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Following our previous proposal [1], we construct a class of good “lattice cross sections” (LCSs),
from which we could study partonic structure of hadrons from ab initio lattice QCD calculations.
These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other
hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the
same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted
from QCD global analysis of the lattice QCD generated data of LCSs. We also show that proposed
functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.
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Introduction — Parton distributions functions (PDFs),
interpreted as probability distributions to find an active
parton from a colliding hadron to carry x-fraction of the
parent hadron momentum, are very important nonper-
turbative quantities. They connect hadronic cross sec-
tions with a large momentum transfer to perturbatively
calculable partonic dynamics, so that we can interpret
high energy scattering data and make predictions for fu-
ture observables [2, 3]. PDFs have been extracted by
performing global analysis of high energy scattering data
in the framework of QCD factorization [4–8]. Since PDFs
are well defined in QCD, it is not only very natural, but
also critically important to ask and verify if PDFs could
be derived from the first principle calculations in lattice
QCD (LQCD). However, a direct calculation of PDFs
in LQCD is challenging due to the fact that PDFs are
defined in terms of operators with a Minkowski time de-
pendence, while LQCD calculations are done with a Eu-
clidean time.

Moments of PDFs, given by matrix elements of local
operators, can be in principle calculated in LQCD. How-
ever, in practise, calculations are limited to the lowest
three moments [9] because of power-divergent mixing be-
tween twist-2 operators. In Ref. [10], Ji introduced a set
of quasi PDFs, which are defined with the same opera-
tors defining PDFs except the active parton fields are not
located on the light-cone, but on a spatial axis (along the
z or “3”-direction) with no time separation, and could be
calculated in LQCD [11–14]. It was also suggested that
quasi-PDFs could approach to corresponding PDFs when
the hadron momentum P3 goes to infinity [10, 15, 16].
In Ref. [1], it was demonstrated that if quasi-PDFs are
multiplicatively renormalizable, they could be related to
PDFs by an all-order QCD factorization at a finite P3.
Major progress has been made in understanding the com-
plexity of ultraviolet (UV) divergences of quasi-PDFs
[17–24]. Meanwhile, various new methods have been in-
troduced to study hadron structures using LQCD cal-

culations, including the pseudo-PDFs approach [25] and
the “OPE without OPE” for calculating hadron structure
functions [26].

In Ref. [1], we proposed a factorization-based program
to extract PDFs and other parton correlation functions by
using QCD global analysis of “data” generated by LQCD
calculations of “lattice cross sections” (LCSs), which are
defined as factorizable and “time-independent” hadronic
matrix elements (defined by equal-time operators or with
the time properly integrated). More precisely, a good
LCS for extracting PDFs should have the following prop-
erties [1]:

• is calculable in LQCD with an Euclidean time,

• has a well-defined continuum limit as the lattice
spacing a→ 0, and

• has the same and factorizable logarithmic collinear
(CO) divergences as PDFs.

It is the last property that enables us to relate good LCSs
to PDFs, just like how hadronic cross sections are related
to PDFs in terms of QCD factorization.

In this paper, we further strengthen our proposal by
constructing a class of good LCSs, with which we could
build up a comprehensive program to explore the par-
tonic structure of various hadrons with many LQCD cal-
culable observables. We demonstrate that these LCSs
have the three required properties listed above for being
good LCSs. We also comment that quasi-PDFs proposed
in Ref. [10], pseudo-PDFs used in Ref. [25] and the ma-
trix element used in Ref. [26] are special cases of these
good LCSs. The proposed method of using good LCSs
could be the most general way to extract PDFs from
LQCD calculations.
Hadronic matrix elements in coordinate-space —
We consider single-hadron matrix elements of renormal-
ized nonlocal operators On(ξ),

σn(ξ2, ω, P 2) = 〈P |T{On(ξ)}|P 〉, (1)
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where the subscript n is a label for different operators, T
stands for time-ordering, P is the hadron momentum, ξ
with ξ2 6= 0 is the largest separation of all fields in the
operator On, the Lorentz scalar ω ≡ P · ξ, and renormal-
ization scale for On(ξ) is suppressed.

