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Nucleon form factors in dispersively improved Chiral Effective Field Theory II:
Electromagnetic form factors

J. M. Alarcón∗ and C. Weiss†

Theory Center, Jefferson Lab, Newport News, VA 23606, USA

We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method
combining Chiral Effective Field Theory (χEFT) and dispersion analysis. The spectral functions on
the two-pion cut at t > 4M2

π are constructed using the elastic unitarity relation and an N/D repre-
sentation. χEFT is used to calculate the real functions J1

±(t) = f1
±(t)/Fπ(t) (ratios of the complex

ππ → NN̄ partial-wave amplitudes and the timelike pion FF), which are free of ππ rescattering.
Rescattering effects are included through the empirical timelike pion FF |Fπ(t)|2. The method al-
lows us to compute the isovector EM spectral functions up to t ∼ 1 GeV2 with controlled accuracy
(LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM
FFs and their derivatives at t = 0 (EM radii, moments) using subtracted dispersion relations. We
predict the values of higher FF derivatives with minimal uncertainties and explain their collective
behavior. We estimate the individual proton and neutron FFs by adding an empirical parametriza-
tion of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to
∼0.5 GeV2 for GE , and up to ∼0.2 GeV2 for GM . Our results can be used to guide the analysis of
low-Q2 elastic scattering data and the extraction of the proton charge radius.
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I. INTRODUCTION

The electromagnetic form factors (EM FFs) describe
the nucleon’s elastic response to external EM fields and
reveal the spatial distribution of charge and magnetiza-
tion inside the strongly interacting system. They are
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among the most basic characteristics of nucleon struc-
ture and have been the object of extensive theoretical
and experimental study. The electric and magnetic FFs
at invariant momentum transfers t < 0 are measured
in elastic electron-nucleon scattering. Experiments at
|t| ≤ 1 GeV2 have been performed at many facilities,
most recently at the Mainz Microtron (MAMI) [1–3] and
at Jefferson Lab (JLab) [4–6]; see Refs. [7, 8] for a review
of the other data. The derivative of the proton electric
FF at t = 0, or charge radius, governs the nucleon struc-
ture corrections to the energy levels of hydrogen atoms
(electronic or muonic) and is measured with high preci-
sion in atomic physics experiments. Recent experimen-
tal results have raised interesting questions regarding the
precise value of the proton charge radius and the extrapo-
lation of the elastic scattering data to t→ 0; see Refs. [9–
11] for a review. Theoretical calculations of the nucleon
FFs at |t| � 1 GeV2 are needed to guide the analysis of
the experimental data and help answer these questions.
Dedicated measurements of the proton electric FF at ex-
tremely low momentum transfers |t| ≥ 10−4 GeV2 are
planned at JLab [12]. Knowledge of the low-t EM FFs is
also required for constructing the peripheral transverse
densities and generalized parton distributions (GPDs) of
the nucleon [13, 14].

In a previous article we have proposed a method
for calculating the nucleon FFs of G-parity-even opera-
tors by combining Chiral Effective Field Theory (χEFT)
and dispersion analysis (dispersively improved χEFT, or
DIχEFT) [15]. It starts from the dispersive representa-
tion of the FFs as analytic functions of t and constructs
the spectral functions on the two-pion cut at t > 4M2

π

using the elastic unitarity relation [16, 17]. An N/D
representation is employed to separate the coupling of
the ππ system to nucleon from the effects of ππ rescat-
tering in t-channel. χEFT is used to calculate the real
functions J(t) = f(t)/Fπ(t) — the ratios of the com-
plex ππ → NN̄ partial-wave amplitudes (PWAs) and
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the timelike pion FF, which are free of ππ rescattering
and show good convergence. Rescattering effects are in-
cluded through the timelike pion FF |Fπ(t)|2, which is
taken from sources outside of χEFT [experimental data,
Lattice QCD (LQCD)]. The formulation permits first-
principles calculations of the two-pion spectral functions
of the FFs with controlled accuracy. The spectral func-
tions can then be used to evaluate the FFs and related
quantities of interest (nucleon radii, transverse densities)
with subtracted dispersion relations. The method re-
sults in a dramatic improvement compared to conven-
tional χEFT calculations of nucleon FFs and their spec-
tral functions [18–22]. In Ref. [15] the method was ap-
plied to the nucleon isoscalar-scalar FF, where the ππ
system in the t–channel is in the I = J = 0 state. The
resulting spectral functions and FFs were found to be in
good agreement with those of empirical dispersion theory
and Roy-Steiner equations [23, 24].

In the present article we use the DIχEFT method to
calculate the nucleon EM FFs at low t and study their
properties. We construct the isovector EM spectral func-
tions on the two-pion cut by combining the elastic uni-
tarity relation in the I = J = 1 channel, the N/D
representation; χEFT calculations of the J functions at
LO, NLO and partial N2LO accuracy; and the timelike
pion FF |Fπ|2 measured in e+e− annihilation experi-
ments. Realistic spectral functions are obtained up to
t ∼ 1 GeV2, which includes the ρ meson region essen-
tial for EM structure. With these spectral functions we
evaluate the isovector FFs and their derivatives (radii)
using subtracted dispersion relations. We obtain the in-
dividual proton and neutron FFs by supplementing the
calculated isovector spectral functions with an empiri-
cal parametrization of the isoscalar ones [14]. Excellent
agreement with the low-t EM FF data is achieved.

In particular, the method allows us to predict the
higher derivatives of the EM FFs at t = 0 and ex-
plain their collective behavior. They are given by well-
convergent dispersion integrals, which can be evaluated
reliably with the DIχEFT spectral functions, with mini-
mal model dependence. The higher derivatives are gov-
erned by two disparate dynamical scales — the vector
meson mass, M2

V (V = ρ, ω), and the two-pion thresh-
old, 4M2

π — and exhibit a rich structure. The values of
the higher derivatives therefore differ qualitatively from
what one would estimate based on a single dynamical
scale (naturalness). Recent attempts to fit the low-t
proton electric FF data and extract the charge radius
have engendered a debate regarding the values of higher
FF derivatives and their role in the t → 0 extrapolation
[1, 2, 25–30]. Our predictions for the higher derivatives
can be compared with those obtained in form factor fits
(regarding order-of-magnitude, collective behavior) and
used to discriminate between different fits. Our method
incorporates the exact analytic structure of the FF in t
and the multiple dynamical scales governing its behavior,
which are essential in the analysis of low-t FF data and
the extraction of charge radius.

