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ABSTRACT

R&D OF A HIGH-PERFORMANCE DIRC DETECTOR FOR A
FUTURE ELECTRON-ION COLLIDER

Stacey Lee Allison
Old Dominion University, 2017

Director: Dr. Charles Hyde

An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built

in the United States, costing over $1 billion in design and construction. Each detector

concept for the electron/ion beam interaction point is integrated into a large solenoidal

magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in

the barrel region of the solenoid has pushed research and development (R&D) towards a

new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector

design. The passage of a high energy charged particle through a fused silica bar of the DIRC

generates optical Cherenkov radiation. A large fraction of this light propagates by total

internal reflection to the end of the bar, where the photon trajectories expand in a large

volume before reaching a highly segmented photo-detector array. The spatial and temporal

distribution of the Cherenkov light at the photo-detector array allows one to reconstruct

the angle of emission of the light relative to the incident charged particle track. In order to

reach the desired performance of 3σ π/K separation at 6 GeV/c particle momentum a new

3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed

to have a nearly flat focal plane. In order to validate the EIC DIRC simulation package, a

synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA

Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN

test beam data, measurements of the focal plane of the 3-layer lens were performed using a

custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum

crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic

University of America. Results of these test-bench experiments and the analysis of the 2015

CERN test beam data are presented here.
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CHAPTER 1

INTRODUCTION

The Electron-Ion Collider (EIC) is planned as the Department of Energy’s next big

nuclear physics facility to be built in the Unite States. It will be the world’s first collider

with polarized electron and ion beams, as well as having the capability of delivering beams of

heavier, unpolarized ions. Electron beam energies reaching 2− 21 GeV/c and proton beam

energies up to 250 GeV/c necessitate a sophisticated 4π detector.

Excellent hadronic particle identification (PID) not only at the end-caps but also in the

barrel region around the beam-beam interaction point is crucial for the success of the physics

program of an EIC. For the end-caps there is ample space for Ring Imaging Cherenkov

(RICH) detectors which have been shown to provide excellent PID for large momentum par-

ticles, however, due to the limited space available in the barrel region a different approach

must be taken. A modified RICH detector, known as a DIRC (Detection of Internally Re-

flected Cherenkov light) [1] is an attractive solution for PID of particles with large transverse

momentum transfer as it occupies less than 5 cm of radial space while still providing excellent

PID performance, as shown by the performance of the BaBar barrel DIRC [2].

Although based on the design of BaBar’s barrel DIRC, a DIRC at an EIC presented

many challenges in reaching the required π/K separation power of 3σ at 6 GeV/c particle

momentum. A more compact expansion volume necessitated the design of a new 3-layer

spherical lens focusing optic to improve resolution. Testing of this new lens installed in a

prototype DIRC detector was done in a particle beam at the CERN Proton Synchrotron

(PS) to test and compare the performance of the 3-layer lens design with other focusing and

radiator options.

Along with performance in a particle beam the new lens was also subjected to radiation

hardness tests using a 160 keV X-ray source to determine the durability of the lanthanum

crown glass used for the middle layer of the lens. The “flat” focal plane of a prototype lens

was also measured and compared to simulation prediction.
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CHAPTER 2

ELECTRON-ION COLLIDER

It has been known for nearly a century that neutral atoms are composed of Z electrons

and a nucleus containing Z protons and N neutrons. It took another 50 years for Murray

Gell-Mann and George Zweig to independently develop a model proposing that nucleons

themselves are made up of constituent components, called quarks, bound together by the

exchange of gluons [3]. This led to the development of the fundamental theory of the strong

interaction, known as Quantum Chromo-Dynamics (QCD) [4]. It is now a strong goal of

the nuclear physics community to understand the interactions of quarks and gluons and

how those interactions make manifest both nucleons themselves, which account for nearly

all the mass of the visible matter in the universe, as well as the nucleons’ spin, mass, mag-

netic moment, and nuclear binding energy. Because of the well-known properties of the

electromagnetic interaction, electron scattering is an ideal process for such studies.

Although it would theoretically be possible to study these properties using fixed-target

electron beam experiments, it is three-fold prohibitive: (a) it is much more costly to construct

an accelerator to accelerate electrons to the necessary momentum (on the order of TeV)

than to build a collider, (b) it is more difficult and complicated to do transverse nucleon

polarization studies with a fixed target due to the nature of the required magnetic fields,

and (c) it is very difficult to study the target fragments of a fixed target reactions due to the

lower energy of the final state products, whereas in a collider the fragments will be boosted

in the same direction as the ion beam. In the 2007 Nuclear Science Advisory Committee’s

(NSAC) Long-Range Plan, research and development of an Electron-Ion Collider (EIC) was

given priority [5]. In the 2015 NSAC Long-Range Plan an EIC was endorsed and deemed a

priority as the next major facility to be built in the United States [6].

The EIC will not be the first facility to have the capability of colliding electrons and

positrons with protons. The HERA accelerator in Hamburg, Germany was the world’s first

electron-proton collider, reaching electron energies of up to 28 GeV and protons to nearly 1

TeV with a luminosity on the order of 1031 cm−2 s−1 before shutting down in 2007. Figure

1 shows the combined H1 and Zeus experimental data from HERA for the measurement

of the structure function for positron-proton scattering along with fixed target data for a
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wide range of both x, the Bjorken scaling variable, and Q2, the square of the quark four-

momentum transfer [7]. The structure function quantifies the distribution of longitudinal

momentum fraction x, at the resolution scale 1/Q2. Note that here x is the Bjorken variable

and not the quark momentum fraction, given by

X =
q0 + qz

P 0 + P z
(1)

where q and P are the quark and proton four-momentum respectively. In DIS, however, given

the hypothesis of a free scattering on quarks with mass m2
q � 1 implies that X → x = Q2

2p·P .

The EIC hopes to improve upon the already rich science produced at HERA threefold:

(a) by increasing the luminosity of the accelerator to on the order of 1034 cm−2 s−1, (b)

by allowing for the use of ion beams from deuterium to uranium, and (c) by allowing for

both transversely and longitudinally polarized beams of electrons and light ions. With these

improvements the EIC will be able to look into hadronic initial and final states with much

greater detail than previous experiments.

2.1 SCIENCE GOALS

The goal of an EIC is to discover the mechanisms by which QCD is responsible for

the structure and dynamics of nucleons, the nature of the nucleon-nucleon force, and the

universal features of the gluon distributions at high density in the proton at low x.

2.1.1 NUCLEON SPIN

One major question still challenging nuclear physicists is “What is the origin of the

nucleon spin?”. In the 1980s the naive answer was that the total nucleon spin was the sum

of the spin of its three valance quarks, but many years of experimentation has revealed that

it is much more complicated (Fig. 2), with the contributions both from quark and gluon

spin and orbital angular momentum still in question. The EIC will be capable of much more

detailed study of the contributions to the nucleon structure by enabling multi-dimensional

projections of the distribution of quarks and gluons in space, longitudinal and transverse

momenta, spin, and flavor.

2.1.2 THE EMC EFFECT

It was first observed by the European Muon Collaboration (EMC), and confirmed by

other experiments that there is a modification between the nucleon structure function, F2,
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FIG. 1: The reduced cross section σr(x,Q
2) as a function of Q2. Filled circles are combined

H1 and Zeus data from HERA for proton-positron collisions, hollow squares are from fixed
target experiments, and the yellow are the Q2 predictions from HERAPDF0.1 [7].

of deuterium to those of heavier elements as a function of Bjorken x [9]. Figure 3 shows the

ratios of the Deep Inelastic Scattering (DIS) cross sections of 3He (top) to Deuterium and
4He (bottom) to Deuterium as examples of this effect. Initial assumptions were that these

cross section ratios would be unity, but measurements have clearly shown a suppression in

this ratio for 0.3 < x < 0.8, the now-called EMC Effect. One can also see an enhancement

of the ratio for 0.1 < x < 0.3 known as anti-shadowing, and the region of x < 0.1 where the

ratio is again suppressed is the shadowing region.

The reason for this modification to the DIS cross section is still a mystery, but the EIC

hopes to shed light on this phenomenon by studying various coherent exclusive reactions,
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FIG. 2: Evolution of our understanding of nucleon spin structure. Left: In the 1980s, a
nucleons spin was naively explained by the alignment of the spins of its constituent quarks.
Right: In the current picture, valence quarks, sea quarks and gluons, and their possible
orbital motion are expected to contribute to overall nucleon spin [8].

such as J/Ψ production via eA→ eAJ/Ψ, which could allow for the quantification of initial

conditions in heavy-ion collisions by mapping out the geometry of the nucleus in high-energy

processes. This mapping can also help to understand other collective dynamics in inelastic

collisions, such as the shadowing and anti-shadowing effects. where multiple nucleons interact

coherently with the probe.

2.1.3 GLUON DISTRIBUTIONS INSIDE NUCLEI

As mentioned above, the EMC effect, the modification of the distribution of quarks in a

nucleus versus their distribution in nucleons, is a known (yet still mysterious) phenomenon.

It is suspected that this modification also occurs for gluons, with experiments such as ALICE

showing evidence for gluon shadowing for x ≈ 10−3 [11]. The EIC hopes to measure this

suppression of the structure functions thanks to its wider range of kinematics both in x

and Q2, allowing not only for the measurement of gluon shadowing (x < 0.05), but also

anti-shadowing (x ≈ 0.1), and possibly the EMC effect for gluons (x > 0.3), shedding light

on the origins of the EMC effect.

2.2 FACILITIES

As of the writing of this thesis there are two competing designs for an EIC facility to
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be built in the United States: a figure-8 accelerator design for Thomas Jefferson National

Accelerator Facility (JLab) (Figure 4), and a LINAC-ring (or ring-ring) accelerator design

for Brookhaven National Lab (BNL) (Figure 5).

The JLab EIC (JLEIC) is planned to be approximately 1.4 km in circumference and have

a footprint of roughly 500 m by 170 m. The design is a ring-ring with electrons and ions

being stored in separate beam lines and collided at two interaction points (IPs) (outlined in

red in Figure 4) on the figure-8. The JLab CEBAF SRF linac will be used as an electron

injector for electrons with 3 - 11 GeV/c momentum. The second ring will store an ion beam

with momentum of 20 to 100 GeV/c for protons, up to 50 GeV/c per nucleon for light to

medium mass N = Z nuclei, and up to 40 GeV/c per nucleon for heavy nuclei. The ion

beams are generated and accelerated in a new ion injector complex with a LINAC plus

figure-8 design that will be utilized to preserve ion polarization. The two main rings will be

stacked vertically in the same underground tunnel [12].

The BNL facility, named eRHIC, will use a new electron beam facility based on an

Energy Recovery LINAC that will be built inside of the Relativistic Heavy Ion Collider

(RHIC) tunnel to collide with RHIC’s pre-existing polarized proton/ion beam. The existing

hadron ring will accelerate protons up to 250 GeV/c, 3He+2 up to 167 GeV/c per nucleon,

and heavier ions (e.g. gold or uranium) up to 100 GeV/c per nucleon. The new electron

ring will be capable of producing electrons from 2 - 21 GeV/c [13]. Figure 5 shows the

current design layout of the eRHIC facility (top) and the Brookhaven eA Solenoidal Tracker

(BeAST) detector proposed for the interaction region (bottom).

2.2.1 PARTICLE IDENTIFICATION REQUIREMENTS AND SOLUTIONS

The large center of mass energies and diverse physics program at an EIC necessitate a very

sophisticated detector suite. The most basic process that the EIC will observe is inclusive

DIS with nearly full reconstruction of the hadronic final state. The ability to accurately

identify hadrons in the final state is therefore a key requirement for the physics program, as

is shown by Figure 6 which shows the momentum distributions of pions and kaons for each

region of interest for typical beam energies for both BNL and JLab.

As can be seen in Figures 4 and 5, the layouts of the two detector concepts for JLab

and BNL are slightly different, but the solutions for PID requirements are very similar. In

the hadron endcap, because of the large final state energies the ideal PID detector would

be a gaseous, mirror-based Ring Imaging Cherenkov (RICH) detector. This will provide

π/K/p separation up to 50 GeV/c momentum. The hadrons produced going towards the
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electron endcap scales in both energy and quantity with the energy of the electron beam

energy. Although the maximum electron beam energies of JLab and BNL differ, PID up

to 10 GeV/c momentum seems to be suitable for both facilities, and so a modular aerogel

RICH detector is currently under development. In the central barrel region the necessary

momentum coverage is not as high as that of the endcaps because the transverse momentum

transfer from the electron beam to the ion beam is generally less than 10 GeV/c. This

smaller momentum range coupled with a smaller space to fit a detector make a detector

based on Detection of Internally Reflected Cherenkov light (DIRC) technology a desirable

choice.

The design and prototype testing of components for a high-performance DIRC detector

is the subject of this thesis and an ideal solution for PID in the EIC barrel region.
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FIG. 3: Two examples of the EMC effect. Top: Ratios of 3He to Deuterium DIS cross
sections from JLab (circles) and HERMES (triangles). Bottom: Ratios of 4He to Deuterium
DIS cross sections from JLab (circles), SLAC (squares), and HERMES (triangles) [10].
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FIG. 4: The top figure is a design of the EIC facility for JLab. The two interaction points (IP)
are highlighted in purple, and the current baseline design for the detector at the left-most
IP is shown at the bottom [14].
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9 m

hadrons

electrons

hadronic calorimeter e/m calorimeters RICH detectors

3T solenoid cryostat GEM trackers

FIG. 5: The top figure is a design of the LINAC-ring option for an EIC facility at BNL. The
proposed BeAST (Brookhaven eA Solenoidal Tracker) detector is shown at the bottom [14].
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        pions 

        kaons

FIG. 6: Momentum distributions for pions (red) and kaons (blue) in the electron endcap
(top), barrel region (middle), and hadron endcap (bottom). Plots were produced using
the pythia simulation package for DIS events corresponding to collisions between 10 GeV
electrons and 100 GeV protons, a common BNL/JLab kinematic, shown for a bin of 10 <
Q2 < 100 GeV2 [14].
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CHAPTER 3

DIRC TECHNOLOGY

DIRC detectors are based on the concept of the Detection of Internally Reflected

Cherenkov light (DIRC) produced in a solid radiator (typically fused silica) to identify

charged particles. It is a special type of Cherenkov counter, which uses the unique properties

of Cherenkov radiation to separate charged particle species.

3.1 CHERENKOV RADIATION

Einstein postulated in his Theory of Relativity that the speed of light in a vacuum, c, is

the limit of the velocity of massive particles. In an optically transparent medium, however,

the speed at which light propagates is modified: cmed = c/n, where n is the index of refraction

of the medium. Pavel Cherenkov discovered in 1934 that massive particles moving through

a medium faster than the speed of light in that medium emit light in the form of now-

called Cherenkov radiation. Cherenkov was able to establish several interesting properties

of this radiation: it is only emitted from charged particles above a certain velocity threshold

v > c/n, the intensity is proportional to the particle’s path length, emission is prompt, and

the light is polarized with a continuous wavelength spectrum. Later, in 1937, Ilya Frank and

Igor Tamm theoretically formulated this radiation with fantastic agreement to Cherenkov’s

findings, and the three shared the 1958 Nobel Prize in Physics for their efforts [15].

