCD featuring light quarks
which are heavier than those found experimentally, leading
to a pion mass of 391 MeV. In this world, three- and four-
meson thresholds appear at higher energies, providing a
larger energy region in which we can perform rigorous
extraction of scattering amplitudes. At this pion mass we
have previously studied the other symmetry channels that
would make up a flavor nonet: I = 1/2, S = ±1 through
coupled πK, ηK scattering [34, 35], and I = 1, S = 0
through coupled πη,KK [37].

In Refs. [34, 35], the scattering matrix in the πK, ηK
sector was found to be almost completely decoupled, with
ηK → ηK scattering being rather weak, while the πK
S-wave was found to be attractive at threshold, and to
feature no rapid energy dependence. This was interpreted
as being due to a virtual bound-state singularity over
200 MeV below πK threshold, as well as a much heavier
broad scalar resonance pole above 1.3 GeV lying far into
the complex plane.

In the isovector channel, in Ref. [37], the scattering
matrix for πη,KK was found to feature strong channel
coupling in S-wave, with very rapid energy dependence
around the KK threshold. This was shown to be due
to a resonance pole singularity lying close to the KK
threshold. The couplings of this resonance to the πη and
KK channels were found to be of comparable size.

The isoscalar sector that we now turn to is notoriously
more challenging for lattice QCD, owing to the need to
compute completely disconnected diagrams in which all
quarks and antiquarks annihilate. Using the distillation
framework, we have been able to evaluate all required con-
tributions to correlation functions with good statistical
precision. The elastic ππ → ππ part of I = 0, S = 0 scat-
tering (below KK threshold) was presented in Ref. [44],
where a bound-state pole was found about 24 MeV below
the ππ threshold. The same reference also obtained this
amplitude using a lighter value of the quark masses cor-
responding to mπ ∼ 236 MeV, and found that the bound
state evolved into a broad resonance, closely resembling
the experimental σ.

In calculations with mπ ∼ 391 MeV, JP = 2+ reso-
nances have also been determined that are found to be
narrow. The lowest-lying K?

2 resonance in πK is found to
have a mass m = 1576(7) MeV and width Γ = 62(12) MeV
decaying into πK only. The isovector a2 was found at
m = 1506(4) MeV , Γ = 20(3) MeV with approximately
equal couplings to πη and KK . These extractions were
somewhat less rigorous than those of the scalar mesons
owing to the neglect of possible three-meson decays.

In this paper we will extend the work presented in
Ref. [44] at mπ = 391 MeV to consider also the energy
region above KK threshold, and study isoscalar coupled
ππ,KK, ηη scattering in S-wave and D-wave. We will
confirm the σ bound-state previously observed, and fur-
thermore identify an f0(980)–like state in S-wave, appear-
ing close to KK threshold, with strong couplings to both
ππ and KK . In the D-wave scattering amplitudes, we ob-
serve two clear peaks in the scattering amplitudes, which
are interpreted as being due to two resonances, which
resemble the experimental f2(1270) and f ′2(1525), being
relatively narrow, and with the lighter state dominantly
coupling to ππ and the heavier to KK .

The remainder of the paper is structured as follows:
Section II presents the finite-volume spectra determined
in explicit lattice QCD calculations. Section III briefly
describes the technique for determining scattering am-
plitudes from finite-volume spectra before presenting re-
sults for elastic ππ scattering (III A), coupled S-wave
ππ,KK, ηη scattering (III B) and coupled D-wave scat-
tering (III C). Section IV examines the pole singularity
content of the determined amplitudes, which is interpreted
in terms of resonances in Section V. In Section VI, we
consider the complete flavor nonet of scalar mesons deter-
mined at mπ = 391 MeV, before summarizing the current
calculation in Section VII.
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II. COMPUTING THE FINITE-VOLUME
SPECTRUM USING LATTICE QCD

As in our previous papers [34–37, 44–60] we make use
of dynamical anisotropic Clover lattices featuring two
degenerate flavors of light quark and a single heavier
flavor tuned approximately to the physical strange quark
mass. The quark masses are such that the pion mass
is found to be close to 391 MeV. Details of the lattices,
which have spatial lattice spacing as ∼ 0.12 fm and a
temporal spacing about three times smaller can be found
in [61]. In this paper, three spatial1 volumes are utilized:
(L/as)

3 = 163, 203, 243.
For a system at rest, spectra are computed according

to irreducible representations (irreps) of the cubic group,
which contain subductions of the angular momenta which
characterize the infinite-volume spectrum. In systems of
identical meson pairs with definite G-parity, only even
partial waves contribute for even isospin, which subduce
according to Table II of [54]. In particular, we are in-
terested in the irreps A+

1 which contains subductions of
JP = 0+, 4+ . . ., and E+, T+

2 containing JP = 2+, 4+ . . ..
For systems with non-zero total momentum, the symme-
try is reduced to the little group of the cubic group, which
is defined by the allowed rotations of a cube which leave
the total momentum invariant. In this work, we consider
systems with total momentum up to [200].

Stable meson masses on these lattices can be found
in [37] – particularly relevant here are pseudoscalar meson
masses: atmπ = 0.06906(13), atmK = 0.09698(9) and
atmη = 0.10364(19). The anisotropy determined from
stable meson dispersion relations is ξ = as/at = 3.444(6).

The isoscalar sector is notoriously challenging to study
within lattice QCD. This has led other groups to make
various approximations in order to make calculation prac-
tical [62], including the omission of disconnected diagrams
or the use of only a small of a basis of operators. These
approximations cannot in general be justified. In this
paper we will compute matrices of correlation functions
in a large basis of operators 2 , including many which
resemble a pair of mesons each having definite momentum,
with the correlator construction achieved using the dis-
tillation framework [63]. All required Wick contractions,
including those in which quarks at the source or sink
annihilate are included without further approximation.
Matrices of correlation functions are analyzed variation-
ally by solving a generalized eigenvalue problem [64, 65] to
yield discrete spectra of states. The operators resembling
pairs of mesons with definite momentum are themselves
constructed using variationally-optimized π, K and η op-
erators [54]. The KK operators are constructed with

1 The temporal extents are T/at = 128 except for the 203 lattice,
while for correlators computed in A1 irreps, a lattice of temporal
extent T/at = 256 is used.

2 complete lists of operators used are provided in Supplemental
Material.

definite G-parity, and the ηη operators contain both light
and strange components. Our procedures for correlator
construction and variational analysis have been described
in previous papers [46, 51, 54, 63], and we will not repeat
details here, except to point out that we use a ‘weighting-
shifting’ correction [54] to reduce the (small) pollution
due to the finite temporal extent of the lattice. For rest-
frame irreps, this amounts to computing the difference
between two timeslices, which also acts to remove the
vacuum contribution in the [000]A+

1 irrep.
Figure 1 shows spectra determined in three lattice vol-

umes for all A1 irreps with total momentum up to [200].
The error bars include, as well as the statistical error due
to the use of a finite sample of gauge-field configurations,
also an estimate of systematic error obtained by varying
the details of the variational analysis, e.g. reasonable vari-
ation of t0, the extent of fitting-time windows, and the
content of the variational operator basis. Significant shifts
are observed with respect to non-interacting meson-meson
energies shown by the curves, indicating the presence of
strong scattering dynamics. The levels shown in black
and blue will be used later to constrain three-channel
scattering in S-wave. We utilise 57 energy levels densely
filling an energy region from below ππ threshold to some
way above ηη threshold.

Energy levels below KK threshold computed on these
lattices previously appeared in [44], where they were used
to determine the ππ elastic scattering amplitude which
was found to feature a bound-state pole identified with
the σ. The spectra in Figure 1 contain some small dif-
ferences with respect to those presented in [44], typically
at the level of statistical fluctuations. In this paper we
undertake a thorough consideration of the variations seen
in correlator extraction, and work with somewhat larger
operator bases in order to access the coupled-channel
energy region.

Figure 2 shows the [000]A+
1 irrep, alongside each energy

level we plot a histogram showing the relative contribution
to each state from each operator in the variational basis.
We highlight 5 distinct types of operator: ππ (red), ūΓu+
d̄Γd (grey), s̄Γs (light green), KK (green), and ηη (blue),
and the spectrum is seen to not be diagonal in this basis.
A level below ππ is seen on all three volumes dominated by
ππ and ūΓu+ d̄Γd operators, which is connected to the σ
resonance that appears as a shallow bound state on these
lattices [44]. 3 On all three volumes we see there is a state
coincident with ηη threshold that has dominant overlap
with an operator resembling η[000]η[000]. The statistically
negligible shift with respect to the non-interacting level,
and relatively small mixing between the ηη operator and
the other operators may be a hint that the ηη channel is
not as strongly interacting or as strongly coupled as ππ
and KK. While operator overlaps are useful for building

3 The significant volume dependence of this state suggests that it
is physically large, hinting at a molecular type nature. In Sec. VI
we use the Weinberg criterion to quantify this speculation.
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FIG. 1. Finite volume spectra obtained in the A1 irreps. Dashed lines show the relevant kinematic thresholds and the solid
curves are the meson-meson energies in the absence of interactions, red indicates ππ, green is KK and blue is ηη. There are no
three-meson or higher thresholds in this energy region. Discrete energies are plotted, and the uncertainties include systematic
variation as described in the text. Points colored blue show large overlap with ηη-like operators. Ghosted points are not used in
the determination of coupled-channel scattering amplitudes.

intuition, they are not a rigorous tool, so we reserve
further comment until after the scattering amplitudes
have been extracted and analyzed in Section III B.