The plan of the article is as follows. In Sec. II we de-
scribe the steps of the DIχEFT calculation, expanding
on the general description of the method in Ref. [15] and
emphasizing the aspects that are new or specific to the
EM FFs. This includes the unitarity relations and N/D
representation in the I = J = 1 channel, the LO χEFT
calculation of the J-functions, the estimate of higher-
order corrections, and the parametrization of the timelike
pion FF. In Sec. III we present the results and their in-
terpretation. This covers the isovector nucleon EM spec-
tral functions, the nucleon EM radii, higher derivatives
(moments) of the EM FFs and their structure, and the
spacelike nucleon FFs at low |t|. In Sec. IV we summarize
the results and comment on possible further applications
of the method.

A similar method for calculating nucleon FFs, com-
bining χEFT and dispersion theory, was described in
Ref. [31] and applied to the EM FFs in Ref. [32]. The
differences from our approach are mainly in the technical
implementation of the ππ rescattering effects in the uni-
tarity relations (N/D method vs. Omnes function) and
the estimates of higher-order chiral corrections. Nucleon
FFs were also studied in an extension of χEFT with ex-
plicit vector meson degrees of freedom in Ref. [33].

II. CALCULATION

A. Nucleon EM form factors in DIχEFT

The transition matrix element of the EM current be-
tween nucleon (proton, neutron) states is parametrized
by the invariant FFs F1(t) and F2(t) (Dirac and Pauli
FFs; we use the conventions of Ref. [14]). The electric
and magnetic FFs are defined as

GE(t) = F1(t)− τF2(t), (1)

GM (t) = F1(t) + F2(t), (2)

where τ ≡ −t/(4m2
N ). At zero momentum transfer

the electric FF gives the electric charge of the nucleon,
Gp,nE (0) = (1, 0), and the magnetic FF gives the total
(pointlike plus anomalous) magnetic moment in units of
nuclear magnetons, Gp,nM (0) = µp,n = (2.79,−1.91). The
isovector and isoscalar components are defined as

GV,Si ≡ 1
2 (Gpi ∓G

n
i ) (i = E,M). (3)

The FFs are analytic functions of t and satisfy disper-
sion relations. They express the FFs at complex t as
an integral over their singularities at real t > 0, cor-
responding to (unphysical) timelike processes in which
the current couples to the nucleon through exchange of
a hadronic system in the t-channel. In the case of the
isovector EM FFs the lowest-mass hadronic state is the
ππ state, and the dispersion integrals start at t′ = 4M2

π

(two-pion threshold)

GVi (t) =
1

π

∫ ∞
4M2

π

dt′
ImGVi (t′)

t′ − t− i0
(i = E,M). (4)
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The real functions ImGVi (t′) (t′ > 4M2
π) are referred

to as the spectral functions. At 4M2
π < t′ < 16M2

π

the ππ state is the only possible state contributing to
ImGVi (t′). It is known from e+e− annihilation experi-
ments that higher states (4π etc.) do not couple strongly
to the EM current, and it is expected that the ππ channel
in the nucleon spectral functions remains dominant up to
t′ ∼ 1 GeV2. In this region the ππ channel includes the
ρ resonance at t′ = M2

ρ ∼ 0.6 GeV2, which has a deci-
sive influence on the EM FFs. In the isoscalar case the
dispersion integral starts with the 3π state at t′ = 9M2

π ,
with the dominant strength at t < 1 GeV2 coming from
the ω resonance at t′ = M2

ω ∼ 0.6 GeV2. The contribu-
tion of higher-mass states to the isovector and isoscalar
FFs is constrained by the total charge and magnetic mo-
ment and has been determined empirically through fits
of spacelike FF data [34, 35]; the exact composition of
these multi-hadron states is poorly known and will not
be needed in the following applications.

In the region 4M2
π < t < 16M2

π the isovector spectral
functions on the two-pion cut can be obtained from the
elastic unitarity relations [16, 17]

ImGVE(t) =
k3

cm

mN

√
t
f1

+(t) F ∗π (t), (5)

ImGVM (t) =
k3

cm√
2t
f1
−(t) F ∗π (t), (6)

where kcm ≡
√
t/4−M2

π is the center-of-mass momen-
tum of the ππ system in the t-channel, f1

±(t) are the

ππ → NN̄ PWAs in the normalization of Ref. [34], and
F ∗π (t) is the complex-conjugate timelike pion EM FF.
Equations (5) and (6) are valid strictly in the region up
to the 4π threshold, 4M2

π < t < 16M2
π ; if contribu-

tions from 4π and higher states are neglected they can
effectively be used up to t ∼ 1GeV2 = 50M2

π . The ex-
pressions on the right-hand side of Eqs. (5) and (6) are
real because the complex functions f1

±(t) and Fπ(t) have
the same phase on the two-pion cut (Watson theorem)
[36]. The unitarity relations can therefore be written in
a manifestly real form as [16, 17, 37]

ImGVE(t) =
k3

cm

mN

√
t
J1

+(t) |Fπ(t)|2, (7)

ImGVM (t) =
k3

cm√
2t
J1
−(t) |Fπ(t)|2, (8)

where

J1
±(t) ≡

f1
±(t)

Fπ(t)
. (9)

The functions J1
±(t) are real for t > 4M2

π and thus have
no right-hand cut; their only singularities are left-hand
cuts at t < 4M2

π −M4
π/m

2
N , the threshold resulting from

the singularity of the nucleon Born term in the ππ → NN̄
PWAs. Equations (7)–(9) are equivalent to a particular
N/D representation of the PWAs [38],

f1
±(t) =

J1
±(t)

D(t)
, D(t) ≡ 1/Fπ(t), (10)

(d)

N

(a) (b)

∆

(c)

FIG. 1. (a, b, c) LO χEFT diagrams contributing to the
ππ → NN̄ PWA in the I = J = 1 channel. (a) N Born
term. (b) Weinberg-Tomozawa contact term. (c) ∆ Born
term. (d) Pion EM FF in LO.

in which the numerator functions J1
±(t) contain the left-

hand cut and the denominator function 1/Fπ(t) contains
the right-hand cut.

To evaluate the spectral functions in the representa-
tion of Eqs. (7)–(9), following Ref. [15], we calculate the
real functions J1

±(t) in χEFT and multiply them with
the empirical pion FF modulus |Fπ|2. Advantages of
this approach are: (a) The χEFT calculation of J1

±(t)
is free of ππ rescattering and shows good convergence.
Rescattering effects are entirely contained in |Fπ(t)|2,
which is taken from other sources. In traditional “di-
rect” χEFT calculations of the spectral functions the
ππ rescattering effects result in large higher-order correc-
tions and render the perturbative expansion impractical.
(b) The functions J1

±(t) are dominated by the scales Mπ

and m∆ −mN associated with the Born graph singular-
ities, while |Fπ(t)|2 dominated by the chiral-symmetry-
breaking scale Λχ. The representation Eqs. (7)–(9) is
therefore consistent with the idea of separation of scales.
(c) The squared modulus |Fπ(t)|2 can be imported di-
rectly from the e+e− → π+π− data or from LQCD cal-
culations without determination of the phase [15, 39]. For
further discussion of the method we refer to Ref. [15].