Further studies confirmed that Cherenkov radiation is emitted uniformly in azimuth (φc)

around the particle’s direction of travel with the polar opening angle θC defined as

cos θC =
1

βn(λ)
, (2)

where β = vp/c, vp is the particle’s velocity, and the index of refraction is a function of

the emitted photon wavelength. In a typical, dispersive optical medium the opening half-

angle of the shock wave produced by the Cherenkov radiation, ηC defined in Figure 7, is not

complementary to the Cherenkov angle. The relationship between the two is given by

cot ηC =

[
d

dω
(ω tan θC)

]
ω0

=

[
tan θC + β2ωn(ω)

dn

dω
cot θC

]
ω0

(3)
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where ω0 is the central value of the considered frequency range. Because the second term

in (3) is zero only for non-dispersive media the shock wave front is not perpendicular to the

Cherenkov cone in real detectors.

Particle (velocity = ᶔᬁ)

Chere
nko

v p
hoton Shock wavefront

ᶚC ᶙC

FIG. 7: Illustration of the Cherenkov cone [16].

Because particles lose very little energy when radiating Cherenkov photons the emission

is very weak. The number of photons Nphotons emitted per path length L (in cm) by a moving

particle with charge z is given by the Frank-Tamm equation

Nphotons

L
=

α2z2

remec2

∫
sin2 θC(E)dE (4)

where E is the photon energy in eV, the integral is taken over the region where n(E) is

greater than 1, α = 1
137

is the fine structure constant, z is the projective charge in units of

electron charge, and α2

remec2
= 370 cm−1 eV−1.

3.2 APPLYING THE CHERENKOV EFFECT TO PARTICLE ID

In order to identify particle species one must know both the mass and charge of the

particle in question. Because the Cherenkov angle encodes the particle’s velocity it is, in

principle, a simple matter to measure the particle’s momentum with a tracking chamber as

well as the velocity obtained from (2) to determine the mass and charge. Figure 8 shows

how different particle species can be distinguished for a given momentum in fused silica.



14

Threshold counters are Cherenkov detectors used for particle identification (PID) by ex-

ploiting the fact that only particles above the threshold velocity β > 1/n will emit Cherenkov

photons. Therefore lighter particles will emit Cherenkov light while heavier particles will not

for a given momentum.

Electron
Muon
Pion
Kaon
Proton

FIG. 8: Particle momentum (in GeV/c) versus Cherenkov angle (in mrad) for different
particle species in fused silica (n ≈ 1.473). While the full range (left) makes it seem as if
separation between heavier species becomes more and more challenging, zooming in (right)
shows that it is indeed to possible separate protons, kaons, and pions even at higher particle
momentum.

3.3 RING IMAGING DETECTORS

Ring Imaging Cherenkov (RICH) detectors are designed to efficiently identify and sepa-

rate different particle species over a wide range of momenta.

The information about a particle’s velocity can be combined with momentum information

from a tracking system to determine the mass as [16]

m =
p

c

√
n2 cos2 θC − 1 (5)

A basic RICH system is shown in Figure 9. A volume of radiator, either gaseous (e.g.

C4F10) or solid (e.g. aerogel), is positioned upstream of an array of photosensors. A charged

particle traveling through a thin radiator above the threshold velocity will continuously emit

Cherenkov photons in a cone. The resulting image on the photosensor array is an annulus

of thickness d tan θC and an inner radius of L tan θC , where d is the distance the particle

traveled inside the radiator, L is the distance between the radiator and the photosensors,

and θC is the usual Cherenkov angle (Figure 9b). PID is done by measuring the average

radius of the annulus and reconstructing the Cherenkov angle geometricly.
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a) b)

FIG. 9: Basic concept of a proximity focusing Ring Imaging Cherenkov (RICH) detector (a),
and an example of how they can be used to do PID based on particle mass (b) [17].

3.4 DIRC DETECTORS

DIRC detectors work much the same way as a RICH in that they collect Cherenkov

photons produced from a radiating material and use the created image on the photosensors

to reconstruct the Cherenkov angle. In the case of a DIRC, the radiating medium is also

used as a light guide as some of the Cherenkov photons undergo total internal reflection

inside the radiator and are guided towards one end of the radiator to a readout (Figure

10). The radiator of choice is a solid bar made of fused silica, with an index of refraction

n = 1.468 at a photon wavelength of λ = 420 nm. A rectangular cross section and highly

smoothed and polished sides ensure that the magnitude of the Cherenkov angle is preserved

to within < 1 mrad during internal reflection. Photons that are created propagating away

from the readout are reflected back towards the readout by a mirror. Once the photons exit

the radiator they are allowed to separate through an expansion volume before being imaged

in both (x, y) position as well as time. The arrival position and propagation time of each

detected photon are combined with tracking information to reconstruct the Cherenkov angle

and determine the corresponding PID likelihoods (reconstruction methods and techniques

for DIRC detectors will be discussed in detail in Chapter 6).

The performance of a DIRC detector is given by the resolution in the Cherenkov polar

opening angle of the particle track, σ2
θC ,track

, which can be written as:
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FIG. 10: The basic components of a DIRC detector. A solid radiator, typically fused sil-
ica (green); a mirror to redirect backward-going photons (pink); optional focusing optics
(purple); an expansion volume to allow photons to separate in space (cyan); and a detector
surface (brown) to record the position and arrival time of Cherenkov photons (blue).

σ2
θC ,track

= σ2
θC
/Nγ + σ2

correlated (6)

where σθC is the average single photon Cherenkov angle resolution, Nγ is the number of

measured photons per track, and σcorrelated includes several correlated terms that contribute

to the resolution such as the uncertainty in the particle track direction coming from external

tracking systems, chromatic dispersion, and pixel size. Because the track direction is crucial

to the reconstruction of the Cherenkov angle, this error needs to be small for the performance

to not suffer. For the EIC a tracking resolution on the order of 1 mrad is required for adequate

PID.

As of the writing of this thesis the only DIRC detector used in a full experiment is the

BaBar DIRC at SLAC National Accelerator Laboratory, which was successfully operated

from 1999 through 2008 [2]. It proved to be a robust, stable, and easy to operate system

for more than 8 years, providing excellent pion/kaon separation for all tracks from B-meson

decays. It used 4.9 m long radiator bars with a rectangular cross section of 17.25× 35 mm2.

Each bar was made of four 1.225 m long fused silica bars glued end-to-end. The bars were

placed in 12 hermetically sealed containers, called bar boxes, each holding 12 radiator bars

for a total of 144 bars. At the end of each box was attached a wedge of fused silica and

a window to allow the photon image to expand before entering the water-filled expansion

volume and being read out on one of 10,752 photomultiplier tubes (see Figure 11). Figure
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FIG. 11: Schematic of the BaBar DIRC and detection region [2].

12 summarizes the performance of the BaBar DIRC, showing excellent Cherenkov angle

reconstruction (2.5 mrad, only 14% larger than the design goal of 2.2 mrad) and photon

yield per track.

3.4.1 DIRCS IN FUTURE EXPERIMENTS

The BaBar DIRC has since inspired many other experiments/facilities, including the

EIC, to utilize this new, novel PID system in a variety of ways (Figure 13). The Focusing

DIRC (FDIRC) proposed for the now-cancelled SuperB collider in Italy was the first to

propose using some form of focusing for the Cherenkov photons, allowing for a factor of 10

smaller expansion volume [19] [20]. The barrel DIRC for the PANDA experiment at FAIR

in Germany will use shorter radiator bars for a more compact design [21], while the PANDA

disc DIRC will be used in the forward region and will be the first disc DIRC to be used
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a) b)

FIG. 12: Performance of the BaBar DIRC for e+e− → µ+µ− events [2]. a) shows the
difference between the measured and expected Cherenkov angle (dots) and a Gaussian fit
to the data with a 2.5 mrad width (line). b) is the average number of detected photons vs.
track polar angle for data (dots) and GEANT4 [18] simulation (line).

in a high-performance 4π detector [22]. Belle II at the SuperKEKB accelerator in Japan

will utilize wide plates as radiators and focus on fast timing for PID in the barrel region

[23]. The TORCH detector, similar to the PANDA disc DIRC, will be a large-area detector

focusing on precision time-of-flight to do PID for low momentum kaons at the upgraded

LHCb experiment [24]. The GlueX experiment at JLab will be recycling four bar boxes from

the BaBar experiment to cover the forward region of their spectrometer; utilizing focusing

similar to the FDIRC design [25].

3.5 HIT PATTERNS AND PARTICLE SEPARATION METHODS

As mentioned previously, a DIRC detector is a compact RICH system that relies on

internal reflection of the Cherenkov photons in the radiating material. However, as is illus-

trated in Figure 10, not all of the light produced inside the radiator is internally reflected,

as photons with an angle less than the critical angle (approximately 43◦ for the interface

from fused silica to air) with respect to the surface will escape the radiator. Because of

this loss of photons the hit pattern of a DIRC is only roughly half of a typical RICH ring,

which is then mirrored and folded in a complex way based on the shape of the expansion

volume and where the photon exits the radiator. If the expansion volume is more radially

compact the two ring segments become stacked side by side. To complicate matters further,
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if the expansion volume is small enough that reflections from the sides occur then the ring

segments are folded on top of themselves to create much more complicated hit patterns.

Figure 14 illustrates this folding of the hit pattern due to expansion volume size. Figure 15

shows the contribution to the folded pattern from single reflections inside a prism shaped

expansion volume.

Two approaches were used in the analysis presented in this thesis for particle species

separation: reconstruction of the Cherenkov angle using a geometric reconstruction method

similar to the one used by the BaBar DIRC, and time-based imaging using probability density

functions (PDFs) 1 similar to that to be used by the Belle II imaging Time of Propagation

(iTOP) counter.

3.5.1 CHERENKOV ANGLE RECONSTRUCTION

The emission angle between a single photon and the particle track can be reconstructed

from the observed photon coordinates on the detector plane. The spatial position of the cen-

ters of the radiator bar and the struck pixel are known and used to define the 3-dimensional

unit direction vector ~k = (kx, ky, kz) pointing from the center of the bar end to the center of

the pixel (shown in Figure 16). The k-vector is defined as the photon exit vector just inside

the bar. The direction vector from the bar center to the pixel center along with Snell’s law

are used to determine the k-vector. Excluding aberrations, any photon reaching this pixel

originated with the same direction vector at the end of the bar, regardless of the photon

origination point. Together with the particle direction ~p = (px, py, pz) the Cherenkov angle

for each photon can be calculated from

θC = arccos

(
~k · ~p
|p|

)
(7)

In order to assign a value of the k-vector for each pixel a photon gun is used in GEANT4

to illuminate the detector plane. Roughly 105 photons are created at the center of the bar

near the bar/expansion volume interface uniformly in a solid angle of 1.3π steradians and

allowed to propagate through the expansion volume and onto the photosensors. The initial

value of the k-vector, the propagation time, number of bounces inside the expansion volume,

and sensor and pixel number are all stored in a large table, called a lookup table (LUT).

The values in the LUT are independent of particle species and momentum and only depends

1In this manuscript, ’PDF’ refers to a ’probability distribution function’ and does NOT refer to either an
Adobe R© Portable Document Format or to a parton distribution function.
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upon the detector geometry (e.g. the focusing optic, or the location of the bar relative to

the expansion volume). Because of this a LUT for a given geometry can be generated before

taking data. Another advantage to the geometric reconstruction is that a full simulation of

the particle track is not needed which saves a lot of computation, as much of the computing

power used during a simulation is used for the photon propagation through the bar.

Unfortunately, the direction of the k-vector as reconstructed by the pixel does not

uniquely define the directionality of ~korg. Because the number of reflections inside the bar

cannot be known there are 8 possibilities, or ambiguities, for the original directionality of

the photon that must be considered (forward/backward, up/down, and left/right). Figure

17 illustrates a 2D simplification of this problem, showing 4 possible photon directions prop-

agating from the particle track. Here each of θ1−4 are possible values for the true Cherenkov

angle. In the full 3D space this leads to up to 8 possibilities to be considered for the k-vector

for each detected photon, and therefore up to 8 values of the Cherenkov angle θC .

In addition to ambiguities coming from guessing the initial directionality of the k-vector

inside the bar there are also ambiguities coming from the multiple possible paths that a

photon could take from the center of the bar to a pixel inside the expansion volume. Figure

19 shows a prism-shaped expansion volume, similar to that used in the analysis presented

later in Chapter 6, showing the labeling of the surfaces and an example of ambiguous photon

paths from the bar to a pixel on the detector plane.

The number of ambiguous paths that are reconstructed can be reduced by averaging the

initial direction of all photons in the LUT that have the same number and types of reflections

and land in the same pixel. For a simplified example, see Figure 18

The Cherenkov angle is not, however, only reconstructed for one photon, but for between

20 and 120 photons per particle track. For each photon at least one of these reconstructed θC

values is correct, while the others contribute to a combinatorial background in a spectrum of

the reconstructed angle, an example of which can be seen in Figure 20 for 7 GeV/c protons

with a 125◦ polar angle and made with an averaged path LUT.

3.5.2 TIME-BASED IMAGING

The other method of particle species separation that can be used for a DIRC is time-

based imaging or time-based reconstruction, similar to that used by the Belle II Time-Of-

Propagation counter. To do time-based reconstruction one must first generate a PDF of the

timing information of each detector pixel for each value of particle species, momentum, polar

track angle, and detector geometry (e.g. lens and bar types), thus giving a 5-dimensional
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function of the timing distribution of photon hits [21]. Currently these PDFs cannot be

computed analytically, so they are constructed computationally by either taking actual test

beam data, or running simulations with sufficient statistics such that each pixel that can

have a hit with the configuration of interest has a large enough occupancy to produce a more

or less smooth PDF.