Figure 3 shows the spectra determined in three lattice
volumes for irreps which feature JP = 2+ scattering as
the lowest angular momentum. We extract 34 energy
levels shown in black and blue that are used when extract-
ing the scattering amplitudes in Section III C. Figure 4
shows the spectrum and associated histograms for the E+

and T+
2 irreps, where the pattern of operator overlaps is

quite different to that in A+
1 , with notably less ‘mixing’

between the light and strange sectors. Statistically signifi-
cant shifts from the non-interacting energies are observed,
and there are more levels than would be expected based
on counting the non-interacting energies on each volume
in this energy region, hinting that narrow states could
be present. The histograms go further, suggesting that
there are likely to be two resonances, one dominated by
light quarks, and another dominated by strange quarks.
This is perhaps clearest in [000]T+

2 for L/as = 16 where
there are no nearby non-interacting levels, but we still
see two levels, one near atEcm = 0.26 dominantly over-
lapping with ūΓu+ d̄Γd constructions and a second near
atEcm = 0.28 dominantly overlapping with s̄Γs construc-
tions. Again, we reserve further comment until after the
amplitudes have been extracted in Section III C.

We now turn to extracting the scattering amplitudes
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FIG. 2. The spectra and histograms in the [000]A+
1 irrep over

3 volumes. The relative operator overlaps are shown in the
histograms from top to bottom: ππ (red), ūΓu+ d̄Γd (grey),
s̄Γs (light green), KK (green), ηη (blue).
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FIG. 3. The spectra extracted in irreps where JP = 2+ is the
lowest subduced partial wave. Dashed lines show thresholds,
as in Fig. 1, also showing the lowest neglected two–, three–
and four–body channels, ηη′, ηππ, and ππππ in grey. The
points shown are the result of the spectrum extraction. Points
highlighted in blue are dominated by overlap with an ηη-like
operator, and ghosted points are not used in the amplitude
extractions in Section III C.

from these spectra, beginning with the S-wave elastic
region before proceeding to investigate coupled-channel
S and D-wave amplitudes.

III. DETERMINING COUPLED-CHANNEL
SCATTERING AMPLITUDES

It has been shown that the discrete spectrum of states
in a periodic finite spatial volume is determined by the
energy-dependence of infinite-volume hadron-hadron scat-
tering amplitudes [23–33]. The particular form of the
relationship relevant to coupled-channel pseudoscalar-
pseudoscalar scattering described by a t-matrix, t(Ecm),
can be compactly expressed as [30]

det [1 + iρ · t · (1 + iM)] = 0, (1)

with ρ(Ecm) a diagonal matrix of phase-space factors,
ρij = δij

2ki
Ecm

, and M(Ecm, L) a matrix of known func-
tions which encode the ‘kinematics’ of a cubic finite-
volume. The discrete spectrum in an L × L × L box
is given by all Ecm for which this equation is solved. The
t-matrix is in general not diagonal in the space of open
channels, but since it is an infinite-volume quantity, it is
diagonal in angular momentum. On the other hand, the
finite-volume matrix M is diagonal in channel space, but
it is in general not diagonal in angular momentum.

This finite-volume formalism was recently reviewed in
some detail in Ref. [66], and more description of our
implementation (using the same notation as we will use
in this paper) is given in Ref. [37]. Our approach is
to parameterize the energy-dependence of the t-matrix,
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FIG. 4. The spectra and histograms showing the relative
operator overlaps in the E+ and T+

2 irreps, which receive
contributions from JP = 2+ interactions and higher. The
histogram labeling is consistent with Fig. 2.

solving Eq. 1 for the discrete spectrum with a given choice
of parameter values. This spectrum is then compared to
the lattice spectra shown in e.g. Figure 1 in a correlated χ2

function. Minimizing the χ2 by varying parameter values
we obtain a best estimate for the t-matrix. Subtleties
associated with broken rotational symmetry due to the
cubic boundary, both at rest and in-flight, expressed
mathematically by the subduction of partial waves into
irreps of the relevant symmetry group, are discussed in
Refs. [37] and [51].
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One approach to ensure that the t-matrix in partial-
wave ` satisfies multichannel unitarity (required in order
for Eq. 1 to have solutions) is to express it in terms of a
K-matrix,

(t−1)ij =
1

(2ki)`
(K−1)ij

1

(2kj)`
+ Iij , (2)

where the factors (2ki)
−` provide the required kinematic

behavior at threshold for the `-wave. The elements
Kij(Ecm) form a symmetric matrix that is real for real
values of Ecm, and the elements Iij form a diagonal matrix
whose imaginary part is fixed above threshold by unitar-
ity to be −ρi. An option for the real part of I which
ensures the amplitude behaves sensibly below threshold
and for complex values of the energy is to use the Chew-
Mandelstam phase-space – a discussion can be found in
Ref. [35].

We will make use of a range of parameterizations for the
matrix K in the S– and D–waves, considering mostly the
coupled three-channel problem ππ,KK, ηη. We will later
also have cause to also consider an application of the Jost
functions, through which we may control the singularity
content of the amplitudes, at the cost of losing guaranteed
unitarity for all parameter values. The possibility of
extracting information about scalar mesons from lattice
QCD spectra has previously been discussed in the context
of various amplitude parameterizations in Refs. [67–70].

A. Elastic S-wave ππ scattering

An analysis of the discrete spectrum of states in the
energy region below KK in terms of elastic ππ scattering
in S-wave was previously presented in [44]. In this case,
under the (verified) assumption that higher partial-waves
make a negligible contribution to Eq. 1, the problem
reduces to a one-to-one mapping from the computed Ecm

value to a value of the scattering amplitude at that energy.
In this way the elastic scattering amplitude was mapped
out, and a behavior compatible with a bound-state that
we associated with the σ was observed.

For this paper we have considered larger matrices of
correlation functions, containing many KK and ηη op-
erators, whose variational analysis leads to spectra that
differ slightly from those presented in [44], in particu-
lar through better estimation of a systematic error. We
use these improved energy levels here to determine the
elastic scattering amplitude, expressed via the phase-
shift (tππ,ππ = ρ−1

ππ e
iδππ sin δππ), assuming that ` = 2

and higher partial waves have a negligible impact on the
finite-volume spectrum4. In Figure 5 we present discrete
phase-shift points, as well as effective-range-expansion

4 We will actually determine these ` = 2 amplitudes in Section III C
and find that their effect on the A1 irreps at low energies are
negligible.

descriptions of the finite-volume spectrum below KK
threshold.

Re-expressing the elastic t-matrix as t = Ecm

2
1

k cot δ−ik
makes it clear that if a graph of k cot δ intersects the curve
ik at energies below threshold, where ik = −|k|, there
will be a bound-state pole singularity. Such a crossing is
clearly visible in the lower pane of Figure 5, correspond-
ing to a bound-state σ. We will explicitly address the
singularity content of scattering amplitudes and their in-
terpretation in terms of bound-states and resonances in
Section IV.

The energy dependence of the elastic amplitude
can be described within the effective range expansion,
k cot δ = 1

a + 1
2rk

2 +
∑
n=2 Pn k

2n. Describing those en-
ergies in the region 0.12 ≤ atEcm ≤ 0.175, by a
scattering length plus effective range form we obtain
a/at = −36.6 ± 3.2, r/at = −30.9 ± 5.2 with a
χ2/Ndof = 16.3/(17− 2) = 1.09. A larger energy re-
gion, 0.1 ≤ atEcm ≤ 0.185, can be described if
we include also a k4 term in the expansion, yield-
ing a/at = −43.1 ± 3.9, r/at = −18.1 ± 4.4 with a
χ2/Ndof = 18.1/(23− 2) = 0.91. Both descriptions are
displayed in Figure 5. In this elastic analysis we avoid
considering levels lying just below the KK threshold, as
they are impacted by the tππ→KK and tKK→KK elements
of the t-matrix [30, 66].
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FIG. 5. S-wave ππ elastic scattering amplitude expressed by
the phase-shift, δππ (top) and k cot δ (bottom). Points with
large error bars are not plotted for clarity. Curves indicate
effective-range-expansion descriptions discussed in the text.
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B. Coupled S-wave ππ, KK , ηη scattering

A näıve examination of the energy levels presented in
Figure 1, where an ‘extra’ level is present below ππ thresh-
old, strongly suggests the existence of the bound-state σ
discussed in the previous section, but such simple anal-
ysis does not obviously indicate any narrow resonances
at higher energy – while significant shifts of energy levels
away from non-interacting energies are observed, there
are not clearly any ‘extra’ levels that one might associate
with a nearly-stable state.