One choice for On(ξ) is the dimension-2 operators for
correlations of two currents with a separation ξ,

Oj1j2(ξ) ≡ ξdj1+dj2−2 Z−1
j1

Z−1
j2
j1(ξ) j2(0) , (2)

where dj and Zj are the dimension and renormalization
constant of the current j, respectively, and the overall
dimensional factor is introduced so that the matrix ele-
ments in Eq. (1) is dimensionless with our normalization,
〈P |P ′〉 = (2EP )(2π)3δ3(P − P ′). With the scalar and
vector currents, for example, we could have,

OS(ξ) = ξ4Z−2
S [ψqψq](ξ) [ψqψq](0) , (3a)

OV (ξ) = ξ2Z−2
V [ψq/ξψq](ξ) [ψq/ξψq](0) , (3b)

OṼ (ξ) = − ξ4

2
Z−2
V [ψqγνψq](ξ) [ψqγ

νψq](0) , (3c)

OV ′(ξ) = ξ2Z−2
V ′ [ψq/ξψq′ ](ξ) [ψq′/ξψq](0) , . . . , (3d)

where ξ4 ≡ (ξ2)2, q = u, d, s, · · · stands for a quark with
a definite flavor and q′ for a quark with a different flavor,
the subscripts, S, V and V ′ refers to scalar, vector and
flavor-changing vector currents, respectively, and “. . . ”
indicates for other possible combinations of two currents
including the gluonic current, e.g., jµν ∝ FµρF ρν .

Instead of the correlation of two currents, the nonlo-
cal operator in Eq. (1) could also be made of the cor-
relation of gauge dependent field operators with proper
gauge link(s), e.g.,

Oq(ξ) =Z−1
q (ξ2)ψq(ξ) /ξΦ(ξ, 0)ψq(0) , (4)

where Φ(ξ, 0) = Pe−ig
∫ 1
0
ξ·A(λξ) dλ is the path ordered

gauge link, and Zq(ξ
2) is the renormalization constant of

this operator, depending on ξ2 [23].
Besides scalar operators constructed above, we can also

construct vector or tensor operators, e.g.,

Oµν(ξ) = ξ4Z−2
V [ψqγµψq](ξ) [ψqγνψq](0) . (5)

To simply the discussion, we will consider only scalar
operators in the following, although tensor operators can
be studied following the same way.
Factorization — We show that σn defined in Eq. (1)
could be factorized into PDFs with perturbatively calcu-
lable coefficients so long as ξ2 is sufficiently small,

σn(ξ2, ω,P 2) =
∑
a

∫ 1

−1

dx

x
fa(x, µ2)

×Ka
n(ξ2, xω, x2P 2, µ2) +O(ξ2Λ2

QCD) ,

(6)

where µ is the factorization scale, Ka
n are perturba-

tively calculable hard coefficients, and fa is PDF of flavor

a = q, g with anti-quark PDFs expressed by quark PDFs
using the relation fā(x, µ2) = −fa(−x, µ2).

Let ξ2 be small but not vanishing, and applying oper-
ator product expansion (OPE) to the nonlocal operator
On(ξ) in Eq. (1) [27], we have

σn(ξ2, ω, P 2) =
∑
J=0

∑
a

W (J,a)
n (ξ2, µ2) ξν1 · · · ξνJ

× 〈P |O(J,a)
ν1···νJ (µ2)|P 〉 , (7)

where µ is the renormalization scale. The O(J,a)
ν1···νJ (µ2) is

a local, symmetric and traceless operator of spin J with
“a” labeling different operators of the same spin, and

〈P |O(J,a)
ν1···νJ (µ2)|P 〉 = 2A(J,a)(µ2)

× (Pν1 · · ·PνJ − traces) , (8)

where the scalar quantity A(J,a)(µ2) = 〈P |O(J,a)(µ2)|P 〉
is the reduced matrix element. Substituting Eq. (8) into
Eq. (7), we have

σn(ξ2, ω, P 2) =
∑
J=0

∑
a

W (J,a)
n (ξ2, µ2) 2A(J,a)(µ2)

× ΣJ(ω, P 2ξ2) , (9)

where

ΣJ(ω, P 2ξ2) ≡ ξν1 · · · ξνJ (Pν1 · · ·PνJ − traces)

=

[J/2]∑
i=0

CiJ−i(ω)J−2i
(
−P 2ξ2/4

)i
, (10)

where C is the binomial function and [J/2] is the great-
est integer less than or equal to J/2. Up to now, no
approximation has been made in deriving Eq. (9).

