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We report on the first global QCD analysis of the quark transversity distributions in the nucleon
from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on
nested sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous
fit to the available SIDIS Collins asymmetry data is compatible with gT values extracted from a
comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses which found
significantly smaller gT values. The contributions to the nucleon tensor charge from u and d quarks
are found to be δu = 0.3(2) and δd = −0.7(2) at a scale Q2 = 2 GeV2.

Introduction. Along with the unpolarized (f1) and
helicity-dependent (g1) parton distribution functions
(PDFs), the transversity distribution (h1) completes the
full set of PDFs that characterize the collinear structure
of the nucleon at leading twist. While considerable in-
formation has been accumulated on the first two distri-
butions from several decades of deep-inelastic scattering
(DIS) and other high-energy scattering experiments [1–
4], comparitively little is known about the transversity
PDFs. The transversity PDF, hq1(x), gives the distribu-
tion of a transversely polarized quark q carrying a mo-
mentum fraction x in a transversely polarized nucleon,

and its lowest moment, δq ≡
∫ 1

0
dx[hq1(x) − hq̄1(x)], gives

the nucleon’s tensor charge for quark q [5–11]. In addi-
tion to providing fundamental information on the quark
spin structure of the nucleon, the tensor charge also
plays an important role in constraining hadronic physics
backgrounds in probes of physics beyond the Standard
Model [12–14].

Compared with the chiral-even f1 and g1 PDFs,
the experimental exploration of the chiral-odd h1 is
considerably more involved, requiring the coupling of
the transversity distribution to another chiral-odd func-
tion [6]. Observables sensitive to transversity include the
Collins single-spin asymmetries in semi-inclusive deep-
inelastic scattering (SIDIS), where h1 couples to the
chiral-odd Collins fragmentation function (FF) H⊥1 [15],
while two Collins FFs generate an azimuthal asymmetry
in two-hadron production in e+e− annihilation [16].

Several previous analyses have attempted to extract
the transverse momentum dependent (TMD) transver-
sity distributions, from both SIDIS and e+e− data.
Anselmino et al. [17–19] used a factorized Gaussian
ansatz to relate the TMD distributions to the hq1 PDFs,
while Kang et al. [20, 21] used the TMD evolution formal-
ism [22]. Anselmino et al. [17–19] and Kang et al. [20, 21]
parametrized collinear hq1(x) in terms of the sum of un-

polarized and helicity distributions at the initial scale.
Working within the collinear factorization framework,
Bacchetta et al. [23, 24] also extracted transversity PDFs
from pion-pair production in SIDIS using dihadron FFs
from e+e− annihilation data. These analyses gave values
for the isovector moment gT ≡ δu− δd in the range 0.5–
1, with sizeable (30%–50%) uncertainties. In all these
studies, the experimental coverage was restricted to the
region 0.02 . x . 0.3, so that the determination of the
full moment required extrapolation outside the measured
region.

Complementing the challenging empirical extractions
of transversity, first-principles lattice QCD calculations
can provide additional information on the nucleon trans-
verse spin structure. While recent breakthroughs in
quasi-PDFs have allowed the first direct lattice compu-
tations of the x dependence of transversity [25, 26], cal-
culations of moments of the isovector hq1 PDF are more
developed, with a number of simulations of gT having
been performed [27–33] at physical pion masses and with
multiple lattice spacings and volumes to control lattice
artifacts. These calculations have observed no significant
contamination from excited states, and very mild volume
and lattice-spacing dependence, making gT a “golden”
channel in lattice nucleon-structure studies. Curiously,
however, all the simulations give values of gT close to
unity, in contrast to the phenomenological results, which
generally favor smaller values [10, 21]. This prompts the
question whether the systematic differences between the
lattice and phenomenological results suggest a real ten-
sion between the two. From the uncertainties found by
Kang et al. [21], for example, one would conclude that,
after inclusion of data from the future SoLID experiment
at Jefferson Lab [10], the phenomenological values of gT
would be incompatible with lattice at more than 5σ CL.

In this paper we address the question of whether
the experimental data on transversity are compatible
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with the lattice gT results — whether there indeed is
a “transverse-spin puzzle” — by using the lattice data
on gT as an additional constraint on the transversity
PDFs in the global QCD analysis. We implement several
important improvements over previous analyses, making
use of a more robust fitting methodology based on Monte
Carlo sampling methods. Specifically, we use the nested
sampling algorithm [34–36], which maps the likelihood
function into a Monte Carlo-weighted parameter sam-
ple and allows a rigorous determination of PDF uncer-
tainties. This approach improves the fitting methodol-
ogy employed in Refs. [20, 21] by allowing more flex-
ible parametrizations of the initial conditions of the
transversity and Collins FFs. Similar Monte Carlo-based
methods have been used recently to analyze collinear
PDFs [37, 38] and FFs [38, 39] but have never been ap-
plied to TMD distributions.