We will proceed by attempting to describe the 57 energy
levels lying below atEcm = 0.24 shown in black and blue
in Figure 1 using a range of three-channel (ππ, KK, ηη)
S-wave amplitude forms in Eq. 1. In this section we will
make use of K-matrix parameterizations as described
previously.

An illustrative example of a successful description of
the spectrum is provided by a K-matrix in which the
matrix inverse of K is parameterized as

K−1(s) =

a+ b s c+ d s e
c+ d s f g
e g h

 , (3)

where the row (and column) channel ordering is
ππ, KK, ηη. There are eight free parameters, namely
the constants a . . . h, and the Chew-Mandelstam phase-
space used for I is subtracted for each channel at
the relevant threshold. The best description of the
spectra with this amplitude, shown in Figure 6, has
χ2/Ndof = 44.0/(57− 8) = 0.90.

This is clearly a very successful description of the lattice
QCD energy levels – the fact that this reduced χ2 (and
that of many other successful descriptions) is slightly
below 1 may indicate that we have been a little too
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FIG. 6. A1 irrep spectra as described by the amplitude given
in Eq. 3. Black/blue points show the lattice QCD spectrum
of Figure 1 and orange curves and points (displaced slightly
for clarity) the result of the fitted amplitude.

conservative in our estimation of systematic error on the
energy levels. We note that the fit to 57 energy levels
shown in bold also provides a quite reasonable description
of levels at slightly higher energies, and on the L/as = 16
lattice in-flight (shown ghosted), that we conservatively
did not include in the fit.

The energy dependence of the resulting amplitude is
shown in Figure 7, where what is plotted is a quantity that
is proportional to the cross-section for various scattering
processes. Above a broad bump in ππ → ππ at low
energies caused by the tail of the σ bound-state, is a
sharp dip just below the opening of the KK threshold.
Along with a slight cusp in ππ → ππ at KK threshold,
we observe a rapid turn on of the KK channel. There is
clearly very little activity in ηη, and only tiny kinks in the
ππ and KK channels at ηη threshold. The small circles
shown alongside the energy axis indicate the 57 energy
levels used to constrain the amplitude – we note that they
densely span the entire energy region, overconstraining
the energy dependence of the t-matrix. The statistical
uncertainties on the π, K and η masses prove to have a
negligible effect on the amplitude determination.

In passing we note that the rest-frame spectrum in
the three volumes considered alone would have provided
us with only 15 energy levels. Of these only 9 are in
the coupled-channel region and only three of these have
large ηη overlap. Such limited information would have
provided minimal constraint on our parameterization and
consequently would have given us little confidence in our
final result.

Another way to present the energy dependence of
the scattering amplitudes is by plotting the magnitudes
and phases of the diagonal elements of the S-matrix 5 ,
Sii(Ecm) =

∣∣Sii(Ecm)
∣∣ e2iϕii(Ecm). The two-channel uni-

tarity constraint is such that between the KK and ηη
thresholds,

∣∣Sππ,ππ∣∣ =
∣∣SKK,KK∣∣ and this magnitude can

be associated with what is usually called the (in)elasticity,
η, while the phases ϕππ,ππ, ϕKK,KK are identified with
the channel phase-shifts, δππ, δKK . Above the ηη thresh-
old, three-channel unitarity comes into play, and such
simple identifications can no longer be made, although
the relatively weak coupling to the ηη channel suggests
that a decoupled “2 + 1” channel (coupled ππ,KK plus
decoupled ηη) description might be a reasonable approxi-
mation.

A time-honored illustration of the ‘elastic’ part of the
scattering matrix is provided by the Argand diagram,
which is shown for ππ → ππ in Figure 9. Starting at ππ
threshold, the amplitude initially moves rapidly clockwise
along the unitarity circle under the influence of the σ
bound-state, before doubling back and more slowly pass-
ing though the point tππ,ππ = 0 corresponding to the dip

in Figure 7. Shortly after this, upon reaching the KK
threshold, the amplitude moves inside the unitarity circle

5 S = 1 + 2i
√
ρ · t ·√ρ
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FIG. 7. The S-wave scattering amplitude expressed as e.g. ρ2
ππ

∣∣tππ,ππ∣∣2(red), for the amplitude given by Eq. 3. The bands
indicate the uncertainty obtained by propagating through the calculation the correlated uncertainties on the energy levels
presented in Figure 1. The thresholds for ππ, KK and ηη are indicated by the circles on the energy axis, and the discrete
energy levels used to constrain the amplitude are displayed by the small dots appearing under the energy axis, with blue dots
indicating those levels having large overlap onto ηη-like operators.
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FIG. 8. Phases and magnitudes of diagonal elements of the
S-matrix, Sii(Ecm) =

∣∣Sii(Ecm)
∣∣ e2iϕii(Ecm), for the amplitude

given by Eq. 3.

as probability is lost from ππ into the KK channel. The
opening of the ηη channel is marked by only a small kink
in the curve.

Examining Figures 7, 8, 9, it is clear that we are dealing
with a rather non-trivial scattering system whose resonant
content cannot immediately be inferred. Certainly the am-

-0.5 0.5

0.5

FIG. 9. Argand diagram representation of the tππ,ππ element
of the amplitude given by Eq. 3. Points are spaced evenly in
energy with at∆Ecm = 0.005. The amplitude initially moves
clockwise from ππ threshold (open circles) before doubling
back upon itself (closed circles).
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plitude looks nothing like the traditional view of a simple
resonance appearing as a clearly defined bump on a slowly
varying background. However, it is important to note
that by fully respecting unitarity, significant constraints
have been placed on the possible energy dependence of
the amplitude, particularly in the elastic region – this,
coupled with the presence of the σ bound-state, could
cause the appearance of a resonance to be significantly
distorted with respect to our näıve intuition.

A rigorous definition of the resonant content of a scat-
tering system will come from examining the t-matrix at
complex values of s where pole singularities will appear if
the system contains resonances. We will explore the pole
content in a later section, but at this stage it is worth
noting that the sharp dip in ππ nd rapid turn on of KK
intensity suggests there may be a singularity in the vicin-
ity of the KK threshold. We also note in passing that
although the σ at this quark mass appears as a bound-
state rather than the broad resonance seen in experiment,
the energy dependence observed in Figure 7 is not dissimi-
lar to that extracted from pion beam experiments [3–5, 7]
as shown in, for example, Fig. 1 of Ref. [71].

1. Varying the amplitude parameterization

In the previous section we discussed one particular
K-matrix amplitude parameterization that successfully
described the lattice QCD spectra of Figure 1. We have
explored a wide variety of parameterizations, and in this
section we will report on the variation observed in the
resulting amplitudes. For clarity of presentation we have
selected an illustrative set of 20 parameterizations (in-
cluding the one presented in the previous section), all
of which have χ2/Ndof below 1.05, and which show no
excessive parameter correlation6. Many other parameter-
izations were found to successfully describe the lattice
QCD spectra with behavior compatible with one or more
of the 20 shown here7.

Figure 10 shows the variation in central values for 19
parameterizations along with the reference amplitude
described in the previous section, and what is clear is
that the elastic region behavior, including the position
of the dip, shows very little variation, and neither does
the behavior of amplitudes in the region between the KK
threshold and the ηη threshold. The bulk of variation
under change of amplitude form lies at and above the ηη
threshold, and is ultimately associated with how strongly
the fit allows the ηη channel to couple into the strongly
coupled ππ, KK system. The variation is, however, only

6 we also reject any amplitude which we find to feature a nearby
off-axis pole singularity on the physical sheet – such behavior is
acausal and reflects the lack of explicit analyticity constraints on
our K-matrix amplitudes.

7 Details of the 20 fits presented here are provided in Supplemental
Material.
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FIG. 10. Thick lines and bands show the amplitude previously
plotted in Figure 7. Thinner lines show the central value of am-
plitudes from 19 further parameterizations which successfully
describe the lattice QCD spectra.

modest, with the qualitative behavior of the amplitudes
being the same for all these successful fits, and in particu-
lar the rapid energy dependence around the KK threshold
is rather well pinned down.

As discussed in Section II, the in-flight A1 irreps used
to constrain the amplitudes do receive contributions from
` = 2 amplitudes, although we expect these to be signifi-
cantly suppressed at these low energies by the centrifugal
barrier. We have explicitly estimated their effect by in-
cluding in our fits the ` = 2 amplitudes which successfully
describe the spectra presented in Figure 3, to be discussed
in the next section. When these amplitudes were included
in Eq. 1 no significant change in the S-wave amplitudes
was observed and we conclude that D-wave amplitudes
play a negligible role in determining the spectra presented
in Figure 1.

One of the amplitudes included in our illustrative set
of 20 includes an Adler zero, implemented by multiplying
a parameterization of K(s) by a factor (s − sA) with
the position of the zero set at the value suggested by
leading-order chiral perturbation theory, sA = 1

2m
2
π. The

resulting fitted amplitude does not show any noteworthy
differences with respect to the others considered. We
explored the dependence on the position of the zero, by
varying sA in the region from −5m2

π up to 3
2m

2
π, allowing

the other parameters in the amplitude to float freely. We
observed that the χ2 was largely insensitive to the posi-
tion of the zero, with a very slight preference for large
negative values (where its presence becomes of decreasing
importance). The appearance of the amplitudes hardly
varies under change in sA, and the pole singularity con-
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tent of the amplitudes (to be discussed in Section IV)
is similarly insensitive. We conclude that an Adler zero
is not an important feature of the S-wave t-matrix at
mπ ∼ 391 MeV.