Since higher dimensional matrix element is relatively
smaller by powers of Λ2

QCDξ
2 when two reduced ma-

trix elements are compared, for the following discussion,
we ignore this power suppressed correction to keep only
terms with the lowest dimensional operators, which cor-
responds to keep the twist-2 operators in QCD [27]. Re-
duced matrix elements of these twist-2 operators can be
expressed as moments of PDFs,

A(J,a)(µ2) =
1

Sa

∫ 1

−1

dxxJ−1fa(x, µ2) , (11)

where symmetry factor Sa = 1, 2 for a = q, g, respec-
tively, and J ≥ 1 because there is no scalar twist-2 oper-
ator. By substituting Eq. (11) into Eq. (9), and compar-
ing it with Eq. (6) with the Ka

n expanded in power series
of ω, we prove that σn in Eq. (9) has the factorized form
in Eq. (6) with

Ka
n =

∑
J=1

2

Sa
W (J,a)
n (ξ2, µ2) ΣJ(xω, x2P 2ξ2) . (12)
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Note, however, that our proof is valid only when |ω| � 1
and |P 2ξ2| � 1 because OPE works only in the region
where all components of ξ go to zero uniformly but with
all other variables fixed. That is, we need to further
extend our proof to other regions, especially when ω is
finite.

The validity of OPE guarantees that σn is an analytic
function of ω in the neighborhood of ω = 0, and its Tay-
lor series of ω around ω = 0 is defined by Eqs. (7-12). If
we fix ξ to be at short-distance while we increase ω by
adjusting external momentum P , we cannot introduce
any new perturbative divergence. That is, σn remains to
be analytic as ω becomes larger, and only possible sin-
gularity is at ω = ∞. Similarly, for fixed ξ, σn is an
analytic function of P 2ξ2 except for the point of infinity.
Therefore, the factorization in Eq. (6), defined by a Tay-
lor series of ω and P 2ξ2, holds for any finite value of ω
and P 2ξ2 with the correction up to O(ξ2Λ2

QCD).
Note that the analytic behavior of σn discussed above

could be significantly different when it is Fourier trans-
formed into momentum space, i.e.,

σ̃n(q2, ω̃, P 2) ≡
∫
d4ξ

ξ4
eiq·ξσn(ξ2, P · ξ, P 2), (13)

where corresponding On can be any two-currents oper-
ator defined in Eq. (2), and ω̃ ≡ 2P ·q

−q2 = 1
xB

with xB
the Bjorken variable for the lepton-hadron deep inelas-
tic scattering (DIS). Assuming |P 2/q2| � 1, σ̃n has cuts
going out to infinity from the thresholds ω̃ = ±1. The
reason for having the cuts is that the system has a posi-
tive energy when ω̃2 > 1, corresponding to (q + P )2 > 0
or (q−P )2 > 0, and thus, it can produce physically prop-
agating particles. To understand the difference better, let
us consider a simple integral which could contribute to
Eq. (13), ∫

d4ξ

ξ4
ξν ei(q+xP )·ξ , (14)

where −1 < x < 1 could be thought as the momentum
fraction of a parton inside of the hadron. If q + xP is
not light-like for any value of x, which is equivalent to
ω̃2 < 1, this integral is always finite. But if q + xP is
light-like, this integral is divergent in the region where ξ
is large and almost anti-collinear to q + xP . This simple
excise tells us that the non-analytic cut of σ̃n comes from
the integration region of large ξ. That is, even if we
demand |q2| � Λ2

QCD, σ̃n in momentum space can always

receive contribution from large ξ region so long as ω̃2 > 1.
On the other hand, in coordinate space, if we fix ξ to
be short-distance, we do not have contribution from the
large ξ region and thus σn has a good analytic behavior.