To reconstruct a data or simulation file using these PDFs the photon arrival time for

each pixel with a recorded hit is compared to the PDF for each particle species, and the

time-based likelihood of that hit corresponding to a given particle species X is calculated

as LX = ln(hX), where h is the value of the PDF for the given hit time. One can then do

a pair-wise difference of these likelihood values (e.g. L = Lp − Lπ) to build a log-likelihood

distribution between two particle hypotheses and extract a separation power for particle

identification. The separation power for time-based reconstruction between two particle

species is given by the magnitude of the difference of the two log likelihood plots divided

by the average sigma. An example of time-based reconstruction for a bar radiator with a

prism expansion volume is shown in Figure 21 for pions and kaons in a plate radiator with a

prism expansion volume. This method of particle separation is also very useful for plate-type

radiators as the LUTs in the geometric reconstruction assume the photons come from the

center of the bar, which is no longer a good assumption for wide plates.
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PANDA Barrel 
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Belle II 
TOP TORCH GlueX EIC

FIG. 13: Evolution of the DIRC concept. From top left to bottom right: BaBar Barrel
DIRC [2], Focusing DIRC [20], PANDA Barrel DIRC [21], PANDA Disc DIRC [22], Belle II
Time of Propagation DIRC [23], LHCb TORCH DIRC [24], GlueX DIRC [25], and the EIC
DIRC.
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a)

b)

c)

d)

FIG. 14: Various detector geometries (left) and the resulting simulated hit patterns (right)
from 1000 identical particles. A typical RICH detector (a), produces a very nice ring pattern.
A DIRC detector with a sufficiently large expansion volume using a thin radiator bar (b)
produces two ring segments. A DIRC with a radially compact expansion volume (c) will
reflect one of the ring segments so that it will stack side by side. Finally, a DIRC detector
with a compact expansion volume both radially and transversely (i.e. into and out of the
page) (d) will cause the ring segments to fold in on themselves, making a fish-like pattern.
The DIRC patterns are viewed from the back of the detector plane and rotated 90◦ clockwise
relative to the corresponding geometry.
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FIG. 15: For a prism-shaped expansion volume (a) [17], different segments of the hit pattern
correspond to different paths taken (b). Paths with multiple reflections inside the prism (e.g.
bottom-left) have been excluded for simplicity.
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FIG. 16: Schematic of the geometric reconstruction concept, with a photon (purple) being
emitted from the particle track. The direction of the k-vector can be used to determine the
original direction vector, ~korg, of the photon and is used for the reconstruction of θC [17].



25

ᶚ1
ᶚ3

ᶚ4
ᶚ2

(kx, ky, kz)

(kx, -ky, kz)
(kx, -ky, -kz)

(kx, ky, -kz)
Y

Z
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FIG. 17: 2D illustration showing all possible combinations of k-vector directions off of the
particle track [17]. Not shown are the additional 4 components where kx → −kx.

Pixel

Sensor

FIG. 18: A 2D example of averaging LUT entries to reduce prism ambiguity reconstructions.
The two photons reflecting off of the bottom prism face (blue) have been averaged to the
one black photon. The two photons reflecting off of the top prism face (orange) have been
average to the red photon. In this simplified example the number of entries in the LUT have
been reduced by half. Angles have been exaggerated.
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FIG. 19: Illustration of possible ambiguities in the θC reconstruction coming from possible
paths in a prism-shaped expansion volume [17]. Each face is labeled in a) along with an
example of a direct path, while b) shows 3 possible paths that lead from the bar to a certain
pixel: 1 top reflection (gold), 1 bottom reflection (blue), and 1 direct path (gray).
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FIG. 20: Simulated reconstructed Cherenkov angle per photon from a 7 GeV/c particle with
a polar angle of 125◦. a) one photon from a proton with only bar ambiguities. b) all photons
from one proton with only bar ambiguities. c) all photons from 1000 identical protons with
only bar ambiguities. d) all photons from 1000 identical protons with both bar and prism
ambiguities. e) same as d) but with constraints on the photon angle with the bar surface
being greater than the critical angle for total internal reflections and neglecting y direction
flips due to zero beam divergence. f) a zoom showing a buildup around the calculated value
of 816 mrad along with a combinatorial background.
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FIG. 21: An example of time-based reconstruction for a plate radiator with a prism expansion
volume for kaons (dashed) and pions (solid red). Photon arrival times for one MCP-PMT
pixel are shown in a), and b) is the log-likelihood difference for kaon and pion hypotheses
for multiple 3.5 GeV/c particles at 22◦ polar angle [21].
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CHAPTER 4

HIGH-PERFORMANCE DIRC@EIC

The BaBar DIRC was able to reach a performance of 3 standard deviations (s.d.) sep-

aration for pions and kaons at up to 4 GeV/c particle momentum. The PANDA Barrel

DIRC wishes to achieve similar performance, but due to space constraints they will be using

a smaller expansion volume and must therefore rely on optical focusing of the Cherenkov

photons to reach this performance. In both cases the separation power requires a per track

Cherenkov angle resolution (Eq. 6) of 2.5 mrad The physics goals of an EIC require a

pion/kaon separation of 3 s.d. at up to 6 GeV/c momentum, which requires 1 mrad track

Cherenkov angle resolution. The graph in Figure 22 shows pion-kaon separation as a function

of particle momentum for different assumptions of the per track Cherenkov angle resolution,

highlighting the achieved performance of BaBar and the desired performance of PANDA and

EIC. In order to reach this high resolution in a compact space the EIC DIRC must incor-

porate cutting-edge technology in focusing optics and photo sensor granularity and timing

resolution.

4.1 HIGH-PERFORMANCE DIRC COMPONENTS AND DESIGN

The baseline design of a DIRC for EIC has been constructed in a GEANT4 simulation

based on that of the PANDA prototype DIRC, as shown in Figure 23. There are 16 modules,

called bar boxes, each containing 11 radiator bars 4200 mm long with a cross section of

17× 35.4 mm2. The 16 bar boxes are arranged in a barrel with a radius of 1 m around the

beam line. Mirrors are coupled to one end of each bar, and a special 3-layer lens, discussed

in more detail later, is attached to the other end. The lens is then coupled directly to

a prism-shaped expansion volume made of fused silica, the same material as the radiator

bars. The prism has an opening angle of 38◦ with dimensions of 284.3 × 390 × 300 mm3.

The 284.3 × 390 mm2 detector plane of each prism is covered with micro-channel plate

photomultiplier tubes (MCP-PMTs) with 27,690 2 × 2 mm2 pixels, for a total of 443,040

channels across the entire detector to record the location and arrival time of each detected

Cherenkov photon. The dependence of the performance on the granularity of the detectors

is shown later in this chapter.
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FIG. 22: Pion-kaon separation as a function of particle momentum for different assumptions
of the per track Cherenkov angle resolution [26]. The PID requirements of the EIC necessitate
a per track resolution of 1 mrad, while BaBar and PANDA needed only 2.5 mrad resolution.

4.1.1 FOCUSING OPTICS

The pixel and bar size of a DIRC detector are important contributions to the Cherenkov

angle resolution for small expansion volumes. The influence of the bar size can, however,

be offset by focusing the Cherenkov photons. The FDIRC R&D program first developed

the concept of using focusing mirrors for DIRC detectors. The PANDA Barrel DIRC group

settled on using a focusing lens between the radiator bar and the expansion volume. A

standard lens made of fused silica with an air gap between the lens and the expansion

volume was first studied. However, the focal plane of a single lens is highly parabolic in

shape. Figure 24 shows that while an air gap lens provides good focusing of the Cherenkov

pattern in the central region of the ring, where photons are more or less perpendicular to

the lens, it becomes defocused nearer to the edges of the pattern and loses photons. This

deterioration of the image quality for steeper angles is a combination of lens aberrations, the

curved focal plane, and the so-called kaleidoscopic effect [27].
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FIG. 23: A 3D view of the current DIRC at EIC baseline design. Left: the full GEANT4
simulation with 16 bar boxes, 176 radiator bars, a 3-layer lens focusing optic, and a 38◦

prism expansion volume. Right: a zoom in on a single bar box and the layering of the lens
[26].

A 2-layer compound lens composed of fused silica and a layer of high-refractive index

material Lanthanum crown glass (NLaK33) [28], n ≈ 1.75, was also studied. This design

couples directly to the expansion volume, greatly reducing the loss of photons at steeper

angles. Figure 25 shows a comparison of the photon yield from a bar radiator with no

focusing (green), a standard air gap lens (red), and a 2-layer lens (blue) for two cases. In

the 125◦ case (left) both lenses have comparable photon yields, because the angle between

the photons and the lens is fairly shallow. In the 90◦ case (right), however, the photon yield

for the air gap lens is dramatically lowered due to the steep angles between the photons and

the lens. The photon yield for the no focusing option is quite deceiving in that it produces a

much higher average photon yield than either lens, but the reconstruction of the Cherenkov

angle is nearly impossible to within a reasonable measure for the perpendicular case.

The 2-layer lens design solves the problem of photon yield loss from the air gap lens

at steeper angles and will allow the PANDA Barrel DIRC to reach their desired separation

power. However, as discussed earlier, this separation power of 3 s.d. at 4 GeV/c is insufficient

for the requirements of a DIRC at EIC. The key to solving this problem was in designing

a special 3-layer spherical compound lens. The advantage of this 3-layer lens design over

a traditional optical lens or the 2-layer lens is the shape of the focal plane. According to

simulation the focal plane of the 3-layer lens is relatively flat, as shown in Figure 26. Photos
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focused

unfocused

FIG. 24: Simulated hit pattern of PANDA DIRC without (black) and with (red) air gap
lens focusing (a) [17]. On the outer edges of the ring image the lens is becoming dispersive
and losing photons, while near the center of the rings the lens does a good job of focusing
the image, as seen more clearly in b).

of a prototype lens tested at CERN in 2015 and an exploded view of the lens layers and

dimensions are shown in Figure 27. It contains a layer of NLaK33 sandwiched between

two layers of fused silica. The two radii of the middle layer were optimized to remove

aberrations present in standard lenses by first defocusing and then refocusing transmitted

photons to create a flat focal plane, matching the geometry of the prism expansion volume.

Five prototype lenses were produced for evaluating the performance of the lens design in a

test beam, for measuring the radiation hardness of the NLaK33 material, and for evaluating

the focal plane. These tests will be discussed in greater detail in Chapters 5 and 6.
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θpolar = 125° θpolar = 90°

FIG. 25: Comparison of the photon yield per track for a DIRC bar with no focusing (green),
a standard air gap lens (red), and a 2-layer compound lens (blue) for polar angles of 125◦

(left) and 90◦ (right) [17]. The standard and compound lenses have comparable yields at
125◦, but the standard lens clearly loses a large amount of photons in the perpendicular case.
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FIG. 26: The simulated focal planes (red lines) of a 2-layer lens (left) and the 3-layer lens
(right) compared to the shape of the expansion volume prism (grey) [17]. Obviously the
focal plane of the 2-layer lens is highly parabolic in shape, whereas the 3-layer lens focal
plane is relatively flat, allowing for a better resolution of the Cherenkov angle.
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FIG. 27: Prototype 3-layer lens built for optical testing (a), and an exploded view of each
layer with dimensions (b) [29].
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4.2 SIMULATED PERFORMANCE

4.2.1 GEOMETRIC RECONSTRUCTION

Simulated reconstructions of the Cherenkov angle for kaons and pions at 6 GeV/c with

a 125◦ polar angle using the design parameters above are shown in Figure 28. The signal

is very clean and the mean and SPR of the distribution are easily extracted. Figure 29a

shows the photon yield, or multiplicity, per polar angle for fifty 6 GeV/c pions, and Figure

29b shows the Single Photon Resolution (SPR) 1 per polar angle for fifty 6 GeV/c kaons

(red) and pions (blue). The per track Cherenkov angle resolution, given by Eq. (6), is

shown in Figure 30 for assumptions of 0.25 mrad (black), 0.5 mrad (red), 0.75 (green), and

1 mrad (blue) correlated term contributions with 6 GeV/c pions 2. The simulations were

done assuming that the sides of the 3-layer lens focusing optic were not reflective, therefore

reducing the photon yield and making the performance slightly worse.

The SPR of the reconstructed Cherenkov angle was found to scale with the pixel size of

the MCP-PMTs roughly as SPR ≈ SPR0

√
1 + size2/a2, as shown in Figure 31. Clearly

the 4 mm pixel size, though not ideal, is comparable in performance to the 2 mm pixel size.

This is an important factor to consider in the final design due to the increase of the cost per

pixel of MCP-PMTs and with the electronics readout per channel as the size of the pixels

decreases.

4.2.2 TIME-BASED RECONSTRUCTION

The methods for time-based reconstruction, as described in Chapter 3, were also imple-

mented for the EIC DIRC: 60,000 pions and kaons were simulated in GEANT4 using the

current EIC DIRC design geometry and PDFs were generated for each detector pixel; the

PDFs were then used to produce log-likelihood separation for each particle hypothesis. Fig-

ure 32 shows the log-likelihood separation for pions and kaons at polar angle of 30◦. Figure

33 shows the separation power (top) and the PID efficiency/mis-identification over all polar

angles.

Overall the results for both geometric and time-based reconstruction show that due to

1Three points are normally required to define a circle and thus extract a radius. However, with a perfect
RICH detector it is sufficient to know only a single point on the ring as one also knows the center of the
circle (i.e. the particle track). Here, too, it is sensible to talk about the resolution of single photon events as
the center of the “circle” for a DIRC (i.e. the polar angle) is known from tracking.

2NB: the per track Cherenkov angle resolution will be slightly different for each particle species, however,
because the SPR for each particle is almost identical, showing only the results for pions is sufficient.
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the design’s large expansion volume, small pixel size, and ease of signal reconstruction the

performance of this design can reach the desired performance for the required physics.



37

FIG. 28: Reconstructed θC spectrum for 6 GeV/c kaons (top) and pions (bottom) and a
125◦ polar angle.
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FIG. 29: The multiplicity (a) and SPR (b) performance per polar angle of the EIC DIRC
baseline design. Plots were generated using fifty particles (kaons in red, pions in blue) at 6
GeV/c per polar angle.
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FIG. 30: The per track Cherenkov angle resolution of the EIC DIRC with different assump-
tions of the correlated term, σcorrelated: 0.25 mrad (black), 0.5 mrad (red), 0.75 (green), and
1 mrad (blue).

FIG. 31: Scaling of the SPR as a function of the MCP-PMT pixel dimension. Shown
are 30◦ (black), 70◦ (red), 110◦ (green), and 150◦ (blue) polar angles along with an exam-
ple fit (dashed purple) showing that the dependence of the performance scales roughly as√

1 + pixel2

a2
.
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FIG. 32: Example of log-likelihood separation for pions (red) and kaons (blue) at 30◦ polar
angle using time-based reconstruction.
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FIG. 33: Simulated performance of the DIRC at EIC baseline design. Top: Separation power
as a function of polar angle for 6 GeV/c pions and kaons using time-based reconstruction.
Bottom: Efficiency (solid circles) of PID as a function of polar angle for pions (red) and
kaons (blue) along with the mis-identification rate (open circles).
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CHAPTER 5

TESTING DIRC COMPONENTS

The validation of the key components of the DIRC for an EIC discussed in Chapter 4

is vital to show that the GEANT4 simulation package produces results expected for the

real detector. However, due to budget restraints it was not possible to build or otherwise

procure a full scale prototype of the envisioned EIC DIRC discussed in Chapter 4. As a

conservative estimate of the cost of a simple prototype: one radiator bar is $20k, a prism

expansion volume is $30k, a 3-layer lens is $10k, and an array of 24 (4x6) sensors is $200k.