C. Coupled D-wave ππ, KK , ηη scattering

The lattice QCD energy levels we obtained in irreps
[000]E+, [000]T+

2 , [100]B1, and [100]B2 have ` = 2
scattering as their lowest subduced contribution. We
have attempted to describe the 34 energy levels shown in
bold in Figure 3, assuming three-channel scattering, ππ,
KK, ηη, and ignoring contributions from ` ≥ 4. We note
that only four levels have significant overlap with ηη-like
operator constructions, which suggests that we will have
only limited constraint on the ηη sector. However, the
proximity of these four levels to the corresponding non-
interacting ηη levels suggests that the channel may well
be only weakly interacting, and that solutions in which
ηη is largely decoupled from ππ,KK may be successful.

In Figure 3 we observe the opening of the ηη′ chan-
nel within the energy region under consideration. We
considered the difference in the spectrum extracted in-
cluding and not including ηη′ operators (with minimal
allowed momentum) and observed no statistically signifi-
cant change, beyond addition of poorly determined energy
levels at higher energies. We will neglect the effect of this
channel.

In Figure 3 we also see that a three-hadron channel,
ηππ, and a four-hadron channel, ππππ, open in the energy
region being considered. We did not include any operators
resembling these channels when we computed the correla-
tion matrices. A complete formalism for relating finite-
volume spectra to amplitudes including three-hadron and
higher multiplicity scattering does not yet exist, but
progress in that direction is being made [38–43]. We do
have reason to believe that these channels will not have
a significant impact at the energies we are considering.
Experimentally, in virtually all three-hadron and higher
multiplicity processes, the final state is dominated by the
parts of the phase-space where two (or more) hadrons
resonate through an isobar. In this case, the lowest-lying
contributing isobar systems for ηππ with J = 2 would
be a2π and f2π, and in [37], the a2 decaying to πη was
found with a mass atm ∼ 0.26. Later in this paper we
will find the lightest f2 resonance at a similar mass. Thus
the energies at which we might expect ηππ to become
a considerable influence to be above atEcm ∼ 0.33. A
possible contribution from the isobar process ρρ in ππππ
would be expected above atEcm ∼ 0.30, and this in part
motivates our decision not to consider in this first analysis
any levels above atEcm ∼ 0.30.

As was discussed in Section II, spectra and overlaps
suggest there may be two narrow enhancements near
atEcm = 0.26, 0.28, and an efficient way to allow for two
narrow resonances within a multichannel K-matrix is to
use a parameterization which includes two real poles.

0.10

 0.15

0.20

 0.25

0.30

 16  20  24  16  20  24  16  20  24  16  20  24

FIG. 11. Spectra in irreps with ` = 2 as lowest subduced
partial wave, as described by the amplitude given in Eq. 4.
Black/blue points show the lattice QCD spectrum of Figure 3
and orange curves and points (displaced slightly for clarity)
the result of the fitted amplitude. Dashed lines indicate the
position of non-interacting meson-meson levels corresponding
to operators that were not included in the variational basis.

When ‘dressed’ by the phase-space, real poles in the
K-matrix with relatively small residues can give rise to an
amplitude which resembles a Flatté form8. An illustrative
example of a parameterization of the type given by Eqn. 2,
which proves to be successful in describing the spectra in
Figure 3 is provided by

Kij(s) =
g

(1)
i g

(1)
j

m2
1 − s

+
g

(2)
i g

(2)
j

m2
2 − s

+ γij ,

γ =

0 0 0
0 0 0
0 0 γηη,ηη

 , (4)

where in addition no real part is included in I (conven-
tional phase-space). This amplitude features 9 real pa-
rameters: a mass and three channel couplings for each
real pole plus a constant to allow for some gentle ηη en-
ergy dependence. This form allows the ηη channel to
decouple if the fit selects small values for the relevant pole

couplings (g
(1,2)
ηη ).

The description of the lattice QCD spectra provided by
this amplitude, with a χ2/Ndof = 28.9/(34 − 9) = 1.15,

8 In the context of an effective field theory, the real K-matrix pole
positions can be related to the bare masses of auxiliary fields
associated with the resonances in the limit that these do not
couple to scattering states. The coupling to asymptotic states
dresses the auxiliary fields masses, giving them an imaginary
component.
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FIG. 12. The D-wave scattering amplitude of Eq. 4 plotted as in Figure 7.
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FIG. 13. Argand diagram representation of the tππ,ππ (left) and tKK,KK (right) elements of the D-wave scattering amplitude
given by Eq. 4. Points are spaced evenly in energy with at∆Ecm = 0.005.

is shown in Figure 11. The description of the input
spectrum is seen to be good, and furthermore the fit
makes predictions for states which agree rather well with
computed levels that were conservatively not included in
the fit (ghosted in the figure).

Figure 12 shows the energy dependence of the resulting
amplitudes, where we clearly observe significant enhance-
ment in ππ slightly above atEcm = 0.26 and in KK
slightly above atEcm = 0.28. Essentially no activity is
seen in ηη as one would expect given the proximity of

the relevant energy levels to the non-interacting ηη ener-
gies. The behavior observed in the ππ,KK sector would
appear to be that of two narrow resonances, the lighter
decaying strongly to ππ and more weakly to KK and the
heavier likely decaying mainly to KK.

We note in passing the inactivity of the various com-
ponents of the ` = 2 amplitude in the kinematic region
where the ` = 0 were predominantly constrained in the
previous section, namely energies satisfying atEcm < 0.24.
This explains why the contamination from the ` = 2 par-
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tial wave into the A1 irreps played a negligible role in the
analysis of the spectrum.

It is interesting to examine the Argand diagrams for
ππ → ππ and KK → KK for this t-matrix – they are
presented in Figure 13. The lower-energy bump has what
appears to be a canonical resonance behavior in ππ → ππ,
with the amplitude going counterclockwise through the
vertical at atEcm = 0.264 and where the curve lying inside
the unitarity circle is indicative of a loss of probability
into the KK final state. The lower bump is visible in
KK → KK as a strong kink at atEcm = 0.264, and above
this energy the amplitude goes back onto the unitarity
circle, suggesting an approximate decoupling from ππ
at these energies. Another canonical resonance behavior
near atEcm = 0.284 corresponding to the higher energy
bump is present in KK → KK.

Ultimately a rigorous approach to the resonance content
and their relative decay strengths to open channels will
come through consideration of the pole singularities of
the t-matrix – this will be discussed in Section IV B.

1. Varying the amplitude parameterization

The parameterization of Eq. 4 successfully describes
the finite-volume spectra shown in Figure 3 in terms of
two narrow bump structures. We find that only ampli-
tudes featuring two such bumps are able to describe the
spectrum, and in this section we present the result of
considering a broader set of parameterizations, retain-
ing two real poles in K, but adjusting some features:
whether we allow the poles to couple to ηη, the form
of the quantity added to the poles, and the nature of I
(Chew-Mandelstam versus naive phase-space). In total 16
amplitudes are presented, all of which have χ2/Ndof < 1.2,
and which do not feature overly large parameter correla-
tions – the resulting amplitudes are shown in Figure 14.
There is clearly very little variation under changes in the
parameterization. We do observe a slight variation in the
magnitude of the ‘shoulder’ in ππ → ππ at atEcm ∼ 0.28
and in the strength of ππ → ππ above the energy region
where we have constrained the amplitudes (atEcm > 0.30).
One particular amplitude parameterization finds a some-
what larger ηη → KK component (the lone green line
in the lower pane), but this behavior begins outside the
energy region where we have constrained the amplitudes.

In summary it appears that the ππ, KK sector is rather
well determined, in particular the position of the ‘bumps’.
The ηη channel is less well constrained, but there are very
strong hints that it is largely decoupled. In Section IV B
we will examine the pole singularity content of these
amplitudes and propose a resonance interpretation.
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FIG. 14. Thick lines and bands show the amplitude previ-
ously plotted in Figure 12. Thinner lines show the central
value of amplitudes from 15 further parameterizations which
successfully describe the lattice QCD spectra.

IV. RESONANCE POLES

The partial-wave amplitudes we have determined, like
those extracted from experimental measurements, are
evaluated at real values of the scattering energy, but an
understanding of features of these amplitudes, such as
peaks and cusps, comes from considering their singularity
structure in the complex s-plane. As well as the branch
points required by unitarity at the opening of each new
channel, amplitudes can have pole singularities that we
may identify with bound-states (if they lie on the real
axis below threshold) and resonances (if they lie off the
real axis). In the region of a pole singularity at s = s0,
the elements of the t-matrix behave like

tij(s) ∼
ci cj
s0 − s

, (5)

and the real and imaginary parts of the pole position are
often identified with the mass and width of a resonance as√
s0 = mR ± i

2ΓR. The residue at the pole can be factor-
ized into complex-valued couplings, ci, which indicate how
strongly the resonance couples to scattering channels.