Lattice QCD. To begin with, we revisit the existing
lattice QCD simulations of gT to obtain a reliable aver-
aged data point that can be used to constrain the global
QCD analysis. One challenge is that the various lat-
tice calculations typically estimate systematic uncertain-
ties differently, making it problematic to simply average
the reported values. We instead combine the available
dynamical-calculation data, using only simulations with
multiple lattice spacings, volumes and quark masses, and
use several procedures to ensure that the final uncertain-
ties are not underestimated.

There are 3 available data sets that meet these cri-
teria: the PNDME results [27] with Nf = 2 + 1 +
1 (light-quark + strange + charm) flavors; the RQCD
data [32] with Nf = 2; and the LHPC set [29] with
Nf = 2+1. Cuts on the data are imposed for pion masses
m2
π < 0.12 GeV2 and for mπL > 3, where L3 is the

lattice volume, to control the chiral and infinite-volume
extrapolations. Since all the lattice simulations show
mild dependence on the volume and lattice spacing a, the
simplest approach is to extrapolate gT considering only
the mπ dependence. Extrapolating the data either lin-
early in m2

π or including chiral logarithms (∼ m2
π lnm2

π),
as predicted from chiral effective theory [40, 41], gives
glatt
T = 1.006(22).

To further include uncertainties from taking the con-
tinuum limit, we assign a different lattice discretiza-
tion extrapolation coefficient for each of the simula-
tions [27, 29, 32]. To account for the different actions,
we use O(a) for the PNDME and LHPC results, and
O(a2) for RQCD. For the volume dependence, we con-
sider both emπL and m2

πe
mπL forms. Taking all possible

combinations then gives 12 distinct fitting formulas for
the continuum extrapolation of gT . The results of these
fits are combined using the Akaike information criterion
AIC = 2k+χ2, where k is the number of free parameters
in the fit and χ2 is the minimum sum of squared fit resid-
uals. Each fit is weighted by the factor wi = Pi/(

∑
j Pj),

where Pj = exp[−(AICj − min AIC)/2], which yields

glatt
T = 1.008(56).
Another approach is to average the lattice data us-

ing methods advocated by the Flavor Lattice Averaging
Group (FLAG) [42]. However, given that most extrapo-
lations of nucleon matrix elements do not explicitly con-
trol systematics due to finite volume and nonzero lattice
spacing, such an averaging will be dominated by those
groups with the most optimistic systematic-uncertainty
estimates. We, therefore, extrapolate each group’s data
using a single, universal formula, assuming linear depen-
dence on m2

π, emπL and a (or a2), and then perform a
weighted analysis as in the FLAG approach. The result
is glatt

T = 1.00(5), which is consistent with the above esti-
mate. To be conservative, we take the larger uncertainty,
glatt
T = 1.01(6), as the final averaged value to be used in

the global QCD analysis.
Collins asymmetry. For the experimental data used in

our analysis, we consider the sin(φh + φs) modulation of
the differential SIDIS cross section, or Collins asymmetry,

A
sin(φh+φs)
UT =

2(1− y)

1 + (1− y)2

F
sin(φh+φs)
UT

FUU
, (1)

where φh and φs are the azimuthal angles for the trans-
verse momentum of the produced hadron h and the nu-
cleon spin vector with respect to the lepton plane, and y
is the fractional energy loss of the incident lepton. The

structure functions FUU and F
sin(φh+φs)
UT are functions of

the Bjorken variable x = Q2/2P · q, the hadron momen-
tum fraction z = P · Ph/P · q, and the hadron trans-
verse momentum Ph⊥, where P , Ph and q are the four-
momenta of the target, produced hadron, and exchanged
photon, respectively, and Q2 = −q2. At low transverse
momenta, Ph⊥ � Q, these can be written as convolu-
tions of the unpolarized fq1 TMD PDF and unpolarized

D
h/q
1 TMD FF, and the TMD transversity PDF hq1 and

H
⊥h/q
1 (Collins) FF, respectively,

FUU = C
[
f1 ⊗D1

]
, (2)

F
sin(φh+φs)
UT = C

[
ĥ · p⊥
zmh

⊗ h1 ⊗H⊥1
]
, (3)

where C is the standard TMD convolution operator [43],

ĥ is a unit vector along Ph⊥, and p⊥ the transverse mo-
mentum of hadron h with respect to the fragmenting
quark.