On top of this, the cost of a test beam run would be roughly $10k for travel and expenses.

This roughly $300k expense for one prototype and test beam is highly impractical given that

the budget for all detector work for the EIC R&D effort (RICH, Time-of-Flight, simulation

studies, calorimetry, etc) is only $1M/year1. Instead a series of test bench measurements

have been made to validate simulated performance of the new 3-layer lens design, study the

radiation hardness of the NLaK33 material, and evaluate the performance of MCP-PMTs

in high magnetic field environments. A synergistic test beam effort with the PANDA Barrel

DIRC group was also performed at CERN in 2015, but will be discussed in greater detail in

Chapter 6.

5.1 OPTICAL PROPERTIES OF 3-LAYER LENS

The purpose of the 3-layer lens design is to provide a mostly flat, uniform focal plane

to follow the face of the detector plane. Doing so provides better resolution and hence

better performance compared to standard focusing options, which typically have very curved,

hyperbolic focal planes. A GEANT4 simulation of the nominal (top) and full 3D focal plane

(bottom) of the lens are shown in Figure 34. The 3D plane has been limited to the size of

the detector plane anticipated for the EIC DIRC, and the color scale indicates the angle at

which photons intersected the front face of the lens. Because only the total focal length is

of interest the depth of the expansion volume was limited so that no bounces occurred.

1It should be noted that once the Department of Energy approves the construction of an EIC, but before
breaking ground on the facility, the budget for R&D will be expanded such that building a baseline-design
EIC DIRC prototype will be viable
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To measure the shape of the focal plane a setup was designed and built, shown in Figure

35, at Old Dominion University in which a laser shines through a 50/50 beam splitter and

a mirror to make two parallel beams. Initially the beams were separated by 5 mm, but

gradually the distance was reduced to 1 mm in order to attempt to avoid non-uniform

aberrations due to small misalignments as much as possible. The beams then pass through

a 30 × 40 × 60 cm3 glass container filled with Britol 9NF White Mineral Oil [30] with a

refractive index similar to that of fused silica to simulate the behavior of light passing from

bar to lens to expansion volume. The beams are focused through the 3-layer lens prototype,

being held in a specially designed holder that allows the lens to be rotated in two planes

(Figure 36). Finally the beams are focused onto a plastic screen inside the tank that is

attached to a track and allowed to slide freely. Due to the relatively low resolution of the

human eye and the finite size of the beams the exact point of focus was difficult to measure,

so an averaging method was used in which the median of the two points where the beams

seem to converge and diverge was taken to be the focal point (see Figure 40). This lead to

much more accurate and reproducible results.

Measurements were initially taken with a 632 nm red helium-neon laser, but the beam

spot was too large and very distorted. A 530 nm wavelength green laser with a 1 mm beam

spot was then purchased as a replacement. Initial results with a 5 mm beam separation are

shown in Figure 37. Obviously there is a large discrepancy in both position and shape of the

measured and simulated focal plane. This was rectified by discovering that in the simulation

it was assumed that the two beams were entering the lens at fixed points on the lens’ face

regardless of lens rotation, where as in the experiment the rotation of the lens about it’s

center causes the beams to shift with respect to the lens face. When rotating at the edge

of the lens closest to the laser rather than through the center this difference is negligible, as

illustrated in Figure 38.

A correction was implemented in the GEANT4 simulation to account for the shift of the

beam spot during rotation, the results of which can be seen in Figure 39a. The beams have

since been brought to a 2 mm separation to reduce effects of aberration and a second lens

holder was 3D printed to allow for rotation about the edge of the lens. A new round of data

was taken and results are shown in Figure 39b. This change vastly improved the results

of both the simulation from the first measurement and the results of the second, showing

that the simulation indeed reproduces very nicely the shape of the focal plane, although the

position is still roughly 3 cm too long.

The absolute position of the focal plane can be explained in several ways: the second
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curved surface of the 3-layer lens has a slightly smaller radius than was requested, the

NLaK33 material has a slightly larger index of refraction than anticipated, the NLaK33

layer is slightly thicker than was requested, the laser beams in the experimental setup are

not parallel, the index of refraction of the mineral oil is not equivalent to that of fused silica,

or some small contribution from any and all of these effects. Unfortunately, measuring these

quantities is currently not achievable. However, the GEANT4 simulation can manipulate

them with high precision to study their effects on the focal plane.

Figure 41 shows by how much each of these parameters must be adjusted such that

the point with 0◦ rotation and tilt angles agrees with the same point measured in the lab,

along with the “perfect” simulation, which assumes all default parameters are correct, for

comparison. A decrease in the index of refraction of the mineral oil of 0.15 (pink) is unrealistic

due to the drastic change in the focal plane. Likewise, an increase in the index of refraction of

the lanthanum crown glass by 0.03 (green) is not realistic due to the large difference between

needed value for the simulation and the specifications sheet. A decrease in the radius of the

second layer of the lens by 1.3 mm (blue), and a convergent angle of 0.15 mrad between the

beams (black) do, however, seem reasonable in describing this systematic shift of the focal

plane.

As it is impossible to measure the curvature of the second layer of the lens and detecting

these small deviations from parallel in the beams, a second test was done to study the effects

of the aberrations that occur when going through the lens off-center. A shift of 7 mm along

the direction of a line between the two beams was made with the oil tank in the ODU setup

and several measurements were taken. The same shift was implemented in the simulation for

both the decreased second layer radius and non-parallel beam scenarios. Results of this off-

center shift are shown in Figure 42. Clearly the modification of the radius corrects too much

for the aberrations closer to the edge of the lens, while the assumption of non-parallelism

gives a near-perfect description of the taken data.

After this systematic shift has been accounted for, both the shape and position of the

focal plane agree very nicely between data and simulation, thus giving a good indication that

the simulation for the EIC DIRC will yield reasonable results with the current simulation

software. The prototype lens that was produced is not the finalized version of the lens to

be used in the EIC, however, as the radii of the two curved surfaces must be optimized

for the EIC design. There has also been discussion of building cylindrical 3-layer lens as a

cost-saving measure without sacrificing on performance. Such a lens is currently planned for

being included in a 2017 CERN test beam with the PANDA Barrel DIRC group.
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FIG. 34: Simulation of the 3-layer lens focal plane with all photons confined to a single plane
(top) and the full 3D focal plane (bottom). The color scale corresponds to the initial angle
(in degrees) between the laser beams and the lens face. The 3D plane has been constrained
to the y/z dimensions of the current expansion volume for the EIC DIRC. The “beams” of
photons in the simulation were centered around the center of the lens with a separation of 2
mm.
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FIG. 35: Laser setup at Old Dominion University for testing the optical properties of the
3-layer lens design. A schematic drawing of the setup is shown on the left, and a closeup
view of the lens and screen inside the actual setup is shown on the right. [29].

FIG. 36: CAD drawing of 3-layer lens holder which allows precision rotation in two orthog-
onal, allowing the full 3D focal plane to be mapped.



47

FIG. 37: Initial measurement of the 3-layer lens focal plane using the upgraded green laser
(red dots) compared to simulation (blue line). Note that this figure is for illustrative purposes
only. The measurement techniques used to measure the focal plane were changed to match
the simulation, shown in Figure 39.
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FIG. 38: Illustration of the discrepancy between beam positions in data (black) and simu-
lation (yellow). The original beam positions (blue) for a given rotation point (red) at the
center (top) of the lens, or at the edge (bottom) of the lens make the discrepancy clear.
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a)

b)

FIG. 39: Initial measurement of the 3-layer lens focal plane compared to a rotation corrected
simulation (a), and a second measurement with a tighter (2 mm) beam configuration and a
modified lens holder (b).
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FIG. 40: Illustration of two crossing laser beams (green) with finite size. During measure-
ments all the space between the two red circles was perceived as a single point. To counteract
this effect the focal point was taken as the average point between where the beams first seem
to come together and where they seem to again separate.

Parameter adjustments 
in simulation

              Perfect simulation

              2nd layer radius

              NLaK IoR

              Oil IoR

              Beams converge

              data

FIG. 41: Shifting the focal plane of the GEANT4 simulation. The simulated effects are a
decrease in the radius of the second layer by 1.3 mm (blue), an increase of the refractive index
of NLaK33 by 0.03 (green), a decrease of the index of refraction of the mineral oil by 0.15
(pink), and adding a converging angle of the laser beams of 0.15 mrad (black). Experimental
data is shown in red and simulation with “perfect” parameters is shown in black.
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FIG. 42: Focal plane after implementing a 7 mm shift along a line connecting the two
beams. Data and simulation assuming “perfect” parameters are shown in red and black
respectively, while a reduction in the radius of the second curved surface is in blue, and a
non-parallelism between the laser beams is in green. Clearly the modification of the radius
overcompensates for the change in the position and shape of the focal plane while the non-
parallelism assumption agrees very well.
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5.2 RADIATION HARDNESS OF NLAK33

Fused silica, which is used for most of the optical components in all current DIRC designs,

was already extensively tested in the BaBar and PANDA experiments [31] and has proven

to be radiation hard up to several hundred krad with little to no loss of transmission. The

determination of the radiation hardness of NLaK33 is an important study for the EIC R&D

program.

The irradiation of a pure sample of NLaK33 material was performed at Catholic Univer-

sity of America (CUA) in a Faxitron CP-160 Cabinet X-Radiator System [32] (Figure 43a).

The cabinet allows for a minimum of 6 second X-ray exposure. Photon energy was set to

160 keV with a 6.2 mA current for all exposures of the NLaK33 sample.

A RaySafe ThinX RAD dosimeter [33], shown sitting on the X-ray cabinet shelf in Figure

43b, was used to measure the radiation dose being delivered to the sample. Unfortunately

the exposure time of the dosimeter is limited to less than 10 seconds, so the shortest time

setting on the X-ray cabinet was used. This exposure time of 6 seconds was found to be

closer to 7.5 seconds by the dosimeter due to rise and fall time of the source. This shortest

exposure time consistently gave readings of 81.4 rad. The dosimeter has a circular active

area of 706.9 mm2 while the side of the NLaK33 sample that was exposed to the source has

an area of 8× 28 mm2, so the dose delivered to the sample is approximately 25 rad.

To measure the transmission of the sample a LAMBDA 950 UV/Vis/NIR Spectropho-

tometer [34] (Figure 44a), referred to from here on as a monochromator, was used. The

monochromator has a dynamic range between 175 - 3,300 nm wavelength in 1 nm steps.

The sample of NLaK33 was held in place using an optics stand (Figure 44b) to make sure

measurements were consistent and reproducible. Measurements of the transmission of the

sample were taken between each set of radiation exposures. The transmission of sample of

fused silica was also tested between each radiation exposure of the NLaK33 sample, but was

only used as a control sample and was found to be stable.

Because it was not clear exactly what percentage of the total dose read by the dosimeter

was from the warm up and cool down of the cabinet it was decided that the best approach

for exposure of the sample was to do multiple steps of the 6 second exposure time and record

the accumulated dose in this manner. The first exposure was 4 intervals for a total of 100

rad. After this measurement it was noticed that there was already a roughly 2% drop in

the transmission of the sample at 420 nm wavelength 2, so steps of 50 rad were taken for

2420 nm wavelength was chosen because it is near the peak of the quantum efficiency of the multi-channel
plate photomultiplier tubes discussed later in this chapter and used in the analysis presented in Chapter 6
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the next several measurements. After 700 rad of dose it was clear that there was a linear

correlation between accumulated dose and loss in transmission, so it was decided that 100

rad steps could again be taken.

Results for the radiation hardness tests of the NLaK33 sample are shown in Figure 45.

The transmission loss below roughly 350 nm wavelength and above 700 nm wavelength seems

to be negligible. However, in the range of 350-700 nm there is a clear dip in transmission. At

420 nm wavelength, corresponding to the peak in the quantum efficiency of the photodetec-

tors used in the DIRC, sees a 1.3% drop in transmission per 50 rad of dose. While it is not

yet clear what the expected integrated dose will be in the area of the DIRC at the EIC it is

assumed that this loss is too great over the lifetime of the detector. Other materials known

to be radiation hard, such as lead fluoride, are being investigated as possible alternatives.

a) b)

FIG. 43: Components used for testing the radiation hardness at CUA. The Faxitron CP-160
Cabinet X-Radiator System (a) used to irradiate the NLaK33 sample with 160 keV photons
at 6.2 mA current for 6 second intervals, and the RaySafe ThinX RAD Dosimeter (b) sitting
on one of the X-ray cabinet shelves.
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a) b)

FIG. 44: The LAMBDA 950 UV/Vis/NIR Spectrophotometer (a) and a closeup view of the
NLaK33 sample being held in position by the optics stand (b).
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FIG. 45: Radiation hardness results for the NLaK33 sample. The top plot shows the trans-
mission of the control sample of fused silica (blue) and the transmission of the NLaK33
sample after 0 (red), 500 (yellow), and 1000 (green) rad dose across a range of 200-800 nm
wavelength. The bottom plot shows the transmission of the NLaK33 sample at 420 nm
wavelength as a function of the dosage. After the first 700 rad of dose it was clear that there
was a linear relationship between dose and transmission loss, so 100 rad steps were used
afterwards.
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5.3 PERFORMANCE OF MCP-PMTS IN HIGH MAGNETIC FIELD

The limiting space requirements of the EIC DIRC design, as mentioned in Chapter 4,

places a unique set of requirements on the DIRC readout sensors. In order to achieve the

desired single photon resolution while maintaining a sufficiently sized expansion volume the

sensors, and therefore the pixels, must be compact. Furthermore, due to the positioning of

the readout plane inside the large field of the solenoid magnet (see Figure 4) these sensors

must also have a high tolerance to magnetic fields, both in magnitude (up to 3 T or higher),

non-uniformity, and orientation. Ordinary photomultiplier tubes (PMTs) are not an option

due to their susceptibility to magnetic fields, being affected by fields as small as 0.5 Gauss

[35]. Silicon photomultipliers (SiPMs) are attractive due to their very compact size and

their resistance to magnetic fields up to 4 T [36]. However, the inherent background, or

dark count, of SiPMs is very large, on the order of MHz per pixel [36] [37]. Because a

DIRC detector only expects 100 photons per event at most spread over 100 ns, this level of

background is far too large for usability. The dark noise can be mitigated by cooling, with a

decrease by a factor of approximately 2 per 5◦ C, but the large amount of cooling required

around the SiPMs in the EIC detector would be costly both in space and finance. With these

requirements in mind the best option for an EIC DIRC detector is the use of micro-channel

plate photomultiplier tubes (MCP-PMTs) (Figure 46). The dark count of MCP-PMTs is on

the order of kHz [38], which is much more acceptable compared to SiPMs. MCP-PMTs also

have a much higher resistance to external magnetic fields than traditional PMTs due to the

small pore size, with studies being done up to 2 T [39], [40], [41], [42], [43], [44]. The tests

described below are the first to study the effects of fields as large as 5 T on MCP-PMTs.