B. Leading-order calculation

For calculating the J functions of Eq. (9) we use χEFT
with the SU(2)-flavor group and relativistic N and ∆
degrees of freedom. This formulation ensures the correct
position of the singularities and includes the important
contributions from the ∆ Born term. The setup of the
χEFT calculation is described in Ref. [40] and summa-
rized in Ref. [14] (fields, chiral Lagrangian, power count-
ing, values of couplings). The interactions of the spin-3/2
∆ field are formulated with consistent vertices [41–44],
and the extended-on-mass-shell (EOMS) scheme is used
to maintain the standard power counting [45] (diagrams
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FIG. 2. Adjustment of the LEC of the NLO ππNN contact
term, c4, in the DIχEFT approach. The original contact term
(filled circle, left-hand side) is equated with the sum of ρ
meson exchange and the adjusted contact term (open circle).

with pion loops do not enter in the present calculation).
The LO diagrams contributing to the ππ → NN̄

PWAs in the I = J = 1 channel are shown in Fig. 1.
They include the N and ∆ Born terms, Fig. 1a and
c, and the Weinberg-Tomozawa contact term, Fig. 1b,
which appears as the result of chiral invariance of the
dynamics with relativistic baryons. We take the results
for the LO πN → πN amplitude of Ref. [40] (the first
relativistic χEFT calculation of πN scattering with ex-
plicit ∆), and project onto the I = J = 1 channel to get
the PWAs f1

±(t). The pion EM FF at this order is just
Fπ = 1 (pointlike), see Fig. 1d. The χEFT results for
J1
±(t) therefore coincide with f1

±(t) at this order. Ana-
lytic expressions for J1

±(t) are given in Appendix A. Nu-
merical results of the LO approximation will be shown
below.

C. Estimates of higher-order corrections

At NLO accuracy, corrections to the I = J = 1 ππ →
NN̄ PWAs arise from the NLO contact term in the chiral
Lagrangian with the low-energy constant (LEC) c4. The
value of this LEC has to be adjusted consistently with
our unitarity-based approach [14]. In standard χEFT
calculations c4 receives large contribution from ρ meson
exchange. Since in our formulation the effect of the ρ is
included explicitly through |Fπ(t)|2, we have to remove it
from the value of c4 to avoid double-counting (see Fig. 2).
Using the estimate for the ρ contribution of Ref. [46],
cρ4 ≈ 1.63 GeV−1, and subtracting it from the empirical
c4 reported in Refs. [40, 47], we obtain the range

c4 [adjusted] = (−0.54, 0.27) GeV−1. (11)

Note that these values are much smaller than the original
c4 and consistent with zero, which means that the NLO
corrections to the isovector spectral functions in our for-
mulation are very small. The analytic expressions for the
NLO corrections to J1

±(t) are given in Appendix A.
At N2LO accuracy pion loop corrections appear, and

the structure of the χEFT expressions becomes consid-
erably richer. The ππ → NN̄ PWAs and the pion FF
now involve ππ rescattering in the t-channel and become
complex at t > 4M2

π , in such a way that their phases can-
cel and the functions J1

±(t) of Eq. (9) remain real. Also,
πN and π∆ s-channel intermediate states appear in the

0.0 0.2 0.4 0.6 0.8 1.0
1

10

100

t (GeV2 )

|F
π

2

FIG. 3. Empirical parametrization of the timelike pion EM
FF |Fπ(t)|2 obtained from e+e− → π+π− annihilation data
(details see text).

πN amplitude. Following Ref. [14] we perform a simple
estimate of the N2LO corrections to the spectral func-
tions of the electric FF, by taking the N2LO tree-level
amplitudes and fixing the LECs through the charge sum
rule. We require that the unsubtracted dispersion rela-
tion for the isovector electric FF reproduce the isovector
charge when the integration is restricted to the region
t′ < tmax ∼ 1 GeV2,

1

π

∫ tmax

4M2
π

dt′
ImGVE(t′)

t′
= 1

2 . (12)

This condition gives N2LO contact term contributions
with sign opposite to that of the LO and NLO results,
which provides a crucial curvature in the electric spec-
tral function and allows us to extend the calculations up
to t ∼ 1 GeV2. In the language of traditional disper-
sion analysis these contact terms represent the negative
contributions from the ρ′, which compensate the excess
charge that would be produced by the ρ alone. In the
magnetic FF no new tree-level amplitudes with LECs
enter at N2LO level, so that the described method of
estimating of the corrections cannot be applied. Our cal-
culations of GVM are therefore limited to NLO accuracy,
and are expected to describe the empirical spectral func-
tions only at t� 1 GeV2. Numerical results of the NLO
and N2LO approximations will be shown below.

D. Timelike pion EM form factor

For evaluating the timelike pion FF entering in our
calculation we use a Gounaris-Sakurai parametrization
of the e+e− → π+π− exclusive annihilation data [48],
including effects of ρ-ω mixing [49], with the parameters
determined in Ref. [25]. The squared modulus |Fπ(t)|2
is shown in Fig. 3. One clearly sees the ρ resonance at
t ∼ 0.6 GeV2 and the rapid variation resulting from ρ–
ω mixing. The fact that |Fπ(t)|2 reaches a value of ∼2
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FIG. 4. χEFT results for the functions k3cm/(mN

√
t) J1

+(t)

and k3cm/(
√

2t) J1
−(t), Eqs.(7)–(9), at t > 4M2

π . Dashed lines:
LO approximation. Blue bands: NLO approximation. Red
band: NLO+N2LO, estimated as described in Sec. II C. Solid
orange lines: Roy-Steiner analysis results [50]. .

at t ∼ 0.2 GeV2, and ∼ 10 at t ∼ 0.4 GeV2, shows that
ππ rescattering is very substantial already at moderate t
and justifies our approach of incorporating these effects
empirically.

Since |Fπ(t)|2 is determined very accurately from the
annihilation data we neglect the effect of its uncertainty
on the spectral functions. In the following we quote only
the uncertainties of the spectral function resulting from
the χEFT calculation of J1

±(t).