The TMD PDFs depend on x and the parton trans-
verse momentum k⊥, while the FFs depend on z and
p⊥, with their Q2 dependence governed by the Collins-
Soper evolution equations [22, 44]. The existing data
on Collins asymmetries have very mild dependence on
Q2 and are compatible with no evolution [21, 45]. For
the parametrization of the unpolarized and transversity
TMD PDFs we follow Refs. [17–19] in adopting a factor-
ized form,

fq(x, k2
⊥) = fq(x) Gqf (k2

⊥), (4)
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where the generic function fq = fq1 or hq1, and the k2
⊥

dependence is given by a Gaussian distribution,

Gqf (k2
⊥) =

1

π〈k2
⊥〉

q
f

exp

[
− k2

⊥
〈k2
⊥〉

q
f

]
. (5)

The transverse widths 〈k2
⊥〉qf are flavor dependent, and

in general can be functions of x, although in this analy-
sis we assume their x dependence is negligible. For the
TMD FFs, the unpolarized distribution is parametrized
analogously,

D
h/q
1 (z, p2

⊥) = D
h/q
1 (z) Gh/qD1

(p2
⊥), (6)

while the Collins FF involves an additional z-dependent
weight factor,

H
⊥h/q
1 (z, p⊥) =

2z2m2
h

〈p2
⊥〉

h/q

H⊥
1

H
⊥(1)
1h/q(z) G

h/q

H⊥
1

(p2
⊥). (7)

The p2
⊥ dependence of the functions Gh/qD1

and Gh/q
H⊥

1
is

assumed to be Gaussian, in analogy with (4), with the
average 〈p2

⊥〉h/q independent of z. The z dependence
of the Collins FF is parametrized in terms of its p2

⊥-

weighted moment, H
⊥(1)
1h/q(z) [21]. Using the TMD PDFs

and FFs in Eqs. (4)–(7), the P 2
h⊥ dependence in the

structure functions can then be written in the form
exp

(
−P 2

h⊥/〈P 2
h⊥〉

h/q
f,D

)
, where 〈P 2

h⊥〉qf,D = z2〈k2
⊥〉qf +

〈p2
⊥〉

h/q
D .

Phenomenology. Our global analysis fits SIDIS π± pro-
duction data from proton and deuteron targets, includ-
ing their x, z and Ph⊥ dependence, with a total of 106
data points from measurements at HERMES [46] and
COMPASS [47, 48]. This gives 4 linear combinations of
transversity TMD PDFs and Collins TMD FFs for dif-
ferent quark flavors, from which we extract the u, d and
antiquark transversity PDFs (from 4 x-dependent combi-
nations) and the favored and unfavored Collins FFs (from
4 z-dependent combinations), together with their respec-
tive transverse momentum widths (from the Ph⊥ depen-
dence). We do not include lower-energy Collins asym-
metry data from Jefferson Lab on 3He nuclei because of
concerns about the separation of the current and target
fragmentation regions at relatively low energies [49].

In selecting the data to be used in the fit, we place
several kinematic cuts on the z, Ph⊥ and Q2 dependence
to ensure the data are matched with the appropriate the-
ory. to isolate samples where the theoretical framework
used in this analysis is applicable. To stay within the
current fragmentation region, only data for z > 0.2 are
included, and to avoid contamination from vector-meson
production and soft-gluon effects, we exclude the region
above z = 0.6. For the Ph⊥ dependence, we exclude the
regions where Ph⊥ is very small (Ph⊥ > 0.2 GeV) or very
large (Ph⊥ < 0.9 GeV): the former to avoid issues with

acceptance for the lowest-Ph⊥ bin of the HERMES mul-
tiplicity data, and the latter to ensure the applicability of
the Gaussian assumption, without the need for introduc-
ing the Y -term [49]. To stay above the charm threshold,
the photon virtuality is taken to be above Q2 > m2

c .

Because the existing SIDIS Collins asymmetry data
have a rather small Q2 range, and Q2 evolution effects
tend to cancel in ratios, empirically, there is no clear in-
dication of scale dependence in the Collins asymmetries.
It is a reasonable approximation, therefore, to neglect the
Q2 dependence in the transversity and Collins functions

in the F
sin(φh+φs)
UT structure function, and freeze the scale

in the unpolarized fq1 and Dq
1 distributions in FUU at a

value Q2 = 2 GeV2 that is typical of the SIDIS data. (In
contrast, since e+e− data are taken at higher energies,
neglecting the scale dependence between the e+e− and
SIDIS measurements would not be a good approxima-
tion. To avoid introducing uncontrolled errors from not
including the full TMD evolution where its effects may
be important, we do not fit the e+e− Collins asymmetry
data in the present analysis.)

