Amplitude analyses for extraction of N* parameters and JPAC effort on JLab Physics

Vincent MATHIEU

Indiana University

Joint Physics Analysis Center

N* meeting JLab - June 2017

 $A_{\lambda_{\gamma},\lambda_{N};\lambda_{N}'}(q^{2},E,\theta)$

6 functions of 3 variables

Need data and constraints

 $A_{\lambda_{\gamma},\lambda_{N};\lambda_{N}'}(q^{2},E,\theta)$

6 functions of 3 variables

Need data and constraints

Constraints from S-Matrix principles and from QCD

 $A_{\lambda_{\gamma},\lambda_{N};\lambda_{N}'}(q^{2},E,\theta)$

6 functions of 3 variables

Need data and constraints

Constraints from S-Matrix principles and from QCD cf other talks

Outline

Constraints from S-Matrix principles:

• Unitarity

implemented in analysis

• Analyticity

not implemented in analysis examples: $\gamma p \to \pi^0 p, \eta p$

• N* trajectories

Unitarity π^+ γ^* K^+ K^+ * K^+ γ TA T_{13} A_1 Λ Λ p ${\mathcal N}$ Δ π^+ π^+ * \mathbf{n} T_{11} A_1

p

 ${\mathcal N}$

 \mathcal{N}

$\gamma^{*} \underbrace{A \xrightarrow{K^{+}}}_{\Lambda} T \underbrace{A \xrightarrow{K^{+}}}_{\Lambda} \gamma^{*} \underbrace{A_{i} \xrightarrow{T_{ij}}}_{i,j} =_{N p \Lambda}^{\pi \eta K^{+}} p$

Partial wave expansion

$$T^{ij}_{\lambda;\lambda'}(s,q^2,\theta): \quad f^{ij}_{\ell\pm}(s,q^2) \qquad (s = E^2_{\rm cm})$$
$$A^i_{\lambda_{\gamma}\lambda;\lambda'}(s,q^2,\theta): \quad E^i_{\ell\pm}(s,q^2), M^i_{\ell\pm}(s,q^2), S^i_{\ell\pm}(s,q^2)$$

$\gamma^{*} \underbrace{A \xrightarrow{K^{+}}}_{\Lambda} T \underbrace{A \xrightarrow{K^{+}}}_{\Lambda} \gamma^{*} \underbrace{A_{i} \xrightarrow{T_{ij}}}_{i,j} =_{N p \Lambda}^{\pi \eta K^{+}} p$

Partial wave expansion

$$T^{ij}_{\lambda;\lambda'}(s,q^2,\theta): \quad f^{ij}_{\ell\pm}(s,q^2) \qquad (s = E^2_{\rm cm})$$
$$A^i_{\lambda_{\gamma}\lambda;\lambda'}(s,q^2,\theta): \quad E^i_{\ell\pm}(s,q^2), M^i_{\ell\pm}(s,q^2), S^i_{\ell\pm}(s,q^2)$$

Im
$$E_{\ell\pm}^{j}(s,q^2) = \sum_{i} E_{\ell\pm}^{i}(s,q^2) f_{\ell\pm}^{ji*}(s) \ \theta(s-s_i)$$

 $s_n = \text{ threshold channel n}$

Im
$$E_{\ell\pm}^{j}(s,q^2) = \sum_{i} E_{\ell\pm}^{i}(s,q^2) f_{\ell\pm}^{ji*}(s) \theta(s-s_i)$$

hadronic amplitudes as input

Im
$$E_{\ell\pm}^{j}(s,q^2) = \sum_{i} E_{\ell\pm}^{i}(s,q^2) f_{\ell\pm}^{ji*}(s) \theta(s-s_i)$$

hadronic amplitudes as input

Possible solution of unitarity

$$E_{\ell\pm}^{j}(s,q^{2}) = e_{\ell\pm}(s,q^{2})f_{\ell\pm}^{1j}(s)$$

pole positions (mass & width) do not change

Im
$$E_{\ell\pm}^{j}(s,q^2) = \sum_{i} E_{\ell\pm}^{i}(s,q^2) f_{\ell\pm}^{ji*}(s) \theta(s-s_i)$$

hadronic amplitudes as input

Possible solution of unitarity

pole positions (mass & width) do not change

$$E_{\ell\pm}^{j}(s,q^{2}) = e_{\ell\pm}(s,q^{2})f_{\ell\pm}^{1j}(s)$$
$$e_{\ell\pm}(s,q^{2}) = e_{\ell\pm}(0,q^{2}) \text{ polyn.}(s)$$