III. RESULTS

A. Isovector EM spectral functions

The spectral functions of the isovector EM nucleon
FFs are evaluated using the DIχEFT method and pa-
rameters described in Sec. II. Figure 4 shows the results
of the χEFT calculation of the real functions J1

±(t) at
t > 4M2

π , Eq. (9). For a better view the plot shows the
functions multiplied by the kinematic factors of Eqs. (7)

and (8), k3
cm/(mN

√
t) and k3

cm/
√

2t, respectively. One
observes: (a) The J1

±(t) with the kinematic factors are

smooth functions, as expected on grounds of their an-
alytic properties. (b) The χEFT calculations of J1

±(t)
show good convergence. In both functions higher-order
corrections are small at threshold and increase with t.
LO and NLO results are close because the adjusted LEC
c4 is small, Eq. (11). In J1

+(t) the N2LO corrections, es-
timated as described in Sec. II C, are negative and cause
the function to decrease and turn negative at larger t.
(c) The χEFT results for J1

±(t) show reasonable agree-
ment with the functions extracted from an analysis of πN
scattering data using Roy-Steiner equations [50]. In both
J1

+ and J1
− the LO and NLO approximation agree with

the Roy-Steiner result up to t ∼ 0.2 GeV2. In J1
+ the neg-

ative N2LO corrections extend the region of agreement
up to t ∼ 1 GeV2.

Figure 5 shows the isovector spectral functions, ob-
tained by multiplying the χEFT results for J1

±(t) with the
empirical |Fπ(t)|2 cf. Eqs. (7) and (8). The spectral func-
tions clearly show the effects of ππ rescattering, which
are not suitable for perturbative χEFT treatment and
included through the empirical pion FF in our approach.
Note that the enhancement through |Fπ(t)|2 is large even
near the two-pion threshold t ∼ 4M2

π , cf. Sec. II D and
Fig. 3. The convergence pattern of the spectral functions
follows from that of the χEFT calculation of J1

±(t). In
both ImGE and ImGM , the LO and NLO approxima-
tions are in good agreement with the Roy-Steiner results
up to t ∼ 0.2 GeV2. In ImGE the negative N2LO correc-
tion (estimated) is sufficient to reproduce the Roy-Steiner
result up to t ∼ 1 GeV2.

B. Nucleon EM radii

The nucleon’s isovector electric and magnetic radii are
given by the dispersion integrals

〈r2〉Vi =
6

π

∫ ∞
4M2

π

dt′
ImGVi (t′)

t′2
(i = E,M). (13)

The factor 1/t′
2

ensures convergence of the integral over
the range t′ . 1 GeV2; see Fig. 6. The integrals can
therefore be evaluated with the DIχEFT spectral func-
tions. Table I summarizes the DIχEFT results for the
isovector radii and compares them with the results of
other dispersive approaches and LQCD calculations. For
the electric radius our NLO+N2LO result agrees very
well with the result of the Roy-Steiner analysis [50]. Our
lower-order results overestimate this value, because the
LO and NLO spectral functions are larger than the Roy-
Steiner result around the ρ peak. For the magnetic radius
our result is larger by a factor ∼2 than the phenomeno-
logical and LQCD results, because our magnetic spectral
function is likewise too large around the ρ peak.

DIχEFT allows us to calculate the isovector nucleon
EM FFs and radii, which are matrix elements of G–
parity even operators. Experiments measure the indi-
vidual proton and neutron FFs and radii. In view of
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LO NLO NLO+N2LO Lorenz Epstein Hoferichter LQCD Leupold
[25] [51] [50] [52] [32]

〈r2〉VE (fm2) 0.98 (0.98 , 0.99) (0.33 , 0.43) 0.416(8) – 0.405(36) 0.327(24)(15) (0.27,0.31)

〈r2〉VM (fm2) 3.28 (2.87 , 3.50) – 1.78+0.10
−0.11 1.81(7) 1.81(11) 1.08(11)(14) 1.81a

TABLE I. Isovector nucleon EM radii calculated in DIχEFT (left columns) and in other approaches (right columns).
aIn the χEFT calculation of Ref. [32] the LEC c4 is adjusted to reproduce the magnetic radius.
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FIG. 5. DIχEFT results for the spectral functions of the
isovector nucleon EM FFs, Eqs.(7) and (8). Dashed line: LO
approximation. Blue band: NLO approximation. Red band:
NLO+N2LO, estimated as described in in Sec. II C). Orange
band: Results of Roy-Steiner analysis [50]. Black line: Em-
pirical dispersion analysis [53].

the questions concerning the proton charge radius mea-
surements it is interesting to compare our results directly
with the experimental results for the proton and neutron
charge radii. To do so, we supplement the DIχEFT re-
sults for the isovector spectral functions with an empirical
parametrization of the isoscalar spectral functions. We
use a two-pole parametrization with the ω pole at M2

ω =
0.61 GeV2 and a second pole at M2

2 ≈M2
φ = 1 GeV2 [14]

ImGSi (t) = π
[
aωi δ(t−M2

ω) + a
(2)
i δ(t−M2

2 )
]

(i = E,M), (14)

where the coefficients aωi (including their uncertainties)

ImGM
V

t2

ImGE
V

t2
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FIG. 6. The integrands of the dispersive integrals for the
isovector nucleon electric and magnetic radii, Eq. (13), eval-
uated with the spectral functions of Ref. [50].

are taken from the dispersive FF fit of Ref. [35], and the

coefficients a
(2)
i are adjusted to reproduce the total charge

and magnetic moment. The second pole is an effective
pole representing the overall strength of the spectral func-
tion at t ∼ 1 GeV2; the details of the strength distribu-
tion at these values of t are not important for estimating
the nucleon radii. The proton and neutron radii obtained
in this way are summarized in Table II. In the proton
and neutron electric radii, the estimated uncertainty is
dominated by the isoscalar component, which is purely
empirical. Our results obtained with the NLO+N2LO
DIχEFT calculation of the isovector radii are in agree-
ment with the experimental values. In the magnetic radii
the estimated uncertainty is likewise dominated by the
isoscalar component. Note that the DIχEFT calculation
of the isovector magnetic spectral function does not in-
clude the N2LO corrections and strongly overestimates
the empirical result (cf. Table I); this discrepancy is not
reflected in the uncertainty estimate.