Since σ̃n is simply a Fourier transformation of σn, the
factorization of σn in Eq. (6) implies the following fac-
torization,

σ̃n =
∑
a

fa ⊗ K̃a
n +O(Λ2

QCD/q
2) , (15)

where ⊗ represents the x-convolution in Eq. (6) and

K̃a
n =

∫
d4ξ

ξ4
eiq·ξKa

n(ξ2, xP · ξ, x2P 2, µ) . (16)

From the discussion above, the factorization in momen-
tum space is unambiguous if ω̃2 < 1.
Matching coefficients — From Eq. (12), we can ob-

tain Ka
n if we know the Wilson coefficients W

(J,a)
n . How-

ever, calculating W
(J,a)
n in the OPE directly is usually

not very convenient. Our strategy is as follows: (1) cal-
culate Ka

n(ξ2, xω, 0, µ), which corresponds to the coeffi-
cient function in collinear factorization with P 2 → 0, (2)
expand Ka

n(ξ2, xω, 0, µ) as a power series of xω, and (3)
compare it with Ka

n(ξ2, xω, 0, µ) in Eq. (12), along with

the fact ΣJ(xω, 0) = (xω)J , to obtain W
(J,a)
n as the ex-

pansion coefficients.

FIG. 1. LO Feynman diagrams for σ̃n.

In the following, we calculate nonvanishing Ka
n for var-

ious LCSs introduced above to the lowest order (LO) in

αs expansion, which we denote as K
a(0)
n . There is only

one Feynman diagram shown in Fig. 1(a) contributes to

K
q(0)
q . According to our strategy above, we set kµ = xPµ

with P 2 = 0, and get

Kq(0)
q (ξ2, xω, 0, µ) =

1

2
Tr[/k/ξ]eiξ·k = 2xωeixω . (17)

Two Feynman diagrams, as shown in Fig. 1(b) and (c),

contribute to K
q(0)
S with

Mb =
iξ4

2

∫
d4l

(2π)4

Tr[/k/l ]eiξ·(k−l)

l2 + iε
=
−i
π2

xω eixω , (18)

and Mc = M∗b . We have the sum of these two diagrams,

K
q(0)
S (Q2, xω, 0, µ) =

−i
π2

xω
(
eixω − e−ixω

)
. (19)

Results of K
q(0)
V and K

q(0)

Ṽ
are the same as K

q(0)
S at this

order. With q 6= q′, only Fig. 1(b) contributes to K
q(0)
V ′ ,

while only Fig. 1(c) contributes to K
q′(0)
V ′ . Neglecting the

mass of both q and q′, we obtain

K
q(0)
V ′ (Q2, xω, 0, µ) =

−i
π2

xω eixω , (20a)

K
q′(0)
V ′ (Q2, xω, 0, µ) =

i

π2
xω e−ixω . (20b)
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Using our strategy and the results of K
a(0)
n evaluated

at P 2 = 0 above, we can easily derive W
(J,a)
n . For exam-

ple, by expanding K
q(0)
q =

∑
J=1 2 [iJ−1/(J − 1)!](xω)J ,

and comparing it with K
q(0)
q =

∑
J 2W

(J,q)
q (xω)J from

Eq. (12) at P 2 = 0, we obtain W
(J,q)
q = iJ−1/(J − 1)!

with J ≥ 1. Substituting this into Eq. (12), we obtain

K
q(0)
q (ξ2, xω, x2P 2, µ). For simplifying our discussion be-

low, we assume ξ2 small enough so that P 2ξ2 (and thus
P 2) terms can be ignored in the rest of this paper.

From Eq. (16), we can easily obtain K̃a
n using the above

calculated Ka
n. For example, we have

K̃
q(0)

S/V/Ṽ
(Q2, xω̃, 0, µ) = −2i

x2ω̃2

1− x2ω̃2
, (21)

which has cuts going out to infinity from the thresholds
ω̃ = ±1 as discussed earlier.
Good “lattice cross sections” — After showing that
the UV renormalized coordinate-space hadronic matrix
elements σn in Eq. (1) can be factorized to the PDFs with
perturbatively calculable coefficient functions, we need to
demonstrate that these matrix elements are calculable in
LQCD with Euclidean time, in order for them to be good
“lattice cross sections”. This can be easily satisfied if ξ
has no time component. In conclusion, σn defined in
Eq. (1) are good LCSs for extracting PDFs under the
condition ξ0 = 0.