5.3.1 EXPERIMENTAL SETUP

In the fall of 2014 two single-anode MCP-PMTs were tested at Jefferson Lab [45], a

PHOTONIS PP0365G (6µm pore size and a 18.2 mm active area) [46] and a Photek PMT210

(3µm pore size and a 10 mm active area) [47], shown in Figure 47 at the top and bottom

right respectively. The FROST superconducting solenoidal magnet, with a field tunable up

to 5 T with a cylindrical bore diameter of 12.7 cm and a length of 76.2 cm, was used for

testing [48]. The central field of the magnet, while quite large, is also very homogeneous,

with an inhomogeneity of less than 5 × 10−5 over a cylindrical volume with a diameter of

1.5 cm and a length of 5 cm. The sensors were held in place at the center of the magnet

using a custom-built, non-magnetic, light-tight cylindrical dark box, as shown in Figure 47.
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FIG. 46: Schematic of the Micro-channel Plate photo-multiplier tube (MCP-PMT) con-
cept. A cathode and anode sandwich two conducting plates with micrometer-sized channels
(MCP), and a high-voltage (HV) difference (HV1, HV2, HV3) between every two compo-
nents. The channels, or pores, of the two MCPs are aligned in a chevron pattern. An
incident photon (blue) strikes the cathode, producing a photo-electron (red). That electron
is accelerated through the potential difference between the cathode and first MCP (HV1)
before striking the inside of one channel. This creates the same effect as an electron striking
the dynode of a typical PMT, resulting in an avalanche of photo-electrons that emerge out
of the other side of the first MCP. These electrons are again accelerated through a second
potential difference (HV2) before repeating the process in the second MCP. Finally, the
copious photo-electrons exit the second MCP, are accelerated through a final potential dif-
ference (HV3), and are collected on the anode. This design is both much more compact,
more resistant to magnetic fields compared to traditional PMTs, and has less timing jitter.

Inside the dark box the sensor was held in place by a turn table that allowed for rotation

around a vertical axis as well as a horizontal axis (the Y(Y’) and Z(Z’) axes in Figure 48

respectively). The range of the polar angle θ was dependent on the size of the sensor being

measured as well as the signal and HV cables connected to the back of the sensor. A cart

allowed the sensor to move relative to the dark box for precise positioning at the center of

the magnet. The gain of both sensors were scanned for various angles of θ, φ, and a range

of magnetic field from 0 to 5 T.

A pulser-driven LED was used to illuminate the MCP-PMTs with 470 nm photons. An

optical fiber was used to transmit the photons to the dark box and a diffuser installed inside

the dark box cap was used to illuminate the entire face of the sensor with nearly constant
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intensity and 10 ns wide pulses at 30 kHz. The sensor signal output was then amplified using

a 200-times preamplifier and used as input to a 250 MHz flash analog-to-digital converter

(fADC) with 4096 sample depth provided by the JLab Electronics Group. The fADC was

then read out by our data acquisition system (DAQ).The pulser was also used as the trigger

signal for the fADC, as shown in the chart in Figure 48 (right).

My contribution to these studies was assisting in the experimental setup, data monitoring

and collection, restructuring and updating the signal reconstruction software, and operating

the FROST magnet and electronics both during and between runs. The analysis of the data

was done by Dr. Yordanka Ilieva from the University of South Carolina, who’s results are

shown below and taken, with permission, from [45].

FROST Magnet

Dark Box

Single 
Photon 
Pulser

PHOTONIS PP0365G

PHOTEK PMT210

FIG. 47: The FROST superconducting magnet (left) with the dark box placed in the bore,
and the Photek PMT210 (top right) and PHOTONIS PP0365G (bottom right) MCP-PMTs
used for testing at JLab [45].

5.3.2 RESULTS

The gain of the sensors is proportional to the average charge per pulse collected on the

sensor anode, and thus the performance can be measured in terms of the average charge
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FIG. 48: High magnetic field testing setup at JLab. Left: A closeup of the dark box showing
the Photek PMT210 being held in place by the turn table. This setup allows the MCP-PMT
to be rotated around both the horizontal Z(Z’) axis as well as the vertical Y(Y’) axis (with
respect to the floor). The rotation about the Y(Y’) and Z(Z’) axes are described by the polar
angle θ and azimuthal angle φ respectively. The magnetic field is parallel to the central axis
of the dark box. Right: A flowchart of the readout used for testing. The photocathode is
exposed to single 470 nm photons to produce photoelectrons, with a large voltage difference
between the anode and cathode used to create an avalanche. The total charge is collected
on the anode, amplified by a preamplifier, and digitized by an fADC and read out by a DAQ
[45].

collected on the fADC. This is calculated by taking the integral of the fADC signal. The

fADC samples the signal every 4 ns in a 1µs window. For each event, i, the average pedestal

was determined from the fADC using the first 20 bins, and the waveform is integrated over

9 bins around the peak. The integral of the pedestal is subtracted, resulting in a value, Q9,i,

that is proportional to the total charge collected on the anode for that event. The average

values of Q9,i for each setting of field, θ, and φ are used in the results presented. Figure 49

(left) shows an example of a waveform from the PP0365G sensor. Another strategy used

for calculating the collected charge was to integrate the entire pedestal-subtracted average

waveform (Figure 49 right). This yielded results consistent with the event-by-event analysis.

Figure 50 shows the performance of both sensors at the nominal (θ = φ = 0◦) position for

magnetic fields up to 5 T. Data were taken for HV settings of 93% (black) and 97% (red) of

the maximum manufacturer-recommended HV value. The PP0365G sensor shows a smooth,

nearly linear decrease in charge as the field increases, being able to operate at up to 3 T

with a factor of 15 loss in collected charge. By increasing the HV the operational range was

extended to 3.5 T. The PMT210 has an increase in the collected charge up to 0.5 T with a

smooth decrease thereafter as the magnitude of the field increases, staying operational until

4 T with only a factor of 6 decrease in collected charge. Increasing the HV allowed signal to
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be collected up to 5 T. An uncertainty of 5%, shown in the error bars of each data point, was

the dominant source of error, with the systematic uncertainty giving less of a contribution.

The latter was estimated as the standard deviation of the sample of repeated outcomes of

the average collected charge at the same setting (mainly the nominal angle setting at a 0 T

field) from runs taken randomly throughout the measuring period. The standard deviation

acccounts for the variations of the light intensity on the photocathode and of the positioning

of the sensor in the dark box.

Figure 51 shows the response of the sensors at various θ angles up to 30◦. As one can

see, the two sensors have very different responses. The magnetic field dependence of the

collected charge for the PP0365G shows a maximum below 1 T for θ = 20◦, 25◦, and 30◦,

while θ = 0◦ and 10◦ show a smooth decrease as magnetic field increases. There is also a

much more rapid decrease in collected charge at fields above 1 T for higher angles. The

PMT210, however, shows a more uniform characteristic for all θ angles. For both sensors, as

the θ angle increases the field range in which the sensor can reliably operate becomes more

narrow.

The effect of changing the φ angle of the PP0365G sensor for different magnetic field

strengths and θ angles of 10◦ and 20◦ can be seen in Figure 52. Because the outer casing of

the sensor is cylindrical and there is no apparent orientation, a φ = 0◦ position was chosen

randomly and marked on the front of the casing for consistency. The rotation was done

counterclockwise about the sensor’s axis when looking from the front. The data shows that

at a fixed θ angle the collected charge has a φ dependence, and this dependence is strongly

correlated to the θ angle. The larger θ angle shows a much faster decrease in collected charge

as the φ angle increases.

5.3.3 CONCLUSIONS

Overall the data at θ = 0◦ suggests that a smaller pore-size sensor (PMT210) has a higher

resistance to the effects of high magnetic fields as it was able to operate up to 5 T fields

and had a slower decrease in collected charge with increasing field than the PP0365G sensor.

The smaller pore-size sensor as showed an higher increase in collected charge with increased

HV. When increasing the θ angle, however, the PMT210 showed a much more rapid decrease

in performance compared to the PP0365G. At 0◦ the PMT210 can be operated up to 5 T,

while rotating to 5◦ there is a dramatic decrease in maximum field to 2 T. The PP0365G

sensor, however, was more stable with rotations in θ, dropping from 3 T at 0◦ to 2 T at

larger angles.
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FIG. 49: Observed waveforms during high magnetic field testing of the MCP-PMTs. Left:
an example waveform measured for the PP0365G sensor. Each bin of the x-axis corresponds
to a 4 ns interval. The y-axis is the fADC value (ranging from 0 to 4096). The solid red
line shows the calculated pedestal position for the event. The ranges Q9, Q11, Q19, and
Q21 denote the positions of integration ranges over 9, 11, 19, and 21 bins respectively for
calculation of the total anode charge for that event. The limits and width of the integration
range were varied for systematic purposes. Right: the average waveforms of the PP0365G
sensor at θ = 0◦ and varying magnetic field strengths. There is a clear negative correlation
between the signal amplitude and field magnitude [45].

While the data for the two sensors allow to make general conclusions about the effect of

pore size on performance, more detailed conclusions cannot be made with certainty as the

orientation of the MCPs inside the sensors are not necessarily the same. While the definition

of the θ angle is consistent for both sensors in this testing, the azimuthal orientation of

the channels relative to the central axis may differ greatly. No details are given by the

manufacturer about the absolute azimuthal orientation of the channels for each sensor as

this information has not as of yet been necessary for applications of MCP-PMTs. These

data, however, suggest that this will be important for optimization of the sensor design and

operational parameters for operations in areas of non-homogeneous, high-strength magnetic

fields, such as for the EIC DIRC.
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FIG. 50: The gain performance of the PP0365G and PMT210 sensors (left and right) at
θ = 0◦ and two HV settings [45]. The black and red points were measured using 93% and
99% of the maximum manufacturer recommended HV (HVmax) settings respectively. For
the PP0365G at 93% (95%) of HVmax a reasonable signal can be obtained up to a 3 (3.5)
T field, though the total collected charge decreased by a factor of 15 when going from 0 T
to 3 T. The PMT210 was able to produce a signal at fields up to 4 (5) T, and the collected
anode charge decreased only by a factor of 6 when going from 0 to 4 T. The error bars on
all points include both statistical and 5% systematic uncertainties, with the latter being the
dominate contribution.

FIG. 51: The average collected anode charge as a function of magnetic field strength at
various θ rotation angles for the PPP0365G (left) and PMT210 (right) sensors [45].
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FIG. 52: The average collected anode charge as a function of magnetic field strength at
various φ rotation angles for the PP0365G at fixed θ angles of 10◦ (left) and 20◦ (right) [45].
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CHAPTER 6

3-LAYER LENS PERFORMANCE IN A PARTICLE BEAM

Along with determining the focal plane and radiation hardness of the 3-layer lens design,

another crucial step towards solidifying an EIC DIRC design was to test the new lens in

a prototype DIRC with a real particle beam. Because not all of the components of the

high-performance DIRC baseline design for an EIC are currently available it is necessary

to validate the simulation package currently used to design and optimize the system. In

June and July of 2015 the PANDA Barrel DIRC group along with myself and Dr. Grze-

gorz Kalicy from CUA conducted a test beam at the European Organization for Nuclear

Research (CERN) with a prototype DIRC for the PANDA experiment. This was used as

an opportunity to evaluate the performance of the 3-layer lens in a real particle beam. The

beam was a hadron-rich beam with momentum tunable from 1 - 10 GeV/c. A standalone

GEANT4 simulation package developed for the PANDA DIRC prototype (and later modified

for the EIC DIRC geometry) was used for look-up table (LUT) generation, data monitor-

ing, and comparison to data. The two most important quantities measured during this test

beam were the photon yield per track and the Single Photon Resolution (SPR). Verifying

these measurements with simulation gives a good indication that the performance shown in

Chapter 4 is what should be reasonably expected from a real EIC DIRC detector.

6.1 2015 TEST BEAM PROTOTYPE SETUP

The PANDA prototype was situated in the CERN Proton Synchrotron (PS) T9 exper-

imental hall [49]. A 200 mm thick aluminum target upstream of the T9 hall was used to

produce a hadron-rich beam comprised mostly of protons, pions, muons, and electrons with

a very small amount of kaons. A series of dipole and quadrupole magnets allowed for steering

and focusing of the beam, as well as selecting specific particle momenta in the range of 1

to 10 GeV/c for data taking. A scintillator monitored the intensity of the beam and a wire

chamber monitored the x/y profile at the exit of the beam pipe.

A CAD drawing of the experimental setup in the T9 hall can be seen in Figure 53. The

DIRC prototype was situated between two time-of-flight (TOF) detectors that were spaced

29 m apart to tag protons and pions. Figure 54 shows the time-based separation of different
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FIG. 53: CAD drawing of the T9 experimental hall with the PANDA DIRC prototype setup
[21]. Two time-of-flight (TOF) detectors were separated by 29 m and used for proton/pion
separation. Two trigger systems were used for the start and stop times of the readout
electronics.

particle species for 4 different beam momenta. Two scintillator counters (named Trigger

1 and Trigger 2) were placed in front of and behind the prototype. A coincidence of the

trigger signals was used as the DAQ event recording trigger. Two veto counters were also set

up between the two TOF detectors to reject background particles that strayed significantly

from the beam path.

Figure 55 shows a CAD drawing of the prototype setup. The prototype was held in place

by a custom-built aluminum support structure with rails and a rotating table that allow the

detector to be translated and rotated relative to the beam. The rotation of the prototype

was verified using a remotely operated motor and camera. The radiator was carefully held

in place by two aluminum braces equipped with three micrometer screws which allowed

for fine adjustments in the position of the bar. Alignment of all components in the beam

line were done with a GLL2-80 Dual Plane Leveling and Alignment Laser by Bosch [51],

which provides both vertical and horizontal self-leveled planes. An example of alignment of

a radiator plate is shown in Figure 56.

The optical component is attached to one end of the bar and a mirror is attached to

the other. A compact prism expansion volume with dimensions 50× 170× 300 mm3 and an

opening angle of 30◦ (shown in Figure 57) was attached to the optical component (except

in the case of an air-gap lens). A 3 × 5 array of PHOTONIS Planacon XP85102 MCP-

PMTs with a total of 960 pixels (6× 6 mm2 each) were held in place by a support structure

and coupled to the expansion volume. The MCP-PMTs were read out by a DAQ system
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based on the trigger and readout board (TRB3) and the PADIWA discriminator card [52].

Couplings between the bar/lens, lens/prism, and prism/MCP-PMTs were done using Eljen

EJ-550 optical grease [53]. The mirror was not coupled directly to the bar, but held in place

flat against the bar in order to prevent slight variations in grease thickness from effecting

the angle of reflection.