C. Higher derivatives of EM form factors

Higher derivatives of the nucleon EM FFs at t = 0
are of interest for several reasons. In the experimental
analysis, the values of higher derivatives allowed (or as-
sumed) in fits of FF data at t < 0 directly affect the
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LO NLO NLO+N2LO LQCD [52] PDG [54]

〈r2〉pE (fm2) (1.11, 1.49) (1.05, 1.52) (0.46, 0.94 ) 0.589(39)(33) (0.706, 0.707)
(0.755, 0.777)

〈r2〉pM (fm2) (1.19, 1.46) (1.04, 1.54) – 0.506(51)(42) (0.53 , 0.68)

〈r2〉nE (fm2) (−0.84,−0.47) (−0.88,−0.40) (−0.29, 0.18) −0.038(34)(6) −0.1161(22)

〈r2〉nM (fm2) (1.29, 1.64) (1.08, 1.81) – 0.586(58)(75) (0.73, 0.76)

TABLE II. Left columns: Proton and neutron EM radii obtained from the DIχEFT calculation of the isovector radii and
the empirical parametrization of the isoscalar radii. Right columns: LQCD and experimental results. For the experimental
values we quote the averages compiled by the Particle Data Group (upper and lower limits obtained by adding statistical
and systematic errors) [54]. The two ranges quoted for the proton charge radius correspond to the extractions from electron
scattering and atomic physics measurements.

extrapolation to t = 0 and extraction of the nucleon
charge radii; see Refs. [26–30] for details. In the theoret-
ical studies reported here, higher derivatives of the FFs
represent clean chiral observables that can be predicted
almost model-independently with minimal uncertainties.
The comparison of low- and high-order derivatives reveals
the presence of two dynamical scales in the nucleon FFs,
which implies a surprisingly rich structure and should be
incorporated into the experimental analysis.

In the context of the traditional representation of the
FFs as Fourier transforms of 3-dimensional spatial densi-
ties, the higher derivatives of the FFs at t = 0 correspond
to the higher r2–weighted moments of the densities. The
connection is given by [29]

GE(t) = 1 +
〈r2〉E

3!
t+
〈r4〉E

5!
t2 +

〈r6〉E
7!

t3 + . . . , (15)

GM (t)

µ
= 1 +

〈r2〉M
3!

t+
〈r4〉M

5!
t2 +

〈r6〉M
7!

t3 + . . . ,(16)

1

n!

dnGE
dtn

(0) =
〈r2n〉E

(2n+ 1)!
, (17)

1

n!µ

dnGM
dtn

(0) =
〈r2n〉M

(2n+ 1)!
(18)

(for either p or n).

Note that for the proton and neutron the magnetic radii
are defined as the derivatives of the FFs divided by the
magnetic moments; this is not the case for the isovec-
tor and isoscalar components. In the following we quote
results for the moments; they can be converted to FF
derivatives through Eqs. (17) and (18).1

1 The representation of FFs in terms of 3-dimensional spatial den-
sities is physically meaningful only for nonrelativistic systems.
For relativistic systems such as the nucleon a proper spatial rep-
resentation is provided by the 2-dimensional transverse densities
at fixed light-front time; see Ref. [55] for a review. We refer
to the moments 〈r2n〉 only because this representation is used
in the experimental literature, and use it only in the sense of a
mathematical representation of the FF derivatives at t = 0.

n = 1

n = 2

n = 3

0.2 0.4 0.6 0.8 1.0
0

2

4
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t (GeV2 )
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G
EV
(t
)
/t
n+
1
[N
or
m
al
iz
ed

]

FIG. 7. Integrand of the dispersive integral for the moments
of the isovector electric FF GVE , Eq. (19), for n = 1, 2 and 3,
evaluated with the spectral functions of Ref. [50]. The plot
shows the t′ distributions divided by the value of the integral,
i.e., normalized to unit area under the curves.

The higher moments of the isovector FFs are given by
the dispersion integrals

〈r2n〉Vi
(2n+ 1)!

=
1

π

∫ ∞
4M2

π

dt′
ImGVi (t′)

t′n+1
(i = E,M). (19)

The factors 1/t′n+1 strongly suppress contributions from
large t′ and render the integrals well convergent. The in-
tegrals can therefore be evaluated accurately using the
DIχEFT spectral functions. Figure 7 shows the in-
tegrands for the isovector electric FF derivatives with
n = {1, 2, 3}; the curves are normalized to unit integral
for each n and show the relative distribution of strength
in t′. The distributions clearly show the presence of two
dynamical scales: the ρ meson mass m2

ρ ∼ 0.6 GeV2 ≈
30M2

π (the peak of the spectral function), and the two-
pion threshold 4M2

π (the start of the spectral integral).
The integrals receive contributions from both regions of
t′, and their relative importance changes with n. For
a rough assessment we can take M2

ρ/2 = 0.3 GeV2 as
the boundary between the two regions. For n = 1 ap-
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FIG. 8. Ratios of successive moments of the isovector elec-
tric FF GVE , Eq. (20), computed using the DIχEFT isovector
spectral functions (see Fig. 5). The horizontal lines indicate
the values of the dynamical scales 1/M2

ρ and 1/(4M2
π)

proximately 2/3 of the integral comes from the region
t′ > M2

ρ/2, and 1/3 from 4M2
π < t < M2

ρ/2. For n = 2,
each region contributes about 1/2. For n = 3 and higher,
the near-threshold region dominates.

The presence of two dynamical scales in the isovector
moments can also be demonstrated by considering the
ratios of successive moments,

〈r2n+2〉Vi
(2n+ 3)!

/
〈r2n〉Vi

(2n+ 1)!
(i = E,M). (20)

If the dispersion integral were dominated by a certain
region of t′, the value of the ratio Eq. (20) would be given
by the average of 1/t′ over that region. The ratios thus
directly reveal the effective values of 1/t′ in the integral.
Figure 7 shows the ratios of the isovector electric FF
moments obtained with the DIχEFT spectral functions.
One sees that the ratios start with a value ∼ 1/m2

ρ at

n = 1 and increase to values ∼ 1/(4M2
π) at large n.

The presence of two dynamical scales implies that the
higher FF moments are of “unnatural” size, i.e., their
values are very different from what one would estimate
using the value of the lowest moment and a single-scale
functional form of the FF. [In the dispersive represen-
tation such a single-scale form would be e.g. a spectral
function ImGVi ∝ δ(t−M2

ρ ), or derivatives thereof.] This
conclusion relies only on general features of the dispersive
representation and is insensitive to the details of the dy-
namical calculation presented here. It has has numerous
consequences for the interpretation of the FF moments
and the analysis of low-t elastic scattering experiments,
which will be elaborated below.