The presence of branch cuts associated with each new
channel opening means that the complex s-plane is multi-
sheeted. In single channel scattering there are two sheets
which can be labelled by the sign of the imaginary part of
the cm-frame scattering momentum, k. Im k > 0 is called
the physical sheet, since it includes the region s = E2

cm+iε.
lying just above the real axis, where physical scattering
occurs. Moving down from the real axis into the complex
plane for any energy above threshold, we pass though the
cut onto the unphysical sheet where Im k < 0. Resonance
poles appear in complex conjugate pairs on the unphysical
sheet, but usually only the pole in the lower half-plane is
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close to physical scattering. Complex poles cannot appear
on the physical sheet as their presence would indicate a
violation of causality.

In the case of multichannel scattering, the sheet struc-
ture becomes more complicated. For nchan channels there
is still a physical sheet on which all channel momenta have
a positive imaginary part, but there are now 2nchan − 1
unphysical sheets. We will attempt to avoid confusion
in nomenclature by labelling sheets by the sign of the
imaginary part of the momentum in the three channels,
ordered as (ππ,KK, ηη). For physical scattering between
the ππ and KK thresholds, sheet (−,+,+), which we
will also call sheet II, is the nearest sheet to the scattering
axis. Between the KK and ηη thresholds, sheet (−,−,+),
which we will also call sheet III, is closest, and above ηη
threshold, it is sheet (−,−,−) which is closest. Some
further discussion of sheet structure and pole positions
in the context of two-channel scattering can be found in
[37]. A relevant observation is that a single resonance
typically appears as a pole on several unphysical sheets
(‘mirror poles’), with shifts in position that are small if the
resonance is dominantly coupled to only one scattering
channel, but which can be large if coupled strongly to
multiple channels9.

Because the amplitudes we considered in Section III
are described by explicit analytic forms, we can continue
them to complex values of s, and search for pole sin-
gularities on all Riemann sheets. Uncertainties on the
pole positions and couplings extracted from the residues
can be estimated by propagating through the correlated
uncertainties on the fitted amplitude parameters.

A. S-wave resonances and bound-states

1. σ bound-state pole

Our discussion in Section III A concerning elastic ππ
scattering leads us to expect that there is a bound-state
pole singularity, lying below ππ threshold, that we may
associate with a stable σ meson. Indeed in all successful
descriptions of the lattice QCD spectrum, including all
those presented in Section III B, we find the amplitude
features such a pole singularity, and we observe very little
movement in its position with variation of parameteri-
zation form. A best estimate for its position, including
in the uncertainty a conservative measure of the rather
small degree of variation with parameterization form is
at
√
s0 = 0.1316(9). The main observed variation is a sys-

tematically lower mass (typically by roughly 0.0005) for
parameterizations which use the ordinary phase-space for
I rather than the Chew-Mandelstam form. The coupling
to the ππ channel, at cππ = 0.092(4), shows very little

9 an illustrative presentation of this effect in the context of the
Flatté amplitude for two-channels will be given later in Section VI.

variation under parameterization form, with the uncer-
tainty dominated by the uncertainty on the energy levels.
In multichannel fits, couplings of this state to the KK and
ηη channels can be obtained from t-matrix residues at the
pole, but the very large extrapolation below the relevant
thresholds renders these numbers largely meaningless.

This pole position and coupling differs slightly from
that presented in [44] – as discussed earlier, it follows
from fitting a set of energy levels that are not identical
to those presented in that reference. Owing to the more
cautious estimation of systematic errors in this paper, the
result above should be considered to supersede the one
in [44].

2. f0 resonance pole

In Section III B we presented suspicions that the sharp
dip in ππ → ππ and rapid turn on of KK amplitudes at
the KK threshold might be due to a nearby resonance –
this can be tested by analytically continuing the t-matrix
into the complex plane, and searching for poles on all
Riemann sheets. The consistent result of doing this for all
successful parameterizations is the presence of a nearby
pole on sheet II(−,+,+). This pole is partnered by a
‘mirror’ pole on sheet (−,+,−), which we expect is of
the same origin and appears at roughly the same energy
due to the small coupling to ηη. As an example, the
amplitude described in Section III B, given by Eq. 3, is
found to have poles at

II(−,+,+) at
√
s0 = 0.2136(69)− i

20.0391(128)

(−,+,−) at
√
s0 = 0.2236(44)− i

20.0318(140),

and while there are also poles found on sheets III(−,−,+)
and (−,−,−), they are rather far into the complex plane
such that they will not have a significant impact on phys-
ical scattering10.

In [37] we discussed the possible manifestation of a sheet
II pole lying near the second threshold in the scattering
amplitude for two strongly-coupled channels, which is
almost exactly the scenario we are witnessing here. There
we concluded that the scattering amplitude of the primary
channel would have an asymmetric peak near the second
threshold, which obviously differs from the ‘dip’ behavior
we see in the ππ amplitude in, for example, Fig. 7. This
dip is explained by the interference between the σ and
the f0 poles, something that was not considered in the
simple discussion presented in [37].

Figure 15 shows the variation in pole location in the
complex s-plane (upper panel) and complex kKK-plane
(lower panel) for the 20 amplitudes presented in Sec-
tion III B, where we show only the poles on sheets

10 complete summaries of the pole content of this and other ampli-
tudes can be found in Supplemental Information.
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FIG. 15. Pole singularities for the 20 S-wave amplitudes
discussed in Section III B. Color indicates Riemann sheet of
pole: sheet I(purple), II(red), III(blue), and IV(green). Thick
black points indicate the particular amplitude defined by Eq. 3.
Upper panel: complex s-plane. Lower panel: complex kKK-
plane. Contours of constant complex energy plotted in lower
panel to aid visualization of proximity of poles to physical
scattering which occurs along the positive imaginary axis below
KK threshold and along the positive real axis above the KK
threshold.

I(+,+,+), II(−,+,+), III(−,−,+) and IV(+,−,+). All
these amplitudes feature a sheet II pole at roughly the
same location, while a few also have sheet III or sheet IV
poles located further from physical scattering. A handful
have a second sheet II pole (visible in the lower panel as
the dashed points) but again these are rather distant from
physical scattering.

Focussing on the consistent sheet II pole, we may de-
termine couplings to the ππ, KK and ηη channels by fac-
torizing the residues of t(s) at the complex pole position.
The result of doing so is plotted in Figure 16, where we
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-0.1  0.1  0.2

FIG. 16. Couplings for the 20 S-wave amplitudes discussed
in Section III B from factorized residues at the sheet II pole.
Thick black points indicate the particular amplitude defined
by Eq. 3.

observe ππ and KK couplings of comparable magnitudes,
and a coupling to ηη that is somewhat smaller, albeit
with some scatter under changes in parameterization.

3. The KK threshold region

The f0 resonance pole described in the previous section
dominates the amplitude in the energy region around the
KK threshold, and in this region, the effect of the distant
σ bound-state is limited to providing a smoothly varying
‘background’. Given this, it is worthwhile to attempt
to describe just that part of the spectrum lying above
atEcm = 0.17 using amplitudes that need not lead to
an explicit σ bound-state pole. In Figure 17 we show 9
parameterizations which describe 41 levels in the energy
region 0.17 < atEcm < 0.24, all with χ2/Ndof < 1.05. As
in the previous section we note that the degree of coupling
of the ππ,KK sector to the ηη sector is somewhat impre-
cisely determined, but that otherwise there is very little
variation in amplitude with change in parameterization.
There is again always a sheet II pole, but we note that
it is systematically at a slightly lower mass than in the
previous section. We observe there to be somewhat less
scatter in the ππ and KK couplings, which show a small
systematic shift in phase with respect to the previous
section, but which have very similar magnitudes.

Note that some, but not all, of these amplitudes do
feature a bound-state pole in roughly the position of the
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FIG. 17. Amplitudes describing the lattice QCD spectrum
in the energy region 0.17 < atEcm < 0.24. Top panel: Am-
plitudes. Middle panel: Sheet II pole position for these am-
plitudes. Bottom panel: Couplings of sheet II pole. Shown
for comparison the amplitude described by Eq. 3 (top panel
– curve with error bands, middle and bottom panels – black
points)

σ, but that this pole position is not precisely determined
due to the energy levels below atEcm = 0.17 not being
included in the fit. In those amplitudes which do not
feature a bound-state pole, the effect of the σ is being
handled by smooth energy dependences that we might
think of as ‘background’.

4. Controlling resonant pole content with Jost functions

As presented in the previous two sections, it appears
that the lattice QCD spectra are best described by am-
plitudes which feature a sheet II pole lying close to the
KK threshold (as well as a bound-state σ pole at much
lower energy), and if they feature poles on sheet III these
are distant from physical scattering. This was all deter-
mined ‘after-the-fact’, as the K-matrix forms used do
not provide explicit control over the distribution of pole
singularities. The position of the poles follows from a
potentially complicated interplay of parameter values that
is only determined once the fit is complete. On the other
hand, Jost functions [72–75] offer a parameterization of
coupled-channel scattering in which the position of res-
onance poles in the multi-sheeted complex plane can be
specified explicitly. We previously made use of such forms
to describe two-channel πη,KK scattering in [37], and
indeed their implementation is much simplified for two-
channel scattering, compared to three-channel scattering.
Since we have found in previous sections that ηη appears
to be weakly coupled, we choose to eliminate it here by
excluding those levels identified previously as having large
overlap onto ηη operators (those colored blue in Figure 1).
Furthermore, we avoid the complication of simultaneously
describing the σ and the f0 by restricting our attention
to those levels in the energy region, 0.17 < atEcm < 0.24,
around the KK threshold. We choose to make use of a
conservative set of 30 levels.