The discriminating threshold signals for each MCP-PMT was adjusted and the difference

between the discriminator and trigger signals were recorded by the TRB system. Noise events

such as photons from delta electrons in the radiator bar and dark noise from the detectors

were cut out using this timing information. Some channels had a very large background

count rate and were masked. Calibration of the timing resolution of each channel was done

using a 405 nm Picosecond Injection Laser (PiLas) PiL040SM by Advanced Laser Diode

Systems [54] and a 660 nm Picosecond Pulsed Diode Laser (PDL 800-D) by PicoQuant [55].

The laser pulses were connected to an opal glass diffuser to illuminate the entire MCP-PMT

plane. Calibrations were performed both daily and any time the geometric configuration was

changed.

Data were taken for approximately 30 days, accumulating roughly 500 million triggers.

Both bar and plate radiator geometries were tested with several optical components. Scans

in polar angle between 20◦ and 150◦ were taken for many configurations. Scans in momentum

up to 10 GeV/c were taken for select angles and geometries. As this was an opportunistic run

for the EIC group, data taking was based on the needs of the PANDA DIRC group. They

require separation power information for pion/kaon at 3.5 GeV/c, but since the T9 beam

had a very small amount of kaons it was decided to instead study pion/proton separation at

7 GeV/c as the difference in Cherenkov angle for both cases is roughly 8 mrad. The results

presented below will be from data taken with a bar radiator, 3-layer spherical lens, 7 GeV/c

hadron-rich beam, and polar angles from 20◦ - 150◦.
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FIG. 54: Time-of-flight (TOF) particle tagging for 3, 5, 7, and 10 GeV/c beam momentum
with a 29 m separation between TOF stations (MCP2 and SciTil1) each with between 50-
80 ps time resolution. As a side note: it is immediately obvious that a simple TOF system
as a solution to PID in the limited space of the barrel region of an EIC is infeasible as even
at 5 GeV/c momentum the signal between pions and kaons are difficult to separate, and at
10 GeV/c it is neigh-impossible even with a 29 m separation between stations.
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FIG. 55: CAD drawing of the 2015 PANDA DIRC prototype setup [50]. The radiator (1),
optics (2), expansion volume (3), 3×5 array of MCP-PMTs (4), readout (5), and TRB units
(6) are supported by an aluminum frame that can move in two directions and rotate, as
indicated by the red arrows.
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FIG. 56: Plate radiator being adjusted by micrometer screws using the Bosch Dual Plane
Laser as a guide. When the light reflected off of the radiator lined up with the incoming
beam from the laser on the white paper in both the horizontal and vertical directions the
radiator was aligned with the beam line. Photo taken by, and used with permission from
Dr. Grzegorz Kalicy.

300 mm50 mm
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FIG. 57: Picture of the 30◦ prism expansion volume used in the 2015 test beam [50].
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6.2 PROTOTYPE SIMULATION

The accurate recreation of a DIRC detector in simulation is crucial for data analysis as

it allows for the generation of the look-up-tables (LUTs) for geometric reconstruction, as

well as a reference for the hit patterns 1 of the real-time monitoring system in the case of

the 2015 CERN test beam campaign. A standalone GEANT4 simulation package was used

for the CERN test beam, from which the EIC DIRC simulation in Chapter 4 was produced.

Material properties for fused silica, NLaK33, the mirror, the optical grease, and the MCP-

PMTs were included. The timing resolution of the simulation was based on findings of the

laser calibration data and set to be 200 ps. For each configuration of the prototype the

geometry for each element (e.g. relative positioning for the bar to the lens and prism) were

adjusted to the values carefully measured while changing configurations.

Also included in the simulation is the quantum efficiency (QE) of the MCP-PMTs. Each

MCP-PMT was scanned for QE and gain uniformity with a 372 nm laser pulser at Erlangen

University. The mappings of QE were normalized to MCP-PMT 10 (when counting from

bottom to top and left to right, starting at 0) and used as relative QE maps in the simulation

(Figure 58 top). To get the absolute QE for each pixel a scan was done of the QE as a function

of photon wavelength (Figure 58 bottom). The QE in the simulation was calculated by

multiplying the relative QE of each pixel by the QE corresponding to the wavelength of the

photon being detected by the pixel in the simulation.

Figure 59a shows an example of one simulated proton track with 7 GeV/c momentum

(red) at a polar angle of 125◦ traversing a bar radiator with the 3-layer lens focusing, and

producing Cherenkov photons (yellow). Figure 59b is the accumulated hit pattern on the

MCP-PMTs of 10,000 identical protons with the same configuration as in (a). Figure 59c

is the accumulated hit pattern of 10,000 tagged proton events in the test beam data with

7 GeV/c beam momentum, 125◦ polar angle, and the bar radiator and 3-layer lens config-

uration. The simulation very nicely reproduces the test beam hit pattern, giving a good

indication that the simulation has the proper positioning of all the components.

1For the purposes of this document a “hit” or “photon” refers to a signal from a single pixel in an MCP-
PMT. However because of an irreducible background it cannot be said for certain which signals are from
true Cherenkov photons. What is truely measured are photo-electrons.
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FIG. 58: The absolute and relative quantum efficiency of each MCP-PMT pixel. Channel-
by-channel map of the relative quantum efficiency (QE) of each 6 × 6 mm2 pixel of each
MCP-PMT (64 pixels per MCP-PMT) used in the simulation of the 2015 test beam prototype
(top). Absolute QE values in the simulation are the product of the channel-by-channel values
with the wavelength dependent QE of a Planacon XP85012 MCP-PMT (bottom).
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125°

GEANT4 simulation, protons

a)

Test beam data, tagged proton

b)

c)

FIG. 59: Comparison of prototype data and GEANT4 simulation. a) Shows a visualization
of the GEANT4 simulation of a single 7 GeV/c proton (red) traveling through the 2015
prototype with a bar radiator at a polar angle of 125◦, b) is the accumulated hit pattern
of 10,000 identical protons from simulation, and c) is the accumulated hit pattern of 10,000
tagged proton tracks from test beam data at 7 GeV/c beam and 125◦ polar angle. The
roughly half pixel discrepancy in the position of the two hit patterns can be explained by
the uncertainty in the absolute value of the polar angle during the test beam measurements.
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6.3 DATA ANALYSIS

Several studies were done during the CERN 2015 test beam campaign using both a

radiator bar and plate, five different focusing configurations, and a range of momentum.

Some studies were used as test runs for calibration and debugging. Information on the main

data studies are shown in Table 1.

Two studies were chosen for the analysis in this thesis based on geometric configuration

(bar and 3-layer lens) and momentum (7 GeV/c): 151 and 158. Study 151 is the primary

data set because of its larger range in polar angle, while study 158 is used for comparison

and error evaluation. Each data set represents approximately 1 day of beam.

6.3.1 EVENT SELECTION

The prototype data taken were stored in the list mode data format of the HADES DAQ

system prototcol [56] and converted offline into the CERN ROOT data format [57] for anal-

ysis. The DAQ was started by a signal from Trigger 1, and events were required to have

signals in Trigger 1, Trigger 2, and both TOF counters to ensure a well-defined beam spot

and valid π/p tagging from the TOF system. The veto counters were also required in event

selection, but later found to be unnecessary for constraining the beam spot.

Hits were selected in a time window of ±40 ns relative to the Trigger 1 time. Channels

with large electronics noise above 1 MHz and one defective PADIWA card were masked, with

the same masking scheme applied to the simulation. Events with 5 or fewer MCP-PMT hits

were also excluded from reconstruction due to lack of statistics for the reconstruction. It is

also worth noting that, though the QE of the MCP-PMTs is more or less uniform, MCP-

PMTs 12, 13, and 14 had poor performance during the test run due to electronics issues.

As mentioned previously the timing difference between the two TOF stations allowed for

tagging an event as either pion or proton. Figure 60 shows the TOF time distributions for

5 GeV/c (top) and 7 GeV/c (bottom) beam momenta. These distributions were fitted with

Gaussian functions near the proton and pion peaks and a ±2σ window around the peaks

was used for selection (dashed lines).

The timing of the hits in the MCP-PMTs were also constrained. Based on the orientation

of the detector in the beam the time for the photon to propagate can be calculated based
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on the total bar path traveled (Z), using Figure 61a and

Z =

z0 + ∆z direct photons

2L− z0 −∆z reflected photons

∆z = − cot(α)×
[
D2 +D1 × cot

(
135− α

2

)] (8)

where L is the total length of the radiator, z0 is the nominal perpendicular distance between

the particle beam and the end of the radiator, D1 is the distance from the pivot point of

the radiator to the particle beam, D2 is the distance from the pivot point to the radiator,

and α is the polar angle. Comparing the difference between the calculated expected arrival

time and the actual arrival time of the photons gives a time difference distribution, shown

in Figure 61b. In simulation it is to possible to exclude times associated with incorrect

reconstructed paths from the LUT. Using this time distribution from only correct simulated

paths it was determined that a time difference cut of ±1 ns was sufficient across all polar

angles for geometric reconstruction.

6.3.2 GEOMETRIC RECONSTRUCTION

The geometric reconstruction for the CERN 2015 test beam data was done in much the

same manner as that described in Chapter 4, however, three corrections were applied to the

test beam data to improve resolution and overall performance: a correction to account for

charge sharing between pixels in the MCP-PMTs, a per-MCP-PMT correction to the recon-

structed mean θC for each polar angle, and a subtraction of the simulated path ambiguity

background from beam data. Evaluation of the statistical and systematic uncertainties was

also done for both simulation and beam data. Fitting of the main peak of the reconstructed

Cherenkov angle was done in the same manner for both test beam data and simulation.

Detailed information about the fitting for both protons and pions can be seen in Table 2

of Appendix A. Results for photon yield, SPR, and reconstructed mean θC are presented

below.

Charge Sharing Correction

It was discovered that many events in the prototype data showed multiple adjacent MCP-

PMT pixels firing in a single event. It is difficult to say with certainty if neighboring firing

pixels, such as the example shown in Figure 62a, fired independently or if charge sharing

between the pixels occurred, effectively spreading the pixel’s signal across multiple pixels.
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Because the width of each pixel corresponds to roughly a 20 mrad spread in Cherenkov angle

the results of reconstructing these clustered pixels with the standard averaged LUT resulted

in wider than expected reconstructed Cherenkov angle distributions for the prototype data.

The solution was to modify the LUT to reconstruct the position of the photon not from

the center of each pixel, but towards an edge, weighted by the position of neighboring

firing pixels. Each pixel is subdivided into 9 sections in the LUT, as in Figure 62b. The

reconstruction algorithm first determines if and where adjacent firing pixels are located for

each hit and then reconstructs the Cherenkov angle at the center of the section most heavily

weighted. Figure 63 shows the effect of this charge sharing correction for simulation (top)

and experimental data (bottom) at 90◦ polar angle. As was expected, the simulation, which

does not include charge sharing, was largely unaffected. In the prototype data, however, the

correction served to narrow the reconstructed Cherenkov angle peak and reduce background

contributions.

Per-MCP-PMT θC Correction

The fitted mean of the reconstructed Cherenkov angle from geometric reconstruction

showed a non-constant value across the prototype polar angle range for both simulation and

experimental data. To correct for this non-constant shift a per-MCP-PMT θC correction

was implemented in the reconstruction. For a given polar angle and particle species the

reconstructed Cherenkov angle for each MCP-PMT is fitted in the same manner as the full

data set and a value for the Cherenkov angle is extracted (see Figure 64). The difference

between the extracted value and the true value define a shift that is then used to adjust

the Cherenkov angle spectrum for each individual MCP-PMT. After corrections the mean

Cherenkov angle is much more accurately reproduced, and even improves the SPR at the

some polar angles. Figure 65 shows the results of the correction for the full range of polar

angles.

Simulated Background Subtraction

Because the majority of the background signal for the reconstructed Cherenkov angle

comes from irreducible photon path ambiguities it would stand to reason that the ambiguity

background simulated in GEANT4 would reasonably describe the PANDA prototype back-

ground seen in the experimental data, assuming the geometry has been correctly recreated in

GEANT4. Figure 66a shows a simulation of 1000 protons at 7 GeV/c and 125◦ polar angle

along with the ambiguity background (i.e. the reconstructed Cherenkov angle coming from
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incorrect prism ambiguities) and the reconstructed angles coming from true prism paths.

Figure 66b shows the prototype data with the same configuration along with the simulated

background and the background-subtracted data. Because of the nice description of the

background from simulation, the background-subtracted prototype data shows a clear peak

and minimal background. This method could prove to be very useful for and EIC DIRC as

the already minimal geometric background (see Figure 28 as an example) could be nearly

eliminated.

Evaluation of Uncertainties

Many factors were considered for both the statistical and systematic uncertainties as-

sociated with the geometric reconstruction method: internal file consistency 2, varying the

fitting function and fit range found to be optimal for each polar angle, varying histogram

binning, varying the timing cuts, and checking the stability of a given geometric configu-

ration between studies 151 and 158. For each contribution to the error, multiple samples

were taken and the RMS of the distribution for photon yield (where applicable), SPR, and

mean θC were taken to be the associated error. Derived errors for tagged protons in both

experimental data and simulation are shown in Tables 3 and 4 of Appendix B respectively.

Select polar angles were reconstructed for both studies 151 and 158 and compared (see

Figures 67, 68, and 69). The difference in photon yield, SPR, and mean θC were all found to

be very small compared to the contributions coming from other systematics (thus confirming

that the CERN setup was very stable) and were not included in the final error bars, but are

shown in Table 3 for completeness.

Results

Figure 70 shows the extracted photon yield for the CERN 2015 test beam data. The

enhancement of the photon yield at 90 degrees for simulation compared to beam data can

be understood by recalling that the MCP-PMTs at the base of the expansion volume (12,

13, and 14) had poor performance during the test beam and these sensors are where nearly

100% of the produced Cherenkov photons end up from a 90◦ polar angle track.

Figures 71 - 74 show the final results for the reconstructed mean θC of the CERN 2015

beam data and simulation for protons and pions both with and without per-MCP-PMT

corrections and path ambiguity background subtraction. As per the design, the per-MCP-

PMT correction gives a much cleaner separation between protons and pions while also shifting

2Taking 100 sets of 100 events and running the reconstruction analysis for each set as normal.
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the simulation and beam data such that they are in good agreement both with each other and

with the expected Cherenkov angle. The path ambiguity background subtraction, however,

does not significantly improve the performance of the reconstructed θC in either case. This

is to be expected in both cases as the distribution of the background under the simulated

peak is typically flat. It should, however, show some improvement for the SPR.

Figures 75, 76, 77, 78, 79, 80, 81, and 82 show the final results for the SPR of the CERN

2015 beam data and simulation for protons and pions both with and without per-MCP-

PMT corrections and path ambiguity background subtraction. Unlike the reconstructed

Cherenkov angle, here the per-MCP-PMT correction has little effect on the extraction of

the SPR. This result is somewhat counterintuitive as one would expect that shifting each

MCP-PMT’s θC spectrum separately to the correct value would naturally narrow the signal

peak. This, however, does not seem to be the case for most polar angles. Utilizing the path

ambiguity background subtraction, on the other hand, shows a significant improvement of

the SPR for most polar angles. Overall the beam data and GEANT4 simulation are in fairly

good agreement for most polar angles, and within an acceptable value for PID performance.