Table III shows the DIχEFT results for the higher mo-
ments of the isovector FFs, GVE and GVM . Because the
dispersion integrals with n ≥ 2 sample the spectral func-
tions near threshold, the higher moments can be com-
puted accurately and represent genuine predictions of
our approach. This is seen in the intrinsic uncertainty

GVE

LO NLO NLO+N2LO

〈r4〉 (fm4) 1.81 (1.72, 1.86) (0.88, 1.02)

〈r6〉 (fm6) 9.86 (9.54, 10.03) (6.68, 7.16)

〈r8〉 (102 fm8) 1.40 (1.37, 1.41) (1.17, 1.20)

GVM

LO NLO

〈r4〉 (fm4) 6.49 (5.81, 6.85)

〈r6〉 (10 fm6) 3.82 (3.53, 3.98)

〈r8〉 (102 fm8) 5.68 (5.38, 5.84)

TABLE III. Higher moments of the isovector nucleon FFs
calculated in DIχEFT.

estimates of Table III: with increasing n, the derivatives
become less sensitive to higher-order chiral corrections.
We note that the ππ rescattering effects included in our
approach are important even in the higher FF moments
(|Fπ(t)|2 ≈ 1.3 at t = 4M2

π), so that our results dif-
fer quantitatively from those obtained with traditional
χEFT calculations of the spectral functions. We empha-
size that one should be careful in interpreting the nu-
merical values of the individual moments in Table III, as
they contain large factorial factors. The unnatural be-
havior of the higher moments should be demonstrated
by taking ratios (see above) or comparing the moments
to a reference FF (see below).

In the isoscalar FFs the strength of the spectral func-
tions is located overwhelmingly at the ω meson mass.
The higher moments are therefore governed by this sin-
gle scale and are of natural size. This in turn implies
that the higher moments of the proton and neutron FFs
are dominated by the isovector component and can be in-
ferred from our DIχEFT results. Table IV shows our re-
sults for the moments of GpE , G

n
E , G

p
M and GnM , obtained

using the DIχEFT results for the isovector moments and
the empirical parametrization of the isoscalar FFs. We
stress that the isoscalar information is used here only to
demonstrate that the higher derivatives are dominated
by the isovector component, and that the uncertainties
associated with the isoscalar parametrization are irrele-
vant in the higher derivatives.

The theoretical results described here have implica-
tions for the analysis of electron-proton elastic scattering
data at low Q2 ≡ −t and the extraction of the proton
charge radius. The overall behavior of GpE in the region

0 < Q2 . 1 GeV2 is associated with a scale of the order of
the vector meson mass M2

V (V = ρ, ω). The first deriva-
tive of GpE at Q2 = 0 is of the order 1/M2

V and therefore
appears natural, i.e., simple single-scale parametrizations
of the finite-Q2 data give a reasonable estimate of the first
derivative. The higher derivatives, however, are governed
by the scale 1/(4M2

π) and appear unnatural. Single-scale
parametrizations or “natural” powers of the first deriva-
tive the data give qualitatively wrong estimates of the
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GpE
LO NLO NLO+N2LO

〈r4〉 (fm4) (2.09, 2.48) (2.00, 2.53) (1.16, 1.70)

〈r6〉 (fm6) (10.8, 11.7) (10.5, 11.9) (7.59, 9.00)

〈r8〉 (102 fm8) (1.44, 1.48) (1.42, 1.49) (12.1, 12.9)

GnE

LO NLO NLO+N2LO

〈r4〉 (fm4) (-1.53, -1.13) (-1.58, -1.04) (-0.74, -0.20)

〈r6〉 (fm6) (-8.94, -8.02) (-9.11, -7.71) (-6.24, -4.84)

〈r8〉 (102 fm8) (-1.35, -1.31) (-1.36, -1.29) (-1.15, -1.08)

GpM
LO NLO

〈r4〉 (fm4) (2.38, 2.68) (2.14, 2.81)

〈r6〉 (10 fm6) (1.39, 1.46) (1.29, 1.52)

〈r8〉 (102 fm8) (2.05, 2.08) (1.94, 2.13)

GnM

LO NLO

〈r4〉 (fm4) (3.30, 2.87) (3.49, 2.51)

〈r6〉 (10 fm6) (1.96, 1.86) (2.04, 1.71)

〈r8〉 (102 fm8) (2.95, 2.91) (3.04, 2.75)

TABLE IV. Higher moments of the proton and neutron elec-
tric and magnetic FFs, calculated using the DIχEFT results
for the isovector moments and the empirical parametrization
of the isoscalar FFs.

higher derivatives. To illustrate the point we compare
the order-of-magnitude of the higher derivatives obtained
from DIχEFT with the ones of the dipole parametriza-
tion

GpE(t)[dipole] = Λ4/(t− Λ2)2, (21)

which provides a good overall description of the FF data
at 0 < Q2 . 1 GeV2 with Λ2 ≈ 0.71 GeV2. Figure 9
shows the ratios

cn
dnGpE
dtn

(0)

/[
dnGpE
dtn

(0)

]n
, cn ≡

2n

(n+ 1)!
, (22)

as obtained with the DIχEFT results. The coefficients cn
are defined such that for the dipole FF Eq. (21) the ratio
is equal to unity for all n. The ratio Eq. (22) therefore
indicates how strongly the actual higher derivatives de-
viate from the single-scale estimate based on the dipole
form. One sees that the ratio is ∼102 for n = 4, and
reaches values ∼105 for n = 8. It shows the striking con-
sequences of the two dynamical scales in the higher FF
derivatives, as implied by their dispersive representation.

The values of the higher derivatives of GpE and their
impact on the Q2 → 0 extrapolation are presently the
subject of intense discussions [26–30]. Fits to the low-Q2

FF data with different classes of functions (polynomials,
rational functions) give widely different values of the sec-
ond and higher derivatives; see Table V for a compilation

DIχEFT

Dipole

0 1 2 3 4 5 6 7 8

1

10

102

103

104

105

n

c n
(d
n
G
/d
tn
)/
[d
G
/d
t]n

FIG. 9. The normalized ratios of the nth derivative of the pro-
ton electric FF GpE and the nth power of the first derivative,
Eq. (22). The ratios are normalized such that their values are
unity for the dipole FF Eq. (21).

of recent results. The DIχEFT results are broadly consis-
tent with the range of empirical values. An analysis of FF
data incorporating theoretical constraints from DIχEFT
will be the subject of a future study [57]. For reference we
quote in Appendix B the numerical values of the DIχEFT
moments ofGpE up to n = 20. While the individual values
have little physical significance, their order-of-magnitude
and collective behavior could be compared with the pat-
tern and observed in higher-order polynomial fits.

The unnatural behavior of the higher FF derivatives is
a consequence of analyticity and the singularities of the
πN Born amplitudes, which govern the behavior of the
spectral function in the near-threshold region. Dispersive
fits to the low-Q2 FF data correctly implement these fea-
tures and can provide reliable results for the higher FF
derivatives [25, 35].