In determining the transversity TMDs hq1(x, k2
⊥), we

parametrize the x dependence by the form hq1(x) =
Nqx

aq (1 − x)bq for each of the flavors q = u, d and q̄,

assuming a symmetric sea, hū1 = hd̄1 = hs1 = hs̄1, and use
isospin symmetry to relate the distributions in the proton
and neutron. For the Collins π± distributions, we use a
similar functional form to parametrize the z dependence

of the favored H
⊥(1)
1 (fav) ≡ H

⊥(1)
1π+/u = H

⊥(1)

1π+/d̄
FFs and the

unfavored H
⊥(1)
1(unf) FFs for {d, ū, s, s̄} → π+, with the dis-

tributions for π− related by charge conjugation. For the
x dependence of the spin-averaged fq1 distributions we
use the CJ15 leading-order parametrization [50], while
for the z depedence of Dq

1, we utilize the leading-order
DSS fit [51].

For the transverse-momentum widths 〈k2
⊥〉qf of the

TMD PDFs fq1 and hq1, two Gaussian widths are used,
one for the valence type (q = u, d) and one for the sea-
quark type (q = ū, d̄, s, s̄) functions. Similarly, for the

TMD FFs two Gaussian widths for 〈p2
⊥〉

h/q
D are used, for

the favored and unfavored type of FF. In total, we there-
fore have 23 parameters to be extracted from data, 19

of which describe F
sin(φh+φs)
UT and 4 the transverse part

of FUU . To determine the latter, we perform an inde-
pendent fit to the HERMES π± multiplicity data [52],
which include 978 data points that survive the same cuts

as employed for A
sin(φh+φs)
UT .

Using the nested sampling MC algorithm [34–36], we
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compute the expectation value E[O] and variance V[O]

E[O] =

∫
dnaP(a|data)O(a) '

∑
k

wkO(ak), (8a)

V[O] =

∫
dnaP(a|data)

(
O(a)− E[O]

)2
'
∑
k

wk
(
O(ak)− E[O]

)2
(8b)

for each observable O (such as a TMD or a function of
TMDs) in our analysis, which is a function of the n-
dimensional vector parameters a with probability den-
sity P(a|data) [39]. Using Bayes’ theorem, the latter is
given by

P(a|data) =
1

Z
L(data|a)π(a), (9)

where π(a) is the prior distribution for the vector param-
eters a, and

L(data|a) = exp

[
−1

2
χ2(a)

]
(10)

is the likelihood function. The quantity Z =∫
dnaL(data|a)π(a) is called the Bayesian evidence.

The nested sampling algorithm evaluates Z by construct-
ing a set of MC samples {ak} with weights {wk}. These
MC samples are then used to evaluate Eqs. 8 In our anal-
ysis we use a flat prior for the nested sampling.

The results of the fit indicate good overall agree-
ment with the Collins π+ and π− asymmetries, as il-
lustrated in Fig. 1, for both HERMES [46] and COM-
PASS [47, 48] data, with marginally better fits for the
latter. In most cases the uncertainty bands for the SIDIS-
only and SIDIS+lattice fits are very similar, with slightly
broader bands for the deuterium data compared with
the proton. The χ2/datum values for the π+ and π−

data are 28.6/53 and 40.4/53, respectively, for a total of
68.9/106 ≈ 0.65. The slightly larger χ2 for π− stems
from 2–3 outlier points in the x and z spectra, as evident
in Fig. 1. The SIDIS-only fit is almost indistinguishable,
with χ2

SIDIS = 69.2. Clearly the results do not indicate
any tension between the SIDIS data and lattice QCD
calculations of gT , nor any “transverse spin problem”.