Figure 83 shows the proton/pion log-likelihood separation for both simulation and beam

data for geometric reconstruction. The simulated separation power meets the 3σ performance

expected by the PANDA DIRC group for a majority of the polar angle range. However, the

beam data shows a much worse performance, dropping to around 1σ for near perpendicular

angles. This can most

Figure 84 shows the PID and misidentification (MisID) probability for protons (e.g. the

MisID for protons shows the probability of a proton to be misidentified as a pion) as a

function of polar angle for geometric reconstruction. MisID is calculated by taking the

integral of the Gaussian fit from the crossing of the two curves (shown with the red circle)

out to the tail of the distribution and dividing by the total integral of the curve. The PID

probability is then 1-MisID.
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TABLE 1: Studies made during the 2015 CERN test beam campaign, including geometric
configuration, momentum, and number of data points taken.

Study ID Radiator Lens Momentum (GeV/c) Data points
150 bar 2-layer spherical 7 34
151 bar 3-layer spherical 7 46
152 plate no lens 7 28
153 plate 2-layer cylindrical 7 29
154 bar 1-layer air gap 7 44
155 bar 1-layer air gap 7 17
157 bar 2-layer cylindrical 7 43
158 bar 3-layer spherical 7 15
159 bar no lens 7 28
160 bar 3-layer spherical 5 47
161 plate no lens 5 29
162 plate 2-layer cylindrical 5 29
170 bar 3-layer spherical momentum scan 9
171 plate no lens momentum scan 8
173 plate 2-layer cylindrical momentum scan 8
174 bar 1-layer air gap momentum scan 8
179 bar no lens momentum scan 9
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FIG. 60: Time difference between the two TOF stations for beam momenta of 5 GeV/c
(top) and 7 GeV/c (bottom). The peaks were fitted and a ±2σ selection window was taken
(dashed lines).



80

ᶓ

D2D1

Δz z0
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        [D2+D1*cot(135-ᶓ/2)]

a)

b)

FIG. 61: A visualization of the timing difference used for data analysis. a) Illustration
showing how total bar path length (Z) is calculated for the expected arrival time of photons
based on distances from the pivot point (cyan circle) and particle beam (D1),the pivot point
to the radiator (D2), nominal perpendicular distance between the beam and the end of
the bar (z0), and the polar angle (α). Note that in the case of b) Example time difference
distribution of experimental data (black), full simulation (red), and simulation including only
correct prism paths from the LUT (blue) for 125◦ polar angle. The dashed lines indicate the
±1 ns cut taken during analysis.
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FIG. 62: A visualization of the charge sharing correction used during data analysis. a) A
zoomed in view of a single MCP-PMT showing an example hit pattern from a single particle
track. The 3 isolated pixels (red) have no neighboring hits. The 3 clustered hits (green),
however, are adjacent to other firing pixels and thus it is hard to determine with timing
alone if these are the result of a single photon from the bottom right pixel that resulted in
charge sharing, 3 independent photons hitting all 3 pixels, or some combination of 2 photons
hitting 2 of the pixels that resulted in charge sharing. To compensate for this uncertainty
each pixel is subdivided, as in (b), into 9 regions such that the LUT will reconstruct the
photon angle from different areas of the pixel. For the case of (a) the top pixel in the cluster
would be reconstructed from point 7, the bottom left pixel from point 5, and the bottom
right pixel from point 2, while the 3 isolated pixels would all be reconstructed from point 0.
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FIG. 63: Reconstructed Cherenkov angle of 7 GeV/c protons for simulation (top) and pro-
totype data (bottom) for 90◦ polar angle using the standard LUT (blue) and the charge-
sharing-corrected LUT (red). The simulation is largely unaffected, while in the data the
peak has been narrowed and the background reduced.
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FIG. 64: Reconstructed θC at 90◦ polar angle before (red) and after (blue) per-MCP-PMT
corrections. The uncorrected distribution has an SPR (the σ of the gaussian) of 10.9 mrad
and a mean θC of 823.1 mrad, or 6.3 mrad away from the true value of 816.8 mrad for a
7 GeV/c proton. The corrected distribution has a steady SPR of 10.9 mrad and a mean of
813.4 mrad, which is only 3.4 mrad away from the true value.
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per-MCP-PMT ᶚC 
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With per-MCP-PMT 
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FIG. 65: The reconstructed mean θC from the PANDA prototype and simulation. Top: Re-
constructed mean θC before applying per-MCP-PMT corrections for simulation (blue) and
prototype data (red) for 7 GeV/c protons. The dashed line indicates the true Cherenkov
angle for a 7 GeV/c proton of 816 mrad. Bottom: Reconstructed θC after applying correc-
tions.
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a)
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125° polar angle 7 GeV/c protons

simulation

beam data

FIG. 66: An example of the background subtraction technique used during data analysis. a)
The full reconstructed Cherenkov angle (blue line), reconstructed angle with only incorrect
prism path ambiguities (black circles), and the reconstructed angle assuming only true prism
paths (red histogram) for 125◦ polar angle protons from simulation. b) Beam data (blue
line) with path ambiguity background from simulation (black circles, same as (a)). The red
histogram is the difference between blue and black.
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Set 151

Set 158

Photon Yield

FIG. 67: Comparison of the extracted photon yield of studies 151 (red) and 158 (green). All
common polar angles agree nicely.

Set 151

Set 158

SPR

FIG. 68: Comparison of the extracted SPR of studies 151 (red) and 158 (green). All common
polar angles other than 50◦ agree.
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Set 151

Set 158

Mean θC

FIG. 69: Comparison of the reconstructed mean θC of studies 151 (red) and 158 (green). All
common polar angles other than 50◦ agree.

simulation

beam data

FIG. 70: Extracted photon yield from GEANT4 simulation (blue) and study 151 of the 2015
CERN test beam data.
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proton data

pion sim

pion data

Mean θCNo Background Subtraction, No MCP-PMT Correction

FIG. 71: Reconstructed mean θC with no background subtraction and no per-MCP-PMT
correction from GEANT4 simulation (blue) and study 151 of the 2015 CERN test beam data
(red) for protons (filled circles) and pions (open circles). The solid and dashed lines indicate
the true Cherenkov angle for 7 GeV/c pions and protons respectively.

proton sim

proton data

pion sim

pion data

Mean θCNo Background Subtraction, With MCP-PMT Correction

FIG. 72: Reconstructed mean θC with simulated background subtraction but no per-MCP-
PMT correction from GEANT4 simulation (blue) and study 151 of the 2015 CERN test
beam data (red) for protons (filled circles) and pions (open circles). The solid and dashed
lines indicate the true Cherenkov angle for 7 GeV/c pions and protons respectively.
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proton data

pion sim
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Mean θCWith Background Subtraction, No MCP-PMT Correction

FIG. 73: Reconstructed mean θC with no background subtraction but using a per-MCP-
PMT correction from GEANT4 simulation (blue) and study 151 of the 2015 CERN test
beam data (red) for protons (filled circles) and pions (open circles). The solid and dashed
lines indicate the true Cherenkov angle for 7 GeV/c pions and protons respectively.

proton sim

proton data

pion sim

pion data

Mean θCWith Background Subtraction, With MCP-PMT Correction

FIG. 74: Reconstructed mean θC with simulated background subtraction and using a per-
MCP-PMT correction from GEANT4 simulation (blue) and study 151 of the 2015 CERN
test beam data (red) for protons (filled circles) and pions (open circles). The solid and
dashed lines indicate the true Cherenkov angle for 7 GeV/c pions and protons respectively.
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simulation

beam data

     SPRProtons: No Background Subtraction, No MCP-PMT Correction

FIG. 75: Fitted SPR for proton-tagged events of study 151 of the CERN 2015 test beam data
(red) and GEANT4 simulation (blue) without background subtraction or a per-MCP-PMT
correction.

simulation

beam data

     SPRProtons: No Background Subtraction, With MCP-PMT Correction

FIG. 76: Fitted SPR for proton-tagged events of study 151 of the CERN 2015 test beam
data (red) and GEANT4 simulation (blue) without background subtraction and using a
per-MCP-PMT correction.
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simulation

beam data

     SPRProtons: With Background Subtraction, No MCP-PMT Correction

FIG. 77: Fitted SPR for proton-tagged events of study 151 of the CERN 2015 test beam
data (red) and GEANT4 simulation (blue) using simulated background subtraction but no
per-MCP-PMT correction.

simulation

beam data

     SPRProtons: With Background Subtraction, With MCP-PMT Correction

FIG. 78: Fitted SPR for proton-tagged events of study 151 of the CERN 2015 test beam
data (red) and GEANT4 simulation (blue) using both simulated background subtraction
and a per-MCP-PMT correction.
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simulation

beam data

     SPRPions: No Background Subtraction, No MCP-PMT Correction

FIG. 79: Fitted SPR for pion-tagged events of study 151 of the CERN 2015 test beam data
(red) and GEANT4 simulation (blue) without background subtraction or a per-MCP-PMT
correction.

simulation

beam data

     SPRPions: No Background Subtraction, With MCP-PMT Correction

FIG. 80: Fitted SPR for pion-tagged events of study 151 of the CERN 2015 test beam
data (red) and GEANT4 simulation (blue) without background subtraction and using a
per-MCP-PMT correction.
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simulation

beam data

     SPRPions: With Background Subtraction, No MCP-PMT Correction

FIG. 81: Fitted SPR for pion-tagged events of study 151 of the CERN 2015 test beam
data (red) and GEANT4 simulation (blue) using simulated background subtraction but no
per-MCP-PMT correction.

simulation

beam data

     SPRPions: With Background Subtraction, With MCP-PMT Correction

FIG. 82: Fitted SPR for pion-tagged events of study 151 of the CERN 2015 test beam data
(red) and GEANT4 simulation (blue) using both simulated background subtraction and a
per-MCP-PMT correction.
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simulation

beam data

FIG. 83: Proton/pion log-likelihood separation using geometric reconstruction for simulation
(blue) and beam data (red) using a 3-layer lens, radiator bar, and 7 GeV/c beam momentum.

simulation probability

beam data probability

simulation  MisID

beam data MisID

Proton LUT PID

FIG. 84: PID (closed circles) and MisID (open circles) probabilities for simulated protons
(blue) and tagged proton events in beam data (red). Results for pions are similar for both
simulation and beam data.
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6.3.3 TIME-BASED RECONSTRUCTION

The time-based reconstruction of the 2015 CERN data was done in the same manner as

the time-based reconstruction of the EIC simulation described in Chapter 4. PDFs for the

beam data were created by using every other event in a data file for both pions and protons.

The reconstruction of the data was done with the other half of the data file to ensure no

“cross talk” was occurring that would give an inaccurate result. Figure 85 shows the log-

likelihood separation for 90◦ and 25◦ polar angles along with the separation power, given in

unites of standard deviations (std dev) and calculated by dividing the distance between the

two peaks of the distributions by their average standard deviations.

1.48 std dev 3.50 std dev

90° Polar Angle 25° Polar Angle

FIG. 85: Log-likelihood separation for 90◦ (left) and 25◦ (right) polar angles for pions (blue)
and protons (red). Particles identified as protons will tend towards the right side of the zero
point, while particles identified as pions will tend towards the left side of the zero point.
The calculated separation power for each distribution are 1.48 and 3.5 standard deviations
(std dev) respectively. The overlap of one curve under another will give the misidentification
(MisID) of that species as being identified as the other.

Results

Figure 86 shows the separation power for the radiator bar with the 3-layer lens and 7

GeV/c beam momentum as a function of polar angle for simulation and beam data. Clearly

the beam data was not able to reach the desired 3σ separation. This is caused in part by the

timing resolution, which for the prototype was a factor of 2-3 worse than expected. Another

factor contributing to the discrepancy is the photon detection efficiency loss of the lower

quality MCP-PMTs at the base of the expansion volume, as is evident by the lack of a rise
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simulation

beam data

FIG. 86: Proton/pion log-likelihood separation using time-based imaging for simulation
(blue) and beam data (red) using 3-layer lens, radiator bar, and 7 GeV/c beam momentum.

in the separation power near 90◦ polar angle in the beam data compared to simulation.

Figure 87 shows the PID and MisID probability for protons as a function of polar angle

Results for pion PID and MisID probability are similar to that of the proton. Again, due to

the worse timing resolution than expected, the MisID is much worse for the beam data than

the simulation.
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simulation  MisID

beam data MisID

Proton time-based PID

FIG. 87: PID (closed circles) and MisID (open circles) probabilities for simulated protons
(blue) and tagged proton events in beam data (red). Results for pions are similar for both
simulation and beam data.
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CHAPTER 7

SUMMARY AND OUTLOOK

7.1 RESULTS

A DIRC detector is ideal for meeting the hadronic PID requirements in the barrel region

of an EIC due to its small radial footprint and excellent particle separation capabilities

at sub-10 GeV/c particle momentum. The current baseline design of the EIC DIRC is

based on the compact PANDA DIRC design [21], featuring a compact expansion volume

and lens-based focusing. Both geometric and time-based reconstruction analysis were done

on the GEANT4 simulation of the EIC DIRC. For the geometric reconstruction Figure 30

shows a reasonable performance that would allow for 3σ π/K separation (see Figure 22 for

reference) at 6 GeV/c momentum for most polar angles and dropping only slightly below 3σ

if it is assumed that a large correlated term of 1 mrad will be seen in the actual experiment.

In the case of the time-based reconstruction (Figure 33) the simulation again predicts a 3σ

separation for a majority of the polar angle range of the detector, with performance dropping

for polar angles near perpendicular.

While it would be ideal to test these simulation results directly with physical measure-

ments, at this stage of the R&D effort it is more sensible to take advantage of the synergy

between the EIC DIRC group and other DIRC groups rather than spend some large fraction

of the PID R&D budget on a single EIC DIRC prototype. A synergistic test beam campaign

was carried out during the summers of 2015 and 2016 with the PANDA Barrel DIRC group

to study the performance of a PANDA DIRC detector prototype using the components en-

visioned for the EIC DIRC, namely a new 3-layer lens focusing optic designed to have a flat

focal plane across the face of the MCP-PMT detector plane. Verification that the GEANT4

simulation using this PANDA prototype geometry agrees with experimental data is key in

ensuring that the predicted performance of the EIC DIRC is valid.

Along with the analysis of the performance of the EIC DIRC 3-layer lens in a particle

beam, it was also necessary to investigate the radiation hardness of the center layer of

lanthanum crown glass [28], NLaK33, as well as the actual shape of the focal plane to compare

with simulation. Measurements of the radiation hardness were carried out at the Catholic
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University of America using 160 keV X-ray cabinet [32] for irradiation and a monochromator

[34] for measuring the transmission of the glass after each irradiation step. It was found that

the glass suffers approximately 1.3% transmission loss per 100 rad of delivered dose (Figure

45). It is, at the time of this writing, unknown what the expected dose delivered to the DIRC

detector at an EIC will be over the lifetime of the experiment. Alternatives and solutions

are discussed in the next section.