D. Spacelike EM form factors

The DIχEFT approach also allows us to calculate the
nucleon FFs at finite t < 0, where they are measured in
eN elastic scattering experiments. For the isovector FFs
we use the twice-subtracted dispersion relations

GVi (t) = GVi (0) + t
dGVi
dt

(0)

+
t2

π

∫ ∞
4M2

π

dt′
ImGVi (t′)

t′2(t′ − t)
(i = E,M). (23)

Here the FFs at t = 0 (charge and magnetic moment)
and the first derivatives (electric and magnetic radii) are
taken as input, and the dispersion relation predicts the t–
dependence starting from the second order. The integrals
in Eq. (23) are well convergent and can be evaluated with
the DIχEFT spectral functions. For the isoscalar FF we
use the empirical parametrization Eq. (14), which im-
poses the correct value of the FF at t = 0. Combining the
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GpE
Standard Bernauer Horbatsch Higinbotham Higinbotham Sick

Dipole [56] [29] Rational [27] Power series [27] [30]

〈r4〉 (fm4) 1.08 2.63 0.60 1.38 1.50 2.01(5)

〈r6〉 (fm6) 3.30 26.93 5.00 5.68 5.75

〈r8〉 (fm8) 16.2 408.12 99.36 40.06 24.68

TABLE V. Higher moments of GpE extracted from recent fits to low-Q2 FF data using different classes of functions.

two we predict the individual proton and neutron FFs.
Figure 10 summarizes the results. The estimated uncer-
tainties are dominated by those of the isoscalar compo-
nent, for which we have only the empirical parametriza-
tion. One observes: (a) In the electric FFs GpE and GnE ,
the LO and NLO approximations describe the experi-
mental data only up to Q2 ∼ 0.1 GeV2, while the NLO
+ N2LO approximations show good agreement with the
data up to Q2 ∼ 0.5 GeV2. This reflects the improve-
ment of the isovector electric spectral function due to the
partial N2LO corrections; see Figs. 4 and 5. (b) In the
magnetic FFs GpM and GnM , our results describe the data
up to Q2 ∼ 0.2 GeV2. In this channel the N2LO correc-
tions cannot be estimated using the method of Sec. II C.
Altogether we obtain a very satisfactory description of
the nucleon EM FFs with our dynamical approach.

IV. SUMMARY

This work reports a study of the nucleon EM FFs at
momentum transfers |t| � 1 GeV2 using a new method
combining χEFT and dispersion analysis (DIχEFT). The
isovector spectral functions on the two-pion cut are con-
structed through the elastic unitarity condition. The
N/D method is used to separate effects of ππ rescatter-
ing from the coupling of the ππ system to the nucleon.
χEFT is employed to calculate the real functions J1

±(t)
describing the ππ coupling to the nucleon, which are free
of ππ rescattering effects, resulting in good convergence.
ππ rescattering effects are included through the timelike
pion FF |Fπ(t)|2, which can be taken from e+e− annihila-
tion data or LQCD calculations. The new organization is
consistent with basic principles of χEFT and represents
a major improvement over traditional direct calculations
of the spectral functions. It allows us to calculate the
isovector spectral functions up to t ∼ 1 GeV2 (including
the ρ meson region) with controlled accuracy. With these
spectral functions we are able to evaluate elements of the
FFs (radii, higher derivatives, t-dependence in spacelike
region) using well-convergent subtracted dispersion rela-
tions.

The new method permits a realistic description of the
low-t nucleon FFs and their derivatives. While the basic
features of the FFs are rooted in analyticity and have
been studied earlier in empirical dispersion theory, the
new element is that the spectral functions can now be

computed in a χEFT framework with controlled accu-
racy. It makes it possible to represent the information
content of the nucleon FFs in the form of a few physical
masses and LECs, resulting in a significant reduction of
complexity. It also enables new interpretations of FFs in
terms of spatial densities [13, 14] and a space-time picture
of chiral processes [58–60].

Our study shows that the derivatives of the EM FFs
involve two dynamical scales. The first derivative is gov-
erned by the scale 1/M2

V , while higher derivatives are
governed by the scale 1/(4M2

π) � 1/M2
V and there-

fore appear unnaturally large. The rich structure attests
to the fact that, through analyticity and the dispersion
relations, the FFs of the nucleon are connected to its
hadronic couplings and excitation spectrum and reflect
the multiple dynamical scales characterizing the latter.
The unnatural size of the higher derivatives should be
taken into account in the analysis of low-Q2 elastic scat-
tering data and the extraction of the proton charge ra-
dius. The DIχEFT calculations provide an explicit real-
ization of this general feature, including numerical esti-
mates of the higher derivatives, and can guide the empir-
ical analysis. An analysis incorporating theoretical con-
straints from DIχEFT is in progress [57].

The DIχEFT FF calculations described here could be
extended in several directions. The method could be ap-
plied to the N–∆ transition FFs as well as the EM FFs
of the ∆ itself, which are defined rigorously in the con-
text of S–matrix theory (as poles in the N → πN and
πN → πN EM transition amplitudes) and have been
studied in relativistic χEFT [61, 62]. The method could
also be applied to nucleon FFs of other G-parity-even op-
erators, such as the energy-momentum tensor or higher
moments of the GPDs. Finally, one might contemplate
extending the DIχEFT approach to nucleon FFs of G-
parity odd operators with a 3-pion cut, using methods of
3-body elastic unitarity that are presently being devel-
oped for the analysis of meson decays and LQCD calcu-
lations [63, 64].

The present study demonstrates the potential of χEFT
to yield fully predictive results for conventional nucleon
structure observables. The same approach can be applied
to hadronic structure elements appearing in searches for
Physics Beyond the Standard Model; see e.g. Refs. [65–
67].
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FIG. 10. DIχEFT predictions for the proton and neutron electric and magnetic FFs, obtained with the twice-subtracted
dispersion relation for the isovector FF, Eq. (23), and the empirical parametrization of the isoscalar FF Eq. (14). The results
are compared to the experimental data of the A1 Collaboration [1, 2] and the LQCD results from the ETM Collaboration [52].
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Appendix A: J functions in χEFT

In this appendix we list the χEFT expressions for the
real functions J1

±(t), Eq. (9), which appear in the N/D
representation of the elastic unitarity condition and are
used in the analytical and numerical studies described in
the text. In the following 4M2

π < t < 4m2
N , and

kcm =
√
t/4−M2

π , p̃cm =
√
m2
N − t/4, (A1)

are, respectively, the physical pion CM momentum and
the unphysical nucleon CM momentum in the ππ → NN̄
process. The functions resulting from the Weinberg-
Tomozawa contact term (Fig. 1b) and the N Born term
(Fig. 1a) are

J+
1 (t)[LO, cont] =

mN

24πf2
π

, (A2)

J−1 (t)[LO, cont] =

√
2

24πf2
π

, (A3)

J+
1 (t)[LO, N ] =

g2
Am

3
NA

2
N

16πf2
π p̃

3
cm k3

cm

(− arctanxN + xN )

− g2
AmN

24πf2
π

, (A4)