Before launching into a Jost function analysis, we
first check that two-channel K-matrix analysis can suc-
cessfully describe the spectrum with “ηη” levels ex-
cluded. As an example, we find that a parameterization
with symmetric K−1 having independent linear behavior
(a+ bs) in each element is able to describe the spectrum
with χ2/Ndof = 26.8/(30− 6) = 1.12. This amplitude is
shown in Figure 18 where it is seen to closely resemble
the ππ,KK part of previous successful three-channel fits.
This suggests that it is indeed reasonable to consider ηη
to be decoupled.

The two-channel S-matrix is expressed in terms of the
Jost determinant function J by

S11 =
J(−k1, k2)

J(k1, k2)
, S22 =

J(k1,−k2)

J(k1, k2)
, det S =

J(−k1,−k2)

J(k1, k2)
.

where k1 and k2 are the first and second channel cm-
frame momenta (k1 = kππ, k2 = kKK in the current
application). It is convenient to write this as a function
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of a single kinematic variable ω, defined by

ω =
k1 + k2√
k2

1 − k2
2

, (6)

as then the S-matrix elements can be expressed as

S11 =
D(−ω−1)

D(ω)
, S22 =

D(ω−1)

D(ω)
, det S =

D(−ω)

D(ω)
. (7)

A convenient parameterization of D(ω), similar to that
used in [76], features a product of zeroes, giving rise to S-
matrix poles, multiplied by a smooth background function
to describe the tail of the σ bound-state,

D(ω) = exp

(
nb∑
b=1

γb ω
b

)
1

ω2

np∏
p=1

(
1− ω

ωp

)(
1 +

ω

ω∗p

)
.

(8)
A constant term γ0 does not appear since it cancels in the
ratios in Eq. 7. The real-analytic nature of the S-matrix
implies that D(ω) = D?(−ω?), which fixes Re(γbodd) = 0
and Im(γbeven) = 0. This form does not contain any
additional singularities in the energy region around KK
threshold beyond the poles whose positions are specified
by the values of the complex parameters ωp.

The results of previous sections lead us to believe that
a parameterization with just a single pole may be ca-
pable of describing the spectra in the limited energy
region around the KK threshold. An implementation
of Eq. 8 featuring one pole and with three terms in
the background polynomial describes the spectrum with
χ2/Ndof = 28.8/(30− 5) = 1.15. Figure 18 shows the re-
sulting amplitude which is quite similar to those we have
previously seen. The position of the pole is allowed to
float in the fit, and ends up in the expected position on
sheet II, as shown in Figure 19.

Attempting a description using Eq. 8 with two
poles and two terms in the exponentiated background
polynomial, we find the spectrum is described with
χ2/Ndof = 29.4/(30− 6) = 1.23. Having allowed both
pole positions to float in the fit, we find one ends up
in the expected position on sheet II, while the other is
poorly determined and appears to be distant on sheet III.
The amplitude is plotted in Figure 18 and the poles are
shown in Figure 19.

As in our previous three-channel analysis, we observe
that restricting the energy region under consideration to
be around the KK threshold, discarding energy levels at
lower energy, tends to cause the sheet II pole to move to
a slightly lower mass.

In Appendix A we consider what happens if we force the
amplitude to feature a sheet III pole as well as the sheet II
pole demanded by the spectrum. As we move the sheet III
pole close to physical scattering, the amplitude comes to
have a rapid energy dependence which is not supported by
the lattice QCD spectra, leading to an unacceptably large
χ2. For a more distant sheet III pole, the background
part of the amplitude parameterization is able to largely
compensate, and the χ2 remains acceptable.
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FIG. 18. Two-channel (ππ,KK) amplitudes using K-matrix
and Jost-style parameterizations as is described in the text.
The fits shown were obtained by requiring a description of
energy levels in the region 0.17 < atEcm < 0.24 excluding “ηη”
levels.
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FIG. 19. Poles of two-channel (ππ,KK) amplitudes de-
scribed in the text describing energy levels in the region
0.17 < atEcm < 0.24 excluding “ηη” levels. Black point shows
the pole of the three-channel amplitude described by Eq. 3.
Gray point shows the pole from a typical amplitude taken from
Section IV A 3 where three-channel amplitudes described all
levels in the region 0.17 < atEcm < 0.24. Remaining colored
points correspond to the amplitudes described in the text and
plotted in Figure 18
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5. S-wave resonance pole summary

All successful descriptions of the lattice QCD spectra
either over a large energy region, or restricted to the
region around the KK threshold, feature a pole on sheet
II(−,+,+) at roughly the same position. This pole is
found to have large couplings to both ππ and KK. A
mirror pole on sheet (−,+,−) is also present. The lattice
QCD spectra can tolerate in addition a fairly distant pole
on sheet III(−,−,+), but if present it does not appear to
be a dominant feature in the amplitude.

Our best estimate for the properties of the sheet II pole
are

at
√
s0 = 0.2060(80)− i

20.032(12)

at|cππ| = 0.125(25)

at|cKK | = 0.150(20)

at|cηη| = 0.090(35), (9)

where the quoted uncertainties take into account the
variation over parameterization presented in this section.

B. D-wave resonances

The pole content of the D-wave amplitude can be
guessed quite easily from the energy dependence displayed
in Figure 14. In order to have such sharp peaks, there
must be pole singularities on nearby sheets, and above all
three thresholds (ππ, KK and ηη), the nearest unphysical
sheet is (−,−,−). Hence we would expect there to be two
poles on this sheet, with the one having lower mass being
somewhat further from the real axis, correlated with the
larger width of the lower peak.

Indeed, when we examine the pole content of the am-
plitude described in Section III C, presented in Eq. 4, we
find two poles on sheet (−,−,−). As shown in Figure 20,
these poles (shown in orange) have ‘mirrors’ on other un-
physical sheets. The lower mass pole, which dominantly
couples to ππ, and which we will label “ f a2 ”, has mir-
rors on sheet II and sheet III (not visible in the plot as it
lies almost exactly underneath the (−,−,−) pole). The
higher mass pole, which couples dominantly to KK, and
which we will label “ fb2 ”, has mirrors on sheet IV and
sheet III (not visible in the plot as it lies almost exactly
underneath the (−,−,−) pole). The mirror poles lie at
almost the same position owing to the relatively small
couplings to sub-dominant channels.

Focussing on the (−,−,−) poles, since these are the
closest to physical scattering, we show the variation with
parameterization presented in Section III C in Figure 21,
which we observe to be extremely small. Figure 22 shows
the couplings extracted from the residues of poles on the
(−,−,−) sheet. Again, the variation with parameteriza-
tion change is extremely small, and in all cases the ηη
coupling is compatible with zero. As one would expect
from Figure 14, the ππ coupling dominates for f a2 , and
the KK coupling dominates for fb2 .
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FIG. 20. Pole singularities for the D-wave amplitude of Eq. 4.
As well as the sheets shown, there are also poles on sheet
III(−,−,+) lying at almost exactly the same position as the
sheet (−,−,−) poles.
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FIG. 21. Variation of D-wave sheet (−,−,−) poles with
amplitude parameterization as described in Section III C.
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FIG. 22. Couplings from factorized pole residues for two sheet
(−,−,−) poles, f a

2 , fb
2 . Black points show couplings for the

amplitude of Eq. 4, others show the variation with change in
parameterization described in Section III C.
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Our best estimates for the properties of the two poles
on sheet (−,−,−) are

f a2 : at
√
s0 = 0.2596(26)− i

20.0282(32)

at
∣∣cππ∣∣ = 0.086(5), at

∣∣cKK∣∣ = 0.036(7),

fb2 : at
√
s0 = 0.2829(17)− i

20.0095(25)

at
∣∣cππ∣∣ = 0.016(5), at

∣∣cKK∣∣ = 0.058(9),

where the uncertainties include the small variation with
parameterization form described above.

V. INTERPRETATION

As in previous publications [34, 35, 37, 44, 54, 55, 59,
60], we opt to set the lattice scale using the Ω baryon
mass computed on these lattices, setting it equal to
the experimentally measured mass [21], which yields
a−1
t ∼ 5.66 GeV. With this scale-setting the stable π,K, η

masses are approximately 391, 549, 587 MeV respectively.
In previous sections we have described a study of cou-

pled ππ,KK, ηη scattering with isospin=0 (G-parity pos-
itive). With JP = 0+ we found two singularities are
required: a bound-state σ pole appearing on the physical
sheet at

√
s0 = 745(5) MeV with a coupling to the ππ

channel of |cππ| = 521(23) MeV, and a resonance f0 pole
on sheet II at

√
s0 = 1166(45)− i

2 181(68) MeV, with cou-
plings |cππ| = 710(140) MeV, and |cKK | = 850(110) MeV.