Measurements of the focal plane of the 3-layer lens were done at Old Dominion University

using a custom-built laser setup and 3D printed lens holder. Initial measurements showed a

systematic shift in the position of the focal plane between data and simulation by roughly

4 cm. After many measurements and adjustments to the setup it was found that the cause

of this shift was most likely due to a non-zero angle between the two laser beams of roughly

0.15 mrad. After this adjustment was implemented in the simulation, the measured data

very nicely reproduces both the shape and position of the predicted focal plane for multiple

tilt angles and even when shifting the beam off-center of the lens.

The analysis of the 2015 CERN test beam data from the PANDA DIRC prototype fo-

cused primarily on the configuration with the 3-layer lens, bar radiator, and 7 GeV/c beam

momentum in an attempt to closely match the parameters of the EIC DIRC baseline de-

sign. Both the geometric and time-based reconstruction methods were used to determine

the performance of the prototype. The GEANT4 simulation is in good agreement with the

results of the analyzed experimental data for both the photon yield and the single photon

resolution, which gives confidence to the results presented in Chapter 4 for the EIC DIRC

that the desired PID performance can be achieved by such a detector.

7.2 FUTURE WORK

There are still several steps to take in the R&D effort for the EIC DIRC: further studies

of the radiation hardness of NLaK33, alternative materials for the lens design, and building

a full, baseline-design-compatible EIC DIRC prototype.

Tests of the radiation hardness of NLaK33 were done with a somewhat thick (1 cm)

piece of glass. The central layer of the 3-layer lens design, however, is set to 0.56 cm at the

thickest portion, and thins out to 0.2 cm at the edge (see Figure 27). It is unclear what

the penetration depth of NLaK33 is, and therefore how big of a change a smaller volume of

material would have on the transmission. Talks are currently underway with a manufacturer

to procure a piece of glass with a smaller thickness to test the penetration depth.

Along with testing the penetration depth of NLaK33, tests are also planned for exposing
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the material to neutron radiation. Again, the neutron flux at the DIRC detector in an EIC

is unclear, but having a feel for the type of neutron damage the material can withstand will

help in the development of the lens.

If, after all radiation tests of the thinner NLaK33 piece are complete, it is found that it

will lose as significant amount of transmission after a relatively short time of running then

an alternative material must be found for the lens. Currently there are investigations into

making the lens out of a different material called lead fluoride (PbF2). PbF2 is ideal because

of its high refractive index, similar to that of NLaK33, and its proven high radiation hardness

[58]. The challenge with using PbF2 in the lens is that many manufacturers are unwilling to

work with it due to the fear of contamination of their tools with lead.

In order to fully test the EIC DIRC design a prototype must be constructed and tested in a

hadron beam. To carry out such a test beam campaign, MCP-PMTs with appropriately sized

3 × 3 mm2 pixels (crucial for the desired resolution) along with a correctly sized expansion

volume and radiator bars must be procured. Costs can be somewhat mitigated if radiator

bars from previous experiments could be used instead of purchasing new bars. It is currently

planned to include the costs of a full test beam in the US as part of the 2019 EIC budget

for detector R&D.

In conclusion, a DIRC detector is an ideal solution for hadronic PID in the barrel region

around the electron/ion interaction point of an EIC due to its compact radial size and

resolving power for charged particles with sub-10 GeV/c momentum. Many milestones have

so far been achieved in the R&D efforts, including the verification of the EIC DIRC simulation

package via the 2015 CERN test beam, confirmation of the shape of the new 3-layer spherical

lens design at ODU, limited radiation hardness testing of the NLaK33 material at CUA, and

extensive studies of the influence of high magnetic fields on MCP-PMTs at JLab.
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APPENDIX A

GEOMETRIC RECONSTRUCTION FITTING PARAMETERS

TABLE 2: Fitting information for the 2015 CERN test beam set 151 data. The fit is shown

as a gaussian (main peak) plus some assumption of the back ground (e.g. pol0 for assumption

of a flat background). The range of the fit is given as mrad away from the position of the

main peak to the left (low) and right (high).

Polar Angle (◦) Particle Fit (gaus+) Range low (mrad) Range high (mrad)

20 pion pol2 -30 +30

20 proton pol2 -25 +60

25 pion pol0 -35 +35

25 proton pol2 -40 +45

30 pion pol2 -40 +40

30 proton pol1 -30 +50

35 pion pol1 -40 +40

35 proton pol1 -25 +35

40 pion pol2 -30 +35

40 proton pol2 -30 +45

45 pion pol0 -35 +50

45 proton pol0 -60 +60

50 pion pol2 -35 +55

50 proton pol2 -30 +40

55 pion pol2 -35 +40

55 proton pol0 -30 +30

60 pion pol2 -30 +45

60 proton pol2 -30 +45

65 pion pol1 -35 +30

65 proton pol2 -20 +25

70 pion pol2 -35 +40

70 proton pol2 -40 +50

75 pion pol2 -30 +25
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TABLE 2: Fitting information for the 2015 CERN test beam set 151 data. The fit is shown

as a gaussian (main peak) plus some assumption of the back ground (e.g. pol0 for assumption

of a flat background). The range of the fit is given as mrad away from the position of the

main peak to the left (low) and right (high).

Polar Angle (◦) Particle Fit (gaus+) Range low (mrad) Range high (mrad)

75 proton pol2 -35 +35

80 pion pol2 -30 +50

80 proton pol2 -35 +35

85 pion pol2 -40 +60

85 proton pol2 -30 +35

90 pion pol2 -40 +40

90 proton pol2 -45 +45

95 pion pol2 -50 +35

95 proton pol2 -50 +30

100 pion pol2 -50 +50

100 proton pol2 -35 +35

105 pion pol2 -30 +40

105 proton pol1 -45 +30

110 pion pol2 -40 +40

110 proton pol2 -30 +45

115 pion pol1 -50 +35

115 proton pol0 -30 +30

120 pion pol2 -50 +50

120 proton pol2 -40 +40

125 pion pol0 -50 +50

125 proton pol2 -35 +35

130 pion pol2 -25 +35

130 proton pol2 -35 +60

135 pion pol0 -50 +50

135 proton pol0 -30 +30

140 pion pol0 -20 +35

140 proton pol2 -30 +30

145 pion pol0 -30 +30
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TABLE 2: Fitting information for the 2015 CERN test beam set 151 data. The fit is shown

as a gaussian (main peak) plus some assumption of the back ground (e.g. pol0 for assumption

of a flat background). The range of the fit is given as mrad away from the position of the

main peak to the left (low) and right (high).

Polar Angle (◦) Particle Fit (gaus+) Range low (mrad) Range high (mrad)

145 proton pol0 -60 +60

150 pion pol2 -40 +50

150 proton pol2 -45 +30
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APPENDIX B

ERROR EVALUATION FOR GEOMETRIC

RECONSTRUCTION

TABLE 3: Evaluated errors for prototype DIRC data taken during the 2015 CERN test

beam with bar radiator, 3-layer lens, 7 GeV/c beam momentum, and tagged proton events.

Polar Angle (◦) Quantity Internal Fitting Binning Time Cut Stability

20

photon yield (#) 1.417 - - - -

SPR (mrad) 0.228 1.051 0.435 0.146 -

mean θC (mrad) 0.313 0.392 0.157 0.195 -

25

1.777 - - - -

0.568 0.418 0.145 0.173 -

0.385 0.173 0.095 0.153 -

30

1.580 - - - 0.503

0.544 0.465 0.270 0.162 0.648

0.413 0.311 0.167 0.198 0.426

35

1.335 - - - -

0.404 0.721 0.336 0.102 -

0.480 0.171 0.264 0.299 -

40

1.428 - - - -

1.221 1.452 0.375 1.047 -

0.561 0.585 0.174 0.198 -

45

1.471 - - - -

0.468 0.477 0.189 0.110 -

0.321 0.196 0.124 0.182 -

50

1.429 - - - -

1.043 1.439 0.737 1.370 -

0.926 3.862 0.551 0.441 -
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TABLE 3: Evaluated errors for prototype DIRC data taken during the 2015 CERN test

beam with bar radiator, 3-layer lens, 7 GeV/c beam momentum, and tagged proton events.

Polar Angle (◦) Quantity Internal Fitting Binning Time Cut Stability

55

photon yield (#) 1.708 - - - -

SPR (mrad) 0.770 1.294 0.432 0.101 -

mean θC (mrad) 0.452 0.246 0.198 0.128 -

60

1.345 - - - 0.656

0.773 0.479 0.295 0.106 1.115

0.655 0.262 0.167 0.036 1.768

65

1.748 - - - -

1.281 1.165 0.467 0.068 -

0.659 0.494 0.202 0.013 -

70

1.113 - - - -

0.684 0.883 0.125 0.075 -

0.569 0.291 0.092 0.084 -

75

1.353 - - - -

1.230 0.619 0.392 0.118 -

0.888 0.479 0.234 0.319 -

80

1.246 - - - -

1.162 0.953 0.202 0.845 -

0.714 0.445 0.129 0.104 -

85

1.197 - - - -

1.762 0.950 0.644 0.916 -

1.904 0.794 0.315 0.264 -

90

1.412 - - - 0.228

1.016 0.653 0.165 0.518 0.714

0.537 0.433 0.150 0.322 0.014

95

1.605 - - - -

1.158 0.651 0.292 0.175 -

1.069 0.332 0.421 0.512 -

100

1.370 - - - -

1.383 1.140 0.310 0.739 -

0.726 0.266 0.199 0.093 -
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TABLE 3: Evaluated errors for prototype DIRC data taken during the 2015 CERN test

beam with bar radiator, 3-layer lens, 7 GeV/c beam momentum, and tagged proton events.

Polar Angle (◦) Quantity Internal Fitting Binning Time Cut Stability

105

photon yield (#) 1.250 - - - -

SPR (mrad) 0.873 0.455 0.213 0.109 -

mean θC (mrad) 0.809 0.139 0.136 0.241 -

110

1.244 - - - -

1.673 0.868 0.393 0.337 -

0.569 0.251 0.175 0.063 -

115

1.352 - - - -

0.526 1.139 0.326 0.232 -

0.629 0.247 0.292 0.177 -

120

1.549 - - - 0.536

0.782 0.477 0.222 0.096 0.825

0.417 0.151 0.133 0.073 1.479

125

1.326 - - - -

0.575 0.302 0.235 0.064 -

0.355 0.210 0.143 0.081 -

130

1.887 - - - -

0.429 0.609 0.288 0.071 -

0.311 0.506 0.186 0.068 -

135

1.246 - - - -

0.419 0.745 0.268 0.048 -

0.271 0.456 0.160 0.062 -

140

1.641 - - - -

2.519 0.822 0.227 3.018 -

0.335 0.226 0.181 0.138 -

145

1.851 - - - -

0.225 0.400 0.108 0.144 -

0.284 0.135 0.082 0.139 -

150

1.465 - - - 0.748

0.375 0.537 0.160 0.162 0.409

0.411 0.236 0.090 0.090 1.145
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TABLE 4: Evaluated errors for prototype DIRC simulation with bar radiator, 3-layer lens,

and 7 GeV/c protons.

Polar Angle (◦) Quantity Internal Fitting Binning Time Cut

20

photon yield (#) 2.019 - - -

SPR (mrad) 0.590 1.183 0.527 0.126

mean θC (mrad) 0.391 0.787 0.134 0.218

25

0.998 - - -

0.403 0.337 0.108 0.066

0.400 0.220 0.099 0.215

30

1.086 - - -

0.376 0.265 0.138 0.182

0.430 0.185 0.095 0.228

35

0.925 - - -

0.636 0.329 0.206 0.220

0.449 0.276 0.148 0.055

40

1.018 - - -

0.582 0.467 0.190 0.105

0.385 0.238 0.149 0.112

45

1.071 - - -

0.444 0.287 0.127 0.268

0.404 0.068 0.123 0.129

50

0.497 - - -

1.008 0.736 0.389 0.389

0.673 0.542 0.216 0.092

55

0.898 - - -

0.377 0.209 0.142 0.053

0.371 0.043 0.117 0.089

60

0.982 - - -

0.518 0.344 0.113 0.132

0.300 0.167 0.095 0.017

65

0.782 - - -

0.427 0.775 0.577 0.592

0.350 0.417 0.243 0.199
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TABLE 4: Evaluated errors for prototype DIRC simulation with bar radiator, 3-layer lens,

and 7 GeV/c protons.

Polar Angle (◦) Quantity Internal Fitting Binning Time Cut

70

photon yield (#) 0.593 - - -

SPR (mrad) 0.465 0.424 0.217 0.074

mean θC (mrad) 0.455 0.139 0.139 0.018

75

0.466 - - -

0.689 0.286 0.215 0.078

0.463 0.121 0.207 0.060

80

0.554 - - -

0.627 0.352 0.163 0.020

0.384 0.116 0.168 0.047

85

0.667 - - -

1.246 0.548 0.161 0.548

0.619 0.171 0.135 0.030

90

0.613 - - -

0.531 0.632 0.325 0.126

0.396 0.334 0.199 0.120

95

0.781 - - -

1.311 1.747 0.867 2.579

2.105 0.910 0.482 0.073

100

0.715 - - -

0.589 0.555 0.168 0.385

0.397 0.176 0.198 0.025

105

0.761 - - -

0.346 0.232 0.191 0.072

0.414 0.122 0.174 0.062

110

0.706 - - -

0.531 0.610 0.244 0.050

0.559 0.208 0.199 0.012

115

0.951 - - -

0.693 0.372 0.231 0.069

0.391 0.116 0.103 0.044
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TABLE 4: Evaluated errors for prototype DIRC simulation with bar radiator, 3-layer lens,

and 7 GeV/c protons.

Polar Angle (◦) Quantity Internal Fitting Binning Time Cut

120

photon yield (#) 0.653 - - -

SPR (mrad) 0.635 0.433 0.186 0.047

mean θC (mrad) 0.446 0.207 0.153 0.068

125

0.711 - - -

0.537 0.269 0.155 0.048

0.342 0.063 0.100 0.007

130

0.804 - - -

0.708 0.534 0.252 0.134

0.362 0.462 0.148 0.035

135

0.748 - - -

0.535 0.544 0.234 0.116

0.236 0.151 0.208 0.080

140

0.843 - - -

0.831 0.437 0.319 0.365

0.412 0.152 0.225 0.130

145

1.386 - - -

0.250 0.521 0.085 0.073

0.282 0.098 0.087 0.188

150

1.428 - - -

0.430 0.319 0.259 0.041

0.292 0.227 0.119 0.124
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