If there are methods to calculate σn or its linear com-
bination in LQCD without setting ξ0 = 0, then we can
define more good LCSs accordingly. One possibility is
that one can use Feynman-Hellmann technique to calcu-
late σ̃n with q0 = 0 [25] . Therefore, according to our
above discussion, σ̃n defined in Eq. (13) are also good
LCSs for extracting PDFs under the condition q0 = 0
and ω̃2 < 1.

Having many good LCSs makes it possible for extract-
ing PDFs by using QCD global analysis of “data” gen-
erated by LQCD calculations of these LCSs. This will
provide a promising way to determine PDFs from ab ini-
tio LQCD calculation. In fact, our method is so general
that proposed LQCD calculable functions used in the lit-
erature to determine PDFs are special cases of these good
LCSs, which we show in the following.
Relation to other methods —Let us first discuss the
relation to quasi-PDFs and pseudo-PDFs. With K

q(0)
q

calculated in Eq. (17), we can construct a linearly com-
bined good LCS,∫

dω

ω

e−ixω

4π
σq(ξ

2, ω, P 2) ≈fq(x, µ) , (22)

modulo O(αs) corrections and higher twist corrections.

With ξ0 = 0, the integral over ω = −~ξ · ~P = −|~ξ||~P | cos θ
in Eq. (22) could have different interpretations. Choos-

ing both ~P and ~ξ along the “3”-direction, which results
in θ = 0, the left hand side of Eq. (22) is the quasi-
quark distribution introduced in Ref. [10] if the integral

is performed by fixing P3, while it is the pseudo-quark
distribution used in Ref. [25] if the integral is performed
by fixing ξ3. These two methods are equivalent if match-
ing coefficients are calculated to lowest order in αs, but
different if higher order contributions need to be consid-
ered. The Eq. (22) also tells us that, to effectively ex-
tract PDFs using good LCSs, one should generate lattice
“data” with as many different values of ω as possible.

From Eq. (21) we have

σ̃S/V/Ṽ ≈ −2iω̃

∫ 1

−1

dx
xω̃

1− x2ω̃2
fq(x, µ

2) , (23)

which is equivalent to T33 used in Ref. [26] if we factorize
the structure function therein to PDFs. More precisely,
T33 can be obtained if we construct momentum-space
good LCSs σ̃µν using operator Oµν defined in Eq. (5),
and then set µ = ν = 3 and P3 = q3 = q0 = 0. However,
because σ̃µν has effective only two degrees of freedom,
all of its nontrivial information have been encoded in σ̃V
and σ̃Ṽ . We thus expect that extracting PDFs using σ̃V
and σ̃Ṽ can be at least as good as that using T33.

Summary — We constructed a class of good “lattice
cross sections” in terms of single-hadron matrix elements
of renormalized equal-time nonlocal operators in coordi-
nate space, as defined in Eq. (1). We show that these
matrix elements are calculable in LQCD and factoriz-
able to PDFs with perturbative coefficients, so long as
the largest separation between fields of the operator sat-
isfies |~ξ| � 1/ΛQCD. We also show that corresponding
momentum-space matrix elements, σ̃n defined in Eq. (13)
with | 2P ·q−q2 | < 1 and |q2| � Λ2

QCD, are also good LCSs.

We provided some explicit examples of good LCSs
made of quark fields in Eqs. (3) and (4), calculated corre-
sponding matching coefficients to LO in αs, and connect
the matrix elements to unpolarized PDFs. As briefly
mentioned earlier, it is straight forward to construct the
gluonic operators to have good LCSs directly sensitive
to gluon distributions. Our approach could be easily ap-
plied for polarized PDFs and other parton correlation
functions of various hadrons. We also find that some
LQCD calculable functions used in literature for extract-
ing PDFs, including quasi-PDFs proposed in Ref. [10],
pseudo-PDFs used in Ref. [25] and T33 used in Ref. [26],
are special cases of good LCSs. With the large number of
identified good LCSs, we could extract PDFs and hadron
structure in general by QCD global analyses of the data
generated by ab initio LQCD calculations of these LCSs.

Since it is very easy to generate lattice data with small
ω, LQCD calculations could provide the much needed in-
formation on PDFs at relatively large x, complementary
to what could be extracted from experimentally measure-
ments. In addition, LQCD calculations could provide
the information on partonic structure of hadrons, such
as neutron, pion or keon, that could be difficult to do
scattering experiment with.
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