J−1 (t)[LO, N ] =

√
2 g2

Am
2
NA

2
N

32πf2
π p̃

3
cm k3

cm

×[(x2
N + 1) arctanxN − xN ]

−
√

2 g2
A

24π f2
π

, (A5)
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AN ≡ t/2−M2
π , (A6)

xN ≡
2kcmp̃cm

AN

=
2
√
t/4−M2

π

√
m2
N − t/4

t/2−M2
π

. (A7)

The contributions of the ∆ Born term (Fig. 1c) are

J1
+(t)[LO,∆] =

h2
AA∆(2p̃ 2

cmF −A∆mNG)

192πf2
π p̃

3
cmk

3
cm

×(arctanx∆ − x∆)

+
h2
AD∆+

432πf2
πm

2
∆

, (A8)

J1
−(t)[LO,∆] =

√
2h2

AA
2
∆G

384πf2
π p̃

3
cmk

3
cm

×
[
(x2

∆ + 1) arctanx∆ − x∆

]
+

√
2h2

AD∆−

864πf2
πm

2
∆

, (A9)

A∆ ≡ t/2−M2
π +m2

∆ −m2
N , (A10)

x∆ ≡
2kcmp̃cm

A∆

=
2
√
t/4−M2

π

√
m2
N − t/4

t/2−M2
π +m2

∆ −m2
N

. (A11)

The functions F and G appearing in the first terms of
Eqs. (A8) and (A9) are [15]

F ≡ α(m∆ +mN ) +
β

3
(m∆ −mN ), (A12)

G ≡ −α+
β

3
, (A13)

α ≡ t

2
−m2

N +
(m2

∆ +m2
N −M2

π)2

4m2
∆

, (A14)

β ≡
(
mN +

m2
∆ +m2

N −M2
π

2m∆

)2

; (A15)

they are the invariant amplitudes of πN scattering at
t > 4M2

π and s = m2
∆ in the conventions of Ref. [60].

The functions D∆+ and D∆− appearing in the second
terms in Eqs. (A8) and (A9) are

D∆+ = m3
N + 2m2

Nm∆ +mNm
2
∆ −mNM

2
π

+ (mN −m∆)t, (A16)

D∆− = −10m2
N − 4mNm∆ + 2m2

∆

− 2M2
π + 5t. (A17)

The J functions resulting from the N and ∆ Born
terms have logarithmic left-hand cuts starting at

N : t < 4M2
π −M4

π/m
2
N

∆: t < 4M2
π − (m2

∆ −m2
N +M2

π)2/m2
∆

}
. (A18)

The singularity results from the intermediate baryon lines
going on mass shell and corresponds to the left-hand
cut of the ππ → NN̄ PWA. The singularity is con-
tained in the inverse tangent functions in Eqs. (A4), (A5),
(A8), and (A5), which have logarithmic branch points
at x2

N,∆ = ±i. The J functions do not have a right-

hand cut at t > 4M2
π , in accordance with their definition

within the N/D method, Eqs. (9) and (10). While the
expressions in Eqs. (A4), (A5), (A8), and (A9) contain
prefactors with inverse powers of kcm, they are in fact
regular in the limit kcm → 0, because the expressions in
parentheses/brackets depending on xN or x∆ vanish in
the limit, xN,∆ = O(kcm). Further properties of the J
functions are discussed in Ref. [15].

The masses and coupling constants used in evaluating
the LO expressions are the standard values for the SU(2)
flavor group [15]: Mπ = 139 MeV, fπ = 93 MeV,mN =
939 MeV, gA = 1.27, and m∆ = 1232 MeV, hA = 2.85.

The contributions of the NLO contact term in the πN
amplitude are

J+
1 (t)[NLO, cont] =

c4t

24π f2
π

, (A19)

J−1 (t)[NLO, cont] =

√
2mNc4
6π f2

π

. (A20)

The value of the LEC c4, determined by the procedure
described in Sec. II C, is given in Eq. (11).

Appendix B: Higher derivatives of proton electric
form factor

For reference we present in Table VI our numerical
estimates of the higher moments of the proton electric
FF, obtained by combining the DIχEFT calculation of
the isovector moments with the empirical estimate of the
isoscalar moments based on Eq. (14). While individual
higher moments have little physical significance and can-
not realistically be extracted from the data, the order-of-
magnitude and collective behavior of our results could be
compared with the patterns observed in fits to FF data
[1, 2, 25–30, 56].
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GpE
LO NLO NLO+N2LO

〈r4〉 (fm4) (2.09, 2.48) (2.00, 2.53) (1.16, 1.70)

〈r6〉 (fm6) (10.8, 11.7) (10.5, 11.8) (7.59, 9.00)

〈r8〉 (102 fm8) (1.44, 1.48) (1.42, 1.49) (1.21, 1.29)

〈r10〉 (103 fm10) (4.21, 4.24) (4.18, 4.26) (3.86, 3.94)

〈r12〉 (105 fm12) (2.13, 2.13) (2.12, 2.14) (2.02, 2.04)

〈r14〉 (107 fm14) (1.60, 1.61) (1.60, 1.61) (1.55, 1.56)

〈r16〉 (109 fm16) (1.66, 1.66) (1.66, 1.67) (1.61, 1.62)

〈r18〉 (1011 fm18) (2.25, 2.25) (2.25, 2.26) (2.20, 2.21)

〈r20〉 (1013 fm20) (3.86, 3.86) (3.85, 3.87) (3.79, 3.80)

〈r22〉 (1015 fm22) (8.15, 8.15) (8.13, 8.16) (8.00, 8.03)

〈r24〉 (1018 fm24) (2.08, 2.08) (2.07, 2.08) (2.04, 2.05)

〈r26〉 (1020 fm26) (6.28, 6.28) (6.27, 6.28) (6.18, 6.20)

〈r28〉 (1023 fm28) (2.22, 2.22) (2.22, 2.22) (2.19, 2.20)

〈r30〉 (1025 fm30) (9.11, 9.11) (9.09, 9.11) (8.99, 9.01)

〈r32〉 (1028 fm32) (4.27, 4.27) (4.27, 4.28) (4.22, 4.23)

〈r34〉 (1031 fm34) (2.28, 2.28) (2.27, 2.28) (2.25, 2.26)

〈r36〉 (1034 fm36) (1.37, 1.37) (1.37, 1.37) (1.35, 1.36)

〈r38〉 (1036 fm38) (9.20, 9.20) (9.19, 9.21) (9.10, 9.12)

〈r40〉 (1039 fm40) (6.88, 6.88) (6.87, 6.89) (6.81, 6.83)

TABLE VI. Higher-order moments of GpE , obtained by com-
bining the DIχEFT calculation of the isovector derivatives
with an empirical estimate of the isoscalar derivatives.
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