The σ dominates low-energy ππ elastic scattering, giv-
ing rise to an S-wave scattering length of mπ a = −2.8(3).
As reported on in [44], as the light quark mass is reduced,
this meson evolves from being a stable bound-state into
a broad resonance.

The f0 resonance, lying in the KK threshold region,
has not previously been observed in a first-principles QCD
calculation. It appears to share many of the properties of
the experimental f0(980) resonance, and we suggest that
what we are observing may well represent the evolution
of this meson as the light quark mass increases.

The absence of a nearby sheet III mirror to the f0

sheet II pole appears to support a longstanding suggestion
that the f0 resonance may be dominated by KK-molecule
configurations (see for example Refs. [11, 76, 77]). The
logic is that a KK molecular state bound by long-range
inter-meson forces would be a stable bound-state lying just
below the KK threshold were it not for the kinematically
open ππ channel into which it decays. The presence of
such a decay moves the pole off the real energy axis into
sheet II. This is to be compared to a compact state bound
by confining interquark forces (whether qq̄ or tetraquark or
an even higher quark-gluon Fock state), which is expected
to manifest itself as ‘mirror’ poles on both of sheets II and
III.

Presently, the absence of a formalism describing scatter-
ing of more than two hadrons prevents us from consider-
ing higher-mass scalar meson resonances. Experimentally,

these are seen to have dominant decays to four-meson final
states. Fortunately, the formalism has been under rapid
development [38–43], and it is hoped that a final result
for at least three-body decays will be available shortly.

With JP = 2+ we isolated the presence of two narrow
resonances lying well above the ππ, KK and ηη thresholds,
but with negligible couplings to the ηη channel. Because
they lie significantly above thresholds, it makes sense to
speak of ‘branching fractions’ for their decay. We compute
these using the approach outlined by the PDG [21], where
the real and imaginary parts of the pole position, and
the couplings extracted from the factorized residue at the
pole are used in

Br(R→ i) =
1

ΓR
· |ci|

2

mR
ρi(m

2
R).

We note in passing that this approach does not guarantee
that the sum of branching fractions add up to 100%. Our
two determined resonances have the following properties:

f a2 :
√
s0 = 1470(15)− i

2 160(18) MeV

Br(f a2 → ππ) ∼ 85%, Br(f a2 → KK) ∼ 12% ,

fb2 :
√
s0 = 1602(10)− i

2 54(14) MeV

Br(fb2 → ππ) ∼ 8%, Br(fb2 → KK) ∼ 92% .

These resonances, computed with heavier than physical
light quarks, may be compared to the experimental res-
onances, f2(1270) and f ′2(1525) [21]. The experimental
f2(1270) has a total width ∼ 190 MeV and decays 84%
of the time to ππ and only 5% to KK. The f ′2(1525) is
narrower, Γ ∼ 80 MeV, and decays to KK with a 90%
branch, and to ππ less than 1% of the time.

These states are often considered to be exemplars of the
phenomenological ‘OZI’ rule of meson decays, which posits
that decays proceeding through annihilation of existing
quark-antiquark content are suppressed with respect to
decays in which extra quarks are generated. In this case
this would suggest that f2(1270) ∼ 1√

2

(
uū + dd̄

)
with

the decays to ππ and KK being ‘OZI-allowed’ through
creation of extra light or strange quark-antiquark pairs
respectively 11 , while f ′2(1525) ∼ ss̄ will decay only to
KK through creation of extra light quark-antiquark pairs,
with ππ requiring the initial ss̄ to annihilate – an ‘OZI-
suppressed’ decay. This logic can be turned around and
used to infer a resonance’s quark content on the basis of
its preferred hadronic decays.

It is interesting to observe that the results of our calcu-
lation (at mπ = 391 MeV) appear to support this picture
with the f a2 having a decay pattern like the f2(1270),

11 with KK suppressed with respect to ππ by the reduced
phase-space and additionally possibly a dynamical penalty for
pair-producing heavier ss̄ quarks.
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FIG. 23. Coupled ππ,KK amplitudes obtained using Eq. 3 for the scalar (left) and Eq. 4 for the tensor (right) sectors. In both
cases, the ηη channels are approximately decoupled. Also shown are the pole singularities, with uncertainties which include the
variation under amplitude parameterization presented in Sections III B, III C. The ratio of couplings to KK,ππ for the f0 is
presented, as are estimates of the branching fractions for the f2 resonances, as described in the text.

while the fb2 closely resembles the f ′2(1525). A somewhat
non-rigorous suggestion for the quark-antiquark content
of these two states can be obtained by examining the
overlaps presented in Figure 4, in particular the 163 spec-
trum in the T+

2 irrep, where two finite-volume states
are observed, far from any non-interacting energy levels,
but close to the resonance masses for f a2 and fb2 . The
lighter of the two is seen to have large overlap onto q̄Γq
operator constructions built from light-quarks, while the
heavier state dominantly overlaps with those made from
strange-quarks.

We note in passing that the presence of two narrow
JP = 2+ resonances with this quark content was antic-
ipated in the simpler calculation of the isoscalar meson
spectrum presented in [56], where no meson-meson-like
operators where included. Some discussion of the justifi-
cation for expecting the results presented in [56] to be a
reasonable guide to the narrow resonance content of QCD
is presented in [66].

Experimentally, the f2(1270) is observed to have negli-
gible coupling to ηη, and only a ∼ 10% branch to ππππ,
which is not kinematically open at mπ = 391 MeV. The
f ′2(1525) has a ∼ 10% branch to ηη – this small but sig-
nificant coupling does not appear to be present at the
heavier light quark mass considered in this paper, despite
the phase-space for the decay being quite similar to the
experimental case.

A plausible method to more rigorously study the in-
ternal quark-gluon structure of resonance states of the
type we have considered here is to compute their form-
factors, by coupling external currents into meson-meson
scattering amplitudes. The possibility of studying form-
factors of unstable states from lattice QCD was recently
reviewed in [66], building on ideas first presented by Lel-

louch and Lüscher [78] for the process K → ππ. The
‘elastic’ form-factors of resonant states could be extracted
from amplitudes computed at real energies, by extrapo-
lating to the complex pole positions [79, 80]. Exploiting
the flexibility of lattice QCD calculation, one could study
flavor– and spin–dependence of these form factors, for
example by introducing s̄Γs and ūΓu+ d̄Γd currents sepa-
rately, for various choices of Γ. The distillation technology
for such calculations has already been developed [57], and
the first nontrivial test has been carried out in the res-
onant πγ → ππ amplitude [58, 59] using the formalism
first presented in [81] for transition processes.

Fig. 23 presents a summary of the main results of the
calculation reported on in this paper. The scalar and
tensor ππ,KK amplitudes are plotted, along with the
corresponding pole structure, and determinations of the
relative strengths of coupling of the resonances to their
decay channels.

VI. THE LIGHTEST SCALAR MESONS OF
QCD AT mπ ∼ 400 MEV

With the results for isoscalar mesons presented in this
paper, taken together with the results in Refs. [34, 35, 37]
for isovector and strange mesons, we have what could con-
stitute a complete nonet of scalar (σ, f0, a0, κ) and tensor
(f2, f

′
2, a2,K

?
2 ) mesons. It is appropriate at this stage to

consider to what extent they have common properties
that justifies associating them in this manner.

In the scalar sector, the two states which appear
to be mostly closely connected are the f0 and the a0.
While their appearance in the relevant elastic amplitude
(ππ → ππ or πη → πη) is superficially rather different,
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being a sharp cusp-like peak for the a0 and a narrow dip
for the f0, both effects appear close to the KK thresh-
old, and the corresponding resonance poles are found at
positions whose real parts are in close agreement,

mR(f0) = 1166(45) MeV, ΓR(f0) = 181(68) MeV,

mR(a0) = 1177(27) MeV, ΓR(a0) = 49(33) MeV.

In addition, the couplings of the resonances to their decay
channels agree within statistical uncertainties,∣∣c(a0 → KK)

∣∣ ≈ ∣∣c(f0 → KK)
∣∣ ∼ 850 MeV∣∣c(a0 → πη)

∣∣ ≈ ∣∣c(f0 → ππ)
∣∣ ∼ 700 MeV. (10)

Because isospin is an exact symmetry in our calculations,
and the effects of electromagnetism are not included, there
can be no mixing between the a0 and the f0.