Possible solution of unitarity

pole positions (mass & width) do not change

CLAS: Present & Future

Hadronic final state	Covered	Covered Q ² -	Measured
	W-range, GeV	range, GeV ²	observables
π + n	1.1-1.38	0.16-0.36	dσ/dΩ
	1.1-1.55	0.3-0.6	dσ/dΩ
	1.1-1.7	1.7-4.5	dσ/dΩ, A _b
	1.6-2.0	1.8-4.5	dσ/dΩ
π ⁰ p	1.1-1.38	0.16-0.36	dσ/dΩ
	1.1-1.68	0.4-1.8	dσ/dΩ, A _b ,A _t ,A _{bt}
	1.1-1.39	3.0-6.0	dσ/dΩ
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ
K⁺Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ Pº, P'

Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π	Run Group conditions:
(A.	A. D'Angelo, et al.)	$E_{b} = 6.6 \text{ GeV}, 50 \text{ days}$
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables	E _b = 8.8 GeV, 50 days
	$Q^2 < 7.0 \text{ GeV}^2$ (D. Carman, et al.)	

Analyticity

$$\int_0^{\Lambda} \operatorname{Im} A_i(\nu, t) \nu^k d\nu = \beta_i(t) \frac{\Lambda^{\alpha_i(t)+k}}{\alpha_i(t)+k+1} + \dots$$

$$\nu = (s - u)/2$$

Analyticity

$$\int_0^{\Lambda} \operatorname{Im} A_i(\nu, t) \nu^k d\nu = \beta_i(t) \frac{\Lambda^{\alpha_i(t)+k}}{\alpha_i(t)+k+1} + \dots$$

 $\langle N^* \rangle \stackrel{?}{=} \langle \rho \rangle$

 $\nu = (s - u)/2$

Finite Energy Sum Rules

 $\nu = (s - u)/2$

$$\int_0^{\Lambda} \operatorname{Im} A_i(\nu, t) \nu^k d\nu = \beta_i(t) \frac{\Lambda^{\alpha_i(t)+k}}{\alpha_i(t)+k+1} + \dots$$

Can we predict the residues ?

 $S_i(t,k)$

$$\widehat{\beta}_{i}(t) = S_{i}(t,k) \frac{\alpha_{i}(t) + k + 1}{\Lambda^{\alpha_{i}(t) + k}}$$
$$= \beta_{i}(t) + \mathcal{O}(1/\Lambda)$$

VM et al (JPAC), in preparation

 $\gamma p \to \pi^0 p$

SAID (R. Workman et al) used for the low energy models

effective residues almost k-independent

Good prediction of t-dependence at high energy

VM et al (JPAC), in preparation

MAID (L. Tiator et al) used for the low energy models

effective residues not k-independent

Good prediction of t-dependence at high energy

VM et al (JPAC), in preparation

0.0

0.2

0.6

0.4

0.8

1.0

FESR as a penalty in the fit

mb.GeV²

Regge Trajectories

C. Fernàndez-Ramìrez et al (JPAC) in preparation

Indiana University

- Adam Szczepaniak Professor
- Geoffrey Fox Professor
- Emilie Passemar Professor
- Tim Londergan Professor
- Vincent Mathieu Postdoctoral researcher
- Ina Lorenz Postdoctoral researcher
- Andrew Jackura PhD student

Jefferson Lab

- Michael R. Pennington Professor
- Viktor Mokeev Professor
- Vladiszlav Pauk Postdoctoral researcher
- Alessandro Pilloni Postdoctoral researcher

George Washington University

- Ron Workman Professor
- Michael Doring Professor

Universidad Nacional Autonoma de Mexico

Cesar Fernandez-Ramirez Professor

Johannes Gutenberg University, Mainz

Igor Danilkin Postdoctoral researcher

Bonn University

· Misha Mikhasenko PhD student

University of Valencia

• Astrid Hiller Blin PhD student

Ghent University

Jannes Nys PhD student

http://www.indiana.edu/~jpac/index.html

DIANA UNIVERSITT

Resources

- Publication: [Nys16]
- C/C++ observables: C-code main, Input file, C-code source, C-code header, Eta-MAID 2001 multipoles
- C/C++ minimal script to calculate the amplitudes: C-code zip
- Data: Dewire , Braunschweig
- Contact person: Jannes Nys
- Last update: November 2016

Run the code

E_{γ} in GeV 9	٢		
 t ⊂ cos 			
$t \text{ in GeV}^2$ (min max step)	-1	0	0.01
$\cos \theta$ (min max step)	0.85	1	0.01
Start reset			

Observable: photon beam asymmetry Download the plot with Ox=t, the plot with Ox=cos.

Observable: differential cross section

Download the the plot with Ox=t, the plot with Ox=cos.

INDIANA UNIVERSITY

2017 International Summer Workshop on Reaction Theory June 12-22, 2017, Bloomington, Indiana, USA

HOME LECTURERS PROGRAM REGISTRATION VENUE ACCOMMODATION VISA INFORMATION TRANSPORTATION LOCAL INFORMATION PARTICIPANTS RESOURCES CONTACT

Lectures will be live-streamed and recorded