The resulting transversity PDFs hu,d1 and Collins fa-
vored and unfavored FFs, H⊥1(fav) and H⊥1(unf), are plot-
ted in Fig. 2 for the q = u, d flavors, for both the SIDIS-
only and SIDIS+lattice fits. The positive (negative) sign
for the u (d) transversity PDF is consistent with pre-
vious extractions, and correlates with the same sign for
the Collins FFs in the region of z directly constrained
by data. The larger magnitude of hd1 compared with hu1
reflects the larger magnitude of the (negative) π− asym-
metry than the (positive) π− asymmetry. At lower z
values, outside the measured region, the uncertainties on
the Collins FFs become extremely large. Interestingly,
inclusion of the lattice gT datum has very little effect
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FIG. 1. Comparison of the full SIDIS+lattice fit with the
π+ (filled circles) and π− (open circles) Collins asymmetries

A
sin(φh+φs)
UT from HERMES [46] and COMPASS [47, 48] (in

percent), as a function of x, z and Ph⊥ (in GeV).
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FIG. 2. Transversity PDFs hu,d1 (x) and favored zH
⊥(1)

1(fav) and

unfavored zH
⊥(1)

1(unf) Collins FFs for the SIDIS+lattice fit (red

and blue bands) at Q2 =2 GeV2, compared with the SIDIS-
only fit uncertainties (yellow bands). The range of direct ex-
perimental constraints is indicated by the gray dashed hori-
zontal lines.

on the central values of the distributions, but signifi-
cantly reduces the uncertainty bands. The fitted anti-
quark transversity is consistent with zero, within rela-
tively large uncertainties, and is not shown in Fig. 2.

For the transverse momentum widths, our analysis of
the HERMES multiplicities [52] gives a total χ2/datum of
1079/978, with 〈k2

⊥〉qf1 = 0.59(1) GeV2 and 0.64(6) GeV2

for the unpolarized valence and sea quark PDF widths,

and 〈p2
⊥〉

π/q
D1

= 0.116(2) GeV2 and 0.140(2) GeV2 for the
unpolarized favored and unfavored FF widths. The above
values are compatible with those found in the analysis
by Anselmino et al. [53] of HERMES and COMPASS
charged hadron multiplicities. On the other hand, the
similar values for the sea and valence PDF widths found
here disagree with the chiral soliton model predictions
from Ref. [54], for which the sea to valence ratio is ∼ 5.

The transverse momentum widths for the valence and
sea transversity PDFs are 〈k2

⊥〉qh1
= 0.5(2) GeV2 and

1.0(5) GeV2, respectively, and 〈p2
⊥〉

π/q

H⊥
1

= 0.12(4) GeV2
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FIG. 3. (a) Contour plot of δu and δd samples from the Monte
Carlo analysis, for the SIDIS only (blue) and SIDIS+lattice
(red) analysis. The expectation values and 1σ uncertain-
ties for both fits are indicated by the respective error bars.
(b) Normalized yields from the Monte Carlo analysis of the
isovector tensor charge gT , for the SIDIS-only (yellow his-
tograms) and SIDIS+lattice (red histograms) analyses.

and 0.06(3) GeV2 for the favored and unfavored Collins
FF widths, respectively. The relatively larger uncertain-
ties on the h1 andH⊥1 widths compared with the unpolar-
ized widths reflect the higher precision of the HERMES
multiplicity data, and the order of magnitude smaller
number of data points for the Collins asymmetries.

Integrating the transversity PDFs over x, the result-
ing normalized yields from our Monte Carlo analysis for
the δu and δd moments is shown in Fig. 3, together with
the isovector combination gT . The most striking fea-
ture is the significantly narrower peaks evident when the
SIDIS data are supplemented by the lattice glatt

T input.
The u and d tensor charges, for example, change from
δu = 0.3(3) → 0.3(2) and δd = −0.6(5) → −0.7(2) at
the scale Q2 = 2 GeV2, while the reduction in the un-
certainty is even more dramatic for the isovector charge,
gT = 0.9(8) → 1.0(1). The earlier analysis of SIDIS
data by Kang et al. [21] quotes δu = 0.39(11) and
δd = −0.22(14), with gT = 0.61(25) at Q2 = 10 GeV2,
which approximately coincides with the values at the
peaks of the SIDIS-only yields in Fig. 3. The improved
Monte Carlo methodology employed in our analysis gives
a more realistic representation of the expectation values
and uncertainties, revealing clear compatibility between
the SIDIS data and lattice results.

Future extensions of this work will explore incorpo-
rating TMD evolution via the CSS framework [22, 55],
and improved treatment of the large-Ph⊥ contributions
through the addition of the Y -term [49]. Inclusion of K±

SIDIS and e+e− annihilation data will allow further sepa-
ration of sea quark flavor contributions to h1 and better
constraints on the favored and unfavored Collins FFs.
Upcoming high-precision data from Jefferson Lab should
also provide significantly improved kinematical coverage
at intermediate x and z values.
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