Where the pole singularities differ is in their sheet
location and distance into the complex plane. The single

relevant pole for the a0 is located close to the real axis
on sheet IV (where Im kπη > 0, Im kKK̄ < 0) while the
f0 pole lies further into the complex plane on sheet II
(Im kππ < 0, Im kKK̄ > 0). Considering the similarities in
mass and couplings for the f0 and a0 this difference might
be considered surprising, but it likely has a relatively
simple explanation arising from the only major difference
between these two cases: the amount of phase-space for
the resonance to decay to the lowest threshold channel,
where we have ρππ > ρπη. We can illustrate the effect
this has using the simple example of a two-channel Flatté
amplitude, in which all elements of the t-matrix have a
denominator,

D(s) = m2
0 − s− ig2

1 ρ1(s)− ig2
2 ρ2(s),

where g1, g2 are real valued couplings to channels labelled
1, 2. In the case of a resonance having a relatively small
width, the Flatté amplitude has pole singularities at

√
s0 ≈ m0 ±

i

2

g2
2 ρ2

m0

[(
g1

g2

)2
ρ1

ρ2
− 1

]
on sheet II, if

(
g1

g2

)2
ρ1

ρ2
> 1, or,

√
s0 ≈ m0 ±

i

2

g2
2 ρ2

m0

[
1−

(
g1

g2

)2
ρ1

ρ2

]
on sheet IV, if

(
g1

g2

)2
ρ1

ρ2
< 1, and,

√
s0 ≈ m0 ±

i

2

g2
2 ρ2

m0

[
1 +

(
g1

g2

)2
ρ1

ρ2

]
on sheet III, in all cases,

where ρi is the phase-space for channel i evaluated at
s = m2

0. If we use the magnitudes of the couplings we
extracted from the residues of poles, as in Eq. 10, as the
values g1, g2, we have for both a0 and f0, g1/g2 ∼ 0.8.
However, due to the difference in phase-space, we have(
g1
g2

)2
ρ1
ρ2

being slightly less than unity for the a0, but

somewhat larger than unity for the f0, explaining the
difference in sheet location. In addition this analysis also
offers an explanation for the smaller total width of the
a0 as being due to the near exact cancellation between

terms in

[
1−

(
g1
g2

)2
ρ1
ρ2

]
. Within this simple model, there

is also an additional sheet III pole, but we observe that it
will be much further into the complex plane due to the

two terms summing in

[
1 +

(
g1
g2

)2
ρ1
ρ2

]
, which matches

our results which suggest that any sheet III pole lies far
into the complex plane.

As argued in the previous section, the dominance of
a single pole close to the KK threshold may suggest an
association with a KK molecular configuration. Given
the apparent parallels between the a0 and f0 resonances
above, it would appear that at this heavier-than-physical

light-quark mass, these states may have a common source,
being isovector and isoscalar manifestations of the same
KK bound system.

From the significant volume dependence of the lowest
lying state seen in Fig. 6, one might conclude that the
σ could be a physically large object, of size comparable
to the lattice volumes used [82], and therefore that it
interpreted as a molecular ππ state, rather than a com-
pact object bound by confining forces. Since the σ is
bound for these values of the quark masses, one can di-
rectly apply Weinberg’s compositeness criterion [83] to
this state. This approach relates the effective range pa-
rameters (k cot δ = a−1 + 1

2rk
2 + . . .) to the probability,

Z, of finding the σ in an elementary bare-particle state,

a = −2
1− Z
2− Z

1
√
mπε

, (11)

r = − Z

1− Z
1

√
mπε

. (12)

where ε = 2mπ − mσ is the binding energy of the σ,
and where each equation potentially receives corrections
of order of the range of the ππ interaction. If Z = 1
the σ is purely a compact state, while if Z = 0 it is
purely a ππ molecule. Using the values obtained for a



21

and r presented in Section III A, and a binding energy
determined from the σ pole mass, Eqs. 11 and 12 give
compatible estimates of Z ∼ 0.3(1). This suggest that
for quark masses where mπ = 391 MeV the σ can be
understood as being predominantly a ππ molecule.

While we have successfully determined a complete nonet
of scalar mesons with mπ = 391 MeV, it remains to be
seen how these states evolve with quark mass. To date,
the only one of these states that have been studied us-
ing different values of the quark mass is the σ, where in
Ref. [44] it was found that when the pion mass is approx-
imately 236 MeV, the σ has become a broad resonance,
resembling somewhat the experimental situation. This
is consistent with the expectation that the σ should be-
come increasingly unstable as its phase-space for decay
to ππ opens up. With this same line of logic, one might
also expect the κ pole, which at mπ = 391 MeV resides
below threshold on the unphysical sheet, to become a
complex-valued pole on the second sheet above threshold
as the pion mass is decreased. Similarly, one can expect
the phase space of the a0 and f0 resonances to the lower
channel to increase, and following the discussion above of
these poles in the context of the Flatté parametrization,
if the decay channel couplings have relatively mild quark-
mass dependence, one would expect the poles for f0 and
a0 to both come to reside on the second sheet.

It is also interesting to consider what would happen to
the scalar nonet if the light quark mass were increased.
For instance, does the κ become a real bound state below
πK threshold on the physical sheet for increasingly heavy
quarks as is expected in unitarized chiral perturbation the-
ory (UχPT) [84]? What happens if the light quark mass
is increased until it is equal to the strange quark mass,
meaning the theory has an exact SU(3) flavor symmetry?
In this limit there is no splitting between the ππ,KK, ηη
thresholds, and the scalar nonet is split into an SU(3)
octet and a singlet. The evolution of the nonet in this
limit has been previously studied using UχPT [85], where
a particular trajectory was chosen which transformed from
the physical point to the mπ = mK = mη = 300 MeV
point. A smooth evolution of the σ pole to a singlet pole
lying well below threshold was observed, while all other
(octet) states move to a common complex-value pole on
the unphysical sheet.

The lightest set of tensor mesons determined at this
value of the light-quark mass,

f a2 1470(15) − i
2160(18) MeV

a2 1505(5) − i
220(3) MeV

K?
2 1577(7) − i

266(7) MeV

fb2 1602(10) − i
254(14) MeV,

suggests a rather simple interpretation in terms of qq̄-like
states, lightly “dressed” by their meson-meson decays.

The masses and dominant decays 12 of these states suggest
a picture where f a2 ∼ 1√

2

(
uū + dd̄

)
, a2 ∼ 1√

2

(
uū − dd̄

)
,

K?
2 ∼ us̄, fb2 ∼ ss̄, with negligible flavor mixing in the

isoscalar sector. The small mass difference between f a2 and
a2, despite them being constructed from the same quarks,
can be ascribed to the small contribution of disconnected
diagrams to the f a2 where the quarks annihilate. The
larger width of the f a2 can be explained by it having
allowed decays to ππ with a large phase-space, a channel
which is not allowed for the G-parity negative isovector
a2.

VII. SUMMARY

In this paper, we present the first study with first-
principles QCD of low-energy isoscalar J = 0 and J =
2 coupled ππ,KK, ηη scattering amplitudes, and their
resonance content. This, in conjunction with our previous
works [34, 35, 37, 44], allows us to paint a complete picture
of two different low-lying SU(3) nonets at mπ ∼ 400 MeV.

The tensor mesons manifest as clear narrow bumps, and
from their decay couplings and masses, one can conclude
that they behave like a quark-model qq̄ nonet.

The scalars prove to be far richer in structure. The
f0 and a0 both appear right at KK threshold, but they
manifest themselves differently – the a0 appears as an
asymmetric peak, while the f0 appears a dip in a broad
enhancement – the source of this difference can be traced
to the interference between the f0 and the σ, and the
absence of a σ-like state in the isovector channel. Nev-
ertheless, the f0 and a0 are found to have very similar
pole properties. The σ appears as a bound state, which is
likely to be dominated by a ππ molecular configuration,
while the κ emerges as a virtual bound-state.

The calculations presented in this paper and in [34,
35, 37, 44] demonstrate that the finite-volume spectrum
approach within lattice QCD can expose non-trivial res-
onance physics that can significantly inform our under-
standing of hadron spectroscopy within QCD.
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Appendix A: Role of a sheet III pole in S-wave coupled ππ,KK scattering

Using the Jost formalism of Section IV A 4, we can explore the role played by a sheet III pole supplementing the
required sheet II pole describing coupled ππ,KK S-wave scattering. Fixing a sheet II pole at at

√
s0 = 0.1941− i

20.0389,
we have scanned over possible positions for a sheet III pole, allowing two parameters in the exponentiated background
polynomial to vary at each new position. Figure 24(a) illustrates the resulting variation in the χ2 describing the lattice
QCD spectrum, which indicates that a pole close to physical scattering is disfavored.

Figure 24(b), which focusses on the case where Re(at kKK̄) = 0.04, makes clear why a nearby sheet III pole is
problematic – it will tend to produce a rapid variation of the amplitudes on the real energy axis which the lattice
QCD spectrum is not in agreement with. When a sheet III pole is more distant however, its effect can be largely
compensated by the background function, and a reasonable χ2 attained.

We note that attempts to supplement the sheet II pole with a second pole located on sheet IV lead to very poor
descriptions of the spectra or amplitudes which violate the

∣∣Sππ,ππ∣∣ ≤ 1 unitarity bound. Our lattice QCD spectrum
is clearly incompatible with such a pole distribution.
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FIG. 24. With a fixed sheet II pole (black circle) (a) scan over possible positions of a sheet III pole, allowing the background to
adjust each time. (b) Focus on Re(at kKK̄) = 0.04, showing the resulting best-fit amplitudes at several values of Im(at kKK̄).
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